
Developer Guide

AWS AppSync

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AppSync Developer Guide

AWS AppSync: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AppSync Developer Guide

Table of Contents

What is AWS AppSync? ... 1
AWS AppSync features .. 1
Are you a first-time AWS AppSync user? .. 2
Related services .. 2
Pricing for AWS AppSync .. 2

GraphQL and AWS AppSync architecture .. 3
What is an API? ... 4

Clients .. 4
Resources ... 4

What is REST? ... 4
Uniform interface .. 5
Statelessness .. 5
Layered system .. 6
Cacheability .. 6
What is a RESTful API? .. 6
How do RESTful APIs work? ... 6

Why Use GraphQL over REST? .. 7
Components of a GraphQL API ... 8

Schemas .. 9
Data sources ... 27
Resolvers ... 41

Additional properties of GraphQL .. 51
Declarative .. 51
Hierarchical ... 51
Introspective ... 53
Strong typing ... 54

Getting started: Creating your first GraphQL API ... 55
Step 1: Launch a schema ... 56
Step 2: Take a tour of the console ... 60

Schema designer ... 60
Data sources ... 61
Queries .. 62
Settings ... 62

Step 3: Add data with a GraphQL mutation .. 63

iii

AWS AppSync Developer Guide

Step 4: Retrieve data with a GraphQL query ... 68
Supplemental sections .. 71

Integration .. 71
Supplemental reading .. 72

Designing GraphQL APIs ... 73
Structuring a GraphQL API (blank or imported APIs) .. 73

Step 1: Designing your schema ... 74
Step 2: Attaching a data source .. 101
Step 3: Configuring resolvers ... 113
Step 4: Using an API: CDK example ... 168

Real-time data .. 187
GraphQL schema subscription directives ... 187
Using subscription arguments ... 190
Creating generic pub/sub APIs powered by serverless WebSockets .. 194
Enhanced subscriptions filtering ... 197
Unsubscribing connections ... 207
Building a real-time WebSocket client ... 212

Merged APIs .. 228
Merged APIs and Federation .. 230
Merged API conflict resolution .. 231
Configuring schemas .. 239
Configuring authorization modes ... 240
Configuring execution roles ... 241
Configuring cross-account Merged APIs using AWS RAM .. 242
Merging ... 244
Additional support for Merged APIs ... 245
Merged API limitations .. 246
Creating Merged APIs .. 246

RDS introspection .. 248
Using the introspection feature (console) ... 249
Using the introspection feature (API) .. 252

Building a client application .. 256
Resolver tutorials (JavaScript) ... 259

Tutorial: DynamoDB JavaScript resolvers .. 259
Creating your GraphQL API .. 260
Defining a basic post API .. 260

iv

AWS AppSync Developer Guide

Setting up your Amazon DynamoDB table ... 261
Setting up an addPost resolver (Amazon DynamoDB PutItem) .. 262
Setting up the getPost resolver (Amazon DynamoDB GetItem) ... 265
Create an updatePost mutation (Amazon DynamoDB UpdateItem) .. 268
Create vote mutations (Amazon DynamoDB UpdateItem) .. 272
Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) .. 275
Setting up an allPost resolver (Amazon DynamoDB Scan) .. 282
Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 286
Using sets ... 291
Conclusion .. 298

Tutorial: Lambda resolvers ... 298
Create a Lambda function .. 298
Configure a data source for Lambda ... 300
Create a GraphQL schema .. 301
Configure resolvers .. 114
Test your GraphQL API .. 303
Returning errors .. 304
Advanced use case: Batching ... 307

Tutorial: Local resolvers .. 316
Creating the pub/sub app .. 317
Send and subscribe to messages .. 318

Tutorial: Combining GraphQL resolvers .. 319
Example schema ... 319
Altering data through resolvers .. 320
DynamoDB and OpenSearch Service ... 321

Tutorial: Amazon OpenSearch Service Resolvers .. 323
Create a new OpenSearch Service domain ... 324
Configure a data source for OpenSearch Service .. 324
Connecting a resolver .. 326
Modifying your searches ... 328
Adding data to OpenSearch Service .. 329
Retrieving a single document .. 330
Perform queries and mutations .. 331
Best practices .. 331

Tutorial: DynamoDB Transaction resolvers ... 332
Permissions .. 332

v

AWS AppSync Developer Guide

Data source .. 333
Transactions ... 334

Tutorial: DynamoDB batch resolvers ... 342
Single table batches .. 342
Multi-table batch .. 346
Error handling ... 355

Tutorial: HTTP resolvers ... 360
Creating a REST API ... 361
Creating your GraphQL API .. 361
Creating a GraphQL schema .. 362
Configure your HTTP data source ... 363
Configuring resolvers ... 146
Invoking AWS Services .. 366

Tutorial: Aurora PostgreSQL with Data API ... 368
Creating clusters ... 368
Enabling data API ... 369
Creating the database and table .. 369
Creating a GraphQL schema .. 370
Resolvers for RDS ... 372
Deleting your cluster ... 380

Resolver tutorials (VTL) .. 381
Tutorial: DynamoDB resolvers ... 382

Setting up your DynamoDB tables ... 382
Creating your GraphQL API .. 361
Defining a basic post API .. 384
Configuring the Data Source for the DynamoDB Tables .. 385
Setting up the addPost resolver (DynamoDB PutItem) .. 386
Setting Up the getPost Resolver (DynamoDB GetItem) ... 391
Create an updatePost Mutation (DynamoDB UpdateItem) .. 394
Modifying the updatePost Resolver (DynamoDB UpdateItem) ... 397
Create upvotePost and downvotePost Mutations (DynamoDB UpdateItem) 403
Setting Up the deletePost Resolver (DynamoDB DeleteItem) ... 407
Setting Up the allPost Resolver (DynamoDB Scan) ... 414
Setting Up the allPostsByAuthor Resolver (DynamoDB Query) .. 419
Using Sets .. 291
Using Lists and Maps ... 432

vi

AWS AppSync Developer Guide

Conclusion .. 435
Tutorial: Lambda resolvers ... 435

Create a Lambda function .. 436
Configure a data source for Lambda ... 438
Create a GraphQL schema .. 362
Configure resolvers .. 146
Test your GraphQL API .. 442
Returning errors .. 443
Advanced use case: Batching ... 446

Tutorial: Amazon OpenSearch Service Resolvers .. 456
One-Click Setup .. 457
Create a New OpenSearch Service Domain .. 457
Configure Data Source for OpenSearch Service .. 457
Connecting a Resolver ... 459
Modifying Your Searches .. 461
Adding Data to OpenSearch Service .. 462
Retrieving a Single Document ... 463
Perform Queries and Mutations .. 464
Best Practices .. 464

Tutorial: Local Resolvers ... 465
Create the Paging Application ... 465
Send and subscribe to pages ... 466

Tutorial: Combining GraphQL Resolvers ... 467
Example Schema ... 468
Alter Data Through Resolvers .. 469
DynamoDB and OpenSearch Service ... 470

Tutorial: DynamoDB Batch Resolvers .. 474
Permissions .. 474
Data Source .. 475
Single Table Batch .. 476
Multi-Table Batch ... 479
Error Handling ... 487

Tutorial: DynamoDB Transaction Resolvers .. 493
Permissions .. 474
Data Source .. 475
Transactions ... 495

vii

AWS AppSync Developer Guide

Tutorial: HTTP Resolvers .. 505
One-Click Setup .. 457
Creating a REST API ... 361
Creating Your GraphQL API .. 361
Creating a GraphQL Schema .. 362
Configure Your HTTP Data Source .. 363
Configuring Resolvers .. 146
Invoking AWS Services .. 510

Tutorial: Aurora Serverless ... 512
Create cluster .. 512
Enable Data API .. 369
Create database and table ... 513
GraphQL schema .. 514
Configuring Resolvers .. 146
Run mutations ... 520
Run Queries ... 521
Input Sanitization ... 522

Tutorial: Pipeline Resolvers .. 524
One-Click Setup .. 457
Manual Setup .. 525
Testing Your GraphQL API .. 442

Tutorial: Delta Sync ... 538
One-Click Setup .. 457
Schema .. 540
Mutations .. 542
Sync Queries .. 542
Example .. 543

Configuration and settings ... 550
Caching and compression .. 550

Instance types ... 551
Caching behavior .. 552
Cache encryption .. 553
Cache eviction ... 553
Evicting a cache entry ... 553
Evicting a cache entry based on identity .. 555
Compressing API responses .. 556

viii

AWS AppSync Developer Guide

Configuring custom domain names ... 557
Registering and configuring a domain name ... 558
Creating a custom domain name in AWS AppSync ... 558
Wildcard custom domain names in AWS AppSync .. 559

Conflict Detection and Sync .. 560
Versioned Data Sources ... 560
Conflict Detection and Resolution .. 564
Sync Operations .. 573

Monitoring and logging .. 574
Setup and configuration ... 574
CloudWatch metrics ... 575
CloudWatch logs ... 582
Log type reference ... 586
Analyzing your logs with CloudWatch Logs Insights .. 589
Analyze your logs with OpenSearch Service .. 590
Log format migration .. 590

Tracing with AWS X-Ray ... 591
Setup and Configuration ... 574
Tracing Your API with X-Ray .. 592

Logging AWS AppSync API calls using AWS CloudTrail ... 594
AWS AppSync information in CloudTrail ... 594
Understanding AWS AppSync log file entries .. 595

Using AWS AppSync Private APIs ... 598
Creating AWS AppSync Private APIs .. 600
Creating an interface endpoint for AWS AppSync .. 601
Advanced examples .. 602
Using IAM policies to limit public API creation .. 606

Configuring GraphQL run complexity, query depth, and introspection with AWS AppSync 607
Using the introspection feature .. 607
Configuring query depth limits ... 609
Configuring resolver count limits .. 610

Using environmental variables in AWS AppSync .. 611
Configuring environmental variables (console) .. 612
Configuring environmental variables (API) ... 613
Configuring environmental variables (CFN) .. 614
Environmental variables and merged APIs ... 615

ix

AWS AppSync Developer Guide

Retrieving environmental variables .. 615
Authorization and authentication .. 617

Authorization types ... 617
API_KEY authorization .. 618
AWS_LAMBDA authorization ... 620

Circumventing SigV4 and OIDC token authorization limitations .. 625
AWS_IAM authorization .. 625
OPENID_CONNECT authorization ... 628
AMAZON_COGNITO_USER_POOLS authorization ... 629
Using additional authorization modes .. 630
Fine-grained access control ... 633
Filtering information ... 635
Data source access ... 636
Authorization use cases .. 637

Overview ... 637
Reading data .. 638
Writing data ... 642
Public and private records .. 644
Real-time data ... 645

Using AWS WAF to protect APIs ... 648
Integrate an AppSync API with AWS WAF .. 649
Creating rules for a web ACL ... 651

Security .. 655
Data protection .. 656

Encryption in motion ... 656
Compliance validation .. 657
Infrastructure security ... 658
Resilience ... 659
Identity and access management ... 659

Audience ... 659
Authenticating with identities ... 660
Managing access using policies ... 663
How AWS AppSync works with IAM ... 666
Identity-based policies .. 673
Troubleshooting .. 684

Logging AWS AppSync API calls with AWS CloudTrail ... 686

x

AWS AppSync Developer Guide

AWS AppSync information in CloudTrail ... 687
Understanding AWS AppSync log file entries .. 688

Best practices .. 464
Understand authentication methods ... 690
Use TLS for HTTP resolvers ... 690
Use roles with the least permissions possible .. 691
IAM policy best practices .. 691

Resolver reference (JavaScript) ... 693
JavaScript resolvers overview ... 693

Supported runtime features ... 694
Unit resolvers .. 694
Anatomy of a JavaScript pipeline resolver .. 694
Writing code .. 699
Utilities .. 702
Bundling, TypeScript, and source maps ... 704
Testing ... 711
Migrating from VTL to JavaScript ... 713
Choosing between direct data source access and proxying via a Lambda data source 716

Resolver context object reference ... 718
Accessing the context ... 718

JavaScript runtime features for resolvers and functions ... 729
Supported runtime features ... 730
Built-in utilities .. 737
Built-in modules ... 740
Runtime utilities .. 763
Time helpers in util.time ... 764
DynamoDB helpers in util.dynamodb .. 765
HTTP helpers in util.http .. 772
Transformation helpers in util.transform .. 772
String helpers in util.str .. 786
Extensions .. 786
XML helpers in util.xml ... 790

JavaScript resolver function reference for DynamoDB ... 792
GetItem ... 792
PutItem ... 794
UpdateItem .. 797

xi

AWS AppSync Developer Guide

DeleteItem .. 801
Query ... 804
Scan ... 809
Sync ... 813
BatchGetItem ... 816
BatchDeleteItem ... 819
BatchPutItem ... 821
TransactGetItems .. 824
TransactWriteItems ... 827
Type system (request mapping) .. 833
Type system (response mapping) .. 838
Filters ... 842
Condition expressions .. 843
Transaction condition expressions .. 855
Projections .. 858

JavaScript resolver function reference for OpenSearch ... 859
Request ... 860
Response ... 860
operation field ... 861
path field ... 861
params field .. 862
Passing variables ... 863

JavaScript resolver function reference for Lambda .. 864
Request object ... 864
Response object .. 867
Lambda function batched response ... 868

JavaScript resolver function reference for EventBridge data source ... 868
Request ... 860
Response ... 869
PutEvents field ... 870

JavaScript Resolver function reference for None data source .. 872
Request ... 860
Payload ... 867
Response ... 869

JavaScript resolver function reference for HTTP ... 873
Request ... 860

xii

AWS AppSync Developer Guide

Method .. 874
ResourcePath ... 874
Params Field .. 875
Response ... 869

JavaScript resolver function reference for Amazon RDS ... 876
SQL tagged template .. 877
Creating statements ... 878
Retrieving data .. 878
Utility functions .. 879
Casting .. 887

Resolver mapping template reference (VTL) ... 890
Resolver mapping template overview ... 890

Unit resolvers .. 891
Pipeline resolvers .. 164
Example template .. 896
Evaluated mapping template deserialization rules ... 898

Resolver mapping template programming guide ... 899
Setup ... 900
Variables ... 902
Calling Methods .. 904
Strings ... 905
Loops ... 906
Arrays .. 907
Conditional Checks ... 907
Operators .. 908
Context .. 910
Filtering ... 910

Resolver mapping template context reference ... 916
Accessing the $context .. 916
Sanitizing inputs ... 926

Resolver mapping template utility reference .. 927
Utility helpers in $util ... 928
AWS AppSync directives .. 939
Time helpers in $util.time .. 940
List helpers in $util.list .. 943
Map helpers in $util.map .. 944

xiii

AWS AppSync Developer Guide

DynamoDB helpers in $util.dynamodb .. 944
Amazon RDS helpers in $util.rds ... 954
HTTP helpers in $util.http .. 957
XML helpers in $util.xml ... 959
Transformation helpers in $util.transform .. 961
Math helpers in $util.math ... 974
String helpers in $util.str .. 975
Extensions .. 976

Resolver mapping template reference for DynamoDB .. 989
GetItem ... 990
PutItem ... 992
UpdateItem .. 995
DeleteItem ... 1001
Query .. 1004
Scan ... 1008
Sync ... 1013
BatchGetItem .. 1016
BatchDeleteItem ... 1020
BatchPutItem ... 1023
TransactGetItems .. 1027
TransactWriteItems .. 1030
Type system (request mapping) .. 1038
Type system (response mapping) ... 1043
Filters .. 1047
Condition expressions ... 1049
Transaction condition expressions .. 1060
Projections ... 1063

Resolver mapping template reference for RDS ... 1065
Request mapping template .. 1065
Version .. 1067
Statements and VariableMap .. 1067
VariableTypeHintMap .. 1067

Resolver Mapping Template Reference for OpenSearch ... 1068
Request Mapping Template ... 1065
Response Mapping Template ... 860
operation field ... 861

xiv

AWS AppSync Developer Guide

path field ... 861
params field .. 862
Passing Variables .. 863

Resolver mapping template reference for Lambda .. 1073
Request mapping template .. 1065
Response mapping template ... 860
Lambda function batched response ... 1077
Direct Lambda Resolvers .. 1078

Resolver mapping template reference for EventBridge .. 1084
Request mapping template .. 1065
Response mapping template ... 860
PutEvents field ... 870

Resolver mapping template reference for None data source ... 1088
Request mapping template .. 1065
Version .. 1067
Payload ... 1077
Response mapping template ... 860

Resolver Mapping Template Reference for HTTP ... 1091
Request Mapping Template ... 1065
Version .. 1067
Method ... 1094
ResourcePath ... 1094
Params Field .. 862
Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1096

Resolver mapping template changelog .. 1162
Datasource Operation Availability Per Version Matrix .. 1163
Changing the Version on a Unit Resolver Mapping Template .. 1164
Changing the Version on a Function ... 1165
2018-05-29 .. 1165
2017-02-28 .. 1172

Type reference ... 1173
Scalar types .. 1173

Default scalars .. 1173
AWS AppSync scalars .. 1174
Schema usage example .. 1175

Interfaces and unions in GraphQL ... 1178

xv

AWS AppSync Developer Guide

Interface examples ... 1179
Union examples .. 1183
Type resolution in AWS AppSync .. 1184
Type resolution example .. 1184

Troubleshooting and Common Mistakes .. 1190
Incorrect DynamoDB Key Mapping .. 1190
Missing Resolver .. 1190
Mapping Template Errors .. 1191
Incorrect Return Types ... 1191

xvi

AWS AppSync Developer Guide

What is AWS AppSync?

AWS AppSync enables developers to connect their applications and services to data and events
with secure, serverless and high-performing GraphQL and Pub/Sub APIs. You can do the following
with AWS AppSync:

• Access data from one or more data sources from a single GraphQL API endpoint.

• Combine multiple source GraphQL APIs into a single, merged GraphQL API.

• Publish real-time data updates to your applications.

• Leverage built-in security, monitoring, logging, and tracing, with optional caching for low
latency.

• Only pay for API requests and any real-time messages that are delivered.

Topics

• AWS AppSync features

• Are you a first-time AWS AppSync user?

• Related services

• Pricing for AWS AppSync

AWS AppSync features

• Simplified data access and querying, powered by GraphQL

• Serverless WebSockets for GraphQL subscriptions and pub/sub channels

• Server-side caching to make data available in high speed in-memory caches for low latency

• JavaScript and TypeScript support to write business logic

• Enterprise security with Private APIs to restrict API access and integration with AWS WAF

• Built in authorization controls, with support for API keys, IAM, Amazon Cognito, OpenID Connect
providers, and Lambda authorization for custom logic.

• Merged APIs to support federated use cases

For more details about each of these capabilities, see AWS AppSync features.

AWS AppSync features 1

https://aws.amazon.com/appsync/product-details

AWS AppSync Developer Guide

Are you a first-time AWS AppSync user?

We recommend that first-time AWS AppSync users begin by reading the following sections:

• If you're unfamiliar with GraphQL, see the Getting started: Creating your first GraphQL API.

• If you're building applications that consume GraphQL APIs, see Building a client application and
the section called “Real-time data”.

• If you're looking for GraphQL resolver information, see the following:

JavaScript/TypeScript

• Resolver tutorials (JavaScript)

• Resolver reference (JavaScript)

VTL

• Resolver tutorials (VTL)

• Resolver mapping template reference (VTL)

• If you're looking for AWS AppSync example projects, updates, and more, see the AppSync blog.

Related services

If you're building a web or mobile app from the ground up, consider using AWS Amplify. Amplify
leverages AWS AppSync and other AWS services to help you build more robust, powerful web and
mobile apps with less work.

Pricing for AWS AppSync

AWS AppSync is priced based on millions of requests and updates. Caching costs an additional fee.
For more information, see AWS AppSync pricing.

The following lists the exceptions to general AWS AppSync pricing:

• API caching in AWS AppSync is not eligible for the AWS Free Tier.

• Requests are not charged for authorization and authentication failures.

• Calls to methods that require API keys are not charged when API keys are missing or invalid.

Are you a first-time AWS AppSync user? 2

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials.html
https://aws.amazon.com/blogs/mobile/category/mobile-services/aws-appsync/
https://aws.amazon.com/amplify/
https://aws.amazon.com/appsync/pricing/
https://aws.amazon.com/free

AWS AppSync Developer Guide

GraphQL and AWS AppSync architecture

Note

This guide assumes the user has a working knowledge of the REST architectural style. We
recommend reviewing this and other front-end topics before working with GraphQL and
AWS AppSync.

GraphQL is a query and manipulation language for APIs. GraphQL provides a flexible and intuitive
syntax to describe data requirements and interactions. It enables developers to ask for exactly
what is needed and get back predictable results. It also makes it possible to access many sources
in a single request, reducing the number of network calls and bandwidth requirements, therefore
saving battery life and CPU cycles consumed by applications.

Making updates to data is made simple with mutations, allowing developers to describe how
the data should change. GraphQL also facilitates the quick setup of real-time solutions via
subscriptions. All of these features combined, coupled with powerful developer tools, make
GraphQL essential to managing application data.

GraphQL is an alternative to REST. RESTful architecture is currently one of the more popular
solutions for client-server communication. It's centered on the concept of your resources (data)
being exposed by a URL. These URLs can be used to access and manipulate the data through
CRUD (create, read, update, delete) operations in the form of HTTP methods like GET, POST, and
DELETE. REST's advantage is that it's relatively simple to learn and implement. You can quickly set
up RESTful APIs to call a wide range of services.

However, technology is getting more complicated. As applications, tools, and services begin
to scale for a worldwide audience, the need for fast, scalable architectures is of paramount
importance. REST has many shortcomings when dealing with scalable operations. See this use case
for an example.

In the following sections, we'll review some of the concepts surrounding RESTful APIs. We'll then
introduce GraphQL and how it works.

For more information about GraphQL and the benefits of migrating over to AWS, see the Decision
guide to GraphQL implementations.

Topics

3

https://aws.amazon.com/blogs/architecture/what-to-consider-when-modernizing-apis-with-graphql-on-aws/
https://aws.amazon.com/graphql/guide/
https://aws.amazon.com/graphql/guide/

AWS AppSync Developer Guide

• What is an API?

• What is REST?

• Why Use GraphQL over REST?

• Components of a GraphQL API

• Additional properties of GraphQL

What is an API?

An application programming interface (API) defines the rules that you must follow to communicate
with other software systems. Developers expose or create APIs so that other applications can
communicate with their applications programmatically. For example, the timesheet application
exposes an API that asks for an employee's full name and a range of dates. When it receives this
information, it internally processes the employee's timesheet and returns the number of hours
worked in that date range.

You can think of a web API as a gateway between clients and resources on the web.

Clients

Clients are users who want to access information from the web. The client can be a person or
a software system that uses the API. For example, developers can write programs that access
weather data from a weather system. Or you can access the same data from your browser when
you visit the weather website directly.

Resources

Resources are the information that different applications provide to their clients. Resources can
be images, videos, text, numbers, or any type of data. The machine that gives the resource to the
client is also called the server. Organizations use APIs to share resources and provide web services
while maintaining security, control, and authentication. In addition, APIs help them to determine
which clients get access to specific internal resources.

What is REST?

At a high level, representational State Transfer (REST) is a software architecture that imposes
conditions on how an API should work. REST was initially created as a guideline to manage
communication on a complex network like the internet. You can use REST-based architecture to

What is an API? 4

AWS AppSync Developer Guide

support high-performing and reliable communication at scale. You can easily implement and
modify it, bringing visibility and cross-platform portability to any API system.

API developers can design APIs using several different architectures. APIs that follow the REST
architectural style are called REST APIs. Web services that implement REST architecture are called
RESTful web services. The term RESTful API generally refers to RESTful web APIs. However, you can
use the terms REST API and RESTful API interchangeably.

The following are some of the principles of the REST architectural style:

Uniform interface

The uniform interface is fundamental to the design of any RESTful webservice. It indicates
that the server transfers information in a standard format. The formatted resource is called a
representation in REST. This format can be different from the internal representation of the
resource on the server application. For example, the server can store data as text but send it in an
HTML representation format.

Uniform interface imposes four architectural constraints:

1. Requests should identify resources. They do so by using a uniform resource identifier.

2. Clients have enough information in the resource representation to modify or delete the resource
if they want to. The server meets this condition by sending metadata that describes the resource
further.

3. Clients receive information about how to process the representation further. The server achieves
this by sending self-descriptive messages that contain metadata about how the client can best
use them.

4. Clients receive information about all other related resources they need to complete a task. The
server achieves this by sending hyperlinks in the representation so that clients can dynamically
discover more resources.

Statelessness

In REST architecture, statelessness refers to a communication method in which the server
completes every client request independently of all previous requests. Clients can request
resources in any order, and every request is stateless or isolated from other requests. This REST API
design constraint implies that the server can completely understand and fulfill the request every
time.

Uniform interface 5

AWS AppSync Developer Guide

Layered system

In a layered system architecture, the client can connect to other authorized intermediaries between
the client and server, and it will still receive responses from the server. Servers can also pass on
requests to other servers. You can design your RESTful web service to run on several servers with
multiple layers such as security, application, and business logic, working together to fulfill client
requests. These layers remain invisible to the client.

Cacheability

RESTful web services support caching, which is the process of storing some responses on the
client or on an intermediary to improve server response time. For example, suppose that you
visit a website that has common header and footer images on every page. Every time you visit
a new website page, the server must resend the same images. To avoid this, the client caches or
stores these images after the first response and then uses the images directly from the cache.
RESTful web services control caching by using API responses that define themselves as cacheable
or noncacheable.

What is a RESTful API?

RESTful API is an interface that two computer systems use to exchange information securely over
the internet. Most business applications have to communicate with other internal and third-party
applications to perform various tasks. For example, to generate monthly payslips, your internal
accounts system has to share data with your customer's banking system to automate invoicing
and communicate with an internal timesheet application. RESTful APIs support this information
exchange because they follow secure, reliable, and efficient software communication standards.

How do RESTful APIs work?

The basic function of a RESTful API is the same as browsing the internet. The client contacts the
server by using the API when it requires a resource. API developers explain how the client should
use the REST API in the server application API documentation. These are the general steps for any
REST API call:

1. The client sends a request to the server. The client follows the API documentation to format the
request in a way that the server understands.

2. The server authenticates the client and confirms that the client has the right to make that
request.

Layered system 6

AWS AppSync Developer Guide

3. The server receives the request and processes it internally.

4. The server returns a response to the client. The response contains information that tells the
client whether the request was successful. The response also includes any information that the
client requested.

The REST API request and response details vary slightly depending on how the API developers
design the API.

Why Use GraphQL over REST?

REST is one of the cornerstone architectural styles of web APIs. However, as the world becomes
more interconnected, the need to develop robust and scalable applications will become a more
pressing issue. While REST is currently the industry standard for building web APIs, there are
several recurring drawbacks to RESTful implementations that have been identified:

1. Data requests: Using RESTful APIs, you would typically request the data you need through
endpoints. The problem arises when you have data that may not be so neatly packaged. The
data you need may be sitting behind multiple layers of abstraction, and the only way to fetch
the data is by using multiple endpoints, which means making multiple requests to extract all of
the data.

2. Overfetching and underfetching: To add to the problems of multiple requests, the data from
each endpoint is strictly defined, meaning you will return whatever data was defined for that
API, even if you didn't technically want it.

This can result in over-fetching, which means our requests return superfluous data. For example,
let's say you're requesting company personnel data and want to know the names of the
employees in a certain department. The endpoint that returns the data will contain the names,
but it might also contain other data like job title or date of birth. Because the API is fixed, you
can't just request the names alone; the rest of the data comes with it.

The opposite situation in which we don't return enough data is called under-fetching. To get all
of the requested data, you may have to make multiple requests to the service. Depending on
how the data was structured, you could run into inefficient queries resulting in issues like the
dreaded n+1 problem.

3. Slow development iterations: Many developers tailor their RESTful APIs to fit the flow of
their applications. However, as their applications grow, both the front- and backends may
require extensive changes. As a result, the APIs may no longer fit the shape of the data in a way

Why Use GraphQL over REST? 7

AWS AppSync Developer Guide

that's efficient or impactful. This results in slower product iterations due to the need for API
modifications.

4. Performance at scale: Due to these compounding issues, there are many areas where scalability
will be impacted. Performance on the application side may be impacted because your requests
will return too much data or too little (resulting in more requests). Both situations cause
unnecessary strain on the network resulting in poor performance. On the developer side, the
speed of development may be reduced because your APIs are fixed and no longer fit the data
they're requesting.

GraphQL's selling point is to overcome the drawbacks of REST. Here are some of the key solutions
GraphQL offers to developers:

1. Single endpoints: GraphQL uses a single endpoint to query data. There's no need to build
multiple APIs to fit the shape of the data. This results in fewer requests going over the network.

2. Fetching: GraphQL solves the perennial issues of over- and under-fetching by simply defining
the data you need. GraphQL lets you shape the data to fit your needs so you only receive what
you asked for.

3. Abstraction: GraphQL APIs contain a few components and systems that describe the data
using a language-agnostic standard. In other words, the shape and structure of the data are
standardized so both the front- and backends know how it will be sent over the network. This
allows developers on both ends to work with GraphQL's systems and not around them.

4. Rapid iterations: Because of the standardization of data, changes on one end of development
may not be required on the other. For example, frontend presentation changes may not result
in extensive backend changes because GraphQL allows the data specification to be modified
readily. You can simply define or modify the shape of the data to fit the needs of the application
as it grows. This results in less potential development work.

These are only some of the benefits of GraphQL. In the next few sections, you'll learn how
GraphQL is structured and the properties that make it a unique alternative to REST.

Components of a GraphQL API

A standard GraphQL API is composed of a single schema that handles the shape of the data that
will be queried. Your schema is linked to one or more of your data sources like a database or
Lambda function. In between the two sits one or more resolvers that handle the business logic
for your requests. Each component plays an important role in your GraphQL implementation. The

Components of a GraphQL API 8

AWS AppSync Developer Guide

following sections will introduce these three components and the role they play in the GraphQL
service.

Topics

• Schemas

• Data sources

• Resolvers

Schemas

The GraphQL schema is the foundation of a GraphQL API. It serves as the blueprint that defines the
shape of your data. It's also a contract between your client and server that defines how your data
will be retrieved and/or modified.

GraphQL schemas are written in the Schema Definition Language (SDL). SDL is composed of types
and fields with an established structure:

• Types: Types are how GraphQL defines the shape and behavior of the data. GraphQL supports
a multitude of types that will be explained later in this section. Each type that's defined in your
schema will contain its own scope. Inside the scope will be one or more fields that can contain a
value or logic that will be used in your GraphQL service. Types fill many different roles, the most
common being objects or scalars (primitive value types).

• Fields: Fields exist within the scope of a type and hold the value that's requested from the
GraphQL service. These are very similar to variables in other programming languages. The shape

Schemas 9

AWS AppSync Developer Guide

of the data you define in your fields will determine how the data is structured in a request/
response operation. This allows developers to predict what will be returned without knowing
how the backend of the service is implemented.

To visualize what a schema would look like, let's review the contents of a simple GraphQL
schema. In production code, your schema will typically be in a file called schema.graphql or
schema.json. Let's assume that we're peering into a project that implements a GraphQL service.
This project is storing company personnel data, and the schema.graphql file is being used to
retrieve personnel data and add new personnel to a database. The code may look like this:

schema.graphql

type Person {
 id: ID!
 name: String
 age: Int
}
type Query {
 people: [Person]
}
type Mutation {
 addPerson(id: ID!, name: String, age: Int): Person
}

We can see that there are three types defined in the schema: Person, Query, and Mutation.
Looking at Person, we can guess that this is the blueprint for an instance of a company employee,
which would make this type an object. Inside its scope, we see id, name, and age. These are the
fields that define the properties of a Person. This means our data source stores each Person's
name as a String scalar (primitive) type and age as an Int scalar (primitive) type. The id acts as a
special, unique identifier for each Person. It's also a required value as denoted by the ! symbol.

The next two object types behave differently. GraphQL reserves a few keywords for special object
types that define how the data will be populated in the schema. A Query type will retrieve data
from the source. In our example, our query might retrieve Person objects from a database. This
may remind you of GET operations in RESTful terminology. A Mutation will modify data. In our
example, our mutation may add more Person objects to the database. This may remind you
of state-changing operations like PUT or POST. The behaviors of all special object types will be
explained later in this section.

Schemas 10

AWS AppSync Developer Guide

Let's assume the Query in our example will retrieve something from the database. If we look at the
fields of Query, we see one field called people. Its field value is [Person]. This means we want
to retrieve some instance of Person in the database. However, the addition of brackets means that
we want to return a list of all Person instances and not just a specific one.

The Mutation type is responsible for performing state-changing operations like data modification.
A mutation is responsible for performing some state-changing operation on the data source. In our
example, our mutation contains an operation called addPerson that adds a new Person object to
the database. The mutation uses a Person and expects an input for the id, name, and age fields.

At this point, you may be wondering how operations like addPerson work without a code
implementation given that it supposedly performs some behavior and looks a lot like a function
with a function name and parameters. Currently, it won't work because a schema only serves as the
declaration. To implement the behavior of addPerson, we would have to add a resolver to it. A
resolver is a unit of code that is executed whenever its associated field (in this case, the addPerson
operation) is called. If you want to use an operation, you'll have to add the resolver implementation
at some point. In a way, you can think of the schema operation as the function declaration and the
resolver as the definition. Resolvers will be explained in a different section.

This example shows only the simplest ways a schema can manipulate data. You build complex,
robust, and scalable applications by leveraging the features of GraphQL and AWS AppSync. In
the next section, we'll define all of the different types and field behaviors you can utilize in your
schema.

GraphQL types

GraphQL supports many different types. As you saw in the previous section, types define the shape
or behavior of your data. They are the fundamental building blocks of a GraphQL schema.

Types can be categorized into inputs and outputs. Inputs are types that are allowed to be passed
in as the argument for the special object types (Query, Mutation, etc.), whereas output types are
strictly used to store and return data. A list of types and their categorizations are listed below:

• Objects: An object contains fields describing an entity. For instance, an object could
be something like a book with fields describing its characteristics like authorName,
publishingYear, etc. They are strictly output types.

• Scalars: These are primitive types like int, string, etc. They are typically assigned to fields. Using
the authorName field as an example, it could be assigned the String scalar to store a name like
"John Smith". Scalars can be both input and output types.

Schemas 11

AWS AppSync Developer Guide

• Inputs: Inputs allow you to pass a group of fields as an argument. They are structured very
similarly to objects, but they can be passed in as arguments to special objects. Inputs allow you
to define scalars, enums, and other inputs in its scope. Inputs can only be input types.

• Special objects: Special objects perform state-changing operations and do the bulk of the heavy
lifting of the service. There are three special object types: query, mutation, and subscription.
Queries typically fetch data; mutations manipulate data; subscriptions open and maintain a two-
way connection between clients and servers for constant communication. Special objects are
neither input nor output given their functionality.

• Enums: Enums are predefined lists of legal values. If you call an enum, its values can only
be what's defined in its scope. For example, if you had an enum called trafficLights
depicting a list of traffic signals, it could have values like redLight and greenLight but not
purpleLight. A real traffic light will only have so many signals, so you could use the enum
to define them and force them to be the only legal values when referencing trafficLight.
Enums can be both input and output types.

• Unions/interfaces: Unions allow you to return one or more things in a request depending on
the data that was requested by the client. For example, if you had a Book type with a title
field and an Author type with a name field, you could create a union between both types. If your
client wanted to query a database for the phrase "Julius Caesar", the union could return Julius
Caesar (the play by William Shakespeare) from the Book title and Julius Caesar (the author of
Commentarii de Bello Gallico) from the Author name. Unions can only be output types.

Interfaces are sets of fields that objects must implement. This is a bit similar to interfaces in
programming languages like Java where you must implement the fields defined in the interface.
For example, let's say you made an interface called Book that contained a title field. Let's
say you later created a type called Novel that implemented Book. Your Novel would have to
include a title field. However, your Novel could also include other fields not in the interface
like pageCount of ISBN. Interfaces can only be output types.

The following sections will explain how each type works in GraphQL.

Objects

GraphQL objects are the main type you will see in production code. In GraphQL, you can think
of an object as a grouping of different fields (similar to variables in other languages), with each
field being defined by a type (typically a scalar or another object) that can hold a value. Objects
represent a unit of data that can be retrieved/manipulated from your service implementation.

Schemas 12

AWS AppSync Developer Guide

Object types are declared using the Type keyword. Let's modify our schema example slightly:

type Person {
 id: ID!
 name: String
 age: Int
 occupation: Occupation
}

type Occupation {
 title: String
}

The object types here are Person and Occupation. Each object has its own fields with its
own types. One feature of GraphQL is the ability to set fields to other types. You can see the
occupation field in Person contains an Occupation object type. We can make this association
because GraphQL is only describing the data and not the implementation of the service.

Scalars

Scalars are essentially primitive types that hold values. In AWS AppSync, there are two types of
scalars: the default GraphQL scalars and AWS AppSync scalars. Scalars are typically used to store
field values within object types. Default GraphQL types include Int, Float, String, Boolean,
and ID. Let's use the previous example again:

type Person {
 id: ID!
 name: String
 age: Int
 occupation: Occupation
}

type Occupation {
 title: String
}

Singling out the name and title fields, both hold a String scalar. Name could return a string
value like "John Smith" and the title could return something like "firefighter". Some GraphQL
implementations also support custom scalars using the Scalar keyword and implementing the
type's behavior. However, AWS AppSync currently doesn't support custom scalars. For a list of
scalars, see Scalar types in AWS AppSync.

Schemas 13

https://docs.aws.amazon.com/appsync/latest/devguide/scalars.html

AWS AppSync Developer Guide

Inputs

Due to the concept of input and output types, there are certain restrictions in place when passing
in arguments. Types that commonly need to be passed in, especially objects, are restricted. You can
use the input type to bypass this rule. Inputs are types that contain scalars, enums, and other input
types.

Inputs are defined using the input keyword:

type Person {
 id: ID!
 name: String
 age: Int
 occupation: Occupation
}

type Occupation {
 title: String
}

input personInput {
 id: ID!
 name: String
 age: Int
 occupation: occupationInput
}

input occupationInput {
 title: String
}

As you can see, we can have separate inputs that mimic the original type. These inputs will often be
used in your field operations like this:

type Person {
 id: ID!
 name: String
 age: Int
 occupation: Occupation
}

type Occupation {

Schemas 14

AWS AppSync Developer Guide

 title: String
}

input occupationInput {
 title: String
}

type Mutation {
 addPerson(id: ID!, name: String, age: Int, occupation: occupationInput): Person
}

Note how we're still passing occupationInput in place of Occupation to create a Person.

This is but one scenario for inputs. They don't necessarily need to copy objects 1:1, and in
production code, you most likely won't be using it like this. It's good practice to take advantage of
GraphQL schemas by defining only what you need to input as arguments.

Also, the same inputs can be used in multiple operations, but we don't recommend doing this.
Each operation should ideally contain its own unique copy of the inputs in case the schema's
requirements change.

Special objects

GraphQL reserves a few keywords for special objects that define some of the business logic for how
your schema will retrieve/manipulate data. At most, there can be one of each of these keywords
in a schema. They act as entry points for all requested data that your clients run against your
GraphQL service.

Special objects are also defined using the type keyword. Though they're used differently from
regular object types, their implementation is very similar.

Queries

Queries are very similar to GET operations in that they perform a read-only fetch to get data
from your source. In GraphQL, the Query defines all of the entry points for clients making
requests against your server. There will always be a Query in your GraphQL implementation.

Here are the Query and modified object types we used in our previous schema example:

type Person {
 id: ID!

Schemas 15

AWS AppSync Developer Guide

 name: String
 age: Int
 occupation: Occupation
}
type Occupation {
 title: String
}
type Query {
 people: [Person]
}

Our Query contains a field called people that returns a list of Person instances from the data
source. Let's say we need to change the behavior of our application, and now we need to return
a list of only the Occupation instances for some separate purpose. We could simply add it to
the query:

type Query {
 people: [Person]
 occupations: [Occupation]
}

In GraphQL, we can treat our query as the single source of requests. As you can see, this is
potentially much simpler than RESTful implementations that might use different endpoints to
achieve the same thing (.../api/1/people and .../api/1/occupations).

Assuming we have a resolver implementation for this query, we can now perform an actual
query. While the Query type exists, we have to explicitly call it for it to run in the application's
code. This can be done using the query keyword:

query getItems {
 people {
 name
 }
 occupations {
 title
 }
}

As you can see, this query is called getItems and returns people (a list of Person objects) and
occupations (a list of Occupation objects). In people, we're returning only the name field

Schemas 16

AWS AppSync Developer Guide

of each Person, while we're returning the title field of each Occupation. The response may
look like this:

{
 "data": {
 "people": [
 {
 "name": "John Smith"
 },
 {
 "name": "Andrew Miller"
 },
 .
 .
 .
],
 "occupations": [
 {
 "title": "Firefighter"
 },
 {
 "title": "Bookkeeper"
 },
 .
 .
 .
]
 }
}

The example response shows how the data follows the shape of the query. Each entry retrieved
is listed within the scope of the field. people and occupations are returning things as
separate lists. Though useful, it might be more convenient to modify the query to return a list
of people's names and occupations:

query getItems {
 people {
 name
 occupation {
 title
 }
}

Schemas 17

AWS AppSync Developer Guide

This is a legal modification because our Person type contains an occupation field of type
Occupation. When listed within the scope of people, we're returning each Person's name
along with their associated Occupation by title. The response may look like this:

}
 "data": {
 "people": [
 {
 "name": "John Smith",
 "occupation": {
 "title": "Firefighter"
 }
 },
 {
 "name": "Andrew Miller",
 "occupation": {
 "title": "Bookkeeper"
 }
 },
 .
 .
 .
]
 }
}

Mutations

Mutations are similar to state-changing operations like PUT or POST. They perform a write
operation to modify data in the source, then fetch the response. They define your entry points
for data modification requests. Unlike queries, a mutation may or may not be included in the
schema depending on the project's needs. Here's the mutation from the schema example:

type Mutation {
 addPerson(id: ID!, name: String, age: Int): Person
}

The addPerson field represents one entry point that adds a Person to the data source.
addPerson is the field name; id, name, and age are the parameters; and Person is the return
type. Looking back at the Person type:

Schemas 18

AWS AppSync Developer Guide

type Person {
 id: ID!
 name: String
 age: Int
 occupation: Occupation
}

We added the occupation field. However, we cannot set this field to Occupation directly
because objects cannot be passed in as arguments; they are strictly output types. We should
instead pass an input with the same fields as an argument:

input occupationInput {
 title: String
}

We can also easily update our addPerson to include this as a parameter when making new
Person instances:

type Mutation {
 addPerson(id: ID!, name: String, age: Int, occupation: occupationInput): Person
}

Here's the updated schema:

type Person {
 id: ID!
 name: String
 age: Int
 occupation: Occupation
}

type Occupation {
 title: String
}

input occupationInput {
 title: String
}

type Mutation {
 addPerson(id: ID!, name: String, age: Int, occupation: occupationInput): Person

Schemas 19

AWS AppSync Developer Guide

}

Note that occupation will pass in the title field from occupationInput to complete
the creation of the Person instead of the original Occupation object. Assuming we have a
resolver implementation for addPerson, we can now perform an actual mutation. While the
Mutation type exists, we have to explicitly call it for it to run in the application's code. This can
be done using the mutation keyword:

mutation createPerson {
 addPerson(id: ID!, name: String, age: Int, occupation: occupationInput) {
 name
 age
 occupation {
 title
 }
 }
}

This mutation is called createPerson, and addPerson is the operation. To create a new
Person, we can enter the arguments for id, name, age, and occupation. In the scope of
addPerson, we can also see other fields like name, age, etc. This is your response; these are the
fields that will be returned after the addPerson operation is complete. Here's the final part of
the example:

mutation createPerson {
 addPerson(id: "1", name: "Steve Powers", age: "50", occupation: "Miner") {
 id
 name
 age
 occupation {
 title
 }
 }
}

Using this mutation, a result might look like this:

{
 "data": {
 "addPerson": {
 "id": "1",

Schemas 20

AWS AppSync Developer Guide

 "name": "Steve Powers",
 "age": "50",
 "occupation": {
 "title": "Miner"
 }
 }
 }
}

As you can see, the response returned the values we requested in the same format that was
defined in our mutation. It's good practice to return all values that were modified to reduce
confusion and the need for more queries in the future. Mutations allow you to include multiple
operations within its scope. They will be run sequentially in the order listed in the mutation.
For example, if we create another operation called addOccupation that adds job titles to the
data source, we can call this in the mutation after addPerson. addPerson will be handled first
followed by addOccupation.

Subscriptions

Subscriptions use WebSockets to open a lasting, two-way connection between the server and
its clients. Typically, a client will subscribe, or listen, to the server. Whenever the server makes
a server-side change or performs an event, the subscribed client will receive the updates.
This type of protocol is useful when multiple clients are subscribed and need to be notified
about changes happening in the server or other clients. For instance, subscriptions can be
used to update social media feeds. There could be two users, User A and User B, who are both
subscribed to automatic notification updates whenever they receive direct messages. User A
on Client A could send a direct message to User B on Client B. User A's client would send the
direct message, which would be processed by the server. The server would then send the direct
message to User B's account while sending an automatic notification to Client B.

Here's an example of a Subscription that we could add to the schema example:

type Subscription {
 personAdded: Person
}

The personAdded field will send a message to subscribed clients whenever a new Person is
added to the data source. Assuming we have a resolver implementation for personAdded, we
can now use the subscription. While the Subscription type exists, we have to explicitly call it
for it to run in the application's code. This can be done using the subscription keyword:

Schemas 21

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications

AWS AppSync Developer Guide

subscription personAddedOperation {
 personAdded {
 id
 name
 }
}

The subscription is called personAddedOperation, and the operation is personAdded.
personAdded will return the id and name fields of new Person instances. Looking at the
mutation example, we added a Person using this operation:

addPerson(id: "1", name: "Steve Powers", age: "50", occupation: "Miner")

If our clients were subscribed to updates to the newly added Person, they might see this after
addPerson runs:

{
 "data": {
 "personAdded": {
 "id": "1",
 "name": "Steve Powers"
 }
 }
}

Below is a summary of what subscriptions offer:

Subscriptions are two-way channels that allow the client and server to receive quick, but steady,
updates. They typically use the WebSocket protocol, which creates standardized and secure
connections.

Subscriptions are nimble in that they reduce connection setup overhead. Once subscribed, a
client can just keep running on that subscription for long periods of time. They generally use
computing resources efficiently by allowing developers to tailor the lifetime of the subscription
and to configure what information will be requested.

In general, subscriptions allow the client to make multiple subscriptions at once. As it pertains
to AWS AppSync, subscriptions are only used for receiving real-time updates from the AWS
AppSync service. They cannot be used to perform queries or mutations.

Schemas 22

AWS AppSync Developer Guide

The main alternative to subscriptions is polling, which sends queries at set intervals to request
data. This process is typically less efficient than subscriptions and puts a lot of strain on both
the client and the backend.

One thing that wasn't mentioned in our schema example was the fact that your special object
types must also be defined in a schema root. So when you export a schema in AWS AppSync, it
might look like this:

schema.graphql

schema {
 query: Query
 mutation: Mutation
 subscription: Subscription
}

.

.

.

type Query {
 # code goes here
}
type Mutation {
 # code goes here
}
type Subscription {
 # code goes here
}

Enumerations

Enumerations, or enums, are special scalars that limit the legal arguments a type or field may
have. This means that whenever an enum is defined in the schema, its associated type or field will
be limited to the values in the enum. Enums are serialized as string scalars. Note that different
programming languages may handle GraphQL enums differently. For example, JavaScript has no
native enum support, so the enum values may be mapped to int values instead.

Enums are defined using the enum keyword. Here's an example:

Schemas 23

AWS AppSync Developer Guide

enum trafficSignals {
 solidRed
 solidYellow
 solidGreen
 greenArrowLeft
 ...
}

When calling the trafficLights enum, the argument(s) can only be solidRed, solidYellow,
solidGreen, etc. It's common to use enums to depict things that have a distinct but limited
number of choices.

Unions/Interfaces

See Interfaces and unions in GraphQL.

GraphQL fields

Fields exist within the scope of a type and hold the value that's requested from the GraphQL
service. These are very similar to variables in other programming languages. For example, here's a
Person object type:

type Person {
 name: String
 age: Int
}

The fields in this case are name and age and hold a String and Int value, respectively. Object
fields like the ones shown above can be used as the inputs in the fields (operations) of your queries
and mutations. For example, see the Query below:

type Query {
 people: [Person]
}

The people field is requesting all instances of Person from the data source. When you add or
retrieve a Person in your GraphQL server, you can expect the data to follow the format of your
types and fields, that is, the structure of your data in the schema determines how it'll be structured
in your response:

Schemas 24

https://docs.aws.amazon.com/appsync/latest/devguide/interfaces-and-unions.html

AWS AppSync Developer Guide

}
 "data": {
 "people": [
 {
 "name": "John Smith",
 "age": "50"
 },
 {
 "name": "Andrew Miller",
 "age": "60"
 },
 .
 .
 .
]
 }
}

Fields play an important role in structuring data. There are a couple of additional properties
explained below that can be applied to fields for more customization.

Lists

Lists return all items of a specified type. A list can be added to a field's type using brackets []:

type Person {
 name: String
 age: Int
}
type Query {
 people: [Person]
}

In Query, the brackets surrounding Person indicate that you want to return all instances of
Person from the data source as an array. In the response, the name and age values of each
Person will be returned as a single, delimited list:

}
 "data": {
 "people": [
 {

Schemas 25

AWS AppSync Developer Guide

 "name": "John Smith", # Data of Person 1
 "age": "50"
 },
 {
 "name": "Andrew Miller", # Data of Person 2
 "age": "60"
 },
 . # Data of Person N
 .
 .
]
 }
}

You aren't limited to special object types. You can also use lists in the fields of regular object types.

Non-nulls

Non-nulls indicate a field that cannot be null in the response. You can set a field to non-null by
using the ! symbol:

type Person {
 name: String!
 age: Int
}
type Query {
 people: [Person]
}

The name field cannot be explicitly null. If you were to query the data source and provided a null
input for this field, an error would be thrown.

You can combine lists and non-nulls. Compare these queries:

type Query {
 people: [Person!] # Use case 1
}

.

.

.

Schemas 26

AWS AppSync Developer Guide

type Query {
 people: [Person]! # Use case 2
}

.

.

.

type Query {
 people: [Person!]! # Use case 3
}

In use case 1, the list cannot contain null items. In use case 2, the list itself cannot be set to null.
In use case 3, the list and its items cannot be null. However, in any case, you can still return empty
lists.

As you can see, there are many moving components in GraphQL. In this section, we showed the
structure of a simple schema and the different types and fields a schema supports. In the following
section, you will discover the other components of a GraphQL API and how they work with the
schema.

Data sources

In the previous section, we learned that a schema defines the shape of your data. However, we
never explained where that data came from. In real projects, your schema is like a gateway that
handles all requests made to the server. When a request is made, the schema acts as the single
endpoint that interfaces with the client. The schema will access, process, and relay data from the
data source back to the client. See the infographic below:

Data sources 27

AWS AppSync Developer Guide

AWS AppSync and GraphQL superbly implement Backend For Frontend (BFF) solutions. They work
in tandem to reduce complexity at scale by abstracting the backend. If your service uses different
data sources and/or microservices, you can essentially abstract some of the complexity away by
defining the shape of the data of each source (subgraph) in a single schema (supergraph). This
means your GraphQL API is not limited to using one data source. You can associate any number
of data sources with your GraphQL API and specify in your code how they will interact with the
service.

As you can see in the infographic, the GraphQL schema contains all of the information clients
need to request data. This means everything can be processed in a single request rather than
multiple requests as is the case with REST. These requests go through the schema, which is the sole
endpoint of the service. When requests are processed, a resolver (explained in the next section)
executes its code to process the data from the relevant data source. When the response is returned,
the subgraph tied to the data source will be populated with the data in the schema.

AWS AppSync supports many different data source types. In the table below, we'll describe each
type, list some of the benefits of each, and provide useful links for additional context.

Data sources 28

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

Amazon DynamoDB "Amazon DynamoDB
is a fully managed
NoSQL database
service that provides
fast and predictab
le performance with
seamless scalability.
DynamoDB lets you
offload the administr
ative burdens of
operating and
scaling a distributed
database so that you
don't have to worry
about hardware
provisioning, setup
and configuration,
replication, software
patching, or cluster
scaling. DynamoDB
also offers encryptio
n at rest, which
eliminates the
operational burden
and complexity
involved in protecting
sensitive data."

• Performance at
scale: DynamoDB
is designed
around consisten
t performance at
any scale. This is
possible through
the use of partition
s. DynamoDB will
automatically
partition your
tables into several
allocations that
will be stored in
multiple SSDs
across several
nodes. This will
generally increase
network throughpu
t and reduce
latency.

• Capacity at
scale: DynamoDB
monitors your
traffic and allows
you to automatic
ally scale your
throughput if the
network remains
overloaded for
extended periods
of time.

• DynamoDB official
documentation

• Partitions

• Auto scaling

• Fault tolerance

• Monitoring

• Security

• GraphQL and
DynamoDB

• Resolver operations
for DynamoDB

• Pricing model

Data sources 29

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/monitoring.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/security.html
https://aws.amazon.com/graphql/graphql-dynamodb-data-modeling/
https://aws.amazon.com/graphql/graphql-dynamodb-data-modeling/
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html
https://aws.amazon.com/dynamodb/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

• Availability and
fault tolerance
: DynamoDB is
supported by
several physically
isolated Regions,
each containing
several physically
isolated Availability
Zones. DynamoDB
will automatic
ally switch to a
backup zone in the
event of a service
disruption. You can
also back up and
replicate your data
manually for data
assurance.

• Logging and
monitoring:
DynamoDB
provides several
analytical tools for
your tables. You
can monitor your
table's performan
ce and create
alarms to notify
you of drastic
changes to the
service.

Data sources 30

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

• Security:
DynamoDB follows
strict protocols
to ensure your
data complies with
your organization's
security requireme
nts.

• Integration with
AWS AppSync:
DynamoDB
is seamlessly
integrated with
our service. You
can create new
DynamoDB tables
and automatic
ally generate a
schema from them
to streamline
your developme
nt process. We
also provide an
entire collectio
n of operations
to easily request
data from existing
DynamoDB tables
in your account in
your resolver.

Data sources 31

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

AWS Lambda "AWS Lambda is a
compute service that
lets you run code
without provisioning
or managing servers.

Lambda runs your
code on a high-avai
lability compute
infrastructure and
performs all of
the administration
of the compute
resources, including
server and operating
system maintenan
ce, capacity provision
ing and automatic
scaling, and logging.
With Lambda, all
you need to do is
supply your code in
one of the language
runtimes that
Lambda supports."

• Pay-as-you-use
model: Lambda
only charges you
when you use their
resources. They
also allow you to
scale the amount
of resources used
with your applicati
on needs.

• Automatic scaling:
Sometimes your
application may
require extra
computing power
for a particular
process. Lambda
allows you to
automatically
scale computing
resources to fit
the needs of your
application.

• Faster deploymen
t times: You
can streamline
your developme
nt process via
a deployment
package. Use a
package to upload
your function code
to the Lambda

• Official documenta
tion

• Scaling

• deployment

• runtimes

• Lambda resolver
tutorial

• Pricing model

Data sources 32

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-package.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-lambda-resolvers-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-lambda-resolvers-js.html
https://aws.amazon.com/lambda/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

service. You can
then use their
runtime environme
nts to test and
execute your
functions.

• Versatility:
Lambda can be
used in a multitude
of use cases. You
can seamlessly
integrate Lambda
with third-par
ty services and
AWS services alike.
Some examples
include CI/CD
pipelines and mass
mailing services.

• Integration with
AWS AppSync: You
can easily invoke
your Lambda
functions in your
resolver to handle
requests. Our
service provides
a streamlined
request operation
to perform Lambda
calls. We allow
both single and
batched calls.

Data sources 33

https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-action-lambda-example-functions.html
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-action-lambda-example-functions.html

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

OpenSearch "Amazon OpenSearch
Service is a managed
service that makes
it easy to deploy,
operate, and scale
OpenSearch clusters
in the AWS Cloud.
Amazon OpenSearc
h Service supports
OpenSearch and
legacy Elasticsearch
OSS (up to 7.10,
the final open-sour
ce version of the
software). When you
create a cluster, you
have the option of
which search engine
to use.

OpenSearch is a
fully open-source
search and analytics
engine for use cases
such as log analytics
, real-time applicati
on monitoring,
and clickstream
analysis. For more
information, see
the OpenSearch
documentation.

• Scaling: You
can easily scale
the service to
fit your service
requirements
through OpenSearc
h Serverless.

• Data ingestion
: You can use
OpenSearch
Ingestion to
import, process,
and analyze data.
There are many
applications for
data ingestion,
which you can find
here.

• Security:
OpenSearch can
manage your AWS
security configura
tion including IAM,
CloudTrail, VPCs,
authentication, etc.

• Availability:
OpenSearch also
supports different
 Regions and
Availability Zones
in its service.

• Integration with
AWS AppSync: In

• Official documenta
tion

• Serverless

• Pricing model

Data sources 34

https://opensearch.org/docs/
https://opensearch.org/docs/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/use-cases-overview.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless.html
https://aws.amazon.com/opensearch-service/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

Amazon OpenSearc
h Service provision
s all the resources
for your OpenSearch
cluster and launches
it. It also automatic
ally detects and
replaces failed
OpenSearch Service
nodes, reducing the
overhead associate
d with self-managed
infrastructures. You
can scale your cluster
with a single API call
or a few clicks in the
console."

AWS AppSync, you
can use GraphQL
APIs to store and
retrieve data from
existing OpenSearc
h Service domains
in your account.

Data sources 35

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

HTTP endpoints You can use HTTP
endpoints as data
sources. AWS
AppSync can send
requests to the
endpoints with the
relevant informati
on like params and
payload. The HTTP
response will be
exposed to the
resolver, which will
return the final
response after it
finishes its operation
(s).

• Useful for simple
applications that
aren't as integrate
d with services like
Lambda.

• Resolver reference

Data sources 36

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-http-js.html

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

Amazon EventBridge "EventBridge is a
serverless service
that uses events to
connect applicati
on components
together, making
it easier for you to
build scalable event-
driven applicati
ons. Use it to route
events from sources
such as home-
grown applicati
ons, AWS services,
and third-party
software to consumer
applications across
your organizat
ion. EventBridge
provides a simple
and consistent way
to ingest, filter,
transform, and
deliver events so
you can build new
applications quickly."

• Event-driven
architecture: You
can take advantage
 of event-driven
architecture.

• Scheduling:
You can use
the EventBrid
ge Scheduler
to automate
your tasks and
rules using cron
expressions or set
time intervals as an
alternative to event
patterns.

• Pipes: Using
EventBridge Pipes,
you can replace the
event bus with a
pipe that includes
additional filtering
event patterns
and enrichmen
t through data
transforms before
sending the event
to the target.

• Integration with
AWS AppSync:
AWS AppSync
allows you to send
events to event

• Official documenta
tion

• Pipes

• Scheduler

• Resolver reference

• Pricing model

Data sources 37

https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduler.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-eventbridge-js.html
https://aws.amazon.com/eventbridge/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

buses using your
resolver.

Data sources 38

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

Relational databases "Amazon Relationa
l Database Service
(Amazon RDS) is
a web service that
makes it easier to set
up, operate, and scale
a relational database
in the AWS Cloud.
It provides cost-
efficient, resizable
capacity for an
industry-standard
relational database
and manages
common database
administration tasks."

• Managing made
easy: Periodica
lly, RDS performs
maintenance
on its resources.
Maintenance most
often involves
updates to the DB
instance's underlyin
g hardware,
underlying
operating system
(OS), or database
engine version.
Under normal
circumstances, you
can decide when to
perform updates
(exceptions include
security patches).

• Recommend
ations: RDS'
recommendation
feature provides
automated
suggestions for
fixing potential
issues in your
instance.

• Availability: RDS
is available in
different physical
Regions across the

• Official documenta
tion

• Features

• Maintenance

• Recommend
ations

• Storage options

• Availability

• Security

• Pricing model

Data sources 39

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDSFeaturesRegionsDBEngines.grids.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/accessing-monitoring.html#USER_Recommendations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/accessing-monitoring.html#USER_Recommendations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://aws.amazon.com/rds/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

world. You can
easily distribut
e your database
needs across
different nodes
to provide better
service to your
customers.

• Customisation:
RDS is tailored
to meet the
requirements of
large corporati
ons. RDS provides
various options
for computing,
quick deploymen
t, scalability, and
storage.

• Security: RDS is
integrated with
several tools
and services to
maintain database
security on the
user, database, and
network levels.

• Integration with
AWS AppSync:
If you're looking
for a mature
backend solution,
AWS AppSync

Data sources 40

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

allows you to send,
process, store, and
return data using
your instance as
the data source.

None data source If you aren't planning
on using a data
source service, you
can set it to none.
A none data source,
while still explicitly
categorized as a data
source, isn't a storage
medium. Despite
that, it's still useful
in certain instances
for data manipulation
and pass-throughs.

• Potentially useful
for things like data
conversion

• Useful when
resolving
something locally

• Resolver reference

Tip

For more information about how data sources interact with AWS AppSync, see Attaching a
data source.

Resolvers

From the previous sections, you learned about the components of the schema and data source.
Now, we need to address how the schema and data sources interact. It all begins with the resolver.

A resolver is a unit of code that handles how that field's data will be resolved when a request is
made to the service. Resolvers are attached to specific fields within your types in your schema.
They are most commonly used to implement the state-changing operations for your query,

Resolvers 41

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-none-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html

AWS AppSync Developer Guide

mutation, and subscription field operations. The resolver will process a client's request, then return
the result, which can be a group of output types like objects or scalars:

Resolver runtime

In AWS AppSync, you must first specify a runtime for your resolver. A resolver runtime indicates
the environment in which a resolver is executed. It also dictates the language your resolvers will
be written in. AWS AppSync currently supports APPSYNC_JS for JavaScript and Velocity Template
Language (VTL). See JavaScript runtime features for resolvers and functions for JavaScript or
Resolver mapping template utility reference for VTL.

Resolver structure

Code-wise, resolvers can be structured in a couple of ways. There are unit and pipeline resolvers.

Unit resolvers

A unit resolver is composed of code that defines a single request and response handler that
are executed against a data source. The request handler takes a context object as an argument
and returns the request payload used to call your data source. The response handler receives a
payload back from the data source with the result of the executed request. The response handler
transforms the payload into a GraphQL response to resolve the GraphQL field.

Resolvers 42

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference.html

AWS AppSync Developer Guide

Pipeline resolvers

When implementing pipeline resolvers, there is a general structure they follow:

• Before step: When a request is made by the client, the resolvers for the schema fields being used
(typically your queries, mutations, subscriptions) are passed the request data. The resolver will
begin processing the request data with a before step handler, which allows some preprocessing
operations to be performed before the data moves through the resolver.

• Function(s): After the before step runs, the request is passed to the functions list. The first
function in the list will execute against the data source. A function is a subset of your resolver's
code containing its own request and response handler. A request hander will take the request

Resolvers 43

AWS AppSync Developer Guide

data and perform operations against the data source. The response handler will process the
data source's response before passing it back to the list. If there is more than one function, the
request data will be sent to the next function in the list to be executed. Functions in the list
will be executed serially in the order defined by the developer. Once all functions have been
executed, the final result is passed to the after step.

• After step: The after step is a handler function that allows you to perform some final operations
on the final function's response before passing it to the GraphQL response.

Resolvers 44

AWS AppSync Developer Guide

Resolvers 45

AWS AppSync Developer Guide

Resolver handler structure

Handlers are typically functions called Request and Response:

export function request(ctx) {
 // Code goes here
}

export function response(ctx) {
 // Code goes here
}

In a unit resolver, there will only be one set of these functions. In a pipeline resolver, there will be a
set of these for the before and after step and an additional set per function. To visualize how this
could look, let's review a simple Query type:

type Query {
 helloWorld: String!
}

This is a simple query with one field called helloWorld of type String. Let's assume we always
want this field to return the string "Hello World". To implement this behavior, we need to add the
resolver to this field. In a unit resolver, we could add something like this:

export function request(ctx) {
 return {}
}

export function response(ctx) {
 return "Hello World"
}

The request can just be left blank because we're not requesting or processing data. We can also
assume our data source is None, indicating this code doesn't need to perform any invocations. The
response simply returns "Hello World". To test this resolver, we need to make a request using the
query type:

query helloWorldTest {
 helloWorld
}

Resolvers 46

AWS AppSync Developer Guide

This is a query called helloWorldTest that returns the helloWorld field. When executed, the
helloWorld field resolver also executes and returns the response:

{
 "data": {
 "helloWorld": "Hello World"
 }
}

Returning constants like this is the simplest thing you could do. In reality, you'll be returning inputs,
lists, and more. Here's a more complicated example:

type Book {
 id: ID!
 title: String
}

type Query {
 getBooks: [Book]
}

Here we're returning a list of Books. Let's assume we're using a DynamoDB table to store book
data. Our handlers may look like this:

/**
 * Performs a scan on the dynamodb data source
 */
export function request(ctx) {
 return { operation: 'Scan' };
}

/**
 * return a list of scanned post items
 */
export function response(ctx) {
 return ctx.result.items;
}

Our request used a built-in scan operation to search for all entries in the table, stored the findings
in the context, then passed it to the response. The response took the result items and returned
them in the response:

Resolvers 47

AWS AppSync Developer Guide

{
 "data": {
 "getBooks": {
 "items": [
 {
 "id": "abcdefgh-1234-1234-1234-abcdefghijkl",
 "title": "book1"
 },
 {
 "id": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "title": "book2"
 },

 ...

]
 }
 }
}

Resolver context

In a resolver, each step in the chain of handlers must be aware of the state of the data from the
previous steps. The result from one handler can be stored and passed to another as an argument.
GraphQL defines four basic resolver arguments:

Resolver base arguments Description

obj, root, parent, etc. The result of the parent.

args The arguments provided to the field in the
GraphQL query.

context A value which is provided to every resolver
and holds important contextual information
like the currently logged in user, or access to a
database.

Resolvers 48

AWS AppSync Developer Guide

Resolver base arguments Description

info A value which holds field-specific informati
on relevant to the current query as well as the
schema details.

In AWS AppSync, the context (ctx) argument can hold all of the data mentioned above. It's an
object that's created per request and contains data like authorization credentials, result data,
errors, request metadata, etc. The context is an easy way for programmers to manipulate data
coming from other parts of the request. Take this snippet again:

/**
 * Performs a scan on the dynamodb data source
 */
export function request(ctx) {
 return { operation: 'Scan' };
}

/**
 * return a list of scanned post items
 */
export function response(ctx) {
 return ctx.result.items;
}

The request is given the context (ctx) as the argument; this is the state of the request. It performs
a scan for all items in a table, then stores the result back in the context in result. The context is
then passed to the response argument, which accesses the result and returns its contents.

Requests and Parsing

When you make a query to your GraphQL service, it must run through a parsing and validation
process before being executed. Your request will be parsed and translated into an abstract syntax
tree. The content of the tree is validated by running through several validation algorithms against
your schema. After the validation step, the nodes of the tree are traversed and processed. Resolvers
are invoked, the results are stored in the context, and the response is returned. For example, take
this query:

query {

Resolvers 49

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

 Person { //object type
 name //scalar
 age //scalar
 }
}

We're returning Person with a name and age fields. When running this query, the tree will look
something like this:

From the tree, it appears that this request will search the root for the Query in the schema. Inside
of the query, the Person field will be resolved. From previous examples, we know that this could
be an input from the user, a list of values, etc. Person is most likely tied to an object type holding
the fields we need (name and age). Once these two child fields are found, they are resolved in the
order given (name followed by age). Once the tree is completely resolved, the request is completed
and will be sent back to the client.

Resolvers 50

AWS AppSync Developer Guide

Additional properties of GraphQL

GraphQL consists of several design principles to maintain simplicity and robustness at scale.

Declarative

GraphQL is declarative, which means the user will describe (shape) the data by only declaring the
fields they want to query. The response will only return the data for these properties. For example,
here's an operation that retrieves a Book object in a DynamoDB table with the ISBN 13 id value of
9780199536061:

{
 getBook(id: "9780199536061") {
 name
 year
 author
 }
}

The response will return the fields in the payload (name, year, and author) and nothing else:

{
 "data": {
 "getBook": {
 "name": "Anna Karenina",
 "year": "1878",
 "author": "Leo Tolstoy",
 }
 }
}

Because of this design principle, GraphQL eliminates the perennial issues of over- and under-
fetching that REST APIs deal with in complex systems. This results in more efficient data gathering
and improved network performance.

Hierarchical

GraphQL is flexible in that the data requested can be shaped by the user to fit the needs of the
application. Requested data always follows the types and syntax of the properties defined in

Additional properties of GraphQL 51

AWS AppSync Developer Guide

your GraphQL API. For instance, the following snippet shows the getBook operation with a new
field scope called quotes that returns all stored quote strings and pages linked to the Book
9780199536061:

{
 getBook(id: "9780199536061") {
 name
 year
 author
 quotes {
 description
 page
 }
 }
}

Running this query returns the following result:

{
 "data": {
 "getBook": {
 "name": "Anna Karenina",
 "year": "1878",
 "author": "Leo Tolstoy",
 "quotes": [
 {
 "description": "The highest Petersburg society is essentially one: in it
 everyone knows everyone else, everyone even visits everyone else.",
 "page": 135
 },
 {
 "description": "Happy families are all alike; every unhappy family is
 unhappy in its own way.",
 "page": 1
 },
 {
 "description": "To Konstantin, the peasant was simply the chief partner in
 their common labor.",
 "page": 251
 }
]
 }
 }

Hierarchical 52

AWS AppSync Developer Guide

}

As you can see, the quotes fields linked to the requested book was returned as an array in the
same format that was described by our query. Although it wasn't shown here, GraphQL has the
added advantage of not being particular about the location of the data it's retrieving. Books and
quotes could be stored separately, but GraphQL will still retrieve the information so long as the
association exists. This means your query can retrieve multitudes of standalone data in a single
request.

Introspective

GraphQL is self-documenting, or introspective. It supports several built-in operations that allow
users to view the underlying types and fields within the schema. For example, here's a Foo type
with a date and description field:

type Foo {
 date: String
 description: String
}

We could use the _type operation to find the typing metadata underneath the schema:

{
 __type(name: "Foo") {
 name # returns the name of the type
 fields { # returns all fields in the type
 name # returns the name of each field
 type { # returns all types for each field
 name # returns the scalar type
 }
 }
 }
}

This will return a response:

{
 "__type": {
 "name": "Foo", # The type name
 "fields": [

Introspective 53

AWS AppSync Developer Guide

 {
 "name": "date", # The date field
 "type": { "name": "String" } # The date's type
 },
 {
 "name": "description", # The description field
 "type": { "name": "String" } # The description's type
 },
]
 }
}

This feature can be used to find out what types and fields a particular GraphQL schema supports.
GraphQL supports a wide variety of these introspective operations. For more information, see
Introspection.

Strong typing

GraphQL supports strong typing through its types and fields system. When you define something
in your schema, it must have a type that can be validated before runtime. It must also follow
GraphQL's syntax specification. This concept is no different from programming in other languages.
For example, here's the Foo type from earlier:

type Foo {
 date: String
 description: String
}

We can see that Foo is the object that will be created. Inside an instance of Foo, there will be a
date and description field, both of the String primitive type (scalar). Syntactically, we see that
Foo was declared, and its fields exist inside its scope. This combination of type checking and logical
syntax ensures that your GraphQL API is concise and self-evident. GraphQL's typing and syntax
specification can be found here.

Strong typing 54

https://graphql.org/learn/introspection/
https://spec.graphql.org/

AWS AppSync Developer Guide

Getting started: Creating your first GraphQL API

You can use the AWS AppSync console to configure and launch a GraphQL API. GraphQL APIs
generally require three components:

1. GraphQL schema - Your GraphQL schema is the blueprint of the API. It defines the types and
fields that you can request when an operation is executed. To populate the schema with data,
you must connect data sources to the GraphQL API. In this quickstart guide, we'll be creating a
schema using a predefined model.

2. Data sources- These are the resources that contain the data for populating your GraphQL API.
This can be a DynamoDB table, Lambda function, etc. AWS AppSync supports a multitude of
data sources to build robust and scalable GraphQL APIs. Data sources are linked to fields in the
schema. Whenever a request is performed on a field, the data from the source populates the
field. This mechanism is controlled by the resolver. In this quickstart guide, we'll be creating a
data source using a predefined model alongside the schema.

3. Resolvers - Resolvers are responsible for linking the schema field to the data source. They
retrieve the data from the source, then return the result based on what was defined by the field.
AWS AppSync supports both JavaScript and VTL for writing resolvers for your GraphQL APIs. In
this quickstart guide, the resolvers will be automatically generated based on the schema and the
data source. We won't be delving into this in this section.

AWS AppSync supports the creation and configuration of all GraphQL components. When you open
the console, you can use the following methods to create your API:

1. Designing a customized GraphQL API by generating it through a predefined model and setting
up a new DynamoDB table (data source) to support it.

2. Designing a GraphQL API with a blank schema and no data sources or resolvers.

3. Using a DynamoDB table to import data and generate your schema's types and fields.

4. Using AWS AppSync's WebSocket capabilities and Pub/Sub architecture to develop real-time
APIs.

5. Using existing GraphQL APIs (source APIs) to link to a Merged API.

55

AWS AppSync Developer Guide

Note

We recommend reviewing the Designing a schema section before working with more
advanced tools. These guides will explain simpler examples that you can use conceptually
to build more complex applications in AWS AppSync.

AWS AppSync also supports several non-console options to create GraphQL APIs. These include:

1. AWS Amplify

2. AWS SAM

3. AWS CloudFormation

4. The CDK

The following example will show you how to create the basic components of a GraphQL API using
predefined models and DynamoDB.

Topics

• Step 1: Launch a schema

• Step 2: Take a tour of the console

• Step 3: Add data with a GraphQL mutation

• Step 4: Retrieve data with a GraphQL query

• Supplemental sections

Step 1: Launch a schema

In this example, you will create a Todo API that allows users to create Todo items for daily chore
reminders like Finish task or Pick up groceries. This API will demonstrate how to use
GraphQL operations where the state persists in a DynamoDB table.

Conceptually, there are three major steps to creating your first GraphQL API. You must define
the schema (types and fields), attach your data source(s) to your field(s), then write the resolver
that handles the business logic. However, the console experience changes the order of this. We
will begin by defining how we want our data source to interact with our schema, then define the
schema and resolver later.

