
User Guide

AWS App Studio

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS App Studio User Guide

AWS App Studio: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS App Studio User Guide

Table of Contents

What is AWS App Studio? ... 1
Are you a first-time App Studio user? ... 1

Concepts ... 2
Administrator (Admin) ... 2
Application (App) .. 2
Automation .. 3
Automation actions .. 3
Builder ... 3
Application studio .. 3
Component .. 4
Entity ... 4
Connector ... 4
Page ... 4
Trigger ... 4

Setting up and signing in to App Studio ... 5
Creating and setting up an App Studio instance for the first time .. 5

Sign up for an AWS account .. 5
Create an administrative user for managing AWS resources ... 6
Enable App Studio from the AWS Management Console ... 6

Accepting an invitation to join App Studio ... 9
Getting started .. 10

Tutorial: Generate an app using AI .. 10
Prerequisites ... 11
Step 1: Create an application ... 11
Step 2: Explore your new application .. 12
Step 3: Preview your application .. 14
Next steps ... 14

Tutorial: Start building from an empty app ... 15
Prerequisites ... 17
Step 1: Create an application ... 18
Step 2: Create an entity to define your app's data ... 18
Step 3: Design the user interface (UI) and logic .. 21
Step 4: Preview the application ... 24
Step 5: Publish the application to the Testing environment ... 24

iii

AWS App Studio User Guide

Next steps ... 25
Administrator documentation .. 26

Managing user access with groups and roles ... 26
Roles and permissions ... 26
Viewing groups .. 27
Adding users or groups ... 27
Changing a group's role .. 28
Removing users or groups .. 29

Connect to other services with connectors .. 30
Connect to AWS services .. 30
Connect to third-party services ... 52
Viewing, editing, and deleting connectors .. 59

Builder documentation .. 61
Creating, editing, and deleting applications .. 61

Viewing applications .. 61
Creating an application ... 62
Editing an application .. 63
Deleting an application ... 64

Previewing, publishing, and sharing applications ... 64
Previewing applications ... 65
Publishing applications .. 65
Sharing published applications .. 70

Building your app's user interface .. 71
Creating, editing, or deleting pages ... 71
Adding, editing, and deleting components ... 73
Configuring role-based visibility of pages ... 74
Components reference ... 76

Defining your app's business logic with automations .. 122
Automations concepts ... 122
Tutorial: Interacting with Amazon S3 using automations .. 124
Creating, editing, and deleting automations .. 133
Adding, editing, and deleting automation actions .. 135
Automation actions reference ... 136

Configure your app's data model with entities ... 153
Creating an entity .. 153
Configuring an entity .. 157

iv

AWS App Studio User Guide

Deleting an entity .. 162
Managed data entities ... 162

Page and automation parameters .. 164
Page parameters ... 164
Automation parameters .. 165

Generative AI in App Studio .. 171
Generating your app .. 171
Generating your data models .. 171
Generating sample data .. 172
Configuring actions for AWS services .. 172
Mocking responses ... 172
Asking AI for help .. 172

Using JavaScript to write expressions ... 172
Basic syntax ... 173
Interpolation .. 173
Concatenation ... 173
Date and time ... 173
Code blocks .. 174
Global variables and functions .. 174
Accessing UI component values .. 174
Working with table data ... 176
Accessing automations .. 177

Troubleshooting and debugging apps ... 180
Troubleshooting in the application studio .. 180
Troubleshooting while previewing an app .. 180
Troubleshooting in the Testing environment ... 180
Debugging with logs from published apps in Amazon CloudWatch Logs 181
Troubleshooting connector issues ... 182

Building an app with multiple users .. 183
Invite builders to edit an app .. 183
Attempting to edit an app that is being edited by another user ... 184

Security .. 185
Security considerations and mitigations ... 185

Security considerations ... 185
Security risk mitigation recommendations ... 186

Service-linked roles ... 186

v

AWS App Studio User Guide

Service-linked role permissions for App Studio ... 187
Creating a service-linked role for App Studio .. 187
Editing a service-linked role for App Studio ... 188
Deleting a service-linked role for App Studio .. 188

AWS managed policies ... 188
AppStudioServiceRolePolicy ... 189
Policy updates ... 190

Document history .. 191

vi

AWS App Studio User Guide

What is AWS App Studio?

AWS App Studio is a generative AI-powered service that uses natural language to create enterprise-
grade applications. App Studio opens up application development to technical professionals
without software development skills, such as IT project managers, data engineers, and enterprise
architects, empowering them to quickly build applications that are secure and fully managed
by AWS, eliminating the need for operational expertise. Builders can create and deploy apps
to modernize internal business processes such as inventory management and tracking, claims
processing, and complex approvals to improve employee productivity and customer outcomes.

Topics

• Are you a first-time App Studio user?

Are you a first-time App Studio user?

If you are a first-time user of App Studio, we recommend that you begin by reading the following
sections:

• For users with the administrator role who will be setting up App Studio, managing users and
access, and configuring connectors with other AWS or third-party services, see AWS App Studio
concepts and Setting up and signing in to AWS App Studio.

• For builders who will be creating and developing applications, see AWS App Studio concepts and
Getting started with AWS App Studio.

Are you a first-time App Studio user? 1

AWS App Studio User Guide

AWS App Studio concepts

Get familiar with the key concepts to help speed up creating applications and automating
processes for your team. These concepts include terms used throughout App Studio for both
administrators and builders.

Topics

• Administrator (Admin)

• Application (App)

• Automation

• Automation actions

• Builder

• Application studio

• Component

• Entity

• Connector

• Page

• Trigger

Administrator (Admin)

Admin is a role that can be assigned to a group in App Studio. Admins can manage users and
groups within App Studio, add and manage connectors, and manage applications created by
builders. Additionally, users with the Admin role have all of the permissions included with the
Builder role.

Only admins have access to the Admin Hub, which contains tools to manage roles, data sources,
and applications.

Application (App)

An application is a single configuration of pages that include assets such as interface components,
automations, and data sources with which users can interact.

Administrator (Admin) 2

AWS App Studio User Guide

Automation

Built in the application studio, automations are how you define the business logic of your
application. The main components of an automation are: triggers that start the automation, a
sequence of one or more actions, input parameters used to pass data to the automation, and an
output.

Automation actions

An automation action, commonly referred to as an action, is an individual step of logic that make
up an automation. Each action performs a specific task, whether it's sending an email, creating a
data record, invoking a Lambda function, or calling APIs. Actions are added to automations from
the action library, and can be grouped into conditional statements or loops.

Builder

Builder is a role that can be assigned to a group in App Studio. Builders can create and build
applications. Builders cannot manage users or groups, add or edit connector instances, or manage
other builders' applications.

Users with the Builder role have access to the Builder Hub, which contains details about resources
such as the applications that the builder has access to along with helpful information such as
learning resources.

Application studio

The application studio is a visual tool to build applications. This application studio includes the
following tabs for building apps:

• Pages: Where builders design their applications with pages and components.

• Automations: Where builders design their application's business logic with automations.

• Data: Where builders design their application's data model with entities.

The application studio also contains a debug console, and an AI chat window to get contextual help
while building.

Automation 3

AWS App Studio User Guide

Component

Components are individual functional items within the UI of your application. Components
are contained in pages, and some components can serve as a container for other components.
Components combine UI elements with the business logic you want that UI element to perform.
For example, one type of component is a form, where users can enter information in fields and,
once submitted, that information is added as a database record.

Entity

Entities are data tables in App Studio. Entities interact directly with tables in data sources. Entities
include fields to describe the data in them, queries to locate and return data, and mapping to
connect the entity's fields to a data source's columns.

Connector

A connector is a connection between App Studio and other AWS services, such as AWS Lambda and
Amazon Redshift, or third-party services. Once a connector is created and configured, builders can
use it and the resources it connects to App Studio in their applications.

Only users with the Admin role can create, manage, or delete connectors.

Page

Pages are containers for components, which make up the UI of an application in App Studio. Each
page represents a screen of your application's user interface (UI) that your users will interact with.
Pages are created and edited in the Pages tab of the application studio.

Trigger

Trigger determine when, and on what conditions, an automation will run. Some examples of
triggers are On click for buttons and On select for text inputs. The type of component
determines the list of available triggers for that component. Triggers are added to components and
configured in the application studio.

Component 4

AWS App Studio User Guide

Setting up and signing in to AWS App Studio

Setting up AWS App Studio is different depending on your role:

• First-time setup as an AWS or organization administrator: Setting up App Studio for the first
time as an administrator includes creating an AWS account if you don't have one, creating the
App Studio instance, and configuring user access using IAM Identity Center groups. After the
instance is created, anyone with the Administrator role in App Studio can do further setting up
tasks, such as configuring connectors to connect other services, such as data sources, to your
App Studio instance. For information about first-time setup, see Creating and setting up an App
Studio instance for the first time.

• Getting started as a builder: When you receive an invitation to join App Studio as a builder, you
must accept the invitation and activate your IAM Identity Center user credentials by providing
a password. Afterwards, you can sign into App Studio and start building applications. For
information about accepting an invitation and joining an App Studio instance, see Accepting an
invitation to join App Studio.

Creating and setting up an App Studio instance for the first
time

Sign up for an AWS account

An AWS account is required to set up App Studio. Only one AWS account is required to use App
Studio— builders and administrators do not need an AWS account to use App Studio, as access is
managed with AWS IAM Identity Center.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign

Creating and setting up an App Studio instance for the first time 5

https://portal.aws.amazon.com/billing/signup

AWS App Studio User Guide

administrative access to a user, and use only the root user to perform tasks that require root
user access.

Create an administrative user for managing AWS resources

When you first create an AWS account, you begin with a default set of credentials with complete
access to all AWS resources in your account. This identity is called the AWS account root user. For
creating AWS roles and resources to be used with App Studio, we strongly recommend you do not
use the AWS account root user, and instead create and use an administrative user.

Use the following topics to create an administrative user for managing AWS roles and resources for
use with App Studio.

• For a single, standalone AWS account, see Create your first IAM user in the IAM User Guide. You
can provide any user name, but it must have AdministratorAccess permissions policy.

• For multiple AWS accounts managed through AWS Organizations, see Set up AWS account access
for an IAM Identity Center administrative user in the AWS IAM Identity Center User Guide.

Enable App Studio from the AWS Management Console

To use App Studio, you must enable it from the App Studio landing page in the AWS Management
Console.

To enable App Studio from the AWS Management Console

1. Open the App Studio console at https://console.aws.amazon.com/appstudio/.

2. Choose Get started.

3. The steps to set up App Studio are determined by whether or not you have an IAM Identity
Center instance, and the type of instance.

Tip

To find more information about IAM Identity Center instances, including the different
types and how to find which type you have, see Manage organization and account
instances of IAM Identity Center in the AWS IAM Identity Center User Guide.

Create an administrative user for managing AWS resources 6

https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-iam-user.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://console.aws.amazon.com/appstudio/
https://docs.aws.amazon.com/singlesignon/latest/userguide/identity-center-instances.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/identity-center-instances.html

AWS App Studio User Guide

• If you have an organization instance of IAM Identity Center:

a. In Configure access to App Studio with Single Sign-On, select existing IAM Identity
Center groups to provide them with access to App Studio. App Studio groups will be
created based on the specified configuration. Members of groups added to Admin
groups will have the Admin role, and members of groups added to Builder groups
will have the Builder role in App Studio. The roles are defined as follows:

• Admins can manage users and groups within App Studio, add and manage
connectors, and manage applications created by builders. Additionally, users with
the Admin role have all of the permissions included with the Builder role.

• Builders can create and build applications. Builders cannot manage users or groups,
add or edit connector instances, or manage other builders' applications.

b. In Create Amazon CodeCatalyst space, provide a name for the CodeCatalyst space
that will be used to store App Studio source code and other information.

• If you have an account instance of IAM Identity Center instance:

a. In Account permissions, review the required permissions for enabling App Studio. If
your account does not have the required permissions, you will not be able to enable
App Studio. You must either get the required permissions added to your account, or
switch to an account that has them.

b. In Configure access to App Studio with Single Sign-On, in IAM Identity Center
account, choose Use an existing account instance

c. In AWS Region, choose the region in which your AWS Identity Center account instance
is located.

d. Select existing IAM Identity Center groups to provide them with access to App Studio.
App Studio groups will be created based on the specified configuration. Members of
groups added to Admin groups will have the Admin role, and members of groups
added to Builder groups will have the Builder role in App Studio. The roles are
defined as follows:

• Admins can manage users and groups within App Studio, add and manage
connectors, and manage applications created by builders. Additionally, users with
the Admin role have all of the permissions included with the Builder role.

Enable App Studio from the AWS Management Console 7

AWS App Studio User Guide

• Builders can create and build applications. Builders cannot manage users or groups,
add or edit connector instances, or manage other builders' applications.

• If you do not have an IAM Identity Center instance:

Note

Setting up App Studio automatically creates an IAM Identity Center account
instance with the groups you configure during the set up process. After the setup
is complete, you can add or manage users and groups in the IAM Identity Center
console at https://console.aws.amazon.com/singlesignon/.

a. In Account permissions, review the required permissions for enabling App Studio. If
your account does not have the required permissions, you will not be able to enable
App Studio. You must either get the required permissions added to your account, or
switch to an account that has them.

b. In Configure access to App Studio with Single Sign-On, in IAM Identity Center
account, choose Create an account instance for me.

c. In Create users and groups and add them to App Studio, provide a name for and
add users to an admin group and builder group. Users added to the admin group will
have the Admin role in App Studio, and users added to the builder group will have the
Builder role. The roles are defined as follows:

• Admins can manage users and groups within App Studio, add and manage
connectors, and manage applications created by builders. Additionally, users with
the Admin role have all of the permissions included with the Builder role.

• Builders can create and build applications. Builders cannot manage users or groups,
add or edit connector instances, or manage other builders' applications.

Important

You must add yourself as a user of the admin group to set up App Studio and
have admin access after setting up.

4. In Acknowledgement, acknowledge the statements by choosing their checkboxes.

5. Choose Set up.

Enable App Studio from the AWS Management Console 8

https://console.aws.amazon.com/singlesignon/

AWS App Studio User Guide

Accepting an invitation to join App Studio

Access to App Studio is managed by IAM Identity Center, so each user that wants to use App Studio
must configure a user in IAM Identity Center and belong to a group that has been added to App
Studio by an admin. When an administrator invites you to join IAM Identity Center, you'll receive
an email asking you to accept the invitation and activate your user credentials. Once activated, you
can use those credentials to sign in to App Studio.

To accept an invitation to IAM Identity Center to access App Studio

1. When you receive an invitation email, follow the steps to provide a password and activate your
user credentials in IAM Identity Center. For more information, see Accepting the invitation to
join IAM Identity Center.

2. After you activate your user credentials, use them to sign into your App Studio instance.

Accepting an invitation to join App Studio 9

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtoactivateaccount.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtoactivateaccount.html

AWS App Studio User Guide

Getting started with AWS App Studio

The following getting started tutorials walk you through building your first application in App
Studio.

• (Recommended): To use generative AI to describe the app you want to create, and automatically
create it and its resources, see Tutorial: Generate an app using AI.

• To start building from an empty app, see Tutorial: Start building from an empty app.

Tutorial: Generate an app using AI

App Studio contains generative AI features throughout the service to help speed up application
building. In this tutorial, you'll learn how to generate an app using AI by describing your app using
natural language. Using AI to generate an app is a great way to start building, as many of the app's
resources are created for you and it's typically much easier to start building from a generated app
with existing resources than starting from an empty app.

Note

You can view the Build enterprise-grade applications with natural language using AWS
App Studio (preview) blog post to view a similar walkthrough that includes images. The
blog post also contains information about setting up and configuring administrator-related
resources, but you can skip to the portion about building applications if desired.

When an app is generated with AI, the app is created with the following resources that are tailored
to the app you described:

1. Pages and components: Components are the building blocks of your application's user interface.
They represent visual elements like tables, forms, buttons, and more. Each component has its
own set of properties and can be customized to fit your specific requirements. Components are
contained in pages.

2. Automations: Automations are used to define the logic and workflows that govern how your
application behaves. Automations can create, update, read, or delete rows in a data table
or objects in an Amazon S3 bucket, or handle tasks like data validation, notifications, or
integrations with other systems.

Tutorial: Generate an app using AI 10

https://aws.amazon.com/blogs/aws/build-custom-business-applications-without-cloud-expertise-using-aws-app-studio-preview
https://aws.amazon.com/blogs/aws/build-custom-business-applications-without-cloud-expertise-using-aws-app-studio-preview

AWS App Studio User Guide

3. Entities: Data is the information that powers your application. The generated app will create
entities, similar to tables, that represent the different types of data you need to store and work
with, such as customers, products, or orders. You can connect these data models to a variety of
data sources, including AWS services and external APIs, using App Studio's connectors.

Contents

• Prerequisites

• Step 1: Create an application

• Step 2: Explore your new application

• Explore pages and components

• Explore automations and actions

• Explore data with entities

• Step 3: Preview your application

• Next steps

Prerequisites

Before you get started, review and complete the following prequisites:

• Access to AWS App Studio.

• Optional: Review AWS App Studio concepts to familiarize yourself with important App Studio
concepts.

Step 1: Create an application

The first step in generating an app is to describe the app you want to create to the AI assistant in
App Studio. You can review the application that will be generated, and iterate as desired before
generating.

To generate your app using AI

1. Log in to App Studio.

2. Navigate to the builder hub and choose + Create app.

3. Choose Generate an app with AI.

Prerequisites 11

AWS App Studio User Guide

4. In the App name field, provide a name for your app.

5. In the Select data sources dialog box, choose Skip.

6. You can start defining the app you want to generate by describing it in the text box, or
by choosing Customize on a sample prompt. Once you describe your app, App Studio will
generate the app requirements and details for you to review. This includes use cases, user
flows, and data models.

7. Use the text box to iterate your app as needed, until you are satisfied with the requirements
and details.

8. Once you're ready to generate your app and start building, choose Generate app.

9. Optionally, you can view a short video that details how to navigate around your new app.

10. Choose Edit app to enter the application studio for your app.

Step 2: Explore your new application

In the application studio, you'll find the following resources:

1. A canvas that you use to view or edit your application. The canvas changes depending on the
resource that is selected.

2. Navigation tabs at the top of the canvas. The tabs are described in the following list:

a. Pages: Where you use pages and components to design the UI of your app.

b. Automations: Where you use actions in automations to define the business logic of your app.

c. Data: Where you define entities, their fields, sample data, and data actions to define the data
models of your app.

d. App settings: Where you define settings for your app, including app roles, which are used to
define role-based visibility of pages for your end users.

3. A left-side navigation menu, which contains resources based on which tab you're viewing.

4. A right-side menu that lists resources and properties for selected resources in the Pages and
Automations tabs.

5. A debug console that displays warnings and errors at the bottom of the builder. There may be
errors present in your generated app. This is likely due to automations that require a configured
connector to perform actions, such as sending an email with Amazon Simple Email Service.

6. An Ask AI chat window to get contextual help from the AI builder assistant.

Step 2: Explore your new application 12

AWS App Studio User Guide

Let's take a closer look at the Pages, Automations, and Data tabs.

Explore pages and components

In the Pages tab, you'll find pages and their components that were generated for you.

Each page represents a screen of your application's user interface (UI) that your users will interact
with. Within these pages, you can find various components such as tables, forms, buttons, and
more to create the desired layout and functionality.

Take some time to view the pages and their components by using the left-side navigation menu.
When you select a page or component, you can choose Properties in the right-

Explore automations and actions

In the Automations tab, you'll find automations and their actions that were generated for you.

Automations define the business logic of your app, such as creating, viewing, updating, or deleting
data entries, sending emails, or even invoking APIs or Lambda functions.

Take some time to view the automations by using the left-side navigation menu. When you choose
an automation, you can view its properties in the right-side Properties menu. An automation
contains the following resources:

1. Automations are made up of individual actions, which are the building blocks of your app's
business logic. You can view the actions of an automation in the left-side navigation menu, or in
the canvas of a selected automation. When you select an action, you can view its properties in
the right-side Properties menu.

2. Automation parameters are how data is passed into an automation. Parameters act as
placeholders that are replaced with actual values when the automation is run, allowing you to
use the same automation with different inputs each time.

3. Automation output is where you configure the result of an automation. By default, an
automation has no output, so to use an automation's result in components or other
automations, you must define them here.

For more information, see Automations concepts.

Explore data with entities

In the Data tab, you'll find entities that were generated for you.

Step 2: Explore your new application 13

AWS App Studio User Guide

Entities represent tables that hold your application's data, similar to tables in a database. Instead
of connecting your application's user interface (UI) and automations directly to data sources, they
connect to entities first. Entities act as a middle-person between your actual data source and your
App Studio app, providing a single place to manage and access your data.

Take some time to view the entities that were generated by choosing them from the left-side
navigation menu to see the following details:

1. In the Configuration tab, you'll find the entity name, and its fields, which represent the columns
of your entity.

2. In the Data actions tab, you'll find the data actions generated with your entity. Components and
automations can use data actions to fetch data from your entity.

3. In the Sample data tab, you'll find sample data which can be used to test your app in the
Development environment, which does not communicate with external services. For more
information about environments, see Application environments.

4. In the Connection tab, you'll see information about the external data sources that the entity
is connected to. App Studio provides a managed data storage solution that uses a DynamoDB
table. For more information, see Managed data entities in AWS App Studio.

Step 3: Preview your application

You can preview applications in App Studio to see how they will appear to users and also test its
functionality by using it and checking logs in a debug panel.

The application preview environment does not support displaying live data or the connection with
external resources with connectors, such as data sources. Instead, you can use sample data and
mocked output to test functionality.

To preview your app for testing

1. In the top-right corner of the app builder, choose Preview.

2. Interact with the pages of your app.

Next steps

Now that you've created your first app, here are some next steps:

Step 3: Preview your application 14

AWS App Studio User Guide

1. If you haven't, read the Build enterprise-grade applications with natural language using AWS
App Studio (preview) blog post for another getting started walkthrough that includes images.

2. Apps use connectors to send and receive data or communicate with external services, both AWS
services and third-party services. It's necessary to learn more about connectors and how to
configure them to build apps. Note that you must have the Admin role to manage connectors.
Check out Connect App Studio to other services with connectors to learn more.

3. To learn more about previewing, publishing, and eventually sharing your app to end users, check
out Previewing, publishing, and sharing applications.

4. Keep exploring and updating the app you generated for some hands-on experience.

5. Check out the Builder documentation to learn more about building apps. Specifically, the
following topics might be useful to explore:

• Automation actions reference

• Components reference

• Tutorial: Interacting with Amazon Simple Storage Service using automations

• Security considerations and mitigations

Tutorial: Start building from an empty app

In this tutorial, you'll build an internal Customer Meeting Request application using AWS App
Studio. You'll learn about how to build apps in App Studio, including defining data structures, UI
design, and app deployment, while focusing on real-world use cases and hands-on examples.

Note

This tutorial details how to build an app from scratch, starting with an empty app.
Typically, it's much quicker and easier to use AI to help generate an app and its resources
for you by providing a description of the app you want to create. For more information, see
Tutorial: Generate an app using AI.

The key to understanding how to build applications with App Studio is to understand the following
four core concepts and how they work together: components, automations, data, and connectors.

Tutorial: Start building from an empty app 15

https://aws.amazon.com/blogs/aws/build-custom-business-applications-without-cloud-expertise-using-aws-app-studio-preview
https://aws.amazon.com/blogs/aws/build-custom-business-applications-without-cloud-expertise-using-aws-app-studio-preview

AWS App Studio User Guide

1. Components: Components are the building blocks of your application's user interface. They
represent visual elements like tables, forms, buttons, and more. Each component has its own set
of properties and can be customized to fit your specific requirements.

2. Automations: Automations allows you to define the logic and workflows that govern how your
application behaves. You can create automations to create, update, read, or delete rows in a data
table or objects in an Amazon S3 bucket, or handle tasks like data validation, notifications, or
integrations with other systems.

3. Data: Data is the information that powers your application. In App Studio, you can define data
models, called entities, that represent the different types of data you need to store and work
with, such as customer meeting requests, agenda, or attendees. You can connect these data
models to a variety of data sources, including AWS services and external APIs, using App Studio's
connectors.

4. Connectors: App Studio provides seamless connections with a wide range of data sources,
including AWS services such as Aurora, DynamoDB, and Amazon Redshift, and third-party
services such as Salesforce or many others using OpenAPI or generic API connectors. You can use
App Studio's connectors to easily incorporate data and functionality from these enterprise-grade
services and external applications into your applications.

As you progress through the tutorial, you'll explore how the key concepts of components, data, and
automation come together to build your internal Customer Meeting Request application.

1. Start with data: Many applications begin with a data model, so this tutorial begins with data as
well. To build the Customer Meeting Request app, you'll start by creating a MeetingRequests
entity. This entity represents the data structure for storing all the relevant meeting request
information, such as customer name, meeting date, agenda, and attendees. This data
model serves as the foundation for your application, powering the various components and
automations you'll build.

2. Create your user interface (UI): With the data model in place, the tutorial will then guide you
through building the user interface (UI). In App Studio, the UI is built by adding pages, and
adding components to them. You'll add components like Tables, Detail views, and Calendars to
a meeting request dashboard page. These components will be designed to display and interact
with the data stored in the MeetingRequests entity, allowing your users to view, manage,
and schedule customer meetings. You will also create a meeting request creation page, which
includes a Form component to collect data and a Button component to submit it.

Tutorial: Start building from an empty app 16

AWS App Studio User Guide

3. Add business logic with automations: To enhance the functionality of your application, you'll
configure some of the components to enable user interactions, such as navigating to a page or
creating a new meeting request record in the MeetingRequests entity.

4. Enhance with validation and expressions: To ensure the integrity and accuracy of your data,
you'll add validation rules to the Form component. This will help guarantee that users provide
complete and valid information when creating new meeting request records. Additionally, you'll
use expressions to reference and manipulate data within your application to display dynamic
and contextual information throughout your user interface.

5. Preview and test: Before deploying your application, you'll have the opportunity to preview and
test it thoroughly. This will allow you to verify that the components, data, and automations are
all working together seamlessly, providing your users with a smooth and intuitive experience.

6. Publish the application: Finally, you'll deploy your completed internal Customer Meeting
Request application, making it accessible to your users. With the power of App Studio's low-
code approach, you'll have built a custom application that meets the specific needs of your
organization, without the need for extensive programming expertise.

Contents

• Prerequisites

• Step 1: Create an application

• Step 2: Create an entity to define your app's data

• Add fields to your entity

• Step 3: Design the user interface (UI) and logic

• Add a meeting request dashboard page

• Add a meeting request creation page

• Step 4: Preview the application

• Step 5: Publish the application to the Testing environment

• Next steps

Prerequisites

Before you get started, review and complete the following prequisites:

• Access to AWS App Studio.

Prerequisites 17

AWS App Studio User Guide

• Optional: Review AWS App Studio concepts to familiarize yourself with important App Studio
concepts.

• Optional: An understanding of basic web development concepts, such as JavaScript syntax.

• Optional: Familiarity with AWS services.

Step 1: Create an application

1. Log in to App Studio.

2. Navigate to the builder hub and choose + Create app.

3. Choose Start from scratch.

4. In the App name field, provide a name for your app, such as Customer Meeting Requests.

5. If asked to select data sources or a connector, choose Skip for the purposes of this tutorial.

6. Choose Next to proceed.

7. (Optional): Watch the video tutorial for a quick overview of building apps in App Studio.

8. Choose Edit app which will bring you into the App Studio app builder.

Step 2: Create an entity to define your app's data

Entities represent tables that hold your application's data, similar to tables in a database. Instead
of connecting your application's user interface (UI) and automations directly to data sources, they
connect to entities first. Entities act as a middle-person between your actual data source and your
App Studio app, providing a single place to manage and access your data.

There are four ways to create an entity– for this tutorial, you will use the App Studio managed
entity. Creating a managed entity also creates a corresponding DynamoDB table that is managed
by App Studio. When changes are made to the entity in the App Studio app, the DynamoDB table is
updated automatically. With this option, you don't have to manually create, manage, or connect a
third-party data source, or designate mapping from entity fields to table columns.

When creating an entity, you must define a primary key field. A primary key serves as a unique
identifier for each record or row in the entity, ensuring that each record can be easily identified and
retrieved without ambiguity. The primary key consists of the following properties:

• Primary key name: A name for the primary key field of the entity.

Step 1: Create an application 18

AWS App Studio User Guide

• Primary key data type: The type of the primary key field. In App Studio, supported primary key
types are String for text, and Float for a number. A text primary key, like meetingName, would
have a type of String and a numerical primary key, such as meetingId would have a type of
Float.

The primary key is a crucial component of an entity because it enforces data integrity, prevents
data duplication, and enables efficient data retrieval and querying.

To create a managed entity

1. Choose Data from the top bar menu.

2. Choose + Create entity.

3. Choose Create App Studio managed entity.

4. In the Entity name field, provide a name for your entity. For this tutorial, enter
MeetingRequests.

5. In the Primary key field enter the primary key name label to give to the primary key column in
your entity. For this tutorial, enter requestID.

6. In the Primary key data type dropdown, select Float.

7. Choose Create entity.

Add fields to your entity

For each field, you will specify the display name, which is the label visible to app users. The display
name can contain spaces and special characters but must be unique within the entity. The display
name serves as a user-friendly label for the field, and helps users easily identify and understand its
purpose.

Next, you’ll provide the system name, a unique identifier used internally by the application to
reference the field. The system name should be concise and without spaces or special characters.
The system name allows the application to make changes to the field's data. It acts as a unique
reference point for the field within the application.

Finally, you’ll select the data type that best represents the kind of data you want to store in the
field, such as String (text), Boolean (true/false), Date, Decimal, Float, Integer, or DateTime. Defining
the appropriate data type ensures data integrity and enables proper handling and processing

Step 2: Create an entity to define your app's data 19

AWS App Studio User Guide

of the field's values. For instance, if you're storing customer names in your meeting request, you
would select the String data type to accommodate text values.

To add fields to your MeetingRequests entity

• Choose + Add field to add the five following fields:

a. Add a field that represents a customer's name with the following information:

• Display name: Customer name

• System name: customerName

• Data type: String

b. Add a field that represents the meeting date with the following information:

• Display name: Meeting date

• System name: meetingDate

• Data type: DateTime

c. Add a field that represents the meeting agenda with the following information:

• Display name: Agenda

• System name: agenda

• Data type: String

d. Add a field to represent the meeting attendees with the following information:

• Display name: Attendees

• System name: attendees

• Data type: String

You can add sample data to your entity, which can be used to test and preview your application
before publishing it. By adding up to 500 rows of mock data, you can simulate real-world scenarios
and examine how your application handles and displays various types of data, without relying on
actual data or connecting to external services. This allows you to identify and resolve any issues
or inconsistencies early in the development process, ensuring that your application functions as
intended when dealing with actual data.

Step 2: Create an entity to define your app's data 20

AWS App Studio User Guide

To add sample data to your entity.

1. Choose the Sample data tab in the banner.

2. Choose Generate more sample data.

3. Choose Save.

Optionally, choose Connection in the banner to review the details about the connector and
DynamoDB table created for you.

Step 3: Design the user interface (UI) and logic

Add a meeting request dashboard page

In App Studio, each page represents a screen of your application's user interface (UI) that your
users will interact with. Within these pages, you can add various components such as tables, forms,
buttons, and more to create the desired layout and functionality.

Newly created applications come with a default page, so you will rename that one instead of
adding a new one to use as a simple meeting request dashboard page.

To rename the default page

1. In the top bar navigation menu, choose Pages.

2. In the left-side panel, double click Page1 and rename it to MeetingRequestsDashboard.
Press enter.

Now, add a table component to the page that will be used to display meeting requests.

To add a table component to the meeting requests dashboard page

1. In the right-hand Components panel, locate the Table component and drag it onto the canvas.

2. Choose the table in the canvas to select it.

3. In the right-side Properties panel, update the following settings:

a. Choose the pencil icon to rename the table to meetingRequestsTable.

b. In the Source dropdown, choose Entity.

c. In the Data actions dropdown, choose the entity you created (MeetingRequests) and
choose + Add data actions.

Step 3: Design the user interface (UI) and logic 21

AWS App Studio User Guide

4. If prompted, choose getAll.

Note

The getAll data action is a specific type of data action that retrieves all the records
(rows) from a specified entity. When you associate the getAll data action with a table
component, for example, the table will automatically populate with all the data from
the connected entity, displaying each record as a row in the table.

Add a meeting request creation page

Next, create a page that contains a form that end users use to create meeting requests. Along
with the form, you will also add a submit button that creates the record in the MeetingRequests
entity, and then navigates the end user back to the MeetingRequestsDashboard page.

Add a meeting request creation page

1. In the top banner, choose Pages.

2. In the left-side panel, choose + Add.

3. In the right-side properties panel, select the pencil icon and rename the page to
CreateMeetingRequest.

Now that the page is added, you will add a form to the page that end users will use to input
information to create a meeting request in the MeetingRequests entity. App Studio offers a
method of generating a form from an existing entity, which autopopulates the form fields based
on the entity's fields and also generates a submit button for creating a record in the entity with the
form inputs.

To automatically generate a form from an entity on the meeting request creation page

1. In the right-side Components menu, find the Form component and drag it onto the canvas.

2. Select Generate form.

3. From the dropdown, select the MeetingRequests entity.

4. Choose Generate.

5. Choose the Submit button on the canvas to select it.

6. In the right-side properties panel, in the Triggers section, choose + Add.

Step 3: Design the user interface (UI) and logic 22

AWS App Studio User Guide

7. Choose Navigate.

8. In the right-side properties panel, change the Action name to something descriptive, such as
Navigate to MeetingRequestsDashboard.

9. Change the Navigation type to page. In the Navigate to dropdown, choose
MeetingRequestsDashboard.

Now we have a meeting request creation page and form, and we want to make it easy to navigate
to this page from the MeetingRequestsDashboard page, so that end users reviewing the
dashbaord can easily create meeting requests. Use the following procedure to create a button on
the MeetingRequestsDashboard page that navigates to the CreateMeetingRequest page.

To add a button to navigate from MeetingRequestsDashboard to CreateMeetingRequest

1. In the top banner, choose Pages.

2. Choose the MeetingRequestsDashboard page.

3. In the right-side Components panel, find the Button component and drag it onto the canvas,
placing it above the table.

4. Choose the newly added button to select it.

5. In the right-side Properties panel, update the following settings:

a. Select the pencil icon to rename the button to createMeetingRequestButton.

b. Button label: Create Meeting Request. This is the name that end users will see.

c. In the Icon dropwon, select + Plus.

d. Create a trigger that navigates the end user to the MeetingRequestsDashboard page:

1. In the Triggers section, choose + Add.

2. In Action Type, select Navigate.

3. Choose the trigger you just created to configure it.

4. In Action name, provide a descriptive name such as
NavigateToCreateMeetingRequest.

5. In the Navigate type dropdown, select Page.

6. In the Navigate to dropdown, select the CreateMeetingRequest page.

Step 3: Design the user interface (UI) and logic 23

AWS App Studio User Guide

Step 4: Preview the application

You can preview applications in App Studio to see how they will appear to users and also test its
functionality by using it and checking logs in a debug panel.

The application preview environment does not support displaying live data or the connection with
external resources with connectors, such as data sources. Instead, you can use sample data and
mocked output to test functionality.

To preview your app for testing

1. In the top-right corner of the app builder, choose Preview.

2. Interact with the MeetingRequestsDashboard page, testing the table, form, and buttons.

Step 5: Publish the application to the Testing environment

Now that you're done creating, configuring, and testing your application, it's time to publish it to
the Testing environment to perform final testing and then share it with users.

To publish your app to the Testing environment

1. In the top-right corner of the app builder, choose Publish.

2. Add a version description for the Testing environment.

3. Review and select the checkbox regarding the SLA.

4. Choose Start. Publishing may take up to 15 minutes.

5. (Optional) Once ready, you can give others access by choosing Share modal and following the
prompts.

Note

An admin must have created end-user groups to share apps.

After testing, choose Publish again to promote the application to the Production environment. For
more information about the different application environments, see Application environments.

Step 4: Preview the application 24

AWS App Studio User Guide

Next steps

Now that you've created your first app, here are some next steps:

1. Keep building the tutorial app. Now that you have data, some pages, and an automation
configured, you can add additional pages and add components to learn more about building
apps.

2. Check out the Builder documentation to learn more about building apps. Specifically, the
following topics might be useful to explore:

• Automation actions reference

• Components reference

• Tutorial: Interacting with Amazon Simple Storage Service using automations

• Security considerations and mitigations

In addition, the following topics contain more information about concepts discussed in the
tutorial:

• Previewing, publishing, and sharing applications

• Creating an entity in an App Studio app

Next steps 25

AWS App Studio User Guide

Administrator documentation

The following topics contain information to help users who are managing third-party service
connections and access, users, and roles in App Studio.

Topics

• Managing access and roles in App Studio

• Connect App Studio to other services with connectors

Managing access and roles in App Studio

One of the responsibilities of administrators in App Studio is to manage access, roles, and
permissions. The following topics contain information about the roles in App Studio, and how to
add users, remove users, or change their role.

Access to AWS App Studio is managed using IAM Identity Center groups. To add users to your App
Studio instance, you must either:

• Add them to an existing IAM Identity Center group that is added to App Studio.

• Add them to a new or existing IAM Identity Center group that is not added to App Studio, and
then add it to App Studio.

Because roles are applied to groups, the IAM Identity Center groups should represent the access
privileges (or roles) you want to assign to members of the group. For more information about IAM
Identity Center, including information about managing users and groups, see the IAM Identity
Center User Guide.

Roles and permissions

There are three roles in App Studio. The following list contains each role and their description.

• Admin: Admins can manage users and groups within App Studio, add and manage connectors,
and manage applications created by builders. Additionally, users with the Admin role have all of
the permissions included with the Builder role.

• Builder: Builders can create and build applications. Builders cannot manage users or groups, add
or edit connector instances, or manage other builders' applications.

Managing user access with groups and roles 26

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS App Studio User Guide

• App User: App Users can access and use published apps, but cannot access your App Studio
instance to build apps or manage resources.

In App Studio, roles are assigned to groups, therefore each member of an added IAM Identity
Center group will be assigned the role that is assigned to the group.

Viewing groups

Perform the following steps to view the groups added to your App Studio instance.

Note

You must be an Admin to view groups in your App Studio instance.

To view groups added to your App Studio instance

• In the navigation pane, choose Roles in the Manage section. You will be taken to a page
displaying a list of existing groups as well as each group’s assigned role.

For information about managing groups, see Adding users or groups, Changing a group's role,
or Removing users or groups from App Studio.

Adding users or groups

To add users to App Studio, you must add them to an IAM Identity Center group and add that
group to App Studio. Perform the following steps to add users to App Studio by adding IAM
Identity Center groups and assigning a role.

Note

You must be an Admin to add users to your App Studio instance.

To add users or groups to your App Studio instance

1. To add users to your App Studio instance, you must either add them to an existing IAM Identity
Center group that has been added to App Studio, or create a new IAM Identity Center group,
add the new user to it, and add the new group to App Studio.

Viewing groups 27

AWS App Studio User Guide

For information about managing IAM Identity Center users and groups, see Manage identities
in IAM Identity Center in the AWS IAM Identity Center User Guide.

2. If you added users to an existing IAM Identity Center group that was already added to App
Studio, the new user can access App Studio with the designated permissions after completing
the setup of their IAM Identity Center permissions. If you created a new IAM Identity Center
group, perform the following steps to add the group to App Studio and designate a role for
the group's members.

3. In the navigation pane, choose Roles in the Manage section.

4. On the Roles page, choose + Add group. This will open an Add groups dialog box for you to
enter information about the group.

5. In the Add groups dialog box, enter the following information:

• Choose the existing IAM Identity Center group in the dropdown.

• Select a role for the group.

• Admin: Admins can manage users and groups within App Studio, add and manage
connectors, and manage applications created by builders. Additionally, users with the
Admin role have all of the permissions included with the Builder role.

• Builder: Builders can create and build applications. Builders cannot manage users or
groups, add or edit connector instances, or manage other builders' applications.

• App User: App Users can access and use published apps, but cannot access your App
Studio instance to build apps or manage resources.

6. Choose Assign to add the group to App Studio and provide its members with the configured
role.

Changing a group's role

Follow these steps to change the role assigned to a group in App Studio. Changing a group's role
will change the role of every member in that group.

Note

You must be an Admin to change the role of a group in App Studio.

Changing a group's role 28

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS App Studio User Guide

To change the role of a group

1. In the navigation pane, choose Roles in the Manage section. You will be taken to a page
displaying a list of existing groups as well as each group’s assigned role.

2. Choose the ellipses icon (...) and choose Change role.

3. In the Change role dialog box, select a new role for the group:

• Administrator: Admins can manage users and groups within App Studio, add and manage
connectors, and manage applications created by builders. Additionally, users with the Admin
role have all of the permissions included with the Builder role.

• Builder: Builders can create and build applications. Builders cannot manage users or groups,
add or edit connector instances, or manage other builders' applications.

• App User: App Users can access and use published apps, but cannot access your App Studio
instance to build apps or manage resources.

4. Choose Change change the group's role.

Removing users or groups from App Studio

You cannot remove an IAM Identity Center group from App Studio. Performing the following
instructions will instead downgrade the group's role to App User. Members of the group will still be
able to access published App Studio apps.

To remove all access to App Studio and its apps, you must either delete the IAM Identity Center
group or users in the AWS IAM Identity Center console. For information about managing IAM
Identity Center users and groups, see Manage identities in IAM Identity Center in the AWS IAM
Identity Center User Guide.

Note

You must be an Admin to downgrade a group's access in App Studio.

To remove a group

1. In the navigation pane, choose Roles in the Manage section. You will be taken to a page
displaying a list of existing groups as well as each group’s assigned role.

2. Choose the ellipses icon (...) and choose Revoke role.

Removing users or groups 29

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS App Studio User Guide

3. In the Revoke role dialog box, choose Revoke to downgrade the group's role to App User.

Connect App Studio to other services with connectors

A connector is a connection between App Studio and other AWS services, such as AWS Lambda and
Amazon Redshift, or third-party services. Once a connector is created and configured, builders can
use it and the resources it connects to App Studio in their applications.

Only users with the Admin role can create, manage, or delete connectors.

Topics

• Connect to AWS services

• Connect to third-party services

• Viewing, editing, and deleting connectors

Connect to AWS services

Topics

• Connect to Amazon Redshift

• Connect to Amazon DynamoDB

• Connect to AWS Lambda

• Connect to Amazon Simple Storage Service (Amazon S3)

• Connect to Amazon Aurora

• Connect to Amazon Bedrock

• Connect to AWS services using the Other AWS services connector

Connect to Amazon Redshift

To connect App Studio with Amazon Redshift to enable builders to access and use Amazon Redshift
resources in applications, you must perform the following steps:

1. Create and configure Amazon Redshift resources

2. Create an IAM role to give App Studio access to Amazon Redshift resources

3. Create Amazon Redshift connector

Connect to other services with connectors 30

AWS App Studio User Guide

Create and configure Amazon Redshift resources

Use the following procedure to create and configure Amazon Redshift resources to be used with
App Studio.

To set up Amazon Redshift for use with App Studio

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

We recommend using the administrative user created in Create an administrative user for
managing AWS resources.

2. Create a Redshift Serverless data warehouse or a provisiond cluster. For more information,
see Creating a data warehouse with Redshift Serverless or Creating a cluster in the Amazon
Redshift User Guide.

3. Once provisioning is complete, choose Query Data to open the query editor. Connect to your
database.

4. Change the following settings:

1. Set Isolated session toggle to OFF. This is needed so that you can see data changes made
by other users, such as from a running App Studio application.

2. Choose the “gear” icon. Choose Account settings. Increase Maximum concurrent
connections to 10. This is the limit on the number of query editor sessions that can connect
to a Amazon Redshift database. It does not apply to other clients such as App Studio
applications.

5. Create your data tables under the public schema. INSERT any initial data into these tables.

6. Run the following commands in query editor:

CREATE USER "IAMR:AppBuilderDataAccessRole" WITH PASSWORD DISABLE;

GRANT ALL ON ALL TABLES IN SCHEMA public to "IAMR:AppBuilderDataAccessRole";

Create an IAM role to give App Studio access to Amazon Redshift resources

To use Amazon Redshift resources with App Studio, administrators must create an IAM role to
give App Studio permissions to access the resources. The IAM role controls the scope of data that

Connect to AWS services 31

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html#serverless-console-resource-creation
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

AWS App Studio User Guide

builders can use and what operations can be called against that data, such as Create, Read, Update,
or Delete.

We recommend creating at least one IAM role per service and policy. For example, if builders are
creating two applications backed by the same tables in Amazon Redshift, one that only requires
read access, and one that requires read, create, update and delete; an administrator should
create two IAM roles, one using read only permissions, and one with full CRUD permissions to the
applicable tables in Amazon Redshift.

To create an IAM role to give App Studio access to Amazon Redshift resources

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]
}

Connect to AWS services 32

https://console.aws.amazon.com/iam

AWS App Studio User Guide

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate permissions
for the role. Choosing the + next to a policy will expand the policy to show the permissions
granted by it. For Amazon Redshift, you may consider adding the following policies:

• AmazonRedshiftFullAccess: Grants full access to all Amazon Redshift resources.
Additionally, this policy grants full access to all Redshift Serverless resources.

• AmazonRedshiftDataFullAccess: Grants full access to the Redshift Data API operations
and resources.

For more information about using IAM policies with Amazon Redshift, including a list of
managed policies and their descriptions, see Using identity-based policies (IAM policies) for
Amazon Redshift in the Amazon Redshift Management Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it when creating the Amazon Redshift connector in App Studio.

Create Amazon Redshift connector

To create a connector for Amazon Redshift

1. In the navigation pane, choose connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Add.

3. Choose AWS services in the AWS section of the supported services list.

4. Choose Next.

5. Configure your connector by filling out the following fields:

Connect to AWS services 33

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html

AWS App Studio User Guide

• Name: Provide a name for your connector.

• Description: Provide a description for your connector.

• IAM Role: Enter the Amazon Resource Name (ARN) from the IAM role created in Create an
IAM role to give App Studio access to Amazon Redshift resources. For more information
about IAM, see the IAM User Guide.

• Region: Choose the AWS Region where your Amazon Redshift resources are located.

• Compute type: Choose if you are using Amazon Redshift Serverless or a provisioned cluster.

• Cluster or Workgroup selection: If Provisioned is chosen, choose the cluster you want to
connect to App Studio. If Serverless is chosen, choose the workgroup.

• Database selection: Choose the database you want to connect to App Studio.

• Available tables: Select the tables you want to connect to App Studio.

6. Choose Next. Review the connection information and choose Create.

7. The newly created connector will appear in the connectors list.

Connect to Amazon DynamoDB

To connect App Studio with DynamoDB to enable builders to access and use DynamoDB resources
in applications, you must perform the following steps:

1. Create and configure DynamoDB resources

2. Create an IAM role to give App Studio access to DynamoDB resources

3. Create DynamoDB connector

Create and configure DynamoDB resources

Use the following procedure to create and configure DynamoDB resources to be used with App
Studio.

To set up DynamoDB for use with App Studio

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

We recommend using the administrative user created in Create an administrative user for
managing AWS resources.

Connect to AWS services 34

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

AWS App Studio User Guide

2. In the left navigation pane, choose Tables.

3. Choose Create table.

4. Enter a name and keys for your table.

5. Choose Create table.

6. After your table is created, add some items to it so they will appear once the table is
connected to App Studio.

a. Choose your table, choose Actions, and choose Explore items.

b. In Items returned, choose Create item.

c. (Optional): Choose Add new attribute to add more attributes to your table.

d. Enter values for each attribute and choose Create item.

Create an IAM role to give App Studio access to DynamoDB resources

To use DynamoDB resources with App Studio, administrators must create an IAM role to give App
Studio permissions to access the resources. The IAM role controls the scope of data that builders
can use and what operations can be called against that data, such as Create, Read, Update, or
Delete.

We recommend creating at least one IAM role per service and policy. For example, if builders are
creating two applications backed by the same tables in DynamoDB, one that only requires read
access, and one that requires read, create, update and delete; an administrator should create two
IAM roles, one using read only permissions, and one with full CRUD permissions to the applicable
tables in DynamoDB.

To create an IAM role to give App Studio access to DynamoDB resources

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

Connect to AWS services 35

https://console.aws.amazon.com/iam

AWS App Studio User Guide

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]
}

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate permissions
for the role. Choosing the + next to a policy will expand the policy to show the permissions
granted by it. For DynamoDB, you may consider adding the AmazonDynamoDBFullAccess
policy, which grants full access to the DynamoDB workgroups.

For more information about using IAM policies with DynamoDB, including a list of managed
policies and their descriptions, see Identity and Access Management for Amazon DynamoDB in
the Amazon DynamoDB Developer Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

Connect to AWS services 36

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/security-iam.html

AWS App Studio User Guide

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it when creating the DynamoDB connector in App Studio.

Create DynamoDB connector

To create a connector for DynamoDB

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose Amazon DynamoDB from the list of connector types.

4. Configure your connector by filling out the following fields:

• Name: Enter a name for your DynamoDB connector.

• Description: Enter a description for your DynamoDB connector.

• IAM role: Enter the Amazon Resource Name (ARN) from the IAM role created in Create an
IAM role to give App Studio access to DynamoDB resources. For more information about
IAM, see the IAM User Guide.

• Region: Choose the AWS Region where your DynamoDB resources are located.

• Available tables: Select the tables you want to connect to App Studio.

5. Choose Next. Review the connection information and choose Create.

6. The newly created connector will appear in the Connectors list.

Connect to AWS Lambda

To connect App Studio with Lambda to enable builders to access and use Lambda resources in
applications, you must perform the following steps:

1. Create and configure Lambda functions

2. Create an IAM role to give App Studio access to Lambda resources

3. Create Lambda connector

Connect to AWS services 37

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS App Studio User Guide

Create and configure Lambda functions

If you don't have existing Lambda functions, you must first create them. To learn more about
creating Lambda functions, see the AWS Lambda Developer Guide.

Create an IAM role to give App Studio access to Lambda resources

To use Lambda resources with App Studio, administrators must create an IAM role to give App
Studio permissions to access the resources. The IAM role controls the scope of data that builders
can use and what operations can be called against that data, such as Create, Read, Update, or
Delete.

We recommend creating at least one IAM role per service and policy. For example, if builders are
creating two applications backed by the same tables in Lambda, one that only requires read access,
and one that requires read, create, update and delete; an administrator should create two IAM
roles, one using read only permissions, and one with full CRUD permissions to the applicable tables
in Lambda.

To create an IAM role to give App Studio access to Lambda resources

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",

Connect to AWS services 38

https://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/iam

AWS App Studio User Guide

 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]
}

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate permissions
for the role. Choosing the + next to a policy will expand the policy to show the permissions
granted by it. For Lambda, you may consider adding the AWSLambdaRole policy, which grants
permissions to invoke Lambda functions.

For more information about using IAM policies with Lambda, including a list of managed
policies and their descriptions, see Identity and Access Management for AWS Lambda in the
AWS Lambda Developer Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it when creating the Lambda connector in App Studio.

Create Lambda connector

To create a connector for Lambda

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose AWS Services from the list of connector types.

Connect to AWS services 39

https://docs.aws.amazon.com/lambda/latest/dg/security-iam.html

AWS App Studio User Guide

4. Configure your connector by filling out the following fields:

• Name: Enter a name for your Lambda connector.

• Description: Enter a description for your Lambda connector.

• IAM role: Enter the Amazon Resource Name (ARN) from the IAM role created in Create an
IAM role to give App Studio access to Lambda resources. For more information about IAM,
see the IAM User Guide.

• Service: Choose Lambda.

• Region: Choose the AWS Region where your Lambda resources are located.

5. Choose Create.

6. The newly created connector will appear in the Connectors list.

Connect to Amazon Simple Storage Service (Amazon S3)

To connect App Studio with Amazon S3 to enable builders to access and use Amazon S3 resources
in applications, you must perform the following steps:

1. Create and configure Amazon S3 resources

2. Create an IAM role to give App Studio access to Amazon S3 resources

3. Create Amazon S3 connector

After you have completed the steps and created the connector with proper permissions, builders
can use the connector to create apps that interact with Amazon S3 resources. For more information
about interacting with Amazon S3 in App Studio apps, see Tutorial: Interacting with Amazon
Simple Storage Service using automations.

Create and configure Amazon S3 resources

Depending on your app's needs and your existing resources, you may need to create an Amazon S3
bucket for apps to write to and read from. For information about creating Amazon S3 resources,
including buckets, see Getting started with Amazon S3 in the Amazon Simple Storage Service User
Guide.

To use the S3 upload component in your apps, you must you must add a cross-origin resource
sharing (CORS) configuration to any Amazon S3 buckets you want to upload to. The CORS
configuration gives App Studio permission to push objects to the bucket. The following procedure

Connect to AWS services 40

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html

AWS App Studio User Guide

details how to add a CORS configuration to an Amazon S3 bucket using the console. For more
information about CORS and configuring it, see Using cross-origin resource sharing (CORS) in the
Amazon Simple Storage Service User Guide.

To add a CORS configuration to an Amazon S3 bucket in the console

1. Navigate to your bucket in the https://console.aws.amazon.com/s3/.

2. Choose the Permissions tab.

3. In Cross-origin resource sharing (CORS), choose Edit.

4. Add the following snippet:

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "PUT",
 "POST"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": []
 }
]

5. Choose Save changes.

Create an IAM role to give App Studio access to Amazon S3 resources

To use Amazon S3 resources with App Studio, administrators must create an IAM role to give App
Studio permissions to access the resources. The IAM role controls the scope of data that builders
can use and what operations can be called against that data, such as Create, Read, Update, or
Delete.

We recommend creating at least one IAM role per service and policy.

Connect to AWS services 41

https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html
https://console.aws.amazon.com/s3/

AWS App Studio User Guide

To create an IAM role to give App Studio access to Amazon S3 resources

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]
}

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate permissions
for the role. Choosing the + next to a policy will expand the policy to show the permissions
granted by it. Consider adding one of the following policies, based on your app's needs:

• AmazonS3FullAccess: Grants permissions that allow full access to Amazon S3.

• AmazonS3ReadOnlyAccess: Grants permissions that allow read-only access to Amazon S3.

Connect to AWS services 42

https://console.aws.amazon.com/iam

AWS App Studio User Guide

For more information about using IAM policies with Amazon S3, including a list of managed
policies and their descriptions, see Identity and Access Management for Amazon Simple
Storage Service in the Amazon Simple Storage Service User Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it to create the Amazon S3 connector in App Studio in the next step.

Create Amazon S3 connector

To create a connector for Amazon S3

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose AWS Services from the list of connector types.

4. Configure your connector by filling out the following fields:

• Name: Enter a name for your Amazon S3 connector.

• Description: Enter a description for your Amazon S3 connector.

• IAM role: Enter the Amazon Resource Name (ARN) from the IAM role created in Create an
IAM role to give App Studio access to Amazon S3 resources. For more information about
IAM, see the IAM User Guide.

• Region: Choose the AWS Region where your Amazon S3 resources are located.

5. Choose Create.

6. The newly created connector will appear in the Connectors list.

Connect to AWS services 43

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-iam.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS App Studio User Guide

Connect to Amazon Aurora

To connect App Studio with Aurora to enable builders to access and use Aurora resources in
applications, you must perform the following steps:

1. Create and configure Aurora resources

2. Create an IAM role to give App Studio access to Aurora resources

3. Create Aurora connector

Create and configure Aurora resources

Creating an Aurora PostgreSQL-Compatible cluster

Use the following procedure to create and configure Aurora functions to be used with App Studio.

To set up Aurora for use with App Studio

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Create database.

3. Choose Aurora (PostgreSQL Compatible).

4. In Available versions, choose any version greater than or equal to version 13.11, 14.8, and
15.3.

5. In Settings, enter a DB cluster identifier.

6. In Instance configuration, choose Serverless v2 and choose an appropriate capacity.

7. In Connectivity, select Enable the RDS Data API.

8. In Database authentication, select IAM database authentication.

9. In Additional configuration, in Initial database name, enter an initial database name for your
database.

Create an IAM role to give App Studio access to Aurora resources

To use Aurora resources with App Studio, administrators must create an IAM role to give App
Studio permissions to access the resources. The IAM role controls the scope of data that builders
can use and what operations can be called against that data, such as Create, Read, Update, or
Delete.

Connect to AWS services 44

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

AWS App Studio User Guide

We recommend creating at least one IAM role per service and policy.

To create an IAM role to give App Studio access to Aurora resources

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]
}

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate permissions
for the role. Choosing the + next to a policy will expand the policy to show the permissions
granted by it. For Aurora, you may consider adding the AmazonRDSDataFullAccess policy,
which grants permissions to invoke Aurora functions.

Connect to AWS services 45

https://console.aws.amazon.com/iam

AWS App Studio User Guide

For more information about using IAM policies with Aurora, including a list of managed
policies and their descriptions, see Identity and Access Management for Amazon Aurora in the
AWS Lambda Developer Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it when creating the Aurora connector in App Studio.

Create Aurora connector

To create a connector for Aurora

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose AWS Services from the list of connector types.

4. Configure your connector by filling out the following fields:

• Name: Enter a name for your Aurora connector.

• Description: Enter a description for your Aurora connector.

• IAM role: Enter the Amazon Resource Name (ARN) from the IAM role created in Create an
IAM role to give App Studio access to Aurora resources. For more information about IAM, see
the IAM User Guide.

• Service: Choose Aurora.

• Region: Choose the AWS Region where your Aurora resources are located.

5. Choose Create.

6. The newly created connector will appear in the Connectors list.

Connect to AWS services 46

https://docs.aws.amazon.com/aurora/latest/dg/security-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS App Studio User Guide

Connect to Amazon Bedrock

To connect App Studio with Amazon Bedrock so builders can access and use Amazon Bedrock in
applications, you must perform the following steps:

1. Enable Amazon Bedrock models

2. Create an IAM role to give App Studio access to Amazon Bedrock

3. Create Amazon Bedrock connector

Enable Amazon Bedrock models

Use the following procedure to enable Amazon Bedrock models.

To enable Amazon Bedrock models

1. Sign in to the AWS Management Console and open the Amazon Bedrock console at https://
console.aws.amazon.com/bedrock/.

2. In the left navigation pane, choose Model access.

3. Enable the models that you want to use. For more information, see Manage access to Amazon
Bedrock foundation models.

Create an IAM role to give App Studio access to Amazon Bedrock

To use Amazon Bedrock with App Studio, administrators must create an IAM role to give App
Studio permissions to access the resources. The IAM role controls the scope of permissions for App
Studio apps to use, and is used when creating the connector. We recommend creating at least one
IAM role per service and policy.

To create an IAM role to give App Studio access to Amazon Bedrock

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

Connect to AWS services 47

https://console.aws.amazon.com/bedrock/
https://console.aws.amazon.com/bedrock/
https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html
https://console.aws.amazon.com/iam

AWS App Studio User Guide

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]
}

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate
permissions for the role. Choosing the + next to a policy will expand the policy to
show the permissions granted by it. For Amazon Bedrock, you may consider adding the
AmazonBedrockFullAccess policy, which grants full access to Amazon Bedrock.

For more information about using IAM policies with Amazon Bedrock, including a list of
managed policies and their descriptions, see Identity and Access Management for Amazon
Bedrock in the Amazon Bedrock User Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

Connect to AWS services 48

https://docs.aws.amazon.com/bedrock/latest/userguide/security-iam.html
https://docs.aws.amazon.com/bedrock/latest/userguide/security-iam.html

AWS App Studio User Guide

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it when creating the Amazon Bedrock connector in App Studio in the next step.

Create Amazon Bedrock connector

To create a connector for Amazon Bedrock

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose AWS Services from the list of connector types.

4. Configure your connector by filling out the following fields:

• Name: Enter a name for your Amazon Bedrock connector.

• Description: Enter a description for your Amazon Bedrock connector.

• IAM role: Enter the Amazon Resource Name (ARN) from the IAM role created in Create an
IAM role to give App Studio access to Amazon Bedrock. For more information about IAM, see
the IAM User Guide.

• Service: Choose Bedrock Runtime.

• Region: Choose the AWS Region where your Amazon Bedrock resources are located.

5. Choose Create.

6. The newly created connector will appear in the Connectors list.

Connect to AWS services using the Other AWS services connector

While App Studio offers some connectors that are specific to certain AWS services, you can also
connect to other AWS services using the Other AWS services connector.

Note

It is recommended to use the connector specific to the AWS service if it is available. For a
list of available connectors for AWS services, see Connect to AWS services.

To connect App Studio with AWS services to enable builders to access and use the service's
resources in applications, you must perform the following steps:

Connect to AWS services 49

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS App Studio User Guide

1. Create an IAM role to give App Studio access to AWS resources

2. Create an Other AWS services connector

Create an IAM role to give App Studio access to AWS resources

To use AWS services and resources with App Studio, administrators must create an IAM role to
give App Studio permissions to access the resources. The IAM role controls the scope of resources
that builders can access and what operations can be called against the resources. We recommend
creating at least one IAM role per service and policy.

To create an IAM role to give App Studio access to AWS resources

1. Sign in to the IAM console with a user that has permissions to create IAM roles. We recommend
using the administrative user created in Create an administrative user for managing AWS
resources.