Step 1: Launch a schema 56

AWS AppSync Developer Guide

To create your GraphQL API

1. Sign in to the AWS Management Console and open the AppSync console.

2. In the Dashboard, choose Create API.

3. While GraphQL APIs is selected, choose Design from scratch. Then, choose Next.

4. For API name, change the prepopulated name to Todo API, then choose Next.

Note

There are also other options present here, but we won't be using them for this
example.

5. In the Specify GraphQL resources section, do the following:

a. Choose Create type backed by a DynamoDB table now.

Note

This means we are going to create a new DynamoDB table to attach as a data
source.

b. In the Model Name field, enter Todo.

Note

Our first requirement is to define our schema. This Model Name will be the type
name, so what you're really doing is creating a type called Todo that will exist in
the schema:

type Todo {}

c. Under Fields, do the following:

i. Create a field named id, with the type ID, and required set to Yes.

Step 1: Launch a schema 57

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

Note

These are the fields that will exist within the scope of your Todo type. Your
field name here will be called id with a type of ID!:

type Todo {
 id: ID!
}

AWS AppSync supports multiple scalar values for different use cases.

ii. Using Add new field, create four additional fields with the Name values set to name,
when, where, and description. Their Type values will be String, and the Array
and Required values will both be set to No. It will look like this:

Step 1: Launch a schema 58

AWS AppSync Developer Guide

Note

The full type and its fields will look like this:

type Todo {
 id: ID!
 name: String
 when: String
 where: String
 description: String
}

Because we're creating a schema using this predefined model, it will also
be populated with several boilerplate mutations based on the type such as
create, delete, and update to help you populate your data source easily.

d. Under configure model table, enter a table name, such as TodoAPITable. Set the
Primary Key to id.

Note

We're essentially creating a new DynamoDB table called TodoAPITable that will
be attached to the API as our primary data source. Our primary key is set to the
required id field that we defined before this. Note that this new table is blank and
doesn't contain anything except for the partition key.

e. Choose Next.

6. Review your changes and choose Create API. Wait a moment to let the AWS AppSync service
finish creating your API.

You have successfully created a GraphQL API with its schema and DynamoDB data source. To
summarize the steps above, we chose to create a completely new GraphQL API. We defined the
name of the API, then added our schema definition by adding our first type. We defined the type
and its fields, then chose to attach a data source to one of the fields by creating a new DynamoDB
table with no data in it.

Step 1: Launch a schema 59

AWS AppSync Developer Guide

Step 2: Take a tour of the console

Before we add data to our DynamoDB table, we should review the basic features of the AWS
AppSync console experience. The AWS AppSync console tab on the left-hand side of the page
allows users to easily navigate to any of the major components or configuration options that AWS
AppSync provides:

Schema designer

Choose Schema to view the schema you just created. If you review the schema's contents, you'll
notice that it has already been loaded with a bunch of helper operations to streamline the
development process. In the Schema editor, if you scroll through the code, you'll eventually reach
the model you defined in the previous section:

type Todo {
 id: ID!
 name: String
 when: String
 where: String

Step 2: Take a tour of the console 60

AWS AppSync Developer Guide

 description: String
}

Your model became the base type that was used throughout your schema. We'll start adding data
to our data source using mutations that were automatically generated from this type.

Here are some additional tips and facts about the Schema editor:

1. The code editor has linting and error-checking capabilities that you can use when writing your
own apps.

2. The right side of the console shows the GraphQL types that have been created and resolvers on
different top-level types, such as queries.

3. When adding new types to a schema (for example, type User {...}), you can have AWS
AppSync provision DynamoDB resources for you. These include the proper primary key, sort
key, and index design to best match your GraphQL data access pattern. If you choose Create
Resources at the top and choose one of these user-defined types from the menu, you can
choose different field options in the schema design. We will cover this in the design a schema
section.

Resolver configuration

In the schema designer, the Resolvers section contains all of the types and fields in your schema.
If you scroll through the list of fields, you'll notice that you can attach resolvers to certain fields
by choosing Attach. This will open up a code editor in which you can write your resolver code.
AWS AppSync supports both VTL and JavaScript runtimes, which can be changed at the top of the
page by choosing Actions, then Update Runtime. At the bottom of the page, you can also create
functions that will run several operations in a sequence. However, resolvers are an advanced topic,
and we won't be covering that in this section.

Data sources

Choose Data sources to view your DynamoDB table. By choosing the Resource option (if
available), you can view your data source's configuration. In our example, this leads to the
DynamoDB console. From there, you can edit your data. You can also directly edit some of the
data by choosing the data source, then choosing Edit. If you ever need to delete your data source,
you can choose your data source, then select Delete. Lastly, you can create new data sources by
choosing Create data source, then configuring the name and type. Note that this option is for

Data sources 61

AWS AppSync Developer Guide

linking the AWS AppSync service to an existing resource. You still need to create the resource in
your account using the relevant service before AWS AppSync recognizes it.

Queries

Choose Queries to view your queries and mutations. When we created our GraphQL API using
our model, AWS AppSync automatically generated some helper mutations and queries for testing
purposes. In the query editor, the left-hand side contains the Explorer. This is a list showing all of
your mutations and queries. You can easily enable the operations and fields you want to use here
by clicking on their name values. This will cause the code to appear automatically in the center part
of the editor. Here, you can edit your mutations and queries by modifying values. At the bottom
of the editor, you have the Query Variable editor that allows you to enter the field values for the
input variables of your operations. Choosing Run at the top of the editor will bring up a drop-down
list to select the query/mutation to run. The output for this run will appear on the right-hand side
of the page. Back in the Explorer section at the top, you can choose an operation (Query, Mutation,
Subscription), then choose the + symbol to add a new instance of that particular operation. At the
top of the page, there will be another drop-down list that contains the authorization mode for your
query runs. However, we will not be covering that feature in this section (For more information, see
Security.).

Settings

Choose Settings to view some configuration options for your GraphQL API. Here, you can enable
some options like logging, tracing, and web application firewall functionality. You can also add
new authorization modes to protect your data from unwanted leaks to the public. However, these
options are more advanced and will not be covered in this section.

Note

The default authorization mode, API_KEY, uses an API key to test the application. This
is the base authorization that's given to all newly created GraphQL APIs. We recommend
that you use a different method for production. For the sake of the example in this section,
we will only use the API key. For more information about the supported authorization
methods, see Security.

Queries 62

AWS AppSync Developer Guide

Step 3: Add data with a GraphQL mutation

Your next step is to add data to your blank DynamoDB table using a GraphQL mutation. Mutations
are one of the fundamental operation types in GraphQL. They are defined in the schema and
allow you to manipulate data in your data source. In terms of REST APIs, these are very similar to
operations like PUT or POST.

To add data to your data source

1. If you haven't already done so, sign in to the AWS Management Console and open the AppSync
console.

2. Choose your API from the table.

3. In the tab to the left, choose Queries.

4. In the Explorer tab to the left of the table, you might see several mutations and queries
already defined in the query editor:

Note

This mutation is actually sitting in your schema as the Mutation type. It has the code:

type Mutation {
 createTodo(input: CreateTodoInput!): Todo
 updateTodo(input: UpdateTodoInput!): Todo
 deleteTodo(input: DeleteTodoInput!): Todo
}

As you can see, the operations here are similar to what's inside the query editor.

Step 3: Add data with a GraphQL mutation 63

https://console.aws.amazon.com/appsync/
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

AWS AppSync automatically generated these from the model we defined earlier. This example
will use the createTodo mutation to add entries to our TodoAPITable table.

5. Choose the createTodo operation by expanding it under the createTodo mutation:

Enable the checkboxes for all of the fields like the picture above.

Note

The attributes you see here are the different modifiable elements of the mutation.
Your input can be thought of as the parameter of createTodo. The various options
with checkboxes are the fields that will be returned in the response once an operation
is performed.

6. In the code editor in the center of the screen, you'll notice that the operation appears
underneath the createTodo mutation:

mutation createTodo($createtodoinput: CreateTodoInput!) {
 createTodo(input: $createtodoinput) {
 where
 when
 name
 id
 description
 }
}

Step 3: Add data with a GraphQL mutation 64

AWS AppSync Developer Guide

Note

To explain this snippet properly, we must also look at the schema code. The declaration
mutation createTodo($createtodoinput: CreateTodoInput!){} is the
mutation with one of its operations, createTodo. The full mutation is located in the
schema:

type Mutation {
 createTodo(input: CreateTodoInput!): Todo
 updateTodo(input: UpdateTodoInput!): Todo
 deleteTodo(input: DeleteTodoInput!): Todo
}

Going back to the mutation declaration from the editor, the parameter is an object
called $createtodoinput with a required input type of CreateTodoInput. Note
that CreateTodoInput (and all inputs in the mutation) are also defined in the
schema. For example, here's the boilerplate code for CreateTodoInput:

input CreateTodoInput {
 name: String
 when: String
 where: String
 description: String
}

It contains the fields we defined in our model, namely name, when, where, and
description.
Going back to the editor code, in createTodo(input: $createtodoinput) {},
we declare the input as $createtodoinput, which was also used in the mutation
declaration. We do this because this allows GraphQL to validate our inputs against the
provided types and ensure that they are being used with the correct inputs.
The final part of the editor code shows the fields that will be returned in the response
after an operation is performed:

{
 where
 when
 name

Step 3: Add data with a GraphQL mutation 65

AWS AppSync Developer Guide

 id
 description
 }

In the Query variables tab below this editor, there will be a generic createtodoinput object
that may have the following data:

{
 "createtodoinput": {
 "name": "Hello, world!",
 "when": "Hello, world!",
 "where": "Hello, world!",
 "description": "Hello, world!"
 }
}

Note

This is where we allocate the values for the input mentioned earlier:

input CreateTodoInput {
 name: String
 when: String
 where: String
 description: String
}

Change the createtodoinput by adding information we want to put in our DynamoDB
table. In this case, we wanted to create some Todo items as reminders:

{
 "createtodoinput": {
 "name": "Shopping List",
 "when": "Friday",
 "where": "Home",
 "description": "I need to buy eggs"
 }

Step 3: Add data with a GraphQL mutation 66

AWS AppSync Developer Guide

}

7. Choose Run at the top of the editor. Choose createTodo in the drop-down list. On the right-
hand side of the editor, you should see the response. It may look something like this:

{
 "data": {
 "createTodo": {
 "where": "Home",
 "when": "Friday",
 "name": "Shopping List",
 "id": "abcdefgh-1234-1234-1234-abcdefghijkl",
 "description": "I need to buy eggs"
 }
 }
}

If you navigate to the DynamoDB service, you'll now see an entry in your data source with this
information:

To summarize the operation, the GraphQL engine parsed the record, and a resolver inserted it
into your Amazon DynamoDB table. Again, you can verify this in the DynamoDB console. Notice
that you don’t need to pass in an id value. An id is generated and returned in the results. This is

Step 3: Add data with a GraphQL mutation 67

AWS AppSync Developer Guide

because the example used an autoId() function in a GraphQL resolver for the partition key set
on your DynamoDB resources. We will cover how you can build resolvers in a different section. Take
note of the returned id value; you will use it in the next section to retrieve data with a GraphQL
query.

Step 4: Retrieve data with a GraphQL query

Now that a record exists in your database, you'll get results when you run a query. A query is one
of the other fundamental operations of GraphQL. It's used to parse and retrieve information from
your data source. In terms of REST APIs, this is similar to the GET operation. The main advantage
of GraphQL queries is the ability to specify your application's exact data requirements so that you
fetch the relevant data at the right time.

To query your data source

1. If you haven't already done so, sign in to the AWS Management Console and open the AppSync
console.

2. Choose your API from the table.

3. In the tab to the left, choose Queries.

4. In the Explorer tab to the left of the table, under query listTodos, expand the getTodo
operation:

5. In the code editor, you should see the operation code:

query listTodos {
 getTodo(id: "") {
 description
 id
 name

Step 4: Retrieve data with a GraphQL query 68

https://console.aws.amazon.com/appsync/
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

 when
 where
 }

In (id:""), fill in the value that you saved in the result from the mutation operation. In our
example, this would be:

query listTodos {
 getTodo(id: "abcdefgh-1234-1234-1234-abcdefghijkl") {
 description
 id
 name
 when
 where
 }

6. Choose Run, then listTodos. The result will appear to the right of the editor. Our example
looked like this:

{
 "data": {
 "getTodo": {
 "description": "I need to buy eggs",
 "id": "abcdefgh-1234-1234-1234-abcdefghijkl",
 "name": "Shopping List",
 "when": "Friday",
 "where": "Home"
 }
 }
}

Note

Queries only return the fields you specify. You can deselect the fields you don't need by
deleting them from the return field:

{
 description
 id
 name
 when

Step 4: Retrieve data with a GraphQL query 69

AWS AppSync Developer Guide

 where
 }

You can also uncheck the box in the Explorer tab next to the field you want to delete.

7. You can also try the listTodos operation by repeating the steps to create an entry in your
data source, then repeating the query steps with the listTodos operation. Here's an example
where we added a second task:

{
 "createtodoinput": {
 "name": "Second Task",
 "when": "Monday",
 "where": "Home",
 "description": "I need to mow the lawn"
 }
}

By calling the listTodos operation, it returned both the old and new entries:

{
 "data": {
 "listTodos": {
 "items": [
 {
 "id": "abcdefgh-1234-1234-1234-abcdefghijkl",
 "name": "Shopping List",
 "when": "Friday",
 "where": "Home",
 "description": "I need to buy eggs"
 },
 {
 "id": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "name": "Second Task",
 "when": "Monday",
 "where": "Home",
 "description": "I need to mow the lawn"
 }
]
 }
 }

Step 4: Retrieve data with a GraphQL query 70

AWS AppSync Developer Guide

}

Supplemental sections

These sections are a reference for more advanced AWS AppSync topics. We recommend following
the Supplemental reading section before doing anything else.

Integration

In the console tab, if you choose the name of your API, the Integration page appears:

It summarizes the steps for setting up your API and outlines the next steps for building a client
application. The Integrate with your app section provides details for using the AWS Amplify
toolchain to automate the process of connecting your API with iOS, Android, and JavaScript
applications through config and code generation. The Amplify toolchain provides full support for
building projects from your local workstation including GraphQL provisioning and workflows for
CI/CD.

The Client Samples section also lists sample client applications (e.g., JavaScript, iOS, Android)
for testing an end-to-end experience. You can clone and download these samples, and the

Supplemental sections 71

https://aws-amplify.github.io/
https://aws-amplify.github.io/

AWS AppSync Developer Guide

configuration file has the necessary information (such as your endpoint URL) you need to get
started. Follow the instructions on the AWS Amplify toolchain page to run your app.

Supplemental reading

• Designing GraphQL APIs - This is a comprehensive guide for creating your GraphQL using a blank
schema with no data sources or resolvers.

Supplemental reading 72

https://aws-amplify.github.io/

AWS AppSync Developer Guide

Designing GraphQL APIs

AWS AppSync allows you to create GraphQL APIs using the console experience. You caught a
glimpse of this in the Launching a sample schema section. However, that guide didn't show the
entire catalog of options and configurations that you could leverage in AWS AppSync.

When you choose to create a GraphQL API in the console, there are several options to explore. If
you followed our Launching a sample schema guide, we showed you how to create an API from a
predefined model. In the following sections, we will guide you through the rest of the options and
configurations for creating GraphQL APIs in AWS AppSync.

In this section, you'll review the following concepts:

1. Blank APIs or imports: This guide will run through the entire creation process for creating a
GraphQL API. You'll learn how to create a GraphQL from a blank template with no model,
configure data sources for your schema, and add your first resolver to a field.

2. Real-time data: This guide will show you the potential options for creating an API using AWS
AppSync's WebSocket engine.

3. Merged APIs: This guide will show you how to create new GraphQL APIs by associating and
merging data from multiple existing GraphQL APIs.

4. the section called “RDS introspection”: This guide will show you how to integrate your Amazon
RDS tables using a Data API.

Structuring a GraphQL API (blank or imported APIs)

Before you create your GraphQL API from a blank template, it would help to review the concepts
surrounding GraphQL. There are three fundamental components of a GraphQL API:

1. The schema is the file containing the shape and definition of your data. When a request is
made by a client to your GraphQL service, the data returned will follow the specification of the
schema. For more information, see Schemas.

2. The data source is attached to your schema. When a request is made, this is where the data is
retrieved and modified. For more information, see Data sources.

3. The resolver sits between the schema and the data source. When a request is made, the resolver
performs the operation on the data from the source, then returns the result as a response. For
more information, see Resolvers.

Structuring a GraphQL API (blank or imported APIs) 73

https://docs.aws.amazon.com/appsync/latest/devguide/quickstart.html
https://docs.aws.amazon.com/appsync/latest/devguide/quickstart.html

AWS AppSync Developer Guide

AWS AppSync manages your APIs by allowing you to create, edit, and store the code for your
schemas and resolvers. Your data sources will come from external repositories such as databases,
DynamoDB tables, and Lambda functions. If you're using an AWS service to store your data or are
planning on doing so, AWS AppSync provides a near-seamless experience when associating data
from your AWS accounts to your GraphQL APIs.

In the next section, you will learn how to create each of these components using the AWS AppSync
service.

Topics

• Step 1: Designing your schema

• Step 2: Attaching a data source

• Step 3: Configuring resolvers

• Step 4: Using an API: CDK example

Step 1: Designing your schema

The GraphQL schema is the foundation of any GraphQL server implementation. Each GraphQL
API is defined by a single schema that contains types and fields describing how the data from
requests will be populated. The data flowing through your API and the operations performed must
be validated against the schema.

In general, the GraphQL type system describes the capabilities of a GraphQL server and is used
to determine if a query is valid. A server’s type system is often referred to as that server’s schema

Step 1: Designing your schema 74

https://graphql.org/learn/schema/#type-system

AWS AppSync Developer Guide

and can consist of different object types, scalar types, input types, and more. GraphQL is both
declarative and strongly typed, meaning the types will be well-defined at runtime and will only
return what was specified.

AWS AppSync allows you to define and configure GraphQL schemas. The following section
describes how to create GraphQL schemas from scratch using AWS AppSync's services.

Structuring a GraphQL Schema

Tip

We recommend reviewing the Schemas section before continuing.

GraphQL is a powerful tool for implementing API services. According to GraphQL's website,
GraphQL is the following:

"GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing
data. GraphQL provides a complete and understandable description of the data in your API, gives
clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs
over time, and enables powerful developer tools."

This section covers the very first part of your GraphQL implementation, the schema. Using the
quote above, a schema plays the role of "providing a complete and understandable description
of the data in your API". In other words, a GraphQL schema is a textual representation of your
service's data, operations, and the relations between them. The schema is considered the main
entry point for your GraphQL service implementation. Unsurprisingly, it's often one of the first
things you make in your project. We recommend reviewing the Schemas section before continuing.

To quote the Schemas section, GraphQL schemas are written in the Schema Definition Language
(SDL). SDL is composed of types and fields with an established structure:

• Types: Types are how GraphQL defines the shape and behavior of the data. GraphQL supports
a multitude of types that will be explained later in this section. Each type that's defined in your
schema will contain its own scope. Inside the scope will be one or more fields that can contain a
value or logic that will be used in your GraphQL service. Types fill many different roles, the most
common being objects or scalars (primitive value types).

• Fields: Fields exist within the scope of a type and hold the value that's requested from the
GraphQL service. These are very similar to variables in other programming languages. The shape

Step 1: Designing your schema 75

https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://graphql.org/
https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html

AWS AppSync Developer Guide

of the data you define in your fields will determine how the data is structured in a request/
response operation. This allows developers to predict what will be returned without knowing
how the backend of the service is implemented.

The simplest schemas will contain three different data categories:

1. Schema roots: Roots define the entry points of your schema. It points to the fields that will be
performing some operation on the data like adding, deleting, or modifying something.

2. Types: These are base types that are used to represent the shape of the data. You can almost
think of these as objects or abstract representations of something with defined characteristics.
For example, you could make a Person object that represents a person in a database. Each
person's characteristics will be defined inside the Person as fields. They can be anything like the
person's name, age, job, address, etc.

3. Special object types: These are the types that define the behavior of the operations in your
schema. Each special object type is defined once per schema. They are first placed in the schema
root, then defined in the schema body. Each field in a special object type defines a single
operation to be implemented by your resolver.

To put this into perspective, imagine you're creating a service that stores authors and the books
they've written. Each author has a name and an array of books they've authored. Each book has
a name and a list of associated authors. We also want the ability to add or retrieve books and
authors. A simple UML representation of this relationship may look like this:

In GraphQL, the entities Author and Book represent two different object types in your schema:

type Author {
}

type Book {

Step 1: Designing your schema 76

AWS AppSync Developer Guide

}

Author contains authorName and Books, while Book contains bookName and Authors. These
can be represented as the fields within the scope of your types:

type Author {
 authorName: String
 Books: [Book]
}

type Book {
 bookName: String
 Authors: [Author]
}

As you can see, the type representations are very close to the diagram. However, the methods are
where it gets a bit trickier. These will be placed in one of a few special object types as a field. Their
special object categorization depends on their behavior. GraphQL contains three fundamental
special object types: queries, mutations, and subscriptions. For more information, see Special
objects.

Because getAuthor and getBook are both requesting data, they will be placed in a Query special
object type:

type Author {
 authorName: String
 Books: [Book]
}

type Book {
 bookName: String
 Authors: [Author]
}

type Query {
 getAuthor(authorName: String): Author
 getBook(bookName: String): Book
}

Step 1: Designing your schema 77

https://docs.aws.amazon.com/appsync/latest/devguide/graphql-types.html#special-object-components
https://docs.aws.amazon.com/appsync/latest/devguide/graphql-types.html#special-object-components

AWS AppSync Developer Guide

The operations are linked to the query, which itself is linked to the schema. Adding a schema root
will define the special object type (Query in this case) as one of your entry points. This can be done
using the schema keyword:

schema {
 query: Query
}

type Author {
 authorName: String
 Books: [Book]
}

type Book {
 bookName: String
 Authors: [Author]
}

type Query {
 getAuthor(authorName: String): Author
 getBook(bookName: String): Book
}

Looking at the final two methods, addAuthor and addBook are adding data to your database,
so they will be defined in a Mutation special object type. However, from the Types page, we also
know that inputs directly referencing Objects aren't allowed because they're strictly output types.
In this case, we can't use Author or Book, so we need to make an input type with the same fields.
In this example, we added AuthorInput and BookInput, both of which accept the same fields of
their respective types. Then, we create our mutation using the inputs as our parameters:

schema {
 query: Query
 mutation: Mutation
}

type Author {
 authorName: String
 Books: [Book]
}

input AuthorInput {
 authorName: String

Step 1: Designing your schema 78

https://docs.aws.amazon.com/appsync/latest/devguide/graphql-types.html#input-components

AWS AppSync Developer Guide

 Books: [BookInput]
}

type Book {
 bookName: String
 Authors: [Author]
}

input BookInput {
 bookName: String
 Authors: [AuthorInput]
}

type Query {
 getAuthor(authorName: String): Author
 getBook(bookName: String): Book
}

type Mutation {
 addAuthor(input: [BookInput]): Author
 addBook(input: [AuthorInput]): Book
}

Let's review what we just did:

1. We created a schema with the Book and Author types to represent our entities.

2. We added the fields containing the characteristics of our entities.

3. We added a query to retrieve this information from the database.

4. We added a mutation to manipulate data in the database.

5. We added input types to replace our object parameters in the mutation to comply with
GraphQL's rules.

6. We added the query and mutation to our root schema so that the GraphQL implementation
understands the root type location.

As you can see, the process of creating a schema takes a lot of concepts from data modeling
(especially database modeling) in general. You can think of the schema as fitting the shape of the
data from the source. It also serves as the model that the resolver will implement. In the following,
sections, you'll learn how to make a schema using various AWS-backed tools and services.

Step 1: Designing your schema 79

AWS AppSync Developer Guide

Note

The examples in the following sections are not meant to run in a real application. They are
only there to showcase the commands so you can build your own applications.

Creating schemas

Your schema will be in a file called schema.graphql. AWS AppSync allows users to create new
schemas for their GraphQL APIs using various methods. In this example, we'll be creating a blank
API along with a blank schema.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the Dashboard, choose Create API.

b. Under API options, choose GraphQL APIs, Design from scratch, then Next.

i. For API name, change the prepopulated name to what your application needs.

ii. For contact details, you can enter a point of contact to identify a manager for the
API. This is an optional field.

iii. Under Private API configuration, you can enable private API features. A private
API can only be accessed from a configured VPC endpoint (VPCE). For more
information, see Private APIs.

We don't recommend enabling this feature for this example. Choose Next after
reviewing your inputs.

c. Under Create a GraphQL type, you can choose to create a DynamoDB table to use as a
data source or skip this and do it later.

For this example, choose Create GraphQL resources later. We will be creating a
resource in a separate section.

d. Review your inputs, then choose Create API.

2. You will be in the dashboard of your specific API. You can tell because the API's name will
be at the top of the dashboard. If this isn't the case, you can select APIs in the Sidebar,
then choose your API in the APIs dashboard.

Step 1: Designing your schema 80

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html

AWS AppSync Developer Guide

• In the Sidebar underneath your API's name, choose Schema.

3. In the Schema editor, you can configure your schema.graphql file. It may be empty or
filled with types generated from a model. On the right, you have the Resolvers section for
attaching resolvers to your schema fields. We won't be looking at resolvers in this section.

CLI

Note

When using the CLI, make sure you have the correct permissions to access and create
resources in the service. You may want to set least-privilege policies for non-admin
users who need to access the service. For more information about AWS AppSync
policies, see Identity and access management for AWS AppSync.
Additionally, we recommend reading the console version first if you haven't done so
already.

1. If you haven't already done so, install the AWS CLI, then add your configuration.

2. Create a GraphQL API object by running the create-graphql-api command.

You'll need to type in two parameters for this particular command:

1. The name of your API.

2. The authentication-type, or the type of credentials used to access the API (IAM,
OIDC, etc.).

Note

Other parameters such as Region must be configured but will usually default to
your CLI configuration values.

An example command may look like this:

aws appsync create-graphql-api --name testAPI123 --authentication-type API_KEY

Step 1: Designing your schema 81

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/appsync/latest/devguide/security-iam.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/reference/appsync/create-graphql-api.html

AWS AppSync Developer Guide

An output will be returned in the CLI. Here's an example:

{
 "graphqlApi": {
 "xrayEnabled": false,
 "name": "testAPI123",
 "authenticationType": "API_KEY",
 "tags": {},
 "apiId": "abcdefghijklmnopqrstuvwxyz",
 "uris": {
 "GRAPHQL": "https://zyxwvutsrqponmlkjihgfedcba.appsync-api.us-
west-2.amazonaws.com/graphql",
 "REALTIME": "wss://zyxwvutsrqponmlkjihgfedcba.appsync-realtime-
api.us-west-2.amazonaws.com/graphql"
 },
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz"
 }
}

3.
Note

This is an optional command that takes an existing schema and uploads it to the
AWS AppSync service using a base-64 blob. We will not be using this command for
the sake of this example.

Run the start-schema-creation command.

You'll need to type in two parameters for this particular command:

1. Your api-id from the previous step.

2. The schema definition is a base-64 encoded binary blob.

An example command may look like this:

 aws appsync start-schema-creation --api-id abcdefghijklmnopqrstuvwxyz --
definition "aa1111aa-123b-2bb2-c321-12hgg76cc33v"

Step 1: Designing your schema 82

https://docs.aws.amazon.com/cli/latest/reference/appsync/start-schema-creation.html

AWS AppSync Developer Guide

An output will be returned:

{
 "status": "PROCESSING"
}

This command will not return the final output after processing. You must use a separate
command, get-schema-creation-status, to see the result. Note that these two
commands are asynchronous, so you can check the output status even while the schema is
still being created.

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

1. The starting point for the CDK is a bit different. Ideally, your schema.graphql file should
already be created. You just need to create a new file with the .graphql file extension.
This can be an empty file.

2. In general, you may have to add the import directive to the service you're using. For
example, it may follow the forms:

import * as x from 'x'; # import wildcard as the 'x' keyword from 'x-service'
import {a, b, ...} from 'c'; # import {specific constructs} from 'c-service'

To add a GraphQL API, your stack file needs to import the AWS AppSync service:

import * as appsync from 'aws-cdk-lib/aws-appsync';

Step 1: Designing your schema 83

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/get-schema-creation-status.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

Note

This means we're importing the entire service under the appsync keyword.
To use this in your app, your AWS AppSync constructs will use the format
appsync.construct_name. For instance, if we wanted to make a GraphQL API,
we would say new appsync.GraphqlApi(args_go_here). The following step
depicts this.

3. The most basic GraphQL API will include a name for the API and the schema path.

const add_api = new appsync.GraphqlApi(this, 'API_ID', {
 name: 'name_of_API_in_console',
 schema: appsync.SchemaFile.fromAsset(path.join(__dirname,
 'schema_name.graphql')),
});

Note

Let's review what this snippet does. Inside the scope of api, we're creating a new
GraphQL API by calling appsync.GraphqlApi(scope: Construct, id:
string, props: GraphqlApiProps). The scope is this, which refers to the
current object. The id is API_ID, which will be your GraphQL API's resource name
in AWS CloudFormation when it's created. The GraphqlApiProps contains the
name of your GraphQL API and the schema. The schema will generate a schema
(SchemaFile.fromAsset) by searching the absolute path (__dirname) for the
.graphql file (schema_name.graphql). In a real scenario, your schema file will
probably be inside the CDK app.
To use changes made to your GraphQL API, you'll have to redeploy the app.

Adding types to schemas

Now that you've added your schema, you can start adding both your input and output types. Note
that the types here shouldn't be used in real code; they're just examples to help you understand
the process.

Step 1: Designing your schema 84

AWS AppSync Developer Guide

First, we'll create an object type. In real code, you don't have to start with these types. You can
make any type you want at any time so long as you follow GraphQL's rules and syntax.

Note

These next few sections will be using the schema editor, so keep this open.

Console

• You can create an object type using the type keyword along with the type's name:

type Type_Name_Goes_Here {}

Inside the type's scope, you can add fields that represent the object's characteristics:

type Type_Name_Goes_Here {
 # Add fields here
}

Here's an example:

type Obj_Type_1 {
 id: ID!
 title: String
 date: AWSDateTime
}

Note

In this step, we added a generic object type with a required id field stored as ID,
a title field stored as a String, and a date field stored as an AWSDateTime. To
see a list of types and fields and what they do, see Schemas. To see a list of scalars
and what they do, see the Type reference.

Step 1: Designing your schema 85

https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/type-reference.html

AWS AppSync Developer Guide

CLI

Note

We recommend reading the console version first if you haven't done so already.

• You can create an object type by running the create-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was:

type Obj_Type_1 {
 id: ID!
 title: String
 date: AWSDateTime
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "type
 Obj_Type_1{id: ID! title: String date: AWSDateTime}" --format SDL

An output will be returned in the CLI. Here's an example:

{
 "type": {
 "definition": "type Obj_Type_1{id: ID! title: String date:
 AWSDateTime}",
 "name": "Obj_Type_1",
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Obj_Type_1",
 "format": "SDL"
 }
}

Step 1: Designing your schema 86

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

Note

In this step, we added a generic object type with a required id field stored as ID,
a title field stored as a String, and a date field stored as an AWSDateTime. To
see a list of types and fields and what they do, see Schemas. To see a list of scalars
and what they do, see Type reference.
On a further note, you may have realized that entering the definition directly works
for smaller types but is infeasible for adding larger or multiple types. You can opt
to add everything in a .graphql file and then pass it as the input.

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

To add a type, you need to add it to your .graphql file. For instance, the console example was:

type Obj_Type_1 {
 id: ID!
 title: String
 date: AWSDateTime
}

You can add your types directly to the schema like any other file.

Note

To use changes made to your GraphQL API, you'll have to redeploy the app.

Step 1: Designing your schema 87

https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/type-reference.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

The object type has fields that are scalar types such as strings and integers. AWS AppSync also
allows you to use enhanced scalar types like AWSDateTime in addition to the base GraphQL
scalars. Also, any field that ends in an exclamation point is required.

The ID scalar type in particular is a unique identifier that can be either String or Int. You can
control these in your resolver code for automatic assignment.

There are similarities between special object types like Query and "regular" object types like the
example above in that they both use the type keyword and are considered objects. However, for
the special object types (Query, Mutation, and Subscription), their behavior is vastly different
because they are exposed as the entry points for your API. They're also more about shaping
operations rather than data. For more information, see The query and mutation types.

On the topic of special object types, the next step could be to add one or more of them to perform
operations on the shaped data. In a real scenario, every GraphQL schema must at least have a root
query type for requesting data. You can think of the query as one of the entry points (or endpoints)
for your GraphQL server. Let's add a query as an example.

Console

• To create a query, you can simply add it to the schema file like any other type. A query
would require a Query type and an entry in the root like this:

schema {
 query: Name_of_Query
}

type Name_of_Query {
 # Add field operation here
}

Note that Name_of_Query in a production environment will simply be called Query in
most cases. We recommend keeping it at this value. Inside the query type, you can add
fields. Each field will perform an operation in the request. As a result, most, if not all, of
these fields will be attached to a resolver. However, we're not concerned with that in this
section. Regarding the format of the field operation, it might look like this:

Name_of_Query(params): Return_Type # version with params
Name_of_Query: Return_Type # version without params

Step 1: Designing your schema 88

https://graphql.org/learn/schema/#object-types-and-fields
https://graphql.org/learn/schema/#scalar-types
https://graphql.org/learn/schema/#the-query-and-mutation-types

AWS AppSync Developer Guide

Here's an example:

schema {
 query: Query
}

type Query {
 getObj: [Obj_Type_1]
}

type Obj_Type_1 {
 id: ID!
 title: String
 date: AWSDateTime
}

Note

In this step, we added a Query type and defined it in our schema root. Our Query
type defined a getObj field that returns a list of Obj_Type_1 objects. Note that
Obj_Type_1 is the object of the previous step. In production code, your field
operations will normally be working with data shaped by objects like Obj_Type_1.
In addition, fields like getObj will normally have a resolver to perform the business
logic. That will be covered in a different section.
As an additional note, AWS AppSync automatically adds a schema root during
exports, so technically you don't have to add it directly to the schema. Our service
will automatically process duplicate schemas. We're adding it here as a best
practice.

CLI

Note

We recommend reading the console version first if you haven't done so already.

1. Create a schema root with a query definition by running the create-type command.

Step 1: Designing your schema 89

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was:

schema {
 query: Query
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "schema
 {query: Query}" --format SDL

An output will be returned in the CLI. Here's an example:

{
 "type": {
 "definition": "schema {query: Query}",
 "name": "schema",
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/schema",
 "format": "SDL"
 }
}

Note

Note that if you didn't input something correctly in the create-type command,
you can update your schema root (or any type in the schema) by running the
update-type command. In this example, we'll be temporarily changing the
schema root to contain a subscription definition.
You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name of your type. In the console example, this was schema.

Step 1: Designing your schema 90

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-type.html

AWS AppSync Developer Guide

3. The definition, or the content of your type. In the console example, this was:

schema {
 query: Query
}

The schema after adding a subscription will look like this:

schema {
 query: Query
 subscription: Subscription
}

4. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync update-type --api-id abcdefghijklmnopqrstuvwxyz --type-name
 schema --definition "schema {query: Query subscription: Subscription}"
 --format SDL

An output will be returned in the CLI. Here's an example:

{
 "type": {
 "definition": "schema {query: Query subscription: Subscription}",
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/schema",
 "format": "SDL"
 }
}

Adding preformatted files will still work in this example.

2. Create a Query type by running the create-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was:

Step 1: Designing your schema 91

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

type Query {
 getObj: [Obj_Type_1]
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "type
 Query {getObj: [Obj_Type_1]}" --format SDL

An output will be returned in the CLI. Here's an example:

{
 "type": {
 "definition": "Query {getObj: [Obj_Type_1]}",
 "name": "Query",
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Query",
 "format": "SDL"
 }
}

Note

In this step, we added a Query type and defined it in your schema root. Our Query
type defined a getObj field that returned a list of Obj_Type_1 objects.
In the schema root code query: Query, the query: part indicates that a query
was defined in your schema, while the Query part indicates the actual special
object name.

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.

Step 1: Designing your schema 92

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

You'll need to add your query and the schema root to the .graphql file. Our example looked
like the example below, but you'll want to replace it with your actual schema code:

schema {
 query: Query
}

type Query {
 getObj: [Obj_Type_1]
}

type Obj_Type_1 {
 id: ID!
 title: String
 date: AWSDateTime
}

You can add your types directly to the schema like any other file.

Note

Updating the schema root is optional. We added it to this example as a best practice.
To use changes made to your GraphQL API, you'll have to redeploy the app.

You've now seen an example of creating both objects and special objects (queries). You've also seen
how these can be interconnected to describe data and operations. You can have schemas with only
the data description and one or more queries. However, we'd like to add another operation to add
data to the data source. We'll add another special object type called Mutation that modifies data.

Console

• A mutation will be called Mutation. Like Query, the field operations inside Mutation will
describe an operation and will be attached to a resolver. Also, note that we need to define
it in the schema root because it's a special object type. Here's an example of a mutation:

Step 1: Designing your schema 93

AWS AppSync Developer Guide

schema {
 mutation: Name_of_Mutation
}

type Name_of_Mutation {
 # Add field operation here
}

A typical mutation will be listed in the root like a query. The mutation is defined using the
type keyword along with the name. Name_of_Mutation will usually be called Mutation,
so we recommend keeping it that way. Each field will also perform an operation. Regarding
the format of the field operation, it might look like this:

Name_of_Mutation(params): Return_Type # version with params
Name_of_Mutation: Return_Type # version without params

Here's an example:

schema {
 query: Query
 mutation: Mutation
}

type Obj_Type_1 {
 id: ID!
 title: String
 date: AWSDateTime
}

type Query {
 getObj: [Obj_Type_1]
}

type Mutation {
 addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1
}

Step 1: Designing your schema 94

AWS AppSync Developer Guide

Note

In this step, we added a Mutation type with an addObj field. Let's summarize
what this field does:

addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1

addObj is using the Obj_Type_1 object to perform an operation. This is apparent
due to the fields, but the syntax proves this in the : Obj_Type_1 return type.
Inside addObj, it's accepting the id, title, and date fields from the Obj_Type_1
object as parameters. As you may see, it looks a lot like a method declaration.
However, we haven't described the behavior of our method yet. As stated earlier,
the schema is only there to define what the data and operations will be and not
how they operate. Implementing the actual business logic will come later when we
create our first resolvers.
Once you're done with your schema, there's an option to export it as a
schema.graphql file. In the Schema editor, you can choose Export schema to
download the file in a supported format.
As an additional note, AWS AppSync automatically adds a schema root during
exports, so technically you don't have to add it directly to the schema. Our service
will automatically process duplicate schemas. We're adding it here as a best
practice.

CLI

Note

We recommend reading the console version first if you haven't done so already.

1. Update your root schema by running the update-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name of your type. In the console example, this was schema.

Step 1: Designing your schema 95

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-type.html

AWS AppSync Developer Guide

3. The definition, or the content of your type. In the console example, this was:

schema {
 query: Query
 mutation: Mutation
}

4. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync update-type --api-id abcdefghijklmnopqrstuvwxyz --type-name schema
 --definition "schema {query: Query mutation: Mutation}" --format SDL

An output will be returned in the CLI. Here's an example:

{
 "type": {
 "definition": "schema {query: Query mutation: Mutation}",
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/schema",
 "format": "SDL"
 }
}

2. Create a Mutation type by running the create-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was

type Mutation {
 addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

Step 1: Designing your schema 96

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "type
 Mutation {addObj(id: ID! title: String date: AWSDateTime): Obj_Type_1}" --
format SDL

An output will be returned in the CLI. Here's an example:

{
 "type": {
 "definition": "type Mutation {addObj(id: ID! title: String date:
 AWSDateTime): Obj_Type_1}",
 "name": "Mutation",
 "arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Mutation",
 "format": "SDL"
 }
}

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

You'll need to add your query and the schema root to the .graphql file. Our example looked
like the example below, but you'll want to replace it with your actual schema code:

schema {
 query: Query
 mutation: Mutation
}

type Obj_Type_1 {
 id: ID!
 title: String

Step 1: Designing your schema 97

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

 date: AWSDateTime
}

type Query {
 getObj: [Obj_Type_1]
}

type Mutation {
 addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1
}

Note

Updating the schema root is optional. We added it to this example as a best practice.
To use changes made to your GraphQL API, you'll have to redeploy the app.

Optional considerations - Using enums as statuses

At this point, you know how to make a basic schema. However, there are many things you could
add to increase the schema's functionality. One common thing found in applications is the use of
enums as statuses. You can use an enum to force a specific value from a set of values to be chosen
when called. This is good for things that you know will not change drastically over long periods of
time. Hypothetically speaking, we could add an enum that returns the status code or String in the
response.

As an example, let's assume we're making a social media app that's storing a user's post data in the
backend. Our schema contains a Post type that represents an individual post's data:

type Post {
 id: ID!
 title: String
 date: AWSDateTime
 poststatus: PostStatus
}

Our Post will contain a unique id, post title, date of posting, and an enum called PostStatus
that represents the post's state as it's processed by the app. For our operations, we'll have a query
that returns all post data:

Step 1: Designing your schema 98

AWS AppSync Developer Guide

type Query {
 getPosts: [Post]
}

We'll also have a mutation that adds posts to the data source:

type Mutation {
 addPost(id: ID!, title: String, date: AWSDateTime, poststatus: PostStatus): Post
}

Looking at our schema, the PostStatus enum could have several statuses. We might want the
three basic states called success (post successfully processed), pending (post being processed),
and error (post unable to be processed). To add the enum, we could do this:

enum PostStatus {
 success
 pending
 error
}

The full schema might look like this:

schema {
 query: Query
 mutation: Mutation
}

type Post {
 id: ID!
 title: String
 date: AWSDateTime
 poststatus: PostStatus
}

type Mutation {
 addPost(id: ID!, title: String, date: AWSDateTime, poststatus: PostStatus): Post
}

type Query {
 getPosts: [Post]
}

Step 1: Designing your schema 99

AWS AppSync Developer Guide

enum PostStatus {
 success
 pending
 error
}

If a user adds a Post in the application, the addPost operation will be called to process that
data. As the resolver attached to addPost processes the data, it will continually update the
poststatus with the status of the operation. When queried, the Post will contain the final status
of the data. Keep in mind, we're only describing how we want the data to work in the schema.
We're assuming a lot about the implementation of our resolver(s), which will implement the actual
business logic for handling the data to fulfill the request.

Optional considerations - Subscriptions

Subscriptions in AWS AppSync are invoked as a response to a mutation. You configure this with a
Subscription type and @aws_subscribe() directive in the schema to denote which mutations
invoke one or more subscriptions. For more information about configuring subscriptions, see Real-
time data.

Optional considerations - Relations and pagination

Suppose you had a million Posts stored in a DynamoDB table, and you wanted to return some
of that data. However, the example query given above only returns all posts. You wouldn’t want
to fetch all of these every time you made a request. Instead, you would want to paginate through
them. Make the following changes to your schema:

• In the getPosts field, add two input arguments: nextToken (iterator) and limit (iteration
limit).

• Add a new PostIterator type containing Posts (retrieves the list of Post objects) and
nextToken (iterator) fields.

• Change getPosts so that it returns PostIterator and not a list of Post objects.

schema {
 query: Query
 mutation: Mutation
}

Step 1: Designing your schema 100

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://graphql.org/learn/pagination/

AWS AppSync Developer Guide

type Post {
 id: ID!
 title: String
 date: AWSDateTime
 poststatus: PostStatus
}

type Mutation {
 addPost(id: ID!, title: String, date: AWSDateTime, poststatus: PostStatus): Post
}

type Query {
 getPosts(limit: Int, nextToken: String): PostIterator
}

enum PostStatus {
 success
 pending
 error
}

type PostIterator {
 posts: [Post]
 nextToken: String
}

The PostIterator type allows you to return a portion of the list of Post objects and a
nextToken for getting the next portion. Inside PostIterator, there is a list of Post items
([Post]) that is returned with a pagination token (nextToken). In AWS AppSync, this would be
connected to Amazon DynamoDB through a resolver and automatically generated as an encrypted
token. This converts the value of the limit argument to the maxResults parameter and the
nextToken argument to the exclusiveStartKey parameter. For examples and the built-in
template samples in the AWS AppSync console, see Resolver reference (JavaScript).

Step 2: Attaching a data source

Data sources are resources in your AWS account that GraphQL APIs can interact with. AWS AppSync
supports a multitude of data sources like AWS Lambda, Amazon DynamoDB, relational databases
(Amazon Aurora Serverless), Amazon OpenSearch Service, and HTTP endpoints. An AWS AppSync
API can be configured to interact with multiple data sources, enabling you to aggregate data in

Step 2: Attaching a data source 101

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

a single location. AWS AppSync can use existing AWS resources from your account or provision
DynamoDB tables on your behalf from a schema definition.

The following section will show you how to attach a data source to your GraphQL API.

Types of data sources

Now that you have created a schema in the AWS AppSync console, you can attach a data source
to it. When you initially create an API, there's an option to provision an Amazon DynamoDB table
during the creation of the predefined schema. However, we won't be covering that option in this
section. You can see an example of this in the Launching a schema section.

Instead, we'll be looking at all of the data sources AWS AppSync supports. There are many factors
that go into picking the right solution for your application. The sections below will provide some
additional context for each data source. For general information about data sources, see Data
sources.

Amazon DynamoDB

Amazon DynamoDB is one of AWS' main storage solutions for scalable applications. The core
component of DynamoDB is the table, which is simply a collection of data. You will typically create
tables based on entities like Book or Author. Table entry information is stored as items, which are
groups of fields that are unique to each entry. A full item represents a row/record in the database.
For example, an item for a Book entry might include title and author along with their values.
The individual fields like the title and author are called attributes, which are akin to column
values in relational databases.

As you can guess, tables will be used to store data from your application. AWS AppSync allows
you to hook up your DynamoDB tables to your GraphQL API to manipulate data. Take this use
case from the Front-end web and mobile blog. This application lets users sign up for a social media
app. Users can join groups and upload posts that are broadcasted to other users subscribed to the
group. Their application stores user, post, and user group information in DynamoDB. The GraphQL
API (managed by AWS AppSync) interfaces with the DynamoDB table. When a user makes a change
in the system that will be reflected on the front-end, the GraphQL API retrieves these changes and
broadcasts them to other users in real time.

AWS Lambda

Lambda is an event-driven service that automatically builds the necessary resources to run code as
a response to an event. Lambda uses functions, which are group statements containing the code,

Step 2: Attaching a data source 102

https://docs.aws.amazon.com/appsync/latest/devguide/schema-launch-start.html
https://docs.aws.amazon.com/appsync/latest/devguide/data-source-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/data-source-components.html
https://aws.amazon.com/blogs/mobile/new-real-time-multi-group-app-with-aws-amplify-graphql-build-a-twitter-community-clone/
https://aws.amazon.com/blogs/mobile/new-real-time-multi-group-app-with-aws-amplify-graphql-build-a-twitter-community-clone/

AWS AppSync Developer Guide

dependencies, and configurations for executing a resource. Functions automatically execute when
they detect a trigger, a group of activities that invoke your function. A trigger could be anything
like an application making an API call, an AWS service in your account spinning up a resource, etc.
When triggered, functions will process events, which are JSON documents containing the data to
modify.

Lambda is good for running code without having to provision the resources to run it. Take
this use case from the Front-end web and mobile blog. This use case is a bit similar to the one
showcased in the DynamoDB section. In this application, the GraphQL API is responsible for
defining the operations for things like adding posts (mutations) and fetching that data (queries).
To implement the functionality of their operations (e.g., getPost (id: String !) : Post,
getPostsByAuthor (author: String !) : [Post]), they use Lambda functions to
process inbound requests. Under Option 2: AWS AppSync with Lambda resolver, they use the AWS
AppSync service to maintain their schema and link a Lambda data source to one of the operations.
When the operation is called, Lambda interfaces with the Amazon RDS proxy to perform the
business logic on the database.

Amazon RDS

Amazon RDS lets you quickly build and configure relational databases. In Amazon RDS, you'll
create a generic database instance that will serve as the isolated database environment in the
cloud. In this instance, you'll use a DB engine, which is the actual RDBMS software (PostgreSQL,
MySQL, etc.). The service offloads much of the backend work by providing scalability using AWS'
infrastructure, security services such as patching and encryption, and lowered administrative costs
for deployments.

Take the same use case from the Lambda section. Under Option 3: AWS AppSync with Amazon RDS
resolver, another option presented is linking the GraphQL API in AWS AppSync to Amazon RDS
directly. Using a data API, they associate the database with the GraphQL API. A resolver is attached
to a field (usually a query, mutation, or subscription) and implements the SQL statements needed
to access the database. When a request calling the field is made by the client, the resolver executes
the statements and returns the response.

Amazon EventBridge

In EventBridge, you'll create event buses, which are pipelines that receive events from services or
applications you attach (the event source) and process them based on a set of rules. An event is
some state change in an execution environment, while a rule is a set of filters for events. A rule
follows an event pattern, or metadata of an event's state change (id, Region, account number,

Step 2: Attaching a data source 103

https://aws.amazon.com/blogs/mobile/building-a-graphql-api-with-java-and-aws-lambda/
https://aws.amazon.com/blogs/mobile/building-a-graphql-api-with-java-and-aws-lambda/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html

AWS AppSync Developer Guide

ARN(s), etc.). When an event matches the event pattern, EventBridge will send the event across the
pipeline to the destination service (target) and trigger the action specified in the rule.

EventBridge is good for routing state-changing operations to some other service. Take this use
case from the Front-end web and mobile blog. The example depicts an e-commerce solution that
has several teams maintaining different services. One of these services provides order updates to
the customer at each step of the delivery (order placed, in progress, shipped, delivered, etc.) on
the front-end. However, the front-end team managing this service doesn't have direct access to
the ordering system data as that's maintained by a separate backend team. The backend team's
ordering system is also described as a black box, so it's hard to glean information about the way
they're structuring their data. However, the backend team did set up a system that published
order data through an event bus managed by EventBridge. To access the data coming from the
event bus and route it to the front-end, the front-end team created a new target pointing to their
GraphQL API sitting in AWS AppSync. They also created a rule to only send data relevant to the
order update. When an update is made, the data from the event bus is sent to the GraphQL API.
The schema in the API processes the data, then passes it to the front-end.

None data sources

If you aren't planning on using a data source, you can set it to none. A none data source, while still
explicitly categorized as a data source, isn't a storage medium. Typically, a resolver will invoke one
or more data sources at some point to process the request. However, there are situations where you
may not need to manipulate a data source. Setting the data source to none will run the request,
skip the data invocation step, then run the response.

Take the same use case from the EventBridge section. In the schema, the mutation processes the
status update, then sends it out to subscribers. Recalling how resolvers work, there's usually at
least one data source invocation. However, the data in this scenario was already sent automatically
by the event bus. This means there's no need for the mutation to perform a data source invocation;
the order status can simply be handled locally. The mutation is set to none, which acts as a pass-
through value with no data source invocation. The schema is then populated with the data, which
is sent out to subscribers.

OpenSearch

Amazon OpenSearch Service is a suite of tools to implement full-text searching, data visualization,
and logging. You can use this service to query the structured data you've uploaded.

In this service, you'll create instances of OpenSearch. These are called nodes. In a node, you'll
be adding at least one index. Indices conceptually are a bit like tables in relational databases.

Step 2: Attaching a data source 104

https://aws.amazon.com/blogs/mobile/appsync-eventbridge/
https://aws.amazon.com/blogs/mobile/appsync-eventbridge/
https://aws.amazon.com/blogs/mobile/appsync-eventbridge/

AWS AppSync Developer Guide

(However, OpenSearch isn't ACID compliant, so it shouldn't be used that way). You'll populate your
index with data that you upload to the OpenSearch service. When your data is uploaded, it will be
indexed in one or more shards that exist in the index. A shard is like a partition of your index that
contains some of your data and can be queried separately from other shards. Once uploaded, your
data will be structured as JSON files called documents. You can then query the node for data in
the document.

HTTP endpoints

You can use HTTP endpoints as data sources. AWS AppSync can send requests to the endpoints
with the relevant information like params and payload. The HTTP response will be exposed to the
resolver, which will return the final response after it finishes its operation(s).

Adding a data source

If you created a data source, you can link it to the AWS AppSync service and, more specifically, the
API.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. Choose your API in the Dashboard.

b. In the Sidebar, choose Data Sources.

2. Choose Create data source.

a. Give your data source a name. You can also give it a description, but that's optional.

b. Choose your Data source type.

c. For DynamoDB, you'll have to choose your Region, then the table in the Region. You
can dictate interaction rules with your table by choosing to make a new generic table
role or importing an existing role for the table. You can enable versioning, which can
automatically create versions of data for each request when multiple clients are trying
to update data at the same time. Versioning is used to keep and maintain multiple
variants of data for conflict detection and resolution purposes. You can also enable
automatic schema generation, which takes your data source and generates some of the
CRUD, List, and Query operations needed to access it in your schema.

Step 2: Attaching a data source 105

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

For OpenSearch, you'll have to choose your Region, then the domain (cluster) in the
Region. You can dictate interaction rules with your domain by choosing to make a new
generic table role or importing an existing role for the table.

For Lambda, you'll have to choose your Region, then the ARN of the Lambda function
in the Region. You can dictate interaction rules with your Lambda function by choosing
to make a new generic table role or importing an existing role for the table.

For HTTP, you'll have to enter your HTTP endpoint.

For EventBridge, you'll have to choose your Region, then the event bus in the Region.
You can dictate interaction rules with your event bus by choosing to make a new
generic table role or importing an existing role for the table.

For RDS, you'll have to choose your Region, then the secret store (username and
password), database name, and schema.

For none, you will add a data source with no actual data source. This is for handling
resolvers locally rather than through an actual data source.

Note

If you're importing existing roles, they need a trust policy. For more
information, see the IAM trust policy.

3. Choose Create.

Note

Alternatively, if you're creating a DynamoDB data source, you can go to the Schema
page in the console, choose Create Resources at the top of the page, then fill out a
predefined model to convert into a table. In this option, you will fill out or import
the base type, configure the basic table data including the partition key, and review
the schema changes.

CLI

• Create your data source by running the create-data-source command.

Step 2: Attaching a data source 106

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-data-source.html

AWS AppSync Developer Guide

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The name of your table.

3. The type of data source. Depending on the data source type you choose, you may need
to enter a service-role-arn and a -config tag.

An example command may look like this:

 aws appsync create-data-source --api-id abcdefghijklmnopqrstuvwxyz
 --name data_source_name --type data_source_type --service-role-arn
 arn:aws:iam::107289374856:role/role_name --[data_source_type]-config {params}

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

To add your particular data source, you'll need to add the construct to your stack file. A list of
data source types can be found here:

• DynamoDbDataSource

• EventBridgeDataSource

• HttpDataSource

• LambdaDataSource

• NoneDataSource

• OpenSearchDataSource

• RdsDataSource

Step 2: Attaching a data source 107

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.DynamoDbDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.EventBridgeDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.HttpDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.LambdaDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.NoneDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.OpenSearchDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.RdsDataSource.html

AWS AppSync Developer Guide

1. In general, you may have to add the import directive to the service you're using. For
example, it may follow the forms:

import * as x from 'x'; # import wildcard as the 'x' keyword from 'x-service'
import {a, b, ...} from 'c'; # import {specific constructs} from 'c-service'

For example, here's how you could import the AWS AppSync and DynamoDB services:

import * as appsync from 'aws-cdk-lib/aws-appsync';
import * as dynamodb from 'aws-cdk-lib/aws-dynamodb';

2. Some services like RDS require some additional setup in the stack file before creating the
data source (e.g., VPC creation, roles, and access credentials). Consult the examples in the
relevant CDK pages for more information.

3. For most data sources, especially AWS services, you'll be creating a new instance of the data
source in your stack file. Typically, this will look like the following:

const add_data_source_func = new service_scope.resource_name(scope: Construct,
 id: string, props: data_source_props);

For example, here's an example Amazon DynamoDB table:

const add_ddb_table = new dynamodb.Table(this, 'Table_ID', {
 partitionKey: {
 name: 'id',
 type: dynamodb.AttributeType.STRING,
 },
 sortKey: {
 name: 'id',
 type: dynamodb.AttributeType.STRING,
 },
 tableClass: dynamodb.TableClass.STANDARD,
});

Note

Most data sources will have at least one required prop (will be denoted without a ?
symbol). Consult the CDK documentation to see which props are needed.

Step 2: Attaching a data source 108

AWS AppSync Developer Guide

4. Next, you need to link the data source to the GraphQL API. The recommended method is to
add it when you make a function for your pipeline resolver. For instance, the snippet below
is a function that scans all elements in a DynamoDB table:

const add_func = new appsync.AppsyncFunction(this, 'func_ID', {
 name: 'func_name_in_console',
 add_api,
 dataSource: add_api.addDynamoDbDataSource('data_source_name_in_console',
 add_ddb_table),
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return { operation: 'Scan' };
 }

 export function response(ctx) {
 return ctx.result.items;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
});

In the dataSource props, you can call the GraphQL API (add_api) and use one of its
built-in methods (addDynamoDbDataSource) to make the association between the table
and the GraphQL API. The arguments are the name of this link that will exist in the AWS
AppSync console (data_source_name_in_console in this example) and the table
method (add_ddb_table). More on this topic will be revealed in the next section when
you start making resolvers.

There are alternative methods for linking a data source. You could technically add api to
the props list in the table function. For example, here's the snippet from step 3 but with an
api props containing a GraphQL API:

const add_api = new appsync.GraphqlApi(this, 'API_ID', {
 ...
});

const add_ddb_table = new dynamodb.Table(this, 'Table_ID', {

 ...

 api: add_api

Step 2: Attaching a data source 109

AWS AppSync Developer Guide

});

Alternatively, you can call the GraphqlApi construct separately:

const add_api = new appsync.GraphqlApi(this, 'API_ID', {
 ...
});

const add_ddb_table = new dynamodb.Table(this, 'Table_ID', {
 ...
});

const link_data_source =
 add_api.addDynamoDbDataSource('data_source_name_in_console', add_ddb_table);

We recommend only creating the association in the function's props. Otherwise, you'll
either have to link your resolver function to the data source manually in the AWS AppSync
console (if you want to keep using the console value data_source_name_in_console)
or create a separate association in the function under another name like
data_source_name_in_console_2. This is due to limitations in how the props process
information.

Note

You'll have to redeploy the app to see your changes.

IAM trust policy

If you’re using an existing IAM role for your data source, you need to grant that role the
appropriate permissions to perform operations on your AWS resource, such as PutItem on an
Amazon DynamoDB table. You also need to modify the trust policy on that role to allow AWS
AppSync to use it for resource access as shown in the following example policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Step 2: Attaching a data source 110

AWS AppSync Developer Guide

 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

You can also add conditions to your trust policy to limit access to the data source as desired.
Currently, SourceArn and SourceAccount keys can be used in these conditions. For example, the
following policy limits access to your data source to the account 123456789012:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

Alternatively, you can limit access to a data source to a specific API, such as abcdefghijklmnopq,
using the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {

Step 2: Attaching a data source 111

AWS AppSync Developer Guide

 "ArnEquals": {
 "aws:SourceArn": "arn:aws:appsync:us-west-2:123456789012:apis/
abcdefghijklmnopq"
 }
 }
 }
]
}

You can limit access to all AWS AppSync APIs from a specific region, such as us-east-1, using the
following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:appsync:us-east-1:123456789012:apis/*"
 }
 }
 }
]
}

In the next section (Configuring Resolvers), we'll add our resolver business logic and attach it to the
fields in our schema to process the data in our data source.

For more information regarding role policy configuration, see Modifying a role in the IAM User
Guide.

For more information regarding cross-account access of AWS Lambda resolvers for AWS AppSync,
see Building cross-account AWS Lambda resolvers for AWS AppSync.

Step 2: Attaching a data source 112

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-config-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://aws.amazon.com/blogs/mobile/appsync-lambda-cross-account/

AWS AppSync Developer Guide

Step 3: Configuring resolvers

In the previous sections, you learned how to create your GraphQL schema and data source, then
linked them together in the AWS AppSync service. In your schema, you may have established one
or more fields (operations) in your query and mutation. While the schema described the kinds
of data the operations would request from the data source, it never implemented how those
operations would behave around the data.

An operation's behavior is always implemented in the resolver, which will be linked to the field
performing the operation. For more information about how resolvers work in general, see the
Resolvers page.

In AWS AppSync, your resolver is tied to a runtime, which is the environment in which your resolver
executes. Runtimes dictate the language that your resolver will be written in. There are currently
two supported runtimes: APPSYNC_JS (JavaScript) and Apache Velocity Template Language (VTL).

When implementing resolvers, there is a general structure they follow:

• Before step: When a request is made by the client, the resolvers for the schema fields being used
(typically your queries, mutations, subscriptions) are passed the request data. The resolver will
begin processing the request data with a before step handler, which allows some preprocessing
operations to be performed before the data moves through the resolver.

• Function(s): After the before step runs, the request is passed to the functions list. The first
function in the list will execute against the data source. A function is a subset of your resolver's
code containing its own request and response handler. A request handler will take the request
data and perform operations against the data source. The response handler will process the
data source's response before passing it back to the list. If there is more than one function, the
request data will be sent to the next function in the list to be executed. Functions in the list
will be executed serially in the order defined by the developer. Once all functions have been
executed, the final result is passed to the after step.res

• After step: The after step is a handler function that allows you to perform some final operations
on the final function's response before passing it to the GraphQL response.

This flow is an example of a pipeline resolver. Pipeline resolvers are supported in both runtimes.
However, this is a simplified explanation of what pipeline resolvers can do. Also, we're describing
only one possible resolver configuration. For more information about supported resolver
configurations, see the JavaScript resolvers overview for APPSYNC_JS or the Resolver mapping
template overview for VTL.

Step 3: Configuring resolvers 113

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html

AWS AppSync Developer Guide

As you can see, resolvers are modular. In order for the components of the resolver to work properly,
they must be able to peer into the state of the execution from other components. From the
Resolvers section, you know that each component in the resolver can be passed vital information
about the state of the execution as a set of arguments (args, context, etc.). In AWS AppSync,
this is handled strictly by the context. It's a container for the information about the field being
resolved. This can include everything from arguments being passed, results, authorization
data, header data, etc. For more information about the context, see the Resolver context object
reference for APPSYNC_JS or the Resolver mapping template context reference for VTL.

The context isn't the only tool you can use to implement your resolver. AWS AppSync supports a
wide range of utilities for value generation, error handling, parsing, conversion, etc. You can see a
list of utilities here for APPSYNC_JS or here for VTL.

In the following sections, you will learn how to configure resolvers in your GraphQL API.

Topics

• Configuring resolvers (JavaScript)

• Configuring resolvers (VTL)

Configuring resolvers (JavaScript)

GraphQL resolvers connect the fields in a type’s schema to a data source. Resolvers are the
mechanism by which requests are fulfilled.

Resolvers in AWS AppSync use JavaScript to convert a GraphQL expression into a format the data
source can use. Alternatively, mapping templates can be written in Apache Velocity Template
Language (VTL) to convert a GraphQL expression into a format the data source can use.

This section describes how to configure resolvers using JavaScript. The Resolver tutorials
(JavaScript) section provides in-depth tutorials on how to implement resolvers using JavaScript.
The Resolver reference (JavaScript) section provides an explanation of utility operations that can be
used with JavaScript resolvers.

We recommend following this guide before attempting to use any of the aforementioned tutorials.

In this section, we will walk through how to create and configure resolvers for queries and
mutations.

Step 3: Configuring resolvers 114

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

Note

This guide assumes you have created your schema and have at least one query or mutation.
If you're looking for subscriptions (real-time data), then see this guide.

In this section, we'll provide some general steps for configuring resolvers along with an example
that uses the schema below:

// schema.graphql file

input CreatePostInput {
 title: String
 date: AWSDateTime
}

type Post {
 id: ID!
 title: String
 date: AWSDateTime
}

type Mutation {
 createPost(input: CreatePostInput!): Post
}

type Query {
 getPost: [Post]
}

Creating basic query resolvers

This section will show you how to make a basic query resolver.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

Step 3: Configuring resolvers 115

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

2. Enter the details of your schema and data source. See the Designing your schema and
Attaching a data source sections for more information.

3. Next to the Schema editor, There's a window called Resolvers. This box contains a list of
the types and fields as defined in your Schema window. You can attach resolvers to fields.
You will most likely be attaching resolvers to your field operations. In this section, we'll look
at simple query configurations. Under the Query type, choose Attach next to your query's
field.

4. On the Attach resolver page, under Resolver type, you can choose between pipeline or
unit resolvers. For more information about these types, see Resolvers. This guide will make
use of pipeline resolvers.

Tip

When creating pipeline resolvers, your data source(s) will be attached to the
pipeline function(s). Functions are created after you create the pipeline resolver
itself, which is why there's no option to set it in this page. If you're using a unit
resolver, the data source is tied directly to the resolver, so you would set it in this
page.

For Resolver runtime, choose APPSYNC_JS to enable the JavaScript runtime.

5. You can enable caching for this API. We recommend turning this feature off for now.
Choose Create.

6. On the Edit resolver page, there's a code editor called Resolver code that allows you to
implement the logic for the resolver handler and response (before and after steps). For
more information, see the JavaScript resolvers overview.

Note

In our example, we're just going to leave the request blank and the response set to
return the last data source result from the context:

import {util} from '@aws-appsync/utils';

export function request(ctx) {
 return {};
}

Step 3: Configuring resolvers 116

https://docs.aws.amazon.com/appsync/latest/devguide/designing-your-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

export function response(ctx) {
 return ctx.prev.result;
}

Below this section, there's a table called Functions. Functions allow you to implement code
that can be reused across multiple resolvers. Instead of constantly rewriting or copying
code, you can store the source code as a function to be added to a resolver whenever you
need it.

Functions make up the bulk of a pipeline's operation list. When using multiple functions in
a resolver, you set the order of the functions, and they will be run in that order sequentially.
They are executed after the request function runs and before the response function begins.

To add a new function, under Functions, choose Add function, then Create new function.
Alternatively, you may see a Create function button to choose instead.

a. Choose a data source. This will be the data source on which the resolver acts.

Note

In our example, we're attaching a resolver for getPost, which retrieves a
Post object by id. Let's assume we already set up a DynamoDB table for this
schema. Its partition key is set to the id and is empty.

b. Enter a Function name.

c. Under Function code, you'll need to implement the function's behavior. This might be
confusing, but each function will have its own local request and response handler. The
request runs, then the data source invocation is made to handle the request, then the
data source response is processed by the response handler. The result is stored in the
context object. Afterward, the next function in the list will run or will be passed to the
after step response handler if it's the last one.

Note

In our example, we're attaching a resolver to getPost, which gets a list of
Post objects from the data source. Our request function will request the

Step 3: Configuring resolvers 117

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

data from our table, the table will pass its response to the context (ctx), then
the response will return the result in the context. AWS AppSync's strength
lies in its interconnectedness with other AWS services. Because we're using
DynamoDB, we have a suite of operations to simplify things like this. We have
some boilerplate examples for other data source types as well.
Our code will look like this:

import { util } from '@aws-appsync/utils';

/**
 * Performs a scan on the dynamodb data source
 */
export function request(ctx) {
 return { operation: 'Scan' };
}

/**
 * return a list of scanned post items
 */
export function response(ctx) {
 return ctx.result.items;
}

In this step, we added two functions:

• request: The request handler performs the retrieval operation against
the data source. The argument contains the context object (ctx), or some
data that is available to all resolvers performing a particular operation.
For example, it might contain authorization data, the field names being
resolved, etc. The return statement performs a Scan operation (see here
for examples). Because we're working with DynamoDB, we're allowed to use
some of the operations from that service. The scan performs a basic fetch
of all items in our table. The result of this operation is stored in the context
object as a result container before being passed to the response handler.
The request is run before the response in the pipeline.

• response: The response handler that returns the output of the request.
The argument is the updated context object, and the return statement is
ctx.prev.result. At this point in the guide, you may not be familiar with
this value. ctx refers to the context object. prev refers to the previous

Step 3: Configuring resolvers 118

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-scan
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html

AWS AppSync Developer Guide

operation in the pipeline, which was our request. The result contains
the result(s) of the resolver as it moves through the pipeline. If you put it all
together, ctx.prev.result is returning the result of the last operation
performed, which was the request handler.

d. Choose Create after you're done.

7. Back on the resolver screen, under Functions, choose the Add function drop-down and add
your function to your functions list.

8. Choose Save to update the resolver.

CLI

To add your function

• Create a function for your pipeline resolver using the create-function command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The name of the function in the AWS AppSync console.

3. The data-source-name, or the name of the data source the function will use. It must
already be created and linked to your GraphQL API in the AWS AppSync service.

4. The runtime, or environment and language of the function. For JavaScript, the name
must be APPSYNC_JS, and the runtime, 1.0.0.

5. The code, or request and response handlers of your function. While you can type it in
manually, it's far easier to add it to a .txt file (or a similar format) and then pass it in as
the argument.

Note

Our query code will be in a file passed in as the argument:

import { util } from '@aws-appsync/utils';

/**
 * Performs a scan on the dynamodb data source
 */
export function request(ctx) {

Step 3: Configuring resolvers 119

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-function.html

AWS AppSync Developer Guide

 return { operation: 'Scan' };
}

/**
 * return a list of scanned post items
 */
export function response(ctx) {
 return ctx.result.items;
}

An example command may look like this:

aws appsync create-function \
--api-id abcdefghijklmnopqrstuvwxyz \
--name get_posts_func_1 \
--data-source-name table-for-posts \
--runtime name=APPSYNC_JS,runtimeVersion=1.0.0 \
--code file://~/path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

{
 "functionConfiguration": {
 "functionId": "ejglgvmcabdn7lx75ref4qeig4",
 "functionArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/functions/ejglgvmcabdn7lx75ref4qeig4",
 "name": "get_posts_func_1",
 "dataSourceName": "table-for-posts",
 "maxBatchSize": 0,
 "runtime": {
 "name": "APPSYNC_JS",
 "runtimeVersion": "1.0.0"
 },
 "code": "Code output goes here"
 }
}

Step 3: Configuring resolvers 120

AWS AppSync Developer Guide

Note

Make sure you record the functionId somewhere as this will be used to attach
the function to the resolver.

To create your resolver

• Create a pipeline function for Query by running the create-resolver command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name, or the special object type in your schema (Query, Mutation,
Subscription).

3. The field-name, or the field operation inside the special object type you want to
attach the resolver to.

4. The kind, which specifies a unit or pipeline resolver. Set this to PIPELINE to enable
pipeline functions.

5. The pipeline-config, or the function(s) to attach to the resolver. Make sure you know
the functionId values of your functions. Order of listing matters.

6. The runtime, which was APPSYNC_JS (JavaScript). The runtimeVersion currently is
1.0.0.

7. The code, which contains the before and after step handlers.

Note

Our query code will be in a file passed in as the argument:

import { util } from '@aws-appsync/utils';

/**
 * Sends a request to `put` an item in the DynamoDB data source
 */
export function request(ctx) {
 const { id, ...values } = ctx.args;
 return {

Step 3: Configuring resolvers 121

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html

AWS AppSync Developer Guide

 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ id }),
 attributeValues: util.dynamodb.toMapValues(values),
 };
}

/**
 * returns the result of the `put` operation
 */
export function response(ctx) {
 return ctx.result;
}

An example command may look like this:

aws appsync create-resolver \
--api-id abcdefghijklmnopqrstuvwxyz \
--type-name Query \
--field-name getPost \
--kind PIPELINE \
--pipeline-config functions=ejglgvmcabdn7lx75ref4qeig4 \
--runtime name=APPSYNC_JS,runtimeVersion=1.0.0 \
--code file:///path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

{
 "resolver": {
 "typeName": "Mutation",
 "fieldName": "getPost",
 "resolverArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Mutation/resolvers/getPost",
 "kind": "PIPELINE",
 "pipelineConfig": {
 "functions": [
 "ejglgvmcabdn7lx75ref4qeig4"
]
 },
 "maxBatchSize": 0,
 "runtime": {
 "name": "APPSYNC_JS",

Step 3: Configuring resolvers 122

AWS AppSync Developer Guide

 "runtimeVersion": "1.0.0"
 },
 "code": "Code output goes here"
 }
}

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

A basic app will need the following things:

1. Service import directives

2. Schema code

3. Data source generator

4. Function code

5. Resolver code

From the Designing your schema and Attaching a data source sections, we know that the stack
file will include the import directives of the form:

import * as x from 'x'; # import wildcard as the 'x' keyword from 'x-service'
import {a, b, ...} from 'c'; # import {specific constructs} from 'c-service'

Note

In previous sections, we only stated how to import AWS AppSync constructs. In real
code, you'll have to import more services just to run the app. In our example, if we were
to create a very simple CDK app, we would at least import the AWS AppSync service

Step 3: Configuring resolvers 123

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/appsync/latest/devguide/designing-your-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html

AWS AppSync Developer Guide

along with our data source, which was a DynamoDB table. We would also need to
import some additional constructs to deploy the app:

import * as cdk from 'aws-cdk-lib';
import * as appsync from 'aws-cdk-lib/aws-appsync';
import * as dynamodb from 'aws-cdk-lib/aws-dynamodb';
import { Construct } from 'constructs';

To summarize each of these:

• import * as cdk from 'aws-cdk-lib';: This allows you to define your CDK
app and constructs such as the stack. It also contains some useful utility functions
for our application like manipulating metadata. If you're familiar with this import
directive, but are wondering why the cdk core library is not being used here, see the
Migration page.

• import * as appsync from 'aws-cdk-lib/aws-appsync';: This imports the
AWS AppSync service.

• import * as dynamodb from 'aws-cdk-lib/aws-dynamodb';: This imports
the DynamoDB service.

• import { Construct } from 'constructs';: We need this to define the root
construct.

The type of import depends on the services you're calling. We recommend looking at the CDK
documentation for examples. The schema at the top of the page will be a separate file in your
CDK app as a .graphql file. In the stack file, we can associate it with a new GraphQL using the
form:

const add_api = new appsync.GraphqlApi(this, 'graphQL-example', {
 name: 'my-first-api',
 schema: appsync.SchemaFile.fromAsset(path.join(__dirname, 'schema.graphql')),
});

Note

In the scope add_api, we're adding a new GraphQL API using the new keyword
followed by appsync.GraphqlApi(scope: Construct, id: string , props:
GraphqlApiProps). Our scope is this, the CFN id is graphQL-example, and our

Step 3: Configuring resolvers 124

https://docs.aws.amazon.com/cdk/v2/guide/migrating-v2.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_dynamodb-readme.html
https://docs.aws.amazon.com/cdk/v2/guide/constructs.html

AWS AppSync Developer Guide

props are my-first-api (name of the API in the console) and schema.graphql (the
absolute path to the schema file).

To add a data source, you'll first have to add your data source to the stack. Then, you need to
associate it with the GraphQL API using the source-specific method. The association will happen
when you make your resolver function. In the meantime, let's use an example by creating the
DynamoDB table using dynamodb.Table:

const add_ddb_table = new dynamodb.Table(this, 'posts-table', {
 partitionKey: {
 name: 'id',
 type: dynamodb.AttributeType.STRING,
 },
});

Note

If we were to use this in our example, we'd be adding a new DynamoDB table with the
CFN id of posts-table and a partition key of id (S).

Next, we need to implement our resolver in the stack file. Here's an example of a simple query
that scans for all items in a DynamoDB table:

const add_func = new appsync.AppsyncFunction(this, 'func-get-posts', {
 name: 'get_posts_func_1',
 add_api,
 dataSource: add_api.addDynamoDbDataSource('table-for-posts', add_ddb_table),
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return { operation: 'Scan' };
 }

 export function response(ctx) {
 return ctx.result.items;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
});

Step 3: Configuring resolvers 125

AWS AppSync Developer Guide

new appsync.Resolver(this, 'pipeline-resolver-get-posts', {
 add_api,
 typeName: 'Query',
 fieldName: 'getPost',
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return {};
 }

 export function response(ctx) {
 return ctx.prev.result;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
 pipelineConfig: [add_func],
});

Note

First, we created a function called add_func. This order of creation may seem a bit
counterintuitive, but you have to create the functions in your pipeline resolver before
you make the resolver itself. A function follows the form:

AppsyncFunction(scope: Construct, id: string, props: AppsyncFunctionProps)

Our scope was this, our CFN id was func-get-posts, and our props contained the
actual function details. Inside props, we included:

• The name of the function that will be present in the AWS AppSync console
(get_posts_func_1).

• The GraphQL API we created earlier (add_api).

• The data source; this is the point where we link the data source to the GraphQL API
value, then attach it to the function. We take the table we created (add_ddb_table)
and attach it to the GraphQL API (add_api) using one of the GraphqlApi methods
(addDynamoDbDataSource). The id value (table-for-posts) is the name of the
data source in the AWS AppSync console. For a list of source-specific methods, see the
following pages:

• DynamoDbDataSource

• EventBridgeDataSource

Step 3: Configuring resolvers 126

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.GraphqlApi.html#addwbrdynamowbrdbwbrdatawbrsourceid-table-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.DynamoDbDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.EventBridgeDataSource.html

AWS AppSync Developer Guide

• HttpDataSource

• LambdaDataSource

• NoneDataSource

• OpenSearchDataSource

• RdsDataSource

• The code contains our function's request and response handlers, which is a simple
scan and return.

• The runtime specifies that we want to use the APPSYNC_JS runtime version 1.0.0.
Note that this is currently the only version available for APPSYNC_JS.

Next, we need to attach the function to the pipeline resolver. We created our resolver
using the form:

Resolver(scope: Construct, id: string, props: ResolverProps)

Our scope was this, our CFN id was pipeline-resolver-get-posts, and our props
contained the actual function details. Inside the props, we included:

• The GraphQL API we created earlier (add_api).

• The special object type name; this is a query operation, so we simply added the value
Query.

• The field name (getPost) is the name of the field in the schema under the Query
type.

• The code contains your before and after handlers. Our example just returns whatever
results were in the context after the function performed its operation.

• The runtime specifies that we want to use the APPSYNC_JS runtime version 1.0.0.
Note that this is currently the only version available for APPSYNC_JS.

• The pipeline config contains the reference to the function we created (add_func).

To summarize what happened in this example, you saw an AWS AppSync function that
implemented a request and response handler. The function was responsible for interacting with
your data source. The request handler sent a Scan operation to AWS AppSync, instructing it on
what operation to perform against your DynamoDB data source. The response handler returned
Step 3: Configuring resolvers 127

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.HttpDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.LambdaDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.NoneDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.OpenSearchDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.RdsDataSource.html

AWS AppSync Developer Guide

the list of items (ctx.result.items). The list of items was then mapped to the Post GraphQL
type automatically.

Creating basic mutation resolvers

This section will show you how to make a basic mutation resolver.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

2. Under the Resolvers section and the Mutation type, choose Attach next to your field.

Note

In our example, we're attaching a resolver for createPost, which adds a Post
object to our table. Let's assume we're using the same DynamoDB table from the
last section. Its partition key is set to the id and is empty.

3. On the Attach resolver page, under Resolver type, choose pipeline resolvers. As
a reminder, you can find more information about resolvers here. For Resolver runtime,
choose APPSYNC_JS to enable the JavaScript runtime.

4. You can enable caching for this API. We recommend turning this feature off for now.
Choose Create.

5. Choose Add function, then choose Create new function. Alternatively, you may see a
Create function button to choose instead.

a. Choose your data source. This should be the source whose data you will manipulate
with the mutation.

b. Enter a Function name.

c. Under Function code, you'll need to implement the function's behavior. This is a
mutation, so the request will ideally perform some state-changing operation on the
invoked data source. The result will be processed by the response function.

Step 3: Configuring resolvers 128

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html

AWS AppSync Developer Guide

Note

createPost is adding, or "putting", a new Post in the table with our
parameters as the data. We could add something like this:

import { util } from '@aws-appsync/utils';

/**
 * Sends a request to `put` an item in the DynamoDB data source
 */
export function request(ctx) {
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({id: util.autoId()}),
 attributeValues: util.dynamodb.toMapValues(ctx.args.input),
 };
}

/**
 * returns the result of the `put` operation
 */
export function response(ctx) {
 return ctx.result;
}

In this step, we also added request and response functions:

• request: The request handler accepts the context as the argument. The
request handler return statement performs a PutItem command, which
is a built-in DynamoDB operation (see here or here for examples). The
PutItem command adds a Post object to our DynamoDB table by taking
the partition key value (automatically generated by util.autoid())
and attributes from the context argument input (these are the values
we will pass in our request). The key is the id and attributes are the
date and title field arguments. They're both preformatted through the
util.dynamodb.toMapValues helper to work with the DynamoDB table.

• response: The response accepts the updated context and returns the result
of the request handler.

Step 3: Configuring resolvers 129

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-putitem
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData
https://docs.aws.amazon.com/appsync/latest/devguide/dynamodb-helpers-in-util-dynamodb-js.html#utility-helpers-in-toMap-js

AWS AppSync Developer Guide

d. Choose Create after you're done.

6. Back on the resolver screen, under Functions, choose the Add function drop-down and add
your function to your functions list.

7. Choose Save to update the resolver.

CLI

To add your function

• Create a function for your pipeline resolver using the create-function command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The name of the function in the AWS AppSync console.

3. The data-source-name, or the name of the data source the function will use. It must
already be created and linked to your GraphQL API in the AWS AppSync service.

4. The runtime, or environment and language of the function. For JavaScript, the name
must be APPSYNC_JS, and the runtime, 1.0.0.

5. The code, or request and response handlers of your function. While you can type it in
manually, it's far easier to add it to a .txt file (or a similar format) then pass it in as the
argument.

Note

Our query code will be in a file passed in as the argument:

import { util } from '@aws-appsync/utils';

/**
 * Sends a request to `put` an item in the DynamoDB data source
 */
export function request(ctx) {
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({id: util.autoId()}),
 attributeValues: util.dynamodb.toMapValues(ctx.args.input),
 };

Step 3: Configuring resolvers 130

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-function.html

AWS AppSync Developer Guide

}

/**
 * returns the result of the `put` operation
 */
export function response(ctx) {
 return ctx.result;
}

An example command may look like this:

aws appsync create-function \
--api-id abcdefghijklmnopqrstuvwxyz \
--name add_posts_func_1 \
--data-source-name table-for-posts \
--runtime name=APPSYNC_JS,runtimeVersion=1.0.0 \
--code file:///path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

{
 "functionConfiguration": {
 "functionId": "vulcmbfcxffiram63psb4dduoa",
 "functionArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/functions/vulcmbfcxffiram63psb4dduoa",
 "name": "add_posts_func_1",
 "dataSourceName": "table-for-posts",
 "maxBatchSize": 0,
 "runtime": {
 "name": "APPSYNC_JS",
 "runtimeVersion": "1.0.0"
 },
 "code": "Code output foes here"
 }
}

Step 3: Configuring resolvers 131

AWS AppSync Developer Guide

Note

Make sure you record the functionId somewhere as this will be used to attach
the function to the resolver.

To create your resolver

• Create a pipeline function for Mutation by running the create-resolver command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name, or the special object type in your schema (Query, Mutation,
Subscription).

3. The field-name, or the field operation inside the special object type you want to
attach the resolver to.

4. The kind, which specifies a unit or pipeline resolver. Set this to PIPELINE to enable
pipeline functions.

5. The pipeline-config, or the function(s) to attach to the resolver. Make sure you know
the functionId values of your functions. Order of listing matters.

6. The runtime, which was APPSYNC_JS (JavaScript). The runtimeVersion currently is
1.0.0.

7. The code, which contains the before and after step.

Note

Our query code will be in a file passed in as the argument:

import { util } from '@aws-appsync/utils';

/**
 * Sends a request to `put` an item in the DynamoDB data source
 */
export function request(ctx) {
 const { id, ...values } = ctx.args;
 return {

Step 3: Configuring resolvers 132

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html

AWS AppSync Developer Guide

 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ id }),
 attributeValues: util.dynamodb.toMapValues(values),
 };
}

/**
 * returns the result of the `put` operation
 */
export function response(ctx) {
 return ctx.result;
}

An example command may look like this:

aws appsync create-resolver \
--api-id abcdefghijklmnopqrstuvwxyz \
--type-name Mutation \
--field-name createPost \
--kind PIPELINE \
--pipeline-config functions=vulcmbfcxffiram63psb4dduoa \
--runtime name=APPSYNC_JS,runtimeVersion=1.0.0 \
--code file:///path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

{
 "resolver": {
 "typeName": "Mutation",
 "fieldName": "createPost",
 "resolverArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Mutation/resolvers/createPost",
 "kind": "PIPELINE",
 "pipelineConfig": {
 "functions": [
 "vulcmbfcxffiram63psb4dduoa"
]
 },
 "maxBatchSize": 0,
 "runtime": {
 "name": "APPSYNC_JS",

Step 3: Configuring resolvers 133

AWS AppSync Developer Guide

 "runtimeVersion": "1.0.0"
 },
 "code": "Code output goes here"
 }
}

CDK

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

• To make a mutation, assuming you're in the same project, you can add it to the stack file
like the query. Here's a modified function and resolver for a mutation that adds a new Post
to the table:

const add_func_2 = new appsync.AppsyncFunction(this, 'func-add-post', {
 name: 'add_posts_func_1',
 add_api,
 dataSource: add_api.addDynamoDbDataSource('table-for-posts-2', add_ddb_table),
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({id: util.autoId()}),
 attributeValues: util.dynamodb.toMapValues(ctx.args.input),
 };
 }

 export function response(ctx) {
 return ctx.result;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
});

Step 3: Configuring resolvers 134

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

new appsync.Resolver(this, 'pipeline-resolver-create-posts', {
 add_api,
 typeName: 'Mutation',
 fieldName: 'createPost',
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return {};
 }

 export function response(ctx) {
 return ctx.prev.result;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
 pipelineConfig: [add_func_2],
});

Note

Since this mutation and the query are similarly structured, we'll just explain the
changes we made to make the mutation.
In the function, we changed the CFN id to func-add-post and name to
add_posts_func_1 to reflect the fact that we're adding Posts to the table. In the
data source, we made a new association to our table (add_ddb_table) in the AWS
AppSync console as table-for-posts-2 because the addDynamoDbDataSource
method requires it. Keep in mind, this new association is still using the same table
we created earlier, but we now have two connections to it in the AWS AppSync
console: one for the query as table-for-posts and one for the mutation as
table-for-posts-2. The code was changed to add a Post by generating its id
value automatically and accepting a client's input for the rest of the fields.
In the resolver, we changed the id value to pipeline-resolver-create-
posts to reflect the fact that we're adding Posts to the table. To reflect the
mutation in the schema, the type name was changed to Mutation, and the
name, createPost. The pipeline config was set to our new mutation function
add_func_2.

Step 3: Configuring resolvers 135

AWS AppSync Developer Guide

To summarize what's happening in this example, AWS AppSync automatically converts arguments
defined in the createPost field from your GraphQL schema into DynamoDB operations.
The example stores records in DynamoDB using a key of id, which is automatically created
using our util.autoId() helper. All of the other fields you pass to the context arguments
(ctx.args.input) from requests made in the AWS AppSync console or otherwise will be stored
as the table's attributes. Both the key and the attributes are automatically mapped to a compatible
DynamoDB format using the util.dynamodb.toMapValues(values) helper.

AWS AppSync also supports test and debug workflows for editing resolvers. You can use a mock
context object to see the transformed value of the template before invoking it. Optionally,
you can view the full request to a data source interactively when you run a query. For more
information, see Test and debug resolvers (JavaScript) and Monitoring and logging.

Advanced resolvers

If you are following the optional pagination section in Designing your schema, you still need to
add your resolver to your request to make use of pagination. Our example used a query pagination
called getPosts to return only a portion of the things requested at a time. Our resolver's code on
that field may look like this:

/**
 * Performs a scan on the dynamodb data source
 */
export function request(ctx) {
 const { limit = 20, nextToken } = ctx.args;
 return { operation: 'Scan', limit, nextToken };
}

/**
 * @returns the result of the `put` operation
 */
export function response(ctx) {
 const { items: posts = [], nextToken } = ctx.result;
 return { posts, nextToken };
}

In the request, we pass in the context of the request. Our limit is 20, meaning we return up to 20
Posts in the first query. Our nextToken cursor is fixed to the first Post entry in the data source.
These are passed to the args. The request then performs a scan from the first Post up to the scan
limit number. The data source stores the result in the context, which is passed to the response. The

Step 3: Configuring resolvers 136

https://docs.aws.amazon.com/appsync/latest/devguide/test-debug-resolvers-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html#aws-appsync-monitoring

AWS AppSync Developer Guide

response returns the Posts it retrieved, then sets the nextToken is set to the Post entry right
after the limit. The next request is sent out to do the exact same thing but starting at the offset
right after the first query. Keep in mind that these sorts of requests are done sequentially and not
in parallel.

Test and debug resolvers (JavaScript)

AWS AppSync executes resolvers on a GraphQL field against a data source. When working with
pipeline resolvers, functions interact with your data sources. As described in the JavaScript
resolvers overview, functions communicate with data sources by using request and response
handlers written in JavaScript and running on the APPSYNC_JS runtime. This enables you to
provide custom logic and conditions before and after communicating with the data source.

To help developers write, test, and debug these resolvers, the AWS AppSync console also provides
tools to create a GraphQL request and response with mock data down to the individual field
resolver. Additionally, you can perform queries, mutations, and subscriptions in the AWS AppSync
console and see a detailed log stream of the entire request from Amazon CloudWatch. This
includes results from the data source.

Testing with mock data

When a GraphQL resolver is invoked, it contains a context object that has relevant information
about the request. This includes arguments from a client, identity information, and data from
the parent GraphQL field. It also stores the results from the data source, which can be used in the
response handler. For more information about this structure and the available helper utilities to use
when programming, see the Resolver context object reference.

When writing or editing a resolver function, you can pass a mock or test context object into the
console editor. This enables you to see how both the request and the response handlers evaluate
without actually running against a data source. For example, you can pass a test firstname:
Shaggy argument and see how it evaluates when using ctx.args.firstname in your template
code. You could also test the evaluation of any utility helpers such as util.autoId() or
util.time.nowISO8601().

Testing resolvers

This example will use the AWS AppSync console to test resolvers.

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

Step 3: Configuring resolvers 137

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

b. In the Sidebar, choose Functions.

2. Choose an existing function.

3. At the top of the Update function page, choose Select test context, then choose Create new
context.

4. Select a sample context object or populate the JSON manually in the Configure test context
window below.

5. Enter a Text context name.

6. Choose the Save button.

7. To evaluate your resolver using this mocked context object, choose Run Test.

For a more practical example, suppose you have an app storing a GraphQL type of Dog that uses
automatic ID generation for objects and stores them in Amazon DynamoDB. You also want to write
some values from the arguments of a GraphQL mutation and allow only specific users to see a
response. The following snippet shows what the schema might look like:

type Dog {
 breed: String
 color: String
}

type Mutation {
 addDog(firstname: String, age: Int): Dog
}

You can write an AWS AppSync function and add it to your addDog resolver to handle the
mutation. To test your AWS AppSync function, you can populate a context object like the following
example. The following has arguments from the client of name and age, and a username
populated in the identity object:

{
 "arguments" : {
 "firstname": "Shaggy",
 "age": 4
 },
 "source" : {},
 "result" : {
 "breed" : "Miniature Schnauzer",

Step 3: Configuring resolvers 138

AWS AppSync Developer Guide

 "color" : "black_grey"
 },
 "identity": {
 "sub" : "uuid",
 "issuer" : " https://cognito-idp.{region}.amazonaws.com/{userPoolId}",
 "username" : "Nadia",
 "claims" : { },
 "sourceIp" :["x.x.x.x"],
 "defaultAuthStrategy" : "ALLOW"
 }
}

You can test your AWS AppSync function using the following code:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ id: util.autoId() }),
 attributeValues: util.dynamodb.toMapValues(ctx.args),
 };
}

export function response(ctx) {
 if (ctx.identity.username === 'Nadia') {
 console.log("This request is allowed")
 return ctx.result;
 }
 util.unauthorized();
}

The evaluated request and response handler has the data from your test context object and the
generated value from util.autoId(). Additionally, if you were to change the username to a
value other than Nadia, the results won’t be returned because the authorization check would fail.
For more information about fine-grained access control, see Authorization use cases.

Testing request and response handlers with AWS AppSync's APIs

You can use the EvaluateCode API command to remotely test your code with mocked data. To
get started with the command, make sure you have added the appsync:evaluateMappingCode
permission to your policy. For example:

Step 3: Configuring resolvers 139

AWS AppSync Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "appsync:evaluateCode",
 "Resource": "arn:aws:appsync:<region>:<account>:*"
 }
]
}

You can leverage the command by using the AWS CLI or AWS SDKs. For example, take the Dog
schema and its AWS AppSync function request and response handlers from the previous section.
Using the CLI on your local station, save the code to a file named code.js, then save the context
object to a file named context.json. From your shell, run the following command:

$ aws appsync evaluate-code \
 --code file://code.js \
 --function response \
 --context file://context.json \
 --runtime name=APPSYNC_JS,runtimeVersion=1.0.0

The response contains an evaluationResult containing the payload returned by your handler. It
also contains a logs object, that holds the list of logs that were generated by your handler during
the evaluation. This makes it easy to debug your code execution and see information about your
evaluation to help troubleshoot. For example:

{
 "evaluationResult": "{\"breed\":\"Miniature Schnauzer\",\"color\":\"black_grey\"}",
 "logs": [
 "INFO - code.js:13:5: \"This request is allowed\""
]
}

The evaluationResult can be parsed as JSON, which gives:

{
 "breed": "Miniature Schnauzer",
 "color": "black_grey"
}

Step 3: Configuring resolvers 140

https://aws.amazon.com/cli/
https://aws.amazon.com/tools/

AWS AppSync Developer Guide

Using the SDK, you can easily incorporate tests from your favorite test suite to validate your
handlers' behavior. We recommend creating tests using the Jest Testing Framework, but any testing
suite works. The following snippet shows a hypothetical validation run. Note that we expect the
evaluation response to be valid JSON, so we use JSON.parse to retrieve JSON from the string
response:

const AWS = require('aws-sdk')
const fs = require('fs')
const client = new AWS.AppSync({ region: 'us-east-2' })
const runtime = {name:'APPSYNC_JS',runtimeVersion:'1.0.0')

test('request correctly calls DynamoDB', async () => {
 const code = fs.readFileSync('./code.js', 'utf8')
 const context = fs.readFileSync('./context.json', 'utf8')
 const contextJSON = JSON.parse(context)

 const response = await client.evaluateCode({ code, context, runtime, function:
 'request' }).promise()
 const result = JSON.parse(response.evaluationResult)

 expect(result.key.id.S).toBeDefined()
 expect(result.attributeValues.firstname.S).toEqual(contextJSON.arguments.firstname)
})

This yields the following result:

Ran all test suites.
> jest

PASS ./index.test.js
request correctly calls DynamoDB (543 ms)
Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 totalTime: 1.511 s, estimated 2 s

Debugging a live query

There’s no substitute for an end-to-end test and logging to debug a production application. AWS
AppSync lets you log errors and full request details using Amazon CloudWatch. Additionally, you
can use the AWS AppSync console to test GraphQL queries, mutations, and subscriptions and live

Step 3: Configuring resolvers 141

https://jestjs.io/

AWS AppSync Developer Guide

stream log data for each request back into the query editor to debug in real time. For subscriptions,
the logs display connection-time information.

To perform this, you need to have Amazon CloudWatch logs enabled in advance, as described in
Monitoring and logging. Next, in the AWS AppSync console, choose the Queries tab and then enter
a valid GraphQL query. In the lower-right section, click and drag the Logs window to open the
logs view. At the top of the page, choose the play arrow icon to run your GraphQL query. In a few
moments, your full request and response logs for the operation are streamed to this section and
you can view them in the console.

Pipeline resolvers (JavaScript)

AWS AppSync executes resolvers on a GraphQL field. In some cases, applications require executing
multiple operations to resolve a single GraphQL field. With pipeline resolvers, developers can now
compose operations called Functions and execute them in sequence. Pipeline resolvers are useful
for applications that, for instance, require performing an authorization check before fetching data
for a field.

For more information about the architecture of a JavaScript pipeline resolver, see the JavaScript
resolvers overview.

Create a pipeline resolver

In the AWS AppSync console, go to the Schema page.

Save the following schema:

schema {
 query: Query
 mutation: Mutation
}

type Mutation {
 signUp(input: Signup): User
}

type Query {
 getUser(id: ID!): User
}

input Signup {
 username: String!

Step 3: Configuring resolvers 142

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html#anatomy-of-a-pipeline-resolver-js
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html#anatomy-of-a-pipeline-resolver-js

AWS AppSync Developer Guide

 email: String!
}

type User {
 id: ID!
 username: String
 email: AWSEmail
}

We are going to wire a pipeline resolver to the signUp field on the Mutation type. In the Mutation
type on the right side, choose Attach next to the signUp mutation field. Set the resolver to
pipeline resolver and the APPSYNC_JS runtime, then create the resolver.

Our pipeline resolver signs up a user by first validating the email address input and then saving
the user in the system. We are going to encapsulate the email validation inside a validateEmail
function and the saving of the user inside a saveUser function. The validateEmail function
executes first, and if the email is valid, then the saveUser function executes.

The execution flow will be as follows:

1. Mutation.signUp resolver request handler

2. validateEmail function

3. saveUser function

4. Mutation.signUp resolver response handler

Because we will probably reuse the validateEmail function in other resolvers on our API, we want
to avoid accessing ctx.args because these will change from one GraphQL field to another.
Instead, we can use the ctx.stash to store the email attribute from the signUp(input:
Signup) input field argument.

Update your resolver code by replacing your request and response functions:

export function request(ctx) {
 ctx.stash.email = ctx.args.input.email
 return {};
}

export function response(ctx) {
 return ctx.prev.result;
}

Step 3: Configuring resolvers 143

AWS AppSync Developer Guide

Choose Create or Save to update the resolver.

Create a function

From the pipeline resolver page, in the Functions section, click on Add function, then Create new
function. It is also possible to create functions without going through the resolver page; to do this,
in the AWS AppSync console, go to the Functions page. Choose the Create function button. Let’s
create a function that checks if an email is valid and comes from a specific domain. If the email is
not valid, the function raises an error. Otherwise, it forwards whatever input it was given.

Make sure you have created a data source of the NONE type. Choose this data source in the Data
source name list. For the function name, enter in validateEmail. In the function code area,
overwrite everything with this snippet:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { email } = ctx.stash;
 const valid = util.matches(
 '^[a-zA-Z0-9_.+-]+@(?:(?:[a-zA-Z0-9-]+\.)?[a-zA-Z]+\.)?(myvaliddomain)\.com',
 email
);
 if (!valid) {
 util.error(`"${email}" is not a valid email.`);
 }

 return { payload: { email } };
}

export function response(ctx) {
 return ctx.result;
}

Review your inputs, then choose Create. We just created our validateEmail function. Repeat these
steps to create the saveUser function with the following code (For the sake of simplicity, we use a
NONE data source and pretend the user has been saved in the system after the function executes.):

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 return ctx.prev.result;
}

Step 3: Configuring resolvers 144

AWS AppSync Developer Guide

export function response(ctx) {
 ctx.result.id = util.autoId();
 return ctx.result;
}

We just created our saveUser function.

Adding a function to a pipeline resolver

Our functions should have been added automatically to the pipeline resolver we just created. If
this wasn't the case, or you created the functions through the Functions page, you can click on
Add function back on the signUp resolver page to attach them. Add both the validateEmail
and saveUser functions to the resolver. The validateEmail function should be placed before the
saveUser function. As you add more functions, you can use the move up and move down options
to reorganize the order of execution of your functions. Review your changes, then choose Save.

Running a query

In the AWS AppSync console, go to the Queries page. In the explorer, ensure that you're using your
mutation. If you aren't, choose Mutation in the drop-down list, then choose +. Enter the following
query:

mutation {
 signUp(input: {email: "nadia@myvaliddomain.com", username: "nadia"}) {
 id
 username
 }
}

This should return something like:

{
 "data": {
 "signUp": {
 "id": "256b6cc2-4694-46f4-a55e-8cb14cc5d7fc",
 "username": "nadia"
 }
 }
}

We have successfully signed up our user and validated the input email using a pipeline resolver.

Step 3: Configuring resolvers 145

AWS AppSync Developer Guide

Configuring resolvers (VTL)

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

GraphQL resolvers connect the fields in a type’s schema to a data source. Resolvers are the
mechanism by which requests are fulfilled. AWS AppSync can automatically create and connect
resolvers from a schema or create a schema and connect resolvers from an existing table without
you needing to write any code.

Resolvers in AWS AppSync use JavaScript to convert a GraphQL expression into a format the data
source can use. Alternatively, mapping templates can be written in Apache Velocity Template
Language (VTL) to convert a GraphQL expression into a format the data source can use.

This section will show you how to configure resolvers using VTL. An introductory tutorial-style
programming guide for writing resolvers can be found in Resolver mapping template programming
guide, and helper utilities available to use when programming can be found in Resolver mapping
template context reference. AWS AppSync also has built-in test and debug flows that you can use
when you’re editing or authoring from scratch. For more information, see Test and debug resolvers.

We recommend following this guide before attempting to to use any of the aforementioned
tutorials.

In this section, we will walk through how to create a resolver, add a resolver for mutations, and use
advanced configurations.

Create your first resolver

Following the examples from the previous sections, the first step is to create a resolver for your
Query type.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

Step 3: Configuring resolvers 146

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

2. On the right-hand side of the page, there's a window called Resolvers. This box contains a
list of the types and fields as defined in your Schema window on the left-hand side of the
page. You're able to attach resolvers to fields. For example, under the Query type, choose
Attach next to the getTodos field.

3. On the Create Resolver page, choose the data source you created in the Attaching a data
source guide. In the Configure mapping templates window, you can choose both the
generic request and response mapping templates using the drop-down list to the right or
write your own.

Note

The pairing of a request mapping template to a response mapping template is
called a unit resolver. Unit resolvers are typically meant to perform rote operations;
we recommend using them only for singular operations with a small number of
data sources. For more complex operations, we recommend using pipeline resolvers,
which can execute multiple operations with multiple data sources sequentially.
For more information about the difference between request and response mapping
templates, see Unit resolvers.
For more information about using pipeline resolvers, see Pipeline resolvers.

4. For common use cases, the AWS AppSync console has built-in templates that you can
use for getting items from data sources (e.g., all item queries, individual lookups, etc.).
For example, on the simple version of the schema from Designing your schema where
getTodos didn’t have pagination, the request mapping template for listing items is as
follows:

{
 "version" : "2017-02-28",
 "operation" : "Scan"
}

5. You always need a response mapping template to accompany the request. The console
provides a default with the following passthrough value for lists:

$util.toJson($ctx.result.items)

In this example, the context object (aliased as $ctx) for lists of items has the form
$context.result.items. If your GraphQL operation returns a single item, it would be

Step 3: Configuring resolvers 147

https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html#unit-resolvers

AWS AppSync Developer Guide

$context.result. AWS AppSync provides helper functions for common operations, such
as the $util.toJson function listed previously, to format responses properly. For a full
list of functions, see Resolver mapping template utility reference.

6. Choose Save Resolver.

API

1. Create a resolver object by calling the CreateResolver API.

2. You can modify your resolver's fields by calling the UpdateResolver API.

CLI

1. Create a resolver by running the create-resolver command.

You'll need to type in 6 parameters for this particular command:

1. The api-id of your API.

2. The type-name of the type that you want to modify in your schema. In the console
example, this was Query.

3. The field-name of the field that you want to modify in your type. In the console
example, this was getTodos.

4. The data-source-name of the data source you created in the Attaching a data source
guide.

5. The request-mapping-template, which is the body of the request. In the console
example, this was:

{
 "version" : "2017-02-28",
 "operation" : "Scan"
}

6. The response-mapping-template, which is the body of the response. In the console
example, this was:

$util.toJson($ctx.result.items)

Step 3: Configuring resolvers 148

https://docs.aws.amazon.com/appsync/latest/APIReference/API_CreateResolver.html
https://docs.aws.amazon.com/appsync/latest/APIReference/API_UpdateResolver.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html

AWS AppSync Developer Guide

An example command may look like this:

aws appsync create-resolver --api-id abcdefghijklmnopqrstuvwxyz --type-name
 Query --field-name getTodos --data-source-name TodoTable --request-mapping-
template "{ "version" : "2017-02-28", "operation" : "Scan", }" --response-
mapping-template ""$"util.toJson("$"ctx.result.items)"

An output will be returned in the CLI. Here's an example:

{
 "resolver": {
 "kind": "UNIT",
 "dataSourceName": "TodoTable",
 "requestMappingTemplate": "{ version : 2017-02-28, operation : Scan, }",
 "resolverArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Query/resolvers/getTodos",
 "typeName": "Query",
 "fieldName": "getTodos",
 "responseMappingTemplate": "$util.toJson($ctx.result.items)"
 }
}

2. To modify a resolver's fields and/or mapping templates, run the update-resolver
command.

With the exception of the api-id parameter, the parameters used in the create-
resolver command will be overwritten by the new values from the update-resolver
command.

Adding a resolver for mutations

The next step is to create a resolver for your Mutation type.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

Step 3: Configuring resolvers 149

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-resolver.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

2. Under the Mutation type, choose Attach next to the addTodo field.

3. On the Create Resolver page, choose the data source you created in the Attaching a data
source guide.

4. In the Configure mapping templates window, you'll need to modify the request template
because this is a mutation where you’re adding a new item to DynamoDB. Use the
following request mapping template:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

5. AWS AppSync automatically converts arguments defined in the addTodo field from your
GraphQL schema into DynamoDB operations. The previous example stores records in
DynamoDB using a key of id, which is passed through from the mutation argument as
$ctx.args.id. All of the other fields you pass through are automatically mapped to
DynamoDB attributes with $util.dynamodb.toMapValuesJson($ctx.args).

For this resolver, use the following response mapping template:

$util.toJson($ctx.result)

AWS AppSync also supports test and debug workflows for editing resolvers. You can use
a mock context object to see the transformed value of the template before invoking.
Optionally, you can view the full request execution to a data source interactively when
you run a query. For more information, see Test and debug resolvers and Monitoring and
logging.

6. Choose Save Resolver.

API

You can also do this with APIs by utilizing the commands in the Create your first resolver section
and the parameter details from this section.

Step 3: Configuring resolvers 150

https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver

AWS AppSync Developer Guide

CLI

You can also do this in the CLI by utilizing the commands in the Create your first resolver
section and the parameter details from this section.

At this point, if you’re not using the advanced resolvers you can begin using your GraphQL API as
outlined in Using your API.

Advanced resolvers

If you are following the Advanced section and you’re building a sample schema in Designing your
schema to do a paginated scan, use the following request template for the getTodos field instead:

{
 "version" : "2017-02-28",
 "operation" : "Scan",
 "limit": $util.defaultIfNull(${ctx.args.limit}, 20),
 "nextToken": $util.toJson($util.defaultIfNullOrBlank($ctx.args.nextToken, null))
}

For this pagination use case, the response mapping is more than just a passthrough because it
must contain both the cursor (so that the client knows what page to start at next) and the result
set. The mapping template is as follows:

{
 "todos": $util.toJson($context.result.items),
 "nextToken": $util.toJson($context.result.nextToken)
}

The fields in the preceding response mapping template should match the fields defined in your
TodoConnection type.

For the case of relations where you have a Comments table and you’re resolving the comments
field on the Todo type (which returns a type of [Comment]), you can use a mapping template that
runs a query against the second table. To do this, you must have already created a data source for
the Comments table as outlined in Attaching a data source.

Step 3: Configuring resolvers 151

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver

AWS AppSync Developer Guide

Note

We’re using a query operation against a second table for illustrative purposes only. You
could use another operation against DynamoDB instead. In addition, you could pull the
data from another data source, such as AWS Lambda or Amazon OpenSearch Service,
because the relation is controlled by your GraphQL schema.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

2. Under the Todo type, choose Attach next to the comments field.

3. On the Create Resolver page, choose your Comments table data source. The default name
for the Comments table from the quickstart guides is AppSyncCommentTable, but it may
vary depending on what name you gave it.

4. Add the following snippet to your request mapping template:

{
 "version": "2017-02-28",
 "operation": "Query",
 "index": "todoid-index",
 "query": {
 "expression": "todoid = :todoid",
 "expressionValues": {
 ":todoid": {
 "S": $util.toJson($context.source.id)
 }
 }
 }
}

5. The context.source references the parent object of the current field that’s being
resolved. In this example, source.id refers to the individual Todo object, which is then
used for the query expression.

You can use the passthrough response mapping template as follows:

Step 3: Configuring resolvers 152

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

$util.toJson($ctx.result.items)

6. Choose Save Resolver.

7. Finally, back on the Schema page in the console, attach a resolver to the addComment
field, and specify the data source for the Comments table. The request mapping template
in this case is a simple PutItem with the specific todoid that is commented on as an
argument, but you use the $utils.autoId() utility to create a unique sort key for the
comment as follows:

{
 "version": "2017-02-28",
 "operation": "PutItem",
 "key": {
 "todoid": { "S": $util.toJson($context.arguments.todoid) },
 "commentid": { "S": "$util.autoId()" }
 },
 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

Use a passthrough response template as follows:

$util.toJson($ctx.result)

API

You can also do this with APIs by utilizing the commands in the Create your first resolver section
and the parameter details from this section.

CLI

You can also do this in the CLI by utilizing the commands in the Create your first resolver
section and the parameter details from this section.

Step 3: Configuring resolvers 153

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver

AWS AppSync Developer Guide

Direct Lambda resolvers (VTL)

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

With direct Lambda resolvers, you can circumvent the use of VTL mapping templates when using
AWS Lambda data sources. AWS AppSync can provide a default payload to your Lambda function
as well as a default translation from a Lambda function's response to a GraphQL type. You can
choose to provide a request template, a response template, or neither and AWS AppSync will
handle it accordingly.

To learn more about the default request payload and response translation that AWS AppSync
provides, see the Direct Lambda resolver reference. For more information on setting up an AWS
Lambda data source and setting up an IAM Trust Policy, see Attaching a data source.

Configure direct Lambda resolvers

The following sections will show you how to attach Lambda data sources and add Lambda
resolvers to your fields.

Add a Lambda data source

Before you can activate direct Lambda resolvers, you must add a Lambda data source.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Data sources.

2. Choose Create data source.

a. For Data source name, enter a name for your data source, such as myFunction.

b. For Data source type, choose AWS Lambda function.

c. For Region, choose the appropriate region.

Step 3: Configuring resolvers 154

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

d. For Function ARN, choose the Lambda function from the dropdown list. You can
search for the function name or manually enter the ARN of the function you want to
use.

e. Create a new IAM role (recommended) or choose an existing role that has the
lambda:invokeFunction IAM permission. Existing roles need a trust policy, as
explained in the Attaching a data source section.

The following is an example IAM policy that has the required permissions to perform
operations on the resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["lambda:invokeFunction"],
 "Resource": [
 "arn:aws:lambda:us-
west-2:123456789012:function:myFunction",
 "arn:aws:lambda:us-
west-2:123456789012:function:myFunction:*"
]
 }
]
 }

3. Choose the Create button.

CLI

1. Create a data source object by running the create-data-source command.

You'll need to type in 4 parameters for this particular command:

1. The api-id of your API.

2. The name of your data source. In the console example, this is the Data source name.

3. The type of data source. In the console example, this is AWS Lambda function.

4. The lambda-config, which is the Function ARN in the console example.

Step 3: Configuring resolvers 155

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-data-source.html

AWS AppSync Developer Guide

Note

There are other parameters such as Region that must be configured but will
usually default to your CLI configuration values.

An example command may look like this:

aws appsync create-data-source --api-id abcdefghijklmnopqrstuvwxyz
 --name myFunction --type AWS_LAMBDA --lambda-config
 lambdaFunctionArn=arn:aws:lambda:us-west-2:102847592837:function:appsync-
lambda-example

An output will be returned in the CLI. Here's an example:

{
 "dataSource": {
 "dataSourceArn": "arn:aws:appsync:us-west-2:102847592837:apis/
abcdefghijklmnopqrstuvwxyz/datasources/myFunction",
 "type": "AWS_LAMBDA",
 "name": "myFunction",
 "lambdaConfig": {
 "lambdaFunctionArn": "arn:aws:lambda:us-
west-2:102847592837:function:appsync-lambda-example"
 }
 }
}

2. To modify a data source's attributes, run the update-data-source command.

With the exception of the api-id parameter, the parameters used in the create-data-
source command will be overwritten by the new values from the update-data-source
command.

Activate direct Lambda resolvers

After creating a Lambda data source and setting up the appropriate IAM role to allow AWS
AppSync to invoke the function, you can link it to a resolver or pipeline function.

Step 3: Configuring resolvers 156

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-data-source.html

AWS AppSync Developer Guide

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

2. In the Resolvers window, choose a field or operation and then select the Attach button.

3. In the Create new resolver page, choose the Lambda function from the dropdown list.

4. In order to leverage direct Lambda resolvers, confirm that request and response mapping
templates are disabled in the Configure mapping templates section.

5. Choose the Save Resolver button.

CLI

• Create a resolver by running the create-resolver command.

You'll need to type in 6 parameters for this particular command:

1. The api-id of your API.

2. The type-name of the type in your schema.

3. The field-name of the field in your schema.

4. The data-source-name, or your Lambda function's name.

5. The request-mapping-template, which is the body of the request. In the console
example, this was disabled:

" "

6. The response-mapping-template, which is the body of the response. In the console
example, this was also disabled:

" "

An example command may look like this:

Step 3: Configuring resolvers 157

https://console.aws.amazon.com/appsync/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html

AWS AppSync Developer Guide

aws appsync create-resolver --api-id abcdefghijklmnopqrstuvwxyz --type-name
 Subscription --field-name onCreateTodo --data-source-name LambdaTest --request-
mapping-template " " --response-mapping-template " "

An output will be returned in the CLI. Here's an example:

{
 "resolver": {
 "resolverArn": "arn:aws:appsync:us-west-2:102847592837:apis/
abcdefghijklmnopqrstuvwxyz/types/Subscription/resolvers/onCreateTodo",
 "typeName": "Subscription",
 "kind": "UNIT",
 "fieldName": "onCreateTodo",
 "dataSourceName": "LambdaTest"
 }
}

When you disable your mapping templates, there are several additional behaviors that will occur in
AWS AppSync:

• By disabling a mapping template, you are signalling to AWS AppSync that you accept the default
data translations specified in the Direct Lambda resolver reference.

• By disabling the request mapping template, your Lambda data source will receive a payload
consisting of the entire Context object.

• By disabling the response mapping template, the result of your Lambda invocation will be
translated depending on the version of the request mapping template or if the request mapping
template is also disabled.

Test and debug resolvers (VTL)

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Step 3: Configuring resolvers 158

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html

AWS AppSync Developer Guide

AWS AppSync executes resolvers on a GraphQL field against a data source. As described in Resolver
mapping template overview, resolvers communicate with data sources by using a templating
language. This enables you to customize the behavior and apply logic and conditions before and
after communicating with the data source. For an introductory tutorial-style programming guide
for writing resolvers, see the Resolver mapping template programming guide.

To help developers write, test, and debug these resolvers, the AWS AppSync console also provides
tools to create a GraphQL request and response with mock data down to the individual field
resolver. Additionally, you can perform queries, mutations, and subscriptions in the AWS AppSync
console and see a detailed log stream from Amazon CloudWatch of the entire request. This
includes results from a data source.

Testing with mock data

When a GraphQL resolver is invoked, it contains a context object that contains information about
the request. This includes arguments from a client, identity information, and data from the parent
GraphQL field. It also contains the results from the data source, which can be used in the response
template. For more information about this structure and the available helper utilities to use when
programming, see the Resolver Mapping Template Context Reference.

When writing or editing a resolver, you can pass a mock or test context object into the console
editor. This enables you to see how both the request and the response templates evaluate without
actually running against a data source. For example, you can pass a test firstname: Shaggy
argument and see how it evaluates when using $ctx.args.firstname in your template
code. You could also test the evaluation of any utility helpers such as $util.autoId() or
util.time.nowISO8601().

Testing resolvers

This example will use the AWS AppSync console to test resolvers.

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

2. If you haven't done so already, under the type and next to the field, choose Attach to add your
resolver.

For more information on how to build a conplete resolver, see Configuring resolvers.

Step 3: Configuring resolvers 159

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html

AWS AppSync Developer Guide

Otherwise, select the resolver that's already in the field.

3. At the top of the Edit resolver page, choose Select test context, choose Create new context.

4. Select a sample context object or populate the JSON manually in the Execution context
window below.

5. Enter in a Text context name.

6. Choose the Save button.

7. At the top of the Edit Resolver page, choose Run test.

For a more practical example, suppose you have an app storing a GraphQL type of Dog that uses
automatic ID generation for objects and stores them in Amazon DynamoDB. You also want to write
some values from the arguments of a GraphQL mutation, and allow only specific users to see a
response. The following shows what the schema might look like:

type Dog {
 breed: String
 color: String
}

type Mutation {
 addDog(firstname: String, age: Int): Dog
}

When you add a resolver for the addDog mutation, you can populate a context object like
the following example. The following has arguments from the client of name and age, and a
username populated in the identity object:

{
 "arguments" : {
 "firstname": "Shaggy",
 "age": 4
 },
 "source" : {},
 "result" : {
 "breed" : "Miniature Schnauzer",
 "color" : "black_grey"
 },
 "identity": {
 "sub" : "uuid",

Step 3: Configuring resolvers 160

AWS AppSync Developer Guide

 "issuer" : " https://cognito-idp.{region}.amazonaws.com/{userPoolId}",
 "username" : "Nadia",
 "claims" : { },
 "sourceIp" :["x.x.x.x"],
 "defaultAuthStrategy" : "ALLOW"
 }
}

You can test this using the following request and response mapping templates:

Request Template

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "$util.autoId()" }
 },
 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

Response Template

#if ($context.identity.username == "Nadia")
 $util.toJson($ctx.result)
#else
 $util.unauthorized()
#end

The evaluated template has the data from your test context object and the generated value from
$util.autoId(). Additionally, if you were to change the username to a value other than Nadia,
the results won’t be returned because the authorization check would fail. For more information
about fine grained access control, see Authorization use cases.

Testing mapping templates with AWS AppSync's APIs

You can use the EvaluateMappingTemplate API command to remotely test your mapping
templates with mocked data. To get started with the command, make sure you have added the
appsync:evaluateMappingTemplate permission to your policy. For example:

{

Step 3: Configuring resolvers 161

AWS AppSync Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "appsync:evaluateMappingTemplate",
 "Resource": "arn:aws:appsync:<region>:<account>:*"
 }
]
}

You can leverage the command by using the AWS CLI or AWS SDKs. For example, take the Dog
schema and its request/response mapping templates from the previous section. Using the CLI
on your local station, save the request template to a file named request.vtl, then save the
context object to a file named context.json. From your shell, run the following command:

aws appsync evaluate-mapping-template --template file://request.vtl --context file://
context.json

The command returns the following response:

{
 "evaluationResult": "{\n \"version\" : \"2017-02-28\",\n
 \"operation\" : \"PutItem\",\n \"key\" : {\n \"id\" : { \"S\" :
 \"afcb4c85-49f8-40de-8f2b-248949176456\" }\n },\n \"attributeValues\" :
 {\"firstname\":{\"S\":\"Shaggy\"},\"age\":{\"N\":4}}\n}\n"
}

The evaluationResult contains the results of testing your provided template with the provided
context. You can also test your templates using the AWS SDKs. Here's an example using the AWS
SDK for JavaScript V2:

const AWS = require('aws-sdk')
const client = new AWS.AppSync({ region: 'us-east-2' })

const template = fs.readFileSync('./request.vtl', 'utf8')
const context = fs.readFileSync('./context.json', 'utf8')

client
 .evaluateMappingTemplate({ template, context })
 .promise()
 .then((data) => console.log(data))

Step 3: Configuring resolvers 162

https://aws.amazon.com/cli/
https://aws.amazon.com/tools/

AWS AppSync Developer Guide

Using the SDK, you can easily incorporate tests from your favorite test suite to validate your
template's behavior. We recommend creating tests using the Jest Testing Framework, but any
testing suite works. The following snippet shows a hypothetical validation run. Note that we expect
the evaluation response to be valid JSON, so we use JSON.parse to retrieve JSON from the string
response:

const AWS = require('aws-sdk')
const fs = require('fs')
const client = new AWS.AppSync({ region: 'us-east-2' })

test('request correctly calls DynamoDB', async () => {
 const template = fs.readFileSync('./request.vtl', 'utf8')
 const context = fs.readFileSync('./context.json', 'utf8')
 const contextJSON = JSON.parse(context)

 const response = await client.evaluateMappingTemplate({ template,
 context }).promise()
 const result = JSON.parse(response.evaluationResult)

 expect(result.key.id.S).toBeDefined()
 expect(result.attributeValues.firstname.S).toEqual(contextJSON.arguments.firstname)
})

This yields the following result:

Ran all test suites.
> jest

PASS ./index.test.js
request correctly calls DynamoDB (543 ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 1.511 s, estimated 2 s

Debugging a live query

There’s no substitute for an end-to-end test and logging to debug a production application. AWS
AppSync lets you log errors and full request details using Amazon CloudWatch. Additionally, you
can use the AWS AppSync console to test GraphQL queries, mutations, and subscriptions and live

Step 3: Configuring resolvers 163

https://jestjs.io/

AWS AppSync Developer Guide

stream log data for each request back into the query editor to debug in real time. For subscriptions,
the logs display connection-time information.

To perform this, you need to have Amazon CloudWatch logs enabled in advance, as described in
Monitoring and logging. Next, in the AWS AppSync console, choose the Queries tab and then enter
a valid GraphQL query. In the lower-right section, click and drag the Logs window to open the
logs view. At the top of the page, choose the play arrow icon to run your GraphQL query. In a few
moments, your full request and response logs for the operation are streamed to this section and
you can view then in the console.

Pipeline resolvers (VTL)

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync executes resolvers on a GraphQL field. In some cases, applications require executing
multiple operations to resolve a single GraphQL field. With pipeline resolvers, developers can now
compose operations called Functions and execute them in sequence. Pipeline resolvers are useful
for applications that, for instance, require performing an authorization check before fetching data
for a field.

A pipeline resolver is composed of a Before mapping template, an After mapping template, and
a list of Functions. Each Function has a request and response mapping template that it executes
against a data source. As a pipeline resolver delegates execution to a list of functions, it is therefore
not linked to any data source. Unit resolvers and functions are primitives that execute operations
against data sources. See the Resolver mapping template overview for more information.

Create A Pipeline Resolver

In the AWS AppSync console, go to the Schema page.

Save the following schema:

schema {
 query: Query
 mutation: Mutation
}

Step 3: Configuring resolvers 164

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html

AWS AppSync Developer Guide

type Mutation {
 signUp(input: Signup): User
}

type Query {
 getUser(id: ID!): User
}

input Signup {
 username: String!
 email: String!
}

type User {
 id: ID!
 username: String
 email: AWSEmail
}

We are going to wire a pipeline resolver to the signUp field on the Mutation type. In the Mutation
type on the right side, choose Attach next to the signUp mutation field. On the create resolver
page, click on Actions, then Update runtime. Choose Pipeline Resolver, then choose VTL,
then choose Update. The page should now show three sections: a Before mapping template text
area, a Functions section, and an After mapping template text area.

Our pipeline resolver signs up a user by first validating the email address input and then saving
the user in the system. We are going to encapsulate the email validation inside a validateEmail
function, and the saving of the user inside a saveUser function. The validateEmail function
executes first, and if the email is valid, then the saveUser function executes.

The execution flow will be as follow:

1. Mutation.signUp resolver request mapping template

2. validateEmail function

3. saveUser function

4. Mutation.signUp resolver response mapping template

Because we will probably reuse the validateEmail function in other resolvers on our API, we want
to avoid accessing $ctx.args because these will change from one GraphQL field to another.

Step 3: Configuring resolvers 165

AWS AppSync Developer Guide

Instead, we can use the $ctx.stash to store the email attribute from the signUp(input:
Signup) input field argument.

BEFORE mapping template:

store email input field into a generic email key
$util.qr($ctx.stash.put("email", $ctx.args.input.email))
{}

The console provides a default passthrough AFTER mapping template that will we use:

$util.toJson($ctx.result)

Choose Create or Save to update the resolver.

Create A Function

From the pipeline resolver page, in the Functions section, click on Add function, then Create new
function. It is also possible to create functions without going through the resolver page; to do this,
in the AWS AppSync console, go to the Functions page. Choose the Create function button. Let’s
create a function that checks if an email is valid and comes from a specific domain. If the email is
not valid, the function raises an error. Otherwise, it forwards whatever input it was given.

On the new function page, choose Actions, then Update runtime. Choose VTL, then Update. Make
sure you have created a data source of the NONE type. Choose this data source in the Data source
name list. For function name, enter in validateEmail. In the function code area, overwrite
everything with this snippet:

#set($valid = $util.matches("^[a-zA-Z0-9_.+-]+@(?:(?:[a-zA-Z0-9-]+\.)?[a-zA-Z]+\.)?
(myvaliddomain)\.com", $ctx.stash.email))
#if (!$valid)
 $util.error("$ctx.stash.email is not a valid email.")
#end
{
 "payload": { "email": $util.toJson(${ctx.stash.email}) }
}

Paste this into the response mapping template:

$util.toJson($ctx.result)

Step 3: Configuring resolvers 166

AWS AppSync Developer Guide

Review your changes, then choose Create. We just created our validateEmail function. Repeat
these steps to create the saveUser function with the following request and response mapping
templates (For the sake of simplicity, we use a NONE data source and pretend the user has been
saved in the system after the function executes.):

Request mapping template:

$ctx.prev.result contains the signup input values. We could have also
used $ctx.args.input.
{
 "payload": $util.toJson($ctx.prev.result)
}

Response mapping template:

an id is required so let's add a unique random identifier to the output
$util.qr($ctx.result.put("id", $util.autoId()))
$util.toJson($ctx.result)

We just created our saveUser function.

Adding a Function to a Pipeline Resolver

Our functions should have been added automatically to the pipeline resolver we just created. If this
wasn't the case, or you created the functions through the Functions page, you can click on Add
function on the resolver page to attach them. Add both the validateEmail and saveUser functions
to the resolver. The validateEmail function should be placed before the saveUser function. As you
add more functions, you can use the move up and move down options to reorganize the order of
execution of your functions. Review your changes, then choose Save.

Executing a Query

In the AWS AppSync console, go to the Queries page. In the explorer, ensure that you're using your
mutation. If you aren't, choose Mutation in the drop-down list, then choose +. Enter the following
query:

mutation {
 signUp(input: {
 email: "nadia@myvaliddomain.com"

Step 3: Configuring resolvers 167

AWS AppSync Developer Guide

 username: "nadia"
 }) {
 id
 email
 }
}

This should return something like:

{
 "data": {
 "signUp": {
 "id": "256b6cc2-4694-46f4-a55e-8cb14cc5d7fc",
 "email": "nadia@myvaliddomain.com"
 }
 }
}

We have successfully signed up our user and validated the input email using a pipeline resolver.
To follow a more complete tutorial focusing on pipeline resolvers, you can go to Tutorial: Pipeline
Resolvers

Step 4: Using an API: CDK example

Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation along
with AWS AppSync's CDK reference.
We also recommend ensuring that your AWS CLI and NPM installations are working on your
system.

In this section, we're going to create a simple CDK app that can add and fetch items from a
DynamoDB table. This is meant to be a quickstart example using some of the code from the
Designing your schema, Attaching a data source, and Configuring resolvers (JavaScript) sections.

Step 4: Using an API: CDK example 168

https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.npmjs.com/
https://docs.aws.amazon.com/appsync/latest/devguide/designing-your-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html

AWS AppSync Developer Guide

Setting up a CDK project

Warning

These steps may not be completely accurate depending on your environment. We're
assuming your system has the necessary utilities installed, a way to interface with AWS
services, and proper configurations in place.

The first step is installing the AWS CDK. In your CLI, you can enter the following command:

npm install -g aws-cdk

Next, you need to create a project directory, then navigate to it. An example set of commands to
create and navigate to a directory is:

mkdir example-cdk-app
cd example-cdk-app

Next, you need to create an app. Our service primarily uses TypeScript. In your project directory,
enter the following command:

cdk init app --language typescript

When you do this, a CDK app along with its initialization files will be installed:

Your project structure may look like this:

Step 4: Using an API: CDK example 169

AWS AppSync Developer Guide

You'll notice we have several important directories:

• bin: The initial bin file will create the app. We won't touch this in this guide.

• lib: The lib directory contains your stack files. You can think of stack files as individual units
of execution. Constructs will be inside our stack files. Basically, these are resources for a service
that will be spun up in AWS CloudFormation when the app is deployed. This is where most of our
coding will happen.

• node_modules: This directory is created by NPM and contains all package dependencies you
installed using the npm command.

Our initial stack file may contain something like this:

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
// import * as sqs from 'aws-cdk-lib/aws-sqs';

export class ExampleCdkAppStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 // The code that defines your stack goes here

 // example resource
 // const queue = new sqs.Queue(this, 'ExampleCdkAppQueue', {
 // visibilityTimeout: cdk.Duration.seconds(300)
 // });
 }
}

Step 4: Using an API: CDK example 170

AWS AppSync Developer Guide

This is the boilerplate code to create a stack in our app. Most of our code in this example will go
inside the scope of this class.

To verify that your stack file is in the app, in your app's directory, run the following command in the
terminal:

cdk ls

A list of your stacks should appear. If it doesn't, then you may need to run through the steps again
or check the official documentation for help.

If you want to build your code changes before deploying, you can always run the following
command in the terminal:

npm run build

And, to see the changes before deploying:

cdk diff

Before we add our code to the stack file, we're going to perform a bootstrap. Bootstrapping allows
us to provision resources for the CDK before the app deploys. More information about this process
can be found here. To create a bootstrap, the command is:

cdk bootstrap aws://ACCOUNT-NUMBER/REGION

Tip

This step requires several IAM permissions in your account. Your bootstrap will be denied if
you don't have them. If this happens, you may have to delete incomplete resources caused
by the bootstrap such as the S3 bucket it generates.

Bootstrap will spin up several resources. The final message will look like this:

Step 4: Using an API: CDK example 171

https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html

AWS AppSync Developer Guide

This is done once per account per Region, so you won't have to do this often. The main resources of
the bootstrap are the AWS CloudFormation stack and the Amazon S3 bucket.

The Amazon S3 bucket is used to store files and IAM roles that grant permissions needed to
perform deployments. The required resources are defined in an AWS CloudFormation stack, called
the bootstrap stack, which is usually named CDKToolkit. Like any AWS CloudFormation stack, it
appears in the AWS CloudFormation console once it has been deployed:

The same can be said for the bucket:

To import the services we need in our stack file, we can use the following command:

npm install aws-cdk-lib # V2 command

Tip

If you're having trouble with V2, you could install the individual libraries using V1
commands:

npm install @aws-cdk/aws-appsync @aws-cdk/aws-dynamodb

We don't recommend this because V1 has been deprecated.

Step 4: Using an API: CDK example 172

AWS AppSync Developer Guide

Implementing a CDK project - Schema

We can now start implementing our code. First, we must create our schema. You can simply create
a .graphql file in your app:

mkdir schema
touch schema.graphql

In our example, we included a top-level directory called schema containing our schema.graphql:

Inside our schema, let's include a simple example:

input CreatePostInput {
 title: String
 content: String
}

type Post {
 id: ID!
 title: String
 content: String
}

type Mutation {
 createPost(input: CreatePostInput!): Post
}

type Query {
 getPost: [Post]
}

Back in our stack file, we need to make sure the following import directives are defined:

import * as cdk from 'aws-cdk-lib';
import * as appsync from 'aws-cdk-lib/aws-appsync';
import * as dynamodb from 'aws-cdk-lib/aws-dynamodb';

Step 4: Using an API: CDK example 173

AWS AppSync Developer Guide

import { Construct } from 'constructs';

Inside the class, we'll add code to make our GraphQL API and connect it to our schema.graphql
file:

export class ExampleCdkAppStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 // makes a GraphQL API
 const api = new appsync.GraphqlApi(this, 'post-apis', {
 name: 'api-to-process-posts',
 schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),
 });
 }
}

We'll also add some code to print out the GraphQL URL, API key, and Region:

export class ExampleCdkAppStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 // Makes a GraphQL API construct
 const api = new appsync.GraphqlApi(this, 'post-apis', {
 name: 'api-to-process-posts',
 schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),
 });

 // Prints out URL
 new cdk.CfnOutput(this, "GraphQLAPIURL", {
 value: api.graphqlUrl
 });

 // Prints out the AppSync GraphQL API key to the terminal
 new cdk.CfnOutput(this, "GraphQLAPIKey", {
 value: api.apiKey || ''
 });

 // Prints out the stack region to the terminal
 new cdk.CfnOutput(this, "Stack Region", {
 value: this.region
 });

Step 4: Using an API: CDK example 174

AWS AppSync Developer Guide

 }
}

At this point, we'll use deploy our app again:

cdk deploy

This is the result:

It appears our example was successful, but let's check the AWS AppSync console just to confirm:

It appears our API was created. Now, we'll check the schema attached to the API:

Step 4: Using an API: CDK example 175

AWS AppSync Developer Guide

This appears to match up with our schema code, so it was successful. Another way to confirm this
from a metadata viewpoint is to look at the AWS CloudFormation stack:

When we deploy our CDK app, it goes through AWS CloudFormation to spin up resources like the
bootstrap. Each stack within our app maps 1:1 with an AWS CloudFormation stack. If you go back
to the stack code, the stack name was grabbed from the class name ExampleCdkAppStack. You
can see the resources it created, which also match our naming conventions in our GraphQL API
construct:

Implementing a CDK project - Data source

Next, we need to add our data source. Our example will use a DynamoDB table. Inside the stack
class, we'll add some code to create a new table:

export class ExampleCdkAppStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 // Makes a GraphQL API construct
 const api = new appsync.GraphqlApi(this, 'post-apis', {
 name: 'api-to-process-posts',
 schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),
 });

 //creates a DDB table
 const add_ddb_table = new dynamodb.Table(this, 'posts-table', {
 partitionKey: {
 name: 'id',
 type: dynamodb.AttributeType.STRING,
 },
 });

Step 4: Using an API: CDK example 176

AWS AppSync Developer Guide

 // Prints out URL
 new cdk.CfnOutput(this, "GraphQLAPIURL", {
 value: api.graphqlUrl
 });

 // Prints out the AppSync GraphQL API key to the terminal
 new cdk.CfnOutput(this, "GraphQLAPIKey", {
 value: api.apiKey || ''
 });

 // Prints out the stack region to the terminal
 new cdk.CfnOutput(this, "Stack Region", {
 value: this.region
 });
 }
}

At this point, let's deploy again:

cdk deploy

We should check the DynamoDB console for our new table:

Our stack name is correct, and the table name matches our code. If we check our AWS
CloudFormation stack again, we'll now see the new table:

Implementing a CDK project - Resolver

This example will use two resolvers: one to query the table and one to add to it. Since we're using
pipeline resolvers, we'll need to declare two pipeline resolvers with one function in each. In the
query, we'll add the following code:

Step 4: Using an API: CDK example 177

AWS AppSync Developer Guide

export class ExampleCdkAppStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 // Makes a GraphQL API construct
 const api = new appsync.GraphqlApi(this, 'post-apis', {
 name: 'api-to-process-posts',
 schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),
 });

 //creates a DDB table
 const add_ddb_table = new dynamodb.Table(this, 'posts-table', {
 partitionKey: {
 name: 'id',
 type: dynamodb.AttributeType.STRING,
 },
 });

 // Creates a function for query
 const add_func = new appsync.AppsyncFunction(this, 'func-get-post', {
 name: 'get_posts_func_1',
 api,
 dataSource: api.addDynamoDbDataSource('table-for-posts', add_ddb_table),
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return { operation: 'Scan' };
 }

 export function response(ctx) {
 return ctx.result.items;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
 });

 // Creates a function for mutation
 const add_func_2 = new appsync.AppsyncFunction(this, 'func-add-post', {
 name: 'add_posts_func_1',
 api,
 dataSource: api.addDynamoDbDataSource('table-for-posts-2', add_ddb_table),
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return {

Step 4: Using an API: CDK example 178

AWS AppSync Developer Guide

 operation: 'PutItem',
 key: util.dynamodb.toMapValues({id: util.autoId()}),
 attributeValues: util.dynamodb.toMapValues(ctx.args.input),
 };
 }

 export function response(ctx) {
 return ctx.result;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
 });

 // Adds a pipeline resolver with the get function
 new appsync.Resolver(this, 'pipeline-resolver-get-posts', {
 api,
 typeName: 'Query',
 fieldName: 'getPost',
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return {};
 }

 export function response(ctx) {
 return ctx.prev.result;
 }
 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
 pipelineConfig: [add_func],
 });

 // Adds a pipeline resolver with the create function
 new appsync.Resolver(this, 'pipeline-resolver-create-posts', {
 api,
 typeName: 'Mutation',
 fieldName: 'createPost',
 code: appsync.Code.fromInline(`
 export function request(ctx) {
 return {};
 }

 export function response(ctx) {
 return ctx.prev.result;
 }

Step 4: Using an API: CDK example 179

AWS AppSync Developer Guide

 `),
 runtime: appsync.FunctionRuntime.JS_1_0_0,
 pipelineConfig: [add_func_2],
 });

 // Prints out URL
 new cdk.CfnOutput(this, "GraphQLAPIURL", {
 value: api.graphqlUrl
 });

 // Prints out the AppSync GraphQL API key to the terminal
 new cdk.CfnOutput(this, "GraphQLAPIKey", {
 value: api.apiKey || ''
 });

 // Prints out the stack region to the terminal
 new cdk.CfnOutput(this, "Stack Region", {
 value: this.region
 });
 }
}

In this snippet, we added a pipeline resolver called pipeline-resolver-create-posts with a
function called func-add-post attached to it. This is the code that will add Posts to the table.
The other pipeline resolver was called pipeline-resolver-get-posts with a function called
func-get-post that retrieves Posts added to the table.

We'll deploy this to add it to the AWS AppSync service:

cdk deploy

Let's check the AWS AppSync console to see if they were attached to our GraphQL API:

Step 4: Using an API: CDK example 180

AWS AppSync Developer Guide

It appears to be correct. In the code, both of these resolvers were attached to the GraphQL API
we made (denoted by the api props value present in both the resolvers and functions). In the
GraphQL API, the fields we attached our resolvers to were also specified in the props (defined by
the typename and fieldname props in each resolver).

Let's see if the content of the resolvers is correct starting with the pipeline-resolver-get-
posts:

Step 4: Using an API: CDK example 181

AWS AppSync Developer Guide

The before and after handlers match our code props value. We can also see that a function called
add_posts_func_1, which matches the name of the function we attached in the resolver.

Let's look at the code content of that function:

Step 4: Using an API: CDK example 182

AWS AppSync Developer Guide

This matches up with the code props of the add_posts_func_1 function. Our query was
successfully uploaded, so let's check on the query:

Step 4: Using an API: CDK example 183

AWS AppSync Developer Guide

These also match the code. If we look at get_posts_func_1:

Step 4: Using an API: CDK example 184

AWS AppSync Developer Guide

Everything appears to be in place. To confirm this from a metadata perspective, we can check our
stack in AWS CloudFormation again:

Now, we need to test this code by performing some requests.

Implementing a CDK project - Requests

To test our app in the AWS AppSync console, we made one query and one mutation:

Step 4: Using an API: CDK example 185

AWS AppSync Developer Guide

MyMutation contains a createPost operation with the arguments
1970-01-01T12:30:00.000Z and first post. It returns the date and title that we passed
in as well as the automatically generated id value. Running the mutation yields the result:

{
 "data": {
 "createPost": {
 "date": "1970-01-01T12:30:00.000Z",
 "id": "4dc1c2dd-0aa3-4055-9eca-7c140062ada2",
 "title": "first post"
 }
 }
}

If we check the DynamoDB table quickly, we can see our entry in the table when we scan it:

Back in the AWS AppSync console, if we run the query to retrieve this Post, we get the following
result:

{
 "data": {
 "getPost": [
 {
 "id": "9f62c4dd-49d5-48d5-b835-143284c72fe0",
 "date": "1970-01-01T12:30:00.000Z",
 "title": "first post"

Step 4: Using an API: CDK example 186

AWS AppSync Developer Guide

 }
]
 }
}

Real-time data

AWS AppSync allows you to utilize subscriptions to implement live application updates, push
notifications, etc. When clients invoke the GraphQL subscription operations, a secure WebSocket
connection is automatically established and maintained by AWS AppSync. Applications can then
distribute data in real-time from a data source to subscribers while AWS AppSync continually
manages the application's connection and scaling requirements. The following sections will show
you how subscriptions in AWS AppSync work.

GraphQL schema subscription directives

Subscriptions in AWS AppSync are invoked as a response to a mutation. This means that you can
make any data source in AWS AppSync real time by specifying a GraphQL schema directive on a
mutation.

The AWS Amplify client libraries automatically handle subscription connection management. The
libraries use pure WebSockets as the network protocol between the client and service.

Note

To control authorization at connection time to a subscription, you can use AWS Identity
and Access Management (IAM), AWS Lambda, Amazon Cognito identity pools, or Amazon
Cognito user pools for field-level authorization. For fine-grained access controls on
subscriptions, you can attach resolvers to your subscription fields and perform logic
using the identity of the caller and AWS AppSync data sources. For more information, see
Authorization and authentication.

Subscriptions are triggered from mutations and the mutation selection set is sent to subscribers.

The following example shows how to work with GraphQL subscriptions. It doesn't specify a data
source because the data source could be Lambda, Amazon DynamoDB, or Amazon OpenSearch
Service.

Real-time data 187

AWS AppSync Developer Guide

To get started with subscriptions, you must add a subscription entry point to your schema as
follows:

schema {
 query: Query
 mutation: Mutation
 subscription: Subscription
}

Suppose you have a blog post site, and you want to subscribe to new blogs and changes to existing
blogs. To do this, add the following Subscription definition to your schema:

type Subscription {
 addedPost: Post
 updatedPost: Post
 deletedPost: Post
}

Suppose further that you have the following mutations:

type Mutation {
 addPost(id: ID! author: String! title: String content: String url: String): Post!
 updatePost(id: ID! author: String! title: String content: String url: String ups:
 Int! downs: Int! expectedVersion: Int!): Post!
 deletePost(id: ID!): Post!
}

You can make these fields real time by adding an @aws_subscribe(mutations:
["mutation_field_1", "mutation_field_2"]) directive for each of the subscriptions you
want to receive notifications for, as follows:

type Subscription {
 addedPost: Post
 @aws_subscribe(mutations: ["addPost"])
 updatedPost: Post
 @aws_subscribe(mutations: ["updatePost"])
 deletedPost: Post
 @aws_subscribe(mutations: ["deletePost"])
}

GraphQL schema subscription directives 188

AWS AppSync Developer Guide

Because the @aws_subscribe(mutations: ["",..,""]) takes an array of mutation inputs,
you can specify multiple mutations, which initiate a subscription. If you're subscribing from a client,
your GraphQL query might look like the following:

subscription NewPostSub {
 addedPost {
 __typename
 version
 title
 content
 author
 url
 }
}

This subscription query is needed for client connections and tooling.

With the pure WebSockets client, selection set filtering is done per client, as each client can define
its own selection set. In this case, the subscription selection set must be a subset of the mutation
selection set. For example, a subscription addedPost{author title} linked to the mutation
addPost(...){id author title url version} receives only the author and title of the
post. It does not receive the other fields. However, if the mutation lacked the author in its selection
set, the subscriber would get a null value for the author field (or an error in case the author field
is defined as required/not-null in the schema).

The subscription selection set is essential when using pure WebSockets. If a field is not explicitly
defined in the subscription, then AWS AppSync doesn't return the field.

In the previous example, the subscriptions didn't have arguments. Suppose that your schema looks
like the following:

type Subscription {
 updatedPost(id:ID! author:String): Post
 @aws_subscribe(mutations: ["updatePost"])
}

In this case, your client defines a subscription as follows:

subscription UpdatedPostSub {
 updatedPost(id:"XYZ", author:"ABC") {

GraphQL schema subscription directives 189

AWS AppSync Developer Guide

 title
 content
 }
}

The return type of a subscription field in your schema must match the return type of the
corresponding mutation field. In the previous example, this was shown as both addPost and
addedPost returned as a type of Post.

To set up subscriptions on the client, see Building a client application.

Using subscription arguments

An important part of using GraphQL subscriptions is understanding when and how to use
arguments. You can make subtle changes to modify how and when to notify clients about
mutations that have occurred. To do this, see the sample schema from the quickstart chapter,
which creates "Todos". For this sample schema, the following mutations are defined:

type Mutation {
 createTodo(input: CreateTodoInput!): Todo
 updateTodo(input: UpdateTodoInput!): Todo
 deleteTodo(input: DeleteTodoInput!): Todo
}

In the default sample, clients can subscribe to updates to any Todo by using the onUpdateTodo
subscription with no arguments:

subscription OnUpdateTodo {
 onUpdateTodo {
 description
 id
 name
 when
 }
}

You can filter your subscription by using its arguments. For example, to only trigger a
subscription when a todo with a specific ID is updated, specify the ID value:

subscription OnUpdateTodo {

Using subscription arguments 190

AWS AppSync Developer Guide

 onUpdateTodo(id: "a-todo-id") {
 description
 id
 name
 when
 }
}

You can also pass multiple arguments. For example, the following subscription demonstrates
how to get notified of any Todo updates at a specific place and time:

subscription todosAtHome {
 onUpdateTodo(when: "tomorrow", where: "at home") {
 description
 id
 name
 when
 where
 }
}

Note that all of the arguments are optional. If you don't specify any arguments in your
subscription, you will be subscribed to all Todo updates that occur in your application.
However, you could update your subscription's field definition to require the ID argument. This
would force the response of a specific todo instead of all todos:

onUpdateTodo(
 id: ID!,
 name: String,
 when: String,
 where: String,
 description: String
): Todo

Argument null value has meaning

When making a subscription query in AWS AppSync, a null argument value will filter the results
differently than omitting the argument entirely.

Let's go back to the todos API sample where we could create todos. See the sample schema from
the quickstart chapter.

Using subscription arguments 191

AWS AppSync Developer Guide

Let's modify our schema to include a new owner field, on the Todo type, that describes who the
owner is. The owner field is not required and can only be set on UpdateTodoInput. See the
following simplified version of the schema:

type Todo {
 id: ID!
 name: String!
 when: String!
 where: String!
 description: String!
 owner: String
}

input CreateTodoInput {
 name: String!
 when: String!
 where: String!
 description: String!
}

input UpdateTodoInput {
 id: ID!
 name: String
 when: String
 where: String
 description: String
 owner: String
}

type Subscription {
 onUpdateTodo(
 id: ID,
 name: String,
 when: String,
 where: String,
 description: String
): Todo @aws_subscribe(mutations: ["updateTodo"])
}

The following subscription returns all Todoupdates:

subscription MySubscription {
 onUpdateTodo {

Using subscription arguments 192

AWS AppSync Developer Guide

 description
 id
 name
 when
 where
 }
}

If you modify the preceding subscription to add the field argument owner: null, you are now
asking a different question. This subscription now registers the client to get notified of all the Todo
updates that have not provided an owner.

subscription MySubscription {
 onUpdateTodo(owner: null) {
 description
 id
 name
 when
 where
 }
}

Note

As of January 1, 2022, MQTT over WebSockets is no longer available as a protocol for
GraphQL subscriptions in AWS AppSync APIs. Pure WebSockets is the only protocol
supported in AWS AppSync.
Clients based on the AWS AppSync SDK or the Amplify libraries, released after November
2019, automatically use pure WebSockets by default. Upgrading the clients to the latest
version allows them to use AWS AppSync's pure WebSockets engine.
Pure WebSockets come with a larger payload size (240 KB), a wider variety of client options,
and improved CloudWatch metrics. For more information on using pure WebSocket clients,
see Building a real-time WebSocket client.

Using subscription arguments 193

AWS AppSync Developer Guide

Creating generic pub/sub APIs powered by serverless WebSockets

Some applications only require simple WebSocket APIs where clients listen to a specific channel or
topic. Generic JSON data with no specific shape or strongly typed requirements can be pushed to
clients listening to one of these channels in a pure and simple publish-subscribe (pub/sub) pattern.

Use AWS AppSync to implement simple pub/sub WebSocket APIs with little to no GraphQL
knowledge in minutes by automatically generating GraphQL code on both the API backend and the
client sides.

Create and configure pub-sub APIs

To get started, do the following:

1. Sign in to the AWS Management Console and open the AppSync console.

• In the Dashboard, choose Create API.

2. On the next screen, choose Create a real-time API, then choose Next.

3. Enter a friendly name for your pub/sub API.

4. You can enable private API features, but we recommend keeping this off for now. Choose Next.

5. You can choose to automatically generate a working pub/sub API using WebSockets. We
recommend keeping this feature off for now as well. Choose Next.

6. Choose Create API and then wait for a couple of minutes. A new pre-configured AWS AppSync
pub/sub API will be created in your AWS account.

The API uses AWS AppSync's built-in local resolvers (for more information about using local
resolvers, see Tutorial: Local Resolvers in the AWS AppSync Developer Guide) to manage multiple
temporary pub/sub channels and WebSocket connections, which automatically delivers and filters
data to subscribed clients based only on the channel name. API calls are authorized with an API
key.