2. In the navigation pane of the console, choose Roles and then choose Create role.

3. In Trusted entity type, choose Custom trust policy.

4. Replace the default policy with the following policy to allow App Studio applications to
assume this role in your account.

You must replace 111122223333 with the AWS account number of the account used to set up
the App Studio instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/IsAppStudioAccessRole": "true"
 }
 }
 }
]

Connect to AWS services 50

https://console.aws.amazon.com/iam

AWS App Studio User Guide

}

Choose Next.

5. In Add permissions, search and choose the policies that grant the appropriate permissions
for the role. Choosing the + next to a policy will expand the policy to show the permissions
granted by it. For more information about IAM, see the IAM User Guide.

Choose Next.

6. In Role details, provide a name and description.

7. In Step 3: Add tags, choose Add new tag to add the following tag to provide App Studio
access:

• Key: IsAppStudioDataAccessRole

• Value: true

8. Choose Create role and make note of the generated Amazon Resource Name (ARN), you will
need it when creating the Other AWS services connector in App Studio.

Create an Other AWS services connector

To connect to AWS services using the Other AWS services connector

1. In the navigation pane, choose Connectors in the Manage section.

2. Choose + Create connector.

3. Choose Other AWS services in the AWS connectors section of the supported services list.

4. Configure your AWS service connector by filling out the following fields:

• Name: Provide a name for your connector.

• Description: Provide a description for your connector.

• IAM role: Enter the Amazon Resource Name (ARN) from the IAM role that was created in
Create an IAM role to give App Studio access to AWS resources.

• Service: Select the AWS service you want to connect to App Studio.

• Region: Select the AWS Region where your AWS resources are located.

5. Choose Create. The newly created connector will appear in the connectors list.

Connect to AWS services 51

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS App Studio User Guide

Connect to third-party services

Topics

• Connect to third-party services and APIs (generic)

• Connect to services with OpenAPI

• Connect to Salesforce

Connect to third-party services and APIs (generic)

Use the following procedure to create a generic API Connector in App Studio. The API Connector is
used to provide App Studio apps with access to third-party services, resources, or operations.

To connect to third-party services with the API Connector

1. In the navigation pane, choose connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose API Connector. Now, configure your connector by filling out the following fields.

4. Connector name: Provide a name for your connector.

5. Connector description: Provide a description for your connector.

6. Base URL: The website or host of the third-party connection. For example, www.slack.com.

7. Authentication method: Choose the method for authenticating with the target service.

• None: Access the target service with no authentication.

• Basic: Access the target service using a Username and Password obtained from the
service being connected to.

• Bearer Token: Access the target service using the Token value of an authentication token
obtained from the service's user account or API settings.

• OAuth 2.0: Access the target service using the OAuth 2.0 protocol, which grants App
Studio access to the service and resources without sharing any credentials or identity.
To use the OAuth 2.0 authentication method, you must first create an application from
the service being connected to that represents App Studio to obtain the necessary
information. With that information, fill out the following fields:

a. Client credentials flow: Ideal for system-to-system interactions where the application
acts on its own behalf without user interaction. For example, a CRM app that updates

Connect to third-party services 52

AWS App Studio User Guide

Salesforce records automatically based on new records added by users, or an app that
retrieves and displays transaction data in reports.

1. In Client ID, enter the ID obtained from the OAuth app created in the target
service.

2. In Client secret, enter the secret obtained from the OAuth app created in the
target service.

3. In Access token URL, enter the token URL obtained from the OAuth app created in
the target service.

4. Optionally, in Scopes, enter the scopes for the application. Scopes are permissions
or access levels required by the application. Refer to the target service's API
documentation to understand their scopes, and configure only those that your App
Studio app needs.

Choose Verify connection to test the authentication and connection.

b. Authorization code flow: Ideal for applications that require acting on behalf of a
user. For example, a customer support app where users log in and view and update
support tickets, or a sales app where each team members logs in to view and manage
their sales data.

1. In Client ID, enter the ID obtained from the OAuth app created in the target
service.

2. In Client secret, enter the secret obtained from the OAuth app created in the
target service.

3. In Authorization URL, enter the authorization URL from the target service.

4. In Access token URL, enter the token URL obtained from the OAuth app created in
the target service.

5. Optionally, in Scopes, enter the scopes for the application. Scopes are permissions
or access levels required by the application. Refer to the target service's API
documentation to understand their scopes, and configure only those that your App
Studio app needs.

8. Headers: Add HTTP headers that are used to provide metadata about the request or response.
You can add both keys and values, or only provide a key to which the builder can provide a
value in the application.

Connect to third-party services 53

AWS App Studio User Guide

9. Query parameters: Add query parameters that are used to pass options, filters, or data as part
of the request URL. Like headers, you can provide both a key and value, or only provide a key
to which the builder can provide a value in the application.

10. Choose Create. The newly created connector will appear in the Connectors list.

Now that the connector is created, builders can use it in their apps.

Connect to services with OpenAPI

To connect App Studio with services using OpenAPI to enable builders to build applications that
send requests and receive responses from the services, perform the following steps:

1. Get the OpenAPI Specification file and gather service information

2. Create OpenAPI connector

Get the OpenAPI Specification file and gather service information

To connect a service to App Studio with OpenAPI, perform the following steps:

1. Go to the service that you want to connect to App Studio and find an OpenAPI Specification
JSON file.

Note

App Studio supports OpenAPI Specification files that conform to version OpenAPI
Specification Version 3.0.0 or higher.

2. Gather the necessary data to configure the OpenAPI connector, including the following:

• The base URL for connecting to the service.

• Authentication credentials, such as a token or username/password.

• If applicable, any headers.

• If applicable, any query parameters.

Connect to third-party services 54

AWS App Studio User Guide

Create OpenAPI connector

To create a connector for OpenAPI

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose OpenAPI Connector from the list of connector types. Now, configure your connector
by filling out the following fields.

4. Name: Enter a name for your OpenAPI connector.

5. Description: Enter a description for your OpenAPI connector.

6. Base URL: Enter the base URL for connecting to the service.

7. Authentication method: Choose the method for authenticating with the target service.

• None: Access the target service with no authentication.

• Basic: Access the target service using a Username and Password obtained from the
service being connected to.

• Bearer Token: Access the target service using the Token value of an authentication token
obtained from the service's user account or API settings.

• OAuth 2.0: Access the target service using the OAuth 2.0 protocol, which grants App
Studio access to the service and resources without sharing any credentials or identity.
To use the OAuth 2.0 authentication method, you must first create an application from
the service being connected to that represents App Studio to obtain the necessary
information. With that information, fill out the following fields:

a. Client credentials flow:

1. In Client ID, enter the ID from the target service.

2. In Client secret, enter the secret from the target service.

3. In Access token URL, enter the token URL from the target service.

4. Optionally, in Scopes, enter the scopes for the application. Scopes are permissions
or access levels required by the application. Refer to the target service's API
documentation to understand their scopes, and configure only those that your App
Studio app needs.

Connect to third-party services 55

AWS App Studio User Guide

Add any Variables to be sent with the service with each call, and choose Verify
connection to test the authentication and connection.

b. Authorization code flow:

1. In Client ID, enter the ID from the target service.

2. In Client secret, enter the secret from the target service.

3. In Authorization URL, enter the authorization URL from the target service.

4. In Access token URL, enter the token URL from the target service.

5. Optionally, in Scopes, enter the scopes for the application. Scopes are permissions
or access levels required by the application. Refer to the target service's API
documentation to understand their scopes, and configure only those that your App
Studio app needs.

8. Variables: Add variables to be sent to the service with each call. Variables added during
configuration are securely stored and only accessed during runtime of applications that use the
connection.

9. Headers: Add HTTP headers that are used to provide metadata about the request or response.
You can add both keys and values, or only provide a key to which the builder can provide a
value in the application.

10. Query parameters: Add query parameters that are used to pass options, filters, or data as part
of the request URL. Like headers, you can provide both a key and value, or only provide a key
to which the builder can provide a value in the application.

11. OpenAPI Spec File: Upload an OpenAPI Specification JSON file by dragging and dropping, or
choosing Select a file to navigate your local file system and choose the file to be uploaded.

Once added, the file is processed and a list of available options are displayed. Select the
necessary operations for your connector.

12. Choose Create. The newly created connector will appear in the Connectors list.

Now that the connector is created, builders can use it in their apps.

Connect to third-party services 56

AWS App Studio User Guide

Connect to Salesforce

To connect App Studio with Salesforce to enable builders to access and use Salesforce resources in
applications, you must create and configure a connected app in Salesforce and create a Salesforce
connector in App Studio.

To connect Salesforce with App Studio

1. In App Studio, in the navigation pane, choose Connectors in the Manage section. You will be
taken to a page displaying a list of existing connectors with some details about each.

2. Choose + Create connector.

3. Choose Salesforce from the list of connector types to open the connector creation page.

4. Take note of the Redirect URL, which you will use to configure Salesforce in the following
steps.

5. The next step is to create a connected app in Salesforce. In another tab or window, navigate to
your Salesforce instance.

6. In the Quick Find box, search App Manager and then select App Manager.

7. Choose New Connected App.

8. In Connected App Name and API Name, enter a name for your app. It does not have to match
your App Studio app name.

9. Provide contact information as needed.

10. In the API (Enable OAuth Settings) section, enable Enable OAuth Settings.

11. In Callback URL, enter the Redirect URL you noted earlier from App Studio.

12. In Selected OAuth Scopes, add the necessary permissions scopes from the list. App Studio
can interact with Salesforce REST APIs to perform CRUD operations on five objects: Accounts,
Cases, Contacts, Leads, and Opportunities. It is recommended to add Full access (full) to
ensure that your App Studio app has all relevant permissions or scopes.

13. Enable Require Secret for Web Server Flow and Require Secret for Refresh Token Flow to
follow the best security practices.

14. App Studio supports both of the following authentication flows:

• Client Credentials Flow: Ideal for server-to-server interactions where the application acts on
its own behalf without user interaction. For example, listing all leads information for a team
of temporary employees who do not have Salesforce access.

Connect to third-party services 57

AWS App Studio User Guide

• Authorization Code Flow: Suitable for applications that act on behalf of a user, such as
personal data access or actions. For example, listing each sales manager’s leads sourced or
owned by them to perform other tasks through this app.

• For the Client Credentials Flow:

a. Enable Enable Client Credentials Flow. Review and confirm the message.

b. Save the app.

c. You must select an execution user, although there is no user interaction in the flow. By
selecting an execution user, Salesforce returns access tokens on behalf of the user.

1. In the App Manager, from the list of apps, choose the arrow of the App Studio app
and choose Manage.

2. Choose Edit Policies

3. In Client Credentials Flow, add the appropriate user.

• For the Authorization Code Flow, enable Enable Authorization Code and Credentials
Flow

15. Salesforce provides a Client ID and Client Secret, which must be used to configure the
connector in App Studio in the following steps.

a. In the App Manager, choose the arrow of the App Studio app and choose View.

b. In the API (Enable OAuth Settings) section, choose Manage Consumer Details . This may
send an email for a verification key, which you need to enter for confirmation.

c. Note the Consumer Key (Client ID) and the Consumer Secret (Client Secret).

16. Back in App Studio, configure and create your connector by filling out the following fields.

17. In Name, enter a name for your Salesforce connector.

18. In Description, enter a description for your Salesforce connector.

19. In Base URL, enter the base URL for your Salesforce instance. It should look like this:
https://hostname.salesforce.com/api/services/data/v60.0, replacing hostname
with your Salesforce instance name.

20. In Authentication method, ensure OAuth 2.0 is selected.

21. In OAuth 2.0 Flow, select the OAuth authentication method and fill out the related fields:

• Select Client credentials flow for use in applications that act on their own behalf, for
system-to-system integrations.

Connect to third-party services 58

AWS App Studio User Guide

a. In Client ID, enter the Consumer Key obtained previously from Salesforce.

b. In Client secret, enter the Consumer Secret, obtained previously from Salesforce.

c. In Access token URL, enter the OAuth 2.0 token endpoint. It should look like this:
https://hostname/services/oauth2/token, replacing hostname with your
Salesforce instance name. For more information, see the Salesforce OAuth Endpoints
documentation.

d. Choose Verify connection to test the authentication and connection.

• Select Authorization code flow for use in applications that act on behalf of the user.

a. In Client ID, enter the Consumer Key obtained previously from Salesforce.

b. In Client secret, enter the Consumer Secret, obtained previously from Salesforce.

c. In Authorization URL, enter the authorization endpoint. It should look like this:
https://hostname/services/oauth2/authorize, replacing hostname with
your Salesforce instance name. For more information, see the Salesforce OAuth
Endpoints documentation.

d. In Access token URL, enter the OAuth 2.0 token endpoint. It should look like this:
https://hostname/services/oauth2/token, replacing hostname with your
Salesforce instance name. For more information, see the Salesforce OAuth Endpoints
documentation.

22. In Operations, select the Salesforce operations that your connector will support. The
operations in this list are predefined and represent common tasks within Salesforce, such as
creating, retrieving, updating, or deleting records from common objects.

23. Choose Create. The newly created connector will appear in the Connectors list.

Viewing, editing, and deleting connectors

To view, edit, or delete existing connectors

1. In the navigation pane, choose Connectors in the Manage section. You will be taken to a page
displaying a list of existing connectors with the following details for each connector:

• Name: The name of the connector that was provided during creation.

• Description: The description of the connector that was provided during creation.

Viewing, editing, and deleting connectors 59

https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_endpoints.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_endpoints.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_endpoints.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_endpoints.htm&type=5

AWS App Studio User Guide

• Connected to: The service that the connector is connecting to App Studio. A value of API
represents a connection to a third-party service.

• Created by: The user that created the connector.

• Date created: The date that the connector was created.

2. To view more details about a connector, or edit or delete a connector, use the following
instructions:

• To see more information about a specific connector, choose View for that connector.

• To edit a connector, choose the dropdown menu next to View and choose Edit.

• To delete a connector, choose the dropdown menu next to View and choose Delete.

Viewing, editing, and deleting connectors 60

AWS App Studio User Guide

Builder documentation

The following topics contain information to help users in App Studio who are creating, editing, and
publishing applications.

Topics

• Creating, editing, and deleting applications

• Previewing, publishing, and sharing applications

• Building your app's user interface with pages and components

• Defining and implementing your app's business logic with automations

• Configure your app's data model with entities

• Page and automation parameters

• Generative AI in App Studio

• Using JavaScript to write expressions in App Studio

• Troubleshooting and debugging App Studio apps

• Building an app with multiple users

Creating, editing, and deleting applications

Contents

• Viewing applications

• Creating an application

• Editing an application

• Application settings

• App navigation

• Deleting an application

Viewing applications

Use the following procedure to view applications in App Studio.

Creating, editing, and deleting applications 61

AWS App Studio User Guide

To view applications

1. In the navigation pane, choose My applications in the Build section. You will be taken to a
page displaying a list of applications that you have access to.

2. On the My applications page, a table displays a list of your applications with the following
details:

• Application name: The name of the application.

• Status: The status of the application. The possible values are:

• Draft: The application has not been published.

• Published: The application has been published.

• Last updated: The date that the application was last edited.

• Role: Your role in relation to the application. The possible values are:

• Owner: App owners have all access and permissions to the app.

• Co-owner: App co-owners have access similar to app owners.

• Edit-only: Users with Edit-only access to an app can edit the app, but cannot invite other
builders to the app, publish the app to production, add new data sources, delete the app,
or clone the app.

3. You can choose the arrow in the Actions column to open the actions menu for that application
with the following options:

• Edit: Opens the app for editing in the builder studio. Editing is only available to app owners
and editors.

• Share: Opens a dialog box where the app link can be copied. Sharing is only available on
published applications.

• View: Opens the running application. Viewing is only available on published applications.

• Duplicate: Create another app with the same components, automations, and entities as the
current app.

• Rename: Provide a new name for the app.

• Delete: Deletes the application. Deletion is only available to app owners and admins.

Creating an application

Use the following procedure to create an application in App Studio.
Creating an application 62

AWS App Studio User Guide

To create an application

1. There are two options for creating an application in App Studio:

• In the navigation pane, choose Builder hub. Choose Get started in the banner.

• In the navigation pane, choose My applications in the Build section. You will be taken to a
page displaying a list of applications that you have access to.

Choose + Create app.

2. In the Create app dialog box, give your application a name.

3. Choose Create to create your application. You will be taken to the application studio where
you can use components, automations, and data to configure the look and function of your
application. For information about building applications, see Getting started with AWS App
Studio.

Editing an application

Use the following procedure to edit an application in App Studio.

To edit an application

1. In the navigation pane, choose My applications in the Build section. You will be taken to a
page displaying a list of applications that you have access to.

2. Choose the dropdown in the Actions column of the application you want to edit.

3. To rename an application, choose Rename, give your application a new name, and choose
Rename.

4. To edit an application, choose Edit. This will take you to the application studio where you
can use components, automations, and data to configure the look and function of your
application. For information about building applications, see Getting started with AWS App
Studio.

Application settings

In the application studio, you can view and update the following application settings.

Editing an application 63

AWS App Studio User Guide

App navigation

By default, App Studio shows all pages in the app navigation of published apps or when previewing
apps. You can reorder the pages or remove pages from the navigation in the App navigation
section, which contains the following settings:

• The Show navigation for these pages toggle defines if app users can navigate to the defined
pages in your app.

• In Home page, choose the page you want app users to be navigated to when first accessing your
app from the dropdown.

• In Other pages, choose if pages can be navigated to, and which order they are displayed in the
app navigation menu.

Deleting an application

Use the following procedure to delete an application in App Studio.

To delete an application

1. In the navigation pane, choose My applications in the Build section. You will be taken to a
page displaying a list of applications that you have access to.

2. Choose the dropdown in the Actions column of the application you want to delete.

3. Choose Delete.

4. In the Delete application dialog box, carefully review the information about deleting
applications. If you want to delete the application, choose Delete.

Previewing, publishing, and sharing applications

Topics

• Previewing applications

• Publishing applications

• Sharing published applications

Deleting an application 64

AWS App Studio User Guide

Previewing applications

You can preview applications in App Studio to see how they will appear to users and also test its
functionality by using it and checking logs in a debug panel.

The application preview environment does not support displaying live data or the connection
with external resources with connectors, such as data sources. To test functionality in the preview
environment, you can use mocked output in automations and sample data in entities. To view your
application with real-time data, you must publish your app. For more information, see Publishing
applications.

The preview or development environment does not update the application published in the other
environments. If an application has not been published, users will not be able to access it until it
is published and shared. If an application has already been published and shared, users will still
access the version that has been published, and not the version used in a preview environment.

To preview your application

1. If necessary, navigate to the application studio of the application you want to preview:

a. In the navigation pane, choose My applications in the Build section.

b. Choose Edit for the application.

2. Choose Preview to open the preview environment for the application.

3. (Optional) Expand the debug panel by choosing its header near the bottom of the screen. You
can filter the panel by type of message by choosing the type of message in the Filter logs
section. You can clear the panel's logs by choosing Clear console.

4. While in the preview environment, you can test your application by navigating around its
pages, using its components, and choosing its buttons to start automations that transfer data.
Because the preview environment doesn't support live data or connections to external sources,
you can view examples of the data being transferred in the debug panel.

Publishing applications

When you've finished creating and configuring your application the next step is to publish it to
test data transfers or share it with end users. To understand publishing applications in App Studio,
it's important to understand the available environments. App Studio provides three separate
environments, which are described in the following list:

Previewing applications 65

AWS App Studio User Guide

1. Development: Where you build and preview your application. You do not need to publish
to the Development environment, as the latest version of your application is hosted there
automatically. No live data or third-party services or resources are available in this environment.

2. Testing: Where you can perform comprehensive testing of your application. In the Testing
environment, you can connect to, send data to, and receive data from other services.

3. Production: The live operational environment for end-user consumption.

All of your app building takes place in the Development environment. Then, publish to the Testing
environment to test data transfer between other services, and user acceptance testing (UAT) by
providing an access URL to end users. Afterwards, publish your app to the Production environment
to perform final tests before sharing it with users. For more information about the application
environments, see Application environments.

When you publish an application, it is not available for users until it is shared. This gives you the
opportunity to use and test the application in the Testing and Production environments before
users can access it. When you publish an application to Production that has previously been
published and shared, the version that is available to users is updated.

Publishing applications

Use the following procedure to publish an App Studio application to the Testing or Production
environment.

To publish an application to Testing or Production environment

1. In the navigation pane, choose My applications in the Build section. You will be taken to a
page displaying a list of applications that you have access to.

2. Choose Edit for the application you want to publish.

3. Choose Publish in the top-right corner.

4. In the Publish your updates dialog box:

a. Review the information about publishing an application.

b. (Optional) In Version description, include a description of this version of the application.

c. Choose the box to acknowledge the information about the environment.

d. Choose Start. It can take up to 15 minutes for the application to be updated in the live
environment.

Publishing applications 66

AWS App Studio User Guide

5. For information about viewing applications in the Testing or Production environments, see
Viewing published applications.

Note

Using the application in the Testing or Production environment will result in live data
transfer, such as creating records in tables of data sources that have been connected
with connectors.

Published applications that have never been shared will not be available to users or other builders.
To make an application available to users, you must share it after publishing. For more information,
see Sharing published applications.

Viewing published applications

You can view applications published to the Testing and Production environments to test the
application before sharing it with end users or other builders.

To view published applications in the Testing or Production environment

1. If necessary, navigate to the application studio of the application you want to preview:

a. In the navigation pane, choose My applications in the Build section.

b. Choose Edit for the application.

2. Choose the dropdown arrow next to Publish in the top-right corner and choose Publish
Center.

3. From the publishing center, you can view the environments that your application is published
to. If your application is published to the Testing or Production environments, you can view the
app using the URL link for each environment.

Note

Using the application in the Testing or Production environment will result in live data
transfer, such as creating records in tables of data sources that have been connected
with connectors.

Publishing applications 67

AWS App Studio User Guide

Application environments

AWS App Studio provides application lifecycle management (ALM) capabilities with three separate
environments - Development, Testing, and Production. This helps you more easily best practices
such as maintaining separate environments, version control, sharing, and monitoring across the
entire app lifecycle.

Development environment

The Development environment is an isolated sandbox where you can build apps without
connecting to any live data sources or services using the application studio and sample data.
In the Development environment, you can preview your app to view and test the app without
compromising production data.

Although your app doesn't connect to other services in the Development environment, you can
configure different resources in your app to mimic live data connectors and automations.

There is a collapsible debug panel that includes errors and warnings at the bottom of the
application studio in the Development environment to help you inspect and debug the app as you
build. For more information about troubleshooting and debugging apps, see Troubleshooting and
debugging App Studio apps.

Testing environment

Once your initial app development is complete, the next step is to publish to the Testing
environment. While in the Testing environment, your app can connect to, send data to, and receive
data from other services. Therefore, you can use this environment to perform comprehensive
testing including user acceptance testing (UAT) by providing an access URL to end users.

Note

Your initial publish to the Testing environment may take up to 15 minutes.

The version of your app published to the Testing environment will be removed after 3 hours of
end-user inactivity. However, all versions persist and can be restored from the Version History tab.

Key features of the Testing environment are as follows:

• Integration testing with live data sources and APIs

• User acceptance testing (UAT) facilitated through controlled access

Publishing applications 68

AWS App Studio User Guide

• Environment for gathering feedback and addressing issues

• Ability to inspect and debug both client-side and server-side activities using browser consoles
and developer tools.

For more information about troubleshooting and debugging apps, see Troubleshooting and
debugging App Studio apps.

Production environment

After you have tested and fixed any issues, you can promote the version of your application from
the Testing environment to the Production environment for live operational use. Although the
Production environment is the live operational environment for end-user consumption, you can
test the published version before sharing it with users.

Your published version in the Production environment will be removed after 14 days of end-user
inactivity. However, all versions persist and can be restored from the Version History tab.

Key features of the Production environment are as follows:

• Live operational environment for end-user consumption

• Granular role-based access control

• Version control and rollback capabilities

• Ability to inspect and debug client-side activities only

• Uses live connectors, data, automations, and APIs

Versioning and release management

App Studio provides version control and release management capabilities through its versioning
system in the Publish center.

Key versioning capabilities:

• Publishing to the Testing environment generates new version numbers (1.0, 2.0, 3.0...).

• The version number does not change when promoting from the Testing to Production
environment.

• You can roll back to any previous version from Version History.

• Applications published to the Testing environment are paused after 3 hours of inactivity.
Versions are persisted and can be restored from Version History.

Publishing applications 69

AWS App Studio User Guide

• Applications published to the Production environment are removed after 14 days of inactivity.
Versions are persisted and can be restored from Version History.

This versioning model allows for rapid iteration while maintaining traceability, rollback capabilities,
and optimal performance across the app development and testing cycle.

Maintenance and operations

App Studio may need to automatically republish your application to address certain maintenance
tasks, operational activities, and to incorporate new software libraries. No action is needed from
you, the builder, but end users may need to log back into the application. In certain situations, we
may need you to republish your application to incorporate new features and libraries which we
cannot automatically add ourselves. You will need to resolve any errors and review warnings before
republishing.

Sharing published applications

When you publish an application that has not been published yet, it is not available for users until
it is shared. Once a published application has been shared, it will be available to users and will not
need to be shared again if another version is published.

Note

This section is about sharing published applications with end users or testers. For
information about inviting other users to build an app, see Building an app with multiple
users.

To share a published application

1. Access the Share dialog box from either the application list, or the application studio of your
app by using the following instructions:

• To access the Share dialog box from the application list: In the navigation pane, choose
My applications in the Build section. Choose the dropdown in the Actions column of the
application you want to share and choose Share.

• To access the Share dialog box from the application studio: From the application studio of
your app, choose Share in the top header.

Sharing published applications 70

AWS App Studio User Guide

2. In the Share dialog box, choose the tab for the environment that you want to share. If you do
not see the Testing or Production tabs, your app may not be published to the corresponding
environment. For more information about publishing, see Publishing applications.

3. In the appropriate tab, select groups from the dropdown menu to share the environment with
them.

4. (Optional) Assign an app-level role to the group for testing or configuring conditional page
visibiity. For more information, see Configuring role-based visibility of pages.

5. Choose Share.

6. (Optional) Copy and share the link with users. Only users that the application and environment
have been shared with can access the application in the corresponding environment.

Building your app's user interface with pages and components

Topics

• Creating, editing, or deleting pages

• Adding, editing, and deleting components

• Configuring role-based visibility of pages

• Components reference

Creating, editing, or deleting pages

Use the following procedures to create, edit, or delete pages from your AWS App Studio
application.

Pages are containers for components, which make up the UI of an application in App Studio. Each
page represents a screen of your application's user interface (UI) that your users will interact with.
Pages are created and edited in the Pages tab of the application studio.

Creating a page

Use the following procedure to create a page in an application in App Studio.

To create a page

1. If necessary, navigate to the application studio of your application.

Building your app's user interface 71

AWS App Studio User Guide

2. Navigate to the Pages tab of the application studio.

3. In the left-side Pages menu, choose + Add.

Viewing and editing page properties

Use the following procedure to edit a page in an application in App Studio. You can edit properties
such as the page's name, its parameters, and its layout.

To view or edit page properties

1. If necessary, navigate to the application studio of your application.

2. Navigate to the Pages tab of the application studio.

3. In the left-side Pages menu, choose the ellipses menu next to the name of the page you want
to edit and choose Page properties. This opens the right-side Properties menu.

4. To edit the page name:

Note

Valid page name characters: A-Z, a-z, 0-9, _, $

a. Choose the pencil icon next to the name near the top of the Properties menu.

b. Enter the new name for your page and press Enter.

5. To create, edit, or delete page parameters:

a. To create a page parameter, choose + Add new in the Page parameters section.

b. To edit a page parameter's Key or Description value, choose input field of the property
you want to change and enter a new value. Your changes are saved as you edit.

c. To delete a page parameter, choose the trash icon of the page parameter you want to
delete.

6. To add, edit, or remove a page's logo or banner:

a. To add a page logo or banner, enable the respective option in the Style section. Configure
the image's source and optionally provide alt text.

b. To edit a page logo or banner, update the fields in the Style section.

c. To remove a page logo or banner, disable the respective option in the Style section.

Creating, editing, or deleting pages 72

AWS App Studio User Guide

7. To edit a page's layout:

• Update the fields in the Layout section.

Deleting a page

Use the following procedure to delete a page from an application in App Studio.

To delete a page

1. If necessary, navigate to the application studio of your application.

2. Navigate to the Pages tab of the application studio.

3. In the left-side Pages menu, choose the ellipses menu next to the name of the page you want
to delete and choose Delete.

Adding, editing, and deleting components

Use the following procedures to add, edit, and delete components in or from pages in the App
Studio application studio to craft the desired user interface for your application.

Adding components to a page

1. If necessary, navigate to the application studio of your application.

2. Navigate to the Pages tab of the application studio.

3. The components panel is located in the right-side menu, which contains the available
components.

4. Drag and drop the desired component from the panel onto the canvas. Alternatively, you can
double-click on the component in the panel to automatically add it to the center of the current
page.

5. Now that you've added a component, use the right-side Properties panel to adjust its settings,
such as the data source, layout, and behavior. For detailed information about configuring each
component type, see Components reference.

Viewing and editing component properties

1. If necessary, navigate to the application studio of your application.

Adding, editing, and deleting components 73

AWS App Studio User Guide

2. Navigate to the Pages tab of the application studio.

3. In the left-side Pages menu, expand the page that contains the component and choose the
component to be viewed or edited. Alternatively, you can choose the page and then choose
the component from the canvas.

4. The right-side Properties panel displays the configurable settings for the selected component.

5. Explore the various properties and options available, and update them as necessary to
configure the component's appearance and behavior. For example, you might want to change
the data source, configure the layout, or enable additional functionality.

For detailed information about configuring each component type, see Components reference.

Deleting components

1. If necessary, navigate to the application studio of your application.

2. Navigate to the Pages tab of the application studio.

3. In the left-side Pages menu, choose the component to be deleted to select it.

4. In the right-side Properties menu, choose the trash icon.

5. In the confirmation dialog box, choose Delete.

Configuring role-based visibility of pages

You can create roles within an App Studio app and configure the visbility of pages based on those
roles. For example, you can create roles based on user needs or access levels, such as administrator,
manager, or user for apps that provide features such as project approvals or claims processing and
make certain pages visible to specific roles. In this example, administrators may have full access,
managers might have access to view reporting dashboards, and users may have access to tasks
pages with input forms.

Use the following procedure to configure role-based visbility of pages in your App Studio app.

1. If necessary, navigate to the application studio of your application. From the left-side
navigation menu, choose My applications, find your application and choose Edit.

2. Create app level roles in the application studio.

a. Choose the App settings tab at the top of the application studio.