After the API is deployed, you are presented with a couple of extra steps to generate client code
and integrate it with your client application. For an example on how to quickly integrate a client,
this guide will use a simple React web application.

1. Start by creating a boilerplate React app using NPM on your local machine:

$ npx create-react-app mypubsub-app

Creating generic pub/sub APIs powered by serverless WebSockets 194

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-local-resolvers-js.html
https://www.npmjs.com/get-npm

AWS AppSync Developer Guide

$ cd mypubsub-app

Note

This example uses the Amplify libraries to connect clients to the backend API. However
there’s no need to create an Amplify CLI project locally. While React is the client
of choice in this example, Amplify libraries also support iOS, Android, and Flutter
clients, providing the same capabilities in these different runtimes. The supported
Amplify clients provide simple abstractions to interact with AWS AppSync GraphQL
API backends with few lines of code including built-in WebSocket capabilities fully
compatible with the AWS AppSync real-time WebSocket protocol:

$ npm install @aws-amplify/api

2. In the AWS AppSync console, select JavaScript, then Download to download a single file with
the API configuration details and generated GraphQL operations code.

3. Copy the downloaded file to the /src folder in your React project.

4. Next, replace the content of the existing boilerplate src/App.js file with the sample client
code available in the console.

5. Use the following command to start the application locally:

$ npm start

6. To test sending and receiving real-time data, open two browser windows and access
localhost:3000. The sample application is configured to send generic JSON data to a hard-
coded channel named robots.

7. In one of the browser windows, enter the following JSON blob in the text box then click
Submit:

{
 "robot":"r2d2",
 "planet": "tatooine"
}

Both browser instances are subscribed to the robots channel and receive the published data in
real time, displayed at the bottom of the web application:

Creating generic pub/sub APIs powered by serverless WebSockets 195

https://docs.amplify.aws/lib/
https://docs.aws.amazon.com/appsync/latest/devguide/real-time-websocket-client.html

AWS AppSync Developer Guide

All necessary GraphQL API code, including the schema, resolvers, and operations are automatically
generated to enable a generic pub/sub use case. On the backend, data is published to AWS
AppSync’s real-time endpoint with a GraphQL mutation such as the following:

mutation PublishData {
 publish(data: "{\"msg\": \"hello world!\"}", name: "channel") {
 data
 name
 }
}

Subscribers access the published data sent to the specific temporary channel with a related
GraphQL subscription:

subscription SubscribeToData {
 subscribe(name:"channel") {
 name
 data
 }
}

Creating generic pub/sub APIs powered by serverless WebSockets 196

AWS AppSync Developer Guide

Implementing pub-sub APIs into existing applications

In case you just need to implement a real-time feature in an existing application, this generic pub/
sub API configuration can be easily integrated into any application or API technology. While there
are advantages in using a single API endpoint to securely access, manipulate, and combine data
from one or more data sources in a single network call with GraphQL, there’s no need to convert
or rebuild an existing REST-based application from scratch in order to take advantage of AWS
AppSync's real-time capabilities. For instance, you could have an existing CRUD workload in a
separate API endpoint with clients sending and receiving messages or events from the existing
application to the generic pub/sub API for real-time and pub/sub purposes only.

Enhanced subscription filtering

In AWS AppSync, you can define and enable business logic for data filtering on the backend
directly in the GraphQL API subscription resolvers by using filters that support additional logical
operators. You can configure these filters, unlike the subscription arguments that are defined on
the subscription query in the client. For more information about using subscription arguments,
see Using subscription arguments. For a list of operators, see Resolver mapping template utility
reference.

For the purpose of this document, we divide real-time data filtering into the following categories:

• Basic filtering - Filtering based on client-defined arguments in the subscription query.

• Enhanced filtering - Filtering based on logic defined centrally in the AWS AppSync service
backend.

The following sections explain how to configure enhanced subscription filters and show their
practical use.

Defining subscriptions in your GraphQL schema

To use enhanced subscription filters, you define the subscription in the GraphQL schema then
define the enhanced filter using a filtering extension. To illustrate how enhanced subscription
filtering works in AWS AppSync, use the following GraphQL schema, which defines a ticket
management system API, as an example:

type Ticket {
 id: ID
 createdAt: AWSDateTime

Enhanced subscriptions filtering 197

AWS AppSync Developer Guide

 content: String
 severity: Int
 priority: Priority
 category: String
 group: String
 status: String

}

type Mutation {
 createTicket(input: TicketInput): Ticket
}

type Query {
 getTicket(id: ID!): Ticket
}

type Subscription {
 onSpecialTicketCreated: Ticket @aws_subscribe(mutations: ["createTicket"])
 onGroupTicketCreated(group: String!): Ticket @aws_subscribe(mutations:
 ["createTicket"])
}

enum Priority {
 none
 lowest
 low
 medium
 high
 highest
}

input TicketInput {
 content: String
 severity: Int
 priority: Priority
 category: String
 group: String

Enhanced subscriptions filtering 198

AWS AppSync Developer Guide

Suppose you create a NONE data source for your API, then attach a resolver to the createTicket
mutation using this data source. Your handlers may look like this:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 return {
 payload: {
 id: util.autoId(),
 createdAt: util.time.nowISO8601(),
 status: 'pending',
 ...ctx.args.input,
 },
 };
}

export function response(ctx) {
 return ctx.result;
}

Note

Enhanced filters are enabled in the GraphQL resolver's handler in a given subscription. For
more information, see Resolver reference.

To implement the behavior of the enhanced filter, you must use the
extensions.setSubscriptionFilter() function to define a filter expression evaluated
against published data from a GraphQL mutation that the subscribed clients might be interested
in. For more information about the filtering extensions, see Extensions.

The following section explains how to use filtering extensions to implement enhanced filters.

Creating enhanced subscription filters using filtering extensions

Enhanced filters are written in JSON in the response handler of the subscription's resolvers. Filters
can be grouped together in a list called a filterGroup. Filters are defined using at least one rule,
each with fields, operators, and values. Let’s define a new resolver for onSpecialTicketCreated
that sets up an enhanced filter. You can configure multiple rules in a filter that are evaluated using
AND logic, while multiple filters in a filter group are evaluated using OR logic:

Enhanced subscriptions filtering 199

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html

AWS AppSync Developer Guide

import { util, extensions } from '@aws-appsync/utils';

export function request(ctx) {
 // simplfy return null for the payload
 return { payload: null };
}

export function response(ctx) {
 const filter = {
 or: [
 { severity: { ge: 7 }, priority: { in: ['high', 'medium'] } },
 { category: { eq: 'security' }, group: { in: ['admin', 'operators'] } },
],
 };
 extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));

 // important: return null in the response
 return null;
}

Based on the filters defined in the preceding example, important tickets are automatically pushed
to subscribed API clients if a ticket is created with:

• priority level high or medium

AND

• severity level greater than or equal to 7 (ge)

OR

• classification ticket set to Security

AND

• group assignment set to admin or operators

Enhanced subscriptions filtering 200

AWS AppSync Developer Guide

Filters defined in the subscription resolver (enhanced filtering) take precedence over filtering based
only on subscription arguments (basic filtering). For more information about using subscription
arguments, see Using subscription arguments).

If an argument is defined and required in the GraphQL schema of the subscription, filtering based
on the given argument takes place only if the argument is defined as a rule in the resolver's
extensions.setSubscriptionFilter() method. However, if there are no extensions
filtering methods in the subscription resolver, arguments defined in the client are used only for
basic filtering. You can't use basic filtering and enhanced filtering concurrently.

You can use the context variable in the subscription's filter extension logic to access contextual
information about the request. For example, when using Amazon Cognito User Pools, OIDC, or
Lambda custom authorizers for authorization, you can retrieve information about your users
in context.identity when the subscription is established. You can use that information to
establish filters based on your users’ identity.

Enhanced subscriptions filtering 201

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html#using-subscription-arguments
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

Now assume that you want to implement the enhanced filter behavior for
onGroupTicketCreated. The onGroupTicketCreated subscription requires a mandatory
group name as an argument. When created, tickets are automatically assigned a pending
status. You can set up a subscription filter to only receive newly created tickets that belong to the
provided group:

import { util, extensions } from '@aws-appsync/utils';

export function request(ctx) {
 // simplfy return null for the payload
 return { payload: null };
}

export function response(ctx) {
 const filter = { group: { eq: ctx.args.group }, status: { eq: 'pending' } };
 extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));

 return null;
}

When data is published using a mutation like in the following example:

mutation CreateTicket {
 createTicket(input: {priority: medium, severity: 2, group: "aws"}) {
 id
 priority
 severity
 status
 group
 createdAt
 }
}

Subscribed clients listen for the data to be automatically pushed via WebSockets as soon as a ticket
is created with the createTicket mutation:

subscription OnGroup {
 onGroupTicketCreated(group: "aws") {
 category
 status
 severity

Enhanced subscriptions filtering 202

AWS AppSync Developer Guide

 priority
 id
 group
 createdAt
 content
 }
}

Clients can be subscribed without arguments because the filtering logic is implemented in the AWS
AppSync service with enhanced filtering, which simplifies the client code. Clients receive data only
if the defined filter criteria is met.

Defining enhanced filters for nested schema fields

You can use enhanced subscription filtering to filter nested schema fields. Suppose we modified
the schema from the previous section to include location and address types:

type Ticket {
 id: ID
 createdAt: AWSDateTime
 content: String
 severity: Int
 priority: Priority
 category: String
 group: String
 status: String
 location: ProblemLocation
}

type Mutation {
 createTicket(input: TicketInput): Ticket
}

type Query {
 getTicket(id: ID!): Ticket
}

type Subscription {
 onSpecialTicketCreated: Ticket @aws_subscribe(mutations: ["createTicket"])
 onGroupTicketCreated(group: String!): Ticket @aws_subscribe(mutations:
 ["createTicket"])
}

Enhanced subscriptions filtering 203

AWS AppSync Developer Guide

type ProblemLocation {
 address: Address
}

type Address {
 country: String
}

enum Priority {
 none
 lowest
 low
 medium
 high
 highest
}

input TicketInput {
 content: String
 severity: Int
 priority: Priority
 category: String
 group: String
 location: AWSJSON

With this schema, you can use a . separator to represent nesting. The following example adds a
filter rule for a nested schema field under location.address.country. The subscription will be
triggered if the ticket's address is set to USA:

import { util, extensions } from '@aws-appsync/utils';

export const request = (ctx) => ({ payload: null });

export function response(ctx) {
 const filter = {
 or: [
 { severity: { ge: 7 }, priority: { in: ['high', 'medium'] } },
 { category: { eq: 'security' }, group: { in: ['admin', 'operators'] } },
 { 'location.address.country': { eq: 'USA' } },
],
 };
 extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));
 return null;

Enhanced subscriptions filtering 204

AWS AppSync Developer Guide

}

In the example above, location represents nesting level one, address represents nesting level
two, and country represents nesting level three, all of which are separated by the . separator.

You can test this subscription by using the createTicket mutation:

mutation CreateTicketInUSA {
 createTicket(input: {location: "{\"address\":{\"country\":\"USA\"}}"}) {
 category
 content
 createdAt
 group
 id
 location {
 address {
 country
 }
 }
 priority
 severity
 status
 }
}

Defining enhanced filters from the client

You can use basic filtering in GraphQL with subscriptions arguments. The client that makes the call
in the subscription query defines the arguments' values. When enhanced filters are enabled in an
AWS AppSync subscription resolver with the extensions filtering, backend filters defined in the
resolver take precedence and priority.

Configure dynamic, client-defined enhanced filters using a filter argument in the subscription.
When you configure these filters, you must update the GraphQL schema to reflect the new
argument:

...
type Subscription {
 onSpecialTicketCreated(filter: String): Ticket
 @aws_subscribe(mutations: ["createTicket"])
}

Enhanced subscriptions filtering 205

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html#using-subscription-arguments

AWS AppSync Developer Guide

...

The client can then send a subscription query like in the following example:

subscription onSpecialTicketCreated($filter: String) {
 onSpecialTicketCreated(filter: $filter) {
 id
 group
 description
 priority
 severity
 }
 }

You can configure the query variable like the following example:

{"filter" : "{\"severity\":{\"le\":2}}"}

The util.transform.toSubscriptionFilter() resolver utility can be implemented in the
subscription response mapping template to apply the filter defined in the subscription argument
for each client:

import { util, extensions } from '@aws-appsync/utils';

export function request(ctx) {
 // simplfy return null for the payload
 return { payload: null };
}

export function response(ctx) {
 const filter = ctx.args.filter;
 extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));
 return null;
}

With this strategy, clients can define their own filters that use enhanced filtering logic and
additional operators. Filters are assigned when a given client invokes the subscription query in
a secure WebSocket connection. For more information about the transform utility for enhanced
filtering, including the format of the filter query variable payload, see JavaScript resolvers
overview.

Enhanced subscriptions filtering 206

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

Additional enhanced filtering restrictions

Below are several use cases where additional restrictions are placed on enhanced filters:

• Enhanced filters don't support filtering for top-level object lists. In this use case, published data
from the mutation will be ignored for enhanced subscriptions.

• AWS AppSync supports up to five levels of nesting. Filters on schema fields past nesting
level five will be ignored. Take the GraphQL response below. The continent field in
venue.address.country.metadata.continent is allowed because it's a level five nest.
However, financial in venue.address.country.metadata.capital.financial is a
level six nest, so the filter won't work:

{
 "data": {
 "onCreateFilterEvent": {
 "venue": {
 "address": {
 "country": {
 "metadata": {
 "capital": {
 "financial": "New York"
 },
 "continent" : "North America"
 }
 },
 "state": "WA"
 },
 "builtYear": 2023
 },
 "private": false,
 }
 }
}

Unsubscribing WebSocket connections using filters

In AWS AppSync, you can forcibly unsubscribe and close (invalidate) a WebSocket connection from
a connected client based on specific filtering logic. This is useful in authorization-related scenarios
such as when you remove a user from a group.

Unsubscribing connections 207

AWS AppSync Developer Guide

Subscription invalidation occurs in response to a payload defined in a mutation. We recommend
that you treat mutations used to invalidate subscription connections as administrative
operations in your API and scope permissions accordingly by limiting their use to an admin
user, group, or backend service. For example, using schema authorization directives such as
@aws_auth(cognito_groups: ["Administrators"]) or @aws_iam. For more information,
see Using additional authorization modes.

Invalidation filters use the same syntax and logic as enhanced subscription filters. Define these
filters using the following utilities:

• extensions.invalidateSubscriptions() – Defined in the GraphQL resolver's response
handler for a mutation.

• extensions.setSubscriptionInvalidationFilter() – Defined in the GraphQL resolver's
response handler of the subscriptions linked to the mutation.

For more information about invalidation filtering extensions, see JavaScript resolvers overview.

Using subscription invalidation

To see how subscription invalidation works in AWS AppSync, use the following GraphQL schema:

type User {
 userId: ID!
 groupId: ID!
}

type Group {
 groupId: ID!
 name: String!
 members: [ID!]!
}

type GroupMessage {
 userId: ID!
 groupId: ID!
 message: String!
}

type Mutation {
 createGroupMessage(userId: ID!, groupId : ID!, message: String!): GroupMessage
 removeUserFromGroup(userId: ID!, groupId : ID!) : User @aws_iam

Unsubscribing connections 208

https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html#using-additional-authorization-modes
https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-enhanced-filtering.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

}

type Subscription {
 onGroupMessageCreated(userId: ID!, groupId : ID!): GroupMessage
 @aws_subscribe(mutations: ["createGroupMessage"])
}

type Query {
 none: String
}

Define an invalidation filter in the removeUserFromGroup mutation resolver code:

import { extensions } from '@aws-appsync/utils';

export function request(ctx) {
 return { payload: null };
}

export function response(ctx) {
 const { userId, groupId } = ctx.args;
 extensions.invalidateSubscriptions({
 subscriptionField: 'onGroupMessageCreated',
 payload: { userId, groupId },
 });
 return { userId, groupId };
}

When the mutation is invoked, the data defined in the payload object is used to unsubscribe
the subscription defined in subscriptionField. An invalidation filter is also defined in the
onGroupMessageCreated subscription's response mapping template.

If the extensions.invalidateSubscriptions() payload contains an ID that matches the IDs
from the subscribed client as defined in the filter, the corresponding subscription is unsubscribed.
In addition, the WebSocket connection is closed. Define the subscription resolver code for the
onGroupMessageCreated subscription:

import { util, extensions } from '@aws-appsync/utils';

export function request(ctx) {
 // simplfy return null for the payload
 return { payload: null };

Unsubscribing connections 209

AWS AppSync Developer Guide

}

export function response(ctx) {
 const filter = { groupId: { eq: ctx.args.groupId } };
 extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));

 const invalidation = { groupId: { eq: ctx.args.groupId }, userId: { eq:
 ctx.args.userId } };
 extensions.setSubscriptionInvalidationFilter(util.transform.toSubscriptionFilter(invalidation));

 return null;
}

Note that the subscription response handler can have both subscription filters and invalidation
filters defined at the same time.

For example, assume that client A subscribes a new user with the ID user-1 to the group with the
ID group-1 using the following subscription request:

onGroupMessageCreated(userId : "user-1", groupId: :"group-1"){...}

AWS AppSync runs the subscription resolver, which generates subscription and invalidation filters
as defined in the preceding onGroupMessageCreated response mapping template. For client
A, the subscription filters allow data to be sent only to group-1, and the invalidation filters are
defined for both user-1 and group-1.

Now assume that client B subscribes a user with the ID user-2 to a group with the ID group-2
using the following subscription request:

onGroupMessageCreated(userId : "user-2", groupId: :"group-2"){...}

AWS AppSync runs the subscription resolver, which generates subscription and invalidation filters.
For client B, the subscription filters allow data to be sent only to group-2, and the invalidation
filters are defined for both user-2 and group-2.

Next, assume that a new group message with the ID message-1 is created using a mutation
request like in the following example:

createGroupMessage(id: "message-1", groupId :

Unsubscribing connections 210

AWS AppSync Developer Guide

 "group-1", message: "test message"){...}

Subscribed clients matching the defined filters automatically receive the following data payload via
WebSockets:

{
 "data": {
 "onGroupMessageCreated": {
 "id": "message-1",
 "groupId": "group-1",
 "message": "test message",
 }
 }
}

Client A receives the message because the filtering criteria match the defined subscription filter.
However, client B doesn't receive the message, as the user is not part of group-1. Also, the request
doesn't match the subscription filter defined in the subscription resolver.

Finally, assume that user-1 is removed from group-1 using the following mutation request:

removeUserFromGroup(userId: "user-1", groupId : "group-1"){...}

The mutation initiates a subscription invalidation as defined in its
extensions.invalidateSubscriptions() resolver response handler code. AWS AppSync
then unsubscribes client A and closes its WebSocket connection. Client B is unaffected, as the
invalidation payload defined in the mutation doesn't match its user or group.

When AWS AppSync invalidates a connection, the client receives a message confirming that they
are unsubscribed:

{
 "message": "Subscription complete."
}

Using context variables in subscription invalidation filters

As with enhanced subscription filters, you can use the context variable in the subscription
invalidation filter extension to access certain data.

Unsubscribing connections 211

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

For example, it's possible to configure an email address as the invalidation payload in the
mutation, then match it against the email attribute or claim from a subscribed user authorized
with Amazon Cognito user pools or OpenID Connect. The invalidation filter defined in the
extensions.setSubscriptionInvalidationFilter() subscription invalidator checks
if the email address set by the mutation's extensions.invalidateSubscriptions()
payload matches the email address retrieved from the user's JWT token in
context.identity.claims.email, initiating the invalidation.

Building a real-time WebSocket client

The following sections will show you the architecture behind AWS AppSync's real-time capabilities.

Real-time WebSocket client implementation for GraphQL subscriptions

The following sequence diagram and steps show the real-time subscriptions workflow between the
WebSocket client, HTTP client, and AWS AppSync.

Building a real-time WebSocket client 212

AWS AppSync Developer Guide

1. The client establishes a WebSocket connection with the AWS AppSync real-time endpoint.
If there is a network error, the client should do a jittered exponential backoff. For more
information, see Exponential backoff and jitter on the AWS Architecture Blog.

2. After successfully establishing the WebSocket connection, the client sends a connection_init
message.

3. The client waits for a connection_ack message from AWS AppSync. This message includes a
connectionTimeoutMs parameter, which is the maximum wait time in milliseconds for a "ka"
(keep-alive) message.

Building a real-time WebSocket client 213

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS AppSync Developer Guide

4. AWS AppSync sends "ka" messages periodically. The client keeps track of the time
that it received each "ka" message. If the client doesn't receive a "ka" message within
connectionTimeoutMs milliseconds, the client should close the connection.

5. The client registers the subscription by sending a start subscription message. A single
WebSocket connection supports multiple subscriptions, even if they are in different
authorization modes.

6. The client waits for AWS AppSync to send start_ack messages to confirm successful
subscriptions. If there is an error, AWS AppSync returns a "type": "error" message.

7. The client listens for subscription events, which are sent after a corresponding mutation is
called. Queries and mutations are usually sent through https:// to the AWS AppSync GraphQL
endpoint. Subscriptions flow through the AWS AppSync real-time endpoint using the secure
WebSocket (wss://).

8. The client unregisters the subscription by sending a stop subscription message.

9. After unregistering all subscriptions and checking that there are no messages transferring
through the WebSocket, the client can disconnect from the WebSocket connection.

Handshake details to establish the WebSocket connection

To connect and initiate a successful handshake with AWS AppSync, a WebSocket client needs the
following:

• The AWS AppSync real-time endpoint

• A query string that contains header and payload parameters:

• header: Contains information relevant to the AWS AppSync endpoint and authorization. This
is a base64-encoded string from a stringified JSON object. The JSON object content varies
depending on the authorization mode.

• payload: Base64-encoded string of payload.

With these requirements, a WebSocket client can connect to the URL, which contains the real-time
endpoint with the query string, using graphql-ws as the WebSocket protocol.

Discovering the real-time endpoint from the GraphQL endpoint

The AWS AppSync GraphQL endpoint and the AWS AppSync real-time endpoint are slightly
different in protocol and domain. You can retrieve the GraphQL endpoint using the AWS Command
Line Interface (AWS CLI) command aws appsync get-graphql-api.

Building a real-time WebSocket client 214

AWS AppSync Developer Guide

AWS AppSync GraphQL endpoint:

https://example1234567890000.appsync-api.us-east-1.amazonaws.com/graphql

AWS AppSync real-time endpoint:

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/
graphql

Applications can connect to the AWS AppSync GraphQL endpoint (https://) using any HTTP
client for queries and mutations. Applications can connect to the AWS AppSync real-time endpoint
(wss://) using any WebSocket client for subscriptions.

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example.com as your custom domain, you can interact with your
GraphQL and real-time endpoints using these URLs:

AWS AppSync custom domain GraphQL endpoint:

https://api.example.com/graphql

AWS AppSync custom domain real-time endpoint:

wss://api.example.com/graphql/realtime

Header parameter format based on AWS AppSync API authorization mode

The format of the header object used in the connection query string varies depending on the AWS
AppSync API authorization mode. The host field in the object refers to the AWS AppSync GraphQL
endpoint, which is used to validate the connection even if the wss:// call is made against the real-
time endpoint. To initiate the handshake and establish the authorized connection, the payload
should be an empty JSON object.

API key

API key header

Header contents

• "host": <string>: The host for the AWS AppSync GraphQL endpoint or your custom domain
name.

Building a real-time WebSocket client 215

AWS AppSync Developer Guide

• "x-api-key": <string>: The API key configured for the AWS AppSync API.

Example

{
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-api-key":"da2-12345678901234567890123456"
}

Payload content

{}

Request URL

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyJob3N0IjoiZXhhbXBsZTEyMzQ1Njc4OTAwMDAuYXBwc3luYy1hcGkudXMtZWFzdC0xLmFtYXpvbmF3cy5jb20iLCJ4LWFtei1kYXRlIjoiMjAyMDA0MDFUMDAxMDEwWiIsIngtYXBpLWtleSI6ImRhMi16NHc0NHZoczV6Z2MzZHRqNXNranJsbGxqaSJ9&payload=e30=

Amazon Cognito user pools and OpenID Connect (OIDC)

Amazon Cognito and OIDCheader

Header contents:

• "Authorization": <string>: A JWT ID token. The header can use a Bearer scheme.

• "host": <string>: The host for the AWS AppSync GraphQL endpoint or your custom domain
name.

Example:

{

 "Authorization":"eyEXAMPLEiJjbG5xb3A5eW5MK09QYXIrMTJHWEFLSXBieU5WNHhsQjEXAMPLEnM2WldvPSIsImFsZyI6IlEXAMPLEn0.eyEXAMPLEiJhNmNmMjcwNy0xNjgxLTQ1NDItOWYxOC1lNjY0MTg2NjlkMzYiLCJldmVudF9pZCI6ImVkMzM5MmNkLWNjYTMtNGM2OC1hNDYyLTJlZGI3ZTNmY2FjZiIsInRva2VuX3VzZSI6ImFjY2VzcyIsInNjb3BlIjoiYXdzLmNvZ25pdG8uc2lnbmluLnVzZXIuYWRtaW4iLCJhdXRoX3RpbWUiOjE1Njk0NTc3MTgsImlzcyI6Imh0dHBzOlwvXC9jb2duaXRvLWlkcC5hcC1zb3V0aGVhc3QtMi5hbWF6b25hd3MuY29tXC9hcC1zb3V0aGVhc3QtMl83OHY0SVZibVAiLCJleHAiOjE1Njk0NjEzMjAsImlhdCI6MTU2OTQ1NzcyMCwianRpIjoiNTgzZjhmYmMtMzk2MS00YzA4LWJhZTAtYzQyY2IxMTM5NDY5IiwiY2xpZW50X2lkIjoiM3FlajVlMXZmMzd1N3RoZWw0dG91dDJkMWwiLCJ1c2VybmFtZSI6ImVsb3EXAMPLEn0.B4EXAMPLEFNpJ6ikVp7e6DRee95V6Qi-
zEE2DJH7sHOl2zxYi7f-SmEGoh2AD8emxQRYajByz-rE4Jh0QOymN2Ys-ZIkMpVBTPgu-
TMWDyOHhDUmUj2OP82yeZ3wlZAtr_gM4LzjXUXmI_K2yGjuXfXTaa1mvQEBG0mQfVd7SfwXB-
jcv4RYVi6j25qgow9Ew52ufurPqaK-3WAKG32KpV8J4-Wejq8t0c-
yA7sb8EnB551b7TU93uKRiVVK3E55Nk5ADPoam_WYE45i3s5qVAP_-InW75NUoOCGTsS8YWMfb6ecHYJ-1j-
bzA27zaT9VjctXn9byNFZmEXAMPLExw",
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com"

Building a real-time WebSocket client 216

https://datatracker.ietf.org/doc/html/rfc6750#section-2.1

AWS AppSync Developer Guide

}

Payload content:

{}

Request URL:

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyJBdXRob3JpemF0aW9uIjoiZXlKcmFXUWlPaUpqYkc1eGIzQTVlVzVNSzA5UVlYSXJNVEpIV0VGTFNYQmllVTVXTkhoc1FqaFBWVzlZTW5NMldsZHZQU0lzSW1Gc1p5STZJbEpUTWpVMkluMC5leUp6ZFdJaU9pSmhObU5tTWpjd055MHhOamd4TFRRMU5ESXRPV1l4T0MxbE5qWTBNVGcyTmpsa016WWlMQ0psZG1WdWRGOXBaQ0k2SW1Wa016TTVNbU5rTFdOallUTXROR00yT0MxaE5EWXlMVEpsWkdJM1pUTm1ZMkZqWmlJc0luUnZhMlZ1WDNWelpTSTZJbUZqWTJWemN5SXNJbk5qYjNCbElqb2lZWGR6TG1OdloyNXBkRzh1YzJsbmJtbHVMblZ6WlhJdVlXUnRhVzRpTENKaGRYUm9YM1JwYldVaU9qRTFOamswTlRjM01UZ3NJbWx6Y3lJNkltaDBkSEJ6T2x3dlhDOWpiMmR1YVhSdkxXbGtjQzVoY0MxemIzVjBhR1ZoYzNRdE1pNWhiV0Y2YjI1aGQzTXVZMjl0WEM5aGNDMXpiM1YwYUdWaGMzUXRNbDgzT0hZMFNWWmliVkFpTENKbGVIQWlPakUxTmprME5qRXpNakFzSW1saGRDSTZNVFUyT1RRMU56Y3lNQ3dpYW5ScElqb2lOVGd6WmpobVltTXRNemsyTVMwMFl6QTRMV0poWlRBdFl6UXlZMkl4TVRNNU5EWTVJaXdpWTJ4cFpXNTBYMmxrSWpvaU0zRmxhalZsTVhabU16ZDFOM1JvWld3MGRHOTFkREprTVd3aUxDSjFjMlZ5Ym1GdFpTSTZJbVZzYjNKNllXWmxJbjAuQjRjZEp0aDNLRk5wSjZpa1ZwN2U2RFJlZTk1VjZRaS16RUUyREpIN3NIT2wyenhZaTdmLVNtRUdvaDJBRDhlbXhRUllhakJ5ei1yRTRKaDBRT3ltTjJZcy1aSWtNcFZCVFBndS1UTVdEeU9IaERVbVVqMk9QODJ5ZVozd2xaQXRyX2dNNEx6alhVWG1JX0syeUdqdVhmWFRhYTFtdlFFQkcwbVFmVmQ3U2Z3WEItamN2NFJZVmk2ajI1cWdvdzlFdzUydWZ1clBxYUstM1dBS0czMktwVjhKNC1XZWpxOHQwYy15QTdzYjhFbkI1NTFiN1RVOTN1S1JpVlZLM0U1NU5rNUFEUG9hbV9XWUU0NWkzczVxVkFQXy1Jblc3NU5Vb09DR1RzUzhZV01mYjZlY0hZSi0xai1iekEyN3phVDlWamN0WG45YnlORlptS0xwQTJMY3h3IiwiaG9zdCI6ImV4YW1wbGUxMjM0NTY3ODkwMDAwLmFwcHN5bmMtYXBpLnVzLWVhc3QtMS5hbWF6b25hd3MuY29tIn0=&payload=e30=

IAM

IAM header

Header content

• "accept": "application/json, text/javascript": A constant <string> parameter.

• "content-encoding": "amz-1.0": A constant <string> parameter.

• "content-type": "application/json; charset=UTF-8": A constant <string>
parameter.

• "host": <string>: This is the host for the AWS AppSync GraphQL endpoint.

• "x-amz-date": <string>: The timestamp must be in UTC and in the following ISO 8601
format: YYYYMMDD'T'HHMMSS'Z'. For example, 20150830T123600Z is a valid timestamp.
Do not include milliseconds in the timestamp. For more information, see Handling dates in
Signature Version 4 in the AWS General Reference.

• "X-Amz-Security-Token": <string>: The AWS session token, which is required when
using temporary security credentials. For more information, see Using temporary credentials
with AWS resources in the IAM User Guide.

• "Authorization": <string>: Signature Version 4 (SigV4) signing information for the AWS
AppSync endpoint. For more information on the signing process, see Task 4: Add the signature
to the HTTP request in the AWS General Reference.

The SigV4 signing HTTP request includes a canonical URL, which is the AWS AppSync GraphQL
endpoint with /connect appended. The service endpoint AWS Region is same Region where you're
using the AWS AppSync API, and the service name is 'appsync'. The HTTP request to sign is the
following:

Building a real-time WebSocket client 217

https://docs.aws.amazon.com/general/latest/gr/sigv4-date-handling.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-date-handling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html

AWS AppSync Developer Guide

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/graphql/
connect",
 data: "{}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 }
}

Example

{
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-amz-date": "20200401T001010Z",
 "X-Amz-Security-Token":
 "AgEXAMPLEZ2luX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97Cljq7wOPL8KsxP3YtDuyc/9hAj8PhJ7Fvf38SgoCIQDhJEXAMPLEPspioOztj
+
+pEagWCveZUjKEn0zyUhBEXAMPLEjj//////////8BEXAMPLExODk2NDgyNzg1NSIMo1mWnpESWUoYw4BkKqEFSrm3DXuL8w
+ZbVc4JKjDP4vUCKNR6Le9C9pZp9PsW0NoFy3vLBUdAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse07wN2gG2tH0eKMEXAMPLEQX+sMbytQo8iepP9PZOzlZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQnNRiFLEY83aKvG/tqLWNnGlSNVx7SMcfovkFDqQamm
+88y1OwwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1F0QNW64S9Nvj
+BwDg3ht2CrNvpwjVYlj9U3nmxE0UG5ne83LL5hhqMpm25kmL7enVgw2kQzmU2id4IKu0C/
WaoDRuO2F5zE63vJbxN8AYs7338+4B4HBb6BZ6OUgg96Q15RA41/
gIqxaVPxyTpDfTU5GfSLxocdYeniqqpFMtZG2n9d0u7GsQNcFkNcG3qDZm4tDo8tZbuym0a2VcF2E5hFEgXBa
+XLJCfXi/77OqAEjP0x7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom80VFUJXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr0a196Kq87w5KNMCkcCGFnwBNFLmfnbpNqT6rUBxxs3X5ntX9d8HVtSYINTsGXXMZCJ7fnbWajhg/
aox0FtHX21eF6qIGT8j1z+l2opU+ggwUgkhUUgCH2TfqBj+MLMVVvpgqJsPKt582caFKArIFIvO
+9QupxLnEH2hz04TMTfnU6bQC6z1buVe7h
+tOLnh1YPFsLQ88anib/7TTC8k9DsBTq0ASe8R2GbSEsmO9qbbMwgEaYUhOKtGeyQsSJdhSk6XxXThrWL9EnwBCXDkICMqdntAxyyM9nWsZ4bL9JHqExgWUmfWChzPFAqn3F4y896UqHTZxlq3WGypn5HHcem2Hqf3IVxKH1inhqdVtkryEiTWrI7ZdjbqnqRbl
+WgtPtKOOweDlCaRs3R2qXcbNgVhleMk4IWnF8D1695AenU1LwHjOJLkCjxgNFiWAFEPH9aEXAMPLExA==",
 "Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host;x-amz-date;x-amz-security-token,
 Signature=83EXAMPLEbcc1fe3ee69f75cd5ebbf4cb4f150e4f99cec869f149c5EXAMPLEdc"

Building a real-time WebSocket client 218

AWS AppSync Developer Guide

}

Payload content

{}

Request URL

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyEXAMPLEHQiOiJhcHBsaWNhdGlvbi9qc29uLCB0ZXh0L2phdmFEXAMPLEQiLCJjb250ZW50LWVuY29kaW5nIjoEXAMPLEEuMCIsImNvbnRlbnQtdHlwZSI6ImFwcGxpY2F0aW9EXAMPLE47IGNoYXJzZXQ9VVRGLTgiLCJob3N0IjoiZXhhbXBsZEXAMPLENjc4OTAwMDAuYXBwc3luYy1hcGkudXMtZWFzdC0xLmFtYEXAMPLEcy5jb20iLCJ4LWFtei1kYXRlIjoiMjAyMDA0MDFUMDAxMDEwWiIsIlgtEXAMPLElY3VyaXR5LVRva2VuIjoiQWdvSmIzSnBaMmx1WDJWakVBb2FEbUZ3TFhOdmRYUm9aV0Z6ZEMweUlrY3dSUUlnQWg5N0NsanE3d09QTDhLc3hQM1l0RHV5Yy85aEFqOFBoSjdGdmYzOFNnb0NJUURoSllKYkpsbmpQc3Bpb096dGorK3BFYWdXQ3ZlWlVqS0VuMHp5VWhCbXhpck5CUWpqLy8vLy8vLy8vLzhCRUFBYUREY3hPRGsyTkRneU56ZzFOU0lNbzFtV25wRVNXVW9ZdzRCa0txRUZTcm0zRFh1TDh3K1piVmM0SktqRFA0dlVDS05SNkxlOUM5cFpwOVBzVzBOb0Z5M3ZMQlVkQVh3dDZQSld1T1ZHOGZlWGZpRUVBKzFraGdGSy93RXR3Uis5ekY3TmFNTU1zZTA3d04yZ0cydEgwZUtNVFhuOEF3QVFYK3NNYnl0UW84aWVwUDlQWk96bFpzU0ZiL2RQNVE4aGs2WWpHVGFMMWVZY0tac1RrREFxMnVLRlE4bVlVVkE5RXRRbk5SaUZMRVk4M2FLdkcvdHFMV05uR2xTTlZ4N1NNY2ZvdmtGRHFRYW1tKzg4eTFPd3dBRVlLN3Fjb2NlWDZaN0dHY2FZdUlmR3BhWDJNQ0NFTGVRdlorOFd4RWdPbklmejdHWXZzWU5qTFpTYVJuVjRHK0lMWTFGMFFOVzY0UzlOdmorQndEZzNodDJDck52cHdqVllsajlVM25teEUwVUc1bmU4M0xMNWhocU1wbTI1a21MN2VuVmd3MmtRem1VMmlkNElLdTBDL1dhb0RSdU8yRjV6RTYzdkpieE44QVlzNzMzOCs0QjRIQmI2Qlo2T1VnZzk2UTE1UkE0MS9nSXF4YVZQeHlUcERmVFU1R2ZTTHhvY2RZZW5pcXFwRk10WkcybjlkMHU3R3NRTmNGa05jRzNxRFptNHREbzh0WmJ1eW0wYTJWY0YyRTVoRkVnWEJhK1hMSkNmWGkvNzdPcUFFalAweDdRZGszQjQzcDhLRy9CYWlvUDVSc1Y4ekJHdkgxekFneVBoYTJyTjcwL3RUMTN5cm1QZDVRWUVmd3pleGpLclY0bVdJdVJnOE5USFlTWkpVYWV5Q3dUb204MFZGVUpYRytHWVRVeXY1VzIyYUJjbm9SR2lDaUtFWVRMT2tnWGVjZEtGVEhtY0lBZWpROVdlbHIwYTE5NktxODd3NUtOTUNrY0NHRm53Qk5GTG1mbmJwTnFUNnJVQnh4czNYNW50WDlkOEhWdFNZSU5Uc0dYWE1aQ0o3Zm5iV2FqaGcvYW94MEZ0SFgyMWVGNnFJR1Q4ajF6K2wyb3BVK2dnd1Vna2hVVWdDSDJUZnFCaitNTE1WVnZwZ3FKc1BLdDU4MmNhRktBcklGSXZPKzlRdXB4TG5FSDJoejA0VE1UZm5VNmJRQzZ6MWJ1VmU3aCt0T0xuaDFZUEZzTFE4OGFuaWIvN1RUQzhrOURzQlRxMEFTZThSMkdiU0VzbU85cWJiTXdnRWFZVWhPS3RHZXlRc1NKZGhTazZYeFhUaHJXTDlFbndCQ1hEa0lDTXFkbnRBeHl5TTluV3NaNGJMOUpIcUV4Z1dVbWZXQ2h6UEZBcW4zRjR5ODk2VXFIVFp4bHEzV0d5cG41SEhjZW0ySHFmM0lWeEtIMWluaHFkVnRrcnlFaVRXckk3WmRqYnFucVJibCtXZ3RQdEtPT3dlRGxDYVJzM1IycVhjYk5nVmhsZU1rNElXbkY4RDE2OTVBZW5VMUx3SGpPSkxrQ2p4Z05GaVdBRkVQSDlhTklhcXMvWnhBPT0iLCJBdXRob3JpemF0aW9uIjoiQVdTNC1ITUFDLVNIQTI1NiBDcmVkZW50aWFsPVhYWFhYWFhYWFhYWFhYWFhYWFgvMjAxOTEwMDIvdXMtZWFzdC0xEXAMPLE5bmMvYXdzNF9yZXF1ZXN0LCBTaWduZWRIZWFkZXJzPWFjY2VwdDtjb250ZWEXAMPLE29kaW5nO2NvbnRlbnQtdHlwZTtob3EXAMPLEW16LWRhdGU7eC1hbXotc2VjdXJpdHktdG9rZW4sIFNpZ25hdHVyZT04MzE4EXAMPLEiY2MxZmUzZWU2OWY3NWNkEXAMPLE0Y2I0ZjE1MGU0Zjk5Y2VjODY5ZjE0OWM1ZDAzNDEXAMPLEn0=&payload=e30=

To sign the request using a custom domain:

{
 url: "https://api.example.com/graphql/connect",
 data: "{}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 }
}

Example

{
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "api.example.com",
 "x-amz-date": "20200401T001010Z",
 "X-Amz-Security-Token":
 "AgEXAMPLEZ2luX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97Cljq7wOPL8KsxP3YtDuyc/9hAj8PhJ7Fvf38SgoCIQDhJEXAMPLEPspioOztj
+
+pEagWCveZUjKEn0zyUhBEXAMPLEjj//////////8BEXAMPLExODk2NDgyNzg1NSIMo1mWnpESWUoYw4BkKqEFSrm3DXuL8w
+ZbVc4JKjDP4vUCKNR6Le9C9pZp9PsW0NoFy3vLBUdAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse07wN2gG2tH0eKMEXAMPLEQX+sMbytQo8iepP9PZOzlZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQnNRiFLEY83aKvG/tqLWNnGlSNVx7SMcfovkFDqQamm
+88y1OwwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1F0QNW64S9Nvj
+BwDg3ht2CrNvpwjVYlj9U3nmxE0UG5ne83LL5hhqMpm25kmL7enVgw2kQzmU2id4IKu0C/

Building a real-time WebSocket client 219

AWS AppSync Developer Guide

WaoDRuO2F5zE63vJbxN8AYs7338+4B4HBb6BZ6OUgg96Q15RA41/
gIqxaVPxyTpDfTU5GfSLxocdYeniqqpFMtZG2n9d0u7GsQNcFkNcG3qDZm4tDo8tZbuym0a2VcF2E5hFEgXBa
+XLJCfXi/77OqAEjP0x7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom80VFUJXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr0a196Kq87w5KNMCkcCGFnwBNFLmfnbpNqT6rUBxxs3X5ntX9d8HVtSYINTsGXXMZCJ7fnbWajhg/
aox0FtHX21eF6qIGT8j1z+l2opU+ggwUgkhUUgCH2TfqBj+MLMVVvpgqJsPKt582caFKArIFIvO
+9QupxLnEH2hz04TMTfnU6bQC6z1buVe7h
+tOLnh1YPFsLQ88anib/7TTC8k9DsBTq0ASe8R2GbSEsmO9qbbMwgEaYUhOKtGeyQsSJdhSk6XxXThrWL9EnwBCXDkICMqdntAxyyM9nWsZ4bL9JHqExgWUmfWChzPFAqn3F4y896UqHTZxlq3WGypn5HHcem2Hqf3IVxKH1inhqdVtkryEiTWrI7ZdjbqnqRbl
+WgtPtKOOweDlCaRs3R2qXcbNgVhleMk4IWnF8D1695AenU1LwHjOJLkCjxgNFiWAFEPH9aEXAMPLExA==",
 "Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host;x-amz-date;x-amz-security-token,
 Signature=83EXAMPLEbcc1fe3ee69f75cd5ebbf4cb4f150e4f99cec869f149c5EXAMPLEdc"
}

Payload content

{}

Request URL

wss://api.example.com/graphql?
header=eyEXAMPLEHQiOiJhcHBsaWNhdGlvbi9qc29uLCB0ZXh0L2phdmFEXAMPLEQiLCJjb250ZW50LWVuY29kaW5nIjoEXAMPLEEuMCIsImNvbnRlbnQtdHlwZSI6ImFwcGxpY2F0aW9EXAMPLE47IGNoYXJzZXQ9VVRGLTgiLCJob3N0IjoiZXhhbXBsZEXAMPLENjc4OTAwMDAuYXBwc3luYy1hcGkudXMtZWFzdC0xLmFtYEXAMPLEcy5jb20iLCJ4LWFtei1kYXRlIjoiMjAyMDA0MDFUMDAxMDEwWiIsIlgtEXAMPLElY3VyaXR5LVRva2VuIjoiQWdvSmIzSnBaMmx1WDJWakVBb2FEbUZ3TFhOdmRYUm9aV0Z6ZEMweUlrY3dSUUlnQWg5N0NsanE3d09QTDhLc3hQM1l0RHV5Yy85aEFqOFBoSjdGdmYzOFNnb0NJUURoSllKYkpsbmpQc3Bpb096dGorK3BFYWdXQ3ZlWlVqS0VuMHp5VWhCbXhpck5CUWpqLy8vLy8vLy8vLzhCRUFBYUREY3hPRGsyTkRneU56ZzFOU0lNbzFtV25wRVNXVW9ZdzRCa0txRUZTcm0zRFh1TDh3K1piVmM0SktqRFA0dlVDS05SNkxlOUM5cFpwOVBzVzBOb0Z5M3ZMQlVkQVh3dDZQSld1T1ZHOGZlWGZpRUVBKzFraGdGSy93RXR3Uis5ekY3TmFNTU1zZTA3d04yZ0cydEgwZUtNVFhuOEF3QVFYK3NNYnl0UW84aWVwUDlQWk96bFpzU0ZiL2RQNVE4aGs2WWpHVGFMMWVZY0tac1RrREFxMnVLRlE4bVlVVkE5RXRRbk5SaUZMRVk4M2FLdkcvdHFMV05uR2xTTlZ4N1NNY2ZvdmtGRHFRYW1tKzg4eTFPd3dBRVlLN3Fjb2NlWDZaN0dHY2FZdUlmR3BhWDJNQ0NFTGVRdlorOFd4RWdPbklmejdHWXZzWU5qTFpTYVJuVjRHK0lMWTFGMFFOVzY0UzlOdmorQndEZzNodDJDck52cHdqVllsajlVM25teEUwVUc1bmU4M0xMNWhocU1wbTI1a21MN2VuVmd3MmtRem1VMmlkNElLdTBDL1dhb0RSdU8yRjV6RTYzdkpieE44QVlzNzMzOCs0QjRIQmI2Qlo2T1VnZzk2UTE1UkE0MS9nSXF4YVZQeHlUcERmVFU1R2ZTTHhvY2RZZW5pcXFwRk10WkcybjlkMHU3R3NRTmNGa05jRzNxRFptNHREbzh0WmJ1eW0wYTJWY0YyRTVoRkVnWEJhK1hMSkNmWGkvNzdPcUFFalAweDdRZGszQjQzcDhLRy9CYWlvUDVSc1Y4ekJHdkgxekFneVBoYTJyTjcwL3RUMTN5cm1QZDVRWUVmd3pleGpLclY0bVdJdVJnOE5USFlTWkpVYWV5Q3dUb204MFZGVUpYRytHWVRVeXY1VzIyYUJjbm9SR2lDaUtFWVRMT2tnWGVjZEtGVEhtY0lBZWpROVdlbHIwYTE5NktxODd3NUtOTUNrY0NHRm53Qk5GTG1mbmJwTnFUNnJVQnh4czNYNW50WDlkOEhWdFNZSU5Uc0dYWE1aQ0o3Zm5iV2FqaGcvYW94MEZ0SFgyMWVGNnFJR1Q4ajF6K2wyb3BVK2dnd1Vna2hVVWdDSDJUZnFCaitNTE1WVnZwZ3FKc1BLdDU4MmNhRktBcklGSXZPKzlRdXB4TG5FSDJoejA0VE1UZm5VNmJRQzZ6MWJ1VmU3aCt0T0xuaDFZUEZzTFE4OGFuaWIvN1RUQzhrOURzQlRxMEFTZThSMkdiU0VzbU85cWJiTXdnRWFZVWhPS3RHZXlRc1NKZGhTazZYeFhUaHJXTDlFbndCQ1hEa0lDTXFkbnRBeHl5TTluV3NaNGJMOUpIcUV4Z1dVbWZXQ2h6UEZBcW4zRjR5ODk2VXFIVFp4bHEzV0d5cG41SEhjZW0ySHFmM0lWeEtIMWluaHFkVnRrcnlFaVRXckk3WmRqYnFucVJibCtXZ3RQdEtPT3dlRGxDYVJzM1IycVhjYk5nVmhsZU1rNElXbkY4RDE2OTVBZW5VMUx3SGpPSkxrQ2p4Z05GaVdBRkVQSDlhTklhcXMvWnhBPT0iLCJBdXRob3JpemF0aW9uIjoiQVdTNC1ITUFDLVNIQTI1NiBDcmVkZW50aWFsPVhYWFhYWFhYWFhYWFhYWFhYWFgvMjAxOTEwMDIvdXMtZWFzdC0xEXAMPLE5bmMvYXdzNF9yZXF1ZXN0LCBTaWduZWRIZWFkZXJzPWFjY2VwdDtjb250ZWEXAMPLE29kaW5nO2NvbnRlbnQtdHlwZTtob3EXAMPLEW16LWRhdGU7eC1hbXotc2VjdXJpdHktdG9rZW4sIFNpZ25hdHVyZT04MzE4EXAMPLEiY2MxZmUzZWU2OWY3NWNkEXAMPLE0Y2I0ZjE1MGU0Zjk5Y2VjODY5ZjE0OWM1ZDAzNDEXAMPLEn0=&payload=e30=

Note

One WebSocket connection can have multiple subscriptions (even with different
authentication modes). One way to implement this is to create a WebSocket connection for
the first subscription and then close it when the last subscription is unregistered. You can
optimize this by waiting a few seconds before closing the WebSocket connection, in case
the app is subscribed immediately after the last subscription is unregistered. For a mobile
app example, when changing from one screen to another, on unmounting event it stops a
subscription, and on mounting event it starts a different subscription.

Lambda authorization

Lambda authorization header

Header content

Building a real-time WebSocket client 220

AWS AppSync Developer Guide

• "Authorization": <string>: The value that is passed as authorizationToken.

• "host": <string>: The host for the AWS AppSync GraphQL endpoint or your custom domain
name.

Example

{

 "Authorization":"M0UzQzM1MkQtMkI0Ni00OTZCLUI1NkQtMUM0MTQ0QjVBRTczCkI1REEzRTIxLTk5NzItNDJENi1BQjMwLTFCNjRFNzQ2NzlCNQo=",
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com"
}

Payload content

{}

Request URL

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyJBdXRob3JpemF0aW9uIjoiZXlKcmFXUWlPaUpqYkc1eGIzQTVlVzVNSzA5UVlYSXJNVEpIV0VGTFNYQmllVTVXTkhoc1FqaFBWVzlZTW5NMldsZHZQU0lzSW1Gc1p5STZJbEpUTWpVMkluMC5leUp6ZFdJaU9pSmhObU5tTWpjd055MHhOamd4TFRRMU5ESXRPV1l4T0MxbE5qWTBNVGcyTmpsa016WWlMQ0psZG1WdWRGOXBaQ0k2SW1Wa016TTVNbU5rTFdOallUTXROR00yT0MxaE5EWXlMVEpsWkdJM1pUTm1ZMkZqWmlJc0luUnZhMlZ1WDNWelpTSTZJbUZqWTJWemN5SXNJbk5qYjNCbElqb2lZWGR6TG1OdloyNXBkRzh1YzJsbmJtbHVMblZ6WlhJdVlXUnRhVzRpTENKaGRYUm9YM1JwYldVaU9qRTFOamswTlRjM01UZ3NJbWx6Y3lJNkltaDBkSEJ6T2x3dlhDOWpiMmR1YVhSdkxXbGtjQzVoY0MxemIzVjBhR1ZoYzNRdE1pNWhiV0Y2YjI1aGQzTXVZMjl0WEM5aGNDMXpiM1YwYUdWaGMzUXRNbDgzT0hZMFNWWmliVkFpTENKbGVIQWlPakUxTmprME5qRXpNakFzSW1saGRDSTZNVFUyT1RRMU56Y3lNQ3dpYW5ScElqb2lOVGd6WmpobVltTXRNemsyTVMwMFl6QTRMV0poWlRBdFl6UXlZMkl4TVRNNU5EWTVJaXdpWTJ4cFpXNTBYMmxrSWpvaU0zRmxhalZsTVhabU16ZDFOM1JvWld3MGRHOTFkREprTVd3aUxDSjFjMlZ5Ym1GdFpTSTZJbVZzYjNKNllXWmxJbjAuQjRjZEp0aDNLRk5wSjZpa1ZwN2U2RFJlZTk1VjZRaS16RUUyREpIN3NIT2wyenhZaTdmLVNtRUdvaDJBRDhlbXhRUllhakJ5ei1yRTRKaDBRT3ltTjJZcy1aSWtNcFZCVFBndS1UTVdEeU9IaERVbVVqMk9QODJ5ZVozd2xaQXRyX2dNNEx6alhVWG1JX0syeUdqdVhmWFRhYTFtdlFFQkcwbVFmVmQ3U2Z3WEItamN2NFJZVmk2ajI1cWdvdzlFdzUydWZ1clBxYUstM1dBS0czMktwVjhKNC1XZWpxOHQwYy15QTdzYjhFbkI1NTFiN1RVOTN1S1JpVlZLM0U1NU5rNUFEUG9hbV9XWUU0NWkzczVxVkFQXy1Jblc3NU5Vb09DR1RzUzhZV01mYjZlY0hZSi0xai1iekEyN3phVDlWamN0WG45YnlORlptS0xwQTJMY3h3IiwiaG9zdCI6ImV4YW1wbGUxMjM0NTY3ODkwMDAwLmFwcHN5bmMtYXBpLnVzLWVhc3QtMS5hbWF6b25hd3MuY29tIn0=&payload=e30=

Real-time WebSocket operation

After initiating a successful WebSocket handshake with AWS AppSync, the client must send a
subsequent message to connect to AWS AppSync for different operations. These messages require
the following data:

• type: The type of the operation.

• id: A unique identifier for the subscription. We recommend using a UUID for this purpose.

• payload: The associated payload, depending on the operation type.

The type field is the only required field; the id and payload fields are optional.

Sequence of events

To successfully initiate, establish, register, and process the subscription request, the client must
step through the following sequence:

Building a real-time WebSocket client 221

AWS AppSync Developer Guide

1. Initialize connection (connection_init)

2. Connection acknowledgment (connection_ack)

3. Subscription registration (start)

4. Subscription acknowledgment (start_ack)

5. Processing subscription (data)

6. Subscription unregistration (stop)

Connection init message

After a successful handshake, the client must send the connection_init message to start
communicating with the AWS AppSync real-time endpoint. Without this step, all other messages
are ignored. The message is a string obtained by stringifying the following JSON object as follows:

{ "type": "connection_init" }

Connection acknowledge message

After sending the connection_init message, the client must wait for the connection_ack
message. All messages sent before receiving connection_ack are ignored. The message should
read as follows:

{
 "type": "connection_ack",
 "payload": {
 // Time in milliseconds waiting for ka message before the client should terminate
 the WebSocket connection
 "connectionTimeoutMs": 300000
 }
}

Keep-alive message

In addition to the connection acknowledgment message, the client periodically receives keep-alive
messages. If the client doesn't receive a keep-alive message within the connection timeout period,
the client should close the connection. AWS AppSync keeps sending these messages and servicing
the registered subscriptions until it shuts down the connection automatically (after 24 hours).
Keep-alive messages are heartbeats and do not need the client to acknowledge them.

Building a real-time WebSocket client 222

AWS AppSync Developer Guide

{ "type": "ka" }

Subscription registration message

After the client receives a connection_ack message, the client can send subscription registration
messages to AWS AppSync. This type of message is a stringified JSON object that contains the
following fields:

• "id": <string>: The ID of the subscription. This ID must be unique for each subscription,
otherwise the server returns an error indicating that the subscription ID is duplicated.

• "type": "start": A constant <string> parameter.

• "payload": <Object>: An object that contains the information relevant to the subscription.

• "data": <string>: A stringified JSON object that contains a GraphQL query and variables.

• "query": <string>: A GraphQL operation.

• "variables": <Object>: An object that contains the variables for the query.

• "extensions": <Object>: An object that contains an authorization object.

• "authorization": <Object>: An object that contains the fields required for authorization.

Authorization object for subscription registration

The same rules in the Header parameter format based on AWS AppSync API authorization mode
section apply for the authorization object. The only exception is for IAM, where the SigV4 signature
information is slightly different. For more details, see the IAM example.

Example using Amazon Cognito user pools:

{
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "payload": {
 "data": "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n
 __typename\\n message\\n }\\n }\",\"variables\":{}}",
 "extensions": {
 "authorization": {
 "Authorization":
 "eyEXAMPLEiJjbG5xb3A5eW5MK09QYXIrMTJEXAMPLEBieU5WNHhsQjhPVW9YMnM2WldvPSIsImFsZyI6IlEXAMPLEn0.eyJzdWIiOiJhNmNmMjcwNy0xNjgxLTQ1NDItEXAMPLENjY0MTg2NjlkMzYiLCJldmVudF9pZCI6ImU3YWVmMzEyLWUEXAMPLEY0Zi04YjlhLTRjMWY5M2Q5ZTQ2OCIsInRva2VuX3VzZSI6ImFjY2VzcyIsIEXAMPLEIjoiYXdzLmNvZ25pdG8uc2lnbmluLnVzZXIuYWRtaW4iLCJhdXRoX3RpbWUiOjE1Njk2MTgzMzgsImlzcyI6Imh0dEXAMPLEXC9jb2duaXRvLWlkcC5hcC1zb3V0aGVhc3QtMi5hbWF6b25hd3MuY29tXC9hcC1zbEXAMPLEc3QtMl83OHY0SVZibVAiLCJleHAiOjE1NzAyNTQ3NTUsImlhdCI6MTU3MDI1MTE1NSwianRpIjoiMmIEXAMPLEktZTVkMi00ZDhkLWJiYjItNjA0YWI4MDEwOTg3IiwiY2xpZW50X2lkIjoiM3FlajVlMXZmMzd1EXAMPLE0dG91dDJkMWwiLCJ1c2VybmFtZSI6ImVsb3J6YWZlIn0.CT-
qTCtrYeboUJ4luRSTPXaNewNeEXAMPLE14C6sfg05tO0fOMpiUwj9k19gtNCCMqoSsjtQoUweFnH4JYa5EXAMPLEVxOyQEQ4G7jQrt5Ks6STn53vuseR3zRW9snWgwz7t3ZmQU-
RWvW7yQU3sNQRLEXAMPLEcd0yufBiCYs3dfQxTTdvR1B6Wz6CD78lfNeKqfzzUn2beMoup2h6EXAMPLE4ow8cUPUPvG0DzRtHNMbWskjPanu7OuoZ8iFO_Eot9kTtAlVKYoNbWkZhkD8dxutyoU4RSH5JoLAnrGF5c8iKgv0B2dfEXAMPLEIihxaZVJ9w9w48S4EXAMPLEcA",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com"

Building a real-time WebSocket client 223

AWS AppSync Developer Guide

 }
 }
 },
 "type": "start"
}

Example using IAM:

{
 "id": "eEXAMPLE-cf23-1234-5678-152EXAMPLE69",
 "payload": {
 "data": "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n
 __typename\\n message\\n }\\n }\",\"variables\":{}}",
 "extensions": {
 "authorization": {
 "accept": "application/json, text/javascript",
 "content-type": "application/json; charset=UTF-8",
 "X-Amz-Security-Token":
 "AgEXAMPLEZ2luX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97Cljq7wOPL8KsxP3YtDuyc/9hAj8PhJ7Fvf38SgoCIQDhJEXAMPLEPspioOztj
+
+pEagWCveZUjKEn0zyUhBEXAMPLEjj//////////8BEXAMPLExODk2NDgyNzg1NSIMo1mWnpESWUoYw4BkKqEFSrm3DXuL8w
+ZbVc4JKjDP4vUCKNR6Le9C9pZp9PsW0NoFy3vLBUdAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse07wN2gG2tH0eKMEXAMPLEQX+sMbytQo8iepP9PZOzlZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQnNRiFLEY83aKvG/tqLWNnGlSNVx7SMcfovkFDqQamm
+88y1OwwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1F0QNW64S9Nvj
+BwDg3ht2CrNvpwjVYlj9U3nmxE0UG5ne83LL5hhqMpm25kmL7enVgw2kQzmU2id4IKu0C/
WaoDRuO2F5zE63vJbxN8AYs7338+4B4HBb6BZ6OUgg96Q15RA41/
gIqxaVPxyTpDfTU5GfSLxocdYeniqqpFMtZG2n9d0u7GsQNcFkNcG3qDZm4tDo8tZbuym0a2VcF2E5hFEgXBa
+XLJCfXi/77OqAEjP0x7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom80VFUJXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr0a196Kq87w5KNMCkcCGFnwBNFLmfnbpNqT6rUBxxs3X5ntX9d8HVtSYINTsGXXMZCJ7fnbWajhg/
aox0FtHX21eF6qIGT8j1z+l2opU+ggwUgkhUUgCH2TfqBj+MLMVVvpgqJsPKt582caFKArIFIvO
+9QupxLnEH2hz04TMTfnU6bQC6z1buVe7h
+tOLnh1YPFsLQ88anib/7TTC8k9DsBTq0ASe8R2GbSEsmO9qbbMwgEaYUhOKtGeyQsSJdhSk6XxXThrWL9EnwBCXDkICMqdntAxyyM9nWsZ4bL9JHqExgWUmfWChzPFAqn3F4y896UqHTZxlq3WGypn5HHcem2Hqf3IVxKH1inhqdVtkryEiTWrI7ZdjbqnqRbl
+WgtPtKOOweDlCaRs3R2qXcbNgVhleMk4IWnF8D1695AenU1LwHjOJLkCjxgNFiWAFEPH9aEXAMPLExA==",
 "Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host;x-amz-date;x-amz-security-token,
 Signature=b90131a61a7c4318e1c35ead5dbfdeb46339a7585bbdbeceeaff51f4022eb1fd",
 "content-encoding": "amz-1.0",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-amz-date": "20200401T001010Z"

Building a real-time WebSocket client 224

AWS AppSync Developer Guide

 }
 }
 },
 "type": "start"
}

Example using a custom domain name:

{
 "id": "key-cf23-4cb8-9fcb-152ae4fd1e69",
 "payload": {
 "data": "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n
 __typename\\n message\\n }\\n }\",\"variables\":{}}",
 "extensions": {
 "authorization": {
 "x-api-key": "da2-12345678901234567890123456",
 "host": "api.example.com"
 }
 }
 },
 "type": "start"
}

The SigV4 signature does not need /connect to be appended to the URL, and the JSON stringified
GraphQL operation replaces data. The following is an example of a SigV4 signature request:

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/graphql",
 data: "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n __typename
\\n message\\n }\\n }\",\"variables\":{}}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 }
}

Subscription acknowledgment message

After sending the subscription start message, the client should wait for AWS AppSync to send the
start_ack message. The start_ack message indicates that the subscription is successful.

Building a real-time WebSocket client 225

AWS AppSync Developer Guide

Subscription acknowledgment example:

{
 "type": "start_ack",
 "id": "eEXAMPLE-cf23-1234-5678-152EXAMPLE69"
}

Error message

If connection init or subscription registration fails, or if a subscription is ended from the server, the
server sends an error message to the client:

• "type": "error": A constant <string> parameter.

• "id": <string>: The ID of the corresponding registered subscription, if relevant.

• "payload" <Object>: An object that contains the corresponding error information.

Example:

{
 "type": "error",
 "payload": {
 "errors": [
 {
 "errorType": "LimitExceededError",
 "message": "Rate limit exceeded"
 }
]
 }
}

Processing data messages

When a client submits a mutation, AWS AppSync identifies all of the subscribers interested in it
and sends a "type":"data" message to each using the corresponding subscription id from the
"start" subscription operation. The client is expected to keep track of the subscription id that
it sends so that when it receives a data message, the client can match it with the corresponding
subscription.

• "type": "data": A constant <string> parameter.

Building a real-time WebSocket client 226

AWS AppSync Developer Guide

• "id": <string>: The ID of the corresponding registered subscription.

• "payload" <Object>: An object that contains the subscription information.

Example:

{
 "type": "data",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "payload": {
 "data": {
 "onCreateMessage": {
 "__typename": "Message",
 "message": "test"
 }
 }
 }
}

Subscription unregistration message

When the app wants to stop listening to the subscription events, the client should send a message
with the following stringified JSON object:

• "type": "stop": A constant <string> parameter.

• "id": <string>: The ID of the subscription to unregister.

Example:

{
 "type":"stop",
 "id":"ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

AWS AppSync sends back a confirmation message with the following stringified JSON object:

• "type": "complete": A constant <string> parameter.

• "id": <string>: The ID of the unregistered subscription.

Building a real-time WebSocket client 227

AWS AppSync Developer Guide

After the client receives the confirmation message, it receives no more messages for this particular
subscription.

Example:

{
 "type":"complete",
 "id":"eEXAMPLE-cf23-1234-5678-152EXAMPLE69"
}

Disconnecting the WebSocket

Before disconnecting, to avoid data loss, the client should have the necessary logic to check that
no operation is currently in place through the WebSocket connection. All subscriptions should be
unregistered before disconnecting from the WebSocket.

Merged APIs

As the use of GraphQL expands within an organization, trade-offs between API ease-of-use
and API development velocity can arise. One the one hand, organizations adopt AWS AppSync
and GraphQL to simplify application development by giving developers a flexible API they can
use to securely access, manipulate, and combine data from one or more data domains with a
single network call. On the other hand, teams within an organization that are responsible for
the different data domains combined into a single GraphQL API endpoint may want the ability
to create, manage, and deploy API updates independent of each other in order to increase their
development velocities.

To resolve this tension, the AWS AppSync Merged APIs feature allows teams from different data
domains to independently create and deploy AWS AppSync APIs (e.g., GraphQL schemas, resolvers,
data sources, and functions), that can then be combined into a single, merged API. This gives
organizations the ability to maintain a simple to use, cross domain API, and a way for the different
teams that contribute to that API the ability to quickly and independently make API updates.

Merged APIs 228

AWS AppSync Developer Guide

Using Merged APIs, organizations can import the resources of multiple, independent source AWS
AppSync APIs into a single AWS AppSyncMerged API endpoint. To do this, AWS AppSync allows you
to create a list of source AWS AppSync source APIs, and then merge all of the metadata associated
with the source APIs including schema, types, datasources, resolvers, and functions, into a new
AWS AppSync merged API.

During merges, there's the possibility that a merge conflict will occur due to inconsistencies in
the source API data content such as type naming conflicts when combining multiple schemas. For
simple use cases where no definitions in the source APIs conflict, there's no need to modify the
source API schemas. The resulting Merged API simply imports all types, resolvers, data sources and
functions from the original source AWS AppSync APIs. For complex use cases where conflicts arise,
the users/teams will have to resolve the conflicts through various means. AWS AppSync provides
users with several tools and examples that can reduce merge conflicts.

Subsequent merges that are configured in AWS AppSync will propagate changes made in the
source APIs to the associated Merged API.

Merged APIs 229

AWS AppSync Developer Guide

Merged APIs and Federation

There are many solutions and patterns in the GraphQL community for combining GraphQL
schemas and enabling team collaboration through a shared graph. AWS AppSync Merged APIs
adopt a build time approach to schema composition, where source APIs are combined into a
separate, Merged API. An alternative approach is to layer a run time router across multiple source
APIs or sub-graphs. In this approach, the router receives a request, references a combined schema
that it maintains as metadata, constructs a request plan, and then distributes request elements
across its underlying sub-graphs/servers.The following table compares the AWS AppSync Merged
API build-time approach with router-based, run-time approaches to GraphQL schema composition:

Feature AppSync Merged API Router-based solutions

Sub-graphs managed
independently

Yes Yes

Sub-graphs addressable
independently

Yes Yes

Automated schema compositi
on

Yes Yes

Automated conflict detection Yes Yes

Conflict resolution via schema
directives

Yes Yes

Supported sub-graph servers AWS AppSync* Varies

Network complexity Single, merged API means no
extra network hops.

Multi-layer architecture
requires query planning and
delegation, sub-query parsing
and serialization/deserializati
on, and reference resolvers in
sub-graphs to perform joins.

Observability support Built-in monitoring, logging,
and tracing. A single, Merged

Build-your-own observability
across router and all associate
d sub-graph servers. Complex

Merged APIs and Federation 230

AWS AppSync Developer Guide

API server means simplified
debugging.

debugging across distributed
system.

Authorization support Built in support for multiple
authorization modes.

Build-your-own authorization
rules.

Cross account security Built-in support for cross-
AWS cloud account associati
ons.

Build-your-own security
model.

Subscriptions support Yes No

* AWS AppSync Merged APIs can only be associated with AWS AppSync source APIs. If you need
support for schema composition across AWS AppSync and non-AWS AppSync sub-graphs, you can
connect one or more AWS AppSync GraphQL and/or Merged APIs into a router-based solution. For
example, see the reference blog for adding AWS AppSync APIs as a sub-graph using a router-based
architecture with Apollo Federation v2: Apollo GraphQL Federation with AWS AppSync.

Topics

• Merged API conflict resolution

• Configuring schemas

• Configuring authorization modes

• Configuring execution roles

• Configuring cross-account Merged APIs using AWS RAM

• Merging

• Additional support for Merged APIs

• Merged API limitations

• Creating Merged APIs

Merged API conflict resolution

In the event of a merge conflict, AWS AppSync provides users with several tools and examples to
help troubleshoot the issue(s).

Merged API conflict resolution 231

https://aws.amazon.com/blogs/mobile/federation-appsync-subgraph/

AWS AppSync Developer Guide

Merged API schema directives

AWS AppSync has introduced several GraphQL directives that can be used to- reduce or resolve
conflicts across source APIs:

• @canonical: This directive sets the precedence of types/fields with similar names and data. If
two or more source APIs have the same GraphQL type or field, one of the APIs can annotate their
type or field as canonical, which will be prioritized during the merge. Conflicting types/fields that
aren't annotated with this directive in other source APIs are ignored when merged.

• @hidden: This directive encapsulates certain types/fields to remove it from the merging process.
Teams may want to remove or hide specific types or operations in the source API so only internal
clients can access specific typed data. With this directive attached, types or fields are not merged
into the Merged API.

• @renamed: This directive changes the names of types/fields to reduce naming conflicts. There
are situations where different APIs have the same type or field name. However, they all need
to be available in the merged schema. A simple way to include them all in the Merged API is to
rename the field to something similar but different.

To show the utility schema directives provide, consider the following example:

In this example, let's assume that we want to merge two source APIs. We're given two schemas that
create and retrieve posts (e.g., comment section or social media posts). Assuming that the types
and fields are very similar, there's a high chance for conflict during a merge operation. The snippets
below show the types and fields of each schema.

The first file, called Source1.graphql, is a GraphQL schema that allows a user to create Posts using
the putPost mutation. Each Post contains a title and an ID. The ID is used to reference the User,
or poster's information (email and address), and the Message, or the payload (content). The User
type is annotated with the @canonical tag.

This snippet represents a file called Source1.graphql

type Mutation {
 putPost(id: ID!, title: String!): Post
}

type Post {
 id: ID!
 title: String!

Merged API conflict resolution 232

AWS AppSync Developer Guide

}

type Message {
 id: ID!
 content: String
}

type User @canonical {
 id: ID!
 email: String!
 address: String!
}

type Query {
 singlePost(id: ID!): Post
 getMessage(id: ID!): Message
}

The second file, called Source2.graphql, is a GraphQL schema that does very similar things as
Source1.graphql. However, notice that the fields of each type are different. When merging these
two schemas, there will be merge conflicts because of these differences.

Also note how Source2.graphql also contains several directives to reduce these conflicts. The Post
type is annotated with a @hidden tag to obfuscate itself during the merge operation. The Message
type is annotated with the @renamed tag to modify the type name to ChatMessage in the event
of a naming conflict with another Message type.

This snippet represents a file called Source2.graphql

type Post @hidden {
 id: ID!
 title: String!
 internalSecret: String!
}

type Message @renamed(to: "ChatMessage") {
 id: ID!
 chatId: ID!
 from: User!
 to: User!
}

Merged API conflict resolution 233

AWS AppSync Developer Guide

Stub user so that we can link the canonical definition from Source1
type User {
 id: ID!
}

type Query {
 getPost(id: ID!): Post
 getMessage(id: ID!): Message @renamed(to: "getChatMessage")
}

When the merge occurs, the result will produce the MergedSchema.graphql file:

This snippet represents a file called MergedSchema.graphql

type Mutation {
 putPost(id: ID!, title: String!): Post
}

Post from Source2 was hidden so only uses the Source1 definition.
type Post {
 id: ID!
 title: String!
}

Renamed from Message to resolve the conflict
type ChatMessage {
 id: ID!
 chatId: ID!
 from: User!
 to: User!
}

type Message {
 id: ID!
 content: String
}

Canonical definition from Source1
type User {
 id: ID!
 email: String!
 address: String!
}

Merged API conflict resolution 234

AWS AppSync Developer Guide

type Query {
 singlePost(id: ID!): Post
 getMessage(id: ID!): Message

 # Renamed from getMessage
 getChatMessage(id: ID!): ChatMessage
}

Several things occurred in the merge:

• The User type from Source1.graphql was prioritized over the User from Source2.graphql due to
the @canonical annotation.

• The Message type from Source1.graphql was included in the merge. However, the Message from
Source2.graphql had a naming conflict. Due to its @renamed annotation, it was also included in
the merge but with the alternative name ChatMessage.

• The Post type from Source1.graphql was included, but the Post type from Source2.graphql
wasn't. Normally, there would be a conflict on this type, but because the Post type from
Source2.graphql had a @hidden annotation, its data was obfuscated and not included in the
merge. This resulted in no conflicts.

• The Query type was updated to include the contents from both files. However, one GetMessage
query was renamed to GetChatMessage due to the directive. This resolved the naming conflict
between the two queries with the same name.

There's also the case of no directives being added to a conflicting type. Here, the merged type will
include the union of all fields from all source definitions of that type. For instance, consider the
following example:

This schema, called Source1.graphql, allows for creating and retrieving Posts. The configuration is
similar to the previous example, but with less information.

This snippet represents a file called Source1.graphql

type Mutation {
 putPost(id: ID!, title: String!): Post
}

type Post {
 id: ID!

Merged API conflict resolution 235

AWS AppSync Developer Guide

 title: String!
}

type Query {
 getPost(id: ID!): Post
}

This schema, called Source2.graphql, allows for creating and retrieving Reviews (e.g., movie rating
or restaurant reviews). Reviews are associated with the Post of the same ID value. Together, they
contain the title, post ID, and payload message of the full review post.

When merging, there will be a conflict between the two Post types. Because there are no
annotations to resolve this issue, the default behavior is to perform a union operation on the
conflicting types.

This snippet represents a file called Source2.graphql

type Mutation {
 putReview(id: ID!, postId: ID!, comment: String!): Review
}

type Post {
 id: ID!
 reviews: [Review]
}

type Review {
 id: ID!
 postId: ID!
 comment: String!
}

type Query {
 getReview(id: ID!): Review
}

When the merge occurs, the result will produce the MergedSchema.graphql file:

This snippet represents a file called MergedSchema.graphql

type Mutation {
 putReview(id: ID!, postId: ID!, comment: String!): Review

Merged API conflict resolution 236

AWS AppSync Developer Guide

 putPost(id: ID!, title: String!): Post
}

type Post {
 id: ID!
 title: String!
 reviews: [Review]
}

type Review {
 id: ID!
 postId: ID!
 comment: String!
}

type Query {
 getPost(id: ID!): Post
 getReview(id: ID!): Review
}

Several things occurred in the merge:

• The Mutation type faced no conflicts and was merged.

• The Post type fields were combined via union operation. Notice how the union between the two
produced a single id, a title, and a single reviews.

• The Review type faced no conflicts and was merged.

• The Query type faced no conflicts and was merged.

Managing resolvers on shared types

In the above example, consider the case where Source1.graphql has configured a unit resolver on
Query.getPost, which uses a DynamoDB data source named PostDatasource. This resolver
will return the id and title of a Post type. Now, consider Source2.graphql has configured a
pipeline resolver on Post.reviews, which runs two functions. Function1 has a None data source
attached to perform custom authorization checks. Function2 has a DynamoDB data source
attached to query the reviews table.

query GetPostQuery {
 getPost(id: "1") {
 id,

Merged API conflict resolution 237

AWS AppSync Developer Guide

 title,
 reviews
 }
}

When the query above is run by a client to the Merged API endpoint, the AWS AppSync service
first runs the unit resolver for Query.getPost from Source1, which calls the PostDatasource
and returns the data from DynamoDB. Then, it runs the Post.reviews pipeline resolver in which
Function1 performs custom authorization logic and Function2 returns the reviews given the id
found in $context.source. The service processes the request as a single GraphQL run, and this
simple request will only require a single request token.

Managing resolver conflicts on shared types

Consider the following case where we also implement a resolver on Query.getPost in order to
provide multiple fields at a time beyond the field resolver in Source2. Source1.graphql may look
like this:

This snippet represents a file called Source1.graphql

type Post {
 id: ID!
 title: String!
 date: AWSDateTime!
}

type Query {
 getPost(id: ID!): Post
}

Source2.graphql may look like this:

This snippet represents a file called Source2.graphql

type Post {
 id: ID!
 content: String!
 contentHash: String!
 author: String!
}

type Query {

Merged API conflict resolution 238

AWS AppSync Developer Guide

 getPost(id: ID!): Post
}

Attempting to merge these two schemas will generate a merge error because AWS AppSync
Merged APIs don't allow multiple source resolvers to be attached to the same field. In order to
resolve this conflict, you can implement a field resolver pattern that would require Source2.graphql
to add a separate type that will define the fields that it owns from the Post type. In the following
example, we add a type called PostInfo, which contains the content and author fields that
will be resolved by Source2.graphql. Source1.graphql will implement the resolver attached to
Query.getPost, while Source2.graphql will now attach a resolver to Post.postInfoto ensure
that all data can be successfully retrieved:

type Post {
 id: ID!
 postInfo: PostInfo
}

type PostInfo {
 content: String!
 contentHash: String!
 author: String!
}

type Query {
 getPost(id: ID!): Post
}

While resolving such a conflict requires source API schemas to be rewritten and, potentially, clients
to change their queries, the advantage of this approach is that ownership of merged resolvers
remains clear across source teams.

Configuring schemas

Two parties are responsible for configuring the schemas to create a Merged API:

• Merged API owners - Merged API owners must configure the Merged API's authorization logic
and advanced settings like logging, tracing, caching, and WAF support.

• Associated source API owners - Associated API owners must configure the schemas, resolvers,
and datasources that make up the Merged API.

Configuring schemas 239

AWS AppSync Developer Guide

Because your Merged API’s schema is created from the schemas of your associated source APIs, it's
read only. This means changes to the schema must be initiated in your source APIs. In the AWS
AppSync console, you can toggle between your Merged schema and the individual schemas of the
source APIs included in your Merged API using the drop-down list above the Schema window.

Configuring authorization modes

Multiple authorization modes are available to protect your Merged API. To learn more about
authorization modes in AWS AppSync, see Authorization and authentication.

The following authorization modes are available to use with Merged APIs:

• API key: The simplest authorization strategy. All requests must include an API key under the x-
api-key request header. Expired API keys are kept for 60 days after the expiration date.

• AWS Identity and Access Management (IAM): The AWS IAM authorization strategy authorizes all
requests that are sigv4 signed.

• Amazon Cognito User Pools: Authorize your users via Amazon Cognito User Pools to achieve
more fine-grained control.

• AWS Lambda Authorizers: A serverless function that allows you to authenticate and authorize
access to your AWS AppSync API using custom logic.

• OpenID Connect: This authorization type enforces OpenID connect (OIDC) tokens provided by an
OIDC-compliant service. Your application can leverage users and privileges defined by your OIDC
provider for controlling access.

The authorization modes of a Merged API are configured by the Merged API owner. At the time of
a merge operation, the Merged API must include the primary authorization mode configured on
a source API either as its own primary authorization mode or as a secondary authorization mode.
Otherwise, it will be incompatible, and the merge operation will fail with a conflict. When using
multi-auth directives in the source APIs, the merging process is able to automatically merge these
directives into the unified endpoint. In the case where the primary authorization mode of the
source API doesn't match the primary authorization mode of the Merged API, it will automatically
add these auth directives to ensure that the authorization mode for the types in the source API is
consistent.

Configuring authorization modes 240

https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html

AWS AppSync Developer Guide

Configuring execution roles

When you create a Merged API, you need to define a service role. An AWS service role is an AWS
Identity and Access Management (IAM) role that is used by AWS services to perform tasks on your
behalf.

In this context, it's necessary for your Merged API to run resolvers that access data from
the data sources configured in your source APIs. The required service role for this is the
mergedApiExecutionRole, and it must have explicit access to run requests on source APIs
included in your merged API via the appsync:SourceGraphQL IAM permission. During the run of
a GraphQL request, the AWS AppSync service will assume this service role and authorize the role to
perform the appsync:SourceGraphQL action.

AWS AppSync supports allowing or denying this permission on specific top-level fields within the
request like how the IAM authorization mode works for IAM APIs. For non-top-level fields, AWS
AppSync requires you to define the permission on the source API ARN itself. In order to restrict
access to specific non-top-level fields in the Merged API, we recommend implementing custom
logic within your Lambda or hiding the source API fields from the Merged API using the @hidden
directive. If you want to allow the role to perform all data operations within a source API, you can
add the policy below. Note that the first resource entry allows access to all top-level fields and the
second entry covers child resolvers that authorize on the source API resource itself:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["appsync:SourceGraphQL"],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId/*",
 "arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId"]
 }]
}

If you want to limit the access to only a specific top-level field, you can use a policy like this:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["appsync:SourceGraphQL"],

Configuring execution roles 241

AWS AppSync Developer Guide

 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId/types/
Query/fields/<Field-1>",
 "arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId"]
 }]
}

You can also use the AWS AppSync console API creation wizard to generate a service role to allow
your Merged API to access resources configured in source APIs that are in the same account as your
merged API. In the case where your source APIs are not in the same account as your merged API,
you must first share your resources using AWS Resource Access Manager (AWS RAM).

Configuring cross-account Merged APIs using AWS RAM

When you create a Merged API, you can optionally associate source APIs from other accounts that
have been shared via AWS Resource Access Manager (AWS RAM). AWS RAM helps you share your
resources securely across AWS accounts, within your organization or organizational units (OUs), and
with IAM roles and users.

AWS AppSync integrates with AWS RAM in order to support configuring and accessing source APIs
across multiple accounts from a single Merged API. AWS RAM allows you to create a resource share,
or a container of resources and the permission sets that will be shared for each of them. You can
add AWS AppSync APIs to a resource share in AWS RAM. Within a resource share, AWS AppSync
provides three different permission sets that can be associated with an AWS AppSync API in RAM:

1. AWSRAMPermissionAppSyncSourceApiOperationAccess: The default permission set that's
added when sharing an AWS AppSync API in AWS RAM if no other permission is specified. This
permission set is used for sharing a source AWS AppSync API with a Merged API owner. This
permission set includes the permission for appsync:AssociateMergedGraphqlApi on the
source API as well as the appsync:SourceGraphQL permission required to access the source
API resources at runtime.

2. AWSRAMPermissionAppSyncMergedApiOperationAccess: This permission set should be
configured when sharing a Merged API with a source API owner. This permission set will give the
source API the ability to configure the Merged API including the ability to associate any source
APIs owned by the target principal to the Merged API and to read and update the source API
associations of the Merged API.

3. AWSRAMPermissionAppSyncAllowSourceGraphQLAccess: This permission set allows the
appsync:SourceGraphQL permission to be used with an AWS AppSync API. It is intended to

Configuring cross-account Merged APIs using AWS RAM 242

AWS AppSync Developer Guide

be used for sharing a source API with a Merged API owner. In contrast to the default permission
set for source API operation access, this permission set only includes the runtime permission
appsync:SourceGraphQL. If a user opts to share the Merged API operation access to a source
API owner, they will also need to share this permission from the source API to the Merged API
owner in order to have runtime access through the Merged API endpoint.

AWS AppSync also supports customer-managed permissions. When one of the provided AWS-
managed permissions doesn't work, you can create your own customer-managed permission.
Customer-managed permissions are managed permissions that you author and maintain by
precisely specifying which actions can be performed under which conditions with resources shared
using AWS RAM. AWS AppSync allows you to choose from the following actions when creating your
own permission:

1. appsync:AssociateSourceGraphqlApi

2. appsync:AssociateMergedGraphqlApi

3. appsync:GetSourceApiAssociation

4. appsync:UpdateSourceApiAssociation

5. appsync:StartSchemaMerge

6. appsync:ListTypesByAssociation

7. appsync:SourceGraphQL

Once you have properly shared a source API or Merged API in AWS RAM and, if necessary, the
resource share invitation has been accepted, it will be visible in the AWS AppSync console
when you create or update the source API associations on your Merged API. You can also list all
AWS AppSync APIs that have been shared using AWS RAM with your account regardless of the
permission set by calling the ListGraphqlApis operation provided by AWS AppSync and using
the OTHER_ACCOUNTS owner filter.

Note

Sharing via AWS RAM requires the caller in AWS RAM to have permission to perform the
appsync:PutResourcePolicy action on any API that is being shared.

Configuring cross-account Merged APIs using AWS RAM 243

AWS AppSync Developer Guide

Merging

Managing merges

Merged APIs are meant to support team collaboration on a unified AWS AppSync endpoint. Teams
can independently evolve their own isolated source GraphQL APIs in the backend while the AWS
AppSync service manages the integration of the resources into the single Merged API endpoint in
order to reduce friction in collaboration and decrease development lead times.

Auto-merges

Source APIs associated with your AWS AppSync Merged API can be configured to automatically
merge (auto-merge) into the Merged API after any changes are made to the source API. This
ensures that the changes from the source API are always propagated to the Merged API endpoint
in the background. Any change in the source API schema will be updated in the Merged API
so long as it does not introduce a merge conflict with an existing definition in the Merged API.
If the update in the source API is updating a resolver, data source, or function, the imported
resource will also be updated.When a new conflict is introduced that cannot be automatically
resolved (auto-resolved), the Merged API schema update is rejected due to an unsupported conflict
during the merge operation. The error message is available in the console for each source API
association that has a status of MERGE_FAILED. You can also inspect the error message by calling
the GetSourceApiAssociation operation for a given source API association using the AWS SDK
or using the AWS CLI like so:

aws appsync get-source-api-association --merged-api-identifier <Merged API ARN> --
association-id <SourceApiAssociation id>

This will produce a result in the following format:

{
 "sourceApiAssociation": {
 "associationId": "<association id>",
 "associationArn": "<association arn>",
 "sourceApiId": "<source api id>",
 "sourceApiArn": "<source api arn>",
 "mergedApiArn": "<merged api arn>",
 "mergedApiId": "<merged api id>",
 "sourceApiAssociationConfig": {
 "mergeType": "MANUAL_MERGE"

Merging 244

AWS AppSync Developer Guide

 },
 "sourceApiAssociationStatus": "MERGE_FAILED",
 "sourceApiAssociationStatusDetail": "Unable to resolve conflict on object with
 name title: Merging is not supported for fields with different types."
 }
}

Manual merges

The default setting for a source API is a manual merge. To merge any changes that have occurred in
the source APIs since the Merged API was last updated, the source API owner can invoke a manual
merge from the AWS AppSync console or via the StartSchemaMerge operation available in the
AWS SDK and AWS CLI.

Additional support for Merged APIs

Configuring subscriptions

Unlike router-based approaches to GraphQL schema composition, AWS AppSync Merged APIs
provide built-in support for GraphQL subscriptions. All subscription operations defined in
your associated source APIs will automatically merge and function in your Merged API without
modification. To learn more about how AWS AppSync supports subscriptions via serverless
WebSockets connection, see Real-time data.

Configuring observability

AWS AppSync Merged APIs provide built-in logging, monitoring and metrics via Amazon
CloudWatch. AWS AppSync also provides built-in support for tracing via AWS X-Ray.

Configuring custom domains

AWS AppSync Merged APIs provide built-in support for using custom domains with your Merged
API's GraphQL and Real-time endpoints.

Configuring caching

AWS AppSync Merged APIs provide built-in support for optionally caching request-level and/
or resolver-level responses as well as response compression. To learn more, see Caching and
compression.

Additional support for Merged APIs 245

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html
https://docs.aws.amazon.com/appsync/latest/devguide/custom-domain-name.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html

AWS AppSync Developer Guide

Configuring private APIs

AWS AppSync Merged APIs provide built-in support for Private APIs that limit access to your
Merged API’s GraphQL and Real-time endpoints to traffic originating from VPC endpoints that you
can configure.

Configuring firewall rules

AWS AppSync Merged APIs provide built-in support for AWS WAF, which enables you to protect
your APIs by defining web application firewall rules.

Configuring audit logs

AWS AppSync Merged APIs provide built-in support for AWS CloudTrail, which enables you to
configure and manage audit logs.

Merged API limitations

When developing Merged APIs, take note of the following rules:

1. A Merged API cannot be a source API for another Merged API.

2. A source API cannot be associated with more than one Merged API.

3. The default size limit for a Merged API schema document is 10 MB.

4. The default number of source APIs that can be associated with a Merged API is 10. However, you
can request a limit increase if you need more than 10 source APIs in your Merged API.

Creating Merged APIs

To create a Merged API in the console

1. Sign in to the AWS Management Console and open the AWS AppSync console.

• In the Dashboard , choose Create API.

2. Choose Merged API, then choose Next.

3. In the Specify API details page, enter in the following information:

a. Under API Details, enter in the following information:

Merged API limitations 246

https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/WAF-Integration.html
https://docs.aws.amazon.com/appsync/latest/devguide/cloudtrail-logging.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

i. Specify your merged API’s API name. This field is a way to label your GraphQL API to
conveniently distinguish it from other GraphQL APIs.

ii. Specify the Contact details. This field is optional and attaches a name or group to the
GraphQL API. It’s not linked to or generated by other resources and works much like
the API name field.

b. Under Service role, you must attach an IAM execution role to your merged API so that
AWS AppSync can securely import and use your resources at runtime. You can choose
to Create and use a new service role, which will allow you to specify the policies and
resources that AWS AppSync will use. You can also import an existing IAM role by choosing
Use an existing service role, then selecting the role from the drop-down list.

c. Under Private API configuration, you can choose to enable private API features. Note that
this choice cannot be changed after creating the merged API. For more information about
private APIs, see Using AWS AppSync Private APIs.

Choose Next after you're done.

4. Next, you must add the GraphQL APIs that will be used as the foundation for your merged API.
In the Select source APIs page, enter in the following information:

a. In the APIs from your AWS account table, choose Add Source APIs. In the list of GraphQL
APIs, each entry will contain the following data:

i. Name: The GraphQL API’s API name field.

ii. API ID: The GraphQL API’s unique ID value.

iii. Primary auth mode: The default authorization mode for the GraphQL API. For more
information about authorization modes in AWS AppSync, see Authorization and
authentication.

iv. Additonal auth mode: The secondary authorization modes that were configured in
the GraphQL API.

v. Choose the APIs that you will use in the merged API by selecting the checkbox next
to the API’s Name field. Afterwards, choose Add Source APIs. The selected GraphQL
APIs will appear in the APIs from your AWS accounts table.

b. In the APIs from other AWS accounts table, choose Add Source APIs. The GraphQL APIs
in this list come from other accounts that are sharing their resources to yours through
AWS Resource Access Manager (AWS RAM). The process for selecting GraphQL APIs in

Creating Merged APIs 247

https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html

AWS AppSync Developer Guide

this table is the same as the process in the previous section. For more information about
sharing resources through AWS RAM, see What is AWS Resource Access Manager?.

Choose Next after you're done.

c. Add your primary auth mode. See Authorization and authentication for more information.
Choose Next.

d. Review your inputs, then choose Create API.

RDS introspection

AWS AppSync makes building APIs from existing relational databases easy. Its introspection utility
can discover models from database tables and propose GraphQL types. The AWS AppSync console's
Create API wizard can instantly generate an API from an Aurora MySQL or PostgreSQL database. It
automatically creates types and JavaScript resolvers to read and write data.

AWS AppSync provides direct integration with Amazon Aurora databases through the Amazon RDS
Data API. Rather than requiring a persistent database connection, the Amazon RDS Data API offers
a secure HTTP endpoint that AWS AppSync connects to for running SQL statements. You can use
this to create a relational database API for your MySQL and PostgreSQL workloads on Aurora.

Building an API for your relational database with AWS AppSync has several advantages:

• Your database is not directly exposed to clients, decoupling the access point from the database
itself.

• You can build purpose-built APIs tailored to the needs of different applications, removing the
need for custom business logic in frontends. This aligns with the Backend-For-Frontend (BFF)
pattern.

• Authorization and access control can be implemented at the AWS AppSync layer using various
authorization modes to control access. No additional compute resources are required to connect
to the database, such as hosting a web server or proxying connections.

• Real-time capabilities can be added via subscriptions, with data mutations made through
AppSync automatically pushed to connected clients.

• Clients can connect to the API over HTTPS using common ports like 443.

AWS AppSync makes building APIs from existing relational databases easy. Its introspection utility
can discover models from database tables and propose GraphQL types. The AWS AppSync console's

RDS introspection 248

https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html

AWS AppSync Developer Guide

Create API wizard can instantly generate an API from an Aurora MySQL or PostgreSQL database. It
automatically creates types and JavaScript resolvers to read and write data.

AWS AppSync provides integrated JavaScript utilities to simplify writing SQL statements in
resolvers. You can use AWS AppSync's sql tag templates for static statements with dynamic
values, or the rds module utilities to build statements programmatically. See the resolver function
reference for RDS data sources and built-in modules for more.

Using the introspection feature (console)

For a detailed tutorial and getting started guide, see Tutorial: Aurora PostgreSQL Serverless with
Data API.

The AWS AppSync console allows you to create an AWS AppSync GraphQL API from your existing
Aurora database configured with the Data API in just a few minutes. This quickly generates an
operational schema based on your database configuration. You can use the API as-is or build on it
to add features.

1. Sign in to the AWS Management Console and open the AppSync console.

• In the Dashboard, choose Create API.

2. Under API options, choose GraphQL APIs, Start with an Amazon Aurora cluster, then Next.

a. Enter an API name. This will be used as an identifier for the API in the console.

b. For contact details, you can enter a point of contact to identify a manager for the API.
This is an optional field.

c. Under Private API configuration, you can enable private API features. A private API can
only be accessed from a configured VPC endpoint (VPCE). For more information, see
Private APIs.

We don't recommend enabling this feature for this example. Choose Next after reviewing
your inputs.

3. In the Database page, choose Select database.

a. You need to choose your database from your cluster. The first step is to choose the Region
in which your cluster exists.

b. Choose the Aurora cluster from the drop-down list. Note that you must have created and
enabled a corresponding data API before using the resource.

Using the introspection feature (console) 249

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-rds-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-rds-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/built-in-modules-js.html#built-in-rds-modules
https://docs.aws.amazon.com/appsync/latest/devguide/aurora-serverless-tutorial-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/aurora-serverless-tutorial-js.html
https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.enabling

AWS AppSync Developer Guide

c. Next, you must add the credentials for your database to the service. This is primarily done
using AWS Secrets Manager. Choose the Region in which your secret exists. For more
information on how to retrieve secret information, see Find secrets or Retrieve secrets.

d. Add your secret from the drop-down list. Note that the user must have read permissions
for your database.

4. Choose Import.

AWS AppSync will start introspecting your database, discovering tables, columns, primary keys,
and indexes. It checks that the discovered tables can be supported in a GraphQL API. Note that
to support creating new rows, tables need a primary key, which can use multiple columns. AWS
AppSync maps table columns to type fields as follows:

Data type Field type

VARCHAR String

CHAR String

BINARY String

VARBINARY String

TINYBLOB String

TINYTEXT String

TEXT String

BLOB String

MEDIUMTEXT String

MEDIUMBLOB String

LONGTEXT String

LONGBLOB String

BOOL Boolean

Using the introspection feature (console) 250

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console

AWS AppSync Developer Guide

BOOLEAN Boolean

BIT Int

TINYINT Int

SMALLINT Int

MEDIUMINT Int

INT Int

INTEGER Int

BIGINT Int

YEAR Int

FLOAT Float

DOUBLE Float

DECIMAL Float

DEC Float

NUMERIC Float

DATE AWSDate

TIMESTAMP String

DATETIME String

TIME AWSTime

JSON AWSJson

ENUM ENUM

5. Once table discovery is complete, the Database section will be populated with your
information. In the new Database tables section, the data from the table may already be
populated and converted to a type for your schema. If you don't see some of the required data,

Using the introspection feature (console) 251

AWS AppSync Developer Guide

you can check for it by choosing Add tables, clicking on the checkboxes for those types in the
modal that appears, then choosing Add.

To remove a type from the Database tables section, click on the checkbox next to the type
you want to remove, then choose Remove. The removed types will be placed in the Add tables
modal if you want to add them again later.

Note that AWS AppSync uses the table names as type names, but you can rename them - for
example, changing a plural table name like movies to the type name Movie. To rename a type
in the Database tables section, click on the checkbox of the type you want to rename, then
click on the pencil icon in the Type name column.

To preview the content of the schema based on your selections, choose Preview schema. Note
that this schema cannot be empty, so you'll have to have at least one table converted to a
type. Also, this schema cannot exceed 1 MB in size.

• Under Service role, choose whether to create a new service role specifically for this import
or use an existing role.

6. Choose Next.

7. Next, choose whether to create a read-only API (queries only) or an API for reading and writing
data (with queries and mutations). The latter also supports real-time subscriptions triggered
by mutations.

8. Choose Next.

9. Review your choices and then choose Create API. AWS AppSync will create the API and attach
resolvers to queries and mutations. The generated API is fully operational and can be extended
as needed.

Using the introspection feature (API)

You can use the StartDataSourceIntrospection introspection API to discover models
in your database programmatically. For more details on the command, see using the
StartDataSourceIntrospection API.

To use StartDataSourceIntrospection, provide your Aurora cluster Amazon Resource
Name (ARN), database name, and AWS Secrets Manager secret ARN. The command starts the
introspection process. You can retrieve the results with the GetDataSourceIntrospection
command. You can specify whether the command should return the Storage Definition Language

Using the introspection feature (API) 252

https://docs.aws.amazon.com/appsync/latest/APIReference/API_StartDataSourceIntrospection.html

AWS AppSync Developer Guide

(SDL) string for the discovered models. This is useful for generating an SDL schema definition
directly from the discovered models.

For example, if you have the following Data definition language (DDL) statement for a simple
Todos table:

create table if not exists public.todos
(
id serial constraint todos_pk primary key,
description text,
due timestamp,
"createdAt" timestamp default now()
);

You start the introspection with the following.

aws appsync start-data-source-introspection \
 --rds-data-api-config resourceArn=<cluster-arn>,secretArn=<secret-
arn>,databaseName=database

Next, use the GetDataSourceIntrospection command to retrieve the result.

aws appsync get-data-source-introspection \
 --introspection-id a1234567-8910-abcd-efgh-identifier \
 --include-models-sdl

This returns the following result.

{
 "introspectionId": "a1234567-8910-abcd-efgh-identifier",
 "introspectionStatus": "SUCCESS",
 "introspectionStatusDetail": null,
 "introspectionResult": {
 "models": [
 {
 "name": "todos",
 "fields": [
 {
 "name": "description",
 "type": {
 "kind": "Scalar",
 "name": "String",

Using the introspection feature (API) 253

AWS AppSync Developer Guide

 "type": null,
 "values": null
 },
 "length": 0
 },
 {
 "name": "due",
 "type": {
 "kind": "Scalar",
 "name": "AWSDateTime",
 "type": null,
 "values": null
 },
 "length": 0
 },
 {
 "name": "id",
 "type": {
 "kind": "NonNull",
 "name": null,
 "type": {
 "kind": "Scalar",
 "name": "Int",
 "type": null,
 "values": null
 },
 "values": null
 },
 "length": 0
 },
 {
 "name": "createdAt",
 "type": {
 "kind": "Scalar",
 "name": "AWSDateTime",
 "type": null,
 "values": null
 },
 "length": 0
 }
],
 "primaryKey": {
 "name": "PRIMARY_KEY",
 "fields": [

Using the introspection feature (API) 254

AWS AppSync Developer Guide

 "id"
]
 },
 "indexes": [],
 "sdl": "type todos\n{\ndescription: String\n\ndue: AWSDateTime\n\nid:
 Int!\n\ncreatedAt: AW
SDateTime\n}\n"
 }
],
 "nextToken": null
 }
}

Using the introspection feature (API) 255

AWS AppSync Developer Guide

Building a client application

You can connect to your AWS AppSync GraphQL API using any GraphQL client, but we highly
recommend the Amplify client. Amplify not only autogenerates strongly-typed client SDKs
for your GraphQL API but also offers support for real-time data and enhanced GraphQL query
capabilities in client applications. For web applications, Amplify can produce a JavaScript client.
For those targeting cross-platform or mobile environments, Amplify caters to Android, iOS, and
React Native. To delve deeper into client code generation for these platforms, consult the Amplify
documentation. Here's a guide to kickstart your journey with a JavaScript React application:

Note

You need to install and configure both npm and the Amazon CLI before getting started.

To get started:

1. On your local machine, navigate to your project's directory. Install the Amplify library using the
command below:

npm install aws-amplify

2. Next, add your Amplify configuration.

Open your code's index.js file. Import the Amplify library:

import { Amplify } from 'aws-amplify'

Add your configurations by replacing the placeholder values with your API's values:

Amplify.configure({
 aws_appsync_graphqlEndpoint: '<YOUR API URL>',
 aws_appsync_region: '<YOUR API REGION>',
 aws_appsync_authenticationType: 'API_KEY',
 aws_appsync_apiKey: '<YOUR API KEY>'
})

You can find these values in your API's settings page. The code will follow the format below:

256

https://docs.amplify.aws/cli/graphql/client-code-generation/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://aws.amazon.com/cli/

AWS AppSync Developer Guide

import { Amplify } from 'aws-amplify'

Amplify.configure({
 aws_appsync_graphqlEndpoint: '<YOUR API URL>',
 aws_appsync_region: '<YOUR API REGION>',
 aws_appsync_authenticationType: 'API_KEY',
 aws_appsync_apiKey: '<YOUR API KEY>'
})

3. Using the Amplify toolchain, you have the option to autogenerate operations based on your
schema, which saves you the effort of manual scripting. If your GraphQL schema is already
present in the project's directory, run the following command:

npx @aws-amplify/cli codegen add

Alternatively, you can directly reference your AWS AppSync API by its ID:

npx @aws-amplify/cli codegen add --apiId 1234567890abcdefghijklmnop --region us-
east-2

The command will prompt you for project specifics and where to save the codegen files. Choose
src/graphql/ as the destination.

4. Lastly, update your App.js file to leverage your freshly minted API and codegen's features
together:

import './App.css';
import { useState } from 'react';
import { API } from "aws-amplify";
import { listThings } from './graphql/queries';

 function App() {
 const [things, setThings] = useState([]);
 async function fetchThings() {
 const response = await API.graphql({
 query: listThings,
 variables: {
 // <your variables, optional>
 },
 });
 setThings(response.data.listThings.items);

257

AWS AppSync Developer Guide

 }
 fetchThings()

 return (
 <div>
 <div>
 <h1>Articles</h1>
 {things.map((thing) => (
 <div key={thing.id}>
 <h2>{thing.title}</h2>
 <p>{thing.content}</p>
 </div>
))}
 </div>
 </div>
);
 }

258

AWS AppSync Developer Guide

Resolver tutorials (JavaScript)

Data sources and resolvers are how AWS AppSync translates GraphQL requests and fetches
information from your AWS resources. AWS AppSync has support for automatic provisioning
and connections with certain data source types. AWS AppSync supports AWS Lambda, Amazon
DynamoDB, relational databases (Amazon Aurora Serverless), Amazon OpenSearch Service, and
HTTP endpoints as data sources. You can use a GraphQL API with your existing AWS resources or
build data sources and resolvers. This section takes you through this process in a series of tutorials
for better understanding how the details work and tuning options.

Topics

• Tutorial: DynamoDB JavaScript resolvers

• Tutorial: Lambda resolvers

• Tutorial: Local resolvers

• Tutorial: Combining GraphQL resolvers

• Tutorial: Amazon OpenSearch Service Resolvers

• Tutorial: DynamoDB Transaction resolvers

• Tutorial: DynamoDB batch resolvers

• Tutorial: HTTP resolvers

• Tutorial: Aurora PostgreSQL with Data API

Tutorial: DynamoDB JavaScript resolvers

In this tutorial, you will import your Amazon DynamoDB tables to AWS AppSync and connect them
to build a fully-functional GraphQL API using JavaScript pipeline resolvers that you can leverage in
your own application.

You will use the AWS AppSync console to provision your Amazon DynamoDB resources, create your
resolvers, and connect them to your data sources. You will also be able to read and write to your
Amazon DynamoDB database through GraphQL statements and subscribe to real-time data.

There are specific steps that must be completed in order for GraphQL statements to be translated
to Amazon DynamoDB operations and for responses to be translated back into GraphQL. This

Tutorial: DynamoDB JavaScript resolvers 259

AWS AppSync Developer Guide

tutorial outlines the configuration process through several real-world scenarios and data access
patterns.

Creating your GraphQL API

To create a GraphQL API in AWS AppSync

1. Open the AppSync console and choose Create API.

2. Select Design from scratch and choose Next.

3. Name your API PostTutorialAPI, then choose Next. Skip to the review page while keeping
the rest of the options set to their default values and choose Create.

The AWS AppSync console creates a new GraphQL API for you. By detault, it's using the API key
authentication mode. You can use the console to set up the rest of the GraphQL API and run
queries against it for the rest of this tutorial.

Defining a basic post API

Now that you have your GraphQL API, you can set up a basic schema that allows the basic creation,
retrieval, and deletion of post data.

To add data to your schema

1. In your API, choose the Schema tab.

2. We will create a schema that defines a Post type and an operation addPost to add and get
Post objects. In the Schema pane, replace the contents with the following code:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 getPost(id: ID): Post
}

type Mutation {
 addPost(
 id: ID!
 author: String!

Creating your GraphQL API 260

AWS AppSync Developer Guide

 title: String!
 content: String!
 url: String!
): Post!
}

type Post {
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int!
 downs: Int!
 version: Int!
}

3. Choose Save Schema.

Setting up your Amazon DynamoDB table

The AWS AppSync console can help provision the AWS resources needed to store your own
resources in an Amazon DynamoDB table. In this step, you’ll create an Amazon DynamoDB table to
store your posts. You’ll also set up a secondary index that we’ll use later.

To create your Amazon DynamoDB table

1. On the Schema page, choose Create Resources.

2. Choose Use existing type, then choose the Post type.

3. In the Additional Indexes section, choose Add Index.

4. Name the index author-index.

5. Set the Primary key to author and the Sort key to None.

6. Disable Automatically generate GraphQL. In this example, we'll create the resolver ourselves.

7. Choose Create.

You now have a new data source called PostTable, which you can see by visiting Data sources
in the side tab. You will use this data source to link your queries and mutations to your Amazon
DynamoDB table.

Setting up your Amazon DynamoDB table 261

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

AWS AppSync Developer Guide

Setting up an addPost resolver (Amazon DynamoDB PutItem)

Now that AWS AppSync is aware of the Amazon DynamoDB table, you can link it to individual
queries and mutations by defining resolvers. The first resolver you create is the addPost pipeline
resolver using JavaScript, which enables you to create a post in your Amazon DynamoDB table. A
pipeline resolver has the following components:

• The location in the GraphQL schema to attach the resolver. In this case, you are setting up a
resolver on the createPost field on the Mutation type. This resolver will be invoked when the
caller calls mutation { addPost(...){...} }.

• The data source to use for this resolver. In this case, you want to use the DynamoDB data source
you defined earlier, so you can add entries into the post-table-for-tutorial DynamoDB
table.

• The request handler. The request handler is a function that handles the incoming request from
the caller and translates it into instructions for AWS AppSync to perform against DynamoDB.

• The response handler. The job of the response handler is to handle the response from
DynamoDB and translate it back into something that GraphQL expects. This is useful if the shape
of the data in DynamoDB is different to the Post type in GraphQL, but in this case they have the
same shape, so you just pass the data through.

To set up your resolver

1. In your API, choose the Schema tab.

2. In the Resolvers pane, find the addPost field under the Mutation type, then choose Attach.

3. Choose your data source, then choose Create.

4. In your code editor, replace the code with this snippet:

import { util } from '@aws-appsync/utils'
import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 const item = { ...ctx.arguments, ups: 1, downs: 0, version: 1 }
 const key = { id: ctx.args.id ?? util.autoId() }
 return ddb.put({ key, item })
}

export function response(ctx) {

Setting up an addPost resolver (Amazon DynamoDB PutItem) 262

AWS AppSync Developer Guide

 return ctx.result
}

5. Choose Save.

Note

In this code, you use the DynamoDB module utils that allow you to easily create DynamoDB
requests.

AWS AppSync comes with a utility for automatic ID generation called util.autoId(), which is
used to generate an ID for your new post. If you do not specify an ID, the utility will automatically
generate it for you.

const key = { id: ctx.args.id ?? util.autoId() }

For more information about the utilities available for JavaScript, see JavaScript runtime features
for resolvers and functions.

Call the API to add a post

Now that the resolver has been configured, AWS AppSync can translate an incoming addPost
mutation to an Amazon DynamoDB PutItem operation. You can now run a mutation to put
something in the table.

To run the operation

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation:

mutation addPost {
 addPost(
 id: 123,
 author: "AUTHORNAME"
 title: "Our first post!"
 content: "This is our first post."
 url: "https://aws.amazon.com/appsync/"
) {
 id

Setting up an addPost resolver (Amazon DynamoDB PutItem) 263

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html

AWS AppSync Developer Guide

 author
 title
 content
 url
 ups
 downs
 version
 }
}

3. Choose Run (the orange play button), then choose addPost. The results of the newly created
post should appear in the Results pane to the right of the Queries pane. It should look similar to
the following:

{
 "data": {
 "addPost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

The following explanation shows what occurred:

1. AWS AppSync received an addPost mutation request.

2. AWS AppSync executes the request handler of the resolver. The ddb.put function creates a
PutItem request that looks like this:

{
 operation: 'PutItem',
 key: { id: { S: '123' } },
 attributeValues: {
 downs: { N: 0 },
 author: { S: 'AUTHORNAME' },

Setting up an addPost resolver (Amazon DynamoDB PutItem) 264

AWS AppSync Developer Guide

 ups: { N: 1 },
 title: { S: 'Our first post!' },
 version: { N: 1 },
 content: { S: 'This is our first post.' },
 url: { S: 'https://aws.amazon.com/appsync/' }
 }
}

3. AWS AppSync uses this value to generate and execute a Amazon DynamoDB PutItem request.

4. AWS AppSync took the results of the PutItem request and converted them back to GraphQL
types.

{
 "id" : "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups" : 1,
 "downs" : 0,
 "version" : 1
}

5. The response handler returns the result immediately (return ctx.result).

6. The final result is visible in the GraphQL response.

Setting up the getPost resolver (Amazon DynamoDB GetItem)

Now that you’re able to add data to the Amazon DynamoDB table, you need to set up the getPost
query so it can retrieve that data from the table. To do this, you set up another resolver.

To add your resolver

1. In your API, choose the Schema tab.

2. In the Resolvers pane on the right, find the getPost field on the Query type and then choose
Attach.

3. Choose your data source, then choose Create.

4. In the code editor, replace the code with this snippet:

import * as ddb from '@aws-appsync/utils/dynamodb'

Setting up the getPost resolver (Amazon DynamoDB GetItem) 265

AWS AppSync Developer Guide

export function request(ctx) {
 return ddb.get({ key: { id: ctx.args.id } })
}

export const response = (ctx) => ctx.result

5. Save your resolver.

Note

In this resolver, we use an arrow function expression for the response handler.

Call the API to get a post

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming
getPost query to an Amazon DynamoDB GetItem operation. You can now run a query to retrieve
the post you created earlier.

To run your query

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following code, and use the id that you copied after creating your
post:

query getPost {
 getPost(id: "123") {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

3. Choose Run (the orange play button), then choose getPost. The results of the newly created
post should appear in the Results pane to the right of the Queries pane.

Setting up the getPost resolver (Amazon DynamoDB GetItem) 266

AWS AppSync Developer Guide

4. The post retrieved from Amazon DynamoDB should appear in the Results pane to the right of
the Queries pane. It should look similar to the following:

{
 "data": {
 "getPost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

Alternatively, take the following example:

query getPost {
 getPost(id: "123") {
 id
 author
 title
 }
}

If your getPost query only needs the id, author, and title, you can change your request
function to use projection expressions to specify only the attributes that you want from your
DynamoDB table to avoid unnecessary data transfer from DynamoDB to AWS AppSync. For
example, the request function may look like the snippet below:

import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 return ddb.get({
 key: { id: ctx.args.id },
 projection: ['author', 'id', 'title'],
 })
}

Setting up the getPost resolver (Amazon DynamoDB GetItem) 267

AWS AppSync Developer Guide

export const response = (ctx) => ctx.result

You can also use a selectionSetList with getPost to represent the expression:

import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 const projection = ctx.info.selectionSetList.map((field) => field.replace('/', '.'))
 return ddb.get({ key: { id: ctx.args.id }, projection })
}

export const response = (ctx) => ctx.result

Create an updatePost mutation (Amazon DynamoDB UpdateItem)

So far, you can create and retrieve Post objects in Amazon DynamoDB. Next, you’ll set up a new
mutation to update an object. Compared to the addPost mutation that requires all fields to
be specified, this mutation allows you to only specify the fields that you want to change. It also
introduced a new expectedVersion argument that allows you to specify the version that you
want to modify. You’ll set up a condition that makes sure that you are modifying the latest version
of the object. You’ll do this using the UpdateItem Amazon DynamoDB operation.sc

To update your resolver

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Mutation type to add a new updatePost mutation as follows:

type Mutation {
 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post

 addPost(
 id: ID

Create an updatePost mutation (Amazon DynamoDB UpdateItem) 268

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html#aws-appsync-resolver-context-reference-info-js

AWS AppSync Developer Guide

 author: String!
 title: String!
 content: String!
 url: String!
): Post!
}

3. Choose Save Schema.

4. In the Resolvers pane on the right, find the newly created updatePost field on the Mutation
type, then choose Attach. Create your new resolver using the snippet below:

import { util } from '@aws-appsync/utils';
import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { id, expectedVersion, ...rest } = ctx.args;
 const values = Object.entries(rest).reduce((obj, [key, value]) => {
 obj[key] = value ?? ddb.operations.remove();
 return obj;
 }, {});

 return ddb.update({
 key: { id },
 condition: { version: { eq: expectedVersion } },
 update: { ...values, version: ddb.operations.increment(1) },
 });
}

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 util.appendError(error.message, error.type);
 }
 return result;

5. Save any changes you made.

This resolver uses ddb.update to create an Amazon DynamoDB UpdateItem request. Instead of
writing the entire item, you’re just asking Amazon DynamoDB to update certain attributes. This is
done using Amazon DynamoDB update expressions.

Create an updatePost mutation (Amazon DynamoDB UpdateItem) 269

AWS AppSync Developer Guide

The ddb.update function takes a key and an update object as arguments. Then, you check the
values of the incoming arguments. When a value is set to null, use the DynamoDB remove
operation to signal that the value should be removed from the DynamoDB item.

There is also a new condition section. A condition expression allows you tell AWS AppSync
and Amazon DynamoDB whether or not the request should succeed based on the state of the
object already in Amazon DynamoDB before the operation is performed. In this case, you only
want the UpdateItem request to succeed if the version field of the item currently in Amazon
DynamoDB matches the expectedVersion argument exactly. When the item is updated, we want
to increment the value of the version. This is easy to do with the operation function increment.

For more information about condition expressions, see the Condition expressions documentation.

For more info about the UpdateItem request, see the UpdateItem documentation and the
DynamoDB module documentation.

For more information about how to write update expressions, see the DynamoDB
UpdateExpressions documentation.

Call the API to update a post

Let’s try updating the Post object with the new resolver.

To update your object

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation. You’ll also need to update the id argument to
the value you noted down earlier:

mutation updatePost {
 updatePost(
 id:123
 title: "An empty story"
 content: null
 expectedVersion: 1
) {
 id
 author
 title
 content
 url

Create an updatePost mutation (Amazon DynamoDB UpdateItem) 270

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-updateitem
https://docs.aws.amazon.com/appsync/latest/devguide/built-in-modules-js.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Developer Guide

 ups
 downs
 version
 }
}

3. Choose Run (the orange play button), then choose updatePost.

4. The updated post in Amazon DynamoDB should appear in the Results pane to the right of the
Queries pane. It should look similar to the following:

{
 "data": {
 "updatePost": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 2
 }
 }
}

In this request, you asked AWS AppSync and Amazon DynamoDB to update the title and
content fields only. All of the other fields were left alone (other than incrementing the version
field). You set the title attribute to a new value and removed the content attribute from the
post. The author, url, ups, and downs fields were left untouched. Try executing the mutation
request again while leaving the request exactly as is. You should see a response similar to the
following:

{
 "data": {
 "updatePost": null
 },
 "errors": [
 {
 "path": [
 "updatePost"
],

Create an updatePost mutation (Amazon DynamoDB UpdateItem) 271

AWS AppSync Developer Guide

 "data": null,
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "errorInfo": null,
 "locations": [
 {
 "line": 2,
 "column": 3,
 "sourceName": null
 }
],
 "message": "The conditional request failed (Service: DynamoDb, Status Code: 400,
 Request ID: 1RR3QN5F35CS8IV5VR4OQO9NNBVV4KQNSO5AEMVJF66Q9ASUAAJG)"
 }
]
}

The request fails because the condition expression evaluates to false:

1. The first time you ran the request, the value of the version field of the post in Amazon
DynamoDB was 1, which matched the expectedVersion argument. The request succeeded,
which meant the version field was incremented in Amazon DynamoDB to 2.

2. The second time you ran the request, the value of the version field of the post in Amazon
DynamoDB was 2, which did not match the expectedVersion argument.

This pattern is typically called optimistic locking.

Create vote mutations (Amazon DynamoDB UpdateItem)

The Post type contains ups and downs fields to enable the recording of upvotes and downvotes.
However, at this moment, the API doesn’t let us do anything with them. Let’s add a mutation to let
us upvote and downvote the posts.

To add your mutation

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Mutation type and add the DIRECTION enum to add new vote
mutations:

type Mutation {
 vote(id: ID!, direction: DIRECTION!): Post

Create vote mutations (Amazon DynamoDB UpdateItem) 272

AWS AppSync Developer Guide

 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 id: ID,
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

enum DIRECTION {
 UP
 DOWN
}

3. Choose Save Schema.

4. In the Resolvers pane on the right, find the newly created vote field on the Mutation type,
and then choose Attach. Create a new resolver by creating and replacing the code with the
following snippet:

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const field = ctx.args.direction === 'UP' ? 'ups' : 'downs';
 return ddb.update({
 key: { id: ctx.args.id },
 update: {
 [field]: ddb.operations.increment(1),
 version: ddb.operations.increment(1),
 },
 });
}

export const response = (ctx) => ctx.result;

5. Save any changes you made.

Create vote mutations (Amazon DynamoDB UpdateItem) 273

AWS AppSync Developer Guide

Call the API to upvote or downvote a post

Now that the new resolvers have been set up, AWS AppSync knows how to translate an incoming
upvotePost or downvote mutation to an Amazon DynamoDB UpdateItem operation. You can
now run mutations to upvote or downvote the post you created earlier.

To run your mutation

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation. You’ll also need to update the id argument to
the value you noted down earlier:

mutation votePost {
 vote(id:123, direction: UP) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

3. Choose Run (the orange play button), then choose votePost.

4. The updated post in Amazon DynamoDB should appear in the Results pane to the right of the
Queries pane. It should look similar to the following:

{
 "data": {
 "vote": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 6,
 "downs": 0,
 "version": 4
 }
 }

Create vote mutations (Amazon DynamoDB UpdateItem) 274

AWS AppSync Developer Guide

}

5. Choose Run a few more times. You should see the ups and version fields incrementing by 1
each time you execute the query.

6. Change the query to call it with a different DIRECTION.

mutation votePost {
 vote(id:123, direction: DOWN) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

7. Choose Run (the orange play button), then choose votePost.

This time, you should see the downs and version fields incrementing by 1 each time you run
the query.

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem)

Next, you'll want to create a mutation to delete a post. You’ll do this using the DeleteItem
Amazon DynamoDB operation.

To add your mutation

1. In your schema, choose the Schema tab.

2. In the Schema pane, modify the Mutation type to add a new deletePost mutation:

type Mutation {
 deletePost(id: ID!, expectedVersion: Int): Post
 vote(id: ID!, direction: DIRECTION!): Post
 updatePost(
 id: ID!,
 author: String,
 title: String,

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 275

AWS AppSync Developer Guide

 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 id: ID
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

3. This time, you made the expectedVersion field optional. Next, choose Save Schema.

4. In the Resolvers pane on the right, find the newly created delete field in the Mutation type,
then choose Attach. Create a new resolver using the following code:

import { util } from '@aws-appsync/utils'

import { util } from '@aws-appsync/utils';
import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 let condition = null;
 if (ctx.args.expectedVersion) {
 condition = {
 or: [
 { id: { attributeExists: false } },
 { version: { eq: ctx.args.expectedVersion } },
],
 };
 }
 return ddb.remove({ key: { id: ctx.args.id }, condition });
}

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 util.appendError(error.message, error.type);
 }
 return result;
}

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 276

AWS AppSync Developer Guide

Note

The expectedVersion argument is an optional argument. If the caller set an
expectedVersion argument in the request, the request handler adds a condition
that only allows the DeleteItem request to succeed if the item is already deleted
or if the version attribute of the post in Amazon DynamoDB exactly matches the
expectedVersion. If left out, no condition expression is specified on the DeleteItem
request. It succeeds regardless of the value of version or whether or not the item exists
in Amazon DynamoDB.
Even though you’re deleting an item, you can return the item that was deleted, if it was
not already deleted.

For more info about the DeleteItem request, see the DeleteItem documentation.

Call the API to delete a post

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming delete
mutation to an Amazon DynamoDB DeleteItem operation. You can now run a mutation to delete
something in the table.

To run your mutation

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation. You’ll also need to update the id argument to
the value you noted down earlier:

mutation deletePost {
 deletePost(id:123) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 277

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-deleteitem

AWS AppSync Developer Guide

3. Choose Run (the orange play button), then choose deletePost.

4. The post is deleted from Amazon DynamoDB. Note that AWS AppSync returns the value of the
item that was deleted from Amazon DynamoDB, which should appear in the Results pane to the
right of the Queries pane. It should look similar to the following:

{
 "data": {
 "deletePost": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 6,
 "downs": 4,
 "version": 12
 }
 }
}

5. The value is only returned if this call to deletePost is the one that actually deletes it from
Amazon DynamoDB. Choose Run again.

6. The call still succeeds, but no value is returned:

{
 "data": {
 "deletePost": null
 }
}

7. Now, let’s try deleting a post, but this time specifying an expectedValue. First, you’ll need to
create a new post because you’ve just deleted the one you’ve been working with so far.

8. In the Queries pane, add the following mutation:

mutation addPost {
 addPost(
 id:123
 author: "AUTHORNAME"
 title: "Our second post!"
 content: "A new post."
 url: "https://aws.amazon.com/appsync/"

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 278

AWS AppSync Developer Guide

) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

9. Choose Run (the orange play button), then choose addPost.

10.The results of the newly created post should appear in the Results pane to the right of the
Queries pane. Record the id of the newly created object because you'll need it in just a moment.
It should look similar to the following:

{
 "data": {
 "addPost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our second post!",
 "content": "A new post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

11.Now, let’s try to delete that post with an illegal value for expectedVersion. In the Queries pane,
add the following mutation. You’ll also need to update the id argument to the value you noted
down earlier:

mutation deletePost {
 deletePost(
 id:123
 expectedVersion: 9999
) {
 id

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 279

AWS AppSync Developer Guide

 author
 title
 content
 url
 ups
 downs
 version
 }
}

12.Choose Run (the orange play button), then choose deletePost. The following result is
returned:

{
 "data": {
 "deletePost": null
 },
 "errors": [
 {
 "path": [
 "deletePost"
],
 "data": null,
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "errorInfo": null,
 "locations": [
 {
 "line": 2,
 "column": 3,
 "sourceName": null
 }
],
 "message": "The conditional request failed (Service: DynamoDb, Status Code:
 400, Request ID: 7083O037M1FTFRK038A4CI9H43VV4KQNSO5AEMVJF66Q9ASUAAJG)"
 }
]
}

13.The request failed because the condition expression evaluates to false. The value for version
of the post in Amazon DynamoDB doesn't match the expectedValue specified in the
arguments. The current value of the object is returned in the data field in the errors section of
the GraphQL response. Retry the request, but correct the expectedVersion:

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 280

AWS AppSync Developer Guide

mutation deletePost {
 deletePost(
 id:123
 expectedVersion: 1
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

14.Choose Run (the orange play button), then choose deletePost.

This time the request succeeds, and the value that was deleted from Amazon DynamoDB is
returned:

{
 "data": {
 "deletePost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our second post!",
 "content": "A new post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

15.Choose Run again. The call still succeeds, but this time no value is returned because the post was
already deleted in Amazon DynamoDB.

{ "data": { "deletePost": null } }

Setting up a deletePost resolver (Amazon DynamoDB DeleteItem) 281

AWS AppSync Developer Guide

Setting up an allPost resolver (Amazon DynamoDB Scan)

So far, the API is only useful if you know the id of each post you want to look at. Let’s add a new
resolver that returns all the posts in the table.

To add your mutation

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Query type to add a new allPost query as follows:

type Query {
 allPost(limit: Int, nextToken: String): PaginatedPosts!
 getPost(id: ID): Post
}

3. Add a new PaginationPosts type:

type PaginatedPosts {
 posts: [Post!]!
 nextToken: String
}

4. Choose Save Schema.

5. In the Resolvers pane on the right, find the newly created allPost field in the Query type,
then choose Attach. Create a new resolver with the following code:

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { limit = 20, nextToken } = ctx.arguments;
 return ddb.scan({ limit, nextToken });
}

export function response(ctx) {
 const { items: posts = [], nextToken } = ctx.result;
 return { posts, nextToken };
}

This resolver's request handler expects two optional arguments:

• limit - Specifies the maximum number of items to return in a single call.

Setting up an allPost resolver (Amazon DynamoDB Scan) 282

AWS AppSync Developer Guide

• nextToken - Used to retrieve the next set of results (we’ll show where the value for
nextToken comes from later).

6. Save any changes made to your resolver.

For more information about Scan request, see the Scan reference documentation.

Call the API to scan all posts

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming
allPost query to an Amazon DynamoDB Scan operation. You can now scan the table to retrieve
all the posts. Before you can try it out though, you need to populate the table with some data
because you’ve deleted everything you’ve worked with so far.

To add and query data

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation:

mutation addPost {
 post1: addPost(id:1 author: "AUTHORNAME" title: "A series of posts, Volume 1"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post2: addPost(id:2 author: "AUTHORNAME" title: "A series of posts, Volume 2"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post3: addPost(id:3 author: "AUTHORNAME" title: "A series of posts, Volume 3"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post4: addPost(id:4 author: "AUTHORNAME" title: "A series of posts, Volume 4"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post5: addPost(id:5 author: "AUTHORNAME" title: "A series of posts, Volume 5"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post6: addPost(id:6 author: "AUTHORNAME" title: "A series of posts, Volume 6"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post7: addPost(id:7 author: "AUTHORNAME" title: "A series of posts, Volume 7"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post8: addPost(id:8 author: "AUTHORNAME" title: "A series of posts, Volume 8"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post9: addPost(id:9 author: "AUTHORNAME" title: "A series of posts, Volume 9"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
}

3. Choose Run (the orange play button).

Setting up an allPost resolver (Amazon DynamoDB Scan) 283

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-scan

AWS AppSync Developer Guide

4. Now, let’s scan the table, returning five results at a time. In the Queries pane, add the following
query:

query allPost {
 allPost(limit: 5) {
 posts {
 id
 title
 }
 nextToken
 }
}

5. Choose Run (the orange play button), then choose allPost.

The first five posts should appear in the Results pane to the right of the Queries pane. It should
look similar to the following:

{
 "data": {
 "allPost": {
 "posts": [
 {
 "id": "5",
 "title": "A series of posts, Volume 5"
 },
 {
 "id": "1",
 "title": "A series of posts, Volume 1"
 },
 {
 "id": "6",
 "title": "A series of posts, Volume 6"
 },
 {
 "id": "9",
 "title": "A series of posts, Volume 9"
 },
 {
 "id": "7",
 "title": "A series of posts, Volume 7"
 }
],

Setting up an allPost resolver (Amazon DynamoDB Scan) 284

AWS AppSync Developer Guide

 "nextToken": "<token>"
 }
 }
}

6. You received five results and a nextToken that you can use to get the next set of results.
Update the allPost query to include the nextToken from the previous set of results:

query allPost {
 allPost(
 limit: 5
 nextToken: "<token>"
) {
 posts {
 id
 author
 }
 nextToken
 }
}

7. Choose Run (the orange play button), then choose allPost.

The remaining four posts should appear in the Results pane to the right of the Queries pane.
There is no nextToken in this set of results because you’ve paged through all nine posts with
none remaining. It should look similar to the following:

{
 "data": {
 "allPost": {
 "posts": [
 {
 "id": "2",
 "title": "A series of posts, Volume 2"
 },
 {
 "id": "3",
 "title": "A series of posts, Volume 3"
 },
 {
 "id": "4",
 "title": "A series of posts, Volume 4"
 },

Setting up an allPost resolver (Amazon DynamoDB Scan) 285

AWS AppSync Developer Guide

 {
 "id": "8",
 "title": "A series of posts, Volume 8"
 }
],
 "nextToken": null
 }
 }
}

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query)

In addition to scanning Amazon DynamoDB for all posts, you can also query Amazon DynamoDB
to retrieve posts created by a specific author. The Amazon DynamoDB table you created earlier
already has a GlobalSecondaryIndex called author-index that you can use with an Amazon
DynamoDB Query operation to retrieve all posts created by a specific author.

To add your query

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Query type to add a new allPostsByAuthor query as
follows:

type Query {
 allPostsByAuthor(author: String!, limit: Int, nextToken: String): PaginatedPosts!
 allPost(limit: Int, nextToken: String): PaginatedPosts!
 getPost(id: ID): Post
}

Note that this uses the same PaginatedPosts type that you used with the allPost query.

3. Choose Save Schema.

4. In the Resolvers pane on the right, find the newly created allPostsByAuthor field on the
Query type, and then choose Attach. Create a resolver using the snippet below:

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { limit = 20, nextToken, author } = ctx.arguments;
 return ddb.query({

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 286

AWS AppSync Developer Guide

 index: 'author-index',
 query: { author: { eq: author } },
 limit,
 nextToken,
 });
}

export function response(ctx) {
 const { items: posts = [], nextToken } = ctx.result;
 return { posts, nextToken };
}

Like the allPost resolver, this resolver has two optional arguments:

• limit - Specifies the maximum number of items to return in a single call.

• nextToken - Retrieves the next set of results (the value for nextToken can be obtained from
a previous call).

5. Save any changes made to your resolver.

For more information about the Query request, see the Query reference documentation.

Call the API to query all posts by author

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming
allPostsByAuthor mutation to a DynamoDB Query operation against the author-index
index. You can now query the table to retrieve all the posts by a specific author.

Before this, however, let’s populate the table with some more posts, because every post so far has
the same author.

To add data and query

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation:

mutation addPost {
 post1: addPost(id:10 author: "Nadia" title: "The cutest dog in the world" content:
 "So cute. So very, very cute." url: "https://aws.amazon.com/appsync/") { author,
 title }
 post2: addPost(id:11 author: "Nadia" title: "Did you know...?" content: "AppSync
 works offline?" url: "https://aws.amazon.com/appsync/") { author, title }

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 287

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-query

AWS AppSync Developer Guide

 post3: addPost(id:12 author: "Steve" title: "I like GraphQL" content: "It's great"
 url: "https://aws.amazon.com/appsync/") { author, title }
}

3. Choose Run (the orange play button), then choose addPost.

4. Now, let’s query the table, returning all posts authored by Nadia. In the Queries pane, add the
following query:

query allPostsByAuthor {
 allPostsByAuthor(author: "Nadia") {
 posts {
 id
 title
 }
 nextToken
 }
}

5. Choose Run (the orange play button), then choose allPostsByAuthor. All posts authored by
Nadia should appear in the Results pane to the right of the Queries pane. It should look similar
to the following:

{
 "data": {
 "allPostsByAuthor": {
 "posts": [
 {
 "id": "10",
 "title": "The cutest dog in the world"
 },
 {
 "id": "11",
 "title": "Did you know...?"
 }
],
 "nextToken": null
 }
 }
}

6. Pagination works for Query just the same as it does for Scan. For example, let’s look for all
posts by AUTHORNAME, getting five at a time.

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 288

AWS AppSync Developer Guide

7. In the Queries pane, add the following query:

query allPostsByAuthor {
 allPostsByAuthor(
 author: "AUTHORNAME"
 limit: 5
) {
 posts {
 id
 title
 }
 nextToken
 }
}

8. Choose Run (the orange play button), then choose allPostsByAuthor. All posts authored by
AUTHORNAME should appear in the Results pane to the right of the Queries pane. It should look
similar to the following:

{
 "data": {
 "allPostsByAuthor": {
 "posts": [
 {
 "id": "6",
 "title": "A series of posts, Volume 6"
 },
 {
 "id": "4",
 "title": "A series of posts, Volume 4"
 },
 {
 "id": "2",
 "title": "A series of posts, Volume 2"
 },
 {
 "id": "7",
 "title": "A series of posts, Volume 7"
 },
 {
 "id": "1",
 "title": "A series of posts, Volume 1"
 }

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 289

AWS AppSync Developer Guide

],
 "nextToken": "<token>"
 }
 }
}

9. Update the nextToken argument with the value returned from the previous query as follows:

query allPostsByAuthor {
 allPostsByAuthor(
 author: "AUTHORNAME"
 limit: 5
 nextToken: "<token>"
) {
 posts {
 id
 title
 }
 nextToken
 }
}

10.Choose Run (the orange play button), then choose allPostsByAuthor. The remaining posts
authored by AUTHORNAME should appear in the Results pane to the right of the Queries pane. It
should look similar to the following:

{
 "data": {
 "allPostsByAuthor": {
 "posts": [
 {
 "id": "8",
 "title": "A series of posts, Volume 8"
 },
 {
 "id": "5",
 "title": "A series of posts, Volume 5"
 },
 {
 "id": "3",
 "title": "A series of posts, Volume 3"
 },
 {

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 290

AWS AppSync Developer Guide

 "id": "9",
 "title": "A series of posts, Volume 9"
 }
],
 "nextToken": null
 }
 }
}

Using sets

Up to this point, the Post type has been a flat key/value object. You can also model complex
objects with your resolver, such as sets, lists, and maps. Let’s update the Post type to include tags.
A post can have zero or more tags, which are stored in DynamoDB as a String Set. You’ll also set up
some mutations to add and remove tags, and a new query to scan for posts with a specific tag.

To set up your data

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Post type to add a new tags field as follows:

type Post {
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int!
 downs: Int!
 version: Int!
 tags: [String!]
}

3. In the Schema pane, modify the Query type to add a new allPostsByTag query as follows:

type Query {
 allPostsByTag(tag: String!, limit: Int, nextToken: String): PaginatedPosts!
 allPostsByAuthor(author: String!, limit: Int, nextToken: String): PaginatedPosts!
 allPost(limit: Int, nextToken: String): PaginatedPosts!
 getPost(id: ID): Post

Using sets 291

AWS AppSync Developer Guide

}

4. In the Schema pane, modify the Mutation type to add new addTag and removeTag mutations
as follows:

type Mutation {
 addTag(id: ID!, tag: String!): Post
 removeTag(id: ID!, tag: String!): Post
 deletePost(id: ID!, expectedVersion: Int): Post
 upvotePost(id: ID!): Post
 downvotePost(id: ID!): Post
 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

5. Choose Save Schema.

6. In the Resolvers pane on the right, find the newly created allPostsByTag field on the Query
type, and then choose Attach. Create your resolver using the snippet below:

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { limit = 20, nextToken, tag } = ctx.arguments;
 return ddb.scan({ limit, nextToken, filter: { tags: { contains: tag } } });
}

export function response(ctx) {
 const { items: posts = [], nextToken } = ctx.result;
 return { posts, nextToken };
}

Using sets 292

AWS AppSync Developer Guide

7. Save any changes you've made to your resolver.

8. Now, do the same for the Mutation field addTag using the snippet below:

Note

Though the DynamoDB utils currently don't support set operations, you can still interact
with sets by building the request yourself.

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const { id, tag } = ctx.arguments
 const expressionValues = util.dynamodb.toMapValues({ ':plusOne': 1 })
 expressionValues[':tags'] = util.dynamodb.toStringSet([tag])

 return {
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ id }),
 update: {
 expression: `ADD tags :tags, version :plusOne`,
 expressionValues,
 },
 }
}

export const response = (ctx) => ctx.result

9. Save any changes made to your resolver.

10.Repeat this one more time for the Mutation field removeTag using the snippet below:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { id, tag } = ctx.arguments;
 const expressionValues = util.dynamodb.toMapValues({ ':plusOne': 1 });
 expressionValues[':tags'] = util.dynamodb.toStringSet([tag]);

 return {
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ id }),

Using sets 293

AWS AppSync Developer Guide

 update: {
 expression: `DELETE tags :tags ADD version :plusOne`,
 expressionValues,
 },
 };
 }

 export const response = (ctx) => ctx.resultexport

11.Save any changes made to your resolver.

Call the API to work with tags

Now that you’ve set up the resolvers, AWS AppSync knows how to translate incoming addTag,
removeTag, and allPostsByTag requests into DynamoDB UpdateItem and Scan operations. To
try it out, let’s select one of the posts you created earlier. For example, let’s use a post authored by
Nadia.

To use tags

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following query:

query allPostsByAuthor {
 allPostsByAuthor(
 author: "Nadia"
) {
 posts {
 id
 title
 }
 nextToken
 }
}

3. Choose Run (the orange play button), then choose allPostsByAuthor.

4. All of Nadia’s posts should appear in the Results pane to the right of the Queries pane. It should
look similar to the following:

{
 "data": {

Using sets 294

AWS AppSync Developer Guide

 "allPostsByAuthor": {
 "posts": [
 {
 "id": "10",
 "title": "The cutest dog in the world"
 },
 {
 "id": "11",
 "title": "Did you known...?"
 }
],
 "nextToken": null
 }
 }
}

5. Let’s use the one with the title The cutest dog in the world. Record its id because you’ll use it
later. Now, let’s try adding a dog tag.

6. In the Queries pane, add the following mutation. You’ll also need to update the id argument to
the value you noted down earlier.

mutation addTag {
 addTag(id:10 tag: "dog") {
 id
 title
 tags
 }
}

7. Choose Run (the orange play button), then choose addTag. The post is updated with the new
tag:

{
 "data": {
 "addTag": {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog"
]
 }
 }

Using sets 295

AWS AppSync Developer Guide

}

8. You can add more tags. Update the mutation to change the tag argument to puppy:

mutation addTag {
 addTag(id:10 tag: "puppy") {
 id
 title
 tags
 }
}

9. Choose Run (the orange play button), then choose addTag. The post is updated with the new
tag:

{
 "data": {
 "addTag": {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog",
 "puppy"
]
 }
 }
}

10.You can also delete tags. In the Queries pane, add the following mutation. You’ll also need to
update the id argument to the value you noted down earlier:

mutation removeTag {
 removeTag(id:10 tag: "puppy") {
 id
 title
 tags
 }
}

11.Choose Run (the orange play button), then choose removeTag. The post is updated and the
puppy tag is deleted.

Using sets 296

AWS AppSync Developer Guide

{
 "data": {
 "addTag": {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog"
]
 }
 }
}

12.You can also search for all posts that have a tag. In the Queries pane, add the following query:

query allPostsByTag {
 allPostsByTag(tag: "dog") {
 posts {
 id
 title
 tags
 }
 nextToken
 }
}

13.Choose Run (the orange play button), then choose allPostsByTag. All posts that have the dog
tag are returned as follows:

{
 "data": {
 "allPostsByTag": {
 "posts": [
 {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog",
 "puppy"
]
 }
],
 "nextToken": null

Using sets 297

AWS AppSync Developer Guide

 }
 }
}

Conclusion

In this tutorial, you’ve built an API that lets you manipulate Post objects in DynamoDB using AWS
AppSync and GraphQL.

To clean up, you can delete the AWS AppSync GraphQL API from the console.

To delete the role associated with your DynamoDB table, select your data source in the Data
Sources table and click edit. Note the value of the role under Create or use an existing role. Go to
the IAM console to delete the role.

To delete your DynamoDB table, click on the name of the table in the data sources list. This takes
you to the DynamoDB console where you can delete the table.

Tutorial: Lambda resolvers

You can use AWS Lambda with AWS AppSync to resolve any GraphQL field. For example, a
GraphQL query might send a call to an Amazon Relational Database Service (Amazon RDS)
instance, and a GraphQL mutation might write to an Amazon Kinesis stream. In this section, we'll
show you how to write a Lambda function that performs business logic based on the invocation of
a GraphQL field operation.

Create a Lambda function

The following example shows a Lambda function written in Node.js (runtime: Node.js 18.x) that
performs different operations on blog posts as part of a blog post application. Note that the code
should be saved in a file name with a .mis extension.

export const handler = async (event) => {
console.log('Received event {}', JSON.stringify(event, 3))

 const posts = {
1: { id: '1', title: 'First book', author: 'Author1', url: 'https://amazon.com/',
 content: 'SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT
 AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1', ups: '100', downs: '10', },

Conclusion 298

AWS AppSync Developer Guide

 2: { id: '2', title: 'Second book', author: 'Author2', url: 'https://amazon.com',
 content: 'SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT', ups: '100', downs:
 '10', },
 3: { id: '3', title: 'Third book', author: 'Author3', url: null, content: null,
 ups: null, downs: null },
 4: { id: '4', title: 'Fourth book', author: 'Author4', url: 'https://
www.amazon.com/', content: 'SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4', ups: '1000', downs: '0', },
 5: { id: '5', title: 'Fifth book', author: 'Author5', url: 'https://
www.amazon.com/', content: 'SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT
 AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT', ups: '50', downs: '0', },
 }

 const relatedPosts = {
1: [posts['4']],
 2: [posts['3'], posts['5']],
 3: [posts['2'], posts['1']],
 4: [posts['2'], posts['1']],
 5: [],
 }

 console.log('Got an Invoke Request.')
 let result
 switch (event.field) {
case 'getPost':
 return posts[event.arguments.id]
 case 'allPosts':
 return Object.values(posts)
 case 'addPost':
 // return the arguments back
return event.arguments
 case 'addPostErrorWithData':
 result = posts[event.arguments.id]
 // attached additional error information to the post
 result.errorMessage = 'Error with the mutation, data has changed'
 result.errorType = 'MUTATION_ERROR'
return result
 case 'relatedPosts':
 return relatedPosts[event.source.id]
 default:
 throw new Error('Unknown field, unable to resolve ' + event.field)
 }

Create a Lambda function 299

AWS AppSync Developer Guide

}

This Lambda function retrieves a post by ID, adds a post, retrieves a list of posts, and fetches
related posts for a given post.

Note

The Lambda function uses the switch statement on event.field to determine which
field is currently being resolved.

Create this Lambda function using the AWS Management Console.

Configure a data source for Lambda

After you create the Lambda function, navigate to your GraphQL API in the AWS AppSync console,
and then choose the Data Sources tab.

Choose Create data source, enter a friendly Data source name (for example, Lambda), and then
for Data source type, choose AWS Lambda function. For Region, choose the same Region as your
function. For Function ARN, choose the Amazon Resource Name (ARN) of your Lambda function.

After choosing your Lambda function, you can either create a new AWS Identity and Access
Management (IAM) role (for which AWS AppSync assigns the appropriate permissions) or choose an
existing role that has the following inline policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:REGION:ACCOUNTNUMBER:function/LAMBDA_FUNCTION"
 }
]
}

You must also set up a trust relationship with AWS AppSync for the IAM role as follows:

Configure a data source for Lambda 300

AWS AppSync Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create a GraphQL schema

Now that the data source is connected to your Lambda function, create a GraphQL schema.

From the schema editor in the AWS AppSync console, make sure that your schema matches the
following schema:

schema {
 query: Query
 mutation: Mutation
}
type Query {
 getPost(id:ID!): Post
 allPosts: [Post]
}
type Mutation {
 addPost(id: ID!, author: String!, title: String, content: String, url: String):
 Post!
}
type Post {
 id: ID!
 author: String!
 title: String
 content: String
 url: String
 ups: Int
 downs: Int
 relatedPosts: [Post]
}

Create a GraphQL schema 301

AWS AppSync Developer Guide

Configure resolvers

Now that you've registered a Lambda data source and a valid GraphQL schema, you can connect
your GraphQL fields to your Lambda data source using resolvers.

You will create a resolver that uses the AWS AppSync JavaScript (APPSYNC_JS) runtime and
interact with your Lambda functions. To learn more about writing AWS AppSync resolvers and
functions with JavaScript, see JavaScript runtime features for resolvers and functions.

For more information about Lambda mapping templates, see JavaScript resolver function
reference for Lambda.

In this step, you attach a resolver to the Lambda function for the following fields:
getPost(id:ID!): Post, allPosts: [Post], addPost(id: ID!, author: String!,
title: String, content: String, url: String): Post!, and Post.relatedPosts:
[Post]. From the Schema editor in the AWS AppSync console, in the Resolvers pane, choose
Attach next to the getPost(id:ID!): Post field. Choose your Lambda data source. Next,
provide the following code:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const {source, args} = ctx
 return {
 operation: 'Invoke',
 payload: { field: ctx.info.fieldName, arguments: args, source },
 };
}

export function response(ctx) {
 return ctx.result;
}

This resolver code passes the field name, list of arguments, and context about the source object to
the Lambda function when it invokes it. Choose Save.

You have successfully attached your first resolver. Repeat this operation for the remaining fields.

Configure resolvers 302

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-lambda-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-lambda-js.html

AWS AppSync Developer Guide

Test your GraphQL API

Now that your Lambda function is connected to GraphQL resolvers, you can run some mutations
and queries using the console or a client application.

On the left side of the AWS AppSync console, choose Queries, and then paste in the following
code:

addPost Mutation

mutation AddPost {
 addPost(
 id: 6
 author: "Author6"
 title: "Sixth book"
 url: "https://www.amazon.com/"
 content: "This is the book is a tutorial for using GraphQL with AWS AppSync."
) {
 id
 author
 title
 content
 url
 ups
 downs
 }
}

getPost Query

query GetPost {
 getPost(id: "2") {
 id
 author
 title
 content
 url
 ups
 downs
 }
}

Test your GraphQL API 303

AWS AppSync Developer Guide

allPosts Query

query AllPosts {
 allPosts {
 id
 author
 title
 content
 url
 ups
 downs
 relatedPosts {
 id
 title
 }
 }
}

Returning errors

Any given field resolution can result in an error. With AWS AppSync, you can raise errors from the
following sources:

• Resolver response handler

• Lambda function

From the resolver response handler

To raise intentional errors, you can use the util.error utility method. It takes an argument an
errorMessage, an errorType, and an optional data value. The data is useful for returning
extra data back to the client when an error occurs. The data object is added to the errors in the
GraphQL final response.

The following example shows how to use it in the Post.relatedPosts: [Post] resolver
response handler.

// the Post.relatedPosts response handler
export function response(ctx) {
 util.error("Failed to fetch relatedPosts", "LambdaFailure", ctx.result)
 return ctx.result;

Returning errors 304

AWS AppSync Developer Guide

}

This yields a GraphQL response similar to the following:

{
 "data": {
 "allPosts": [
 {
 "id": "2",
 "title": "Second book",
 "relatedPosts": null
 },
 ...
]
 },
 "errors": [
 {
 "path": [
 "allPosts",
 0,
 "relatedPosts"
],
 "errorType": "LambdaFailure",
 "locations": [
 {
 "line": 5,
 "column": 5
 }
],
 "message": "Failed to fetch relatedPosts",
 "data": [
 {
 "id": "2",
 "title": "Second book"
 },
 {
 "id": "1",
 "title": "First book"
 }
]
 }
]
}

Returning errors 305

AWS AppSync Developer Guide

Where allPosts[0].relatedPosts is null because of the error and the errorMessage,
errorType, and data are present in the data.errors[0] object.

From the Lambda function

AWS AppSync also understands errors that the Lambda function throws. The Lambda
programming model lets you raise handled errors. If the Lambda function throws an error, AWS
AppSync fails to resolve the current field. Only the error message returned from Lambda is set in
the response. Currently, you can't pass any extraneous data back to the client by raising an error
from the Lambda function.

Note

If your Lambda function raises an unhandled error, AWS AppSync uses the error message
that Lambda set.