Configuring role-based visibility of pages 74

AWS App Studio User Guide

b. Choose + Add Role

c. In Role name, provide a name to identify your role. We recommend using a name that is
descriptive of the group's access level or duties, as you'll use the name to set up the page
visibility.

d. Optionally, in Description, add a description for the role.

e. Repeat these steps to create as many roles as needed.

3. Configure the visiblity of your pages

a. Choose the Pages tab at the top of the application studio.

b. From the left-side Pages menu, choose the page for which you want to configure role-
based visibility.

c. In the right-side menu, choose the Properties tab.

d. In Visibility, disable Open to all end users.

e. Keep Role selected to choose from a list of the roles you created in the previous step.
Choose Custom to write a JavaScript expression for more complex visibility configurations.

1. With Role selected, check the boxes of the app roles for which the page will be visible.

2. With Custom selected, enter a JavaScript expression that resolves to true or false.
Use the following example to check if the current user has the role of manager:
{{currentUser.roles.includes('manager')}}.

4. Now that your visibility is configured, you can test the page visiblity by previewing your app.

a. Choose Preview to open a preview of your app.

b. In the top right of the preview, choose the Previewing as menu and check the boxes of
the roles you want to test. The visible pages should reflect the roles selected.

5. Now, assign groups to app roles for a published app. Group and role assignments must be
configured separately for each environment. For more information about app environments,
see Application environments.

Note

Your app must be published to either the Testing or Production environments to assign
App Studio groups to the roles you've created and configured. If necessary, publish
your app to assign groups to the roles. For more information about publishing, see
Publishing applications.

Configuring role-based visibility of pages 75

AWS App Studio User Guide

a. In the top right of the application studio, choose Share.

b. Choose the tab for the environment of which you want to configure page visibility.

c. Choose the Search groups input box and choose the group with which to share the app
version. You can enter text to search for groups.

d. In the dropdown menu, choose the roles to assign to the group. You can choose No role to
share the app version and not assign a role to the group. Only pages that are visible to all
users will be visible to groups with no role.

e. Choose Share. Repeat these steps to add as many group as needed.

Components reference

This topic details each of App Studio's components, their properties, and includes configuration
examples.

Common component properties

This section outlines the general properties and features that are shared across multiple
components in the application studio. The specific implementation details and use cases for each
property type may vary depending on the component, but the general concept of these properties
remains consistent across App Studio.

Name

A default name is generated for each component; however, you can edit to change to a unique
name to each component. You will use this name to reference the component and its data from
other components or expressions within the same page. Limitation: Do not include spaces in the
component name; it can only have have letters, numbers, underscores and dollar signs. Examples:
userNameInput, ordersTable, metricCard1.

Primary value, Secondary value, and Value

Many components in the application studio provide fields for specifying values or expressions that
determine the content or data displayed within the component. These fields are often labeled as
Primary value, Secondary value, or simply Value, depending on the component type and
purpose.

Components reference 76

AWS App Studio User Guide

The Primary value field is typically used to define the main value, data point, or content that
should be prominently displayed within the component.

The Secondary value field, when available, is used to display an additional or supporting value
or information alongside the primary value.

The Value field allows you to specify the value or expression that should be displayed in the
component.

These fields support both static text input and dynamic expressions. By using expressions, you can
reference data from other components, data sources, or variables within your application, enabling
dynamic and data-driven content display.

Syntax for expressions

The syntax for entering expressions in these fields follows a consistent pattern:

{{expression}}

Where expression is a valid expression that evaluates to the desired value or data you want to
display.

Example: Static text

• Primary value: you can enter a static number or value directly, such as "123" or "$1,999.99".

• Secondary value: you can enter a static text label, such as "Goal" or "Projected Revenue".

• Value: you can enter a static string, such as "since last month" or "Total Quantity".

Examples: Expressions

• Hello, {{currentUser.firstName}}: Displays a greeting with the first name of the
currently logged-in user.

• {{currentUser.role === 'Admin' ? 'Admin Dashboard' : 'User Dashboard'}}:
Conditionally displays a different dashboard title based on the user's role.

• Last login: {{currentUser.lastLoginDate.toLocaleDateString()}}: Displays the
last login date of the current user in a readable format.

• Signed in as: {{currentUser.email}}: Displays the email address of the current user.

Components reference 77

AWS App Studio User Guide

• {{currentUser.isSubscribed ? 'Subscribed' : 'Not Subscribed'}}: Displays the
subscription status of the current user.

• {{ui.componentName.data?.[0]?.fieldName}}: Retrieves the value of the fieldName
field from the first item in the data of the component with the ID componentName.

• {{ui.componentName.value * 100}}: Performs a calculation on the value of the
component with the ID componentName.

• {{ui.componentName.value + ' items'}}: Concatenates the value of the component with
the ID componentName and the string ' items'.

• {{ui.ordersTable.data?.[0]?.orderNumber}}: Retrieves the order number from the first
row of data in the ordersTable component.

• {{ui.salesMetrics.data?.[0]?.totalRevenue * 1.15}}: Calculates the projected
revenue by increasing the total revenue from the first row of data in the salesMetrics
component by 15%.

• {{ui.customerProfile.data?.[0]?.firstName + ' ' +
ui.customerProfile.data?.lastName}}: Concatenates the first and last name from the
data in the customerProfile component.

• {{new Date(ui.orderDetails.data?.orderDate).toLocaleDateString()}}: Formats
the order date from the orderDetails component to a more readable date string.

• {{ui.productList.data?.length}}: Displays the total number of products in the data
connected to the productList component.

• {{ui.discountPercentage.value * ui.orderTotal.value}}: Calculates the discount
amount based on the discount percentage and the order total.

• {{ui.cartItemCount.value + ' items in cart'}}: Displays the number of items in the
shopping cart, along with the label items in cart.

By using these expression fields, you can create dynamic and data-driven content within your
application, allowing you to display information that is tailored to the user's context or the state of
your application. This enables more personalized and interactive user experiences.

Label

The Label property allows you to specify a caption or title for the component. This label is typically
displayed alongside or above the component, helping users understand its purpose.

You can use both static text and expressions to define the label.

Components reference 78

AWS App Studio User Guide

Example: Static text

If you enter the text "First Name" in the Label field, the component will display "First Name" as its
label.

Example: Expressions

Example: Retail store

The following example personalizes the label for each user, making the interface feel more tailored
to the individual:

{{currentUser.firstName}} {{currentUser.lastName}}'s Account

Example: SaaS project management

The following example pulls data from the selected project to provide context-specific labels,
helping users stay oriented within the application:

Project {{ui.projectsTable.selectedRow.id}} - {{ui.projectsTable.selectedRow.name}}

Example: Healthcare clinic

The following example references the current user's profile and the doctor's information, providing
a more personalized experience for patients.

Dr. {{ui.doctorProfileTable.data.firstName}}
 {{ui.doctorProfileTable.data.lastName}}

Placeholder

The Placeholder property allows you to specify hint or guidance text that is displayed within the
component when it is empty. This can help users understand the expected input format or provide
additional context.

You can use both static text and expressions to define the placeholder.

Example: Static text

If you enter the text Enter your name in the Placeholder field, the component will display
Enter your name as the placeholder text.

Components reference 79

AWS App Studio User Guide

Example: Expressions

Example: Financial services

Enter the amount you'd like to deposit into your
{{ui.accountsTable.selectedRow.balance}} account These examples pull data from the
selected account to display relevant prompts, making the interface intuitive for banking customers.

Example: E-commerce

Enter the coupon code for {{ui.cartTable.data.currency}} total The placeholder
here dynamically updates based on the user's cart contents, providing a seamless checkout
experience.

Example: Healthcare clinic

Enter your {{ui.patientProfile.data.age}}-year-old patient's symptoms
By using an expression that references the patient's age, the application can create a more
personalized and helpful placeholder.

Source

The Source property allows you to select the data source for a component. Upon selection, you can
choose from the following data source types: entity, expression, or automation.

Entity

Selecting Entity as the data source allows you to connect the component to an existing data entity
or model in your application. This is useful when you have a well-defined data structure or schema
that you want to leverage throughout your application.

When to use the entity data source:

• When you have a data model or entity that contains the information you want to display in the
component (e.g., a "Products" entity with fields like "Name", "Description", "Price").

• When you need to dynamically fetch data from a database, API, or other external data source
and present it in the component.

• When you want to take advantage of the relationships and associations defined in your
application's data model.

Components reference 80

AWS App Studio User Guide

Selecting a query on an entity

Sometimes, you may want to connect a component to a specific query that retrieves data from an
entity, rather than the entire entity. In the Entity data source, you have the option to choose from
existing queries or create a new one.

By selecting a query, you can:

• Filter the data displayed in the component based on specific criteria.

• Pass parameters to the query to dynamically filter or sort the data.

• Leverage complex joins, aggregations, or other data manipulation techniques defined in the
query.

For example, if you have a Customers entity in your application with fields like Name, Email,
and PhoneNumber. You can connect a table component to this entity and choose a pre-defined
ActiveCustomers data action that filters the customers based on their status. This allows you to
display only the active customers in the table, rather than the entire customer database.

Adding parameters to an entity data source

When using an entity as the data source, you can also add parameters to the component. These
parameters can be used to filter, sort, or transform the data displayed in the component.

For example, if you have a Products entity with fields like Name, Description, Price, and
Category. You can add a parameter named category to a table component that displays the
product list. When users select a category from a dropdown, the table will automatically update
to show only the products belonging to the selected category, using the {{params.category}}
expression in the data action.

Expression

Select Expression as the data source to enter custom expressions or calculations to generate the
data for the component dynamically. This is useful when you need to perform transformations,
combine data from multiple sources, or generate data based on specific business logic.

When to use the Expression data source:

• When you need to calculate or derive data that is not directly available in your data model (e.g.,
calculating the total order value based on quantity and price).

Components reference 81

AWS App Studio User Guide

• When you want to combine data from multiple entities or data sources to create a composite
view (e.g., displaying a customer's order history along with their contact information).

• When you need to generate data based on specific rules or conditions (e.g., displaying a
"Recommended Products" list based on the user's browsing history).

For example, if you have a Metrics component that needs to display the total revenue for the
current month, you can use an expression like the following to calculate and display the monthly
revenue:

{{ui.table1.orders.concat(ui.table1.orderDetails).filter(o => o.orderDate.getMonth()
 === new Date().getMonth()).reduce((a, b) => a + (b.quantity * b.unitPrice), 0)}}

Automation

Select Automation as the data source to connect the component to an existing automation or
workflow in your application. This is useful when the data or functionality for the component is
generated or updated as part of a specific process or workflow.

When to use the Automation data source:

• When the data displayed in the component is the result of a specific automation or workflow
(e.g., a "Pending Approvals" table that is updated as part of an approval process).

• When you want to trigger actions or updates to the component based on events or conditions
within an automation (e.g., updating a Metrics with the latest sales figures for a SKU).

• When you need to integrate the component with other services or systems in your application
through an automation (e.g., fetching data from a third-party API and displaying it in a table).

For example, if you have a stepflow component that guides users through a job application process.
The stepflow component can be connected to an automation that handles the job application
submission, background checks, and offer generation. As the automation progresses through
these steps, the stepflow component can dynamically update to reflect the current status of the
application.

By carefully selecting the appropriate data source for each component, you can ensure that your
application's user interface is powered by the right data and logic, providing a seamless and
engaging experience for your users.

Components reference 82

AWS App Studio User Guide

Visible if

Use the Visible if property to show or hide components or elements based on specific conditions
or data values. This is useful when you want to dynamically control the visibility of certain parts of
your application's user interface.

The Visible if property uses the following syntax:

{{expression ? true : false}}

or

{{expression}}

Where expression is a boolean expression that evaluates to either true or false.

If the expression evaluates to true, the component will be visible. If the expression evaluates
to false, the component will be hidden. The expression can reference values from other
components, data sources, or variables within your application.

Visible if expression examples

Example: Showing or hiding a password input field based on an email input

Imagine you have a login form with an email input field and a password input field. You want
to show the password input field only if the user has entered an email address. You can use the
following Visible if expression:

{{ui.emailInput.value !== ""}}

This expression checks if the value of the emailInput component is not an empty string. If the
user has entered an email address, the expression evaluates to true, and the password input field
will be visible. If the email field is empty, the expression evaluates to false, and the password
input field will be hidden.

Example: Displaying additional form fields based on a dropdown selection

Let's say you have a form where users can select a category from a dropdown list. Depending on
the category selected, you want to show or hide additional form fields to gather more specific
information.

Components reference 83

AWS App Studio User Guide

For example, if the user selects the Products category, you can use the following expression to
show an additional Product Details field:

{{ui.categoryDropdown.value === "Products"}}

If the user selects the Services or Consulting categories, you can use this expression to show a
different set of additional fields:

{{ui.categoryDropdown.value === "Services" || ui.categoryDropdown.value ===
 "Consulting"}}

Examples: Other

To make the component visible if the textInput1 component's value is not an empty string:

{{ui.textInput1.value === "" ? false : true}}

To make the component always visible:

{{true}}

To make the component visible if the emailInput component's value is not an empty string:

{{ui.emailInput.value !== ""}}

Disabled if

The Disabled if feature allows you to conditionally enable or disable a component based on
specific conditions or data values. This is achieved by using the Disabled if property, which accepts
a boolean expression that determines whether the component should be enabled or disabled.

The Disabled if property uses the following syntax:

{{expression ? true : false}}

or

{{expression}}

Components reference 84

AWS App Studio User Guide

Disabled if expression examples

Example: Disabling a submit button based on form validation

If you have a form with multiple input fields, and you want to disable the submit button until all
required fields are filled out correctly, you can use the following Disabled If expression:

{{ui.nameInput.value === "" || ui.emailInput.value === "" || ui.passwordInput.value ===
 ""}}

This expression checks if any of the required input fields (nameInput, emailInput,
passwordInput) are empty. If any of the fields are empty, the expression evaluates to true,
and the submit button will be disabled. Once all the required fields are filled out, the expression
evaluates to false, and the submit button will be enabled.

By using these types of conditional expressions in the Visible if and Disabled ff properties, you
can create dynamic and responsive user interfaces that adapt to user input, providing a more
streamlined and relevant experience for your application's users.

Where expression is a boolean expression that evaluates to either true or false.

Example:

{{ui.textInput1.value === "" ? true : false}}: The component will be Disabled if the
 textInput1 component's value is an empty string.
{{!ui.nameInput.isValid || !ui.emailInput.isValid || !ui.passwordInput.isValid}}: The
 component will be Disabled if any of the named input fields are invalid.

Container layouts

The layout properties determine how the content or elements within a component are arranged
and positioned. Several layout options are available, each represented by an icon:

• Column Layout: This layout arranges the content or elements vertically, in a single column.

• Two column layout: This layout divides the component into two equal-width columns, allowing
you to position content or elements side by side.

• Row layout: This layout arranges the content or elements horizontally, in a single row.

Components reference 85

AWS App Studio User Guide

Orientation

• Horizontal: This layout arranges the content or elements horizontally, in a single row.

• Vertical: This layout arranges the content or elements vertically, in a single column.

• Inline wrapped: This layout arranges the content or elements horizontally, but wraps to the next
line if the elements exceed the available width.

Alignment

• Left: Aligns the content or elements to the left side of the component.

• Center: Centers the content or elements horizontally within the component.

• Right: Aligns the content or elements to the right side of the component.

Width

The Width property specifies the horizontal size of the component. You can enter a percentage
value between 0% and 100%, representing the component's width relative to its parent container
or the available space.

Height

The Height property specifies the vertical size of the component. The "auto" value adjusts the
component's height automatically based on its content or the available space.

Space between

The Space between property determines the spacing or gap between the content or elements
within the component. You can select a value from 0px (no spacing) to 64px, with increments of
4px (e.g., 4px, 8px, 12px, etc.).

Padding

The Padding property controls the space between the content or elements and the edges of the
component. You can select a value from 0px (no padding) to 64px, with increments of 4px (e.g.,
4px, 8px, 12px, etc.).

Background

The Background enables or disables a background color or style for the component.

Components reference 86

AWS App Studio User Guide

These layout properties provide flexibility in arranging and positioning the content within a
component, as well as controlling the size, spacing, and visual appearance of the component itself.

Data components

This section covers the various data components available in the application studio, including the
Table, Detail, Metric, Form, and Repeater components. These components are used to display,
gather, and manipulate data within your application.

Table

The Table component displays data in a tabular format, with rows and columns. It is used to
present structured data, such as lists of items or records from a database, in an organized and easy-
to-read manner.

Table properties

The Table component shares several common properties with other components, such as Name,
Source, and Actions. For more information on these properties, see Common component
properties.

In addition to the common properties, the Table component has specific properties and
configuration options, including Columns, Search and export, and Expressions.

Search and export

The Table component provides the following toggles to enable or disable search and export
functionality:

• Show search When enabled, this toggle adds a search input field to the table, allowing users to
search and filter the displayed data.

• Show export When enabled, this toggle adds an export option to the table, allowing users to
download the table data in various formats, for example: CSV.

Note

By default, the search functionality is limited to the data that has been loaded into the
table. To use search exhaustively, you will need to load all pages of data.

Components reference 87

AWS App Studio User Guide

Rows per page

You can specify the number of rows to be displayed per page in the table. Users can then navigate
between pages to view the full dataset.

Column re-ordering

The Table component includes a toggle to enable or disable the ability for users to re-order the
columns by dragging and dropping them.

Columns

In this section, you can define the columns to be displayed in the table. Each column can be
configured with the following properties:

• Format: The data type of the field, for example: text, number, date.

• Column label: The header text for the column.

• Value: The field from the data source that should be displayed in this column.

This field allows you to specify the value or expression that should be displayed in the column
cells. You can use expressions to reference data from the connected source or other components.

Example: {{currentRow.title}} - This expression will display the value of the title field
from the current row in the column cells.

• Enable sorting: This toggle allows you to enable or disable sorting functionality for the specific
column. When enabled, users can sort the table data based on the values in this column.

Expressions

The Table component provides several areas to use expressions and row-level action capabilities
that allow you to customize and enhance the table's functionality and interactivity. They allow you
to dynamically reference and display data within the table. By leveraging these expression fields,
you can create dynamic columns, pass data to row-level actions, and reference table data from
other components or expressions within your application.

Examples: Referencing row values

{{currentRow.columnName}} or {{currentRow["Column Name"]}} These expressions
allow you to reference the value of a specific column for the current row being rendered. Replace
columnName or Column Name with the actual name of the column you want to reference.

Components reference 88

AWS App Studio User Guide

Examples:

• {{currentRow.productName}} Displays the product name for the current row.

• {{currentRow["Supplier Name"]}} Displays the supplier name for the current row, where
the column header is Supplier Name.

• {{currentRow.orderDate}} Displays the order date for the current row.

Examples: Referencing selected row

{{ui.table1.selectedRow["columnName"]}} This expression allows you to reference the
value of a specific column for the currently selected row in the table with the ID table1. Replace
table1 with the actual ID of your table component, and columnName with the name of the
column you want to reference.

Examples:

• {{ui.ordersTable.selectedRow["totalAmount"]}} Displays the total amount for the
currently selected row in the table with the ID ordersTable.

• {{ui.customersTable.selectedRow["email"]}} Displays the email address for the
currently selected row in the table with the ID customersTable.

• {{ui.employeesTable.selectedRow["department"]}} Displays the department for the
currently selected row in the table with the ID employeesTable.

Examples: Creating custom columns

You can add custom columns to a table based on data returned from the underlying data action,
automation, or expression. You can use existing column values and JavaScript expressions to create
new columns.

Examples:

• {{currentRow.quantity * currentRow.unitPrice}} Creates a new column displaying
the total price by multiplying the quantity and unit price columns.

• {{new Date(currentRow.orderDate).toLocaleDateString()}} Creates a new column
displaying the order date in a more readable format.

Components reference 89

AWS App Studio User Guide

• {{currentRow.firstName + ' ' + currentRow.lastName + ' (' +
currentRow.email + ')' }} Creates a new column displaying the full name and email
address for each row.

Examples: Customizing column display values:

You can customize the display value of a field within a table column by setting the Value field
of the column mapping. This allows you to apply custom formatting or transformations to the
displayed data.

Examples:

• {{ currentRow.rating >= 4 ? '##'.repeat(currentRow.rating) :
currentRow.rating }} Displays star emojis based on the rating value for each row.

• {{ currentRow.category.toLowerCase().replace(/\b\w/g, c =>
c.toUpperCase()) }} Displays the category value with each word capitalized for each row.

• {{ currentRow.status === 'Active' ? '# Active' : '# Inactive' }}: Displays a
colored circle emoji and text based on the status value for each row.

Row-level button actions

{{currentRow.columnName}} or {{currentRow["Column Name"]}} You can use these
expressions to pass the referenced row's context within a row-level action, such as navigating to
another page with the selected row's data or triggering an automation with the row's data.

Examples:

• If you have an edit button in the row action column, you can pass {{currentRow.orderId}}
as a parameter to navigate to an order editing page with the selected order's ID.

• If you have a delete button in the row action column, you can pass
{{currentRow.customerName}} to an automation that sends a confirmation email to the
customer before deleting their order.

• If you have a view details button in the row action column, you can pass
{{currentRow.employeeId}} to an automation that logs the employee who viewed the order
details.

Components reference 90

AWS App Studio User Guide

By leveraging these expression fields and row-level action capabilities, you can create highly
customized and interactive tables that display and manipulate data based on your specific
requirements. Additionally, you can connect row-level actions with other components or
automations within your application, enabling seamless data flow and functionality.

Detail

The Detail component is designed to display detailed information about a specific record or item.
It provides a dedicated space for presenting comprehensive data related to a single entity or row,
making it ideal for showcasing in-depth details or facilitating data entry and editing tasks.

Detail properties

The Detail component shares several common properties with other components, such as Name,
Source, and Actions. For more information on these properties, see Common component
properties.

The Detail component also has specific properties and configuration options, including Fields,
Layout, and Expressions.

Layout

The Layout section allows you to customize the arrangement and presentation of the fields within
the Detail component. You can configure options such as:

• Number of columns: Specify the number of columns to display the fields in.

• Field ordering: Drag and drop fields to reorder their appearance.

• Spacing and alignment: Adjust the spacing and alignment of fields within the component.

Expressions and examples

The Detail component provides various expression fields that allow you to reference and display
data within the component dynamically. These expressions enable you to create customized and
interactive Detail components that seamlessly connect with your application's data and logic.

Example: Referencing data

{{ui.details.data[0]?.["colName"]}}: This expression allows you to reference the value of
the column named "colName" for the first item (index 0) in the data array connected to the Detail
component with the ID "details". Replace "colName" with the actual name of the column you want

Components reference 91

AWS App Studio User Guide

to reference. For example, the following expression will display the value of the "customerName"
column for the first item in the data array connected to the "details" component:

{{ui.details.data[0]?.["customerName"]}}

Note

This expression is useful when the Detail component is on the same page as the table
being referenced, and you want to display data from the first row of the table in the Detail
component.

Example: Conditional rendering

{{ui.table1.selectedRow["colName"]}}: This expression returns true if the selected
row in the table with the ID table1 has data for the column named colName. It can be used to
conditionally show or hide the Detail component based on whether the table's selected row is
empty or not.

Example:

You can use this expression in the Visible if property of the Detail component to conditionally
show or hide it based on the selected row in the table.

{{ui.table1.selectedRow["customerName"]}}

If this expression evaluates to true (the selected row in the table1 component has a value for
the customerName column), the Detail component will be visible. If the expression evaluates
to false (i.e., the selected row is empty or does not have a value for "customerName"), the Detail
component will be hidden.

Example: Conditional display

{{(ui.Component.value === "green" ? "#" : ui.Component.value === "yellow" ?
"#" : ui.detail1.data?.[0]?.CustomerStatus)}}: This expression conditionally displays
an emoji based on the value of a component or data field.

Breakdown:

• ui.Component.value: References the value of a component with the ID Component.

Components reference 92

AWS App Studio User Guide

• === "green": Checks if the component's value is equal to the string "green".

• ? "#": If the condition is true, displays the green circle emoji.

• : ui.Component.value === "yellow" ? "#": If the first condition is false, checks if the
component's value is equal to the string "yellow".

• ? "#": If the second condition is true, displays the yellow square emoji.

• : ui.detail1.data?.[0]?.CustomerStatus: If both conditions are false, it references the
"CustomerStatus" value of the first item in the data array connected to the Detail component
with the ID "detail1".

This expression can be used to display an emoji or a specific value based on the value of a
component or data field within the Detail component.

Metrics

The Metrics component is a visual element that displays key metrics or data points in a card-
like format. It is designed to provide a concise and visually appealing way to present important
information or performance indicators.

Metrics properties

The Metrics component shares several common properties with other components, such as Name,
Source, and Actions. For more information on these properties, see Common component
properties.

Trend

The Metrics's trend feature allows you to display a visual indicator of the performance or change
over time for the metric being displayed.

Trend value

This field allows you to specify the value or expression that should be used to determine the
trend direction and magnitude. Typically, this would be a value that represents the change or
performance over a specific time period.

Example:

{{ui.salesMetrics.data?.[0]?.monthOverMonthRevenue}}

Components reference 93

AWS App Studio User Guide

This expression retrieves the month-over-month revenue value from the first item in the data
connected to the "salesMetrics" Metrics.

Positive trend

This field allows you to enter an expression that defines the condition for a positive trend. The
expression should evaluate to true or false.

Example:

{{ui.salesMetrics.data?.[0]?.monthOverMonthRevenue > 0}}

This expression checks if the month-over-month revenue value is greater than 0, indicating a
positive trend.

Negative trend

This field allows you to enter an expression that defines the condition for a negative trend. The
expression should evaluate to true or false.

Example:

{{ui.salesMetrics.data?.[0]?.monthOverMonthRevenue < 0}}

This expression checks if the month-over-month revenue value is less than 0, indicating a negative
trend.

Color bar

This toggle allows you to enable or disable the display of a colored bar to visually indicate the
trend status.

Color Bar examples:

Example: Sales metrics trend

• Trend value: {{ui.salesMetrics.data?.[0]?.monthOverMonthRevenue}}

• Positive trend: {{ui.salesMetrics.data?.[0]?.monthOverMonthRevenue > 0}}

• Negative trend: {{ui.salesMetrics.data?.[0]?.monthOverMonthRevenue < 0}}

• Color bar: Enabled

Components reference 94

AWS App Studio User Guide

Example: inventory metrics trend

• Trend value: {{ui.inventoryMetrics.data?.[0]?.currentInventory -
ui.inventoryMetrics.data?.[1]?.currentInventory}}

• Positive trend: {{ui.inventoryMetrics.data?.[0]?.currentInventory >
ui.inventoryMetrics.data?.[1]?.currentInventory}}

• Negative trend: {{ui.inventoryMetrics.data?.[0]?.currentInventory <
ui.inventoryMetrics.data?.[1]?.currentInventory}}

• Color Bbar: Enabled

Example: Customer satisfaction trend

• Trend value: {{ui.customerSatisfactionMetrics.data?.[0]?.npsScore}}

• Positive trend: {{ui.customerSatisfactionMetrics.data?.[0]?.npsScore >= 8}}

• Negative trend: {{ui.customerSatisfactionMetrics.data?.[0]?.npsScore < 7}}

• Color bar: Enabled

By configuring these trend-related properties, you can create Metrics components that provide a
visual representation of the performance or change over time for the metric being displayed.

By leveraging these expressions, you can create highly customized and interactive metrics
components that reference and display data dynamically, allowing you to showcase key metrics,
performance indicators, and data-driven visualizations within your application.

Metrics expression examples

In the properties panel, you can enter expressions to display the title, primary value, secondary
value, and value caption to dynamically display a value.

Example: Referencing primary value

{{ui.metric1.primaryValue}}: This expression allows you to reference the primary value of
the Metrics component with the ID metric1 from other components or expressions within the
same page.

Example: {{ui.salesMetrics.primaryValue}} will display the primary value of the
salesMetrics Metrics component.

Components reference 95

AWS App Studio User Guide

Example: Referencing secondary value

{{ui.metric1.secondaryValue}}: This expression allows you to reference the secondary value
of the Metrics component with the ID metric1 from other components or expressions within the
same page.

Example: {{ui.revenueMetrics.secondaryValue}} will display the secondary value of the
revenueMetrics Metrics component.

Example: Referencing data

{{ui.metric1.data}}: This expression allows you to reference the data of the Metrics
component with the ID metric1 from other components or expressions within the same page.

Example: {{ui.kpiMetrics.data}} will reference the data connected to the kpiMetrics
Metrics component.

Example: Displaying specific data values:

{{ui.metric1.data?.[0]?.id}}: This expression is an example of how to display a specific
piece of information from the data connected to the Metrics component with the ID metric1. It is
useful when you want to display a specific property of the first item in the data.

Breakdown:

• ui.metric1: References the Metrics component with the ID metric1.

• data: Refers to the information or data set connected to that component.

• ?.[0]: Means the first item or entry in that data set.

• ?.id: Displays the id value or identifier of that first item or entry.

Example: {{ui.orderMetrics.data?.[0]?.orderId}} will display the orderId value of the
first item in the data connected to the orderMetrics Metrics component.

Example: Displaying data length

{{ui.metric1.data?.length}}: This expression demonstrates how to display the length
(number of items) in the data connected to the Metrics component with the ID metric1. It is
useful when you want to display the number of items in the data.

Breakdown:

Components reference 96

AWS App Studio User Guide

• ui.metric1.data: References the data set connected to the component.

• ?.length: Accesses the total count or number of items or entries in that data set.

Example: {{ui.productMetrics.data?.length}} will display the number of items in the data
connected to the productMetrics Metrics component.

Repeater

The Repeater component is a dynamic component that allows you to generate and display a
collection of elements based on a provided data source. It is designed to facilitate the creation of
lists, grids, or repeating patterns within your application's user interface. A few example use cases
include:

• Displaying a card for each user in an account

• Showing a list of products that include images and a button to add it to the cart

• Showing a list of files the user can access

The Repeater component differentiates itself from the Table component with rich content. A Table
component has a strict row and column format. The Repeater can display your data more flexibly.

Repeater properties

The Repeater component shares several common properties with other components, such as
Name, Source, and Actions. For more information on these properties, see Common component
properties.

In addition to the common properties, the Repeater component has the following additional
properties and configuration options.

Item template

The Item template is a container where you can define the structure and components that will
be repeated for each item in the data source. You can drag and drop other components into this
container, such as Text, Image, Button, or any other component you need to represent each item.

Within the Item template, you can reference properties or values from the current item using
expressions in the format {{currentItem.propertyName}}.

For example, if your data source contains an itemName property, you can use
{{currentItem.itemName}} to display the item name(s) of the current item.

Components reference 97

AWS App Studio User Guide

Layout

The Layout section allows you to configure the arrangement of the repeated elements within the
Repeater Component.

Orientation

• List: Arranges the repeated elements vertically in a single column.