The following Lambda function raises an error:

export const handler = async (event) => {
 console.log('Received event {}', JSON.stringify(event, 3))
 throw new Error('I always fail.')
}

The error is received in your response handler. You can send it back in the GraphQL response
by appending the error to the response with util.appendError. To do so, change your AWS
AppSync function response handler to this:

// the lambdaInvoke response handler
export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 util.appendError(error.message, error.type, result);
 }
 return result;
}

This returns a GraphQL response similar to the following:

{

Returning errors 306

AWS AppSync Developer Guide

 "data": {
 "allPosts": null
 },
 "errors": [
 {
 "path": [
 "allPosts"
],
 "data": null,
 "errorType": "Lambda:Unhandled",
 "errorInfo": null,
 "locations": [
 {
 "line": 2,
 "column": 3,
 "sourceName": null
 }
],
 "message": "I fail. always"
 }
]
}

Advanced use case: Batching

The Lambda function in this example has a relatedPosts field that returns a list of related posts
for a given post. In the example queries, the allPosts field invocation from the Lambda function
returns five posts. Because we specified that we also want to resolve relatedPosts for each
returned post, the relatedPosts field operation is invoked five times.

query {
 allPosts { // 1 Lambda invocation - yields 5 Posts
 id
 author
 title
 content
 url
 ups
 downs
 relatedPosts { // 5 Lambda invocations - each yields 5 posts
 id
 title

Advanced use case: Batching 307

AWS AppSync Developer Guide

 }
 }
}

While this might not sound substantial in this specific example, this compounded over-fetching can
quickly undermine the application.

If you were to fetch relatedPosts again on the returned related Posts in the same query, the
number of invocations would increase dramatically.

query {
 allPosts { // 1 Lambda invocation - yields 5 Posts
 id
 author
 title
 content
 url
 ups
 downs
 relatedPosts { // 5 Lambda invocations - each yield 5 posts = 5 x 5 Posts
 id
 title
 relatedPosts { // 5 x 5 Lambda invocations - each yield 5 posts = 25 x 5
 Posts
 id
 title
 author
 }
 }
 }
}

In this relatively simple query, AWS AppSync would invoke the Lambda function 1 + 5 + 25 = 31
times.

This is a fairly common challenge and is often called the N+1 problem (in this case, N = 5), and it
can incur increased latency and cost to the application.

One approach to solving this issue is to batch similar field resolver requests together. In this
example, instead of having the Lambda function resolve a list of related posts for a single given
post, it could instead resolve a list of related posts for a given batch of posts.

Advanced use case: Batching 308

AWS AppSync Developer Guide

To demonstrate this, let's update the resolver for relatedPosts to handle batching.

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const {source, args} = ctx
 return {
 operation: ctx.info.fieldName === 'relatedPosts' ? 'BatchInvoke' : 'Invoke',
 payload: { field: ctx.info.fieldName, arguments: args, source },
 };
}

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 util.appendError(error.message, error.type, result);
 }
 return result;
}

The code now changes the operation from Invoke to BatchInvoke when the fieldName being
resolved is relatedPosts. Now, enable batching on the function in the Configure Batching
section. Set the maximum batching size set to 5. Choose Save.

With this change, when resolving relatedPosts, the Lambda function receives the following as
input:

[
 {
 "field": "relatedPosts",
 "source": {
 "id": 1
 }
 },
 {
 "field": "relatedPosts",
 "source": {
 "id": 2
 }
 },
 ...
]

Advanced use case: Batching 309

AWS AppSync Developer Guide

When BatchInvoke is specified in the request, the Lambda function receives a list of requests and
returns a list of results.

Specifically, the list of results must match the size and order of the request payload entries so that
AWS AppSync can match the results accordingly.

In this batching example, the Lambda function returns a batch of results as follows:

[
 [{"id":"2","title":"Second book"}, {"id":"3","title":"Third book"}], //
 relatedPosts for id=1
 [{"id":"3","title":"Third book"}] //
 relatedPosts for id=2
]

You can update your Lambda code to handle batching for relatedPosts:

export const handler = async (event) => {
 console.log('Received event {}', JSON.stringify(event, 3))
 //throw new Error('I fail. always')

 const posts = {
 1: { id: '1', title: 'First book', author: 'Author1', url: 'https://amazon.com/',
 content: 'SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT
 AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1', ups: '100', downs: '10', },
 2: { id: '2', title: 'Second book', author: 'Author2', url: 'https://amazon.com',
 content: 'SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT', ups: '100', downs:
 '10', },
 3: { id: '3', title: 'Third book', author: 'Author3', url: null, content: null,
 ups: null, downs: null },
 4: { id: '4', title: 'Fourth book', author: 'Author4', url: 'https://
www.amazon.com/', content: 'SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4', ups: '1000', downs: '0', },
 5: { id: '5', title: 'Fifth book', author: 'Author5', url: 'https://
www.amazon.com/', content: 'SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT
 AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT', ups: '50', downs: '0', },
 }

 const relatedPosts = {
 1: [posts['4']],
 2: [posts['3'], posts['5']],
 3: [posts['2'], posts['1']],

Advanced use case: Batching 310

AWS AppSync Developer Guide

 4: [posts['2'], posts['1']],
 5: [],
 }

 if (!event.field && event.length){
 console.log(`Got a BatchInvoke Request. The payload has ${event.length} items to
 resolve.`);
 return event.map(e => relatedPosts[e.source.id])
 }

 console.log('Got an Invoke Request.')
 let result
 switch (event.field) {
 case 'getPost':
 return posts[event.arguments.id]
 case 'allPosts':
 return Object.values(posts)
 case 'addPost':
 // return the arguments back
 return event.arguments
 case 'addPostErrorWithData':
 result = posts[event.arguments.id]
 // attached additional error information to the post
 result.errorMessage = 'Error with the mutation, data has changed'
 result.errorType = 'MUTATION_ERROR'
 return result
 case 'relatedPosts':
 return relatedPosts[event.source.id]
 default:
 throw new Error('Unknown field, unable to resolve ' + event.field)
 }
}

Returning individual errors

The previous examples show that it's possible to return a single error from the Lambda function
or raise an error from your response handler. For batched invocations, raising an error from the
Lambda function flags an entire batch as failed. This might be acceptable for specific scenarios
where an irrecoverable error occurs, such as a failed connection to a data store. However, in cases
where some items in the batch succeed and others fail, it's possible to return both errors and valid
data. Because AWS AppSync requires the batch response to list elements matching the original size
of the batch, you must define a data structure that can differentiate valid data from an error.

Advanced use case: Batching 311

AWS AppSync Developer Guide

For example, if the Lambda function is expected to return a batch of related posts, you could
choose to return a list of Response objects where each object has optional data, errorMessage, and
errorType fields. If the errorMessage field is present, it means that an error occurred.

The following code shows how you could update the Lambda function:

export const handler = async (event) => {
console.log('Received event {}', JSON.stringify(event, 3))
 // throw new Error('I fail. always')
const posts = {
1: { id: '1', title: 'First book', author: 'Author1', url: 'https://amazon.com/',
 content: 'SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT
 AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1', ups: '100', downs: '10', },
 2: { id: '2', title: 'Second book', author: 'Author2', url: 'https://amazon.com',
 content: 'SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT', ups: '100', downs:
 '10', },
 3: { id: '3', title: 'Third book', author: 'Author3', url: null, content: null,
 ups: null, downs: null },
 4: { id: '4', title: 'Fourth book', author: 'Author4', url: 'https://
www.amazon.com/', content: 'SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4', ups: '1000', downs: '0', },
 5: { id: '5', title: 'Fifth book', author: 'Author5', url: 'https://
www.amazon.com/', content: 'SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT
 AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT', ups: '50', downs: '0', },
 }

 const relatedPosts = {
1: [posts['4']],
 2: [posts['3'], posts['5']],
 3: [posts['2'], posts['1']],
 4: [posts['2'], posts['1']],
 5: [],
 }

 if (!event.field && event.length){
console.log(`Got a BatchInvoke Request. The payload has ${event.length} items to
 resolve.`);
 return event.map(e => {
// return an error for post 2
if (e.source.id === '2') {
return { 'data': null, 'errorMessage': 'Error Happened', 'errorType': 'ERROR' }
 }

Advanced use case: Batching 312

AWS AppSync Developer Guide

 return {data: relatedPosts[e.source.id]}
 })
 }

 console.log('Got an Invoke Request.')
 let result
 switch (event.field) {
case 'getPost':
 return posts[event.arguments.id]
 case 'allPosts':
 return Object.values(posts)
 case 'addPost':
 // return the arguments back
return event.arguments
 case 'addPostErrorWithData':
 result = posts[event.arguments.id]
 // attached additional error information to the post
 result.errorMessage = 'Error with the mutation, data has changed'
 result.errorType = 'MUTATION_ERROR'
return result
 case 'relatedPosts':
 return relatedPosts[event.source.id]
 default:
 throw new Error('Unknown field, unable to resolve ' + event.field)
 }
}

Update the relatedPosts resolver code:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const {source, args} = ctx
 return {
 operation: ctx.info.fieldName === 'relatedPosts' ? 'BatchInvoke' : 'Invoke',
 payload: { field: ctx.info.fieldName, arguments: args, source },
 };
}

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 util.appendError(error.message, error.type, result);

Advanced use case: Batching 313

AWS AppSync Developer Guide

 } else if (result.errorMessage) {
 util.appendError(result.errorMessage, result.errorType, result.data)
 } else if (ctx.info.fieldName === 'relatedPosts') {
 return result.data
 } else {
 return result
 }
}

The response handler now checks for errors returned by the Lambda function on Invoke
operations, checks for errors returned for individual items for BatchInvoke operations, and finally
checks the fieldName. For relatedPosts, the function returns result.data. For all other
fields, the function just returns result. For example, see the query below:

query AllPosts {
 allPosts {
 id
 title
 content
 url
 ups
 downs
 relatedPosts {
 id
 }
 author
 }
}

This query returns a GraphQL response similar to the following:

{
 "data": {
 "allPosts": [
 {
 "id": "1",
 "relatedPosts": [
 {
 "id": "4"
 }
]
 },

Advanced use case: Batching 314

AWS AppSync Developer Guide

 {
 "id": "2",
 "relatedPosts": null
 },
 {
 "id": "3",
 "relatedPosts": [
 {
 "id": "2"
 },
 {
 "id": "1"
 }
]
 },
 {
 "id": "4",
 "relatedPosts": [
 {
 "id": "2"
 },
 {
 "id": "1"
 }
]
 },
 {
 "id": "5",
 "relatedPosts": []
 }
]
 },
 "errors": [
 {
 "path": [
 "allPosts",
 1,
 "relatedPosts"
],
 "data": null,
 "errorType": "ERROR",
 "errorInfo": null,
 "locations": [
 {

Advanced use case: Batching 315

AWS AppSync Developer Guide

 "line": 4,
 "column": 5,
 "sourceName": null
 }
],
 "message": "Error Happened"
 }
]
}

Configuring the maximum batching size

To configure the maximum batching size on a resolver, use the following command in the AWS
Command Line Interface (AWS CLI):

$ aws appsync create-resolver --api-id <api-id> --type-name Query --field-name
 relatedPosts \
 --code "<code-goes-here>" \
 --runtime name=APPSYNC_JS,runtimeVersion=1.0.0 \
 --data-source-name "<lambda-datasource>" \
 --max-batch-size X

Note

When providing a request mapping template, you must use the BatchInvoke operation to
use batching.

Tutorial: Local resolvers

AWS AppSync allows you to use supported data sources (AWS Lambda, Amazon DynamoDB, or
Amazon OpenSearch Service) to perform various operations. However, in certain scenarios, a call to
a supported data source might not be necessary.

This is where the local resolver comes in handy. Instead of calling a remote data source, the local
resolver will just forward the result of the request handler to the response handler. The field
resolution will not leave AWS AppSync.

Local resolvers are useful in a plethora of situations. The most popular use case is to publish
notifications without triggering a data source call. To demonstrate this use case, let’s build a pub/

Tutorial: Local resolvers 316

AWS AppSync Developer Guide

sub application in which users can publish and subscribe to messages. This example leverages
Subscriptions, so if you aren’t familiar with Subscriptions, you can follow the Real-Time Data
tutorial.

Creating the pub/sub app

First, create a blank GraphQL API by choosing the Design from scratch option and configuring the
optional details when creating your GraphQL API.

In our pub/sub application, clients can subscribe to and publish messages. Each published message
includes a name and data. Add this to the schema:

type Channel {
 name: String!
 data: AWSJSON!
}

type Mutation {
 publish(name: String!, data: AWSJSON!): Channel
}

type Query {
 getChannel: Channel
}

type Subscription {
 subscribe(name: String!): Channel
 @aws_subscribe(mutations: ["publish"])
}

Next, let’s attach a resolver to the Mutation.publish field. In the Resolvers pane next to the
Schema pane, find the Mutation type, then the publish(...): Channel field, then click on
Attach.

Create a None data source and name it PageDataSource. Attach it to your resolver.

Add your resolver implementation using the following snippet:

export function request(ctx) {
 return { payload: ctx.args };
}

Creating the pub/sub app 317

AWS AppSync Developer Guide

export function response(ctx) {
 return ctx.result;
}

Make sure you create the resolver and save the changes you made.

Send and subscribe to messages

For clients to receive messages, they must first be subscribed to an inbox.

In the Queries pane, execute the SubscribeToData subscription:

subscription SubscribeToData {
 subscribe(name:"channel") {
 name
 data
 }
}

The subscriber will receive messages whenever the publish mutation is invoked but only when
the message is sent to the channel subscription. Let’s try this in the Queries pane. While your
subscription is still running in the console, open up another console and run the following request
in the Queries pane:

Note

We're using valid JSON strings in this example.

mutation PublishData {
 publish(data: "{\"msg\": \"hello world!\"}", name: "channel") {
 data
 name
 }
}

The result will look like this:

{

Send and subscribe to messages 318

AWS AppSync Developer Guide

 "data": {
 "publish": {
 "data": "{\"msg\":\"hello world!\"}",
 "name": "channel"
 }
 }
}

We just demonstrated the use of local resolvers, by publishing a message and receiving it without
leaving the AWS AppSync service.

Tutorial: Combining GraphQL resolvers

Resolvers and fields in a GraphQL schema have 1:1 relationships with a large degree of flexibility.
Because a data source is configured on a resolver independently of a schema, you have the ability
to resolve or manipulate your GraphQL types through different data sources, allowing you to mix
and match a schema to best meet your needs.

The following scenarios demonstrate how to mix and match data sources in your schema. Before
you begin, you should be familiar with configuring data sources and resolvers for AWS Lambda,
Amazon DynamoDB, and Amazon OpenSearch Service.

Example schema

The following schema has a type of Post with three Query and Mutation operations each:

type Post {
 id: ID!
 author: String!
 title: String
 content: String
 url: String
 ups: Int
 downs: Int
 version: Int!
}

type Query {
 allPost: [Post]
 getPost(id: ID!): Post
 searchPosts: [Post]

Tutorial: Combining GraphQL resolvers 319

AWS AppSync Developer Guide

}

type Mutation {
 addPost(
 id: ID!,
 author: String!,
 title: String,
 content: String,
 url: String
): Post
 updatePost(
 id: ID!,
 author: String!,
 title: String,
 content: String,
 url: String,
 ups: Int!,
 downs: Int!,
 expectedVersion: Int!
): Post
 deletePost(id: ID!): Post
}

In this example, you would have a total of six resolvers with each needing a data source. One
way to solve this issue would be to hook these up to a single Amazon DynamoDB table, called
Posts, in which the AllPost field runs a scan and the searchPosts field runs a query (see
JavaScript resolver function reference for DynamoDB). However, you aren't limited to Amazon
DynamoDB; different data sources like Lambda or OpenSearch Service exist to meet your business
requirements.

Altering data through resolvers

You may need to return results from a third-party database that's not directly supported by AWS
AppSync data sources. You may also have to perform complex modifications on the data before it's
returned to the API client(s). This could be caused by the improper formatting of the data types,
such as timestamp differences on clients, or the handling of backwards compatibility issues. In
this case, connecting AWS Lambda functions as a data source to your AWS AppSync API is the
appropriate solution. For illustrative purposes, in the following example, an AWS Lambda function
manipulates data fetched from a third-party data store:

export const handler = (event, context, callback) => {

Altering data through resolvers 320

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html

AWS AppSync Developer Guide

 // fetch data
 const result = fetcher()

 // apply complex business logic
 const data = transform(result)

 // return to AppSync
 return data
};

This is a perfectly valid Lambda function and could be attached to the AllPost field in the
GraphQL schema so that any query returning all the results gets random numbers for the ups/
downs.

DynamoDB and OpenSearch Service

For some applications, you might perform mutations or simple lookup queries against DynamoDB
and have a background process transfer documents to OpenSearch Service. You could simply
attach the searchPosts resolver to the OpenSearch Service data source and return search results
(from data that originated in DynamoDB) using a GraphQL query. This can be extremely powerful
when adding advanced search operations to your applications such keyword, fuzzy word matches,
or even geospatial lookups. Transferring data from DynamoDB could be done through an ETL
process, or alternatively, you could stream from DynamoDB using Lambda.

To get started with these particular data sources, see our DynamoDB and Lambda tutorials.

For example, using the schema from our previous tutorial, the following mutation adds an item to
DynamoDB:

mutation addPost {
 addPost(
 id: 123
 author: "Nadia"
 title: "Our first post!"
 content: "This is our first post."
 url: "https://aws.amazon.com/appsync/"
) {
 id
 author
 title
 content

DynamoDB and OpenSearch Service 321

https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-dynamodb-resolvers-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-lambda-resolvers-js.html

AWS AppSync Developer Guide

 url
 ups
 downs
 version
 }
}

This writes data to DynamoDB, which then streams data via Lambda to Amazon OpenSearch
Service, which you then use to search for posts by different fields. For example, since the data is
in Amazon OpenSearch Service, you can search either the author or content fields with free-form
text, even with spaces, as follows:

query searchName{
 searchAuthor(name:" Nadia "){
 id
 title
 content
 }
}

---------- or ----------

query searchContent{
 searchContent(text:"test"){
 id
 title
 content
 }
}

Because the data is written directly to DynamoDB, you can still perform efficient list or item lookup
operations against the table with the allPost{...} and getPost{...} queries. This stack uses
the following example code for DynamoDB streams:

Note

This Python code is an example and isn't meant to be used in production code.

import boto3

DynamoDB and OpenSearch Service 322

AWS AppSync Developer Guide

import requests
from requests_aws4auth import AWS4Auth

region = '' # e.g. us-east-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

host = '' # the OpenSearch Service domain, e.g. https://search-mydomain.us-
west-1.es.amazonaws.com
index = 'lambda-index'
datatype = '_doc'
url = host + '/' + index + '/' + datatype + '/'

headers = { "Content-Type": "application/json" }

def handler(event, context):
 count = 0
 for record in event['Records']:
 # Get the primary key for use as the OpenSearch ID
 id = record['dynamodb']['Keys']['id']['S']

 if record['eventName'] == 'REMOVE':
 r = requests.delete(url + id, auth=awsauth)
 else:
 document = record['dynamodb']['NewImage']
 r = requests.put(url + id, auth=awsauth, json=document, headers=headers)
 count += 1
 return str(count) + ' records processed.'

You can then use DynamoDB streams to attach this to a DynamoDB table with a primary key of id,
and any changes to the source of DynamoDB would stream into your OpenSearch Service domain.
For more information about configuring this, see the DynamoDB Streams documentation.

Tutorial: Amazon OpenSearch Service Resolvers

AWS AppSync supports using Amazon OpenSearch Service from domains that you have
provisioned in your own AWS account, provided they don’t exist inside a VPC. After your domains
are provisioned, you can connect to them using a data source, at which point you can configure
a resolver in the schema to perform GraphQL operations such as queries, mutations, and
subscriptions. This tutorial will take you through some common examples.

Tutorial: Amazon OpenSearch Service Resolvers 323

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html

AWS AppSync Developer Guide

For more information, see our JavaScript resolver function reference for OpenSearch.

Create a new OpenSearch Service domain

To get started with this tutorial, you need an existing OpenSearch Service domain. If you don’t
have one, you can use the following sample. Note that it can take up to 15 minutes for an
OpenSearch Service domain to be created before you can move on to integrating it with an AWS
AppSync data source.

aws cloudformation create-stack --stack-name AppSyncOpenSearch \
--template-url https://s3.us-west-2.amazonaws.com/awsappsync/resources/elasticsearch/
ESResolverCFTemplate.yaml \
--parameters ParameterKey=OSDomainName,ParameterValue=ddtestdomain
 ParameterKey=Tier,ParameterValue=development \
--capabilities CAPABILITY_NAMED_IAM

You can launch the following AWS CloudFormation stack in the US-West-2 (Oregon) Region in your
AWS account:

Configure a data source for OpenSearch Service

After the OpenSearch Service domain is created, navigate to your AWS AppSync GraphQL API and
choose the Data Sources tab. Choose Create data source and enter a friendly name for the data
source such as “oss”. Then, choose Amazon OpenSearch domain for Data source type, choose the
appropriate Region, and you should see your OpenSearch Service domain listed. After selecting it,
you can either create a new role, and AWS AppSync will assign the role-appropriate permissions, or
you can choose an existing role, which has the following inline policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1234234",
 "Effect": "Allow",
 "Action": [
 "es:ESHttpDelete",
 "es:ESHttpHead",

Create a new OpenSearch Service domain 324

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-elasticsearch-js.html
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/elasticsearch/ESResolverCFTemplate.yaml

AWS AppSync Developer Guide

 "es:ESHttpGet",
 "es:ESHttpPost",
 "es:ESHttpPut"
],
 "Resource": [
 "arn:aws:es:REGION:ACCOUNTNUMBER:domain/democluster/*"
]
 }
]
}

You’ll also need to set up a trust relationship with AWS AppSync for that role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Additionally, the OpenSearch Service domain has its own Access Policy that you can modify
through the Amazon OpenSearch Service console. You must add a policy similar to the one below
with the appropriate actions and resources for the OpenSearch Service domain. Note that the
Principal will be the AWS AppSync data source role, which can be found in the IAM console if you
let said console create it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::ACCOUNTNUMBER:role/service-role/
APPSYNC_DATASOURCE_ROLE"
 },
 "Action": [

Configure a data source for OpenSearch Service 325

AWS AppSync Developer Guide

 "es:ESHttpDelete",
 "es:ESHttpHead",
 "es:ESHttpGet",
 "es:ESHttpPost",
 "es:ESHttpPut"
],
 "Resource": "arn:aws:es:REGION:ACCOUNTNUMBER:domain/DOMAIN_NAME/*"
 }
]
}

Connecting a resolver

Now that the data source is connected to your OpenSearch Service domain, you can connect it to
your GraphQL schema with a resolver as shown in the following example:

 type Query {
 getPost(id: ID!): Post
 allPosts: [Post]
 }

 type Mutation {
 addPost(id: ID!, author: String, title: String, url: String, ups: Int, downs: Int,
 content: String): AWSJSON
 }

type Post {
 id: ID!
 author: String
 title: String
 url: String
 ups: Int
 downs: Int
 content: String
}

Note that there is a user-defined Post type with a field of id. In the following examples, we
assume there is a process (which can be automated) for putting this type into your OpenSearch
Service domain, which would map to a path root of /post/_doc where post is the index. From
this root path, you can perform individual document searches, wildcard searches with /id/post*,
or multi-document searches with a path of /post/_search. For example, if you have another

Connecting a resolver 326

AWS AppSync Developer Guide

type called User, you can index documents under a new index called user, then perform searches
with a path of /user/_search.

From the Schema editor in the AWS AppSync console, modify the preceding Posts schema to
include a searchPosts query:

type Query {
 getPost(id: ID!): Post
 allPosts: [Post]
 searchPosts: [Post]
}

Save the schema. In the Resolvers pane, find searchPosts and choose Attach. Choose your
OpenSearch Service data source and save the resolver. Update your resolver's code using the
snippet below:

import { util } from '@aws-appsync/utils'

/**
 * Searches for documents by using an input term
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the request
 */
export function request(ctx) {
 return {
 operation: 'GET',
 path: `/post/_search`,
 params: { body: { from: 0, size: 50 } },
 }
}

/**
 * Returns the fetched items
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the result
 */
export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type)
 }
 return ctx.result.hits.hits.map((hit) => hit._source)
}

Connecting a resolver 327

AWS AppSync Developer Guide

This assumes that the preceding schema has documents that have been indexed in OpenSearch
Service under the post field. If you structure your data differently, you’ll need to update
accordingly.

Modifying your searches

The preceding resolver request handler performs a simple query for all records. Suppose you want
to search by a specific author. Furthermore, suppose you want that author to be an argument
defined in your GraphQL query. In the Schema editor of the AWS AppSync console, add an
allPostsByAuthor query:

type Query {
 getPost(id: ID!): Post
 allPosts: [Post]
 allPostsByAuthor(author: String!): [Post]
 searchPosts: [Post]
}

In the Resolvers pane, find allPostsByAuthor and choose Attach. Choose the OpenSearch
Service data source and use the following code:

import { util } from '@aws-appsync/utils'

/**
 * Searches for documents by `author`
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the request
 */
export function request(ctx) {
 return {
 operation: 'GET',
 path: '/post/_search',
 params: {
 body: {
 from: 0,
 size: 50,
 query: { match: { author: ctx.args.author } },
 },
 },
 }
}

Modifying your searches 328

AWS AppSync Developer Guide

/**
 * Returns the fetched items
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the result
 */
export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type)
 }
 return ctx.result.hits.hits.map((hit) => hit._source)
}

Note that the body is populated with a term query for the author field, which is passed through
from the client as an argument. Optionally, you could use prepopulated information, such as
standard text.

Adding data to OpenSearch Service

You may want to add data to your OpenSearch Service domain as the result of a GraphQL
mutation. This is a powerful mechanism for searching and other purposes. Because you can use
GraphQL subscriptions to make your data real-time, it can serve as a mechanism for notifying
clients of updates to data in your OpenSearch Service domain.

Return to the Schema page in the AWS AppSync console and select Attach for the addPost()
mutation. Select the OpenSearch Service data source again and use the following code:

import { util } from '@aws-appsync/utils'

/**
 * Searches for documents by `author`
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the request
 */
export function request(ctx) {
 return {
 operation: 'PUT',
 path: `/post/_doc/${ctx.args.id}`,
 params: { body: ctx.args },
 }
}

/**

Adding data to OpenSearch Service 329

AWS AppSync Developer Guide

 * Returns the inserted post
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the result
 */
export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type)
 }
 return ctx.result
}

Like before, this is an example of how your data might be structured. If you have different field
names or indices, you need to update the path and body. This example also shows how to use
context.arguments, which can also be written as ctx.args, in your request handler.

Retrieving a single document

Finally, if you want to use the getPost(id:ID) query in your schema to return an individual
document, find this query in the Schema editor of the AWS AppSync console and choose Attach.
Select the OpenSearch Service data source again and use the following code:

import { util } from '@aws-appsync/utils'

/**
 * Searches for documents by `author`
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the request
 */
export function request(ctx) {
 return {
 operation: 'GET',
 path: `/post/_doc/${ctx.args.id}`,
 }
}

/**
 * Returns the post
 * @param {import('@aws-appsync/utils').Context} ctx the context
 * @returns {*} the result
 */
export function response(ctx) {
 if (ctx.error) {

Retrieving a single document 330

AWS AppSync Developer Guide

 util.error(ctx.error.message, ctx.error.type)
 }
 return ctx.result._source
}

Perform queries and mutations

You should now be able to perform GraphQL operations against your OpenSearch Service domain.
Navigate to the Queries tab of the AWS AppSync console and add a new record:

mutation AddPost {
 addPost (
 id:"12345"
 author: "Fred"
 title: "My first book"
 content: "This will be fun to write!"
 url: "publisher website",
 ups: 100,
 downs:20
)
}

You’ll see the result of the mutation on the right. Similarly, you can now run a searchPosts query
against your OpenSearch Service domain:

query search {
 searchPosts {
 id
 title
 author
 content
 }
}

Best practices

• OpenSearch Service should be for querying data, not as your primary database. You may want
to use OpenSearch Service in conjunction with Amazon DynamoDB as outlined in Combining
GraphQL Resolvers.

• Only give access to your domain by allowing the AWS AppSync service role to access the cluster.

Perform queries and mutations 331

https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-combining-graphql-resolvers-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-combining-graphql-resolvers-js.html

AWS AppSync Developer Guide

• You can start small in development, with the lowest-cost cluster, and then move to a larger
cluster with high availability (HA) as you move into production.

Tutorial: DynamoDB Transaction resolvers

AWS AppSync supports using Amazon DynamoDB transaction operations across one or more tables
in a single Region. Supported operations are TransactGetItems and TransactWriteItems. By
using these features in AWS AppSync, you can perform tasks such as:

• Passing a list of keys in a single query and returning the results from a table

• Reading records from one or more tables in a single query

• Writing records in transactions to one or more tables in an all-or-nothing way

• Running transactions when some conditions are satisfied

Permissions

Like other resolvers, you need to create a data source in AWS AppSync and either create a role or
use an existing one. Because transaction operations require different permissions on DynamoDB
tables, you need to grant the configured role permissions for read or write actions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:region:accountId:table/TABLENAME",
 "arn:aws:dynamodb:region:accountId:table/TABLENAME/*"
]
 }
]

Tutorial: DynamoDB Transaction resolvers 332

AWS AppSync Developer Guide

}

Note

Roles are tied to data sources in AWS AppSync, and resolvers on fields are invoked against
a data source. Data sources configured to fetch against DynamoDB only have one table
specified to keep configurations simple. Therefore, when performing a transaction
operation against multiple tables in a single resolver, which is a more advanced task, you
must grant the role on that data source access to any tables the resolver will interact with.
This would be done in the Resource field in the IAM policy above. Configuration of the
transaction calls against the tables is done in the resolver code, which we describe below.

Data source

For the sake of simplicity, we’ll use the same data source for all the resolvers used in this tutorial.

We’ll have two tables called savingAccounts and checkingAccounts, both with the
accountNumber as a partition key, and a transactionHistory table with transactionId as
partition key. You can use the CLI commands below to create your tables. Make sure to replace
region with your Region.

With the CLI

aws dynamodb create-table --table-name savingAccounts \
 --attribute-definitions AttributeName=accountNumber,AttributeType=S \
 --key-schema AttributeName=accountNumber,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --table-class STANDARD --region region

aws dynamodb create-table --table-name checkingAccounts \
 --attribute-definitions AttributeName=accountNumber,AttributeType=S \
 --key-schema AttributeName=accountNumber,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --table-class STANDARD --region region

aws dynamodb create-table --table-name transactionHistory \
 --attribute-definitions AttributeName=transactionId,AttributeType=S \
 --key-schema AttributeName=transactionId,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \

Data source 333

AWS AppSync Developer Guide

 --table-class STANDARD --region region

In the AWS AppSync console, in Data sources, create a new DynamoDB data source and name it
TransactTutorial. Select savingAccounts as the table (though the specific table does not matter
when using transactions). Choose to create a new role and the data source. You can review the data
source configuration to see the name of the generated role. In the IAM console, you can add an in-
line policy that allows the data source to interact with all the tables.

Replace region and accountID with your Region and account ID:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:region:accountId:table/savingAccounts",
 "arn:aws:dynamodb:region:accountId:table/savingAccounts/*",
 "arn:aws:dynamodb:region:accountId:table/checkingAccounts",
 "arn:aws:dynamodb:region:accountId:table/checkingAccounts/*",
 "arn:aws:dynamodb:region:accountId:table/transactionHistory",
 "arn:aws:dynamodb:region:accountId:table/transactionHistory/*"
]
 }
]
}

Transactions

For this example, the context is a classic banking transaction, where we’ll use
TransactWriteItems to:

• Transfer money from saving accounts to checking accounts

Transactions 334

AWS AppSync Developer Guide

• Generate new transaction records for each transaction

And then we’ll use TransactGetItems to retrieve details from saving accounts and checking
accounts.

We define our GraphQL schema as follows:

type SavingAccount {
 accountNumber: String!
 username: String
 balance: Float
}

type CheckingAccount {
 accountNumber: String!
 username: String
 balance: Float
}

type TransactionHistory {
 transactionId: ID!
 from: String
 to: String
 amount: Float
}

type TransactionResult {
 savingAccounts: [SavingAccount]
 checkingAccounts: [CheckingAccount]
 transactionHistory: [TransactionHistory]
}

input SavingAccountInput {
 accountNumber: String!
 username: String
 balance: Float
}

input CheckingAccountInput {
 accountNumber: String!
 username: String
 balance: Float
}

Transactions 335

AWS AppSync Developer Guide

input TransactionInput {
 savingAccountNumber: String!
 checkingAccountNumber: String!
 amount: Float!
}

type Query {
 getAccounts(savingAccountNumbers: [String], checkingAccountNumbers: [String]):
 TransactionResult
}

type Mutation {
 populateAccounts(savingAccounts: [SavingAccountInput], checkingAccounts:
 [CheckingAccountInput]): TransactionResult
 transferMoney(transactions: [TransactionInput]): TransactionResult
}

TransactWriteItems - Populate accounts

In order to transfer money between accounts, we need to populate the table with the details. We’ll
use the GraphQL operation Mutation.populateAccounts to do so.

In the Schema section, click on Attach next to the Mutation.populateAccounts operation.
Choose the TransactTutorial data source and choose Create.

Now use the following code:

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const { savingAccounts, checkingAccounts } = ctx.args

 const savings = savingAccounts.map(({ accountNumber, ...rest }) => {
 return {
 table: 'savingAccounts',
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ accountNumber }),
 attributeValues: util.dynamodb.toMapValues(rest),
 }
 })

 const checkings = checkingAccounts.map(({ accountNumber, ...rest }) => {

Transactions 336

AWS AppSync Developer Guide

 return {
 table: 'checkingAccounts',
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ accountNumber }),
 attributeValues: util.dynamodb.toMapValues(rest),
 }
 })
 return {
 version: '2018-05-29',
 operation: 'TransactWriteItems',
 transactItems: [...savings, ...checkings],
 }
}

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type, null, ctx.result.cancellationReasons)
 }
 const { savingAccounts: sInput, checkingAccounts: cInput } = ctx.args
 const keys = ctx.result.keys
 const savingAccounts = sInput.map((_, i) => keys[i])
 const sLength = sInput.length
 const checkingAccounts = cInput.map((_, i) => keys[sLength + i])
 return { savingAccounts, checkingAccounts }
}

Save the resolver and navigate to the Queries section of the AWS AppSync console to populate the
accounts.

Execute the following mutation:

mutation populateAccounts {
 populateAccounts (
 savingAccounts: [
 {accountNumber: "1", username: "Tom", balance: 100},
 {accountNumber: "2", username: "Amy", balance: 90},
 {accountNumber: "3", username: "Lily", balance: 80},
]
 checkingAccounts: [
 {accountNumber: "1", username: "Tom", balance: 70},
 {accountNumber: "2", username: "Amy", balance: 60},
 {accountNumber: "3", username: "Lily", balance: 50},
]) {

Transactions 337

AWS AppSync Developer Guide

 savingAccounts {
 accountNumber
 }
 checkingAccounts {
 accountNumber
 }
 }
}

We populated three saving accounts and three checking accounts in one mutation.

Use the DynamoDB console to validate that data shows up in both the savingAccounts and
checkingAccounts tables.

TransactWriteItems - Transfer money

Attach a resolver to the transferMoney mutation with the following code. For each transfer,
we need a success modifier to both the checking and savings accounts, and we need to track the
transfer in transactions.

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const transactions = ctx.args.transactions

 const savings = []
 const checkings = []
 const history = []
 transactions.forEach((t) => {
 const { savingAccountNumber, checkingAccountNumber, amount } = t
 savings.push({
 table: 'savingAccounts',
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ accountNumber: savingAccountNumber }),
 update: {
 expression: 'SET balance = balance - :amount',
 expressionValues: util.dynamodb.toMapValues({ ':amount': amount }),
 },
 })
 checkings.push({
 table: 'checkingAccounts',
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ accountNumber: checkingAccountNumber }),

Transactions 338

AWS AppSync Developer Guide

 update: {
 expression: 'SET balance = balance + :amount',
 expressionValues: util.dynamodb.toMapValues({ ':amount': amount }),
 },
 })
 history.push({
 table: 'transactionHistory',
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ transactionId: util.autoId() }),
 attributeValues: util.dynamodb.toMapValues({
 from: savingAccountNumber,
 to: checkingAccountNumber,
 amount,
 }),
 })
 })

 return {
 version: '2018-05-29',
 operation: 'TransactWriteItems',
 transactItems: [...savings, ...checkings, ...history],
 }
}

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type, null, ctx.result.cancellationReasons)
 }
 const tInput = ctx.args.transactions
 const tLength = tInput.length
 const keys = ctx.result.keys
 const savingAccounts = tInput.map((_, i) => keys[tLength * 0 + i])
 const checkingAccounts = tInput.map((_, i) => keys[tLength * 1 + i])
 const transactionHistory = tInput.map((_, i) => keys[tLength * 2 + i])
 return { savingAccounts, checkingAccounts, transactionHistory }
}

Now, navigate to the Queries section of the AWS AppSync console and execute the transferMoney
mutation as follows:

mutation write {
 transferMoney(
 transactions: [

Transactions 339

AWS AppSync Developer Guide

 {savingAccountNumber: "1", checkingAccountNumber: "1", amount: 7.5},
 {savingAccountNumber: "2", checkingAccountNumber: "2", amount: 6.0},
 {savingAccountNumber: "3", checkingAccountNumber: "3", amount: 3.3}
]) {
 savingAccounts {
 accountNumber
 }
 checkingAccounts {
 accountNumber
 }
 transactionHistory {
 transactionId
 }
 }
}

We sent three banking transactions in one mutation. Use the DynamoDB console to validate that
data shows up in the savingAccounts, checkingAccounts, and transactionHistory tables.

TransactGetItems - Retrieve accounts

In order to retrieve the details from savings and checking accounts in a single transactional request,
we’ll attach a resolver to the Query.getAccounts GraphQL operation on our schema. Select
Attach, pick the same TransactTutorial data source created at the beginning of the tutorial.
Use the following code:

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const { savingAccountNumbers, checkingAccountNumbers } = ctx.args

 const savings = savingAccountNumbers.map((accountNumber) => {
 return { table: 'savingAccounts', key: util.dynamodb.toMapValues({ accountNumber }) }
 })
 const checkings = checkingAccountNumbers.map((accountNumber) => {
 return { table: 'checkingAccounts', key:
 util.dynamodb.toMapValues({ accountNumber }) }
 })
 return {
 version: '2018-05-29',
 operation: 'TransactGetItems',
 transactItems: [...savings, ...checkings],

Transactions 340

AWS AppSync Developer Guide

 }
}

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type, null, ctx.result.cancellationReasons)
 }

 const { savingAccountNumbers: sInput, checkingAccountNumbers: cInput } = ctx.args
 const items = ctx.result.items
 const savingAccounts = sInput.map((_, i) => items[i])
 const sLength = sInput.length
 const checkingAccounts = cInput.map((_, i) => items[sLength + i])
 return { savingAccounts, checkingAccounts }
}

Save the resolver and navigate to the Queries sections of the AWS AppSync console. In order to
retrieve the savings and checking accounts, execute the following query:

query getAccounts {
 getAccounts(
 savingAccountNumbers: ["1", "2", "3"],
 checkingAccountNumbers: ["1", "2"]
) {
 savingAccounts {
 accountNumber
 username
 balance
 }
 checkingAccounts {
 accountNumber
 username
 balance
 }
 }
}

We have successfully demonstrated the use of DynamoDB transactions using AWS AppSync.

Transactions 341

AWS AppSync Developer Guide

Tutorial: DynamoDB batch resolvers

AWS AppSync supports using Amazon DynamoDB batch operations across one or more
tables in a single Region. Supported operations are BatchGetItem, BatchPutItem, and
BatchDeleteItem. By using these features in AWS AppSync, you can perform tasks such as:

• Passing a list of keys in a single query and returning the results from a table

• Reading records from one or more tables in a single query

• Writing records in bulk to one or more tables

• Conditionally writing or deleting records in multiple tables that might have a relation

Batch operations in AWS AppSync have two key differences from non-batched operations:

• The data source role must have permissions to all tables that the resolver will access.

• The table specification for a resolver is part of the request object.

Single table batches

To get started, let’s create a new GraphQL API. In the AWS AppSync console, choose Create API,
GraphQL APIs, and Design from scratch. Name your API BatchTutorial API, choose Next, and
on the Specify GraphQL resources step, choose Create GraphQL resources later and click Next.
Review your details and create the API. Go to the Schema page and paste the following schema,
noting that for the query, we’ll pass in a list of IDs:

type Post {
 id: ID!
 title: String
}

input PostInput {
 id: ID!
 title: String
}

type Query {
 batchGet(ids: [ID]): [Post]
}

Tutorial: DynamoDB batch resolvers 342

AWS AppSync Developer Guide

type Mutation {
 batchAdd(posts: [PostInput]): [Post]
 batchDelete(ids: [ID]): [Post]
}

Save your schema and choose Create Resources at the top of the page. Choose Use existing
type and select the Post type. Name your table Posts. Make sure the Primary Key is set to id,
unselect Automatically generate GraphQL (you’ll provide your own code), and select Create. To
get you started, AWS AppSync creates a new DynamoDB table and a data source connected to the
table with the appropriate roles. However, there are still a couple of permissions you need to add
to the role. Go to the Data sources page and choose the new data source. Under Select an existing
role, you'll notice that a role was automatically created for the table. Take note of the role (should
look something like appsync-ds-ddb-aaabbbcccddd-Posts) and then go to the IAM console
(https://console.aws.amazon.com/iam/). In the IAM console, choose Roles, then choose your role
from the table. In your role, under Permissions policies, click on the "+" next to the policy (should
have a similar name to the role name). Choose Edit at the top of the collapsible when the policy
appears. You need to add batch permissions to your policy, specifically dynamodb:BatchGetItem
and dynamodb:BatchWriteItem. It'll look something like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:BatchGetItem"
],
 "Resource": [
 "arn:aws:dynamodb:…",
 "arn:aws:dynamodb:…"
]
 }
]

Single table batches 343

https://console.aws.amazon.com/iam/

AWS AppSync Developer Guide

}

Choose Next, then Save changes. Your policy should allow batch processing now.

Back in the AWS AppSync console, go to the Schema page and select Attach next to the
Mutation.batchAdd field. Create your resolver using the Posts table as the data source. In
the code editor, replace the handlers with the snippet below. This snippet automatically takes
each item in the GraphQL input PostInput type and builds a map, which is needed for the
BatchPutItem operation:

import { util } from "@aws-appsync/utils";

export function request(ctx) {
 return {
 operation: "BatchPutItem",
 tables: {
 Posts: ctx.args.posts.map((post) => util.dynamodb.toMapValues(post)),
 },
 };
}

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type);
 }
 return ctx.result.data.Posts;
}

Navigate to the Queries page of the AWS AppSync console and run the following batchAdd
mutation:

mutation add {
 batchAdd(posts:[{
 id: 1 title: "Running in the Park"},{
 id: 2 title: "Playing fetch"
 }]){
 id
 title
 }
}

Single table batches 344

AWS AppSync Developer Guide

You should see the results printed on the screen; this can be validated by reviewing the DynamoDB
console to scan for the values written to the Posts table.

Next, repeat the process of attaching a resolver but for the Query.batchGet field using the
Posts table as the data source. Replace the handlers with the code below. This automatically takes
each item in the GraphQL ids:[] type and builds a map that is needed for the BatchGetItem
operation:

import { util } from "@aws-appsync/utils";

export function request(ctx) {
 return {
 operation: "BatchGetItem",
 tables: {
 Posts: {
 keys: ctx.args.ids.map((id) => util.dynamodb.toMapValues({ id })),
 consistentRead: true,
 },
 },
 };
}

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type);
 }
 return ctx.result.data.Posts;
}

Now, go back to the Queries page of the AWS AppSync console and run the following batchGet
query:

query get {
 batchGet(ids:[1,2,3]){
 id
 title
 }
}

This should return the results for the two id values that you added earlier. Note that a null value
was returned for the id with a value of 3. This is because there was no record in your Posts table

Single table batches 345

AWS AppSync Developer Guide

with that value yet. Also note that AWS AppSync returns the results in the same order as the keys
passed to the query, which is an additional feature that AWS AppSync performs on your behalf. So,
if you switch to batchGet(ids:[1,3,2]), you’ll see that the order changed. You’ll also know
which id returned a null value.

Finally, attach one more resolver to the Mutation.batchDelete field using the Posts table as
the data source. Replace the handlers with the code below. This automatically takes each item in
the GraphQL ids:[] type and builds a map that is needed for the BatchGetItem operation:

import { util } from "@aws-appsync/utils";

export function request(ctx) {
 return {
 operation: "BatchDeleteItem",
 tables: {
 Posts: ctx.args.ids.map((id) => util.dynamodb.toMapValues({ id })),
 },
 };
}

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type);
 }
 return ctx.result.data.Posts;
}

Now, go back to the Queries page of the AWS AppSync console and run the following
batchDelete mutation:

mutation delete {
 batchDelete(ids:[1,2]){ id }
}

The records with id 1 and 2 should now be deleted. If you re-run the batchGet() query from
earlier, these should return null.

Multi-table batch

AWS AppSync also enables you to perform batch operations across tables. Let’s build a more
complex application. Imagine we are building a pet health app wherein sensors report the pet's

Multi-table batch 346

AWS AppSync Developer Guide

location and body temperature. The sensors are battery powered and attempt to connect to the
network every few minutes. When a sensor establishes a connection, it sends its readings to our
AWS AppSync API. Triggers then analyze the data so a dashboard can be presented to the pet
owner. Let’s focus on representing the interactions between the sensor and the backend data store.

In the AWS AppSync console, choose Create API, GraphQL APIs, and Design from scratch. Name
your API MultiBatchTutorial API, choose Next, and on the Specify GraphQL resources step,
choose Create GraphQL resources later and click Next. Review your details and create the API. Go
to the Schema page and paste and save the following schema:

type Mutation {
 # Register a batch of readings
 recordReadings(tempReadings: [TemperatureReadingInput], locReadings:
 [LocationReadingInput]): RecordResult
 # Delete a batch of readings
 deleteReadings(tempReadings: [TemperatureReadingInput], locReadings:
 [LocationReadingInput]): RecordResult
}

type Query {
 # Retrieve all possible readings recorded by a sensor at a specific time
 getReadings(sensorId: ID!, timestamp: String!): [SensorReading]
}

type RecordResult {
 temperatureReadings: [TemperatureReading]
 locationReadings: [LocationReading]
}

interface SensorReading {
 sensorId: ID!
 timestamp: String!
}

Sensor reading representing the sensor temperature (in Fahrenheit)
type TemperatureReading implements SensorReading {
 sensorId: ID!
 timestamp: String!
 value: Float
}

Sensor reading representing the sensor location (lat,long)
type LocationReading implements SensorReading {

Multi-table batch 347

AWS AppSync Developer Guide

 sensorId: ID!
 timestamp: String!
 lat: Float
 long: Float
}

input TemperatureReadingInput {
 sensorId: ID!
 timestamp: String
 value: Float
}

input LocationReadingInput {
 sensorId: ID!
 timestamp: String
 lat: Float
 long: Float
}

We need to create two DynamoDB tables:

• locationReadings will store sensor location readings.

• temperatureReadings will store sensor temperature readings.

Both tables will share the same primary key structure: sensorId (String) as the partition key
and timestamp (String) as the sort key.

Choose Create Resources at the top of the page. Choose Use existing type and select the
locationReadings type. Name your table locationReadings. Make sure the Primary Key
is set to sensorId and the sort key to timestamp. Unselect Automatically generate GraphQL
(you’ll provide your own code), and select Create. Repeat this process for temperatureReadings
using the temperatureReadings as the type and table name. Use the same keys as above.

Your new tables will contain automatically generated roles. There are still a couple of permissions
you need to add to those roles. Go to the Data sources page and choose locationReadings.
Under Select an existing role, you can see the role. Take note of the role (should look something
like appsync-ds-ddb-aaabbbcccddd-locationReadings) and then go to the IAM console
(https://console.aws.amazon.com/iam/). In the IAM console, choose Roles, then choose your role
from the table. In your role, under Permissions policies, click on the "+" next to the policy (should

Multi-table batch 348

https://console.aws.amazon.com/iam/

AWS AppSync Developer Guide

have a similar name to the role name). Choose Edit at the top of the collapsible when the policy
appears. You need to add permissions to this policy. It'll look something like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:region:account:table/locationReadings",
 "arn:aws:dynamodb:region:account:table/locationReadings/*",
 "arn:aws:dynamodb:region:account:table/temperatureReadings",
 "arn:aws:dynamodb:region:account:table/temperatureReadings/*"
]
 }
]
}

Choose Next, then Save changes. Repeat this process for the temperatureReadings data source
using the same policy snippet above.

BatchPutItem - Recording sensor readings

Our sensors need to be able to send their readings once they connect to the internet. The GraphQL
field Mutation.recordReadings is the API they will use to do so. We'll need to add a resolver to
this field.

In the AWS AppSync console's Schema page, select Attach next to the
Mutation.recordReadings field. On the next screen, create your resolver using the
locationReadings table as the data source.

Multi-table batch 349

AWS AppSync Developer Guide

After creating your resolver, replace the handlers with the following code in the editor. This
BatchPutItem operation allows us to specify multiple tables:

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const { locReadings, tempReadings } = ctx.args
 const locationReadings = locReadings.map((loc) => util.dynamodb.toMapValues(loc))
 const temperatureReadings = tempReadings.map((tmp) => util.dynamodb.toMapValues(tmp))

 return {
 operation: 'BatchPutItem',
 tables: {
 locationReadings,
 temperatureReadings,
 },
 }
}

export function response(ctx) {
 if (ctx.error) {
 util.appendError(ctx.error.message, ctx.error.type)
 }
 return ctx.result.data
}

With batch operations, there can be both errors and results returned from the invocation. In that
case, we’re free to do some extra error handling.

Note

The use of utils.appendError() is similar to the util.error(), with the major
distinction that it doesn’t interrupt the evaluation of the request or response handler.
Instead, it signals there was an error with the field but allows the handler to be
evaluated and consequently return data back to the caller. We recommend that you use
utils.appendError() when your application needs to return partial results.

Save the resolver and navigate to the Queries page in the AWS AppSync console. We can now send
some sensor readings.

Multi-table batch 350

AWS AppSync Developer Guide

Execute the following mutation:

mutation sendReadings {
 recordReadings(
 tempReadings: [
 {sensorId: 1, value: 85.5, timestamp: "2018-02-01T17:21:05.000+08:00"},
 {sensorId: 1, value: 85.7, timestamp: "2018-02-01T17:21:06.000+08:00"},
 {sensorId: 1, value: 85.8, timestamp: "2018-02-01T17:21:07.000+08:00"},
 {sensorId: 1, value: 84.2, timestamp: "2018-02-01T17:21:08.000+08:00"},
 {sensorId: 1, value: 81.5, timestamp: "2018-02-01T17:21:09.000+08:00"}
]
 locReadings: [
 {sensorId: 1, lat: 47.615063, long: -122.333551, timestamp:
 "2018-02-01T17:21:05.000+08:00"},
 {sensorId: 1, lat: 47.615163, long: -122.333552, timestamp:
 "2018-02-01T17:21:06.000+08:00"},
 {sensorId: 1, lat: 47.615263, long: -122.333553, timestamp:
 "2018-02-01T17:21:07.000+08:00"},
 {sensorId: 1, lat: 47.615363, long: -122.333554, timestamp:
 "2018-02-01T17:21:08.000+08:00"},
 {sensorId: 1, lat: 47.615463, long: -122.333555, timestamp:
 "2018-02-01T17:21:09.000+08:00"}
]) {
 locationReadings {
 sensorId
 timestamp
 lat
 long
 }
 temperatureReadings {
 sensorId
 timestamp
 value
 }
 }
}

We sent ten sensor readings in one mutation with readings split up across two tables. Use the
DynamoDB console to validate that the data shows up in both the locationReadings and
temperatureReadings tables.

Multi-table batch 351

AWS AppSync Developer Guide

BatchDeleteItem - Deleting sensor readings

Similarly, we would also need to be able to delete batches of sensor readings. Let’s use the
Mutation.deleteReadings GraphQL field for this purpose. In the AWS AppSync console's
Schema page, select Attach next to the Mutation.deleteReadings field. On the next screen,
create your resolver using the locationReadings table as the data source.

After creating your resolver, replace the handlers in the code editor with the snippet below. In this
resolver, we use a helper function mapper that extracts the sensorId and the timestamp from
the provided inputs.

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const { locReadings, tempReadings } = ctx.args
 const mapper = ({ sensorId, timestamp }) => util.dynamodb.toMapValues({ sensorId,
 timestamp })

 return {
 operation: 'BatchDeleteItem',
 tables: {
 locationReadings: locReadings.map(mapper),
 temperatureReadings: tempReadings.map(mapper),
 },
 }
}

export function response(ctx) {
 if (ctx.error) {
 util.appendError(ctx.error.message, ctx.error.type)
 }
 return ctx.result.data
}

Save the resolver and navigate to the Queries page in the AWS AppSync console. Now, let’s delete
a couple of sensor readings.

Execute the following mutation:

mutation deleteReadings {
 # Let's delete the first two readings we recorded

Multi-table batch 352

AWS AppSync Developer Guide

 deleteReadings(
 tempReadings: [{sensorId: 1, timestamp: "2018-02-01T17:21:05.000+08:00"}]
 locReadings: [{sensorId: 1, timestamp: "2018-02-01T17:21:05.000+08:00"}]) {
 locationReadings {
 sensorId
 timestamp
 lat
 long
 }
 temperatureReadings {
 sensorId
 timestamp
 value
 }
 }
}

Note

Contrary to the DeleteItem operation, the fully deleted item isn’t returned in the
response. Only the passed key is returned. To learn more, see the BatchDeleteItem in
JavaScript resolver function reference for DynamoDB .

Validate through the DynamoDB console that these two readings have been deleted from the
locationReadings and temperatureReadings tables.

BatchGetItem - Retrieve readings

Another common operation for our app would be to retrieve the readings for a sensor at a specific
point in time. Let’s attach a resolver to the Query.getReadings GraphQL field on our schema. In
the AWS AppSync console's Schema page, select Attach next to the Query.getReadings field.
On the next screen, create your resolver using the locationReadings table as the data source.

Let’s use the following code:

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 const keys = [util.dynamodb.toMapValues(ctx.args)]
 const consistentRead = true

Multi-table batch 353

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-batch-delete-item
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-batch-delete-item

AWS AppSync Developer Guide

 return {
 operation: 'BatchGetItem',
 tables: {
 locationReadings: { keys, consistentRead },
 temperatureReadings: { keys, consistentRead },
 },
 }
}

export function response(ctx) {
 if (ctx.error) {
 util.appendError(ctx.error.message, ctx.error.type)
 }
 const { locationReadings: locs, temperatureReadings: temps } = ctx.result.data

 return [
 ...locs.map((l) => ({ ...l, __typename: 'LocationReading' })),
 ...temps.map((t) => ({ ...t, __typename: 'TemperatureReading' })),
]
}

Save the resolver and navigate to the Queries page in the AWS AppSync console. Now, let’s retrieve
our sensor readings.

Execute the following query:

query getReadingsForSensorAndTime {
 # Let's retrieve the very first two readings
 getReadings(sensorId: 1, timestamp: "2018-02-01T17:21:06.000+08:00") {
 sensorId
 timestamp
 ...on TemperatureReading {
 value
 }
 ...on LocationReading {
 lat
 long
 }
 }
}

We have successfully demonstrated the use of DynamoDB batch operations using AWS AppSync.

Multi-table batch 354

AWS AppSync Developer Guide

Error handling

In AWS AppSync, data source operations can sometimes return partial results. Partial results is
the term we will use to denote when the output of an operation is comprised of some data and
an error. Because error handling is inherently application specific, AWS AppSync gives you the
opportunity to handle errors in the response handler. The resolver invocation error, if present, is
available from the context as ctx.error. Invocation errors always include a message and a type,
accessible as properties ctx.error.message and ctx.error.type. In the response handler,
you can handle partial results in three ways:

1. Swallow the invocation error by just returning data.

2. Raise an error (using util.error(...)) by stopping the handler evaluation, which won’t
return any data.

3. Append an error (using util.appendError(...)) and also return data.

Let’s demonstrate each of the three points above with DynamoDB batch operations.

DynamoDB Batch operations

With DynamoDB batch operations, it is possible that a batch partially completes. That is, it is
possible that some of the requested items or keys are left unprocessed. If AWS AppSync is unable
to complete a batch, unprocessed items and an invocation error will be set on the context.

We will implement error handling using the Query.getReadings field configuration
from the BatchGetItem operation from the previous section of this tutorial.
This time, let’s pretend that while executing the Query.getReadings field, the
temperatureReadings DynamoDB table ran out of provisioned throughput. DynamoDB raised a
ProvisionedThroughputExceededException during the second attempt by AWS AppSync to
process the remaining elements in the batch.

The following JSON represents the serialized context after the DynamoDB batch invocation but
before the response handler was called:

{
 "arguments": {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 },

Error handling 355

AWS AppSync Developer Guide

 "source": null,
 "result": {
 "data": {
 "temperatureReadings": [
 null
],
 "locationReadings": [
 {
 "lat": 47.615063,
 "long": -122.333551,
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
]
 },
 "unprocessedKeys": {
 "temperatureReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
],
 "locationReadings": []
 }
 },
 "error": {
 "type": "DynamoDB:ProvisionedThroughputExceededException",
 "message": "You exceeded your maximum allowed provisioned throughput for a table or
 for one or more global secondary indexes. (...)"
 },
 "outErrors": []
}

A few things to note on the context:

• The invocation error has been set on the context at ctx.error by AWS AppSync, and the error
type has been set to DynamoDB:ProvisionedThroughputExceededException.

• Results are mapped per table under ctx.result.data even though an error is present.

• Keys that were left unprocessed are available at ctx.result.data.unprocessedKeys.
Here, AWS AppSync was unable to retrieve the item with key (sensorId:1,
timestamp:2018-02-01T17:21:05.000+08:00) because of insufficient table throughput.

Error handling 356

AWS AppSync Developer Guide

Note

For BatchPutItem, it is ctx.result.data.unprocessedItems. For
BatchDeleteItem, it is ctx.result.data.unprocessedKeys.

Let’s handle this error in three different ways.

1. Swallowing the invocation error

Returning data without handling the invocation error effectively swallows the error, making the
result for the given GraphQL field always successful.

The code we write is familiar and only focuses on the result data.

Response handler

export function response(ctx) {
 return ctx.result.data
}

GraphQL response

{
 "data": {
 "getReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00",
 "lat": 47.615063,
 "long": -122.333551
 },
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00",
 "value": 85.5
 }
]
 }
}

No errors will be added to the error response as only data was acted on.

Error handling 357

AWS AppSync Developer Guide

2. Raising an error to abort the response handler execution

When partial failures should be treated as complete failures from the client’s perspective, you can
abort the response handler execution to prevent returning data. The util.error(...) utility
method achieves exactly this behavior.

Response handler code

export function response(ctx) {
 if (ctx.error) {
 util.error(ctx.error.message, ctx.error.type, null,
 ctx.result.data.unprocessedKeys);
 }
 return ctx.result.data;
}

GraphQL response

{
 "data": {
 "getReadings": null
 },
 "errors": [
 {
 "path": [
 "getReadings"
],
 "data": null,
 "errorType": "DynamoDB:ProvisionedThroughputExceededException",
 "errorInfo": {
 "temperatureReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
],
 "locationReadings": []
 },
 "locations": [
 {
 "line": 58,
 "column": 3
 }

Error handling 358

AWS AppSync Developer Guide

],
 "message": "You exceeded your maximum allowed provisioned throughput for a table
 or for one or more global secondary indexes. (...)"
 }
]
}

Even though some results might have been returned from the DynamoDB batch operation, we
chose to raise an error such that the getReadings GraphQL field is null and the error has been
added to the GraphQL response errors block.

3. Appending an error to return both data and errors

In certain cases, to provide a better user experience, applications can return partial results and
notify their clients of the unprocessed items. The clients can decide to either implement a retry
or translate the error back to the end user. The util.appendError(...) is the utility method
that enables this behavior by letting the application designer append errors on the context
without interfering with the evaluation of the response handler. After evaluating the response
handler, AWS AppSync will process any context errors by appending them to the errors block of the
GraphQL response.

Response handler code

export function response(ctx) {
 if (ctx.error) {
 util.appendError(ctx.error.message, ctx.error.type, null,
 ctx.result.data.unprocessedKeys);
 }
 return ctx.result.data;
}

We forwarded both the invocation error and unprocessedKeys element inside the errors
block of the GraphQL response. The getReadings field also return partial data from the
locationReadings table as you can see in the response below.

GraphQL response

{
 "data": {
 "getReadings": [

Error handling 359

AWS AppSync Developer Guide

 null,
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00",
 "value": 85.5
 }
]
 },
 "errors": [
 {
 "path": [
 "getReadings"
],
 "data": null,
 "errorType": "DynamoDB:ProvisionedThroughputExceededException",
 "errorInfo": {
 "temperatureReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
],
 "locationReadings": []
 },
 "locations": [
 {
 "line": 58,
 "column": 3
 }
],
 "message": "You exceeded your maximum allowed provisioned throughput for a table
 or for one or more global secondary indexes. (...)"
 }
]
}

Tutorial: HTTP resolvers

AWS AppSync enables you to use supported data sources (that is, AWS Lambda, Amazon
DynamoDB, Amazon OpenSearch Service, or Amazon Aurora) to perform various operations, in
addition to any arbitrary HTTP endpoints to resolve GraphQL fields. After your HTTP endpoints are
available, you can connect to them using a data source. Then, you can configure a resolver in the

Tutorial: HTTP resolvers 360

AWS AppSync Developer Guide

schema to perform GraphQL operations such as queries, mutations, and subscriptions. This tutorial
walks you through some common examples.

In this tutorial you use a REST API (created using Amazon API Gateway and Lambda) with an AWS
AppSync GraphQL endpoint.

Creating a REST API

You can use the following AWS CloudFormation template to set up a REST endpoint that works for
this tutorial:

The AWS CloudFormation stack performs the following steps:

1. Sets up a Lambda function that contains your business logic for your microservice.

2. Sets up an API Gateway REST API with the following endpoint/method/content type
combination:

API Resource Path HTTP Method Supported Content Type

/v1/users POST application/json

/v1/users GET application/json

/v1/users/1 GET application/json

/v1/users/1 PUT application/json

/v1/users/1 DELETE application/json

Creating your GraphQL API

To create the GraphQL API in AWS AppSync:

1. Open the AWS AppSync console and choose Create API.

2. Choose GraphQL APIs and then choose Design from scratch. Choose Next.

Creating a REST API 361

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/http/http-api-gw.yaml

AWS AppSync Developer Guide

3. For the API name, type UserData. Choose Next.

4. Choose Create GraphQL resources later. Choose Next.

5. Review your inputs and choose Create API.

The AWS AppSync console creates a new GraphQL API for you using the API key authentication
mode. You can use the console to further configure your GraphQL API and run requests.

Creating a GraphQL schema

Now that you have a GraphQL API, let’s create a GraphQL schema. In the Schema editor in the AWS
AppSync console, use the snippet below:

type Mutation {
 addUser(userInput: UserInput!): User
 deleteUser(id: ID!): User
}

type Query {
 getUser(id: ID): User
 listUser: [User!]!
}

type User {
 id: ID!
 username: String!
 firstname: String
 lastname: String
 phone: String
 email: String
}

input UserInput {
 id: ID!
 username: String!
 firstname: String
 lastname: String
 phone: String
 email: String
}

Creating a GraphQL schema 362

AWS AppSync Developer Guide

Configure your HTTP data source

To configure your HTTP data source, do the following:

1. In the Data sources page in your AWS AppSync GraphQL API, choose Create data source.

2. Enter a name for the data source like HTTP_Example.

3. In Data source type, choose HTTP endpoint.

4. Set the endpoint to the API Gateway endpoint that was created at the beginning of the
tutorial. You can find your stack-generated endpoint if you navigate to the Lambda console
and find your application under Applications. Inside of your application's settings, you should
see an API endpoint which will be your endpoint in AWS AppSync. Make sure you don’t
include the stage name as part of the endpoint. For instance, if your endpoint were https://
aaabbbcccd.execute-api.us-east-1.amazonaws.com/v1, you would type in https://
aaabbbcccd.execute-api.us-east-1.amazonaws.com.

Note

At this time, only public endpoints are supported by AWS AppSync.
For more information about the certifying authorities that are recognized by the AWS
AppSync service, see Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS
Endpoints.

Configuring resolvers

In this step, you will connect the HTTP data source to the getUser and addUser queries.

To set up the getUser resolver:

1. In your AWS AppSync GraphQL API, choose the Schema tab.

2. To the right of the Schema editor, in the Resolvers pane and under the Query type, find the
getUser field and choose Attach.

3. Keep the resolver type to Unit and the runtime to APPSYNC_JS.

4. In Data source name, choose the HTTP endpoint you made earlier.

5. Choose Create.

Configure your HTTP data source 363

AWS AppSync Developer Guide

6. In the Resolver code editor, add the following snippet as your request handler:

import { util } from '@aws-appsync/utils'

export function request(ctx) {
 return {
 version: '2018-05-29',
 method: 'GET',
 params: {
 headers: {
 'Content-Type': 'application/json',
 },
 },
 resourcePath: `/v1/users/${ctx.args.id}`,
 }
}

7. Add the following snippet as your response handler:

export function response(ctx) {
 const { statusCode, body } = ctx.result
 // if response is 200, return the response
 if (statusCode === 200) {
 return JSON.parse(body)
 }
 // if response is not 200, append the response to error block.
 util.appendError(body, statusCode)
}

8. Choose the Query tab, and then run the following query:

query GetUser{
 getUser(id:1){
 id
 username
 }
}

This should return the following response:

{
 "data": {

Configuring resolvers 364

AWS AppSync Developer Guide

 "getUser": {
 "id": "1",
 "username": "nadia"
 }
 }
}

To set up the addUser resolver:

1. Choose the Schema tab.

2. To the right of the Schema editor, in the Resolvers pane and under the Query type, find the
addUser field and choose Attach.

3. Keep the resolver type to Unit and the runtime to APPSYNC_JS.

4. In Data source name, choose the HTTP endpoint you made earlier.

5. Choose Create.

6. In the Resolver code editor, add the following snippet as your request handler:

export function request(ctx) {
 return {
 "version": "2018-05-29",
 "method": "POST",
 "resourcePath": "/v1/users",
 "params":{
 "headers":{
 "Content-Type": "application/json"
 },
 "body": ctx.args.userInput
 }
 }
}

7. Add the following snippet as your response handler:

export function response(ctx) {
 if(ctx.error) {
 return util.error(ctx.error.message, ctx.error.type)
 }
 if (ctx.result.statusCode == 200) {
 return ctx.result.body
 } else {

Configuring resolvers 365

AWS AppSync Developer Guide

 return util.appendError(ctx.result.body, "ctx.result.statusCode")
 }
}

8. Choose the Query tab, and then run the following query:

mutation addUser{
 addUser(userInput:{
 id:"2",
 username:"shaggy"
 }){
 id
 username
 }
}

If you run the getUser query again, it should return the following response:

{
 "data": {
 "getUser": {
 "id": "2",
 "username": "shaggy"
 }
 }
}

Invoking AWS Services

You can use HTTP resolvers to set up a GraphQL API interface for AWS services. HTTP requests to
AWS must be signed with the Signature Version 4 process so that AWS can identify who sent them.
AWS AppSync calculates the signature on your behalf when you associate an IAM role with the
HTTP data source.

You provide two additional components to invoke AWS services with HTTP resolvers:

• An IAM role with permissions to call the AWS service APIs

• Signing configuration in the data source

Invoking AWS Services 366

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS AppSync Developer Guide

For example, if you want to call the ListGraphqlApis operation with HTTP resolvers, you first create
an IAM role that AWS AppSync assumes with the following policy attached:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "appsync:ListGraphqlApis"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Next, create the HTTP data source for AWS AppSync. In this example, you call AWS AppSync in the
US West (Oregon) Region. Set up the following HTTP configuration in a file named http.json,
which includes the signing region and service name:

{
 "endpoint": "https://appsync.us-west-2.amazonaws.com/",
 "authorizationConfig": {
 "authorizationType": "AWS_IAM",
 "awsIamConfig": {
 "signingRegion": "us-west-2",
 "signingServiceName": "appsync"
 }
 }
}

Then, use the AWS CLI to create the data source with an associated role as follows:

aws appsync create-data-source --api-id <API-ID> \
 --name AWSAppSync \
 --type HTTP \
 --http-config file:///http.json \
 --service-role-arn <ROLE-ARN>

When you attach a resolver to the field in the schema, use the following request mapping template
to call AWS AppSync:

Invoking AWS Services 367

https://docs.aws.amazon.com/appsync/latest/APIReference/API_ListGraphqlApis.html

AWS AppSync Developer Guide

{
 "version": "2018-05-29",
 "method": "GET",
 "resourcePath": "/v1/apis"
}

When you run a GraphQL query for this data source, AWS AppSync signs the request using the role
you provided and includes the signature in the request. The query returns a list of AWS AppSync
GraphQL APIs in your account in that AWS Region.

Tutorial: Aurora PostgreSQL with Data API

AWS AppSync provides a data source for executing SQL statements against Amazon Aurora clusters
that are enabled with a Data API. You can use AWS AppSync resolvers to run SQL statements
against the data API with GraphQL queries, mutations, and subscriptions.

Note

This tutorial uses the US-EAST-1 Region.

Creating clusters

Before adding an Amazon RDS data source to AWS AppSync, first enable a Data API on an Aurora
Serverless cluster. You must also configure a secret using AWS Secrets Manager. To create an
Aurora Serverless cluster, you can use the AWS CLI:

aws rds create-db-cluster \
 --db-cluster-identifier appsync-tutorial \
 --engine aurora-postgresql --engine-version 13.11 \
 --engine-mode serverless \
 --master-username USERNAME \
 --master-user-password COMPLEX_PASSWORD

This will return an ARN for the cluster. You can check on the status of your cluster with the
command:

aws rds describe-db-clusters \
 --db-cluster-identifier appsync-tutorial \

Tutorial: Aurora PostgreSQL with Data API 368

AWS AppSync Developer Guide

 --query "DBClusters[0].Status"

Create a Secret via the AWS Secrets Manager Console or the AWS CLI with an input file such as the
following using the USERNAME and COMPLEX_PASSWORD from the previous step:

{
 "username": "USERNAME",
 "password": "COMPLEX_PASSWORD"
}

Pass this as a parameter to the CLI:

aws secretsmanager create-secret \
 --name appsync-tutorial-rds-secret \
 --secret-string file://creds.json

This will return an ARN for the secret. Take note of the ARN of your Aurora Serverless cluster and
Secret for later when creating a data source in the AWS AppSync console.

Enabling data API

Once your cluster status changes to available, enable the Data API by following the Amazon
RDS documentation. The Data API must be enabled before adding it as an AWS AppSync data
source. You can also enable the Data API using the AWS CLI:

aws rds modify-db-cluster \
 --db-cluster-identifier appsync-tutorial \
 --enable-http-endpoint \
 --apply-immediately

Creating the database and table

After enabling your Data API, validate it works using the aws rds-data execute-statement
command in the AWS CLI. This ensures that your Aurora Serverless cluster is configured properly
before adding it to the AWS AppSync API. First, create a TESTDB database with the --sql
parameter:

aws rds-data execute-statement \
 --resource-arn "arn:aws:rds:us-east-1:123456789012:cluster:appsync-tutorial" \

Enabling data API 369

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html

AWS AppSync Developer Guide

 --secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:appsync-
tutorial-rds-secret" \
 --sql "create DATABASE \"testdb\""

If this runs without any errors, add two tables with the create table command:

 aws rds-data execute-statement \
 --resource-arn "arn:aws:rds:us-east-1:123456789012:cluster:appsync-tutorial" \
 --secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:appsync-
tutorial-rds-secret" \
 --database "testdb" \
 --sql 'create table public.todos (id serial constraint todos_pk primary key,
 description text not null, due date not null, "createdAt" timestamp default now());'

aws rds-data execute-statement \
 --resource-arn "arn:aws:rds:us-east-1:123456789012:cluster:appsync-tutorial" \
 --secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:appsync-
tutorial-rds-secret" \
 --database "testdb" \
 --sql 'create table public.tasks (id serial constraint tasks_pk primary key,
 description varchar, "todoId" integer not null constraint tasks_todos_id_fk references
 public.todos);'

If everything runs without issues, you can now add the cluster as a data source in your API.

Creating a GraphQL schema

Now that your Aurora Serverless Data API is running with configured tables, we'll create a GraphQL
schema. You can do this manually, but AWS AppSync lets you quickly get started by importing
table configuration from an existing database using the API creation wizard.

To begin:

1. In the AWS AppSync console, choose Create API, then Start with an Amazon Aurora cluster.

2. Specify API details like API name, then select your database to generate the API.

3. Choose your database. If needed, update the Region, then choose your Aurora cluster and
TESTDB database.

4. Choose your Secret, then choose Import.

5. Once tables have been discovered, update the type names. Change Todos to Todo and Tasks
to Task.

Creating a GraphQL schema 370

AWS AppSync Developer Guide

6. Preview the generated schema by choosing Preview Schema. Your schema will look something
like this:

type Todo {
 id: Int!
 description: String!
 due: AWSDate!
 createdAt: String
}

type Task {
 id: Int!
 todoId: Int!
 description: String
}

7. For the role, you can either have AWS AppSync create a new role or create one with a policy
similar to the one below:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-data:ExecuteStatement",
],
 "Resource": [
 "arn:aws:rds:us-east-1:123456789012:cluster:appsync-tutorial",
 "arn:aws:rds:us-east-1:123456789012:cluster:appsync-tutorial:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:us-
east-1:123456789012:secret:your:secret:arn:appsync-tutorial-rds-secret",
 "arn:aws:secretsmanager:us-
east-1:123456789012:secret:your:secret:arn:appsync-tutorial-rds-secret:*"
]

Creating a GraphQL schema 371

AWS AppSync Developer Guide

 }
]
}

Note that there are two statements in this policy to which you are granting role access. The first
resource is your Aurora cluster and the second is your AWS Secrets Manager ARN.

Choose Next, review the configuration details, then choose Create API. You now have a fully
operational API. You can review the full details of your API on the Schema page.

Resolvers for RDS

The API creation flow automatically created the resolvers to interact with our types. If you look at
Schema page, you will find resolvers necessary to:

• Create a todo via the Mutation.createTodo field.

• Update a todo via the Mutation.updateTodo field.

• Delete a todo via the Mutation.deleteTodo field.

• Get a single todo via the Query.getTodo field.

• List all todos via the Query.listTodos field.

You will find similar fields and resolvers attached for the Task type. Let's take a closer look at
some of the resolvers.

Mutation.createTodo

From the schema editor in the AWS AppSync console, on the right side, choose testdb next to
createTodo(...): Todo. The resolver code uses the insert function from the rds module to
dynamically create an insert statement that adds data to the todos table. Because we are working
with Postgres, we can leverage the returning statement to get the inserted data back.