• Grid: Arranges the repeated elements in a grid layout with multiple columns.

Rows per page

Specify the number of rows to display per page in the list layout. Pagination is provided for items
that overflow the specified number of rows.

Columns and Rows per Page (Grid)

• Columns: Specify the number of columns in the grid layout.

• Rows per Page: Specify the number of rows to display per page in the grid layout. Pagination is
provided for items that overflow the specified grid dimensions.

Expressions and examples

The Repeater component provides various expression fields that allow you to reference and display
data within the component dynamically. These expressions enable you to create customized and
interactive Repeater components that seamlessly connect with your application's data and logic.

Example: Referencing items

• {{currentItem.propertyName}}: Reference properties or values from the current item
within the Item Template.

• {{ui.repeaterID[index]}}: Reference a specific item in the Repeater Component by its
index.

Example: Rendering a list of products

• Source: Select the Products entity as the data source.

Components reference 98

AWS App Studio User Guide

• Item Template: Add a Container component with a Text component inside to display the
product name ({{currentItem.productName}}) and an Image component to display the
product image ({{currentItem.productImageUrl}}).

• Layout: Set the Orientation to List and adjust the Rows per Page as desired.

Example: Generating a grid of user avatars

• Source: Use an expression to generate an array of user data (e.g., [{name: 'John',
avatarUrl: '...'}, {...}, {...}]).

• Item Template: Add an Image component and set its Source property to
{{currentItem.avatarUrl}}.

• Layout: Set the Orientation to Grid, specify the number of Columns and Rows per Page,
and adjust the Space Between and Padding as needed.

By using the Repeater component, you can create dynamic and data-driven user interfaces,
streamlining the process of rendering collections of elements and reducing the need for manual
repetition or hard-coding.

Form

The Form component is designed to capture user input and facilitate data entry tasks within your
application. It provides a structured layout for displaying input fields, dropdowns, checkboxes,
and other form controls, allowing users to input or modify data seamlessly. You can nest other
components inside of a form component, such as a table.

Form properties

The Form component shares several common properties with other components, such as Name,
Source, and Actions. For more information on these properties, see Common component
properties.

Generate Form

The Generate Form feature makes it easy to quickly create form fields by automatically populating
them based on a selected data source. This can save time and effort when building forms that need
to display a large number of fields.

Components reference 99

AWS App Studio User Guide

To use the Generate Form feature:

1. In the Form component's properties, locate the Generate Form section.

2. Select the data source you want to use to generate the form fields. This can be an entity,
workflow, or any other data source available in your application.

3. The form fields will be automatically generated based on the selected data source, including
the field labels, types, and data mappings.

4. Review the generated fields and make any necessary customizations, such as adding validation
rules or changing the field order.

5. Once you're satisfied with the form configuration, choose Submit to apply the generated fields
to your Form component.

The Generate Form feature is particularly useful when you have a well-defined data model or set
of entities in your application that you need to capture user input for. By automatically generating
the form fields, you can save time and ensure consistency across your application's forms.

After using the Generate Form feature, you can further customize the layout, actions, and
expressions for the Form component to fit your specific requirements.

Expressions and examples

Like other components, you can use expressions to reference and display data within the Form
component. For example:

• {{ui.userForm.data.email}}: References the value of the email field from the data source
connected to the Form component with the ID userForm.

Note

See Common component properties for more expression examples of the common
properties.

By configuring these properties and leveraging expressions, you can create customized and
interactive Form components that seamlessly integrate with your application's data sources and
logic. These components can be used to capture user input, display pre-populated data, and trigger
actions based on the form submissions or user interactions.

Components reference 100

AWS App Studio User Guide

Stepflow

The Stepflow component is designed to guide users through multi-step processes or workflows
within your application. It provides a structured and intuitive interface for presenting a sequence of
steps, each with its own set of inputs, validations, and actions.

The Stepflow component shares several common properties with other components, such as
Name, Source, and Actions. For more information on these properties, see Common component
properties.

The Stepflow component has additional properties and configuration options, such as Step
Navigation, Validation, and Expressions.

Text & number components

Text input

The Text input component allows users to enter and submit text data within your application. It
provides a simple and intuitive way to capture user input, such as names, addresses, or any other
textual information.

• {{ui.inputTextID.value}}: Returns the provided value in the input field.

• {{ui.inputTextID.isValid}}: Returns the validity of the provided value in the input field.

Text

The Text component is used to display textual information within your application. It can be used
to show static text, dynamic values, or content generated from expressions.

Text area

The Text area component is designed to capture multi-line text input from users. It provides
a larger input field area for users to enter longer text entries, such as descriptions, notes, or
comments.

• {{ui.textAreaID.value}}: Returns the provided value in the text area.

• {{ui.textAreaID.isValid}}: Returns the validity of the provided value in the text area.

Components reference 101

AWS App Studio User Guide

Email

The Email component is a specialized input field designed to capture email addresses from users.
It can enforce specific validation rules to ensure the entered value adheres to the correct email
format.

• {{ui.emailID.value}}: Returns the provided value in the email input field.

• {{ui.emailID.isValid}}: Returns the validity of the provided value in the email input field.

Password

The Password component is an input field specifically designed for users to enter sensitive
information, such as passwords or PIN codes. It masks the entered characters to maintain privacy
and security.

• {{ui.passwordID.value}}: Returns the provided value in the password input field.

• {{ui.passwordID.isValid}}: Returns the validity of the provided value in the password
input field.

Search

The Search component provides users with a dedicated input field for performing search queries or
entering search terms within the populated data within the application.

• {{ui.searchID.value}}: Returns the provided value in the search field.

Phone

The Phone component is an input field tailored for capturing phone numbers or other contact
information from users. It can include specific validation rules and formatting options to ensure the
entered value adheres to the correct phone number format.

• {{ui.phoneID.value}}: Returns the provided value in the phone input field.

• {{ui.phoneID.isValid}}: Returns the validity of the provided value in the phone input field.

Components reference 102

AWS App Studio User Guide

Number

The Number component is an input field designed specifically for users to enter numerical values.
It can enforce validation rules to ensure the entered value is a valid number within a specified
range or format.

• {{ui.numberID.value}}: Returns the provided value in the number input field.

• {{ui.numberID.isValid}}: Returns the validity of the provided value in the number input
field.

Currency

The Currency component is a specialized input field for capturing monetary values or amounts.
It can include formatting options to display currency symbols, decimal separators, and enforce
validation rules specific to currency inputs.

• {{ui.currencyID.value}}: Returns the provided value in the currency input field.

• {{ui.currencyID.isValid}}: Returns the validity of the provided value in the currency input
field.

Switch

The Switch component is a user interface control that allows users to toggle between two states or
options, such as on/off, true/false, or enabled/disabled. It provides a visual representation of the
current state and allows users to change it with a single click or tap.

Detail pair

The Detail pair component is used to display key-value pairs or pairs of related information in a
structured and readable format. It is commonly used to present details or metadata associated
with a specific item or entity.

Selection components

Switch group

The Switch group component is a collection of individual switch controls that allow users to select
one or more options from a predefined set. It provides a visual representation of the selected and
unselected options, making it easier for users to understand and interact with the available choices.

Components reference 103

AWS App Studio User Guide

Switch group expression fields

• {{ui.switchGroupID.value}}: Returns an array of strings containing the value of each
switch that is enabled by the app user.

Checkbox group

The Checkbox group component presents users with a group of checkboxes, allowing them to
select multiple options simultaneously. It is useful when you want to provide users with the ability
to choose one or more items from a list of options.

Checkbox group expression fields

• {{ui.checkboxGroupID.value}}: Returns an array of strings containing the value of each
checkbox that is selected by the app user.

Radio group

The Radio group component is a set of radio buttons that allow users to select a single option
from multiple mutually exclusive choices. It ensures that only one option can be selected at a time,
providing a clear and unambiguous way for users to make a selection.

Radio group expression fields

The following fields can be used in expressions.

• {{ui.radioGroupID.value}}: Returns the value of the radio button that is selected by the
app user.

Single select

The Single select component presents users with a list of options, from which they can select a
single item. It is commonly used in scenarios where users need to make a choice from a predefined
set of options, such as selecting a category, a location, or a preference.

Single select expression fields

• {{ui.singleSelectID.value}}: Returns the value of the list item that is selected by the app
user.

Components reference 104

AWS App Studio User Guide

Multi select

The Multi select component is similar to the Single select component but allows users to select
multiple options simultaneously from a list of choices. It is useful when users need to make
multiple selections from a predefined set of options, such as selecting multiple tags, interests, or
preferences.

Multi select expression fields

• {{ui.multiSelectID.value}}: Returns an array of strings containing the value of each list
item that is selected by the app user.

Buttons & navigation components

The application studio provides a variety of button and navigation components to allow users to
trigger actions and navigate within your application.

Button components

The available button components are:

• Button

• Outlined button

• Icon button

• Text button

These button components share the following common properties:

Content

• Button label: The text to be displayed on the button.

Type

• Button: A standard button.

• Outlined: A button with an outlined style.

• Icon: A button with an icon.

Components reference 105

AWS App Studio User Guide

• Text: A text-only button.

Size

The size of the button. Possible values are Small, Medium, and Large.

Icon

You can select from a variety of icons to be displayed on the button, including:

• Envelope Closed

• Bell

• Person

• Hamburger Menu

• Search

• Info Circled

• Gear

• Chevron Left

• Chevron Right

• Dots Horizontal

• Trash

• Edit

• Check

• Close

• Home

• Plus

Triggers

When the button is clicked, you can configure one or more actions to be triggered. The available
action types are:

• Basic

• Run component action: Executes a specific action within a component.

Components reference 106

AWS App Studio User Guide

• Navigate: Navigates to another page or view.

• Invoke Data Action: Triggers a data-related action, such as creating, updating, or deleting a
record.

• Advanced

• JavaScript: Runs custom JavaScript code.

• Invoke Automation: Starts an existing automation or workflow.

JavaScript action button properties

Select the JavaScript action type to run custom JavaScript code when the button is clicked.

Source code

In the Source code field, you can enter your JavaScript expression or function. For example:

return "Hello World";

This will simply return the string Hello World when the button is clicked.

Condition: Run if

You can also provide a boolean expression that determines whether the JavaScript action should
be executed or not. This uses the following syntax:

{{ui.textinput1.value !== ""}}

In this example, the JavaScript action will only run if the value of the textinput1 component is
not an empty string.

By using these advanced trigger options, you can create highly customized button behaviors that
integrate directly with your application's logic and data. This allows you to extend the built-in
functionality of the buttons and tailor the user experience to your specific requirements.

Note

Always thoroughly test your JavaScript actions to ensure they are functioning as expected.

Components reference 107

AWS App Studio User Guide

Hyperlink

The Hyperlink component provides a clickable link for navigating to external URLs or internal
application routes.

Hyperlink properties

Content

• Hyperlink label: The text to be displayed as the hyperlink label.

URL

The destination URL for the hyperlink, which can be an external website or an internal application
route.

Triggers

When the hyperlink is clicked, you can configure one or more actions to be triggered. The available
action types are the same as those for the button components.

Date & time components

Date

The Date component allows users to select and input dates.

The Date component shares several common properties with other components, such as Name,
Source, and Validation. For more information on these properties, see Common component
properties.

In addition to the common properties, the Date component has the following specific properties:

Date properties

Format

• YYYY/MM/DD, DD/MM/YYYY, YYYY/MM/DD, YYYY/DD/MM, MM/DD, DD/MM: The format in
which the date should be displayed.

Value

• YYYY-MM-DD: The format in which the date value is stored internally.

Components reference 108

AWS App Studio User Guide

Min date

• YYYY-MM-DD: The minimum date that can be selected.

Note

This value must match the format of YYYY-MM-DD.

Max date

• YYYY-MM-DD: The maximum date that can be selected.

Note

This value must match the format of YYYY-MM-DD.

Calendar type

• 1 Month, 2 Months: The type of calendar UI to display.

Disabled dates

• Source: The data source for the dates that should be disabled. For example: None, Expression.

• Disabled dates: An expression that determines which dates should be disabled, such as:

• {{currentRow.column}}: Disables dates that match what this expression evaluates to.

• {{new Date(currentRow.dateColumn) < new Date("2023-01-01")}}: Disables dates
before January 1, 2023

• {{new Date(currentRow.dateColumn).getDay() === 0 || new
Date(currentRow.dateColumn).getDay() === 6}}: Disables weekends.

Behavior

• Visible if: An expression that determines the visibility of the Date component.

• Disable if: An expression that determines whether the Date component should be disabled.

Components reference 109

AWS App Studio User Guide

Validation

The Validation section allows you to define additional rules and constraints for the date input. By
configuring these validation rules, you can ensure that the date values entered by users meet the
specific requirements of your application. You can add the following types of validations:

• Required: This toggle ensures that the user must enter a date value before submitting the form.

• Custom: You can create custom validation rules using JavaScript expressions. For example:

{{new Date(ui.dateInput.value) < new Date("2023-01-01")}}

This expression checks if the entered date is before January 1, 2023. If the condition is true, the
validation will fail.

You can also provide a custom validation message to be displayed when the validation is not
met:

"Validation not met. The date must be on or after January 1, 2023."

By configuring these validation rules, you can ensure that the date values entered by users meet
the specific requirements of your application.

Expressions and examples

The Date component provides the following expression field:

• {{ui.dateID.value}}: Returns the date value entered by the user in the format YYYY-MM-DD.

Time

The Time component allows users to select and input time values. By configuring the various
properties of the Time component, you can create time input fields that meet the specific
requirements of your application, such as restricting the selectable time range, disabling certain
times, and controlling the component's visibility and interactivity.

Components reference 110

AWS App Studio User Guide

Time properties

The Time component shares several common properties with other components, such as Name,
Source, and Validation. For more information on these properties, see Common component
properties.

In addition to the common properties, the Time component has the following specific properties:

Time intervals

• 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 60 minutes: The
intervals available for selecting the time.

Value

• HH:MM AA: The format in which the time value is stored internally.

Note

This value must match the format of HH:MM AA.

Placeholder

• Calendar settings: The placeholder text displayed when the time field is empty.

Min time

• HH:MM AA: The minimum time that can be selected.

Note

This value must match the format of HH:MM AA.

Max time

• HH:MM AA: The maximum time that can be selected.

Components reference 111

AWS App Studio User Guide

Note

This value must match the format of HH:MM AA.

Disabled times

• Source: The data source for the times that should be disabled (e.g., None, Expression).

• Disabled times: An expression that determines which times should be disabled, such as
{{currentRow.column}}.

Disabled times configuration

You can use the Disabled Times section to specify which time values should be unavailable for
selection.

Source

• None: No times are disabled.

• Expression: You can use a JavaScript expression to determine which times should be disabled,
such as {{currentRow.column}}.

Example expression:

{{currentRow.column === "Lunch Break"}}

This expression would disable any times where the "Lunch Break" column is true for the current
row.

By configuring these validation rules and disabled time expressions, you can ensure that the time
values entered by users meet the specific requirements of your application.

Behavior

• Visible if: An expression that determines the visibility of the Time component.

• Disable if: An expression that determines whether the Time component should be disabled.

Components reference 112

AWS App Studio User Guide

Validation

• Required: A toggle that ensures the user must enter a time value before submitting the form.

• Custom: Allows you to create custom validation rules using JavaScript expressions.

Custom Validation Message: The message to be displayed when the custom validation is not
met.

For example:

{{ui.timeInput.value === "09:00 AM" || ui.timeInput.value === "09:30 AM"}}

This expression checks if the entered time is 9:00 AM or 9:30 AM. If the condition is true, the
validation will fail.

You can also provide a custom validation message to be displayed when the validation is not met:

Validation not met. The time must be 9:00 AM or 9:30 AM.

Expressions and examples

The Time component provides the following expression field:

• {{ui.timeID.value}}: Returns the time value entered by the user in the format HH:MM AA.

Example: Time value

• {{ui.timeID.value}}: Returns the time value entered by the user in the format HH:MM AA.

Example: Time comparison

• {{ui.timeInput.value > "10:00 AM"}}: Checks if the time value is greater than 10:00
AM.

• {{ui.timeInput.value < "05:00 pM"}}: Checks if the time value is less than 05:00 PM.

Components reference 113

AWS App Studio User Guide

Date range

The Date range component allows users to select and input a range of dates. By configuring the
various properties of the Date Range component, you can create date range input fields that
meet the specific requirements of your application, such as restricting the selectable date range,
disabling certain dates, and controlling the component's visibility and interactivity.

Date range properties

The Date Range component shares several common properties with other components, such
as Name, Source, and Validation. For more information on these properties, see Common
component properties.

In addition to the common properties, the Date Range component has the following specific
properties:

Format

• MM/DD/YYYY: The format in which the date range should be displayed.

Start date

• YYYY-MM-DD: The minimum date that can be selected as the start of the range.

Note

This value must match the format of YYYY-MM-DD.

End date

• YYYY-MM-DD: The maximum date that can be selected as the end of the range.

Note

This value must match the format of YYYY-MM-DD.

Components reference 114

AWS App Studio User Guide

Placeholder

• Calendar settings: The placeholder text displayed when the date range field is empty.

Min date

• YYYY-MM-DD: The minimum date that can be selected.

Note

This value must match the format of YYYY-MM-DD.

Max date

• YYYY-MM-DD: The maximum date that can be selected.

Note

This value must match the format of YYYY-MM-DD.

Calendar type

• 1 Month: The type of calendar UI to display. For example, single month.

• 2 Month: The type of calendar UI to display. For example, two months.

Mandatory days selected

• 0: The number of mandatory days that must be selected within the date range.

Disabled dates

• Source: The data source for the dates that should be disabled (e.g., None, Expression, Entity, or
Automation).

• Disabled dates: An expression that determines which dates should be disabled, such as
{{currentRow.column}}.

Components reference 115

AWS App Studio User Guide

Validation

The Validation section allows you to define additional rules and constraints for the date range
input.

Expressions and examples

The Date Range component provides the following expression fields:

• {{ui.dateRangeID.startDate}}: Returns the start date of the selected range in the format
YYYY-MM-DD.

• {{ui.dateRangeID.endDate}}: Returns the end date of the selected range in the format
YYYY-MM-DD.

Example: Calculating date difference

• {(new Date(ui.dateRangeID.endDate) - new
Date(ui.dateRangeID.startDate)) / (1000 * 60 * 60 * 24)}} Calculates the
number of days between the start and end dates.

Example: Conditional visibility based on date range

• {{new Date(ui.dateRangeID.startDate) < new Date("2023-01-01") || new
Date(ui.dateRangeID.endDate) > new Date("2023-12-31")}} Checks if the selected
date range is outside of the year 2023.

Example: Disabled dates based on current row data

• {{currentRow.isHoliday}} Disables dates where the "isHoliday" column in the current row
is true.

• {{new Date(currentRow.dateColumn) < new Date("2023-01-01")}} Disables dates
before January 1, 2023 based on the "dateColumn" in the current row.

• {{new Date(currentRow.dateColumn).getDay() === 0 || new
Date(currentRow.dateColumn).getDay() === 6}} Disables weekends based on the
"dateColumn" in the current row.

Components reference 116

AWS App Studio User Guide

Custom validation

• {{new Date(ui.dateRangeID.startDate) > new Date(ui.dateRangeID.endDate)}}
Checks if the start date is later than the end date, which would fail the custom validation.

Media components

The application studio provides several components for embedding and displaying various media
types within your application.

iFrame embed

The iFrame embed component allows you to embed external web content or applications within
your application using an iFrame.

iFrame embed properties

URL

The URL of the external content or application you want to embed.

Layout

• Width: The width of the iFrame, specified as a percentage (%) or a fixed pixel value (e.g., 300px).

• Height: The height of the iFrame, specified as a percentage (%) or a fixed pixel value.

S3 upload

The S3 upload component allows users to upload files to an Amazon S3 bucket. By configuring the
S3 Upload component, you can enable users to easily upload files to your application's Amazon S3
storage, and then leverage the uploaded file information within your application's logic and user
interface.

Note

Remember to ensure that the necessary permissions and Amazon S3 bucket configurations
are in place to support the file uploads and storage requirements of your application.

Components reference 117

AWS App Studio User Guide

S3 upload properties

S3 Configuration

• Connector: Select the pre-configured Amazon S3 connector to use for the file uploads.

• Bucket: The Amazon S3 bucket where the files will be uploaded.

• Folder: The folder within the Amazon S3 bucket where the files will be stored.

• File name: The naming convention for the uploaded files.

File upload configuration

• Label: The label or instructions displayed above the file upload area.

• Description: Additional instructions or information about the file upload.

• File type: The type of files that are allowed to be uploaded. For example: image, document, or
video.

• Size: The maximum size of the individual files that can be uploaded.

• Button label: The text displayed on the file selection button.

• Button style: The style of the file selection button. For example, outlined or filled.

• Button size: The size of the file selection button.

Validation

• Max number of files: The maximum number of files that can be uploaded at once.

• Max file size: The maximum size allowed for each individual file.

Triggers

• On success: Actions to be triggered when a file upload is successful.

• On failure: Actions to be triggered when a file upload fails.

S3 upload expression fields

The S3 upload component provides the following expression fields:

• {{ui.s3uploadID.files}}: Returns an array of the files that have been uploaded.

Components reference 118

AWS App Studio User Guide

• {{ui.s3uploadID.files[0]?.size}}: Returns the size of the file at the designated index.

• {{ui.s3uploadID.files[0]?.type}}: Returns the type of the file at the designated index.

• {{ui.s3uploadID.files[0]?.nameOnly}}: Returns the name of the file, with no extension
suffix, at the designated index.

• {{ui.s3uploadID.files[0]?.nameWithExtension}}: Returns the name of the file with its
extension suffix at the designated index.

Expressions and examples

Example: Accessing uploaded files

• {{ui.s3uploadID.files.length}}: Returns the number of files that have been uploaded.

• {{ui.s3uploadID.files.map(f => f.name).join(', ')}}: Returns a comma-separated
list of the file names that have been uploaded.

• {{ui.s3uploadID.files.filter(f => f.type.startsWith('image/'))}}: Returns an
array of only the image files that have been uploaded.

Example: Validating file uploads

• {{ui.s3uploadID.files.some(f => f.size > 5 * 1024 * 1024)}}: Checks if any of
the uploaded files exceed 5 MB in size.

• {{ui.s3uploadID.files.every(f => f.type === 'image/png')}}: Checks if all the
uploaded files are PNG images.

• {{ui.s3uploadID.files.length > 3}}: Checks if more than 3 files have been uploaded.

Example: Triggering actions

• {{ui.s3uploadID.files.length > 0 ? 'Upload Successful' : 'No files
uploaded'}}: Displays a success message if at least one file has been uploaded.

• {{ui.s3uploadID.files.some(f => f.type.startsWith('video/')) ?
triggerVideoProcessing() : null}}: Triggers a video processing automation if any video
files have been uploaded.

• {{ui.s3uploadID.files.map(f => f.url)}}: Retrieves the URLs of the uploaded files,
which can be used to display or further process the files.

Components reference 119

AWS App Studio User Guide

These expressions allow you to access the uploaded files, validate the file uploads, and trigger
actions based on the file upload results. By utilizing these expressions, you can create more
dynamic and intelligent behavior within your application's file upload functionality.

Note

Replace s3uploadID with the ID of your S3 upload component.

PDF viewer component

The PDF viewer component allows users to view and interact with PDF documents within your
application. App Studio supports these different input types for the PDF Source, the PDF viewer
component provides flexibility in how you can integrate PDF documents into your application,
whether it's from a static URL, an inline data URI, or dynamically generated content.

PDF viewer properties

Source

The source of the PDF document, which can be an expression, entity, URL, or automation.

Expression

Use an expression to dynamically generate the PDF source.

Entity

Connect the PDF viewer component to a data entity that contains the PDF document.

URL

Specify the URL of the PDF document.

URL

You can enter a URL that points to the PDF document you want to display. This could be a public
web URL or a URL within your own application.

Example: https://example.com/document.pdf

Components reference 120

AWS App Studio User Guide

Data URI

A Data URI is a compact way to include small data files (like images or PDFs) inline within
your application. The PDF document is encoded as a base64 string and included directly in the
component's configuration.

Blob or ArrayBuffer

You can also provide the PDF document as a Blob or ArrayBuffer object, which allows you to
dynamically generate or retrieve the PDF data from various sources within your application.

Automation

Connect the PDF viewer component to an automation that provides the PDF document.

Actions

• Download: Adds a button or link that allows users to download the PDF document.

Layout

• Width: The width of the PDF Viewer, specified as a percentage (%) or a fixed pixel value (e.g.,
600px).

• Height: The height of the PDF Viewer, specified as a fixed pixel value.

Image viewer

The Image viewer component allows users to view and interact with image files within your
application.

Image viewer properties

Source

• Entity: Connect the Image viewer component to a data entity that contains the image file.

• URL: Specify the URL of the image file.

• Expression: Use an expression to dynamically generate the image source.

• Automation: Connect the Image viewer component to an automation that provides the image
file.

Components reference 121

AWS App Studio User Guide

Alt text

The alternative text description of the image, which is used for accessibility purposes.

Layout

• Image fit: Determines how the image should be resized and displayed within the component. For
example: Contain, Cover, or Fill.

• Width: The width of the Image viewer component, specified as a percentage (%) or a fixed pixel
value (e.g., 300px).

• Height: The height of the Image viewer component, specified as a fixed pixel value.

• Background: Allows you to set a background color or image for the Image viewer component.

Defining and implementing your app's business logic with
automations

Built in the application studio, automations are how you define the business logic of your
application. The main components of an automation are: triggers that start the automation, a
sequence of one or more actions, input parameters used to pass data to the automation, and an
output.

Topics

• Automations concepts

• Tutorial: Interacting with Amazon Simple Storage Service using automations

• Creating, editing, and deleting automations

• Adding, editing, and deleting automation actions

• Automation actions reference

Automations concepts

Here are some concepts and terms to know when defining and configuring your app's business
logic using automations in App Studio.

Defining your app's business logic with automations 122

AWS App Studio User Guide

Automations

Built in the application studio, automations are how you define the business logic of your
application. The main components of an automation are: triggers that start the automation, a
sequence of one or more actions, input parameters used to pass data to the automation, and an
output.

Actions

An automation action, commonly referred to as an action, is an individual step of logic that make
up an automation. Each action performs a specific task, whether it's sending an email, creating a
data record, invoking a Lambda function, or calling APIs. Actions are added to automations from
the action library, and can be grouped into conditional statements or loops.

Automation input parameters

Automation input parameters are dynamic input values that you can pass in from components
to automations to make them flexible and reusable. Think of parameters as variables for your
automation, instead of hard-coding values into an automation, you can define parameters and
provide different values when needed. Parameters allow you to use the same automation with
different inputs each time it is run.

Mocked output

Some actions interact with external resources or services using connectors. When using the
preview environment, applications do not interact with external services. To test actions that use
connectors in the preview environment, you can use mocked output to simulate the connector's
behavior and output. The mocked output is configured using JavaScript, and the result is stored in
an action's results, just as the connector's response is stored in a published app.

By using mocking, you can use the preview environment to test various scenarios and their impact
on other actions with the automation such as simulating different result values, error scenarios,
edge cases, or unhappy paths without calling the external service through connectors.

Automation output

An automation output is used to pass values from one automation to other resources of an app,
such as components or other automations. Automation outputs are configured as expressions, and
the expression can return a static value or a dynamic value computed from automation parameters

Automations concepts 123

AWS App Studio User Guide

and actions. By default, automations do not return any data, including the results of actions within
the automation.

A couple of examples of how automation outputs can be used:

• You can configure an automation output to return an array, and pass that array to populate a
data component.

• You can use an automation to calculate a value, and pass that value into multiple other
automations as a way to centralize and reuse business logic.

Triggers

Trigger determine when, and on what conditions, an automation will run. Some examples of
triggers are On click for buttons and On select for text inputs. The type of component
determines the list of available triggers for that component. Triggers are added to components and
configured in the application studio.

Tutorial: Interacting with Amazon Simple Storage Service using
automations

You can invoke various Amazon S3 operations from an App Studio app, for example, you could
create a simple admin panel to manage your users and orders and display your media from
Amazon S3. While you can invoke any Amazon S3 operation using the Invoke AWS action, there
are four dedicated Amazon S3 actions that you can add to automations in your app to perform
common operations on Amazon S3 buckets and objects. The four actions and their operations are
as follows:

• Put Object: Uses the Amazon S3 PutObject operation to add an object an Amazon S3 bucket.

• Get Object: Uses the Amazon S3 GetObject operation to retrieve an object from an Amazon
S3 bucket.

• List Objects: Uses the Amazon S3 ListObjects operation to list objects in an Amazon S3
bucket.

• Delete Object: Uses the Amazon S3 DeleteObject operation to delete an object from an
Amazon S3 bucket.

In addition to the actions, there is an S3 upload component that can be added to pages in
applications. Users can use this component to choose a file to upload, and the component calls

Tutorial: Interacting with Amazon S3 using automations 124

AWS App Studio User Guide

Amazon S3 PutObject to upload the file to the configured bucket and folder. This tutorial will
use this component in place of the standalone Put Object automation action, which should be
used in more complex scenarios that involve additional logic or actions to be taken before or after
uploading.

Prerequisites

This guide assumes you have completed the following prerequisites:

1. Created and configured an Amazon S3 bucket, IAM role and policy, and Amazon S3 connector
in order to successfully integrate Amazon S3 with App Studio. To create a connector, you must
have the Administrator role. For more information, see Connect to Amazon Simple Storage
Service (Amazon S3).

Create an empty application

Create an empty application to use throughout this guide by performing the following steps.

To create an empty application

1. In the navigation pane, choose My applications.

2. Choose + Create app.

3. In the Create app dialog box, give your application a name, choose Build manually, and
choose Next.

4. In the Select data sources dialog box, choose Skip to create the application.

You will navigated to the canvas of your new app, where you can use components, automations,
and data to configure the look and function of your application.

Create pages

Create three pages in your application to gather or show information.

To create pages

1. If necessary, choose the Pages tab at the top of the canvas.

2. In the left-hand navigation, there is a single page that was created with your app. Choose +
Add twice to create two more pages. The navigation pane should show three total pages.

Tutorial: Interacting with Amazon S3 using automations 125

AWS App Studio User Guide

3. Update the name of the Page1 page by performing the following steps:

a. Choose the ellipses icon and choose Page properties.

b. In the right-hand Properties menu, choose the pencil icon to edit the name.

c. Enter FileList and press enter.

4. Repeat the previous steps to update the second and third pages as follows:

• Rename Page2 to UploadFile.

• Rename Page3 to FailUpload.

Now, your app should have three pages named FileList, UploadFile, and FailUpload which can be
seen in the left-hand Pages panel.

Next, you will create and configure the automations that interact with Amazon S3.

Create and configure automations

Create the automations of your application that interact with Amazon S3. Use the following
procedures to create the following automations:

• A getFiles automation that lists the objects in your Amazon S3 bucket, which will be used to fill a
table component.

• A deleteFile automation that deletes an object from your Amazon S3 bucket, which will be used
to add a delete button to a table component.

• A viewFile automation that gets an object from your Amazon S3 bucket and displays it, which
will be used to show more details about a single object selected from a table component.

Create a getFiles automation

Create an automation that will list the files in a specified Amazon S3 bucket.

1. Choose the Automations tab at the top of the canvas.

2. Choose + Add automation.

3. In the right-hand panel, choose Properties.

4. Update the automation name by choosing the pencil icon. Enter getFiles and press enter.

5. Add a List objects action by performing the following steps:

Tutorial: Interacting with Amazon S3 using automations 126

AWS App Studio User Guide

a. In the right-hand panel, choose Actions

b. Choose List objects to add an action. The action should be named ListObjects1.

6. Configure the action by performing the following steps:

a. Choose the action from the canvas to open the right-hand Properties menu.

b. In Connector, choose the Amazon S3 connector that you created from the prerequisites.

c. In Configuration, enter the following text, replacing bucket_name with the bucket you
created in the prerequisites:

{
 "Bucket": "bucket_name",
 "Prefix": ""
}

Note

The Prefix field can be used to limit the response to objects that begin with the
specified string.

7. The output of this automation will be used to populate a table component with objects from
your Amazon S3 bucket, however, by default automations do not create outputs. Configure the
automation to create an automation output by performing the following steps:

a. In the left-hand navigation, choose the getFiles automation.

b. In the right-hand Properties menu, in Automation output, choose + Add output.

c. In Output, enter {{results.ListObjects1.Contents}}. This expression returns the
contents of the action, and can now be used to populate a table component.

Create a deleteFile automation

Create an automation that deletes an object from a specified Amazon S3 bucket.

1. In the left-hand Automations panel, choose + Add.

2. Choose + Add automation.

3. In the right-hand panel, choose Properties.

4. Update the automation name by choosing the pencil icon. Enter deleteFile and press enter.

Tutorial: Interacting with Amazon S3 using automations 127

AWS App Studio User Guide

5. Add an automation parameter, used to pass data to an automation, by performing the
following steps:

a. In the right-hand Properties menu, in Automation parameters, choose + Add.

b. Choose the pencil icon to edit the automation parameter. Update the parameter name to
fileName and press enter.

6. Add a Delete object action by performing the following steps:

a. In the right-hand panel, choose Actions

b. Choose Delete object to add an action. The action should be named DeleteObject1.

7. Configure the action by performing the following steps:

a. Choose the action from the canvas to open the right-hand Properties menu.

b. In Connector, choose the Amazon S3 connector that you created from the prerequisites.

c. In Configuration, enter the following text, replacing bucket_name with the bucket you
created in the prerequisites:

{
 "Bucket": "bucket_name",
 "Key": params.fileName
}

Create a viewFile automation

Create an automation that retrieves a single object from a specified Amazon S3 bucket. Later, you
will configure this automation with a file viewer component to display the object.

1. In the left-hand Automations panel, choose + Add.

2. Choose + Add automation.

3. In the right-hand panel, choose Properties.

4. Update the automation name by choosing the pencil icon. Enter viewFile and press enter.

5. Add an automation parameter, used to pass data to an automation, by performing the
following steps:

a. In the right-hand Properties menu, in Automation parameters, choose + Add.

Tutorial: Interacting with Amazon S3 using automations 128

AWS App Studio User Guide

b. Choose the pencil icon to edit the automation parameter. Update the parameter name to
fileName and press enter.

6. Add a Get object action by performing the following steps:

a. In the right-hand panel, choose Actions

b. Choose Get object to add an action. The action should be named GetObject1.

7. Configure the action by performing the following steps:

a. Choose the action from the canvas to open the right-hand Properties menu.

b. In Connector, choose the Amazon S3 connector that you created from the prerequisites.

c. In Configuration, enter the following text, replacing bucket_name with the bucket you
created in the prerequisites:

{
 "Bucket": "bucket_name",
 "Key": params.filename
}

8. By default, automations do not create outputs. Configure the automation to create an
automation output by performing the following steps:

a. In the left-hand navigation, choose the viewFile automation.

b. In the right-hand Properties menu, in Automation output, choose + Add output.

c. In Output, enter {{results.GetObject1.Body.transformToWebStream()}}. This
expression returns the contents of the action.

Next, you will add components to the pages you created earlier, and configure them with your
automations so users can use your app to view and delete files.

Add and configure page components

Now that you have created the automations that define the business logic and functionality of your
app, you will create components and connect them both.

Tutorial: Interacting with Amazon S3 using automations 129

AWS App Studio User Guide

Add components to the FileList page

The FileList page that you created earlier will be used to display a list of files in the configured
Amazon S3 bucket and more details about any file that is chosen from the list. To do that, you will
do the following:

1. Create a table component to display the list of files. You will configure the table's rows to be
filled with the output of the getFiles automation you previously created.

2. Create a PDF viewer component to display a single PDF. You will configure the component to
view a file selected from the table, using the viewFile automation you previously created to
fetch the file from your bucket.

1. Choose the Pages tab at the top of the canvas.

2. In the left-hand Pages panel, choose the FileList page.

3. In the right-hand Components page, find the Table component and drag it to the center of
the canvas.

4. Choose the table component you just added to the page.

5. In the right-hand Properties menu, choose the Source dropdown and select Automation.

6. Choose the Automation dropdown and select the getFiles automation. The table will use the
output of the getFiles automation as its content.

7. Add a column to be filled with the name of the file.

a. In the right-hand Properties menu, next to Columns, choose + Add.

b. Choose the arrow icon to the right of the Column1 column that was just added.

c. In Column label, rename the column to Filename.

d. In Value, enter {{currentRow.Key}}.

e. Choose the arrow icon at the top of the panel to return to the main Properties panel.

8. Add a table action to delete the file in a row.

a. In the right-hand Properties menu, next to Actions, choose + Add.

b. In Actions, rename Button to Delete.

c. Choose the arrow icon to the right of the Delete action that was just renamed.

d. In On click, choose + Add action and choose Invoke automation.

e. Choose the action that was added to configure it.

Tutorial: Interacting with Amazon S3 using automations 130

AWS App Studio User Guide

f. In Action name, enter DeleteRecord.

g. In Invoke automation, select deleteFile.

h. In the parameter text box, enter {{currentRow.Key}}.

i. In Value, enter {{currentRow.Key}}.

9. In the right-hand panel, choose Components to view the components menu. There are two
choices for showing files:

• An Image viewer to view files with a .png, .jpeg, or .jpg extension.

• A PDF viewer component to view PDF files.

In this tutorial, you will add and configure the PDF viewer component.

10. Add the PDF viewer component.

a. In the right-hand Components page, find the PDF viewer component and drag it to the
canvas, below the table component.

b. Choose the PDF viewer component that was just added.

c. In the right-hand Properties menu, choose the Source dropdown and select Automation.

d. Choose the Automation dropdown and select the viewFile automation. The table will use
the output of the viewFile automation as its content.

e. In the parameter text box, enter {{ui.table1.selectedRow["Filename"]}}.

f. In the right-hand panel, there is also a File name field. The value of this field is used
as the header for the PDF viewer component. Enter the same text as the previous step:
{{ui.table1.selectedRow["Filename"]}}.

Add components to the UploadFile page

The UploadFile page will contain a file selector that can be used to select and upload a file to the
configured Amazon S3 bucket. You will add the S3 upload component to the page, which users can
use to select and upload a file.

1. In the left-hand Pages panel, choose the UploadFile page.

2. In the right-hand Components page, find the S3 upload component and drag it to the center
of the canvas.

3. Choose the S3 upload component you just added to the page.
Tutorial: Interacting with Amazon S3 using automations 131

AWS App Studio User Guide

4. In the right-hand Properties menu, configure the component:

a. In the Connector dropdown, select the Amazon S3 connector that was created in the
prerequisites.

b. In the Bucket text box, enter the name of your Amazon S3 bucket.

c. In the File name text box, enter
{{ui.s3Upload1.files[0]?.nameWithExtension}}.

d. In the Max file size, enter 5 in the textbox and ensure MB is selected in the dropdown.

e. In Triggers section, add actions that run after successful or unsuccessful uploads by
performing the following steps:

To add an action that runs after successful uploads:

1. In On success, choose + Add action and select Navigate.

2. Choose the action that was added to configure it.

3. In Navigation type, choose Page.

4. In Navigate to, choose FailUpload.

5. Choose the arrow icon at the top of the panel to return to the main Properties panel.

To add an action that runs after unsuccesful uploads:

1. In On success, choose + Add action and select Navigate.

2. Choose the action that was added to configure it.

3. In Navigation type, choose Page.

4. In Navigate to, choose FileList.

5. Choose the arrow icon at the top of the panel to return to the main Properties panel.

Add components to the FailUpload page

The FailUpload page is a simple page containing a text box that informs users that their upload
failed.

1. In the left-hand Pages panel, choose the FailUpload page.

2. In the right-hand Components page, find the Text component and drag it to the center of the
canvas.

Tutorial: Interacting with Amazon S3 using automations 132

AWS App Studio User Guide

3. Choose the text component you just added to the page.

4. In the right-hand Properties menu, in Value, enter Failed to upload, try again.

Next steps: Preview and publish the application for testing

The application is now ready for testing. For more information about previewing and publishing
applications, see Previewing, publishing, and sharing applications.

Creating, editing, and deleting automations

Contents

• Creating an automation

• Viewing or editing automation properties

• Deleting an automation

Creating an automation

Use the following procedure to create an automation in an App Studio application. Once created,
an automation must be configured by editing its properties and adding actions to it.

To create an automation

1. If necessary, navigate to the application studio of your application.

2. Choose the Automations tab.

3. If you have no automations, choose + Add automation in the canvas. Otherwise, in the left-
side Automations menu, choose + Add.

4. A new automation will be created, and you can start editing its properties or adding and
configuring actions to define your application's business logic.

Viewing or editing automation properties

Use the following procedure to view or edit automation properties.

To view or edit automation properties

1. If necessary, navigate to the application studio of your application.

Creating, editing, and deleting automations 133

AWS App Studio User Guide

2. Choose the Automations tab.

3. In the left-hand Automations menu, choose the automation for which you want to view or
edit properties to open the right-side Properties menu.

4. In the Properties menu, you can view the following properties:

• Automation identifier: The unique name of the automation. To edit it, enter a new identifier
in the text field.

• Automation parameters: Automation parameters are used to pass dynamic values from
your app's UI to automation and data actions. To add a parameter, choose + Add. Choose the
pencil icon to change the parameter's name, description, or type. To remove a parameter,
choose the trash icon.

Tip

You can also add automation parameters directly from the canvas.

• Automation output: The automation output is used to configure which data from the
automation can be referenced in other automations or components. By default, automations
do not create an output. To add an automation output choose + Add. To remove the output,
choose the trash icon.

5. You define what an automation does by adding and configuring actions. For more information
about actions, see Adding, editing, and deleting automation actions and Automation actions
reference.

Deleting an automation

Use the following procedure to delete an automation in an App Studio application.

To delete an automation

1. If necessary, navigate to the application studio of your application.

2. Choose the Automations tab.

3. In the left-side Automations menu, choose the ellipses menu of the automation you want to
delete, and choose Delete. Alternatively, you can choose the trash icon from the right-side
Properties menu of the automation.

4. In the confirmation dialog box, choose Delete.

Creating, editing, and deleting automations 134

AWS App Studio User Guide

Adding, editing, and deleting automation actions

An automation action, commonly referred to as an action, is an individual step of logic that make
up an automation. Each action performs a specific task, whether it's sending an email, creating a
data record, invoking a Lambda function, or calling APIs. Actions are added to automations from
the action library, and can be grouped into conditional statements or loops.

Contents

• Adding an automation action

• Viewing and editing automation action properties

• Deleting an automation action

Adding an automation action

Use the following procedure to add an action to an automation in an App Studio application.

To add an automation action

1. If necessary, navigate to the application studio of your application.

2. Choose the Automations tab.

3. In the left-side Automations menu, choose the automation you want to add an action to.

4. In the right-hand Action menu, choose the action you want to add, or drag and drop the
action into the canvas. After the action is created, you can choose the action to configure
the action properties to define the action's functionality. For more information about action
properties and configuring them, see Automation actions reference.

Viewing and editing automation action properties

Use the following procedure to view or edit an automation action's properties in an App Studio
application.

To view or edit automation action properties

1. If necessary, navigate to the application studio of your application.

2. Choose the Automations tab.

Adding, editing, and deleting automation actions 135

AWS App Studio User Guide

3. In the left-side Automations menu, choose the action of which you want to view or
edit properties. Alternatively, you can choose the action in the canvas when viewing the
automation that contains it.

4. You can view or edit the action properties in the right-side Properties menu. The properties
for an action are different for each action type. For more information about action properties
and configuring them, see Automation actions reference.

Deleting an automation action

Use the following procedure to delete an action from an automation in an App Studio application.

To delete an automation action

1. If necessary, navigate to the application studio of your application.

2. Choose the Automations tab.

3. In the left-side Automations menu, choose the automation that contains the action you want
to delete.

4. In the canvas, choose the trash icon in the action you want to delete and choose Delete.

Automation actions reference

The following is the reference documentation for automation actions used in App Studio.

An automation action, commonly referred to as an action, is an individual step of logic that make
up an automation. Each action performs a specific task, whether it's sending an email, creating a
data record, invoking a Lambda function, or calling APIs. Actions are added to automations from
the action library, and can be grouped into conditional statements or loops.

For information about creating and configuring automations and their actions, see the topics in
Defining and implementing your app's business logic with automations.

Invoke API

Invokes an HTTP REST API request. Builders can use this action to send requests from App Studio
to other systems or services with APIs. For example, you could use it to connect to third-party
systems or homegrown applications to access business critical data, or invoke API endpoints that
cannot be called by dedicated App Studio actions.

Automation actions reference 136

AWS App Studio User Guide

Properties

Connector

The API connector to use for the API requests made by this action. The connector dropdown will
be filtered to show only API-related connectors. Depending on how the connector is configured, it
can contain important information such as credentials and default headers or query parameters.
For more information about API connectors, see Connect to third-party services.

API request configuration properties

Choose Configure API request from the properties panel to open the request configuration dialog
box. If an API connector is selected, the dialog box will include connector information.

Method: The method for the API call. Possible values are as follows:

• DELETE: Deletes a specified resource.

• GET: Retrieves information or data.

• HEAD: Retrieves only the headers of a response without the body.

• POST: Submits data to be processed.

• PUSH: Submits data to be processed.

• PATCH: Partially updates a specified resource.

Path: The relative path to the resource.

Headers: Any headers in the form of key-value pairs to be sent with the API request. If a connector
is selected, its configured headers will be automatically added and cannot be removed. The
configured headers cannot be edited, but you can override them by adding another header with
the same name.

Query parameters: Any query parameters in the form of key-value pairs to be sent with the API
request. If a connector is selected, its configured query parameters will be automatically added and
cannot be edited or removed.

Body: Information to be sent with the API request in JSON format. There is no body for GET
requests.

Automation actions reference 137

AWS App Studio User Guide

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Invoke AWS

Invokes an operation from an AWS service. This is a general action for calling AWS services or
operations, and should be used if there is not a dedicated action for the desired AWS service or
operation.

Properties

Service

The AWS service which contains the operation to be run.

Operation

The operation to be run.

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The JSON input to be when running the specified operation. For more information about
configuring inputs for AWS operations, see the AWS SDK for JavaScript.

Invoke Lambda

Invokes an existing Lambda function.

Automation actions reference 138

https://docs.aws.amazon.com/sdk-for-javascript

AWS App Studio User Guide

Properties

Connector

The connector to be used for the Lambda functions run by this action. The configured connector
should be set up with the proper credentials to access the Lambda function, and other
configuration information, such as the AWS region that contains the Lambda function. For more
information about configuring a connector for Lambda, see Create Lambda connector.

Function name

The name of the Lambda function to be run. Note that this is the function name, and not the
function ARN (Amazon Resource Name).

Function event

Key-value pairs to be passed along to your Lambda function as the event payload.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Loop

Runs nested actions repeatedly to iterate through a list of items, one item at a time. For example,
add the Create record action to a loop action to create multiple records.

The loop action can be nested within other loops or condition actions. The loop actions are run
sequentially, and not in parallel. The results of each action within the loop can only be accessed to
subsequent actions within the same loop iteration. They cannot be accessed outside of the loop or
in different iterations of the loop.

Automation actions reference 139

AWS App Studio User Guide

Properties

Source

The list of items to iterate through, one item at a time. The source can be the result of a previous
action or a static list of strings, numbers, or objects that you can provide using a JavaScript
expression.

Examples

The following list contains examples of source inputs.

• Results from a previous action: {{results.actionName.data}}

• A list of numbers: {{[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}}

• A list of strings: {{["apple", "banana", "orange", "grape", "kiwi"]}}

• A computed value: {{params.actionName.split("\n")}}

Current item name

The name of the variable that can be used to reference the current item being iterated. The current
item name is configurable so that you can nest two or more loops and access variables from
each loop. For example, if you are looping through countries and cities with two loops, you could
configure and reference currentCountry and currentCity.

Condition

Runs actions based on the result of one or more specified logical conditions that are evaluated
when the automation is run. The condition action is made up of the following components:

• A condition field, which is used to provide a JavaScript expression that evaluates to true or
false.

• A true branch, which contains actions that are run if the condition evalutes to true.

• A false branch, which contains actions that are run if the condition evalutes to false.

Add actions to the true and false branches by dragging them into the condition action.

Automation actions reference 140

AWS App Studio User Guide

Properties

Condition

The JavaScript expression to be evaluated when the action is run.

Create record

Creates one record in an existing App Studio entity.

Properties

Entity

The entity in which a record is to be created. Once an entity is selected, values must be added to
the entity's fields for the record to be created. The types of the fields, and if the fields are required
or optional are defined in the entity.

Update record

Updates an existing record in an App Studio entity.

Properties

Entity

The entity that contains the records to be updated.

Conditions

The criteria that defines which records are updated by the action. You can group conditions to
create one logical statement. You can combine groups or conditions with AND or OR statements.

Fields

The fields to be updated in the records specified by the conditions.

Values

The values to be updated in the specified fields.

Delete record

Deletes a record from an App Studio entity.

Automation actions reference 141

AWS App Studio User Guide

Properties

Entity

The entity that contains the records to be deleted.

Conditions

The criteria that defines which records are deleted by the action. You can group conditions to
create one logic statement. You can combine groups or conditions with AND or OR statements.

Invoke data action

Runs a data action with optional parameters.

Properties

Data action

The data action to be run by the action.

Parameters

Data action parameters to be used by the data action. Data action parameters are used to send
values that are used as inputs for data actions. Data action parameters can be added when
configuring the automation action, but must be edited in the Data tab.

Advanced settings

The Invoke data action action contains the following advanced settings:

• Page size: The maximum number of records to fetch in each query. The default value is 500, and
the maximum value is 3000.

• Pagination token: The token used to fetch additional records from a query. For example, if the
Page size is set to 500, but there are more than 500 records, passing the pagination token to
a subsequent query will fetch the next 500. The token will be undefined if no more records or
pages exist.

Amazon S3: Put object

Uses the Amazon S3 PutObject operation to add an object identified by a key (file path) to a
specified Amazon S3 bucket.

Automation actions reference 142

AWS App Studio User Guide

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the appropriate credentials to run the operation, and other configuration information,
such as the AWS region that contains any resources referenced in the operation.

Configuration

The required options to be used in the PutObject command. The options are as follows:

Note

For more information about the Amazon S3 PutObject operation, see PutObject in the
Amazon Simple Storage Service API Reference.

• Bucket: The name of the Amazon S3 bucket in which to put an object.

• Key: The unique name of the object to be put into the Amazon S3 bucket.

• Body: The content of the object to be put into the Amazon S3 bucket.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon S3: Delete object

Uses the Amazon S3 DeleteObject operation to delete an object identified by a key (file path)
from a specified Amazon S3 bucket.

Automation actions reference 143

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html

AWS App Studio User Guide

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The required options to be used in the DeleteObject command. The options are as follows:

Note

For more information about the Amazon S3 DeleteObject operation, see DeleteObject
in the Amazon Simple Storage Service API Reference.

• Bucket: The name of the Amazon S3 bucket from which to delete an object.

• Key: The unique name of the object to be deleted from the Amazon S3 bucket.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon S3: Get object

Uses the Amazon S3 GetObject operation to retrieve an object identified by a key (file path)
from a specified Amazon S3 bucket.

Automation actions reference 144

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObject.html

AWS App Studio User Guide

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The required options to be used in the GetObject command. The options are as follows:

Note

For more information about the Amazon S3 GetObject operation, see GetObject in the
Amazon Simple Storage Service API Reference.

• Bucket: The name of the Amazon S3 bucket from which to retrieve an object.

• Key: The unique name of the object to be retrieved from the Amazon S3 bucket.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon S3: List objects

Uses the Amazon S3 ListObjects operation to list objects in a specified Amazon S3 bucket.

Automation actions reference 145

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

AWS App Studio User Guide

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The required options to be used in the ListObjects command. The options are as follows:

Note

For more information about the Amazon S3 ListObjects operation, see ListObjects in
the Amazon Simple Storage Service API Reference.

• Bucket: The name of the Amazon S3 bucket from which to list objects.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon Textract: Analyze document

Uses the Amazon Textract AnalyzeDocument operation to analyze an input document for
relationships between detected items.

Automation actions reference 146

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html

AWS App Studio User Guide

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The content of the request to be used in the AnalyzeDocument command. The options are as
follows:

Note

For more information about the Amazon Textract AnalyzeDocument operation, see
AnalyzeDocument in the Amazon Textract Developer Guide.

• Document / S3Object / Bucket: The name of the Amazon S3 bucket. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Name: The file name of the input document. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Version: If the Amazon S3 bucket has versioning enabled, you can
specify the version of the object. This parameter can be left empty if a file is passed to the action
with the S3 upload component.

• FeatureTypes: A list of the types of analysis to perform. Valid values are: TABLES, FORMS,
QUERIES, SIGNATURES, and LAYOUT.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Automation actions reference 147

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html

AWS App Studio User Guide

Amazon Textract: Analyze expense

Uses the Amazon Textract AnalyzeExpense operation to analyze an input document for
financially-related relationships between text.

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The content of the request to be used in the AnalyzeExpense command. The options are as
follows:

Note

For more information about the Amazon Textract AnalyzeExpense operation, see
AnalyzeExpense in the Amazon Textract Developer Guide.

• Document / S3Object / Bucket: The name of the Amazon S3 bucket. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Name: The file name of the input document. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Version: If the Amazon S3 bucket has versioning enabled, you can
specify the version of the object. This parameter can be left empty if a file is passed to the action
with the S3 upload component.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

Automation actions reference 148

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeExpense.html

AWS App Studio User Guide

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon Textract: Analyze ID

Uses the Amazon Textract AnalyzeID operation to analyze an identity document for relevant
information.

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The content of the request to be used in the AnalyzeID command. The options are as follows:

Note

For more information about the Amazon Textract AnalyzeID operation, see AnalyzeID
in the Amazon Textract Developer Guide.

• Document / S3Object / Bucket: The name of the Amazon S3 bucket. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Name: The file name of the input document. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Version: If the Amazon S3 bucket has versioning enabled, you can
specify the version of the object. This parameter can be left empty if a file is passed to the action
with the S3 upload component.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the

Automation actions reference 149

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeID.html

AWS App Studio User Guide

preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon Textract: Detect doc text

Uses the Amazon Textract DetectDocumentText operation to detect lines of text and the
words that make up a line of text in an input document.

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The content of the request to be used in the DetectDocumentText command. The options are as
follows:

Note

For more information about the Amazon Textract DetectDocumentText operation,
see DetectDocumentText in the Amazon Textract Developer Guide.

• Document / S3Object / Bucket: The name of the Amazon S3 bucket. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Name: The file name of the input document. This parameter can be left
empty if a file is passed to the action with the S3 upload component.

• Document / S3Object / Version: If the Amazon S3 bucket has versioning enabled, you can
specify the version of the object. This parameter can be left empty if a file is passed to the action
with the S3 upload component.

Automation actions reference 150

https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html

AWS App Studio User Guide

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Amazon Bedrock: Invoke model

Uses the Amazon Bedrock InvokeModel operation to run inference using the prompt and inference
parameters provided in the request body. You use model inference to generate text, images, and
embeddings.

Properties

Connector

The connector to be used for the operations run by this action. To use this action successfully,
the connector must be configured with Amazon Bedrock Runtime as the service. The configured
connector should be set up with the proper credentials to run the operation, and other
configuration information, such as the AWS region that contains any resources referenced in the
operation.

Configuration

The content of the request to be used in the InvokeModel command.

Note

For more information about the Amazon Bedrock InvokeModel operation, including
example commands, see InvokeModel in the Amazon Bedrock API Reference.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the

Automation actions reference 151

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html

AWS App Studio User Guide

preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

JavaScript

Runs a custom JavaScript function to return a specified value.

Properties

Source code

The JavaScript code snippet to be run by the action.

Invoke automation

Runs a specified automation.

Properties

Invoke Automation

The automation to be run by the action.

Send email

Uses the Amazon SES SendEmail operation to send an email.

Properties

Connector

The connector to be used for the operations run by this action. The configured connector should be
set up with the proper credentials to run the operation, and other configuration information, such
as the AWS region that contains any resources referenced in the operation.

Configuration

The content of the request to be used in the SendEmail command. The options are as follows:

Automation actions reference 152

AWS App Studio User Guide

Note

For more information about the Amazon SES SendEmail operation, see SendEmail in the
Amazon Simple Email Service API Reference.

Mocked output

Actions do not interact with external services or resources in the preview environment. The Mocked
output field is used to provide a JSON expression that simulates the behavior of a connector in the
preview environment for testing purposes. This snippet is stored in the action's results map, just
like the connector response would be for a published app in the live environment.

With this field, you can test various scenarios and their impact on other actions within the
automation such as simulating different result values, error scenarios, edge cases, or unhappy
paths without communicating with external services through connectors.

Configure your app's data model with entities

Entities are data tables in App Studio. Entities interact directly with tables in data sources. Entities
include fields to describe the data in them, queries to locate and return data, and mapping to
connect the entity's fields to a data source's columns.

Topics

• Creating an entity in an App Studio app

• Configuring or editing an entity in an App Studio app

• Deleting an entity

• Managed data entities in AWS App Studio

Creating an entity in an App Studio app

There are four methods for creating an entity in an App Studio app. The following list contains
each method, its benefits, and a link to the instructions for using that method to create and then
configure the entity.

Configure your app's data model with entities 153

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html

AWS App Studio User Guide

• Creating an entity from an existing data source: Automatically create an entity and its fields from
an existing data source table and map the fields to the data source table columns. This option is
preferable if you have an existing data source that you want to use in your App Studio app.

• Creating an entity with an App Studio managed data source: Create an entity and a DynamoDB
table that App Studio manages for you. The DynamoDB table is automatically updated as you
update your entity. With this option, you don't have to manually create, manage, or connect a
third-party data source, or designate mapping from entity fields to table columns. All of your
app's data modeling and configuration is done in App Studio. This option is preferable if you
don't want to manage your own data sources and a DynamoDB table and its functionality is
sufficient for your app.

• Creating an empty entity: Create an empty entity entirely from scratch. This option is preferable
if you don't have any existing data sources or connectors created by an admin, and you want to
flexibly design your app's data model without being constrained by external data sources. You
can connect the entity to a data source after creation.

• Creating an entity with AI: Generate an entity, fields, data actions, and sample data based on the
specified entity name. This option is preferable if you have an idea of the data model for your
app, but you want help translating it into an entity.

Creating an entity from an existing data source

Use a table from a data source to automatically create an entity and its fields, and map the entity
fields to the columns of the table. This option is preferable if you have an existing data source that
you want to use in your App Studio app.

1. If necessary, navigate to your application.

2. Choose the Data tab at the top of the canvas.

3. If there are no entities in your app, choose + Create entity. Otherwise, in the left-side Entities
menu, choose + Add.

4. Select Use a table from an existing data source.

5. In Connector, select the connector that contains the table you want to use to create your
entity.

6. In Table, choose the table you want to use to create your entity.

7. Select the Create data actions checkbox to create data actions.

8. Choose Create entity. Your entity is now created, and you can see it in the left-hand Entities
panel.

Creating an entity 154

AWS App Studio User Guide

9. Configure your new entity by following the procedures in Configuring or editing an entity in an
App Studio app. Note that because your entity was created with an existing data source, some
properties or resources have already been created, such as fields, the connected data source,
and field mapping. Also, your entity will contain data actions if you selected the Create data
actions checkbox during creation.

Creating an entity with an App Studio managed data source

Create a managed entity and corresponding DynamoDB table that is managed by App Studio.
While the DynamoDB table exists in the associated AWS account, when changes are made to the
entity in the App Studio app, the DynamoDB table is updated automatically. With this option, you
don't have to manually create, manage, or connect a third-party data source, or designate mapping
from entity fields to table columns. This option is preferable if you don't want to manage your
own data sources and a DynamoDB table and its functionality is sufficient for your app. For more
information about managed entities, see Managed data entities in AWS App Studio.

You can use the same managed entities in multiple applications. For instructions, see Creating an
entity from an existing data source.

1. If necessary, navigate to your application.

2. Choose the Data tab at the top of the canvas.

3. If there are no entities in your app, choose + Create entity. Otherwise, in the left-side Entities
menu, choose + Add.

4. Select Create App Studio managed entity.

5. In Entity name, provide a name for your entity.

6. In Primary key, provide a name for the primary key of your entity. The primary key is the
unique identifier of the entity and cannot be changed after the entity is created.

7. In Primary key data type, select the data type of primary key of your entity. The data type
cannot be changed after the entity is created.

8. Choose Create entity. Your entity is now created, and you can see it in the left-hand Entities
panel.

9. Configure your new entity by following the procedures in Configuring or editing an entity
in an App Studio app. Note that because your entity was created with managed data, some
properties or resources have already been created, such as the primary key field, and the
connected data source.

Creating an entity 155

AWS App Studio User Guide

Creating an empty entity

Create an empty entity entirely from scratch. This option is preferable if you don't have any
existing data sources or connectors created by an admin. Creating an empty entity offers flexibility,
as you can design your entity within your App Studio app without being constrained by external
data sources. After you design your app's data model, and configure the entity accordingly, you can
still connect it to an external data source later.

1. If necessary, navigate to your application.

2. Choose the Data tab at the top of the canvas.

3. If there are no entities in your app, choose + Create entity. Otherwise, in the left-side Entities
menu, choose + Add.