Let's update the resolver to properly specify the DATE type of the due field:

import { util } from '@aws-appsync/utils';
import { insert, createPgStatement, toJsonObject, typeHint } from '@aws-appsync/utils/
rds';

export function request(ctx) {

Resolvers for RDS 372

AWS AppSync Developer Guide

 const { input } = ctx.args;
 // if a due date is provided, cast is as `DATE`
 if (input.due) {
 input.due = typeHint.DATE(input.due)
 }
 const insertStatement = insert({
 table: 'todos',
 values: input,
 returning: '*',
 });
 return createPgStatement(insertStatement)
}

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 return util.appendError(
 error.message,
 error.type,
 result
)
 }
 return toJsonObject(result)[0][0]
}

Save the resolver. The type hint marks the due properly in our input object as a DATE type. This
allows the Postgres engine to properly interpret the value. Next, update your schema to remove
the id from the CreateTodo input. Because our Postgres database can return the generated ID,
we can rely on it for creation and returning the result as a single request:

input CreateTodoInput {
 due: AWSDate!
 createdAt: String
 description: String!
}

Make the change and update your schema. Head to the Queries editor to add an item to the
database:

mutation CreateTodo {
 createTodo(input: {description: "Hello World!", due: "2023-12-31"}) {
 id

Resolvers for RDS 373

AWS AppSync Developer Guide

 due
 description
 createdAt
 }
}

You get the result:

{
 "data": {
 "createTodo": {
 "id": 1,
 "due": "2023-12-31",
 "description": "Hello World!",
 "createdAt": "2023-11-14 20:47:11.875428"
 }
 }
}

Query.listTodos

From the schema editor in the console, on the right side, choose testdb next to listTodos(id:
ID!): Todo. The request handler uses the select utility function to build a request dynamically at
run time.

export function request(ctx) {
 const { filter = {}, limit = 100, nextToken } = ctx.args;
 const offset = nextToken ? +util.base64Decode(nextToken) : 0;
 const statement = select({
 table: 'todos',
 columns: '*',
 limit,
 offset,
 where: filter,
 });
 return createPgStatement(statement)
}

We want to filter todos based on the due date. Let's update the resolver to cast due values to
DATE. Update the list of imports and the request handler:

import { util } from '@aws-appsync/utils';

Resolvers for RDS 374

AWS AppSync Developer Guide

import * as rds from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { filter: where = {}, limit = 100, nextToken } = ctx.args;
 const offset = nextToken ? +util.base64Decode(nextToken) : 0;

 // if `due` is used in a filter, CAST the values to DATE.
 if (where.due) {
 Object.entries(where.due).forEach(([k, v]) => {
 if (k === 'between') {
 where.due[k] = v.map((d) => rds.typeHint.DATE(d));
 } else {
 where.due[k] = rds.typeHint.DATE(v);
 }
 });
 }

 const statement = rds.select({
 table: 'todos',
 columns: '*',
 limit,
 offset,
 where,
 });
 return rds.createPgStatement(statement);
}

export function response(ctx) {
 const {
 args: { limit = 100, nextToken },
 error,
 result,
 } = ctx;
 if (error) {
 return util.appendError(error.message, error.type, result);
 }
 const offset = nextToken ? +util.base64Decode(nextToken) : 0;
 const items = rds.toJsonObject(result)[0];
 const endOfResults = items?.length < limit;
 const token = endOfResults ? null : util.base64Encode(`${offset + limit}`);
 return { items, nextToken: token };
}

Resolvers for RDS 375

AWS AppSync Developer Guide

Let's try out the query. In the Queries editor:

query LIST {
 listTodos(limit: 10, filter: {due: {between: ["2021-01-01", "2025-01-02"]}}) {
 items {
 id
 due
 description
 }
 }
}

Mutation.updateTodo

You can also update a Todo. From the Queries editor, let's update our first Todo item of id 1.

mutation UPDATE {
 updateTodo(input: {id: 1, description: "edits"}) {
 description
 due
 id
 }
}

Note that you must specify the id of the item you are updating. You can also specify a condition to
only update an item that meets specific conditions. For example, we may only want to edit the item
if the description starts with edits:

mutation UPDATE {
 updateTodo(input: {id: 1, description: "edits: make a change"}, condition:
 {description: {beginsWith: "edits"}}) {
 description
 due
 id
 }
}

Just like how we handled our create and list operations, we can update our resolver to cast the
due field to a DATE. Save these changes to updateTodo:

import { util } from '@aws-appsync/utils';

Resolvers for RDS 376

AWS AppSync Developer Guide

import * as rds from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: { id, ...values }, condition = {}, } = ctx.args;
 const where = { ...condition, id: { eq: id } };

 // if `due` is used in a condition, CAST the values to DATE.
 if (condition.due) {
 Object.entries(condition.due).forEach(([k, v]) => {
 if (k === 'between') {
 condition.due[k] = v.map((d) => rds.typeHint.DATE(d));
 } else {
 condition.due[k] = rds.typeHint.DATE(v);
 }
 });
 }

 // if a due date is provided, cast is as `DATE`
 if (values.due) {
 values.due = rds.typeHint.DATE(values.due);
 }

 const updateStatement = rds.update({
 table: 'todos',
 values,
 where,
 returning: '*',
 });
 return rds.createPgStatement(updateStatement);
}

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 return util.appendError(error.message, error.type, result);
 }
 return rds.toJsonObject(result)[0][0];
}

Now try an update with a condition:

mutation UPDATE {
 updateTodo(

Resolvers for RDS 377

AWS AppSync Developer Guide

 input: {
 id: 1, description: "edits: make a change", due: "2023-12-12"},
 condition: {
 description: {beginsWith: "edits"}, due: {ge: "2023-11-08"}})
 {
 description
 due
 id
 }
}

Mutation.deleteTodo

You can delete a Todo with the deleteTodo mutation. This works like the updateTodo
mutation, and you must specify the id of the item you want to delete:

mutation DELETE {
 deleteTodo(input: {id: 1}) {
 description
 due
 id
 }
}

Writing custom queries

We've used the rds module utilities to create our SQL statements. We can also write our own
custom static statement to interact with our database. First, update the schema to remove the id
field from the CreateTask input.

input CreateTaskInput {
 todoId: Int!
 description: String
}

Next, create a couple of tasks. A task has a foreign key relationship with Todo:

mutation TASKS {
 a: createTask(input: {todoId: 2, description: "my first sub task"}) { id }
 b:createTask(input: {todoId: 2, description: "another sub task"}) { id }
 c: createTask(input: {todoId: 2, description: "a final sub task"}) { id }

Resolvers for RDS 378

AWS AppSync Developer Guide

}

Create a new field in your Query type called getTodoAndTasks:

getTodoAndTasks(id: Int!): Todo

Add a tasks field to the Todo type:

type Todo {
 due: AWSDate!
 id: Int!
 createdAt: String
 description: String!
 tasks:TaskConnection
}

Save the schema. From the schema editor in the console, on the right side, choose Attach Resolver
for getTodosAndTasks(id: Int!): Todo. Choose your Amazon RDS data source. Update your
resolver with the following code:

import { sql, createPgStatement,toJsonObject } from '@aws-appsync/utils/rds';

export function request(ctx) {
 return createPgStatement(
 sql`SELECT * from todos where id = ${ctx.args.id}`,
 sql`SELECT * from tasks where "todoId" = ${ctx.args.id}`);
}

export function response(ctx) {
 const result = toJsonObject(ctx.result);
 const todo = result[0][0];
 if (!todo) {
 return null;
 }
 todo.tasks = { items: result[1] };
 return todo;
}

In this code, we use the sql tag template to write a SQL statement that we can safely pass a
dynamic value to at run time. createPgStatement can take up to two SQL requests at a time. We
use that to send one query for our todo and another for our tasks. You could have done this with

Resolvers for RDS 379

AWS AppSync Developer Guide

a JOIN statement or any other method for that matter. The idea is being able to write your own
SQL statement to implement your business logic. To use the query in the Queries editor, we can try
this:

query TodoAndTasks {
 getTodosAndTasks(id: 2) {
 id
 due
 description
 tasks {
 items {
 id
 description
 }
 }
 }
}

Deleting your cluster

Important

Deleting a cluster is permanent. Review your project thoroughly before carrying out this
action.

To delete your cluster:

$ aws rds delete-db-cluster \
 --db-cluster-identifier appsync-tutorial \
 --skip-final-snapshot

Deleting your cluster 380

AWS AppSync Developer Guide

Resolver tutorials (VTL)

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Data sources and resolvers are how AWS AppSync translates GraphQL requests and fetches
information from your AWS resources. AWS AppSync has support for automatic provisioning
and connections with certain data source types. AWS AppSync supports AWS Lambda, Amazon
DynamoDB, relational databases (Amazon Aurora Serverless), Amazon OpenSearch Service, and
HTTP endpoints as data sources. You can use a GraphQL API with your existing AWS resources or
build data sources and resolvers. This section takes you through this process in a series of tutorials
for better understanding how the details work and tuning options.

AWS AppSync uses mapping templates written in Apache Velocity Template Language (VTL)
for resolvers. For more information about using mapping templates, see the Resolver mapping
template reference. More information about working with VTL is available in the Resolver mapping
template programming guide.

AWS AppSync supports the automatic provisioning of DynamoDB tables from a GraphQL schema
as described in Provision from schema (optional) and Launch a sample schema. You can also import
from an existing DynamoDB table which will create schema and connect resolvers. This is outlined
in Import from Amazon DynamoDB (optional).

Topics

• Tutorial: DynamoDB resolvers

• Tutorial: Lambda resolvers

• Tutorial: Amazon OpenSearch Service Resolvers

• Tutorial: Local Resolvers

• Tutorial: Combining GraphQL Resolvers

• Tutorial: DynamoDB Batch Resolvers

• Tutorial: DynamoDB Transaction Resolvers

• Tutorial: HTTP Resolvers

381

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

• Tutorial: Aurora Serverless

• Tutorial: Pipeline Resolvers

• Tutorial: Delta Sync

Tutorial: DynamoDB resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

This tutorial shows how you can bring your own Amazon DynamoDB tables to AWS AppSync and
connect them to a GraphQL API.

You can let AWS AppSync provision DynamoDB resources on your behalf. Or, if you prefer, you
can connect your existing tables to a GraphQL schema by creating a data source and a resolver.
In either case, you’ll be able to read and write to your DynamoDB database through GraphQL
statements and subscribe to real-time data.

There are specific configuration steps that need to be completed in order for GraphQL statements
to be translated to DynamoDB operations, and for responses to be translated back into GraphQL.
This tutorial outlines the configuration process through several real-world scenarios and data
access patterns.

Setting up your DynamoDB tables

To begin this tutorial, first you need to follow the steps below to provision AWS resources.

1. Provision AWS resources using the following AWS CloudFormation template in the CLI:

aws cloudformation create-stack \
 --stack-name AWSAppSyncTutorialForAmazonDynamoDB \
 --template-url https://s3.us-west-2.amazonaws.com/awsappsync/resources/
dynamodb/AmazonDynamoDBCFTemplate.yaml \
 --capabilities CAPABILITY_NAMED_IAM

Tutorial: DynamoDB resolvers 382

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

Alternatively, you can launch the following AWS CloudFormation stack in the US-West 2
(Oregon) region in your AWS account.

This creates the following:

• A DynamoDB table called AppSyncTutorial-Post that will hold Post data.

• An IAM role and associated IAM managed policy to allow AWS AppSync to interact with the
Post table.

2. To see more details about the stack and the created resources, run the following CLI command:

aws cloudformation describe-stacks --stack-name AWSAppSyncTutorialForAmazonDynamoDB

3. To delete the resources later, you can run the following:

aws cloudformation delete-stack --stack-name AWSAppSyncTutorialForAmazonDynamoDB

Creating your GraphQL API

To create the GraphQL API in AWS AppSync:

1. Sign in to the AWS Management Console and open the AppSync console.

• In the APIs dashboard, choose Create API.

2. Under the Customize your API or import from Amazon DynamoDB window, choose Build
from scratch.

• Choose Start to the right of the same window.

3. In the API name field, set the name of the API to AWSAppSyncTutorial.

4. Choose Create.

The AWS AppSync console creates a new GraphQL API for you using the API key authentication
mode. You can use the console to set up the rest of the GraphQL API and run queries against it for
the rest of this tutorial.

Creating your GraphQL API 383

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/dynamodb/AmazonDynamoDBCFTemplate.yaml
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

Defining a basic post API

Now that you have created an AWS AppSync GraphQL API, you can set up a basic schema that
allows the basic creation, retrieval, and deletion of post data.

1. Sign in to the AWS Management Console and open the AppSync console.

• In the APIs dashboard, choose the API you just created.

2. In the Sidebar, choose Schema.

• In the Schema pane, replace the contents with the following code:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 getPost(id: ID): Post
}

type Mutation {
 addPost(
 id: ID!
 author: String!
 title: String!
 content: String!
 url: String!
): Post!
}

type Post {
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int!
 downs: Int!
 version: Int!
}

3. Choose Save.

Defining a basic post API 384

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

This schema defines a Post type and operations to add and get Post objects.

Configuring the Data Source for the DynamoDB Tables

Next, link the queries and mutations defined in the schema to the AppSyncTutorial-
PostDynamoDB table.

First, AWS AppSync needs to be aware of your tables. You do this by setting up a data source in
AWS AppSync:

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Data Sources.

2. Choose Create data source.

a. For Data source name, enter in PostDynamoDBTable.

b. For Data source type, choose Amazon DynamoDB table.

c. For Region, choose US-WEST-2.

d. For Table name, choose the AppSyncTutorial-Post DynamoDB table.

e. Create a new IAM role (recommended) or choose an existing role that has the
lambda:invokeFunction IAM permission. Existing roles need a trust policy, as
explained in the Attaching a data source section.

The following is an example IAM policy that has the required permissions to perform
operations on the resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["lambda:invokeFunction"],
 "Resource": [
 "arn:aws:lambda:us-west-2:123456789012:function:myFunction",
 "arn:aws:lambda:us-west-2:123456789012:function:myFunction:*"
]
 }
]

Configuring the Data Source for the DynamoDB Tables 385

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

 }

3. Choose Create.

Setting up the addPost resolver (DynamoDB PutItem)

After AWS AppSync is aware of the DynamoDB table, you can link it to individual queries and
mutations by defining Resolvers. The first resolver you create is the addPost resolver, which
enables you to create a post in the AppSyncTutorial-Post DynamoDB table.

A resolver has the following components:

• The location in the GraphQL schema to attach the resolver. In this case, you are setting up a
resolver on the addPost field on the Mutation type. This resolver will be invoked when the
caller calls mutation { addPost(...){...} }.

• The data source to use for this resolver. In this case, you want to use the PostDynamoDBTable
data source you defined earlier, so you can add entries into the AppSyncTutorial-Post
DynamoDB table.

• The request mapping template. The purpose of the request mapping template is to take the
incoming request from the caller and translate it into instructions for AWS AppSync to perform
against DynamoDB.

• The response mapping template. The job of the response mapping template is to take the
response from DynamoDB and translate it back into something that GraphQL expects. This is
useful if the shape of the data in DynamoDB is different to the Post type in GraphQL, but in this
case they have the same shape, so you just pass the data through.

To set up the resolver:

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Data Sources.

2. Choose Create data source.

a. For Data source name, enter in PostDynamoDBTable.

b. For Data source type, choose Amazon DynamoDB table.

c. For Region, choose US-WEST-2.

Setting up the addPost resolver (DynamoDB PutItem) 386

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

d. For Table name, choose the AppSyncTutorial-Post DynamoDB table.

e. Create a new IAM role (recommended) or choose an existing role that has the
lambda:invokeFunction IAM permission. Existing roles need a trust policy, as
explained in the Attaching a data source section.

The following is an example IAM policy that has the required permissions to perform
operations on the resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["lambda:invokeFunction"],
 "Resource": [
 "arn:aws:lambda:us-west-2:123456789012:function:myFunction",
 "arn:aws:lambda:us-west-2:123456789012:function:myFunction:*"
]
 }
]
 }

3. Choose Create.

4. Choose the Schema tab.

5. In the Data types pane on the right, find the addPost field on the Mutation type, and then
choose Attach.

6. In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

7. In Data source name, choose PostDynamoDBTable.

8. In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },
 "attributeValues" : {
 "author" : $util.dynamodb.toDynamoDBJson($context.arguments.author),
 "title" : $util.dynamodb.toDynamoDBJson($context.arguments.title),
 "content" : $util.dynamodb.toDynamoDBJson($context.arguments.content),

Setting up the addPost resolver (DynamoDB PutItem) 387

AWS AppSync Developer Guide

 "url" : $util.dynamodb.toDynamoDBJson($context.arguments.url),
 "ups" : { "N" : 1 },
 "downs" : { "N" : 0 },
 "version" : { "N" : 1 }
 }
}

Note: A type is specified on all the keys and attribute values. For example, you set the author
field to { "S" : "${context.arguments.author}" }. The S part indicates to AWS
AppSync and DynamoDB that the value will be a string value. The actual value gets populated
from the author argument. Similarly, the version field is a number field because it uses N
for the type. Finally, you’re also initializing the ups, downs and version field.

For this tutorial you’ve specified that the GraphQL ID! type, which indexes the new item that
is inserted to DynamoDB, comes as part of the client arguments. AWS AppSync comes with
a utility for automatic ID generation called $utils.autoId() which you could have also
used in the form of "id" : { "S" : "${$utils.autoId()}" }. Then you could simply
leave the id: ID! out of the schema definition of addPost() and it would be inserted
automatically. You won’t use this technique for this tutorial, but you should consider it as a
good practice when writing to DynamoDB tables.

For more information about mapping templates, see the Resolver Mapping Template Overview
reference documentation. For more information about GetItem request mapping, see the
GetItem reference documentation. For more information about types, see the Type System
(Request Mapping) reference documentation.

9. In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

Note: Because the shape of the data in the AppSyncTutorial-Post table exactly matches
the shape of the Post type in GraphQL, the response mapping template just passes the results
straight through. Also note that all of the examples in this tutorial use the same response
mapping template, so you only create one file.

10. Choose Save.

Setting up the addPost resolver (DynamoDB PutItem) 388

AWS AppSync Developer Guide

Call the API to Add a Post

Now that the resolver is set up, AWS AppSync can translate an incoming addPost mutation to a
DynamoDB PutItem operation. You can now run a mutation to put something in the table.

• Choose the Queries tab.

• In the Queries pane, paste the following mutation:

mutation addPost {
 addPost(
 id: 123
 author: "AUTHORNAME"
 title: "Our first post!"
 content: "This is our first post."
 url: "https://aws.amazon.com/appsync/"
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

• The results of the newly created post should appear in the results pane to the right of the query
pane. It should look similar to the following:

{
 "data": {
 "addPost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1

Setting up the addPost resolver (DynamoDB PutItem) 389

AWS AppSync Developer Guide

 }
 }
}

Here’s what happened:

• AWS AppSync received an addPost mutation request.

• AWS AppSync took the request, and the request mapping template, and generated a request
mapping document. This would have looked like:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "123" }
 },
 "attributeValues" : {
 "author": { "S" : "AUTHORNAME" },
 "title": { "S" : "Our first post!" },
 "content": { "S" : "This is our first post." },
 "url": { "S" : "https://aws.amazon.com/appsync/" },
 "ups" : { "N" : 1 },
 "downs" : { "N" : 0 },
 "version" : { "N" : 1 }
 }
}

• AWS AppSync used the request mapping document to generate and execute a
DynamoDBPutItem request.

• AWS AppSync took the results of the PutItem request and converted them back to GraphQL
types.

{
 "id" : "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups" : 1,
 "downs" : 0,
 "version" : 1

Setting up the addPost resolver (DynamoDB PutItem) 390

AWS AppSync Developer Guide

}

• Passed it through the response mapping document, which just passed it through unchanged.

• Returned the newly created object in the GraphQL response.

Setting Up the getPost Resolver (DynamoDB GetItem)

Now that you’re able to add data to the AppSyncTutorial-PostDynamoDB table, you need to
set up the getPost query so it can retrieve that data from the AppSyncTutorial-Post table. To
do this, you set up another resolver.

• Choose the Schema tab.

• In the Data types pane on the right, find the getPost field on the Query type, and then choose
Attach.

• In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 }
}

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

• Choose Save.

Call the API to Get a Post

Now the resolver has been set up, AWS AppSync knows how to translate an incoming getPost
query to a DynamoDBGetItem operation. You can now run a query to retrieve the post you
created earlier.

Setting Up the getPost Resolver (DynamoDB GetItem) 391

AWS AppSync Developer Guide

• Choose the Queries tab.

• In the Queries pane, paste the following:

query getPost {
 getPost(id:123) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

• The post retrieved from DynamoDB should appear in the results pane to the right of the query
pane. It should look similar to the following:

{
 "data": {
 "getPost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

Here’s what happened:

• AWS AppSync received a getPost query request.

• AWS AppSync took the request, and the request mapping template, and generated a request
mapping document. This would have looked like:

Setting Up the getPost Resolver (DynamoDB GetItem) 392

AWS AppSync Developer Guide

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "id" : { "S" : "123" }
 }
}

• AWS AppSync used the request mapping document to generate and execute a DynamoDB
GetItem request.

• AWS AppSync took the results of the GetItem request and converted it back to GraphQL types.

{
 "id" : "123",
 "author": "AUTHORNAME",
 "title": "Our first post!",
 "content": "This is our first post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups" : 1,
 "downs" : 0,
 "version" : 1
}

• Passed it through the response mapping document, which just passed it through unchanged.

• Returned the retrieved object in the response.

Alternatively, take the following example:

query getPost {
 getPost(id:123) {
 id
 author
 title
 }
}

If your getPost query only needs the id, author, and title, you can change your request
mapping template to use projection expressions to specify only the attributes that you want from

Setting Up the getPost Resolver (DynamoDB GetItem) 393

AWS AppSync Developer Guide

your DynamoDB table to avoid unnecessary data transfer from DynamoDB to AWS AppSync. For
example, the request mapping template may look like the snippet below:

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "projection" : {
 "expression" : "#author, id, title",
 "expressionNames" : { "#author" : "author"}
 }
}

Create an updatePost Mutation (DynamoDB UpdateItem)

So far you can create and retrieve Post objects in DynamoDB. Next, you’ll set up a new mutation
to allow us to update object. You’ll do this using the UpdateItem DynamoDB operation.

• Choose the Schema tab.

• In the Schema pane, modify the Mutation type to add a new updatePost mutation as follows:

type Mutation {
 updatePost(
 id: ID!,
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post
 addPost(
 author: String!
 title: String!
 content: String!
 url: String!
): Post!
}

• Choose Save.

Create an updatePost Mutation (DynamoDB UpdateItem) 394

AWS AppSync Developer Guide

• In the Data types pane on the right, find the newly created updatePost field on the Mutation
type and then choose Attach.

• In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },
 "update" : {
 "expression" : "SET author = :author, title = :title, content = :content,
 #url = :url ADD version :one",
 "expressionNames": {
 "#url" : "url"
 },
 "expressionValues": {
 ":author" : $util.dynamodb.toDynamoDBJson($context.arguments.author),
 ":title" : $util.dynamodb.toDynamoDBJson($context.arguments.title),
 ":content" : $util.dynamodb.toDynamoDBJson($context.arguments.content),
 ":url" : $util.dynamodb.toDynamoDBJson($context.arguments.url),
 ":one" : { "N": 1 }
 }
 }
}

Note: This resolver is using the DynamoDB UpdateItem, which is significantly different from the
PutItem operation. Instead of writing the entire item, you’re just asking DynamoDB to update
certain attributes. This is done using DynamoDB Update Expressions. The expression itself is
specified in the expression field in the update section. It says to set the author, title,
content and url attributes, and then increment the version field. The values to use do not
appear in the expression itself; the expression has placeholders that have names starting with a
colon, which are then defined in the expressionValues field. Finally, DynamoDB has reserved
words that cannot appear in the expression. For example, url is a reserved word, so to update
the url field you can use name placeholders and define them in the expressionNames field.

Create an updatePost Mutation (DynamoDB UpdateItem) 395

AWS AppSync Developer Guide

For more info about UpdateItem request mapping, see the UpdateItem reference
documentation. For more information about how to write update expressions, see the
DynamoDB UpdateExpressions documentation.

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

Call the API to Update a Post

Now the resolver has been set up, AWS AppSync knows how to translate an incoming update
mutation to a DynamoDBUpdate operation. You can now run a mutation to update the item you
wrote earlier.

• Choose the Queries tab.

• In Queries pane, paste the following mutation. You’ll also need to update the id argument to
the value you noted down earlier.

mutation updatePost {
 updatePost(
 id:"123"
 author: "A new author"
 title: "An updated author!"
 content: "Now with updated content!"
 url: "https://aws.amazon.com/appsync/"
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

Create an updatePost Mutation (DynamoDB UpdateItem) 396

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Developer Guide

• The updated post in DynamoDB should appear in the results pane to the right of the query pane.
It should look similar to the following:

{
 "data": {
 "updatePost": {
 "id": "123",
 "author": "A new author",
 "title": "An updated author!",
 "content": "Now with updated content!",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 2
 }
 }
}

In this example, the ups and downs fields were not modified because the request mapping
template did not ask AWS AppSync and DynamoDB to do anything with those fields. Also, the
version field was incremented by 1 because you asked AWS AppSync and DynamoDB to add 1 to
the version field.

Modifying the updatePost Resolver (DynamoDB UpdateItem)

This is a good start to the updatePost mutation, but it has two main problems:

• If you want to update just a single field, you have to update all of the fields.

• If two people are modifying the object, you could potentially lose information.

To address these issues, you’re going to modify the updatePost mutation to only modify
arguments that were specified in the request, and then add a condition to the UpdateItem
operation.

1. Choose the Schema tab.

2. In the Schema pane, modify the updatePost field in the Mutation type to remove the
exclamation marks from the author, title, content, and url arguments, making sure

Modifying the updatePost Resolver (DynamoDB UpdateItem) 397

AWS AppSync Developer Guide

to leave the id field as is. This will make them optional argument. Also, add a new, required
expectedVersion argument.

type Mutation {
 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 author: String!
 title: String!
 content: String!
 url: String!
): Post!
}

3. Choose Save.

4. In the Data types pane on the right, find the updatePost field on the Mutation type.

5. Choose PostDynamoDBTable to open the existing resolver.

6. In Configure the request mapping template, modify the request mapping template as follows:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },

 ## Set up some space to keep track of things you're updating **
 #set($expNames = {})
 #set($expValues = {})
 #set($expSet = {})
 #set($expAdd = {})
 #set($expRemove = [])

 ## Increment "version" by 1 **
 $!{expAdd.put("version", ":one")}
 $!{expValues.put(":one", { "N" : 1 })}

Modifying the updatePost Resolver (DynamoDB UpdateItem) 398

AWS AppSync Developer Guide

 ## Iterate through each argument, skipping "id" and "expectedVersion" **
 #foreach($entry in $context.arguments.entrySet())
 #if($entry.key != "id" && $entry.key != "expectedVersion")
 #if((!$entry.value) && ("$!{entry.value}" == ""))
 ## If the argument is set to "null", then remove that attribute from
 the item in DynamoDB **

 #set($discard = ${expRemove.add("#${entry.key}")})
 $!{expNames.put("#${entry.key}", "$entry.key")}
 #else
 ## Otherwise set (or update) the attribute on the item in DynamoDB **

 $!{expSet.put("#${entry.key}", ":${entry.key}")}
 $!{expNames.put("#${entry.key}", "$entry.key")}
 $!{expValues.put(":${entry.key}", { "S" : "${entry.value}" })}
 #end
 #end
 #end

 ## Start building the update expression, starting with attributes you're going to
 SET **
 #set($expression = "")
 #if(!${expSet.isEmpty()})
 #set($expression = "SET")
 #foreach($entry in $expSet.entrySet())
 #set($expression = "${expression} ${entry.key} = ${entry.value}")
 #if ($foreach.hasNext)
 #set($expression = "${expression},")
 #end
 #end
 #end

 ## Continue building the update expression, adding attributes you're going to ADD
 **
 #if(!${expAdd.isEmpty()})
 #set($expression = "${expression} ADD")
 #foreach($entry in $expAdd.entrySet())
 #set($expression = "${expression} ${entry.key} ${entry.value}")
 #if ($foreach.hasNext)
 #set($expression = "${expression},")
 #end
 #end
 #end

Modifying the updatePost Resolver (DynamoDB UpdateItem) 399

AWS AppSync Developer Guide

 ## Continue building the update expression, adding attributes you're going to
 REMOVE **
 #if(!${expRemove.isEmpty()})
 #set($expression = "${expression} REMOVE")

 #foreach($entry in $expRemove)
 #set($expression = "${expression} ${entry}")
 #if ($foreach.hasNext)
 #set($expression = "${expression},")
 #end
 #end
 #end

 ## Finally, write the update expression into the document, along with any
 expressionNames and expressionValues **
 "update" : {
 "expression" : "${expression}"
 #if(!${expNames.isEmpty()})
 ,"expressionNames" : $utils.toJson($expNames)
 #end
 #if(!${expValues.isEmpty()})
 ,"expressionValues" : $utils.toJson($expValues)
 #end
 },

 "condition" : {
 "expression" : "version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" :
 $util.dynamodb.toDynamoDBJson($context.arguments.expectedVersion)
 }
 }
}

7. Choose Save.

This template is one of the more complex examples. It demonstrates the power and
flexibility of mapping templates. It loops through all of the arguments, skipping over id and
expectedVersion. If the argument is set to something, it asks AWS AppSync and DynamoDB
to update that attribute on the object in DynamoDB. If the attribute is set to null, it asks AWS

Modifying the updatePost Resolver (DynamoDB UpdateItem) 400

AWS AppSync Developer Guide

AppSync and DynamoDB to remove that attribute from the post object. If an argument wasn’t
specified, it leaves the attribute alone. It also increments the version field.

Also, there is a new condition section. A condition expression enables you tell AWS AppSync and
DynamoDB whether or not the request should succeed based on the state of the object already
in DynamoDB before the operation is performed. In this case, you only want the UpdateItem
request to succeed if the version field of the item currently in DynamoDB exactly matches the
expectedVersion argument.

For more information about condition expressions, see the Condition Expressions reference
documentation.

Call the API to Update a Post

Let’s try updating the Post object with the new resolver:

• Choose the Queries tab.

• In the Queries pane, paste the following mutation. You’ll also need to update the id argument
to the value you noted down earlier.

mutation updatePost {
 updatePost(
 id:123
 title: "An empty story"
 content: null
 expectedVersion: 2
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

• The updated post in DynamoDB should appear in the results pane to the right of the query pane.
It should look similar to the following:

Modifying the updatePost Resolver (DynamoDB UpdateItem) 401

AWS AppSync Developer Guide

{
 "data": {
 "updatePost": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 3
 }
 }
}

In this request, you asked AWS AppSync and DynamoDB to update the title and content field
only. It left all the other fields alone (other than incrementing the version field). You set the
title attribute to a new value, and removed the content attribute from the post. The author,
url, ups, and downs fields were left untouched.

Try executing the mutation request again, leaving the request exactly as is. You should see a
response similar to the following:

{
 "data": {
 "updatePost": null
 },
 "errors": [
 {
 "path": [
 "updatePost"
],
 "data": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 3

Modifying the updatePost Resolver (DynamoDB UpdateItem) 402

AWS AppSync Developer Guide

 },
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "locations": [
 {
 "line": 2,
 "column": 3
 }
],
 "message": "The conditional request failed (Service: AmazonDynamoDBv2;
 Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
 ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ)"
 }
]
}

The request fails because the condition expression evaluates to false:

• The first time you ran the request, the value of the version field of the post in DynamoDB was
2, which matched the expectedVersion argument. The request succeeded, which meant the
version field was incremented in DynamoDB to 3.

• The second time you ran the request, the value of the version field of the post in DynamoDB
was 3, which did not match the expectedVersion argument.

This pattern is typically called optimistic locking.

A feature of an AWS AppSync DynamoDB resolver is that it returns the current value of the post
object in DynamoDB. You can find this in the data field in the errors section of the GraphQL
response. Your application can use this information to decide how it should proceed. In this case,
you can see the version field of the object in DynamoDB is set to 3, so you could just update the
expectedVersion argument to 3 and the request would succeed again.

For more information about handling condition check failures, see the Condition Expressions
mapping template reference documentation.

Create upvotePost and downvotePost Mutations (DynamoDB
UpdateItem)

The Post type has ups and downs fields to enable record upvotes and downvotes, but so far the
API doesn’t let us do anything with them. Let’s add some mutations to let us upvote and downvote
the posts.

Create upvotePost and downvotePost Mutations (DynamoDB UpdateItem) 403

AWS AppSync Developer Guide

• Choose the Schema tab.

• In the Schema pane, modify the Mutation type to add new upvotePost and downvotePost
mutations as follows:

type Mutation {
 upvotePost(id: ID!): Post
 downvotePost(id: ID!): Post
 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

• Choose Save.

• In the Data types pane on the right, find the newly created upvotePost field on the Mutation
type, and then choose Attach.

• In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },
 "update" : {
 "expression" : "ADD ups :plusOne, version :plusOne",
 "expressionValues" : {
 ":plusOne" : { "N" : 1 }
 }

Create upvotePost and downvotePost Mutations (DynamoDB UpdateItem) 404

AWS AppSync Developer Guide

 }
}

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

• Choose Save.

• In the Data types pane on the right, find the newly created downvotePost field on the
Mutation type, and then choose Attach.

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },
 "update" : {
 "expression" : "ADD downs :plusOne, version :plusOne",
 "expressionValues" : {
 ":plusOne" : { "N" : 1 }
 }
 }
}

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

• Choose Save.

Call the API to upvote and downvote a Post

Now the new resolvers have been set up, AWS AppSync knows how to translate an incoming
upvotePost or downvote mutation to DynamoDB UpdateItem operation. You can now run
mutations to upvote or downvote the post you created earlier.

• Choose the Queries tab.

Create upvotePost and downvotePost Mutations (DynamoDB UpdateItem) 405

AWS AppSync Developer Guide

• In the Queries pane, paste the following mutation. You’ll also need to update the id argument
to the value you noted down earlier.

mutation votePost {
 upvotePost(id:123) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

• The post is updated in DynamoDB and should appear in the results pane to the right of the query
pane. It should look similar to the following:

{
 "data": {
 "upvotePost": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 6,
 "downs": 0,
 "version": 4
 }
 }
}

• Choose Execute query a few more times. You should see the ups and version field
incrementing by 1 each time you execute the query.

• Change the query to call the downvotePost mutation as follows:

mutation votePost {
 downvotePost(id:123) {
 id

Create upvotePost and downvotePost Mutations (DynamoDB UpdateItem) 406

AWS AppSync Developer Guide

 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button). This time, you should see the downs and
version field incrementing by 1 each time you execute the query.

{
 "data": {
 "downvotePost": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 6,
 "downs": 4,
 "version": 12
 }
 }
}

Setting Up the deletePost Resolver (DynamoDB DeleteItem)

The next mutation you want to set up is to delete a post. You’ll do this using the DeleteItem
DynamoDB operation.

• Choose the Schema tab.

• In the Schema pane, modify the Mutation type to add a new deletePost mutation as follows:

type Mutation {
 deletePost(id: ID!, expectedVersion: Int): Post
 upvotePost(id: ID!): Post
 downvotePost(id: ID!): Post
 updatePost(

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 407

AWS AppSync Developer Guide

 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

This time you made the expectedVersion field optional, which is explained later when you add
the request mapping template.

• Choose Save.

• In the Data types pane on the right, find the newly created delete field on the Mutation type,
and then choose Attach.

• In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "DeleteItem",
 "key": {
 "id": $util.dynamodb.toDynamoDBJson($context.arguments.id)
 }
 #if($context.arguments.containsKey("expectedVersion"))
 ,"condition" : {
 "expression" : "attribute_not_exists(id) OR version
 = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" :
 $util.dynamodb.toDynamoDBJson($context.arguments.expectedVersion)
 }
 }
 #end

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 408

AWS AppSync Developer Guide

}

Note: The expectedVersion argument is an optional argument. If the caller set an
expectedVersion argument in the request, the template adds a condition that only allows the
DeleteItem request to succeed if the item is already deleted or if the version attribute of the
post in DynamoDB exactly matches the expectedVersion. If left out, no condition expression
is specified on the DeleteItem request. It succeeds regardless of the value of version, or
whether or not the item exists in DynamoDB.

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

Note: Even though you’re deleting an item, you can return the item that was deleted, if it was
not already deleted.

• Choose Save.

For more info about DeleteItem request mapping, see the DeleteItem reference documentation.

Call the API to Delete a Post

Now the resolver has been set up, AWS AppSync knows how to translate an incoming delete
mutation to a DynamoDBDeleteItem operation. You can now run a mutation to delete something
in the table.

• Choose the Queries tab.

• In the Queries pane, paste the following mutation. You’ll also need to update the id argument
to the value you noted down earlier.

mutation deletePost {
 deletePost(id:123) {
 id
 author
 title
 content
 url
 ups
 downs
 version

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 409

AWS AppSync Developer Guide

 }
}

• Choose Execute query (the orange play button).

• The post is deleted from DynamoDB. Note that AWS AppSync returns the value of the item that
was deleted from DynamoDB, which should appear in the results pane to the right of the query
pane. It should look similar to the following:

{
 "data": {
 "deletePost": {
 "id": "123",
 "author": "A new author",
 "title": "An empty story",
 "content": null,
 "url": "https://aws.amazon.com/appsync/",
 "ups": 6,
 "downs": 4,
 "version": 12
 }
 }
}

The value is only returned if this call to deletePost was the one that actually deleted it from
DynamoDB.

• Choose Execute query again.

• The call still succeeds, but no value is returned.

{
 "data": {
 "deletePost": null
 }
}

Now let’s try deleting a post, but this time specifying an expectedValue. First though, you’ll need
to create a new post because you’ve just deleted the one you’ve been working with so far.

• In the Queries pane, paste the following mutation:

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 410

AWS AppSync Developer Guide

mutation addPost {
 addPost(
 id:123
 author: "AUTHORNAME"
 title: "Our second post!"
 content: "A new post."
 url: "https://aws.amazon.com/appsync/"
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

• The results of the newly created post should appear in the results pane to the right of the query
pane. Note down the id of the newly created object because you need it in just a moment. It
should look similar to the following:

{
 "data": {
 "addPost": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our second post!",
 "content": "A new post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

Now let’s try to delete that post, but put in the wrong value for expectedVersion:

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 411

AWS AppSync Developer Guide

• In the Queries pane, paste the following mutation. You’ll also need to update the id argument
to the value you noted down earlier.

mutation deletePost {
 deletePost(
 id:123
 expectedVersion: 9999
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

{
 "data": {
 "deletePost": null
 },
 "errors": [
 {
 "path": [
 "deletePost"
],
 "data": {
 "id": "123",
 "author": "AUTHORNAME",
 "title": "Our second post!",
 "content": "A new post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 },
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "locations": [
 {

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 412

AWS AppSync Developer Guide

 "line": 2,
 "column": 3
 }
],
 "message": "The conditional request failed (Service: AmazonDynamoDBv2;
 Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
 ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ)"
 }
]
}

The request failed because the condition expression evaluates to false: the value for version
of the post in DynamoDB does not match the expectedValue specified in the arguments. The
current value of the object is returned in the data field in the errors section of the GraphQL
response.

• Retry the request, but correct the expectedVersion:

mutation deletePost {
 deletePost(
 id:123
 expectedVersion: 1
) {
 id
 author
 title
 content
 url
 ups
 downs
 version
 }
}

• Choose Execute query (the orange play button).

• This time the request succeeds, and the value that was deleted from DynamoDB is returned:

{
 "data": {
 "deletePost": {
 "id": "123",
 "author": "AUTHORNAME",

Setting Up the deletePost Resolver (DynamoDB DeleteItem) 413

AWS AppSync Developer Guide

 "title": "Our second post!",
 "content": "A new post.",
 "url": "https://aws.amazon.com/appsync/",
 "ups": 1,
 "downs": 0,
 "version": 1
 }
 }
}

• Choose Execute query again.

• The call still succeeds, but this time no value is returned because the post was already deleted in
DynamoDB.

{
 "data": {
 "deletePost": null
 }
}

Setting Up the allPost Resolver (DynamoDB Scan)

So far the API is only useful if you know the id of each post you want to look at. Let’s add a new
resolver that returns all the posts in the table.

• Choose the Schema tab.

• In the Schema pane, modify the Query type to add a new allPost query as follows:

type Query {
 allPost(count: Int, nextToken: String): PaginatedPosts!
 getPost(id: ID): Post
}

• Add a new PaginationPosts type:

type PaginatedPosts {
 posts: [Post!]!
 nextToken: String
}

Setting Up the allPost Resolver (DynamoDB Scan) 414

AWS AppSync Developer Guide

• Choose Save.

• In the Data types pane on the right, find the newly created allPost field on the Query type, and
then choose Attach.

• In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "Scan"
 #if(${context.arguments.count})
 ,"limit": $util.toJson($context.arguments.count)
 #end
 #if(${context.arguments.nextToken})
 ,"nextToken": $util.toJson($context.arguments.nextToken)
 #end
}

This resolver has two optional arguments: count, which specifies the maximum number of items
to return in a single call, and nextToken, which can be used to retrieve the next set of results
(you’ll show where the value for nextToken comes from later).

• In Configure the response mapping template, paste the following:

{
 "posts": $utils.toJson($context.result.items)
 #if(${context.result.nextToken})
 ,"nextToken": $util.toJson($context.result.nextToken)
 #end
}

Note: This response mapping template is different from all the others so far. The result of the
allPost query is a PaginatedPosts, which contains a list of posts and a pagination token. The
shape of this object is different to what is returned from the AWS AppSync DynamoDB Resolver:
the list of posts is called items in the AWS AppSync DynamoDB Resolver results, but is called
posts in PaginatedPosts.

• Choose Save.

Setting Up the allPost Resolver (DynamoDB Scan) 415

AWS AppSync Developer Guide

For more information about Scan request mapping, see the Scan reference documentation.

Call the API to Scan All Posts

Now the resolver has been set up, AWS AppSync knows how to translate an incoming allPost
query to a DynamoDBScan operation. You can now scan the table to retrieve all the posts.

Before you can try it out though, you need to populate the table with some data because you’ve
deleted everything you’ve worked with so far.

• Choose the Queries tab.

• In the Queries pane, paste the following mutation:

mutation addPost {
 post1: addPost(id:1 author: "AUTHORNAME" title: "A series of posts, Volume 1"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post2: addPost(id:2 author: "AUTHORNAME" title: "A series of posts, Volume 2"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post3: addPost(id:3 author: "AUTHORNAME" title: "A series of posts, Volume 3"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post4: addPost(id:4 author: "AUTHORNAME" title: "A series of posts, Volume 4"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post5: addPost(id:5 author: "AUTHORNAME" title: "A series of posts, Volume 5"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post6: addPost(id:6 author: "AUTHORNAME" title: "A series of posts, Volume 6"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post7: addPost(id:7 author: "AUTHORNAME" title: "A series of posts, Volume 7"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post8: addPost(id:8 author: "AUTHORNAME" title: "A series of posts, Volume 8"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
 post9: addPost(id:9 author: "AUTHORNAME" title: "A series of posts, Volume 9"
 content: "Some content" url: "https://aws.amazon.com/appsync/") { title }
}

• Choose Execute query (the orange play button).

Now, let’s scan the table, returning five results at a time.

• In the Queries pane, paste the following query:

query allPost {
 allPost(count: 5) {

Setting Up the allPost Resolver (DynamoDB Scan) 416

AWS AppSync Developer Guide

 posts {
 id
 title
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• The first five posts should appear in the results pane to the right of the query pane. It should
look similar to the following:

{
 "data": {
 "allPost": {
 "posts": [
 {
 "id": "5",
 "title": "A series of posts, Volume 5"
 },
 {
 "id": "1",
 "title": "A series of posts, Volume 1"
 },
 {
 "id": "6",
 "title": "A series of posts, Volume 6"
 },
 {
 "id": "9",
 "title": "A series of posts, Volume 9"
 },
 {
 "id": "7",
 "title": "A series of posts, Volume 7"
 }
],
 "nextToken":
 "eyJ2ZXJzaW9uIjoxLCJ0b2tlbiI6IkFRSUNBSGo4eHR0RG0xWXhUa1F0cEhXMEp1R3B0M1B3eThOSmRvcG9ad2RHYjI3Z0lnRkJEdXdUK09hcnovRGhNTGxLTGdMUEFBQUI1akNDQWVJR0NTcUdTSWIzRFFFSEJxQ0NBZE13Z2dIUEFnRUFNSUlCeUFZSktvWklodmNOQVFjQk1CNEdDV0NHU0FGbEF3UUJMakFSQkF6ajFodkhKU1paT1pncTRaUUNBUkNBZ2dHWnJiR1dQWGxkMDB1N0xEdGY4Z2JsbktzRjRua1VCcks3TFJLcjZBTFRMeGFwVGJZMDRqOTdKVFQyYVRwSzdzbVdtNlhWWFVCTnFIOThZTzBWZHVkdDI2RlkxMHRqMDJ2QTlyNWJTUWpTbWh6NE5UclhUMG9KZWJSQ2JJbXBlaDRSVlg0Tis0WTVCN1IwNmJQWWQzOVhsbTlUTjBkZkFYMVErVCthaXZoNE5jMk50RitxVmU3SlJ5WmpzMEFkSGduM3FWd2VrOW5oeFVVd3JlK1loUks5QkRzemdiMDlmZmFPVXpzaFZ4cVJRbC93RURlOTcrRmVJdXZNby9NZ1F6dUdNbFRyalpNR3FuYzZBRnhwa0VlZTFtR0FwVDFISElUZlluakptYklmMGUzUmcxbVlnVHVSbDh4S0trNmR0QVoraEhLVDhuNUI3VnF4bHRtSnlNUXBrZGl6KzkyL3VzNDl4OWhrMnVxSW01ZFFwMjRLNnF0dm9ZK1BpdERuQTc5djhzb0grVytYT3VuQ2NVVDY4TVZ1Wk5KYkRuSEFSSEVlaTlVNVBTelU5RGZ6d2pPdmhqWDNJMWhwdWUrWi83MDVHVjlPQUxSTGlwZWZPeTFOZFhwZTdHRDZnQW00bUJUK2c1eC9Ec3ZDbWVnSDFDVXRTdHVuU1ZFa2JpZytQRC9oMUwyRTNqSHhVQldaa28yU256WUc0cG0vV1RSWkFVZHZuQT09In0="
 }
 }
}

Setting Up the allPost Resolver (DynamoDB Scan) 417

AWS AppSync Developer Guide

You got five results and a nextToken that you can use to get the next set of results.

• Update the allPost query to include the nextToken from the previous set of results:

query allPost {
 allPost(
 count: 5
 nextToken:
 "eyJ2ZXJzaW9uIjoxLCJ0b2tlbiI6IkFRSUNBSGo4eHR0RG0xWXhUa1F0cEhXMEp1R3B0M1B3eThOSmRvcG9ad2RHYjI3Z0lnRlluNktJRWl6V0ZlR3hJOVJkaStrZUFBQUI1akNDQWVJR0NTcUdTSWIzRFFFSEJxQ0NBZE13Z2dIUEFnRUFNSUlCeUFZSktvWklodmNOQVFjQk1CNEdDV0NHU0FGbEF3UUJMakFSQkF5cW8yUGFSZThnalFpemRCTUNBUkNBZ2dHWk1JODhUNzhIOFVUZGtpdFM2ZFluSWRyVDg4c2lkN1RjZzB2d1k3VGJTTWpSQ2U3WjY3TkUvU2I1dWNETUdDMmdmMHErSGJSL0pteGRzYzVEYnE1K3BmWEtBdU5jSENJdWNIUkJ0UHBPWVdWdCtsS2U5L1pNcWdocXhrem1RaXI1YnIvQkt6dU5hZmJCdE93NmtoM2Jna1BKM0RjWWhpMFBGbmhMVGg4TUVGSjBCcXg3RTlHR1V5N0tUS0JLZlV3RjFQZ0JRREdrNzFYQnFMK2R1S2IrVGtZZzVYMjFrc3NyQmFVTmNXZmhTeXE0ZUJHSWhqZWQ5c3VKWjBSSTc2ZnVQdlZkR3FLNENjQmxHYXhpekZnK2pKK1FneEU1SXduRTNYYU5TR0I4QUpmamR2bU1wbUk1SEdvWjlMUUswclczbG14RDRtMlBsaTNLaEVlcm9pem5zcmdINFpvcXIrN2ltRDN3QkJNd3BLbGQzNjV5Nnc4ZnMrK2FnbTFVOUlKOFFrOGd2bEgySHFROHZrZXBrMWlLdWRIQ25LaS9USnBlMk9JeEVPazVnRFlzRTRUU09HUlVJTkxYY2MvdW1WVEpBMUthV2hWTlAvdjNlSnlZQUszbWV6N2h5WHVXZ1BkTVBNWERQdTdjVnVRa3EwK3NhbGZOd2wvSUx4bHNyNDVwTEhuVFpyRWZvVlV1bXZ5S2VKY1RUU1lET05hM1NwWEd2UT09In0="
) {
 posts {
 id
 author
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• The remaining four posts should appear in the results pane to the right of the query pane. There
is no nextToken in this set of results because you’ve paged through all nine posts, with none
remaining. It should look similar to the following:

{
 "data": {
 "allPost": {
 "posts": [
 {
 "id": "2",
 "title": "A series of posts, Volume 2"
 },
 {
 "id": "3",
 "title": "A series of posts, Volume 3"
 },
 {
 "id": "4",
 "title": "A series of posts, Volume 4"
 },
 {
 "id": "8",
 "title": "A series of posts, Volume 8"

Setting Up the allPost Resolver (DynamoDB Scan) 418

AWS AppSync Developer Guide

 }
],
 "nextToken": null
 }
 }
}

Setting Up the allPostsByAuthor Resolver (DynamoDB Query)

In addition to scanning DynamoDB for all posts, you can also query DynamoDB to retrieve
posts created by a specific author. The DynamoDB table you created earlier already has a
GlobalSecondaryIndex called author-index you can use with a DynamoDBQuery operation
to retrieve all posts created by a specific author.

• Choose the Schema tab.

• In the Schema pane, modify the Query type to add a new allPostsByAuthor query as
follows:

type Query {
 allPostsByAuthor(author: String!, count: Int, nextToken: String): PaginatedPosts!
 allPost(count: Int, nextToken: String): PaginatedPosts!
 getPost(id: ID): Post
}

Note: This uses the same PaginatedPosts type that you used with the allPost query.

• Choose Save.

• In the Data types pane on the right, find the newly created allPostsByAuthor field on the Query
type, and then choose Attach.

• In the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "Query",
 "index" : "author-index",
 "query" : {
 "expression": "author = :author",

Setting Up the allPostsByAuthor Resolver (DynamoDB Query) 419

AWS AppSync Developer Guide

 "expressionValues" : {
 ":author" : $util.dynamodb.toDynamoDBJson($context.arguments.author)
 }
 }
 #if(${context.arguments.count})
 ,"limit": $util.toJson($context.arguments.count)
 #end
 #if(${context.arguments.nextToken})
 ,"nextToken": "${context.arguments.nextToken}"
 #end
}

Like the allPost resolver, this resolver has two optional arguments: count, which specifies
the maximum number of items to return in a single call, and nextToken, which can be used to
retrieve the next set of results (the value for nextToken can be obtained from a previous call).

• In Configure the response mapping template, paste the following:

{
 "posts": $utils.toJson($context.result.items)
 #if(${context.result.nextToken})
 ,"nextToken": $util.toJson($context.result.nextToken)
 #end
}

Note: This is the same response mapping template that you used in the allPost resolver.

• Choose Save.

For more information about Query request mapping, see the Query reference documentation.

Call the API to Query All Posts by an Author

Now the resolver has been set up, AWS AppSync knows how to translate an incoming
allPostsByAuthor mutation to a DynamoDBQuery operation against the author-index index.
You can now query the table to retrieve all the posts by a specific author.

Before you do that, however, let’s populate the table with some more posts, because every post so
far has the same author.

• Choose the Queries tab.

• In the Queries pane, paste the following mutation:

Setting Up the allPostsByAuthor Resolver (DynamoDB Query) 420

AWS AppSync Developer Guide

mutation addPost {
 post1: addPost(id:10 author: "Nadia" title: "The cutest dog in the world" content:
 "So cute. So very, very cute." url: "https://aws.amazon.com/appsync/") { author,
 title }
 post2: addPost(id:11 author: "Nadia" title: "Did you know...?" content: "AppSync
 works offline?" url: "https://aws.amazon.com/appsync/") { author, title }
 post3: addPost(id:12 author: "Steve" title: "I like GraphQL" content: "It's great"
 url: "https://aws.amazon.com/appsync/") { author, title }
}

• Choose Execute query (the orange play button).

Now, let’s query the table, returning all posts authored by Nadia.

• In the Queries pane, paste the following query:

query allPostsByAuthor {
 allPostsByAuthor(author: "Nadia") {
 posts {
 id
 title
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• All the posts authored by Nadia should appear in the results pane to the right of the query
pane. It should look similar to the following:

{
 "data": {
 "allPostsByAuthor": {
 "posts": [
 {
 "id": "10",
 "title": "The cutest dog in the world"
 },
 {
 "id": "11",
 "title": "Did you know...?"

Setting Up the allPostsByAuthor Resolver (DynamoDB Query) 421

AWS AppSync Developer Guide

 }
],
 "nextToken": null
 }
 }
}

Pagination works for Query just the same as it does for Scan. For example, let’s look for all posts
by AUTHORNAME, getting five at a time.

• In the Queries pane, paste the following query:

query allPostsByAuthor {
 allPostsByAuthor(
 author: "AUTHORNAME"
 count: 5
) {
 posts {
 id
 title
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• All the posts authored by AUTHORNAME should appear in the results pane to the right of the
query pane. It should look similar to the following:

{
 "data": {
 "allPostsByAuthor": {
 "posts": [
 {
 "id": "6",
 "title": "A series of posts, Volume 6"
 },
 {
 "id": "4",
 "title": "A series of posts, Volume 4"
 },

Setting Up the allPostsByAuthor Resolver (DynamoDB Query) 422

AWS AppSync Developer Guide

 {
 "id": "2",
 "title": "A series of posts, Volume 2"
 },
 {
 "id": "7",
 "title": "A series of posts, Volume 7"
 },
 {
 "id": "1",
 "title": "A series of posts, Volume 1"
 }
],
 "nextToken":
 "eyJ2ZXJzaW9uIjoxLCJ0b2tlbiI6IkFRSUNBSGo4eHR0RG0xWXhUa1F0cEhXMEp1R3B0M1B3eThOSmRvcG9ad2RHYjI3Z0lnSExqRnVhVUR3ZUhEZ2QzNGJ2QlFuY0FBQUNqekNDQW9zR0NTcUdTSWIzRFFFSEJxQ0NBbnd3Z2dKNEFnRUFNSUlDY1FZSktvWklodmNOQVFjQk1CNEdDV0NHU0FGbEF3UUJMakFSQkF5Qkg4Yk1obW9LVEFTZHM3SUNBUkNBZ2dKQ3dISzZKNlJuN3pyYUVKY1pWNWxhSkNtZW1KZ0F5N1dhZkc2UEdTNHpNQzJycTkwZHFJTFV6Z25wck9Gd3pMS3VOQ2JvUXc3VDI5eCtnVExIbGg4S3BqbzB1YjZHQ3FwcDhvNDVmMG9JbDlmdS9JdjNXcFNNSXFKTXZ1MEVGVWs1VzJQaW5jZGlUaVRtZFdYWlU1bkV2NkgyRFBRQWZYYlNnSmlHSHFLbmJZTUZZM0FTdmRIL0hQaVZBb1RCMk1YZkg0eGJOVTdEbjZtRFNhb2QwbzdHZHJEWDNtODQ1UXBQUVNyUFhHemY0WDkyajhIdlBCSWE4Smcrb0RxbHozUVQ5N2FXUXdYWWU2S0h4emI1ejRITXdEdXEyRDRkYzhoMi9CbW10MzRMelVGUVIyaExSZGRaZ0xkdzF5cHJZdFZwY3dEc1d4UURBTzdOcjV2ZEp4VVR2TVhmODBRSnp1REhXREpTVlJLdDJwWmlpaXhXeGRwRmNod1BzQ3d2aVBqMGwrcWFFWU1jMXNQbENkVkFGem43VXJrSThWbS8wWHlwR2xZb3BSL2FkV0xVekgrbGMrYno1ZEM2SnVLVXdtY1EyRXlZeDZiS0Izbi9YdUViWGdFeU5PMWZTdE1rRlhyWmpvMVpzdlYyUFRjMzMrdEs0ZDhkNkZrdjh5VVR6WHhJRkxIaVNsOUx6VVdtT3BCaWhrTFBCT09jcXkyOHh1UmkzOEM3UFRqMmN6c3RkOUo1VUY0azBJdUdEbVZzM2xjdWg1SEJjYThIeXM2aEpvOG1HbFpMNWN6R2s5bi8vRE1EbDY3RlJraG5QNFNhSDBpZGI5VFEvMERLeFRBTUdhcWpPaEl5ekVqd2ZDQVJleFdlbldyOGlPVkhScDhGM25WZVdvbFRGK002N0xpdi9XNGJXdDk0VEg3b0laUU5lYmZYKzVOKy9Td25Hb1dyMTlWK0pEb2lIRVFLZ1cwMWVuYjZKUXo5Slh2Tm95ZzF3RnJPVmxGc2xwNlRHa1BlN2Rnd2IrWT0ifQ=="
 }
 }
}

• Update the nextToken argument with the value returned from the previous query as follows:

query allPostsByAuthor {
 allPostsByAuthor(
 author: "AUTHORNAME"
 count: 5
 nextToken:
 "eyJ2ZXJzaW9uIjoxLCJ0b2tlbiI6IkFRSUNBSGo4eHR0RG0xWXhUa1F0cEhXMEp1R3B0M1B3eThOSmRvcG9ad2RHYjI3Z0lnSExqRnVhVUR3ZUhEZ2QzNGJ2QlFuY0FBQUNqekNDQW9zR0NTcUdTSWIzRFFFSEJxQ0NBbnd3Z2dKNEFnRUFNSUlDY1FZSktvWklodmNOQVFjQk1CNEdDV0NHU0FGbEF3UUJMakFSQkF5Qkg4Yk1obW9LVEFTZHM3SUNBUkNBZ2dKQ3dISzZKNlJuN3pyYUVKY1pWNWxhSkNtZW1KZ0F5N1dhZkc2UEdTNHpNQzJycTkwZHFJTFV6Z25wck9Gd3pMS3VOQ2JvUXc3VDI5eCtnVExIbGg4S3BqbzB1YjZHQ3FwcDhvNDVmMG9JbDlmdS9JdjNXcFNNSXFKTXZ1MEVGVWs1VzJQaW5jZGlUaVRtZFdYWlU1bkV2NkgyRFBRQWZYYlNnSmlHSHFLbmJZTUZZM0FTdmRIL0hQaVZBb1RCMk1YZkg0eGJOVTdEbjZtRFNhb2QwbzdHZHJEWDNtODQ1UXBQUVNyUFhHemY0WDkyajhIdlBCSWE4Smcrb0RxbHozUVQ5N2FXUXdYWWU2S0h4emI1ejRITXdEdXEyRDRkYzhoMi9CbW10MzRMelVGUVIyaExSZGRaZ0xkdzF5cHJZdFZwY3dEc1d4UURBTzdOcjV2ZEp4VVR2TVhmODBRSnp1REhXREpTVlJLdDJwWmlpaXhXeGRwRmNod1BzQ3d2aVBqMGwrcWFFWU1jMXNQbENkVkFGem43VXJrSThWbS8wWHlwR2xZb3BSL2FkV0xVekgrbGMrYno1ZEM2SnVLVXdtY1EyRXlZeDZiS0Izbi9YdUViWGdFeU5PMWZTdE1rRlhyWmpvMVpzdlYyUFRjMzMrdEs0ZDhkNkZrdjh5VVR6WHhJRkxIaVNsOUx6VVdtT3BCaWhrTFBCT09jcXkyOHh1UmkzOEM3UFRqMmN6c3RkOUo1VUY0azBJdUdEbVZzM2xjdWg1SEJjYThIeXM2aEpvOG1HbFpMNWN6R2s5bi8vRE1EbDY3RlJraG5QNFNhSDBpZGI5VFEvMERLeFRBTUdhcWpPaEl5ekVqd2ZDQVJleFdlbldyOGlPVkhScDhGM25WZVdvbFRGK002N0xpdi9XNGJXdDk0VEg3b0laUU5lYmZYKzVOKy9Td25Hb1dyMTlWK0pEb2lIRVFLZ1cwMWVuYjZKUXo5Slh2Tm95ZzF3RnJPVmxGc2xwNlRHa1BlN2Rnd2IrWT0ifQ=="
) {
 posts {
 id
 title
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• The remaining posts authored by AUTHORNAME should appear in the results pane to the right of
the query pane. It should look similar to the following:

{
 "data": {
 "allPostsByAuthor": {

Setting Up the allPostsByAuthor Resolver (DynamoDB Query) 423

AWS AppSync Developer Guide

 "posts": [
 {
 "id": "8",
 "title": "A series of posts, Volume 8"
 },
 {
 "id": "5",
 "title": "A series of posts, Volume 5"
 },
 {
 "id": "3",
 "title": "A series of posts, Volume 3"
 },
 {
 "id": "9",
 "title": "A series of posts, Volume 9"
 }
],
 "nextToken": null
 }
 }
}

Using Sets

Up to this point the Post type has been a flat key/value object. You can also model complex
objects with the AWS AppSyncDynamoDB resolver, such as sets, lists, and maps.

Let’s update the Post type to include tags. A post can have 0 or more tags, which are stored in
DynamoDB as a String Set. You’ll also set up some mutations to add and remove tags, and a new
query to scan for posts with a specific tag.

• Choose the Schema tab.

• In the Schema pane, modify the Post type to add a new tags field as follows:

type Post {
 id: ID!
 author: String
 title: String
 content: String
 url: String

Using Sets 424

AWS AppSync Developer Guide

 ups: Int!
 downs: Int!
 version: Int!
 tags: [String!]
}

• In the Schema pane, modify the Query type to add a new allPostsByTag query as follows:

type Query {
 allPostsByTag(tag: String!, count: Int, nextToken: String): PaginatedPosts!
 allPostsByAuthor(author: String!, count: Int, nextToken: String): PaginatedPosts!
 allPost(count: Int, nextToken: String): PaginatedPosts!
 getPost(id: ID): Post
}

• In the Schema pane, modify the Mutation type to add new addTag and removeTag mutations
as follows:

type Mutation {
 addTag(id: ID!, tag: String!): Post
 removeTag(id: ID!, tag: String!): Post
 deletePost(id: ID!, expectedVersion: Int): Post
 upvotePost(id: ID!): Post
 downvotePost(id: ID!): Post
 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

• Choose Save.

• In the Data types pane on the right, find the newly created allPostsByTag field on the Query
type, and then choose Attach.

Using Sets 425

AWS AppSync Developer Guide

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "Scan",
 "filter": {
 "expression": "contains (tags, :tag)",
 "expressionValues": {
 ":tag": $util.dynamodb.toDynamoDBJson($context.arguments.tag)
 }
 }
 #if(${context.arguments.count})
 ,"limit": $util.toJson($context.arguments.count)
 #end
 #if(${context.arguments.nextToken})
 ,"nextToken": $util.toJson($context.arguments.nextToken)
 #end
}

• In Configure the response mapping template, paste the following:

{
 "posts": $utils.toJson($context.result.items)
 #if(${context.result.nextToken})
 ,"nextToken": $util.toJson($context.result.nextToken)
 #end
}

• Choose Save.

• In the Data types pane on the right, find the newly created addTag field on the Mutation type,
and then choose Attach.

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },

Using Sets 426

AWS AppSync Developer Guide

 "update" : {
 "expression" : "ADD tags :tags, version :plusOne",
 "expressionValues" : {
 ":tags" : { "SS": [$util.toJson($context.arguments.tag)] },
 ":plusOne" : { "N" : 1 }
 }
 }
}

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

• Choose Save.

• In the Data types pane on the right, find the newly created removeTag field on the Mutation
type, and then choose Attach.

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },
 "update" : {
 "expression" : "DELETE tags :tags ADD version :plusOne",
 "expressionValues" : {
 ":tags" : { "SS": [$util.toJson($context.arguments.tag)] },
 ":plusOne" : { "N" : 1 }
 }
 }
}

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

• Choose Save.

Using Sets 427

AWS AppSync Developer Guide

Call the API to Work with Tags

Now that you’ve set up the resolvers, AWS AppSync knows how to translate incoming addTag,
removeTag, and allPostsByTag requests into DynamoDBUpdateItem and Scan operations.

To try it out, let’s select one of the posts you created earlier. For example, let’s use a post authored
by Nadia.

• Choose the Queries tab.

• In the Queries pane, paste the following query:

query allPostsByAuthor {
 allPostsByAuthor(
 author: "Nadia"
) {
 posts {
 id
 title
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• All of Nadia’s posts should appear in the results pane to the right of the query pane. It should
look similar to the following:

{
 "data": {
 "allPostsByAuthor": {
 "posts": [
 {
 "id": "10",
 "title": "The cutest dog in the world"
 },
 {
 "id": "11",
 "title": "Did you known...?"
 }
],
 "nextToken": null
 }

Using Sets 428

AWS AppSync Developer Guide

 }
}

• Let’s use the one with the title "The cutest dog in the world". Note down its id because
you’ll use it later.

Now let’s try adding a dog tag.

• In the Queries pane, paste the following mutation. You’ll also need to update the id argument
to the value you noted down earlier.

mutation addTag {
 addTag(id:10 tag: "dog") {
 id
 title
 tags
 }
}

• Choose Execute query (the orange play button).

• The post is updated with the new tag.

{
 "data": {
 "addTag": {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog"
]
 }
 }
}

You can add more tags as follows:

• Update the mutation to change the tag argument to puppy.

mutation addTag {
 addTag(id:10 tag: "puppy") {

Using Sets 429

AWS AppSync Developer Guide

 id
 title
 tags
 }
}

• Choose Execute query (the orange play button).

• The post is updated with the new tag.

{
 "data": {
 "addTag": {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog",
 "puppy"
]
 }
 }
}

You can also delete tags:

• In the Queries pane, paste the following mutation. You’ll also need to update the id argument
to the value you noted down earlier.

mutation removeTag {
 removeTag(id:10 tag: "puppy") {
 id
 title
 tags
 }
}

• Choose Execute query (the orange play button).

• The post is updated and the puppy tag is deleted.

{
 "data": {
 "addTag": {

Using Sets 430

AWS AppSync Developer Guide

 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog"
]
 }
 }
}

You can also search for all posts that have a tag:

• In the Queries pane, paste the following query:

query allPostsByTag {
 allPostsByTag(tag: "dog") {
 posts {
 id
 title
 tags
 }
 nextToken
 }
}

• Choose Execute query (the orange play button).

• All posts that have the dog tag are returned as follows:

{
 "data": {
 "allPostsByTag": {
 "posts": [
 {
 "id": "10",
 "title": "The cutest dog in the world",
 "tags": [
 "dog",
 "puppy"
]
 }
],
 "nextToken": null
 }

Using Sets 431

AWS AppSync Developer Guide

 }
}

Using Lists and Maps

In addition to using DynamoDB sets, you can also use DynamoDB lists and maps to model complex
data in a single object.

Let’s add the ability to add comments to posts. This will be modeled as a list of map objects on the
Post object in DynamoDB.

Note: in a real application, you would model comments in their own table. For this tutorial, you’ll
just add them in the Post table.

• Choose the Schema tab.

• In the Schema pane, add a new Comment type as follows:

type Comment {
 author: String!
 comment: String!
}

• In the Schema pane, modify the Post type to add a new comments field as follows:

type Post {
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int!
 downs: Int!
 version: Int!
 tags: [String!]
 comments: [Comment!]
}

• In the Schema pane, modify the Mutation type to add a new addComment mutation as follows:

type Mutation {
 addComment(id: ID!, author: String!, comment: String!): Post

Using Lists and Maps 432

AWS AppSync Developer Guide

 addTag(id: ID!, tag: String!): Post
 removeTag(id: ID!, tag: String!): Post
 deletePost(id: ID!, expectedVersion: Int): Post
 upvotePost(id: ID!): Post
 downvotePost(id: ID!): Post
 updatePost(
 id: ID!,
 author: String,
 title: String,
 content: String,
 url: String,
 expectedVersion: Int!
): Post
 addPost(
 author: String!,
 title: String!,
 content: String!,
 url: String!
): Post!
}

• Choose Save.

• In the Data types pane on the right, find the newly created addComment field on the Mutation
type, and then choose Attach.

• In Data source name, choose PostDynamoDBTable.

• In Configure the request mapping template, paste the following:

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($context.arguments.id)
 },
 "update" : {
 "expression" : "SET comments =
 list_append(if_not_exists(comments, :emptyList), :newComment) ADD version :plusOne",
 "expressionValues" : {
 ":emptyList": { "L" : [] },
 ":newComment" : { "L" : [
 { "M": {
 "author": $util.dynamodb.toDynamoDBJson($context.arguments.author),
 "comment": $util.dynamodb.toDynamoDBJson($context.arguments.comment)

Using Lists and Maps 433

AWS AppSync Developer Guide

 }
 }
] },
 ":plusOne" : $util.dynamodb.toDynamoDBJson(1)
 }
 }
}

This update expression will append a list containing our new comment to the existing comments
list. If the list doesn’t already exist, it will be created.

• In Configure the response mapping template, paste the following:

$utils.toJson($context.result)

• Choose Save.

Call the API to Add a Comment

Now that you’ve set up the resolvers, AWS AppSync knows how to translate incoming addComment
requests into DynamoDBUpdateItem operations.

Let’s try it out by adding a comment to the same post you added the tags to.

• Choose the Queries tab.

• In the Queries pane, paste the following query:

mutation addComment {
 addComment(
 id:10
 author: "Steve"
 comment: "Such a cute dog."
) {
 id
 comments {
 author
 comment
 }
 }
}

• Choose Execute query (the orange play button).

Using Lists and Maps 434

AWS AppSync Developer Guide

• All of Nadia’s posts should appear in the results pane to the right of the query pane. It should
look similar to the following:

{
 "data": {
 "addComment": {
 "id": "10",
 "comments": [
 {
 "author": "Steve",
 "comment": "Such a cute dog."
 }
]
 }
 }
}

If you execute the request multiple times, multiple comments will be appended to the list.

Conclusion

In this tutorial, you’ve built an API that lets us manipulate Post objects in DynamoDB using AWS
AppSync and GraphQL. For more information, see the Resolver Mapping Template Reference.

To clean up, you can delete the AppSync GraphQL API from the console.

To delete the DynamoDB table and the IAM role you created for this tutorial, you can run the
following to delete the AWSAppSyncTutorialForAmazonDynamoDB stack, or visit the AWS
CloudFormation console and delete the stack:

aws cloudformation delete-stack \
 --stack-name AWSAppSyncTutorialForAmazonDynamoDB

Tutorial: Lambda resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Conclusion 435

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

You can use AWS Lambda with AWS AppSync to resolve any GraphQL field. For example, a
GraphQL query might send a call to an Amazon Relational Database Service (Amazon RDS)
instance, and a GraphQL mutation might write to an Amazon Kinesis stream. In this section, we'll
show you how to write a Lambda function that performs business logic based on the invocation of
a GraphQL field operation.

Create a Lambda function

The following example shows a Lambda function written in Node.js that performs different
operations on blog posts as part of a blog post application.

exports.handler = (event, context, callback) => {
 console.log("Received event {}", JSON.stringify(event, 3));
 var posts = {
 "1": {"id": "1", "title": "First book", "author": "Author1", "url": "https://
amazon.com/", "content": "SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR
 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1", "ups": "100",
 "downs": "10"},
 "2": {"id": "2", "title": "Second book", "author": "Author2", "url": "https://
amazon.com", "content": "SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT", "ups":
 "100", "downs": "10"},
 "3": {"id": "3", "title": "Third book", "author": "Author3", "url": null,
 "content": null, "ups": null, "downs": null },
 "4": {"id": "4", "title": "Fourth book", "author": "Author4", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4", "ups": "1000", "downs": "0"},
 "5": {"id": "5", "title": "Fifth book", "author": "Author5", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT
 AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT", "ups": "50", "downs": "0"} };

 var relatedPosts = {
 "1": [posts['4']],
 "2": [posts['3'], posts['5']],
 "3": [posts['2'], posts['1']],
 "4": [posts['2'], posts['1']],
 "5": []
 };

 console.log("Got an Invoke Request.");
 switch(event.field) {
 case "getPost":

Create a Lambda function 436

AWS AppSync Developer Guide

 var id = event.arguments.id;
 callback(null, posts[id]);
 break;
 case "allPosts":
 var values = [];
 for(var d in posts){
 values.push(posts[d]);
 }
 callback(null, values);
 break;
 case "addPost":
 // return the arguments back
 callback(null, event.arguments);
 break;
 case "addPostErrorWithData":
 var id = event.arguments.id;
 var result = posts[id];
 // attached additional error information to the post
 result.errorMessage = 'Error with the mutation, data has changed';
 result.errorType = 'MUTATION_ERROR';
 callback(null, result);
 break;
 case "relatedPosts":
 var id = event.source.id;
 callback(null, relatedPosts[id]);
 break;
 default:
 callback("Unknown field, unable to resolve" + event.field, null);
 break;
 }
};

This Lambda function retrieves a post by ID, adds a post, retrieves a list of posts, and fetches
related posts for a given post.

Note: The Lambda function uses the switch statement on event.field to determine which field
is currently being resolved.

Create this Lambda function using the AWS Management Console or an AWS CloudFormation
stack. To create the function from a CloudFormation stack, you can use the following AWS
Command Line Interface (AWS CLI) command:

aws cloudformation create-stack --stack-name AppSyncLambdaExample \

Create a Lambda function 437

AWS AppSync Developer Guide

--template-url https://s3.us-west-2.amazonaws.com/awsappsync/resources/lambda/
LambdaCFTemplate.yaml \
--capabilities CAPABILITY_NAMED_IAM

You can also launch the AWS CloudFormation stack in the US West (Oregon) AWS Region in your
AWS account from here:

Configure a data source for Lambda

After you create the Lambda function, navigate to your GraphQL API in the AWS AppSync console,
and then choose the Data Sources tab.

Choose Create data source, enter a friendly Data source name (for example, Lambda), and then
for Data source type, choose AWS Lambda function. For Region, choose the same Region as your
function. (If you created the function from the provided CloudFormation stack, the function is
probably in US-WEST-2.) For Function ARN, choose the Amazon Resource Name (ARN) of your
Lambda function.