4. Select Create an entity.

5. Choose Create entity. Your entity is now created, and you can see it in the left-hand Entities
panel.

6. Configure your new entity by following the procedures in Configuring or editing an entity in an
App Studio app.

Creating an entity with AI

Generate an entity, fields, data actions, and sample data based on the specified entity name.
This option is preferable if you have an idea of the data model for your app, but you want help
translating it into an entity.

1. If necessary, navigate to your application.

2. Choose the Data tab at the top of the canvas.

3. If there are no entities in your app, choose + Create entity. Otherwise, in the left-side Entities
menu, choose + Add.

4. Select Create an entity with AI.

5. In Entity name, provide a name for your entity. This name is used to generate the fields, data
actions, and sample data of your entity.

6. Select the Create data actions checkbox to create data actions.

7. Choose Generate an entity. Your entity is now created, and you can see it in the left-hand
Entities panel.

Creating an entity 156

AWS App Studio User Guide

8. Configure your new entity by following the procedures in Configuring or editing an entity in
an App Studio app. Note that because your entity was created with AI, your entity will already
contain generated fields. Also, your entity will contain data actions if you selected the Create
data actions checkbox during creation.

Configuring or editing an entity in an App Studio app

Use the following topics to configure an entity in an App Studio application.

Topics

• Editing the entity name

• Adding, editing, or deleting entity fields

• Creating, editing, or deleting data actions

• Adding or deleting sample data

• Add or edit connected data source and map fields

Editing the entity name

1. If necessary, navigate to the entity you want to edit.

2. In the Configuration tab, in Entity name, update the entity name and choose outside of the
text box to save your changes.

Adding, editing, or deleting entity fields

Tip

You can press CTRL+Z to undo the most recent change to your entity.

1. If necessary, navigate to the entity you want to edit.

2. In the Configuration tab, in Fields, you view a table of your entity's fields. Entity fields have
the following columns:

Configuring an entity 157

AWS App Studio User Guide

• Display name: The display name is similar to a table header or form field and is viewable by
application users. It can contain spaces and special characters but must be unique within an
entity.

• System name: The system name is a unique identifier used in code to reference a field.
When mapping to a column in an Amazon Redshift table, it must match the Amazon
Redshift table column name.

• Data type: The type of data that will be stored within this field, such as Integer, Boolean,
or String.

3. To add fields:

a. To use AI to generate fields based on entity name and connected data source, choose
Generate more fields.

b. To add a single field, choose + Add field.

4. To edit a field:

a. To edit the display name, enter the desired value in the Display name text box. If the
system name of the field hasn't been edited, it will be updated to the new value of the
display name.

b. To edit the system name, enter the desired value in the System name text box.

c. To edit the data type, choose the Data type dropdown menu and select the desired type
from the list.

d. To edit the field's properties, choose the gear icon of the field. The following list details
the field properties:

• Required: Enable this option if the field is required by your data source.

• Primary key: Enable this option if the field is mapped to a primary key in your data
source.

• Unique: Enable this option if the value of this field must be unique.

• Use data source default: Enable this option if the value of the field is provided by the
data source, such as using auto-increment, or an event timestamp.

• Data type options: Fields of certain data types can be configured with data type options
such as minimum or maximum values.

5. To delete a field, choose the trash icon of the field you want to delete.

Configuring an entity 158

AWS App Studio User Guide

Creating, editing, or deleting data actions

Data actions are used in applications to run actions on an entity's data, such as fetching all records,
or fetching a record by ID. Data actions can be used to locate and return data matching specified
conditions to be viewed in components such as tables or detail views.

Contents

• Creating data actions

• Editing or configuring data actions

• Deleting data actions

Creating data actions

Tip

You can press CTRL+Z to undo the most recent change to your entity.

1. If necessary, navigate to the entity for which you want to create data actions.

2. Choose the Data actions tab.

3. There are two methods for creating data actions:

• (Recommended) To use AI to generate data actions for you, based on your entity name,
fields, and connected data source, choose Generate data actions. The following actions
will be generated:

1. getAll: Retrieves all the records from an entity. This action is useful when you need to
display a list of records or perform operations on multiple records at once.

2. getByID: Retrieves a single record from an entity based on its unique identifier (ID or
primary key). This action is useful when you need to display or perform operations on a
specific record.

• To add a single data action, choose + Add data action.

4. To view or configure the new data action, see the following section, Editing or configuring data
actions.

Configuring an entity 159

AWS App Studio User Guide

Editing or configuring data actions

1. If necessary, navigate to the entity for which you want to create data actions.

2. Choose the Data actions tab.

3. In Fields configure the fields to be returned by the query. By default, all of the configured
fields in the entity are selected.

You can also add Joins to the data action by performing the following steps:

1. Choose + Add Join to open a dialog box.

2. In Related entity, select the entity you want to join with the current entity.

3. In Alias, optionally enter a temporary alias name for the related entity.

4. In Join type, select the desired join type.

5. Define the join clause by selecting the fields from each entity.

6. Choose Add to create the join.

Once created, the join will be displayed in the Joins section, making additional fields available
in the Fields to Return dropdown. You can add multiple joins, including chained joins across
entities. You can also filter and sort by fields from joined entities.

To delete a join, choose the trash icon next to it. This will remove any fields from that join and
break any dependent joins or constraints using those fields.

4. In Conditions, add, edit, or remove rules that filter the output of the query. You can organize
rules into groups, and you can chain together multiple rules with AND or OR statements.

5. In Sorting, configure how the query results are sorted by choosing an attribute and choosing
ascending or descending order. You can remove the sorting configuration by choosing the
trash icon next to the sorting rule.

6. In Transform results, you can enter custom JavaScript to modify or format results before they
are displayed or sent to automations.

7. In Output preview, view a preview table of the query output based on the configured fields,
filters, sorting, and JavaScript.

Deleting data actions

Use the following procedure to delete data actions from an App Studio entity.

Configuring an entity 160

AWS App Studio User Guide

1. If necessary, navigate to the entity for which you want to delete data actions.

2. Choose the Data actions tab.

3. For each data action you want to delete, choose the dropdown menu next to Edit and choose
Delete.

4. Choose Confirm in the dialog box.

Adding or deleting sample data

You can add sample data to entities in an App Studio application. Because application's don't
communicate with external services until they are published, sample data can be used to test your
application and entity in preview environments.

1. If necessary, navigate to the entity you want to edit.

2. Choose the Sample data tab.

3. To generate sample data, choose Generate more sample data.

4. To delete sample data, select the checkboxes of the data you want to delete, and press the
Delete or Backspace key. Choose Save to save the changes.

Add or edit connected data source and map fields

Tip

You can press CTRL+Z to undo the most recent change to your entity.

1. If necessary, navigate to the entity you want to edit.

2. Choose the Connection tab to view or manage the connection between the entity and a data
source table where data is stored when your application is published. Once a data source table
is connected, you can map the entity fields to the columns of the table.

3. In Connector, choose the connector that contains a connection to the desired data source
table. For more information about connectors, see Connect App Studio to other services with
connectors.

4. In Table, choose the table you want to use as a data source for the entity.

5. The table shows the fields of entity, and the data source column they are mapped to. Choose
Auto map to automatically map your entity fields with your data source columns. You can also

Configuring an entity 161

AWS App Studio User Guide

map fields manually in the table by choosing the data source column in the dropdown for each
entity field.

Deleting an entity

Use the following procedure to delete an entity from an App Studio application.

Note

Deleting an entity from an App Studio app does not delete the connected data source
table, including the corresponding DynamoDB table of managed entities. The data source
tables will remain in the associated AWS account and will need to be deleted from the
corresponding service if desired.

To delete an entity

1. If necessary, navigate to your application.

2. Choose the Data tab.

3. In the left-hand Entities menu, choose the ellipses menu next to the entity you want to delete
and choose Delete.

4. Review the information in the dialog box, enter confirm and choose Delete to delete the
entity.

Managed data entities in AWS App Studio

Typically, you configure an entity in App Studio with a connection to an external database table,
and you must create and map each entity field with a column in the connected database table.
When you make a change to the data model, both the external database table and the entity
must be updated, and the changed fields must be remapped. While this method is flexible and
enables the use of different types of data sources, it takes more up-front planning and ongoing
maintenance.

A managed entity is a type of entity for which App Studio manages the entire data storage and
configuration process for you. When you create a managed entity, a corresponding DynamoDB
table is created in the associated AWS account. This ensures secure and transparent data

Deleting an entity 162

AWS App Studio User Guide

management within AWS. With a managed entity, you configure the entity's schema in App Studio,
and the corresponding DynamoDB table is automatically updated as well.

Using managed entities in multiple applications

Once you create a managed entity in an App Studio app, that entity can be used in other App
Studio apps. This is helpful for configuring data storage for apps with identical data models and
schemas by providing a single underlying resource to maintain.

When using a managed entity in multiple applications, all schema updates to the corresponding
DynamoDB table must be made using the original application in which the managed entity
was created. Any schema changes made to the entity in other applications will not update the
corresponding DynamoDB table.

Managed entity limitations

Primary key update restrictions: You cannot change the entity's primary key name or type after it
is created, as this is a destructive change in DynamoDB, and would result in loss of existing data.

Renaming columns: When you rename a column in DynamoDB, you actually create a new column
while the original column remains with original data. The original data is not automatically copied
to the new column or deleted from the original column. You can rename managed entity fields,
known as the system name, but you will lose access to the original column and its data. There is no
restriction with renaming the display name.

Changing data type: Though DynamoDB allows flexibility to modify column data types after
table creation, such changes can severely impact existing data as well as query logic and accuracy.
Data type changes require transforming all existing data to conform to the new format, which
is complex for large, active tables. Additionally, data actions may return unexpected results until
data migration is complete. You can switch data types of fields, but the existing data will not be
migrated to the new data type.

Sorting Column: DynamoDB enables sorted data retrieval through Sort Keys. Sort Keys must
be defined as part of composite Primary Keys along with the Partition Key. Limitations include
mandatory Sort Key, sorting confined within one partition, and no global sorting across partitions.
Careful data modeling of Sort Keys is required to avoid hot partitions. We will not be supporting
Sorting for Preview milestone.

Joins: Joins are not supported in DynamoDB. Tables are denormalized by design to avoid expensive
join operations. To model one-to-many relationships, the child table contains an attribute

Managed data entities 163

AWS App Studio User Guide

referencing the parent table's primary key. Multi-table data queries involve looking up items from
the parent table to retrieve details. We will not be supporting native Joins for Managed entities
as part of the Preview milestone. As a workaround, we will introduce an automation step that can
perform a data merge of 2 entities. This will be very similar to a one level look-up. We will not be
supporting Sorting for Preview milestone.

Env Stage: We will allow publishing to test but use the same managed store across both
environments

Page and automation parameters

Parameters are a powerful feature in AWS App Studio that are used to pass dynamic values
between different components, pages, and automations within your application. Using parameters,
you can make flexible and context-aware experiences, making your applications more responsive
and personalized. This article covers two types of parameters: page parameters and automation
parameters.

Topics

• Page parameters

• Automation parameters

Page parameters

Page parameters are a way to send information between pages and are often used when
navigating from one page to another within an App Studio app to maintain context or pass data.
Page parameters typically consist of a name and a value.

Page parameter use cases

Page parameters are used for passing data between different pages and components within your
App Studio applications. They are particularly helpful for the following use cases:

1. Searching and filtering: When users search on your app's homepage, the search terms can be
passed as parameters to the results page, allowing it to display only the relevant filtered items.
For example, if a user searches for noise-cancelling headphones, the parameter with the
value noise-cancelling headphones can be passed to the product listing page.

2. Viewing item details: If a user clicks on a listing, such as a product, the unique identifier of that
item can be passed as a parameter to the details page. This allows the details page to display

Page and automation parameters 164

AWS App Studio User Guide

all the information about the specific item. For example, when a user clicks on a headphone
product, the product's unique ID is passed as a parameter to the product details page.

3. Passing user context in page navigation: As users navigate between pages, parameters can pass
along important context, such as the user's location, preferred product categories, shopping
cart contents, and other settings. For example, as a user browses through different product
categories on your app, their location and preferred categories are retained as parameters,
providing a personalized and consistent experience.

4. Deep links: Use page parameters to share or bookmark a link to a specific page within the app.

5. Data actions: You can create data actions that accept parameter values to filter and query your
data sources based on the passed parameters. For example, on the product listing page, you can
create a data action that accepts category parameters to fetch the relevant products.

Page parameter security considerations

While page parameters provide a powerful way to pass data between pages, you must use them
with caution, as they can potentially expose sensitive information if not used properly. Here is an
important security considerations to keep in mind:

1. Avoid exposing sensitive data in URLs

a. Risk: URLs, including data action parameters, are often visible in server logs, browser
history, and other places. As such, it's essential to avoid exposing sensitive data, such as user
credentials, personal identifiable information (PII), or any other confidential data, in page
parameter values.

b. Mitigation: Consider using identifiers that can be securely mapped to the sensitive data. For
example, instead of passing a user's name or email address as a parameter, you could pass a
random unique identifier that can be used to fetch the user's name or email.

Automation parameters

Automation parameters are a powerful feature in App Studio that can be used to create flexible
and reusable automations by passing dynamic values from various sources, such as the UI, other
automations, or data actions. They act as placeholders that are replaced with actual values when
the automation is run, allowing you to use the same automation with different inputs each time.

Automation parameters 165

AWS App Studio User Guide

Within an automation, parameters have unique names, and you can reference a parameter's
value using the params variable followed by the parameter's name, for example,
{{params.customerId}}.

This article provides an in-depth understanding of automation parameters, including their
fundamental concepts, usage, and best practices.

Automation parameter benefits

Automation parameters provide several benefits, including the following list:

1. Reusability: By using parameters, you can create reusable automations that can be customized
with different input values, allowing you to reuse the same automation logic with different
inputs.

2. Flexibility: Instead of hard-coding values into an automation, you can define parameters and
provide different values when needed, making your automations more dynamic and adaptable.

3. Separation of concerns: Parameters help separate the automation logic from the specific values
used, promoting code organization and maintainability.

4. Validation: Each parameter has a data type, such as string, number, or boolean, which is
validated at runtime. This ensures that requests with incorrect data types are rejected without
the need for custom validation code.

5. Optional and required parameters: You can designate automation parameters as optional or
required. Required parameters must be provided when running the automation, while optional
parameters can have default values or be omitted. This flexibility allows you to create more
versatile automations that can handle different scenarios based on the provided parameters.

Scenarios and use cases

Scenario: Retrieving product details

Imagine you have an automation that retrieves product details from a database based on a product
ID. This automation could have a parameter called productId.

The productId parameter acts as a placeholder that you can fill in with the actual product
ID value when running the automation. Instead of hard-coding a specific product ID into the
automation, you can define the productId parameter and pass in different product ID values each
time you run the automation.

Automation parameters 166

AWS App Studio User Guide

You could call this automation from a component's data source, passing the selected
product's ID as the productId parameter using the double curly bracket syntax:
{{ui.productsTable.selectedRow.id}}. This way, when a user selects a product from a
table (ui.productsTable), the automation will retrieve the details for the selected product by
passing the id of the selected row as the productId parameter.

Alternatively, you could invoke this automation from another automation that loops over a list of
products and retrieves the details for each product by passing the product's id as the productId
parameter. In this scenario, the productId parameter value would be dynamically provided from
the {{product.id}} expression in each iteration of the loop.

By using the productId parameter and the double curly bracket syntax, you can make this
automation more flexible and reusable. Instead of creating separate automations for each product,
you can have a single automation that can retrieve details for any product by simply providing the
appropriate product ID as the parameter value from different sources, such as UI components or
other automations.

Scenario: Handling optional parameters with fallback values

Let's consider a scenario where you have a "Task" entity with a required "Owner" column, but you
want this field to be optional in the automation and provide a fallback value if the owner is not
selected.

1. Create an automation with a parameter named Owner that maps to the Owner field of the
Task entity.

2. Since the Owner field is required in the entity, the Owner parameter will synchronize with the
required setting.

3. To make the Owner parameter optional in the automation, toggle the required setting off
for this parameter.

4. In your automation logic, you can use an expression like {{params.Owner ||
currentUser.userId}}. This expression checks if the Owner parameter is provided. If it's
not provided, it will fallback to the current user's ID as the owner.

5. This way, if the user doesn't select an owner in a form or component, the automation will
automatically assign the current user as the owner for the task.

Automation parameters 167

AWS App Studio User Guide

By toggling the required setting for the Owner parameter and using a fallback expression, you
can decouple it from the entity field requirement, make it optional in the automation, and provide
a default value when the parameter is not provided.

Defining automation parameter types

By using parameter types to specify data types and set requirements, you can control the inputs for
your automations. This helps ensure your automations run reliably with the expected inputs.

Synchronizing types from an entity

Dynamically synchronizing parameter types and requirements from entity field definitions
streamlines building automations that interact with entity data, ensuring that the parameter
always reflects the latest entity field type and requirements.

The following procedure details general steps for synchronizing parameter types from an entity:

1. Create an entity with typed fields (e.g. Boolean, Number, etc.) and mark fields as needed.

2. Create a new automation.

3. Add parameters to the automation, and when choosing the Type, choose the entity field you
want to sync with. The data type and required setting will automatically synchronize from the
mapped entity field

4. If needed, you can override the "required" setting by toggling it on/off for each parameter.
This means the required status will not be kept in sync with the entity field, but otherwise, it
will remain synchronized.

Manually defining types

You can also define parameter types manually without synchronizing from an entity

By defining custom parameter types, you can create automations that accept specific input types
and handle optional or required parameters as needed, without relying on entity field mappings.

1. Create an entity with typed fields (e.g. Boolean, Number, etc.) and mark fields as needed.

2. Create a new automation.

3. Add parameters to the automation, and when choosing the Type, choose desired type.

Automation parameters 168

AWS App Studio User Guide

Configuring dynamic values to be passed to automation parameters

Once you've defined parameters for an automation, you can pass values to them when invoking
the automation. You can pass parameter values in two ways:

1. Component triggers: If you're invoking the automation from a component trigger, such as a
button click, you can use JavaScript expressions to pass values from the component context. For
example, if you have a text input field named emailInput, you can pass its value to the email
parameter with the following expression: ui.emailInput.value.

2. Other automations: If you're invoking the automation from another automation, you can use
JavaScript expressions to pass values from the automation context. For example, you can pass
the value of another parameter or the result of a previous action step.

Type safety

By defining parameters with specific data types, such as String, Number, or Boolean, you can
ensure that the values passed into your automation are of the expected type.

Note

In App Studio, date(s) are ISO string dates, and those will be validated too.

This type safety helps prevent type mismatches, which can lead to errors or unexpected behavior in
your automation logic. For example, if you define a parameter as a Number, you can be confident
that any value passed to that parameter will be a number, and you won't have to perform
additional type checks or conversions within your automation.

Validation

You can add validation rules to your parameters, ensuring that the values passed into your
automation meet certain criteria.

While App Studio does not provide built-in validation settings for parameters, you can implement
custom validations by adding a JavaScript action to your automation that throws an error if specific
constraints are violated.

Automation parameters 169

AWS App Studio User Guide

For entity fields, a subset of validation rules, such as minimum/maximum values, are supported.
However, those are not validated at the automation level, only at the data layer, when running
Create/Update/Delete Record actions.

Best practices for automation parameters

To ensure that your automation parameters are well-designed, maintainable, and easy to use,
follow these best practices:

1. Use descriptive parameter names: Choose parameter names that clearly describe the purpose
or context of the parameter.

2. Provide parameter descriptions: Take advantage of the Description field when defining
parameters to explain their purpose, constraints, and expectations. These descriptions
will be surfaced in the JSDoc comments when referencing the parameter, as well as in any
user interfaces where users need to provide values for the parameters when invoking the
automation.

3. Use appropriate data types: Carefully consider the data type of each parameter based on the
expected input values, for example: String, Number, Boolean, Object.

4. Validate parameter values: Implement appropriate validation checks within your automation to
ensure that parameter values meet specific requirements before proceeding with further actions.

5. Use fallback or default values: While App Studio does not currently support setting default
values for parameters, you can implement fallback or default values when consuming
the parameters in your automation logic. For example, you can use an expression like
{{ params.param1 || "default value" }} to provide a default value if the param1
parameter is not provided or has a false value.

6. Maintain parameter consistency: If you have multiple automations that require similar
parameters, try to maintain consistency in parameter names and data types across those
automations.

7. Document parameter usage: Maintain clear documentation for your automations, including
descriptions of each parameter, its purpose, expected values, and any relevant examples or edge
cases.

8. Review and refactor frequently: Periodically review your automations and their parameters,
refactoring or consolidating parameters as needed to improve clarity, maintainability, and
reusability.

Automation parameters 170

AWS App Studio User Guide

9. Limit the number of parameters: While parameters provide flexibility, too many parameters can
make an automation complex and difficult to use. Aim to strike a balance between flexibility and
simplicity by limiting the number of parameters to only what is necessary.

10.Consider parameter grouping: If you find yourself defining multiple related parameters,
consider grouping them into a single Object parameter.

11.Separate concerns: Avoid using a single parameter for multiple purposes or combining
unrelated values into a single parameter. Each parameter should represent a distinct concern or
piece of data.

12.Use parameter aliases: If you have parameters with long or complex names, consider
using aliases or shorthand versions within the automation logic for better readability and
maintainability.

By following these best practices, you can ensure that your automation parameters are well-
designed, maintainable, and easy to use, ultimately improving the overall quality and efficiency of
your automations.

Generative AI in App Studio

AWS App Studio provides integrated generative AI capabilities to accelerate development and
streamline common tasks. You can leverage generative AI to generate apps, data models, sample
data, configurations, and even get contextual help while building apps.

Generating your app

For an accelerated start, you can generate entire applications using natural language prompts
powered by AI. This capability allows you to describe your desired app functionality, and GenAI will
automatically build out the data models, user interfaces, workflows, and connectors.

Generating your data models

You can automatically generate an entity with fields, data types, and data actions based on the
provided entity name. For more information about creating entities, including creating entities
using GenAi, see Creating an entity in an App Studio app.

You can also update an existing entity in the following ways:

• Add more fields to an entity. For more information, see Adding, editing, or deleting entity fields.

Generative AI in App Studio 171

AWS App Studio User Guide

• Add data actions to an entity. For more information, see Creating data actions.

Generating sample data

You can generate sample data for your entities based on the entity's fields. This is useful to
test your application before connecting external data sources, or testing your application in
the Development environment, which doesn't communicate to external data sources. For more
information, see Adding or deleting sample data.

Once you publish your app to Testing or Production, your live data sources and connectors are
used.

Configuring actions for AWS services

When integrating with AWS services like Amazon Simple Email Service, you can use AI to generate
an example configuration with pre-populated fields based on the selected service. To try it out,
In the Properties menu of an Invoke AWS automation action, expand the Configuration field by
choosing the double-sided arrow. Then, choose Generate sample configuration.

Mocking responses

You can generate mocked responses for AWS service actions. This is helpful for testing your
application in the Development environment, which doesn't communicate to external data sources.

Asking AI for help

Within the application studio, you'll find an Ask AI for help button. Use this to get contextual
suggestions, documentation, and guidance related to the current view or selected component. Ask
general questions about App Studio, app building best practices, or your specific application use
case to receive tailored information and recommendations.

Using JavaScript to write expressions in App Studio

In AWS App Studio, you can use JavaScript expressions to dynamically control the behavior and
appearance of your applications. Single-line JavaScript expressions are written within double curly
braces, {{ }}, and can be used in various contexts such as automations, UI components, and
data queries. These expressions are evaluated at runtime and can be used to perform calculations,
manipulate data, and control application logic.

Generating sample data 172

AWS App Studio User Guide

App Studio provides native support for three JavaScript open source libraries: Luxon, UUID, Lodash
as well as SDK integrations to detect JavaScript syntax and type-checking errors within your app's
configurations.

Basic syntax

JavaScript expressions can include variables, literals, operators, and function calls. Expressions are
commonly used to perform calculations or evaluate conditions.

See the following examples:

• {{ 2 + 3 }} will evaluate to 5.

• {{ "Hello, " + "World!" }} will evaluate to "Hello, World!".

• {{ Math.max(5, 10) }} will evaluate to 10.

• {{ Math.random() * 10 }} returns a random number (with decimals) between [0-10).

Interpolation

You can also use JavaScript to interpolate dynamic values within static text. This is achieved by
enclosing the JavaScript expression within double curly braces, like the following example:

Hello {{ currentUser.firstName }}, welcome to App Studio!

In this example, currentUser.firstName is a JavaScript expression that retrieves the first name
of the current user, which is then dynamically inserted into the greeting message.

Concatenation

You can concatenate strings and variables using the + operator in JavaScript, as in the following
example.

{{ currentRow.FirstName + " " + currentRow.LastName }}

This expression combines the values of currentRow.FirstName and currentRow.LastName
with a space in between, resulting in the full name of the current row.

Date and time

JavaScript provides various functions and objects for working with dates and times. For example:

Basic syntax 173

AWS App Studio User Guide

{{ new Date().toLocaleDateString() }} returns the current date in a localized format.

Code blocks

In addition to expressions, you can also write multi-line JavaScript code blocks. Unlike expressions,
code blocks do not require curly braces. Instead, you can write your JavaScript code directly within
the code block editor.

Note

While expressions are evaluated and their values are displayed, code blocks are run, and
their output (if any) is displayed.

Global variables and functions

App Studio provides access to certain global variables and functions that can be used within your
JavaScript expressions and code blocks. For example, currentUser is a global variable that
represents the currently logged-in user, and you can access properties like currentUser.role to
retrieve the user's role.

Accessing UI component values

One of the powerful features of App Studio is the ability to access values from UI components
within expressions. This allows for dynamic behavior and data binding between components, which
builders can use to create truly interactive and data-driven applications.

The ui namespace provides read-only access to the values and properties of UI components on the
same page. By referencing a component's name, you can retrieve its value or perform operations
based on its state.

The following list contains the syntax for using the ui namespace to access UI component values.

• {{ui.textInputName.value}}: Retrieve the value of a text input component named
textInputName.

• {{ui.formName.isValid}}: Check if all fields in the form named formName are valid.

• {{ui.tableName.currentRow.columnName}}: Access the value of a specific column in the
current row of a table component named tableName.

Code blocks 174

AWS App Studio User Guide

• {{ui.tableName.selectedRows}}: Retrieve the selected rows in a table component named
tableName.

For example:

• {{ui.myTextField.value}} gives you the current value of a text input field named
myTextField.

• {{ui.userForm.isValid}} will check if all fields in a form named userForm are valid.

• {{ui.ordersTable.currentRow.orderTotal}} will retrieve the value of the orderTotal
column in the current row of a table component named ordersTable.

However, to update or manipulate the value of a component, you need to use
RunComponentAction. Within expressions, component values are read-only, but you can trigger
actions that modify their values. Here's an example of how you can update the value of a text input
component named myInput using RunComponentAction:

RunComponentAction(ui.myInput, "setValue", "New Value")

In this example, the RunComponentAction step calls the setValue action on the myInput
component, passing in the new value, New Value.

By combining the ability to read component values within expressions and update them using
RunComponentAction steps, you can create dynamic and interactive user interfaces that respond
to user input and data changes.

Note that the ui namespace will only show components on the current page, as components are
scoped to their respective pages.

Additional examples

• {{ui.inputText1.value.trim().length > 0}}: Check if the value of the inputText1
component, after trimming any leading or trailing whitespace, has a non-empty string. This can
be useful for validating user input or enabling/disabling other components based on the input
text field's value.

• {{ui.multiSelect1.value.join(", ")}}: For a multi-select component named
multiSelect1, this expression converts the array of selected option values into a comma-

Accessing UI component values 175

AWS App Studio User Guide

separated string. This can be helpful for displaying the selected options in a user-friendly format
or passing the selections to another component or automation.

• {{ui.multiSelect1.value.includes("option1")}}: This expression checks if the value
option1 is included in the array of selected options for the multiSelect1 component. It
returns true if option1 is selected, and false otherwise. This can be useful for conditionally
rendering components or taking actions based on specific option selections.

• {{new Date().toLocaleDateString()}}: This expression gets the current date and
converts it to a localized string representation based on the user's locale settings. It can be used
to display the current date in a user-friendly format or to pre-fill date fields with the current
date.

• {{new Date().toISOString()}}: This expression generates the current date in the ISO
format ("2023-06-15T10:30:00.000Z"), which is the format expected by many entities and
components. It can be used to pre-fill date fields with the current date or timestamp.

• {{ui.s3Upload1.files.length > 0}}: For an Amazon S3 file upload component named
s3Upload1, this expression checks if any files have been uploaded by checking the length of the
files array. It can be useful for enabling/disabling other components or actions based on whether
files have been uploaded.

• {{ui.s3Upload1.files.filter(file => file.type === "image/png").length}}:
This expression filters the list of uploaded files in the s3Upload1 component to only include
PNG image files, and returns the count of those files. This can be helpful for validating or
displaying information about the types of files uploaded.

Working with table data

The currentRow and ui.tableName.selectedRow objects provide access to table data,
allowing builders to perform operations and manipulations based on the current or selected row.

Note that currentRow and ui.tableName.data have different structures. The currentRow
object is based on the column mappings configured for the table, while ui.tableName.data
contains the raw data from the entity.

The following list contains the syntax for working with table data.

• {{currentRow.columnMappingName}}: Retrieve the value of the columnMappingName
column for the current row in a table.

Working with table data 176

AWS App Studio User Guide

• {{ui.tableName.selectedRow.columnMappingName}}: Retrieve the value of the
columnMappingName column for the selected row in the table named tableName.

See the following examples:

• {{currentRow.firstName + ' ' + currentRow.lastNamecolumnMapping}}:
Concatenate values from multiple columns to create a new column in a table.

• {{ { "Blocked": "#", "Delayed": "#", "On track": "#" }
[currentRow.statuscolumnMapping] + " " +
currentRow.statuscolumnMapping}}: Customize the display value of a field within a table
based on the stored status value.

• {{currentRow.colName}} or {{currentRow["First Name"]}} or {{currentRow}}
or {{ui.tableName.selectedRows[0]}}: Pass the referenced row's context within a row
action.

• {{ui.tableName.selectedRows[0].columnMappingName}}: Reference the selected row's
column name from other components or expressions on the same page.

Accessing automations

Automations allow you to run server-side logic and operations in App Studio. You can use
expressions to process data, generate dynamic values, and incorporate results from previous
actions.

Accessing automation parameters

You can pass dynamic values from UI components and other automations into automations,
making them reusable and flexible. This is done using automation parameters with the params
namespace as follows:

{{params.parameterName}}: Reference a value passed into the automation from a UI
component or other source. For example, {{params.ID}} would reference a parameter named
ID.

Manipulating automation parameters

You can use JavaScript to manipulate automation parameters. See the following examples:

• {{params.firstName}} {{params.lastName}}: Concatenate values passed as parameters.

Accessing automations 177

AWS App Studio User Guide

• {{params.numberParam1 + params.numberParam2}}: Add two number parameters.

• {{params.valueProvided?.length > 0 ? params.valueProvided : 'Default'}}:
Check if a parameter is not null or undefined, and has a non-zero length. If true, use the provided
value; otherwise, set a default value.

• {{params.rootCause || "No root cause provided"}}: If the params.rootCause
parameter is false (null, undefined, or an empty string), use the provided default value.

• {{Math.min(params.numberOfProducts, 100)}}: Restrict the value of a parameter to a
maximum value (in this case, 100).

• {{ DateTime.fromISO(params.startDate).plus({ days: 7 }).toISO() }}: If
the params.startDate parameter is "2023-06-15T10:30:00.000Z", this expression will
evaluate to "2023-06-22T10:30:00.000Z", which is the date one week after the start date.

Accessing automation results from a previous action

Automations allow application to run server-side logic and operations, such as querying databases,
interacting with APIs, or performing data transformations. The results namespace provides
access to the outputs and data returned by previous actions within the same automation. Note the
following points about accessing automation results:

1. You can only access results of previous automation steps within the same automation.

2. If you have actions named action1 and action2 in that order, action1 cannot reference any
results, and action2 can only access results.action1.

3. This also works in client-side actions. For example, if you have a button that triggers an
automation using the InvokeAutomation action. You can then have a navigation step with a
Run If condition like results.myInvokeAutomation1.fileType === "pdf" to navigate
to a page with a PDF viewer if the automation indicates the file is a PDF.

The following list contains the syntax for accessing automation results from a previous action using
the results namespace.

• {{results.stepName.data}}: Retrieve the data array from an automation step named
stepName.

• {{results.stepName.output}}: Retrieve the output of an automation step named
stepName.

Accessing automations 178

AWS App Studio User Guide

The way you access the results of an automation step depends on the type of action and the data
it returns. Different actions may return different properties or data structures. Here are some
common examples:

• For a data action, you can access the returned data array using results.stepName.data.

• For an API call action, you may access the response body using results.stepName.body.

• For an Amazon S3 action, you may access the file content using
results.stepName.Body.transformToWebStream().

See the documentation for the specific action types you're using to understand the shape of the
data they return and how to access it within the results namespace. The following list contains
some examples

• {{results.getDataStep.data.filter(row => row.status ===
"pending").length}}: Assuming the getDataStep is an Invoke Data Action automation
action that returns an array of data rows, this expression filters the data array to include only
rows where the status field is equal to pending, and returns the length (count) of the filtered
array. This can be useful for querying or processing data based on specific conditions.

• {{params.email.split("@")[0]}}: If the params.email parameter contains an email
address, this expression splits the string at the @ symbol and returns the part before the @
symbol, effectively extracting the username portion of the email address.

• {{new Date(params.timestamp * 1000)}}: This expression takes a Unix timestamp
parameter (params.timestamp) and converts it to a JavaScript Date object. It assumes that
the timestamp is in seconds, so it multiplies it by 1000 to convert it to milliseconds, which is the
format expected by the Date constructor. This can be useful for working with date and time
values in automations.

• {{results.stepName.Body}}: For an Amazon S3 GetObject automation action named
stepName, this expression retrieves the file content, which can be consumed by UI components
like Image or PDF Viewer for displaying the retrieved file. Note that this expression would need
to be configured in the Automation output of the automation to use in components.

Accessing automations 179

AWS App Studio User Guide

Troubleshooting and debugging App Studio apps

Troubleshooting in the application studio

Using the debug panel

To assist with live debugging while you're building your apps, App Studio provides a collapsible
builder debug panel that spans the pages, automations, and data tabs of the application studio.
This panel shows both errors and warnings. While warnings serve as informative suggestions, such
as resources that haven't been configured, errors must be resolved to succesfully build your app.
Each error or warning includes a View link which can be used to navigate to the location of the
issue.

The debug panel automatically updates with new errors or warnings as they occur, and the errors
or warnings automatically disappear once resolved. The state of error messages is persisted when
you leave the builder.

Contextual JavaScript syntax feedback

App Studio features JavaScript error detection, highlighting errors by underlining your code with
red lines. These compile errors, which will prevent the app from building successfully, indicate
issues such as typos, invalid references, invalid operations, and incorrect outputs for required data
types.

Troubleshooting while previewing an app

Within the interactive preview or in a live production app, a user needs to be able to easily
understand the data flow of their app end-to-end better. This includes tracing parameters and
seeing inputs/outputs of action steps, context helpful for debugging and broadly ensuring the
correct operation of interactions.

Troubleshooting in the Testing environment

Using your browser console to debug

Since actions are not invoked while previewing your app, your app will need to be published to the
Testing environment to test its call and response handling. If an error occurs during the execution
of your automation or if you want to understand why the application behaves in certain way, you
can use your browser’s console for real time debugging.

Troubleshooting and debugging apps 180

AWS App Studio User Guide

To use your browser console to debug apps in the Testing environment

1. Append ?debug=true to the end of the URL and press enter.

2. Open your browser console to start debugging by exploring your action or API inputs and
outputs.

• In Chrome: Right click in your browser and choose Inspect. For more information about
debugging with Chrome DevTools, see the Chrome DevTools documentation.

• In Firefox: Press and hold or right-click on a webpage element, then choose Inspect
Element. For more information about debugging with Firefox DevTools, see the Firefox
DevTools User Docs.

Debugging with logs from published apps in Amazon CloudWatch Logs

Amazon CloudWatch Logs monitors your AWS resources and the applications you run on AWS in
real time. You can use CloudWatch Logs to collect and track metrics, which are variables you can
measure for your resources and applications.

For debugging App Studio apps, CloudWatch Logs is useful for tracking errors that occur during
an app's execution, auditing information, and providing context on user actions and proprietary
interactions. The logs offer historical data, which you can use to audit application usage and access
patterns, as well as review errors encountered by users.

Note

CloudWatch Logs does not provide real-time traces of parameter values passed from the UI
of an application.

Use the following procedure to access logs from your App Studio apps in CloudWatch Logs.

1. In the App Studio application studio for your app, locate and note your app ID
by looking at in the URL. The app ID may look something like this: 802a3bd6-
ed4d-424c-9f6b-405aa42a62c5.

2. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

3. In the navigation pane, choose Log groups.

Debugging with logs from published apps in Amazon CloudWatch Logs 181

https://developer.chrome.com/docs/devtools
https://firefox-source-docs.mozilla.org/devtools-user/
https://firefox-source-docs.mozilla.org/devtools-user/
https://console.aws.amazon.com/cloudwatch/

AWS App Studio User Guide

4. Here you will find five Log Groups per application. Depending on the type of information you
are interested in, select a group and write a query for the data you want to discover.

The following list contains the log groups and information about when to use each:

1. /aws/appstudio/teamId/appId/TEST/app: Use to debug automation responses, query
failures, component errors, or JavaScript code related to the version of your app currently
published to the Testing environment.

2. /aws/appstudio/teamId/appId/TEST/audit: Use to debug JavaScript code errors,
such as conditional visibility or transformation, as well as login or permissions user errors
related to the version of your app currently published to the Testing environment.

3. /aws/appstudio/teamId/setup: Use to monitor builder or admin actions.

4. /aws/appstudio/teamId/appId/PRODUCTION/app: Use to debug automation
responses, query failures, component errors, or JavaScript code related to the version of
your app currently published to the Production environment.

5. /aws/appstudio/teamId/appId/PRODUCTION/audit: Use to debug JavaScript code
errors, such as conditional visibility or transformation, as well as login or permissions user
errors related to the version of your app currently published to the Production environment.

5. Once you are in a log group, you can either pick the most recent log streams, or one with a
last event time closest to the time of interest, or you can choose to search all log streams to
search across all events on that log group. For more information about viewing log data in
CloudWatch Logs, see View log data sent to CloudWatch Logs.

You can also use the Logs Insights in CloudWatch Logs query multiple log groups at once. For
more information about CloudWatch Logs Insights, Analyzing log data with CloudWatch Logs
Insights in the Amazon CloudWatch Logs User Guide.

Troubleshooting connector issues

This section contains some common troubleshooting guidance for connector issues. You must be a
member of an admin group to view or edit connectors.

• Check the configuration of the resources in the product or service that your connector is
connecting to. Some resources, such as Amazon Redshift tables, require additional configuration
to use with App Studio.

Troubleshooting connector issues 182

AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData

AWS App Studio User Guide

• Check the IAM role you're using to connect to AWS services. Make sure the trust policy is
configured to provide access to the account used to set up App Studio.

• Check your connector configuration. For AWS services, go to the connector in App Studio and
ensure the correct Amazon Resource Name (ARN) is included and the AWS Region specified is the
one that contains your resources.

Building an app with multiple users

Multiple users can work on a single App Studio app, however only one user can edit an app at one
time. See the following sections to information about inviting other users to edit an app, and the
behavior when multiple users try to edit an app at the same time.

Invite builders to edit an app

Use the following instructions to invite other builders to edit an App Studio app.

To invite other builders to edit an app

1. If necessary, navigate to the application studio of your application.

2. Choose Share.

3. In the Development tab, use the text box to search for and select groups or individual users
that you want to invite to edit the app.

4. For each user or group, choose the dropdown and select the permissions to give to that user or
group.

• Co-owner: Co-owners have the same permissions as app owners.

• Edit only: Users with the Edit only role have the same permissions as owners and co-owners,
except for the following:

• They cannot invite other users to edit the app.

• They cannot publish the app to the Testing or Production environments.

• They cannot add data sources to the app.

• They cannot delete or duplicate the app.

Building an app with multiple users 183

AWS App Studio User Guide

Attempting to edit an app that is being edited by another user

A single App Studio app can only be edited by one user at a time. See the following example to
understand what happens when multiple users try to edit an app at the same time.

In this example, User A is currently editing an app, and has shared it with User B. User B then
attempts to edit the app that is being edited by User A.

When User B tries to edit the app, a dialog box will appear informing them that User A is
currently editing the app, and that continuing will kick User A out of the application studio, and
all changes will be saved. User B can choose to cancel and let User A continue, or continue and
enter the application studio to edit the app. In this example, they choose to edit the app.

When User B chooses to edit the app, User A receives a notification that User B has started
editing the app, and their session has ended. Note that if User A had the app open in an inactive
browser tab, they may not receive the notification. In this case, if they try to come back to the
app and try to make an edit, they will receive an error message and be guided to refresh the page,
which will return them to the list of applications.

Attempting to edit an app that is being edited by another user 184

AWS App Studio User Guide

Security in AWS App Studio

Topics

• Security considerations and mitigations

• Service-linked roles for App Studio

• AWS managed policies for AWS App Studio

Security considerations and mitigations

Security considerations

When dealing with data connectors, data models, and published applications, several security
concerns arise related to data exposure, access control, and potential vulnerabilities. The following
list includes the primary security concerns.

Improper configuration of IAM roles

Incorrect configuration of IAM roles for data connectors can lead to unauthorized access and data
leaks. Granting overly permissive access to a data connector's IAM role can allow unauthorized
users to access and modify sensitive data.

Using IAM roles to perform data operations

Since end users of an App Studio app assume the IAM role provided in the connector configuration
to perform actions, those end users might get access to data to which they typically do not have
access.

Deleting data connectors of published applications

When a data connector is deleted, the associated secret credentials are not automatically removed
from published applications that are already using that connector. In this scenario, if an application
has been published with certain connectors, and one of those connectors is deleted from App
Studio, the published application will continue to work using the previously stored connector
credentials. It is important to note that the published app will remain unaffected and operational
despite the connector deletion.

Security considerations and mitigations 185

AWS App Studio User Guide

Editing data connectors on published applications

When a data connector is edited, the changes are not automatically reflected in published
applications that are using that connector. If an application has been published with certain
connectors, and one of those connectors is modified in App Studio, the published application will
continue to use the previously stored connector configuration and credentials. To incorporate the
updated connector changes, the application must be republished. Until the app is republished, it
will remain incorrect and non-operational, or unaffected and operational but will not reflect the
latest connector modifications.

Security risk mitigation recommendations

This section lists mitigation recommendations to avoid security risks detailed in the previous
security considerations section.

1. Proper IAM role configuration: Ensure that IAM roles for data connectors are correctly
configured with the principle of least privilege to prevent unauthorized access and data leaks.

2. Restricted app access: Only share your apps with users who are authorized to view or perform
actions on the application data.

3. App publishing: Ensure that apps are republished whenever a connector is updated or deleted.

Service-linked roles for App Studio

App Studio uses a service-linked role named AWSServiceRoleForAppStudio for the permissions
that it requires to call other AWS services on your behalf. A service-linked role is a unique type of
AWS Identity and Access Management (IAM) role that is linked directly to an AWS service, in this
case, App Studio. The service-linked role provides a secure way to delegate permissions to App
Studio because only App Studio can assume the service-linked role.

App Studio uses the service-linked role to persistently manage AWS services, to maintain the
application building experience.

The service-linked role makes setting up App Studio easier because you don't have to manually add
necessary permissions. App Studio defines the permissions of its service-linked role, and unless the
permissions are defined otherwise, only App Studio can assume the role. The defined permissions
include the trust policy and the permissions policy, and you can't attach that permissions policy to
any other IAM entity.

Security risk mitigation recommendations 186

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

AWS App Studio User Guide

Contents

• Service-linked role permissions for App Studio

• Creating a service-linked role for App Studio

• Editing a service-linked role for App Studio

• Deleting a service-linked role for App Studio

Service-linked role permissions for App Studio

App Studio uses the service-linked role named AWSServiceRoleForAppStudio. It's a service-
linked role required for App Studio to persistently manage AWS services, to maintain the
application building experience.

The AWSServiceRoleForAppStudio service-linked role uses the following trust policy, and only
trust the appstudio-service.amazonaws.com service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appstudio-service.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For permissions, the AWSServiceRoleForAppStudio service-linked role uses the
AppStudioServiceRolePolicy managed policy. For more information about the managed
policy, including the permissions it includes, see AWS managed policy: AppStudioServiceRolePolicy.

Creating a service-linked role for App Studio

The AWSServiceRoleForAppStudio service-linked role is automatically created when a user
requests a specific operation.

Service-linked role permissions for App Studio 187

AWS App Studio User Guide

Editing a service-linked role for App Studio

App Studio doesn't allow you to edit the AWSServiceRoleForAppStudio service-linked role.
After you create a service-linked role, you can't change the name of the role because various
entities might reference the role. However, you can edit the description of the role by using IAM.
For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for App Studio

If you no longer need to use App Studio, we recommend that you delete the service-linked role.
That way, you don't have an unused entity that isn't actively monitored or maintained.

To manually delete the service-linked role using IAM

Use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForAppStudio
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

AWS managed policies for AWS App Studio

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Editing a service-linked role for App Studio 188

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS App Studio User Guide

AWS managed policy: AppStudioServiceRolePolicy

You can't attach AppStudioServiceRolePolicy to your IAM entities. This policy is attached to a
service-linked role that allows App Studio to perform actions on your behalf. For more information,
see Service-linked roles for App Studio.

This policy grants permissions that allow the service-linked role to manage AWS resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AppStudioResourcePermissionsForCloudWatch",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/appstudio/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "AppStudioResourcePermissionsForSecretsManager",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:DeleteSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:UpdateSecret",
 "secretsmanager:TagResource"
],

AppStudioServiceRolePolicy 189

AWS App Studio User Guide

 "Resource": "arn:aws:secretsmanager:*:*:secret:appstudio-*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "IsAppStudioSecret"
]
 },
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}",
 "aws:ResourceTag/IsAppStudioSecret": "true"
 }
 }
 },
 {
 "Sid": "AppStudioResourcePermissionsForSSO",
 "Effect": "Allow",
 "Action": [
 "sso:GetManagedApplicationInstance",
 "sso-directory:DescribeUsers",
 "sso-directory:ListMembersInGroup"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

App Studio updates to AWS managed policies

View details about updates to AWS managed policies for App Studio since this service began
tracking these changes.

Change Description Date

App Studio started tracking
changes

App Studio started tracking
changes for its AWS managed
policies.

June 28, 2024

Policy updates 190

AWS App Studio User Guide

Document history for the AWS App Studio User Guide

The following table describes the documentation releases for AWS App Studio.

Change Description Date

Updated topics: Previewing,
publishing, and sharing App
Studio apps

Expanded the previewin
g, publishing, and sharing
documentation to add clarity,
match the experience in the
service, and provide additiona
l information around the
publishing environments
and viewing apps in them.
For more information, see
Previewing, publishing, and
sharing applications.

August 2, 2024

New topic: Building an app
with multiple users

Expanded the previewin
g, publishing, and sharing
documentation to add clarity,
match the experience in the
service, and provide additiona
l information around the
publishing environments
and viewing apps in them.
For more information, see
Building an app with multiple
users.

August 2, 2024

Updated topic: Connecting
App Studio to AWS services

Added information about
creating and providing IAM
roles for providing access to
AWS resources when creating
an Other AWS services
connector. For more informati
on, see Connect to AWS

July 29, 2024

191

https://docs.aws.amazon.com/appstudio/latest/userguide/applications-preview-publish-share.html
https://docs.aws.amazon.com/appstudio/latest/userguide/applications-preview-publish-share.html
https://docs.aws.amazon.com/appstudio/latest/userguide/builder-collaboration.html
https://docs.aws.amazon.com/appstudio/latest/userguide/builder-collaboration.html
https://docs.aws.amazon.com/appstudio/latest/userguide/connectors-aws.html

AWS App Studio User Guide

services using the Other AWS
services connector.

Updated topic: Add instructi
ons for creating an AWS
administrative user as part of
setting up

Added instructions in the
setting up App Studio
documentation to create
an administrative user for
managing AWS resources.
Also made updates throughou
t the connector documenta
tion to recommend using that
user.

July 24, 2024

New topic: Connect to
Amazon Bedrock

Added a topic with instructi
ons for creating a connector
for Amazon Bedrock. Builders
can use the connector to
build apps that use Amazon
Bedrock. For more informati
on, see Connect to Amazon
Bedrock.

July 24, 2024

Initial release Initial release of the AWS App
Studio User Guide

July 10, 2024

192

https://docs.aws.amazon.com/appstudio/latest/userguide/connectors-aws.html
https://docs.aws.amazon.com/appstudio/latest/userguide/connectors-aws.html
https://docs.aws.amazon.com/appstudio/latest/userguide/setting-up-first-time-admin.html
https://docs.aws.amazon.com/appstudio/latest/userguide/connectors-bedrock.html
https://docs.aws.amazon.com/appstudio/latest/userguide/connectors-bedrock.html

	AWS App Studio
	Table of Contents
	What is AWS App Studio?
	Are you a first-time App Studio user?

	AWS App Studio concepts
	Administrator (Admin)
	Application (App)
	Automation
	Automation actions
	Builder
	Application studio
	Component
	Entity
	Connector
	Page
	Trigger

	Setting up and signing in to AWS App Studio
	Creating and setting up an App Studio instance for the first time
	Sign up for an AWS account
	Create an administrative user for managing AWS resources
	Enable App Studio from the AWS Management Console

	Accepting an invitation to join App Studio

	Getting started with AWS App Studio
	Tutorial: Generate an app using AI
	Prerequisites
	Step 1: Create an application
	Step 2: Explore your new application
	Explore pages and components
	Explore automations and actions
	Explore data with entities

	Step 3: Preview your application
	Next steps

	Tutorial: Start building from an empty app
	Prerequisites
	Step 1: Create an application
	Step 2: Create an entity to define your app's data
	Add fields to your entity

	Step 3: Design the user interface (UI) and logic
	Add a meeting request dashboard page
	Add a meeting request creation page

	Step 4: Preview the application
	Step 5: Publish the application to the Testing environment
	Next steps

	Administrator documentation
	Managing access and roles in App Studio
	Roles and permissions
	Viewing groups
	Adding users or groups
	Changing a group's role
	Removing users or groups from App Studio

	Connect App Studio to other services with connectors
	Connect to AWS services
	Connect to Amazon Redshift
	Create and configure Amazon Redshift resources
	Create an IAM role to give App Studio access to Amazon Redshift resources
	Create Amazon Redshift connector

	Connect to Amazon DynamoDB
	Create and configure DynamoDB resources
	Create an IAM role to give App Studio access to DynamoDB resources
	Create DynamoDB connector

	Connect to AWS Lambda
	Create and configure Lambda functions
	Create an IAM role to give App Studio access to Lambda resources
	Create Lambda connector

	Connect to Amazon Simple Storage Service (Amazon S3)
	Create and configure Amazon S3 resources
	Create an IAM role to give App Studio access to Amazon S3 resources
	Create Amazon S3 connector

	Connect to Amazon Aurora
	Create and configure Aurora resources
	Creating an Aurora PostgreSQL-Compatible cluster

	Create an IAM role to give App Studio access to Aurora resources
	Create Aurora connector

	Connect to Amazon Bedrock
	Enable Amazon Bedrock models
	Create an IAM role to give App Studio access to Amazon Bedrock
	Create Amazon Bedrock connector

	Connect to AWS services using the Other AWS services connector
	Create an IAM role to give App Studio access to AWS resources
	Create an Other AWS services connector

	Connect to third-party services
	Connect to third-party services and APIs (generic)
	Connect to services with OpenAPI
	Get the OpenAPI Specification file and gather service information
	Create OpenAPI connector

	Connect to Salesforce

	Viewing, editing, and deleting connectors

	Builder documentation
	Creating, editing, and deleting applications
	Viewing applications
	Creating an application
	Editing an application
	Application settings
	App navigation

	Deleting an application

	Previewing, publishing, and sharing applications
	Previewing applications
	Publishing applications
	Publishing applications
	Viewing published applications
	Application environments
	Development environment
	Testing environment
	Production environment

	Versioning and release management
	Maintenance and operations

	Sharing published applications

	Building your app's user interface with pages and components
	Creating, editing, or deleting pages
	Creating a page
	Viewing and editing page properties
	Deleting a page

	Adding, editing, and deleting components
	Adding components to a page
	Viewing and editing component properties
	Deleting components

	Configuring role-based visibility of pages
	Components reference
	Common component properties
	Name
	Primary value, Secondary value, and Value
	Syntax for expressions
	Example: Static text
	Examples: Expressions

	Label
	Example: Static text
	Example: Expressions
	Example: Retail store
	Example: SaaS project management
	Example: Healthcare clinic

	Placeholder
	Example: Static text
	Example: Expressions
	Example: Financial services
	Example: E-commerce
	Example: Healthcare clinic

	Source
	Entity
	Selecting a query on an entity
	Adding parameters to an entity data source

	Expression
	Automation

	Visible if
	Visible if expression examples
	Example: Showing or hiding a password input field based on an email input
	Example: Displaying additional form fields based on a dropdown selection
	Examples: Other

	Disabled if
	Disabled if expression examples
	Example: Disabling a submit button based on form validation

	Container layouts
	Orientation
	Alignment
	Width
	Height
	Space between
	Padding
	Background

	Data components
	Table
	Table properties
	Search and export
	Rows per page
	Column re-ordering

	Columns
	Expressions
	Examples: Referencing row values
	Examples: Referencing selected row
	Examples: Creating custom columns
	Examples: Customizing column display values:
	Row-level button actions

	Detail
	Detail properties
	Layout
	Expressions and examples
	Example: Referencing data
	Example: Conditional rendering
	Example: Conditional display

	Metrics
	Metrics properties
	Trend
	Trend value
	Positive trend
	Negative trend
	Color bar
	Color Bar examples:
	Example: Sales metrics trend
	Example: inventory metrics trend
	Example: Customer satisfaction trend

	Metrics expression examples
	Example: Referencing primary value
	Example: Referencing secondary value
	Example: Referencing data
	Example: Displaying specific data values:
	Example: Displaying data length

	Repeater
	Repeater properties
	Item template
	Layout
	Orientation
	Rows per page
	Columns and Rows per Page (Grid)

	Expressions and examples
	Example: Referencing items
	Example: Rendering a list of products
	Example: Generating a grid of user avatars

	Form
	Form properties
	Generate Form
	Expressions and examples

	Stepflow
	Text & number components
	Text input
	Text
	Text area
	Email
	Password
	Search
	Phone
	Number
	Currency
	Switch
	Detail pair

	Selection components
	Switch group
	Switch group expression fields

	Checkbox group
	Checkbox group expression fields

	Radio group
	Radio group expression fields

	Single select
	Single select expression fields

	Multi select
	Multi select expression fields

	Buttons & navigation components
	Button components
	Content
	Type
	Size
	Icon
	Triggers
	JavaScript action button properties
	Source code
	Condition: Run if

	Hyperlink
	Hyperlink properties
	Content
	URL
	Triggers

	Date & time components
	Date
	Date properties
	Format
	Value
	Min date
	Max date
	Calendar type
	Disabled dates
	Behavior

	Validation
	Expressions and examples

	Time
	Time properties
	Time intervals
	Value
	Placeholder
	Min time
	Max time
	Disabled times
	Disabled times configuration
	Source
	Example expression:

	Behavior
	Validation

	Expressions and examples
	Example: Time value
	Example: Time comparison

	Date range
	Date range properties
	Format
	Start date
	End date
	Placeholder
	Min date
	Max date
	Calendar type
	Mandatory days selected
	Disabled dates
	Validation

	Expressions and examples
	Example: Calculating date difference
	Example: Conditional visibility based on date range
	Example: Disabled dates based on current row data
	Custom validation

	Media components
	iFrame embed
	iFrame embed properties
	URL
	Layout

	S3 upload
	S3 upload properties
	S3 Configuration
	File upload configuration
	Validation
	Triggers

	S3 upload expression fields
	Expressions and examples
	Example: Accessing uploaded files
	Example: Validating file uploads
	Example: Triggering actions

	PDF viewer component
	PDF viewer properties
	Source
	Expression
	Entity
	URL
	URL
	Data URI
	Blob or ArrayBuffer

	Automation

	Actions
	Layout

	Image viewer
	Image viewer properties
	Source
	Alt text
	Layout

	Defining and implementing your app's business logic with automations
	Automations concepts
	Automations
	Actions
	Automation input parameters
	Mocked output
	Automation output
	Triggers

	Tutorial: Interacting with Amazon Simple Storage Service using automations
	Prerequisites
	Create an empty application
	Create pages
	Create and configure automations
	Create a getFiles automation
	Create a deleteFile automation
	Create a viewFile automation

	Add and configure page components
	Add components to the FileList page
	Add components to the UploadFile page
	Add components to the FailUpload page

	Next steps: Preview and publish the application for testing

	Creating, editing, and deleting automations
	Creating an automation
	Viewing or editing automation properties
	Deleting an automation

	Adding, editing, and deleting automation actions
	Adding an automation action
	Viewing and editing automation action properties
	Deleting an automation action

	Automation actions reference
	Invoke API
	Properties
	Connector
	API request configuration properties
	Mocked output

	Invoke AWS
	Properties
	Service
	Operation
	Connector
	Configuration

	Invoke Lambda
	Properties
	Connector
	Function name
	Function event
	Mocked output

	Loop
	Properties
	Source
	Examples

	Current item name

	Condition
	Properties
	Condition

	Create record
	Properties
	Entity

	Update record
	Properties
	Entity
	Conditions
	Fields
	Values

	Delete record
	Properties
	Entity
	Conditions

	Invoke data action
	Properties
	Data action
	Parameters
	Advanced settings

	Amazon S3: Put object
	Properties
	Connector
	Configuration
	Mocked output

	Amazon S3: Delete object
	Properties
	Connector
	Configuration
	Mocked output

	Amazon S3: Get object
	Properties
	Connector
	Configuration
	Mocked output

	Amazon S3: List objects
	Properties
	Connector
	Configuration
	Mocked output

	Amazon Textract: Analyze document
	Properties
	Connector
	Configuration
	Mocked output

	Amazon Textract: Analyze expense
	Properties
	Connector
	Configuration
	Mocked output

	Amazon Textract: Analyze ID
	Properties
	Connector
	Configuration
	Mocked output

	Amazon Textract: Detect doc text
	Properties
	Connector
	Configuration
	Mocked output

	Amazon Bedrock: Invoke model
	Properties
	Connector
	Configuration
	Mocked output

	JavaScript
	Properties
	Source code

	Invoke automation
	Properties
	Invoke Automation

	Send email
	Properties
	Connector
	Configuration
	Mocked output

	Configure your app's data model with entities
	Creating an entity in an App Studio app
	Creating an entity from an existing data source
	Creating an entity with an App Studio managed data source
	Creating an empty entity
	Creating an entity with AI

	Configuring or editing an entity in an App Studio app
	Editing the entity name
	Adding, editing, or deleting entity fields
	Creating, editing, or deleting data actions
	Creating data actions
	Editing or configuring data actions
	Deleting data actions

	Adding or deleting sample data
	Add or edit connected data source and map fields

	Deleting an entity
	Managed data entities in AWS App Studio
	Using managed entities in multiple applications
	Managed entity limitations

	Page and automation parameters
	Page parameters
	Page parameter use cases
	Page parameter security considerations

	Automation parameters
	Automation parameter benefits
	Scenarios and use cases
	Scenario: Retrieving product details
	Scenario: Handling optional parameters with fallback values

	Defining automation parameter types
	Synchronizing types from an entity
	Manually defining types

	Configuring dynamic values to be passed to automation parameters
	Type safety
	Validation
	Best practices for automation parameters

	Generative AI in App Studio
	Generating your app
	Generating your data models
	Generating sample data
	Configuring actions for AWS services
	Mocking responses
	Asking AI for help

	Using JavaScript to write expressions in App Studio
	Basic syntax
	Interpolation
	Concatenation
	Date and time
	Code blocks
	Global variables and functions
	Accessing UI component values
	Additional examples

	Working with table data
	Accessing automations
	Accessing automation parameters
	Manipulating automation parameters

	Accessing automation results from a previous action

	Troubleshooting and debugging App Studio apps
	Troubleshooting in the application studio
	Using the debug panel
	Contextual JavaScript syntax feedback

	Troubleshooting while previewing an app
	Troubleshooting in the Testing environment
	Using your browser console to debug

	Debugging with logs from published apps in Amazon CloudWatch Logs
	Troubleshooting connector issues

	Building an app with multiple users
	Invite builders to edit an app
	Attempting to edit an app that is being edited by another user

	Security in AWS App Studio
	Security considerations and mitigations
	Security considerations
	Improper configuration of IAM roles
	Using IAM roles to perform data operations
	Deleting data connectors of published applications
	Editing data connectors on published applications

	Security risk mitigation recommendations

	Service-linked roles for App Studio
	Service-linked role permissions for App Studio
	Creating a service-linked role for App Studio
	Editing a service-linked role for App Studio
	Deleting a service-linked role for App Studio

	AWS managed policies for AWS App Studio
	AWS managed policy: AppStudioServiceRolePolicy
	App Studio updates to AWS managed policies

	Document history for the AWS App Studio User Guide