After choosing your Lambda function, you can either create a new AWS Identity and Access
Management (IAM) role (for which AWS AppSync assigns the appropriate permissions) or choose an
existing role that has the following inline policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:REGION:ACCOUNTNUMBER:function/LAMBDA_FUNCTION"
 }
]
}

You must also set up a trust relationship with AWS AppSync for the IAM role as follows:

{

Configure a data source for Lambda 438

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/lambda/LambdaCFTemplate.yaml

AWS AppSync Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create a GraphQL schema

Now that the data source is connected to your Lambda function, create a GraphQL schema.

From the schema editor in the AWS AppSync console, make sure that your schema matches the
following schema:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 getPost(id:ID!): Post
 allPosts: [Post]
}

type Mutation {
 addPost(id: ID!, author: String!, title: String, content: String, url: String):
 Post!
}

type Post {
 id: ID!
 author: String!
 title: String
 content: String
 url: String
 ups: Int
 downs: Int
 relatedPosts: [Post]

Create a GraphQL schema 439

AWS AppSync Developer Guide

}

Configure resolvers

Now that you've registered a Lambda data source and a valid GraphQL schema, you can connect
your GraphQL fields to your Lambda data source using resolvers.

To create a resolver, you'll need mapping templates. To learn more about mapping templates, see
Resolver Mapping Template Overview.

For more information about Lambda mapping templates, see Resolver mapping template reference
for Lambda.

In this step, you attach a resolver to the Lambda function for the following fields:
getPost(id:ID!): Post, allPosts: [Post], addPost(id: ID!, author: String!,
title: String, content: String, url: String): Post!, and Post.relatedPosts:
[Post].

From the schema editor in the AWS AppSync console, on the right side, choose Attach Resolver for
getPost(id:ID!): Post.

Then, in the Action menu, choose Update runtime, then choose Unit Resolver (VTL only).

Afterward, choose your Lambda data source. In the request mapping template section, choose
Invoke And Forward Arguments.

Modify the payload object to add the field name. Your template should look like the following:

{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "arguments": $utils.toJson($context.arguments)
 }
}

In the response mapping template section, choose Return Lambda Result.

In this case, use the base template as-is. It should look like the following:

$utils.toJson($context.result)

Configure resolvers 440

AWS AppSync Developer Guide

Choose Save. You have successfully attached your first resolver. Repeat this operation for the
remaining fields as follows:

For addPost(id: ID!, author: String!, title: String, content: String, url:
String): Post! request mapping template:

{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {
 "field": "addPost",
 "arguments": $utils.toJson($context.arguments)
 }
}

For addPost(id: ID!, author: String!, title: String, content: String, url:
String): Post! response mapping template:

$utils.toJson($context.result)

For allPosts: [Post] request mapping template:

{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {
 "field": "allPosts"
 }
}

For allPosts: [Post] response mapping template:

$utils.toJson($context.result)

For Post.relatedPosts: [Post] request mapping template:

{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {
 "field": "relatedPosts",

Configure resolvers 441

AWS AppSync Developer Guide

 "source": $utils.toJson($context.source)
 }
}

For Post.relatedPosts: [Post] response mapping template:

$utils.toJson($context.result)

Test your GraphQL API

Now that your Lambda function is connected to GraphQL resolvers, you can run some mutations
and queries using the console or a client application.

On the left side of the AWS AppSync console, choose Queries, and then paste in the following
code:

addPost Mutation

mutation addPost {
 addPost(
 id: 6
 author: "Author6"
 title: "Sixth book"
 url: "https://www.amazon.com/"
 content: "This is the book is a tutorial for using GraphQL with AWS AppSync."
) {
 id
 author
 title
 content
 url
 ups
 downs
 }
}

getPost Query

query getPost {
 getPost(id: "2") {
 id
 author

Test your GraphQL API 442

AWS AppSync Developer Guide

 title
 content
 url
 ups
 downs
 }
}

allPosts Query

query allPosts {
 allPosts {
 id
 author
 title
 content
 url
 ups
 downs
 relatedPosts {
 id
 title
 }
 }
}

Returning errors

Any given field resolution can result in an error. With AWS AppSync, you can raise errors from the
following sources:

• Request or response mapping template

• Lambda function

From the mapping template

To raise intentional errors, you can use the $utils.error helper method from the Velocity
Template Language (VTL) template. It takes as argument an errorMessage, an errorType, and
an optional data value. The data is useful for returning extra data back to the client when an
error occurs. The data object is added to the errors in the GraphQL final response.

Returning errors 443

AWS AppSync Developer Guide

The following example shows how to use it in the Post.relatedPosts: [Post] response
mapping template:

$utils.error("Failed to fetch relatedPosts", "LambdaFailure", $context.result)

This yields a GraphQL response similar to the following:

{
 "data": {
 "allPosts": [
 {
 "id": "2",
 "title": "Second book",
 "relatedPosts": null
 },
 ...
]
 },
 "errors": [
 {
 "path": [
 "allPosts",
 0,
 "relatedPosts"
],
 "errorType": "LambdaFailure",
 "locations": [
 {
 "line": 5,
 "column": 5
 }
],
 "message": "Failed to fetch relatedPosts",
 "data": [
 {
 "id": "2",
 "title": "Second book"
 },
 {
 "id": "1",
 "title": "First book"
 }
]

Returning errors 444

AWS AppSync Developer Guide

 }
]
}

Where allPosts[0].relatedPosts is null because of the error and the errorMessage,
errorType, and data are present in the data.errors[0] object.

From the Lambda function

AWS AppSync also understands errors that the Lambda function throws. The Lambda
programming model lets you raise handled errors. If the Lambda function throws an error, AWS
AppSync fails to resolve the current field. Only the error message returned from Lambda is set in
the response. Currently, you can't pass any extraneous data back to the client by raising an error
from the Lambda function.

Note: If your Lambda function raises an unhandled error, AWS AppSync uses the error message that
Lambda set.

The following Lambda function raises an error:

exports.handler = (event, context, callback) => {
 console.log("Received event {}", JSON.stringify(event, 3));
 callback("I fail. Always.");
};

This returns a GraphQL response similar to the following:

{
 "data": {
 "allPosts": [
 {
 "id": "2",
 "title": "Second book",
 "relatedPosts": null
 },
 ...
]
 },
 "errors": [
 {
 "path": [

Returning errors 445

AWS AppSync Developer Guide

 "allPosts",
 0,
 "relatedPosts"
],
 "errorType": "Lambda:Handled",
 "locations": [
 {
 "line": 5,
 "column": 5
 }
],
 "message": "I fail. Always."
 }
]
}

Advanced use case: Batching

The Lambda function in this example has a relatedPosts field that returns a list of related posts
for a given post. In the example queries, the allPosts field invocation from the Lambda function
returns five posts. Because we specified that we also want to resolve relatedPosts for each
returned post, the relatedPosts field operation is invoked five times.

query allPosts {
 allPosts { // 1 Lambda invocation - yields 5 Posts
 id
 author
 title
 content
 url
 ups
 downs
 relatedPosts { // 5 Lambda invocations - each yields 5 posts
 id
 title
 }
 }
}

While this might not sound substantial in this specific example, this compounded over-fetching can
quickly undermine the application.

Advanced use case: Batching 446

AWS AppSync Developer Guide

If you were to fetch relatedPosts again on the returned related Posts in the same query, the
number of invocations would increase dramatically.

query allPosts {
 allPosts { // 1 Lambda invocation - yields 5 Posts
 id
 author
 title
 content
 url
 ups
 downs
 relatedPosts { // 5 Lambda invocations - each yield 5 posts = 5 x 5 Posts
 id
 title
 relatedPosts { // 5 x 5 Lambda invocations - each yield 5 posts = 25 x 5
 Posts
 id
 title
 author
 }
 }
 }
}

In this relatively simple query, AWS AppSync would invoke the Lambda function 1 + 5 + 25 = 31
times.

This is a fairly common challenge and is often called the N+1 problem (in this case, N = 5), and it
can incur increased latency and cost to the application.

One approach to solving this issue is to batch similar field resolver requests together. In this
example, instead of having the Lambda function resolve a list of related posts for a single given
post, it could instead resolve a list of related posts for a given batch of posts.

To demonstrate this, let's switch the Post.relatedPosts: [Post] resolver to a batch-enabled
resolver.

On the right side of the AWS AppSync console, choose the existing Post.relatedPosts:
[Post] resolver. Change the request mapping template to the following:

{

Advanced use case: Batching 447

AWS AppSync Developer Guide

 "version": "2017-02-28",
 "operation": "BatchInvoke",
 "payload": {
 "field": "relatedPosts",
 "source": $utils.toJson($context.source)
 }
}

Only the operation field has changed from Invoke to BatchInvoke. The payload field now
becomes an array of whatever is specified in the template. In this example, the Lambda function
receives the following as input:

[
 {
 "field": "relatedPosts",
 "source": {
 "id": 1
 }
 },
 {
 "field": "relatedPosts",
 "source": {
 "id": 2
 }
 },
 ...
]

When BatchInvoke is specified in the request mapping template, the Lambda function receives a
list of requests and returns a list of results.

Specifically, the list of results must match the size and order of the request payload entries so that
AWS AppSync can match the results accordingly.

In this batching example, the Lambda function returns a batch of results as follows:

[
 [{"id":"2","title":"Second book"}, {"id":"3","title":"Third book"}], //
 relatedPosts for id=1
 [{"id":"3","title":"Third book"}]
 // relatedPosts for id=2
]

Advanced use case: Batching 448

AWS AppSync Developer Guide

The following Lambda function in Node.js demonstrates this batching functionality for the
Post.relatedPosts field as follows:

exports.handler = (event, context, callback) => {
 console.log("Received event {}", JSON.stringify(event, 3));
 var posts = {
 "1": {"id": "1", "title": "First book", "author": "Author1", "url": "https://
amazon.com/", "content": "SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR
 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1", "ups": "100",
 "downs": "10"},
 "2": {"id": "2", "title": "Second book", "author": "Author2", "url": "https://
amazon.com", "content": "SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT", "ups":
 "100", "downs": "10"},
 "3": {"id": "3", "title": "Third book", "author": "Author3", "url": null,
 "content": null, "ups": null, "downs": null },
 "4": {"id": "4", "title": "Fourth book", "author": "Author4", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4", "ups": "1000", "downs": "0"},
 "5": {"id": "5", "title": "Fifth book", "author": "Author5", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT
 AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT", "ups": "50", "downs": "0"} };

 var relatedPosts = {
 "1": [posts['4']],
 "2": [posts['3'], posts['5']],
 "3": [posts['2'], posts['1']],
 "4": [posts['2'], posts['1']],
 "5": []
 };

 console.log("Got a BatchInvoke Request. The payload has %d items to resolve.",
 event.length);
 // event is now an array
 var field = event[0].field;
 switch(field) {
 case "relatedPosts":
 var results = [];
 // the response MUST contain the same number
 // of entries as the payload array
 for (var i=0; i< event.length; i++) {
 console.log("post {}", JSON.stringify(event[i].source));
 results.push(relatedPosts[event[i].source.id]);

Advanced use case: Batching 449

AWS AppSync Developer Guide

 }
 console.log("results {}", JSON.stringify(results));
 callback(null, results);
 break;
 default:
 callback("Unknown field, unable to resolve" + field, null);
 break;
 }
};

Returning individual errors

The previous examples show that it's possible to return a single error from the Lambda function
or raise an error from the mapping templates. For batched invocations, raising an error from the
Lambda function flags an entire batch as failed. This might be acceptable for specific scenarios
where an irrecoverable error occurs, such as a failed connection to a data store. However, in cases
where some items in the batch succeed and others fail, it's possible to return both errors and valid
data. Because AWS AppSync requires the batch response to list elements matching the original size
of the batch, you must define a data structure that can differentiate valid data from an error.

For example, if the Lambda function is expected to return a batch of related posts, you could
choose to return a list of Response objects where each object has optional data, errorMessage, and
errorType fields. If the errorMessage field is present, it means that an error occurred.

The following code shows how you could update the Lambda function:

exports.handler = (event, context, callback) => {
 console.log("Received event {}", JSON.stringify(event, 3));
 var posts = {
 "1": {"id": "1", "title": "First book", "author": "Author1", "url": "https://
amazon.com/", "content": "SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR
 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1", "ups": "100",
 "downs": "10"},
 "2": {"id": "2", "title": "Second book", "author": "Author2", "url": "https://
amazon.com", "content": "SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT", "ups":
 "100", "downs": "10"},
 "3": {"id": "3", "title": "Third book", "author": "Author3", "url": null,
 "content": null, "ups": null, "downs": null },
 "4": {"id": "4", "title": "Fourth book", "author": "Author4", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4", "ups": "1000", "downs": "0"},

Advanced use case: Batching 450

AWS AppSync Developer Guide

 "5": {"id": "5", "title": "Fifth book", "author": "Author5", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT
 AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT", "ups": "50", "downs": "0"} };

 var relatedPosts = {
 "1": [posts['4']],
 "2": [posts['3'], posts['5']],
 "3": [posts['2'], posts['1']],
 "4": [posts['2'], posts['1']],
 "5": []
 };

 console.log("Got a BatchInvoke Request. The payload has %d items to resolve.",
 event.length);
 // event is now an array
 var field = event[0].field;
 switch(field) {
 case "relatedPosts":
 var results = [];
 results.push({ 'data': relatedPosts['1'] });
 results.push({ 'data': relatedPosts['2'] });
 results.push({ 'data': null, 'errorMessage': 'Error Happened', 'errorType':
 'ERROR' });
 results.push(null);
 results.push({ 'data': relatedPosts['3'], 'errorMessage': 'Error Happened
 with last result', 'errorType': 'ERROR' });
 callback(null, results);
 break;
 default:
 callback("Unknown field, unable to resolve" + field, null);
 break;
 }
};

For this example, the following response mapping template parses each item of the Lambda
function and raises any errors that occur:

#if($context.result && $context.result.errorMessage)
 $utils.error($context.result.errorMessage, $context.result.errorType,
 $context.result.data)
#else
 $utils.toJson($context.result.data)
#end

Advanced use case: Batching 451

AWS AppSync Developer Guide

This example returns a GraphQL response similar to the following:

{
 "data": {
 "allPosts": [
 {
 "id": "1",
 "relatedPostsPartialErrors": [
 {
 "id": "4",
 "title": "Fourth book"
 }
]
 },
 {
 "id": "2",
 "relatedPostsPartialErrors": [
 {
 "id": "3",
 "title": "Third book"
 },
 {
 "id": "5",
 "title": "Fifth book"
 }
]
 },
 {
 "id": "3",
 "relatedPostsPartialErrors": null
 },
 {
 "id": "4",
 "relatedPostsPartialErrors": null
 },
 {
 "id": "5",
 "relatedPostsPartialErrors": null
 }
]
 },
 "errors": [
 {
 "path": [

Advanced use case: Batching 452

AWS AppSync Developer Guide

 "allPosts",
 2,
 "relatedPostsPartialErrors"
],
 "errorType": "ERROR",
 "locations": [
 {
 "line": 4,
 "column": 9
 }
],
 "message": "Error Happened"
 },
 {
 "path": [
 "allPosts",
 4,
 "relatedPostsPartialErrors"
],
 "data": [
 {
 "id": "2",
 "title": "Second book"
 },
 {
 "id": "1",
 "title": "First book"
 }
],
 "errorType": "ERROR",
 "locations": [
 {
 "line": 4,
 "column": 9
 }
],
 "message": "Error Happened with last result"
 }
]
}

Advanced use case: Batching 453

AWS AppSync Developer Guide

Configuring the maximum batching size

By default, when using BatchInvoke, AWS AppSync sends requests to your Lambda function in
batches of up to five items. You can configure the maximum batch size of your Lambda resolvers.

To configure the maximum batching size on a resolver, use the following command in the AWS
Command Line Interface (AWS CLI):

$ aws appsync create-resolver --api-id <api-id> --type-name Query --field-name
 relatedPosts \
 --request-mapping-template "<template>" --response-mapping-template "<template>" --
data-source-name "<lambda-datasource>" \
 --max-batch-size X

Note

When providing a request mapping template, you must use the BatchInvoke operation to
use batching.

You can also use the following command to enable and configure batching on Direct Lambda
Resolvers:

$ aws appsync create-resolver --api-id <api-id> --type-name Query --field-name
 relatedPosts \
 --data-source-name "<lambda-datasource>" \
 --max-batch-size X

Maximum batching size configuration with VTL templates

For Lambda Resolvers that have VTL in-request templates, the maximum batch size will have
no effect unless they have directly specified it as a BatchInvoke operation in VTL. Similarly, if
you are performing a top-level mutation, batching is not conducted for mutations because the
GraphQL specification requires parallel mutations to be executed sequentially.

For example, take the following mutations:

type Mutation {
 putItem(input: Item): Item
 putItems(inputs: [Item]): [Item]

Advanced use case: Batching 454

AWS AppSync Developer Guide

}

Using the first mutation, we can create 10 Items as shown in the snippet below:

mutation MyMutation {
 v1: putItem($someItem1) {
 id,
 name
 }
 v2: putItem($someItem2) {
 id,
 name
 }
 v3: putItem($someItem3) {
 id,
 name
 }
 v4: putItem($someItem4) {
 id,
 name
 }
 v5: putItem($someItem5) {
 id,
 name
 }
 v6: putItem($someItem6) {
 id,
 name
 }
 v7: putItem($someItem7) {
 id,
 name
 }
 v8: putItem($someItem8) {
 id,
 name
 }
 v9: putItem($someItem9) {
 id,
 name
 }
 v10: putItem($someItem10) {
 id,

Advanced use case: Batching 455

AWS AppSync Developer Guide

 name
 }
}

In this example, the Items will not be batched in a group of 10 even if the maximum batch size is
set to 10 in the Lambda Resolver. Instead, they will execute sequentially according to the GraphQL
specification.

To perform an actual batch mutation, you may follow the example below using the second
mutation:

mutation MyMutation {
 putItems([$someItem1, $someItem2, $someItem3,$someItem4, $someItem5, $someItem6,
 $someItem7, $someItem8, $someItem9, $someItem10]) {
 id,
 name
 }
}

For more information about using batching with Direct Lambda Resolvers, see Direct Lambda
Resolvers.

Tutorial: Amazon OpenSearch Service Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync supports using Amazon OpenSearch Service from domains that you have
provisioned in your own AWS account, provided they don’t exist inside a VPC. After your domains
are provisioned, you can connect to them using a data source, at which point you can configure
a resolver in the schema to perform GraphQL operations such as queries, mutations, and
subscriptions. This tutorial will take you through some common examples.

For more information, see the Resolver Mapping Template Reference for OpenSearch.

Tutorial: Amazon OpenSearch Service Resolvers 456

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

One-Click Setup

To automatically set up a GraphQL endpoint in AWS AppSync with Amazon OpenSearch Service
configured you can use this AWS CloudFormation template:

After the AWS CloudFormation deployment completes you can skip directly to running GraphQL
queries and mutations.

Create a New OpenSearch Service Domain

To get started with this tutorial, you need an existing OpenSearch Service domain. If you don’t
have one, you can use the following sample. Note that it can take up to 15 minutes for an
OpenSearch Service domain to be created before you can move on to integrating it with an AWS
AppSync data source.

aws cloudformation create-stack --stack-name AppSyncOpenSearch \
--template-url https://s3.us-west-2.amazonaws.com/awsappsync/resources/elasticsearch/
ESResolverCFTemplate.yaml \
--parameters ParameterKey=OSDomainName,ParameterValue=ddtestdomain
 ParameterKey=Tier,ParameterValue=development \
--capabilities CAPABILITY_NAMED_IAM

You can launch the following AWS CloudFormation stack in the US West 2 (Oregon) region in your
AWS account:

Configure Data Source for OpenSearch Service

After the OpenSearch Service domain is created, navigate to your AWS AppSync GraphQL API and
choose the Data Sources tab. Choose New and enter a friendly name for the data source, such as
“oss”. Then choose Amazon OpenSearch domain for Data source type, choose the appropriate
region, and you should see your OpenSearch Service domain listed. After selecting it you can either
create a new role and AWS AppSync will assign the role-appropriate permissions, or you can choose
an existing role, which has the following inline policy:

One-Click Setup 457

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/elasticsearch/appsynces.yml
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/elasticsearch/ESResolverCFTemplate.yaml

AWS AppSync Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1234234",
 "Effect": "Allow",
 "Action": [
 "es:ESHttpDelete",
 "es:ESHttpHead",
 "es:ESHttpGet",
 "es:ESHttpPost",
 "es:ESHttpPut"
],
 "Resource": [
 "arn:aws:es:REGION:ACCOUNTNUMBER:domain/democluster/*"
]
 }
]
}

You’ll also need to set up a trust relationship with AWS AppSync for that role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Additionally, the OpenSearch Service domain has it’s own Access Policy which you can modify
through the Amazon OpenSearch Service console. You will need to add a policy similar to the
following, with the appropriate actions and resource for the OpenSearch Service domain. Note that
the Principal will be the AppSync data source role, which if you let the console create this, can be
found in the IAM console.

{

Configure Data Source for OpenSearch Service 458

AWS AppSync Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::ACCOUNTNUMBER:role/service-role/
APPSYNC_DATASOURCE_ROLE"
 },
 "Action": [
 "es:ESHttpDelete",
 "es:ESHttpHead",
 "es:ESHttpGet",
 "es:ESHttpPost",
 "es:ESHttpPut"
],
 "Resource": "arn:aws:es:REGION:ACCOUNTNUMBER:domain/DOMAIN_NAME/*"
 }
]
}

Connecting a Resolver

Now that the data source is connected to your OpenSearch Service domain, you can connect it to
your GraphQL schema with a resolver, as shown in the following example:

 schema {
 query: Query
 mutation: Mutation
 }

 type Query {
 getPost(id: ID!): Post
 allPosts: [Post]
 }

 type Mutation {
 addPost(id: ID!, author: String, title: String, url: String, ups: Int, downs: Int,
 content: String): AWSJSON
 }

type Post {
 id: ID!
 author: String

Connecting a Resolver 459

AWS AppSync Developer Guide

 title: String
 url: String
 ups: Int
 downs: Int
 content: String
}
...

Note that there is a user-defined Post type with a field of id. In the following examples, we
assume there is a process (which can be automated) for putting this type into your OpenSearch
Service domain, which would map to a path root of /post/_doc, where post is the index. From
this root path, you can perform individual document searches, wildcard searches with /id/post*,
or multi-document searches with a path of /post/_search. For example, if you have another
type called User, you can index documents under a new index called user, then perform searches
with a path of /user/_search.

From the schema editor in the AWS AppSync console, modify the preceding Posts schema to
include a searchPosts query:

type Query {
 getPost(id: ID!): Post
 allPosts: [Post]
 searchPosts: [Post]
}

Save the schema. On the right side, for searchPosts, choose Attach resolver. In the Action
menu, choose Update runtime, then choose Unit Resolver (VTL only). Then, choose your
OpenSearch Service data source. Under the request mapping template section, select the drop-
down for Query posts to get a base template. Modify the path to be /post/_search. It should
look like the following:

{
 "version":"2017-02-28",
 "operation":"GET",
 "path":"/post/_search",
 "params":{
 "headers":{},
 "queryString":{},
 "body":{
 "from":0,
 "size":50

Connecting a Resolver 460

AWS AppSync Developer Guide

 }
 }
}

This assumes that the preceding schema has documents that have been indexed in OpenSearch
Service under the post field. If you structure your data differently, then you’ll need to update
accordingly.

Under the response mapping template section, you need to specify the appropriate _source
filter if you want to get back the data results from an OpenSearch Service query and translate to
GraphQL. Use the following template:

[
 #foreach($entry in $context.result.hits.hits)
 #if($velocityCount > 1) , #end
 $utils.toJson($entry.get("_source"))
 #end
]

Modifying Your Searches

The preceding request mapping template performs a simple query for all records. Suppose you
want to search by a specific author. Further, suppose you want that author to be an argument
defined in your GraphQL query. In the schema editor of the AWS AppSync console, add an
allPostsByAuthor query:

type Query {
 getPost(id: ID!): Post
 allPosts: [Post]
 allPostsByAuthor(author: String!): [Post]
 searchPosts: [Post]
}

Now choose Attach resolver and select the OpenSearch Service data source, but use the following
example in the response mapping template:

{
 "version":"2017-02-28",
 "operation":"GET",
 "path":"/post/_search",

Modifying Your Searches 461

AWS AppSync Developer Guide

 "params":{
 "headers":{},
 "queryString":{},
 "body":{
 "from":0,
 "size":50,
 "query":{
 "match" :{
 "author": $util.toJson($context.arguments.author)
 }
 }
 }
 }
}

Note that the body is populated with a term query for the author field, which is passed through
from the client as an argument. You could optionally have prepopulated information, such as
standard text, or even use other utilities.

If you’re using this resolver, fill in the response mapping template with the same information as
the previous example.

Adding Data to OpenSearch Service

You may want to add data to your OpenSearch Service domain as the result of a GraphQL
mutation. This is a powerful mechanism for searching and other purposes. Because you can use
GraphQL subscriptions to make your data real-time, it serves as a mechanism for notifying clients
of updates to data in your OpenSearch Service domain.

Return to the Schema page in the AWS AppSync console and select Attach resolver for the
addPost() mutation. Select the OpenSearch Service data source again and use the following
response mapping template for the Posts schema:

{
 "version":"2017-02-28",
 "operation":"PUT",
 "path": $util.toJson("/post/_doc/$context.arguments.id"),
 "params":{
 "headers":{},
 "queryString":{},
 "body":{
 "id": $util.toJson($context.arguments.id),

Adding Data to OpenSearch Service 462

AWS AppSync Developer Guide

 "author": $util.toJson($context.arguments.author),
 "ups": $util.toJson($context.arguments.ups),
 "downs": $util.toJson($context.arguments.downs),
 "url": $util.toJson($context.arguments.url),
 "content": $util.toJson($context.arguments.content),
 "title": $util.toJson($context.arguments.title)
 }
 }
}

As before, this is an example of how your data might be structured. If you have different field
names or indexes, you need to update the path and body as appropriate. This example also
shows how to use $context.arguments to populate the template from your GraphQL mutation
arguments.

Before moving on, use the following response mapping template, which will return the result of
the mutation operation or error information as output:

#if($context.error)
 $util.toJson($ctx.error)
#else
 $util.toJson($context.result)
#end

Retrieving a Single Document

Finally, if you want to use the getPost(id:ID) query in your schema to return an individual
document, find this query in the schema editor of the AWS AppSync console and choose Attach
resolver. Select the OpenSearch Service data source again and use the following mapping
template:

{
 "version":"2017-02-28",
 "operation":"GET",
 "path": $util.toJson("post/_doc/$context.arguments.id"),
 "params":{
 "headers":{},
 "queryString":{},
 "body":{}
 }
}

Retrieving a Single Document 463

AWS AppSync Developer Guide

Because the path above uses the id argument with an empty body, this returns the single
document. However, you need to use the following response mapping template, because now
you’re returning a single item and not a list:

$utils.toJson($context.result.get("_source"))

Perform Queries and Mutations

You should now be able to perform GraphQL operations against your OpenSearch Service domain.
Navigate to the Queries tab of the AWS AppSync console and add a new record:

mutation addPost {
 addPost (
 id:"12345"
 author: "Fred"
 title: "My first book"
 content: "This will be fun to write!"
 url: "publisher website",
 ups: 100,
 downs:20
)
}

You’ll see the result of the mutation on the right. Similarly, you can now run a searchPosts query
against your OpenSearch Service domain:

query searchPosts {
 searchPosts {
 id
 title
 author
 content
 }
}

Best Practices

• OpenSearch Service should be for querying data, not as your primary database. You may want
to use OpenSearch Service in conjunction with Amazon DynamoDB as outlined in Combining
GraphQL Resolvers.

Perform Queries and Mutations 464

AWS AppSync Developer Guide

• Only give access to your domain by allowing the AWS AppSync service role to access the cluster.

• You can start small in development, with the lowest-cost cluster, and then move to a larger
cluster with high availability (HA) as you move into production.

Tutorial: Local Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync allows you to use supported data sources (AWS Lambda, Amazon DynamoDB, or
Amazon OpenSearch Service) to perform various operations. However, in certain scenarios, a call to
a supported data source might not be necessary.

This is where the local resolver comes in handy. Instead of calling a remote data source, the local
resolver will just forward the result of the request mapping template to the response mapping
template. The field resolution will not leave AWS AppSync.

Local resolvers are useful for several use cases. The most popular use case is to publish
notifications without triggering a data source call. To demonstrate this use case, let’s build a paging
application; where users can page each other. This example leverages Subscriptions, so if you aren’t
familiar with Subscriptions, you can follow the Real-Time Data tutorial.

Create the Paging Application

In our paging application, clients can subscribe to an inbox, and send pages to other clients. Each
page includes a message. Here is the schema:

schema {
 query: Query
 mutation: Mutation
 subscription: Subscription
}

type Subscription {
 inbox(to: String!): Page

Tutorial: Local Resolvers 465

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

 @aws_subscribe(mutations: ["page"])
}

type Mutation {
 page(body: String!, to: String!): Page!
}

type Page {
 from: String
 to: String!
 body: String!
 sentAt: String!
}

type Query {
 me: String
}

Let’s attach a resolver on the Mutation.page field. In the Schema pane, click on Attach Resolver
next to the field definition on the right panel. Create a new data source of type None and name it
PageDataSource.

For the request mapping template, enter:

{
 "version": "2017-02-28",
 "payload": {
 "body": $util.toJson($context.arguments.body),
 "from": $util.toJson($context.identity.username),
 "to": $util.toJson($context.arguments.to),
 "sentAt": "$util.time.nowISO8601()"
 }
}

And for the response mapping template, select the default Forward the result. Save your resolver.
You application is now ready, let’s page!

Send and subscribe to pages

For clients to receive pages, they must first be subscribed to an inbox.

In the Queries pane let’s execute the inbox subscription:

Send and subscribe to pages 466

AWS AppSync Developer Guide

subscription Inbox {
 inbox(to: "Nadia") {
 body
 to
 from
 sentAt
 }
}

Nadia will receive pages whenever the Mutation.page mutation is invoked. Let’s invoke the
mutation by executing the mutation:

mutation Page {
 page(to: "Nadia", body: "Hello, World!") {
 body
 to
 from
 sentAt
 }
}

We just demonstrated the use of local resolvers, by sending a Page and receiving it without leaving
AWS AppSync.

Tutorial: Combining GraphQL Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Resolvers and fields in a GraphQL schema have 1:1 relationships with a large degree of flexibility.
Because a data source is configured on a resolver independently of a schema, you have the ability
for GraphQL types to be resolved or manipulated through different data sources, mixing and
matching on a schema to best meet your needs.

The following example scenarios demonstrate how to mix and match data sources in your schema.
Before you begin, we recommend that you are familiar with setting up data sources and resolvers

Tutorial: Combining GraphQL Resolvers 467

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

for AWS Lambda, Amazon DynamoDB, and Amazon OpenSearch Service as described in the
previous tutorials.

Example Schema

The following schema has a type of Post with 3 Query operations and 3 Mutation operations
defined:

type Post {
 id: ID!
 author: String!
 title: String
 content: String
 url: String
 ups: Int
 downs: Int
 version: Int!
}

type Query {
 allPost: [Post]
 getPost(id: ID!): Post
 searchPosts: [Post]
}

type Mutation {
 addPost(
 id: ID!,
 author: String!,
 title: String,
 content: String,
 url: String
): Post
 updatePost(
 id: ID!,
 author: String!,
 title: String,
 content: String,
 url: String,
 ups: Int!,
 downs: Int!,
 expectedVersion: Int!
): Post

Example Schema 468

AWS AppSync Developer Guide

 deletePost(id: ID!): Post
}

In this example you would have a total of 6 resolvers to attach. One possible way would to have all
of these come from an Amazon DynamoDB table, called Posts, where AllPosts runs a scan and
searchPosts runs a query, as outlined in the DynamoDB Resolver Mapping Template Reference.
However, there are alternatives to meet your business needs, such as having these GraphQL queries
resolve from Lambda or OpenSearch Service.

Alter Data Through Resolvers

You might have the need to return results from a database such as DynamoDB (or Amazon Aurora)
to clients with some of the attributes changed. This might be due to formatting of the data
types, such as timestamp differences on clients, or to handle backwards compatibility issues. For
illustrative purposes, in the following example, an AWS Lambda function manipulates the up-
votes and down-votes for blog posts by assigning them random numbers each time the GraphQL
resolver is invoked:

'use strict';
const doc = require('dynamodb-doc');
const dynamo = new doc.DynamoDB();

exports.handler = (event, context, callback) => {
 const payload = {
 TableName: 'Posts',
 Limit: 50,
 Select: 'ALL_ATTRIBUTES',
 };

 dynamo.scan(payload, (err, data) => {
 const result = { data: data.Items.map(item =>{
 item.ups = parseInt(Math.random() * (50 - 10) + 10, 10);
 item.downs = parseInt(Math.random() * (20 - 0) + 0, 10);
 return item;
 }) };
 callback(err, result.data);
 });
};

Alter Data Through Resolvers 469

AWS AppSync Developer Guide

This is a perfectly valid Lambda function and could be attached to the AllPosts field in the
GraphQL schema so that any query returning all the results gets random numbers for the ups/
downs.

DynamoDB and OpenSearch Service

For some applications, you might perform mutations or simple lookup queries against DynamoDB,
and have a background process transfer documents to OpenSearch Service. You can then simply
attach the searchPosts Resolver to the OpenSearch Service data source and return search results
(from data that originated in DynamoDB) using a GraphQL query. This can be extremely powerful
when adding advanced search operations to your applications such keyword, fuzzy word matches
or even geospatial lookups. Transferring data from DynamoDB could be done through an ETL
process or alternatively you can stream from DynamoDB using Lambda. You can launch a complete
example of this using the following AWS CloudFormation stack in the US West 2 (Oregon) Region
in your AWS account:

The schema in this example lets you add posts using a DynamoDB resolver as follows:

mutation add {
 putPost(author:"Nadia"
 title:"My first post"
 content:"This is some test content"
 url:"https://aws.amazon.com/appsync/"
){
 id
 title
 }
}

This writes data to DynamoDB which then streams data via Lambda to Amazon OpenSearch
Service which you could search for all posts by different fields. For example, since the data is in
Amazon OpenSearch Service you can search either the author or content fields with free-form text,
even with spaces, as follows:

query searchName{
 searchAuthor(name:" Nadia "){
 id

DynamoDB and OpenSearch Service 470

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/multipledatasource/appsyncesdbstream.yml

AWS AppSync Developer Guide

 title
 content
 }
}

query searchContent{
 searchContent(text:"test"){
 id
 title
 content
 }
}

Because the data is written directly to DynamoDB, you can still perform efficient list or item lookup
operations against the table with the allPosts{...} and singlePost{...} queries. This stack
uses the following example code for DynamoDB streams:

Note: This code is for example only.

var AWS = require('aws-sdk');
var path = require('path');
var stream = require('stream');

var esDomain = {
 endpoint: 'https://opensearch-domain-name.REGION.es.amazonaws.com',
 region: 'REGION',
 index: 'id',
 doctype: 'post'
};

var endpoint = new AWS.Endpoint(esDomain.endpoint)
var creds = new AWS.EnvironmentCredentials('AWS');

function postDocumentToES(doc, context) {
 var req = new AWS.HttpRequest(endpoint);

 req.method = 'POST';
 req.path = '/_bulk';
 req.region = esDomain.region;
 req.body = doc;
 req.headers['presigned-expires'] = false;
 req.headers['Host'] = endpoint.host;

DynamoDB and OpenSearch Service 471

AWS AppSync Developer Guide

 // Sign the request (Sigv4)
 var signer = new AWS.Signers.V4(req, 'es');
 signer.addAuthorization(creds, new Date());

 // Post document to ES
 var send = new AWS.NodeHttpClient();
 send.handleRequest(req, null, function (httpResp) {
 var body = '';
 httpResp.on('data', function (chunk) {
 body += chunk;
 });
 httpResp.on('end', function (chunk) {
 console.log('Successful', body);
 context.succeed();
 });
 }, function (err) {
 console.log('Error: ' + err);
 context.fail();
 });
}

exports.handler = (event, context, callback) => {
 console.log("event => " + JSON.stringify(event));
 var posts = '';

 for (var i = 0; i < event.Records.length; i++) {
 var eventName = event.Records[i].eventName;
 var actionType = '';
 var image;
 var noDoc = false;
 switch (eventName) {
 case 'INSERT':
 actionType = 'create';
 image = event.Records[i].dynamodb.NewImage;
 break;
 case 'MODIFY':
 actionType = 'update';
 image = event.Records[i].dynamodb.NewImage;
 break;
 case 'REMOVE':
 actionType = 'delete';
 image = event.Records[i].dynamodb.OldImage;
 noDoc = true;
 break;

DynamoDB and OpenSearch Service 472

AWS AppSync Developer Guide

 }

 if (typeof image !== "undefined") {
 var postData = {};
 for (var key in image) {
 if (image.hasOwnProperty(key)) {
 if (key === 'postId') {
 postData['id'] = image[key].S;
 } else {
 var val = image[key];
 if (val.hasOwnProperty('S')) {
 postData[key] = val.S;
 } else if (val.hasOwnProperty('N')) {
 postData[key] = val.N;
 }
 }
 }
 }

 var action = {};
 action[actionType] = {};
 action[actionType]._index = 'id';
 action[actionType]._type = 'post';
 action[actionType]._id = postData['id'];
 posts += [
 JSON.stringify(action),
].concat(noDoc?[]:[JSON.stringify(postData)]).join('\n') + '\n';
 }
 }
 console.log('posts:',posts);
 postDocumentToES(posts, context);
};

You can then use DynamoDB streams to attach this to a DynamoDB table with a primary key of id,
and any changes to the source of DynamoDB would stream into your OpenSearch Service domain.
For more information about configuring this, see the DynamoDB Streams documentation.

DynamoDB and OpenSearch Service 473

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html

AWS AppSync Developer Guide

Tutorial: DynamoDB Batch Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync supports using Amazon DynamoDB batch operations across one or more tables in a
single region. Supported operations are BatchGetItem, BatchPutItem, and BatchDeleteItem.
By using these features in AWS AppSync, you can perform tasks such as:

• Pass a list of keys in a single query and return the results from a table

• Read records from one or more tables in a single query

• Write records in bulk to one or more tables

• Conditionally write or delete records in multiple tables that might have a relation

Using batch operations with DynamoDB in AWS AppSync is an advanced technique that takes a
little extra thought and knowledge of your backend operations and table structures. Additionally,
batch operations in AWS AppSync have two key differences from non-batched operations:

• The data source role must have permissions to all tables which the resolver will access.

• The table specification for a resolver is part of the mapping template.

Permissions

Like other resolvers, you need to create a data source in AWS AppSync and either create a role or
use an existing one. Because batch operations require different permissions on DynamoDB tables,
you need to grant the configured role permissions for read or write actions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem"

Tutorial: DynamoDB Batch Resolvers 474

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:region:account:table/TABLENAME",
 "arn:aws:dynamodb:region:account:table/TABLENAME/*"
]
 }
]
}

Note: Roles are tied to data sources in AWS AppSync, and resolvers on fields are invoked against a
data source. Data sources configured to fetch against DynamoDB only have one table specified, to
keep configuration simple. Therefore, when performing a batch operation against multiple tables
in a single resolver, which is a more advanced task, you must grant the role on that data source
access to any tables the resolver will interact with. This would be done in the Resource field in the
IAM policy above. Configuration of the tables to make batch calls against is done in the resolver
template, which we describe below.

Data Source

For the sake of simplicity, we’ll use the same data source for all the resolvers used in this tutorial.
On the Data sources tab, create a new DynamoDB data source and name it BatchTutorial. The
table name can be anything because table names are specified as part of the request mapping
template for batch operations. We will give the table name empty.

For this tutorial, any role with the following inline policy will work:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:region:account:table/Posts",
 "arn:aws:dynamodb:region:account:table/Posts/*",
 "arn:aws:dynamodb:region:account:table/locationReadings",
 "arn:aws:dynamodb:region:account:table/locationReadings/*",
 "arn:aws:dynamodb:region:account:table/temperatureReadings",

Data Source 475

AWS AppSync Developer Guide

 "arn:aws:dynamodb:region:account:table/temperatureReadings/*"
]
 }
]
}

Single Table Batch

For this example, suppose you have a single table named Posts to which you want to add and
remove items with batch operations. Use the following schema, noting that for the query, we’ll
pass in a list of IDs:

type Post {
 id: ID!
 title: String
}

input PostInput {
 id: ID!
 title: String
}

type Query {
 batchGet(ids: [ID]): [Post]
}

type Mutation {
 batchAdd(posts: [PostInput]): [Post]
 batchDelete(ids: [ID]): [Post]
}

schema {
 query: Query
 mutation: Mutation
}

Attach a resolver to the batchAdd() field with the following Request Mapping Template. This
automatically takes each item in the GraphQL input PostInput type and builds a map, which is
needed for the BatchPutItem operation:

#set($postsdata = [])
#foreach($item in ${ctx.args.posts})

Single Table Batch 476

AWS AppSync Developer Guide

 $util.qr($postsdata.add($util.dynamodb.toMapValues($item)))
#end

{
 "version" : "2018-05-29",
 "operation" : "BatchPutItem",
 "tables" : {
 "Posts": $utils.toJson($postsdata)
 }
}

In this case, the Response Mapping Template is a simple passthrough, but the table name is
appended as ..data.Posts to the context object as follows:

$util.toJson($ctx.result.data.Posts)

Now navigate to the Queries page of the AWS AppSync console and run the following batchAdd
mutation:

mutation add {
 batchAdd(posts:[{
 id: 1 title: "Running in the Park"},{
 id: 2 title: "Playing fetch"
 }]){
 id
 title
 }
}

You should see the results printed to the screen, and can independently validate through the
DynamoDB console that both values wrote to the Posts table.

Next, attach a resolver to the batchGet() field with the following Request Mapping Template.
This automatically takes each item in the GraphQL ids:[] type and builds a map that is needed
for the BatchGetItem operation:

#set($ids = [])
#foreach($id in ${ctx.args.ids})
 #set($map = {})
 $util.qr($map.put("id", $util.dynamodb.toString($id)))
 $util.qr($ids.add($map))
#end

Single Table Batch 477

AWS AppSync Developer Guide

{
 "version" : "2018-05-29",
 "operation" : "BatchGetItem",
 "tables" : {
 "Posts": {
 "keys": $util.toJson($ids),
 "consistentRead": true,
 "projection" : {
 "expression" : "#id, title",
 "expressionNames" : { "#id" : "id"}
 }
 }
 }
}

The Response Mapping Template is again a simple passthrough, with again the table name
appended as ..data.Posts to the context object:

$util.toJson($ctx.result.data.Posts)

Now go back to the Queries page of the AWS AppSync console, and run the following batchGet
Query:

query get {
 batchGet(ids:[1,2,3]){
 id
 title
 }
}

This should return the results for the two id values that you added earlier. Note that a null
value returned for the id with a value of 3. This is because there was no record in your Posts table
with that value yet. Also note that AWS AppSync returns the results in the same order as the keys
passed in to the query, which is an additional feature that AWS AppSync does on your behalf. So if
you switch to batchGet(ids:[1,3,2), you’ll see the order changed. You’ll also know which id
returned a null value.

Finally, attach a resolver to the batchDelete() field with the following Request Mapping
Template. This automatically takes each item in the GraphQL ids:[] type and builds a map that
is needed for the BatchGetItem operation:

Single Table Batch 478

AWS AppSync Developer Guide

#set($ids = [])
#foreach($id in ${ctx.args.ids})
 #set($map = {})
 $util.qr($map.put("id", $util.dynamodb.toString($id)))
 $util.qr($ids.add($map))
#end

{
 "version" : "2018-05-29",
 "operation" : "BatchDeleteItem",
 "tables" : {
 "Posts": $util.toJson($ids)
 }
}

The Response Mapping Template is again a simple passthrough, with again the table name
appended as ..data.Posts to the context object:

$util.toJson($ctx.result.data.Posts)

Now go back to the Queries page of the AWS AppSync console, and run the following batchDelete
mutation:

mutation delete {
 batchDelete(ids:[1,2]){ id }
}

The records with id 1 and 2 should now be deleted. If you re-run the batchGet() query from
earlier, these should return null.

Multi-Table Batch

AWS AppSync also enables you to perform batch operations across tables. Let’s build a more
complex application. Imagine we are building a Pet Health app, where sensors report the pet
location and body temperature. The sensors are battery powered and attempt to connect to the
network every few minutes. When a sensor establishes connection, it sends its readings to our AWS
AppSync API. Triggers then analyze the data so a dashboard can be presented to the pet owner.
Let’s focus on representing the interactions between the sensor and the backend data store.

Multi-Table Batch 479

AWS AppSync Developer Guide

As a prerequisite, let’s first create two DynamoDB tables; locationReadings will store sensor
location readings and temperatureReadings will store sensor temperature readings. Both tables
happen to share the same primary key structure: sensorId (String) being the partition key,
and timestamp (String) the sort key.

Let’s use the following GraphQL schema:

type Mutation {
 # Register a batch of readings
 recordReadings(tempReadings: [TemperatureReadingInput], locReadings:
 [LocationReadingInput]): RecordResult
 # Delete a batch of readings
 deleteReadings(tempReadings: [TemperatureReadingInput], locReadings:
 [LocationReadingInput]): RecordResult
}

type Query {
 # Retrieve all possible readings recorded by a sensor at a specific time
 getReadings(sensorId: ID!, timestamp: String!): [SensorReading]
}

type RecordResult {
 temperatureReadings: [TemperatureReading]
 locationReadings: [LocationReading]
}

interface SensorReading {
 sensorId: ID!
 timestamp: String!
}

Sensor reading representing the sensor temperature (in Fahrenheit)
type TemperatureReading implements SensorReading {
 sensorId: ID!
 timestamp: String!
 value: Float
}

Sensor reading representing the sensor location (lat,long)
type LocationReading implements SensorReading {
 sensorId: ID!
 timestamp: String!
 lat: Float

Multi-Table Batch 480

AWS AppSync Developer Guide

 long: Float
}

input TemperatureReadingInput {
 sensorId: ID!
 timestamp: String
 value: Float
}

input LocationReadingInput {
 sensorId: ID!
 timestamp: String
 lat: Float
 long: Float
}

BatchPutItem - Recording Sensor Readings

Our sensors need to be able to send their readings once they connect to the internet. The GraphQL
field Mutation.recordReadings is the API they will use to do so. Let’s attach a resolver to bring
our API to life.

Select Attach next to the Mutation.recordReadings field. On the next screen, pick the same
BatchTutorial data source created at the beginning of the tutorial.

Let’s add the following request mapping template:

Request Mapping Template

Convert tempReadings arguments to DynamoDB objects
#set($tempReadings = [])
#foreach($reading in ${ctx.args.tempReadings})
 $util.qr($tempReadings.add($util.dynamodb.toMapValues($reading)))
#end

Convert locReadings arguments to DynamoDB objects
#set($locReadings = [])
#foreach($reading in ${ctx.args.locReadings})
 $util.qr($locReadings.add($util.dynamodb.toMapValues($reading)))
#end

{
 "version" : "2018-05-29",

Multi-Table Batch 481

AWS AppSync Developer Guide

 "operation" : "BatchPutItem",
 "tables" : {
 "locationReadings": $utils.toJson($locReadings),
 "temperatureReadings": $utils.toJson($tempReadings)
 }
}

As you can see, the BatchPutItem operation allows us to specify multiple tables.

Let’s use the following response mapping template.

Response Mapping Template

If there was an error with the invocation
there might have been partial results
#if($ctx.error)
 ## Append a GraphQL error for that field in the GraphQL response
 $utils.appendError($ctx.error.message, $ctx.error.message)
#end
Also returns data for the field in the GraphQL response
$utils.toJson($ctx.result.data)

With batch operations, there can be both errors and results returned from the invocation. In that
case, we’re free to do some extra error handling.

Note: The use of $utils.appendError() is similar to the $util.error(), with the major
distinction that it doesn’t interrupt the evaluation of the mapping template. Instead, it signals
there was an error with the field, but allows the template to be evaluated and consequently return
data back to the caller. We recommend you use $utils.appendError() when your application
needs to return partial results.

Save the resolver and navigate to the Queries page of the AWS AppSync console. Let’s send some
sensor readings!

Execute the following mutation:

mutation sendReadings {
 recordReadings(
 tempReadings: [
 {sensorId: 1, value: 85.5, timestamp: "2018-02-01T17:21:05.000+08:00"},
 {sensorId: 1, value: 85.7, timestamp: "2018-02-01T17:21:06.000+08:00"},
 {sensorId: 1, value: 85.8, timestamp: "2018-02-01T17:21:07.000+08:00"},

Multi-Table Batch 482

AWS AppSync Developer Guide

 {sensorId: 1, value: 84.2, timestamp: "2018-02-01T17:21:08.000+08:00"},
 {sensorId: 1, value: 81.5, timestamp: "2018-02-01T17:21:09.000+08:00"}
]
 locReadings: [
 {sensorId: 1, lat: 47.615063, long: -122.333551, timestamp:
 "2018-02-01T17:21:05.000+08:00"},
 {sensorId: 1, lat: 47.615163, long: -122.333552, timestamp:
 "2018-02-01T17:21:06.000+08:00"}
 {sensorId: 1, lat: 47.615263, long: -122.333553, timestamp:
 "2018-02-01T17:21:07.000+08:00"}
 {sensorId: 1, lat: 47.615363, long: -122.333554, timestamp:
 "2018-02-01T17:21:08.000+08:00"}
 {sensorId: 1, lat: 47.615463, long: -122.333555, timestamp:
 "2018-02-01T17:21:09.000+08:00"}
]) {
 locationReadings {
 sensorId
 timestamp
 lat
 long
 }
 temperatureReadings {
 sensorId
 timestamp
 value
 }
 }
}

We sent 10 sensor readings in one mutation, with readings split up across two tables. Use
the DynamoDB console to validate that data shows up in both the locationReadings and
temperatureReadings tables.

BatchDeleteItem - Deleting Sensor Readings

Similarly, we would also need to delete batches of sensor readings. Let’s use the
Mutation.deleteReadings GraphQL field for this purpose. Select Attach next to the
Mutation.recordReadings field. On the next screen, pick the same BatchTutorial data
source created at the beginning of the tutorial.

Let’s use the following request mapping template.

Request Mapping Template

Multi-Table Batch 483

AWS AppSync Developer Guide

Convert tempReadings arguments to DynamoDB primary keys
#set($tempReadings = [])
#foreach($reading in ${ctx.args.tempReadings})
 #set($pkey = {})
 $util.qr($pkey.put("sensorId", $reading.sensorId))
 $util.qr($pkey.put("timestamp", $reading.timestamp))
 $util.qr($tempReadings.add($util.dynamodb.toMapValues($pkey)))
#end

Convert locReadings arguments to DynamoDB primary keys
#set($locReadings = [])
#foreach($reading in ${ctx.args.locReadings})
 #set($pkey = {})
 $util.qr($pkey.put("sensorId", $reading.sensorId))
 $util.qr($pkey.put("timestamp", $reading.timestamp))
 $util.qr($locReadings.add($util.dynamodb.toMapValues($pkey)))
#end

{
 "version" : "2018-05-29",
 "operation" : "BatchDeleteItem",
 "tables" : {
 "locationReadings": $utils.toJson($locReadings),
 "temperatureReadings": $utils.toJson($tempReadings)
 }
}

The response mapping template is the same as the one we used for Mutation.recordReadings.

Response Mapping Template

If there was an error with the invocation
there might have been partial results
#if($ctx.error)
 ## Append a GraphQL error for that field in the GraphQL response
 $utils.appendError($ctx.error.message, $ctx.error.message)
#end
Also return data for the field in the GraphQL response
$utils.toJson($ctx.result.data)

Save the resolver and navigate to the Queries page of the AWS AppSync console. Now, let’s delete
a couple of sensor readings!

Multi-Table Batch 484

AWS AppSync Developer Guide

Execute the following mutation:

mutation deleteReadings {
 # Let's delete the first two readings we recorded
 deleteReadings(
 tempReadings: [{sensorId: 1, timestamp: "2018-02-01T17:21:05.000+08:00"}]
 locReadings: [{sensorId: 1, timestamp: "2018-02-01T17:21:05.000+08:00"}]) {
 locationReadings {
 sensorId
 timestamp
 lat
 long
 }
 temperatureReadings {
 sensorId
 timestamp
 value
 }
 }
}

Validate through the DynamoDB console that these two readings have been deleted from the
locationReadings and temperatureReadings tables.

BatchGetItem - Retrieve Readings

Another common operation for our Pet Health app would be to retrieve the readings for a sensor
at a specific point in time. Let’s attach a resolver to the Query.getReadings GraphQL field on
our schema. Select Attach, and on the next screen pick the same BatchTutorial data source
created at the beginning of the tutorial.

Let’s add the following request mapping template.

Request Mapping Template

Build a single DynamoDB primary key,
as both locationReadings and tempReadings tables
share the same primary key structure
#set($pkey = {})
$util.qr($pkey.put("sensorId", $ctx.args.sensorId))
$util.qr($pkey.put("timestamp", $ctx.args.timestamp))

Multi-Table Batch 485

AWS AppSync Developer Guide

{
 "version" : "2018-05-29",
 "operation" : "BatchGetItem",
 "tables" : {
 "locationReadings": {
 "keys": [$util.dynamodb.toMapValuesJson($pkey)],
 "consistentRead": true
 },
 "temperatureReadings": {
 "keys": [$util.dynamodb.toMapValuesJson($pkey)],
 "consistentRead": true
 }
 }
}

Note that we are now using the BatchGetItem operation.

Our response mapping template is going to be a little different because we chose to return a
SensorReading list. Let’s map the invocation result to the desired shape.

Response Mapping Template

Merge locationReadings and temperatureReadings
into a single list
__typename needed as schema uses an interface
#set($sensorReadings = [])

#foreach($locReading in $ctx.result.data.locationReadings)
 $util.qr($locReading.put("__typename", "LocationReading"))
 $util.qr($sensorReadings.add($locReading))
#end

#foreach($tempReading in $ctx.result.data.temperatureReadings)
 $util.qr($tempReading.put("__typename", "TemperatureReading"))
 $util.qr($sensorReadings.add($tempReading))
#end

$util.toJson($sensorReadings)

Save the resolver and navigate to the Queries page of the AWS AppSync console. Now, let’s
retrieve sensor readings!

Execute the following query:

Multi-Table Batch 486

AWS AppSync Developer Guide

query getReadingsForSensorAndTime {
 # Let's retrieve the very first two readings
 getReadings(sensorId: 1, timestamp: "2018-02-01T17:21:06.000+08:00") {
 sensorId
 timestamp
 ...on TemperatureReading {
 value
 }
 ...on LocationReading {
 lat
 long
 }
 }
}

We have successfully demonstrated the use of DynamoDB batch operations using AWS AppSync.

Error Handling

In AWS AppSync, data source operations can sometimes return partial results. Partial results is
the term we will use to denote when the output of an operation is comprised of some data and
an error. Because error handling is inherently application specific, AWS AppSync gives you the
opportunity to handle errors in the response mapping template. The resolver invocation error, if
present, is available from the context as $ctx.error. Invocation errors always include a message
and a type, accessible as properties $ctx.error.message and $ctx.error.type. During the
response mapping template invocation, you can handle partial results in three ways:

1. swallow the invocation error by just returning data

2. raise an error (using $util.error(...)) by stopping the response mapping template
evaluation, which won’t return any data.

3. append an error (using $util.appendError(...)) and also return data

Let’s demonstrate each of the three points above with DynamoDB batch operations!

DynamoDB Batch operations

With DynamoDB batch operations, it is possible that a batch partially completes. That is, it is
possible that some of the requested items or keys are left unprocessed. If AWS AppSync is unable
to complete a batch, unprocessed items and an invocation error will be set on the context.

Error Handling 487

AWS AppSync Developer Guide

We will implement error handling using the Query.getReadings field configuration from the
BatchGetItem operation from the previous section of this tutorial. This time, let’s pretend that
while executing the Query.getReadings field, the temperatureReadings DynamoDB table ran
out of provisioned throughput. DynamoDB raised a ProvisionedThroughputExceededException at
the second attempt by AWS AppSync to process the remaining elements in the batch.

The following JSON represents the serialized context after the DynamoDB batch invocation but
before the response mapping template was evaluated.

{
 "arguments": {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 },
 "source": null,
 "result": {
 "data": {
 "temperatureReadings": [
 null
],
 "locationReadings": [
 {
 "lat": 47.615063,
 "long": -122.333551,
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
]
 },
 "unprocessedKeys": {
 "temperatureReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
],
 "locationReadings": []
 }
 },
 "error": {
 "type": "DynamoDB:ProvisionedThroughputExceededException",
 "message": "You exceeded your maximum allowed provisioned throughput for a table or
 for one or more global secondary indexes. (...)"

Error Handling 488

AWS AppSync Developer Guide

 },
 "outErrors": []
}

A few things to note on the context:

• the invocation error has been set on the context at $ctx.error by AWS AppSync, and the error
type has been set to DynamoDB:ProvisionedThroughputExceededException.

• results are mapped per table under $ctx.result.data, even though an error is present

• keys that were left unprocessed are available at $ctx.result.data.unprocessedKeys.
Here, AWS AppSync was unable to retrieve the item with key (sensorId:1,
timestamp:2018-02-01T17:21:05.000+08:00) because of insufficient table throughput.

Note: For BatchPutItem, it is $ctx.result.data.unprocessedItems. For
BatchDeleteItem, it is $ctx.result.data.unprocessedKeys.

Let’s handle this error in three different ways.

1. Swallowing the invocation error

Returning data without handling the invocation error effectively swallows the error, making the
result for the given GraphQL field always successful.

The response mapping template we write is familiar and only focuses on the result data.

Response mapping template:

$util.toJson($ctx.result.data)

GraphQL response:

{
 "data": {
 "getReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00",
 "lat": 47.615063,
 "long": -122.333551

Error Handling 489

AWS AppSync Developer Guide

 },
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00",
 "value": 85.5
 }
]
 }
}

No errors will be added to the error response as only data was acted on.

2. Raising an error to abort the template execution

When partial failures should be treated as complete failures from the client’s perspective, you can
abort the template execution to prevent returning data. The $util.error(...) utility method
achieves exactly this behavior.

Response mapping template:

there was an error let's mark the entire field
as failed and do not return any data back in the response
#if ($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type, null,
 $ctx.result.data.unprocessedKeys)
#end

$util.toJson($ctx.result.data)

GraphQL response:

{
 "data": {
 "getReadings": null
 },
 "errors": [
 {
 "path": [
 "getReadings"
],
 "data": null,
 "errorType": "DynamoDB:ProvisionedThroughputExceededException",

Error Handling 490

AWS AppSync Developer Guide

 "errorInfo": {
 "temperatureReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
],
 "locationReadings": []
 },
 "locations": [
 {
 "line": 58,
 "column": 3
 }
],
 "message": "You exceeded your maximum allowed provisioned throughput for a table
 or for one or more global secondary indexes. (...)"
 }
]
}

Even though some results might have been returned from the DynamoDB batch operation, we
chose to raise an error such that the getReadings GraphQL field is null and the error has been
added to the GraphQL response errors block.

3. Appending an error to return both data and errors

In certain cases, to provide a better user experience, applications can return partial results and
notify their clients of the unprocessed items. The clients can decide to either implement a retry
or translate the error back to the end user. The $util.appendError(...) is the utility method
that enables this behavior by letting the application designer append errors on the context without
interfering with the evaluation of the template. After evaluating the template, AWS AppSync will
process any context errors by appending them to the errors block of the GraphQL response.

Response mapping template:

#if ($ctx.error)
 ## pass the unprocessed keys back to the caller via the `errorInfo` field
 $util.appendError($ctx.error.message, $ctx.error.type, null,
 $ctx.result.data.unprocessedKeys)
#end

Error Handling 491

AWS AppSync Developer Guide

$util.toJson($ctx.result.data)

We forwarded both the invocation error and unprocessedKeys element inside the errors block of
the GraphQL response. The getReadings field also return partial data from the locationReadings
table as you can see in the response below.

GraphQL response:

{
 "data": {
 "getReadings": [
 null,
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00",
 "value": 85.5
 }
]
 },
 "errors": [
 {
 "path": [
 "getReadings"
],
 "data": null,
 "errorType": "DynamoDB:ProvisionedThroughputExceededException",
 "errorInfo": {
 "temperatureReadings": [
 {
 "sensorId": "1",
 "timestamp": "2018-02-01T17:21:05.000+08:00"
 }
],
 "locationReadings": []
 },
 "locations": [
 {
 "line": 58,
 "column": 3
 }
],
 "message": "You exceeded your maximum allowed provisioned throughput for a table
 or for one or more global secondary indexes. (...)"

Error Handling 492

AWS AppSync Developer Guide

 }
]
}

Tutorial: DynamoDB Transaction Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync supports using Amazon DynamoDB transaction operations across one or more tables
in a single region. Supported operations are TransactGetItems and TransactWriteItems. By
using these features in AWS AppSync, you can perform tasks such as:

• Pass a list of keys in a single query and return the results from a table

• Read records from one or more tables in a single query

• Write records in transaction to one or more tables in an all-or-nothing way

• Execute transactions when some conditions are satisfied

Permissions

Like other resolvers, you need to create a data source in AWS AppSync and either create a role or
use an existing one. Because transaction operations require different permissions on DynamoDB
tables, you need to grant the configured role permissions for read or write actions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"

Tutorial: DynamoDB Transaction Resolvers 493

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:region:accountId:table/TABLENAME",
 "arn:aws:dynamodb:region:accountId:table/TABLENAME/*"
]
 }
]
}

Note: Roles are tied to data sources in AWS AppSync, and resolvers on fields are invoked against a
data source. Data sources configured to fetch against DynamoDB only have one table specified, to
keep configuration simple. Therefore, when performing a transaction operation against multiple
tables in a single resolver, which is a more advanced task, you must grant the role on that data
source access to any tables the resolver will interact with. This would be done in the Resource field
in the IAM policy above. Configuration of the transaction calls against the tables is done in the
resolver template, which we describe below.

Data Source

For the sake of simplicity, we’ll use the same data source for all the resolvers used in this tutorial.
On the Data sources tab, create a new DynamoDB data source and name it TransactTutorial. The
table name can be anything because table names are specified as part of the request mapping
template for transaction operations. We will give the table name empty.

We’ll have two tables called savingAccounts and checkingAccounts, both with accountNumber as
partition key, and a transactionHistory table with transactionId as partition key.

For this tutorial, any role with the following inline policy will work. Replace region and
accountId with your region and account ID:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",

Data Source 494

AWS AppSync Developer Guide

 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:region:accountId:table/savingAccounts",
 "arn:aws:dynamodb:region:accountId:table/savingAccounts/*",
 "arn:aws:dynamodb:region:accountId:table/checkingAccounts",
 "arn:aws:dynamodb:region:accountId:table/checkingAccounts/*",
 "arn:aws:dynamodb:region:accountId:table/transactionHistory",
 "arn:aws:dynamodb:region:accountId:table/transactionHistory/*"
]
 }
]
}

Transactions

For this example, the context is a classic banking transaction, where we’ll use
TransactWriteItems to:

• Transfer money from saving accounts to checking accounts

• Generate new transaction records for each transaction

And then we’ll use TransactGetItems to retrieve details from saving accounts and checking
accounts.

We define our GraphQL schema as follows:

type SavingAccount {
 accountNumber: String!
 username: String
 balance: Float
}

type CheckingAccount {
 accountNumber: String!
 username: String
 balance: Float
}

type TransactionHistory {
 transactionId: ID!

Transactions 495

AWS AppSync Developer Guide

 from: String
 to: String
 amount: Float
}

type TransactionResult {
 savingAccounts: [SavingAccount]
 checkingAccounts: [CheckingAccount]
 transactionHistory: [TransactionHistory]
}

input SavingAccountInput {
 accountNumber: String!
 username: String
 balance: Float
}

input CheckingAccountInput {
 accountNumber: String!
 username: String
 balance: Float
}

input TransactionInput {
 savingAccountNumber: String!
 checkingAccountNumber: String!
 amount: Float!
}

type Query {
 getAccounts(savingAccountNumbers: [String], checkingAccountNumbers: [String]):
 TransactionResult
}

type Mutation {
 populateAccounts(savingAccounts: [SavingAccountInput], checkingAccounts:
 [CheckingAccountInput]): TransactionResult
 transferMoney(transactions: [TransactionInput]): TransactionResult
}

schema {
 query: Query
 mutation: Mutation

Transactions 496

AWS AppSync Developer Guide

}

TransactWriteItems - Populate Accounts

In order to transfer money between accounts, we need to populate the table with the details. We’ll
use the GraphQL operation Mutation.populateAccounts to do so.

In the Schema section, click on Attach next to the Mutation.populateAccounts operation. Go
to VTL Unit Resolvers, then choose the same TransactTutorial data source.

Now use the following request mapping template:

Request Mapping Template

#set($savingAccountTransactPutItems = [])
#set($index = 0)
#foreach($savingAccount in ${ctx.args.savingAccounts})
 #set($keyMap = {})
 $util.qr($keyMap.put("accountNumber",
 $util.dynamodb.toString($savingAccount.accountNumber)))
 #set($attributeValues = {})
 $util.qr($attributeValues.put("username",
 $util.dynamodb.toString($savingAccount.username)))
 $util.qr($attributeValues.put("balance",
 $util.dynamodb.toNumber($savingAccount.balance)))
 #set($index = $index + 1)
 #set($savingAccountTransactPutItem = {"table": "savingAccounts",
 "operation": "PutItem",
 "key": $keyMap,
 "attributeValues": $attributeValues})
 $util.qr($savingAccountTransactPutItems.add($savingAccountTransactPutItem))
#end

#set($checkingAccountTransactPutItems = [])
#set($index = 0)
#foreach($checkingAccount in ${ctx.args.checkingAccounts})
 #set($keyMap = {})
 $util.qr($keyMap.put("accountNumber",
 $util.dynamodb.toString($checkingAccount.accountNumber)))
 #set($attributeValues = {})
 $util.qr($attributeValues.put("username",
 $util.dynamodb.toString($checkingAccount.username)))

Transactions 497

AWS AppSync Developer Guide

 $util.qr($attributeValues.put("balance",
 $util.dynamodb.toNumber($checkingAccount.balance)))
 #set($index = $index + 1)
 #set($checkingAccountTransactPutItem = {"table": "checkingAccounts",
 "operation": "PutItem",
 "key": $keyMap,
 "attributeValues": $attributeValues})
 $util.qr($checkingAccountTransactPutItems.add($checkingAccountTransactPutItem))
#end

#set($transactItems = [])
$util.qr($transactItems.addAll($savingAccountTransactPutItems))
$util.qr($transactItems.addAll($checkingAccountTransactPutItems))

{
 "version" : "2018-05-29",
 "operation" : "TransactWriteItems",
 "transactItems" : $util.toJson($transactItems)
}

And the following response mapping template:

Response Mapping Template

#if ($ctx.error)
 $util.appendError($ctx.error.message, $ctx.error.type, null,
 $ctx.result.cancellationReasons)
#end

#set($savingAccounts = [])
#foreach($index in [0..2])
 $util.qr($savingAccounts.add(${ctx.result.keys[$index]}))
#end

#set($checkingAccounts = [])
#foreach($index in [3..5])
 $util.qr($checkingAccounts.add(${ctx.result.keys[$index]}))
#end

#set($transactionResult = {})
$util.qr($transactionResult.put('savingAccounts', $savingAccounts))
$util.qr($transactionResult.put('checkingAccounts', $checkingAccounts))

Transactions 498

AWS AppSync Developer Guide

$util.toJson($transactionResult)

Save the resolver and navigate to the Queries section of the AWS AppSync console to populate the
accounts.

Execute the following mutation:

mutation populateAccounts {
 populateAccounts (
 savingAccounts: [
 {accountNumber: "1", username: "Tom", balance: 100},
 {accountNumber: "2", username: "Amy", balance: 90},
 {accountNumber: "3", username: "Lily", balance: 80},
]
 checkingAccounts: [
 {accountNumber: "1", username: "Tom", balance: 70},
 {accountNumber: "2", username: "Amy", balance: 60},
 {accountNumber: "3", username: "Lily", balance: 50},
]) {
 savingAccounts {
 accountNumber
 }
 checkingAccounts {
 accountNumber
 }
 }
}

We populated 3 saving accounts and 3 checking accounts in one mutation.

Use the DynamoDB console to validate that data shows up in both the savingAccounts and
checkingAccounts tables.

TransactWriteItems - Transfer Money

Attach a resolver to the transferMoney mutation with the following Request
Mapping Template. Note the values of amounts, savingAccountNumbers, and
checkingAccountNumbers are the same.

#set($amounts = [])
#foreach($transaction in ${ctx.args.transactions})
 #set($attributeValueMap = {})

Transactions 499

AWS AppSync Developer Guide

 $util.qr($attributeValueMap.put(":amount",
 $util.dynamodb.toNumber($transaction.amount)))
 $util.qr($amounts.add($attributeValueMap))
#end

#set($savingAccountTransactUpdateItems = [])
#set($index = 0)
#foreach($transaction in ${ctx.args.transactions})
 #set($keyMap = {})
 $util.qr($keyMap.put("accountNumber",
 $util.dynamodb.toString($transaction.savingAccountNumber)))
 #set($update = {})
 $util.qr($update.put("expression", "SET balance = balance - :amount"))
 $util.qr($update.put("expressionValues", $amounts[$index]))
 #set($index = $index + 1)
 #set($savingAccountTransactUpdateItem = {"table": "savingAccounts",
 "operation": "UpdateItem",
 "key": $keyMap,
 "update": $update})
 $util.qr($savingAccountTransactUpdateItems.add($savingAccountTransactUpdateItem))
#end

#set($checkingAccountTransactUpdateItems = [])
#set($index = 0)
#foreach($transaction in ${ctx.args.transactions})
 #set($keyMap = {})
 $util.qr($keyMap.put("accountNumber",
 $util.dynamodb.toString($transaction.checkingAccountNumber)))
 #set($update = {})
 $util.qr($update.put("expression", "SET balance = balance + :amount"))
 $util.qr($update.put("expressionValues", $amounts[$index]))
 #set($index = $index + 1)
 #set($checkingAccountTransactUpdateItem = {"table": "checkingAccounts",
 "operation": "UpdateItem",
 "key": $keyMap,
 "update": $update})

 $util.qr($checkingAccountTransactUpdateItems.add($checkingAccountTransactUpdateItem))
#end

#set($transactionHistoryTransactPutItems = [])
#foreach($transaction in ${ctx.args.transactions})
 #set($keyMap = {})
 $util.qr($keyMap.put("transactionId", $util.dynamodb.toString(${utils.autoId()})))

Transactions 500

AWS AppSync Developer Guide

 #set($attributeValues = {})
 $util.qr($attributeValues.put("from",
 $util.dynamodb.toString($transaction.savingAccountNumber)))
 $util.qr($attributeValues.put("to",
 $util.dynamodb.toString($transaction.checkingAccountNumber)))
 $util.qr($attributeValues.put("amount",
 $util.dynamodb.toNumber($transaction.amount)))
 #set($transactionHistoryTransactPutItem = {"table": "transactionHistory",
 "operation": "PutItem",
 "key": $keyMap,
 "attributeValues": $attributeValues})

 $util.qr($transactionHistoryTransactPutItems.add($transactionHistoryTransactPutItem))
#end

#set($transactItems = [])
$util.qr($transactItems.addAll($savingAccountTransactUpdateItems))
$util.qr($transactItems.addAll($checkingAccountTransactUpdateItems))
$util.qr($transactItems.addAll($transactionHistoryTransactPutItems))

{
 "version" : "2018-05-29",
 "operation" : "TransactWriteItems",
 "transactItems" : $util.toJson($transactItems)
}

We will have 3 banking transactions in a single TransactWriteItems operation. Use the
following Response Mapping Template:

#if ($ctx.error)
 $util.appendError($ctx.error.message, $ctx.error.type, null,
 $ctx.result.cancellationReasons)
#end

#set($savingAccounts = [])
#foreach($index in [0..2])
 $util.qr($savingAccounts.add(${ctx.result.keys[$index]}))
#end

#set($checkingAccounts = [])
#foreach($index in [3..5])
 $util.qr($checkingAccounts.add(${ctx.result.keys[$index]}))
#end

Transactions 501

AWS AppSync Developer Guide

#set($transactionHistory = [])
#foreach($index in [6..8])
 $util.qr($transactionHistory.add(${ctx.result.keys[$index]}))
#end

#set($transactionResult = {})
$util.qr($transactionResult.put('savingAccounts', $savingAccounts))
$util.qr($transactionResult.put('checkingAccounts', $checkingAccounts))
$util.qr($transactionResult.put('transactionHistory', $transactionHistory))

$util.toJson($transactionResult)

Now navigate to the Queries section of the AWS AppSync console and execute the transferMoney
mutation as follows:

mutation write {
 transferMoney(
 transactions: [
 {savingAccountNumber: "1", checkingAccountNumber: "1", amount: 7.5},
 {savingAccountNumber: "2", checkingAccountNumber: "2", amount: 6.0},
 {savingAccountNumber: "3", checkingAccountNumber: "3", amount: 3.3}
]) {
 savingAccounts {
 accountNumber
 }
 checkingAccounts {
 accountNumber
 }
 transactionHistory {
 transactionId
 }
 }
}

We sent 2 banking transactions in one mutation. Use the DynamoDB console to validate that data
shows up in the savingAccounts, checkingAccounts, and transactionHistory tables.

TransactGetItems - Retrieve Accounts

In order to retrieve the details from saving accounts and checking accounts in a single transactional
request we’ll attach a resolver to the Query.getAccounts GraphQL operation on our

Transactions 502

AWS AppSync Developer Guide

schema. Select Attach, go to VTL Unit Resolvers, then on the next screen, pick the same
TransactTutorial data source created at the beginning of the tutorial. Configure the templates
as follows:

Request Mapping Template

#set($savingAccountsTransactGets = [])
#foreach($savingAccountNumber in ${ctx.args.savingAccountNumbers})
 #set($savingAccountKey = {})
 $util.qr($savingAccountKey.put("accountNumber",
 $util.dynamodb.toString($savingAccountNumber)))
 #set($savingAccountTransactGet = {"table": "savingAccounts", "key":
 $savingAccountKey})
 $util.qr($savingAccountsTransactGets.add($savingAccountTransactGet))
#end

#set($checkingAccountsTransactGets = [])
#foreach($checkingAccountNumber in ${ctx.args.checkingAccountNumbers})
 #set($checkingAccountKey = {})
 $util.qr($checkingAccountKey.put("accountNumber",
 $util.dynamodb.toString($checkingAccountNumber)))
 #set($checkingAccountTransactGet = {"table": "checkingAccounts", "key":
 $checkingAccountKey})
 $util.qr($checkingAccountsTransactGets.add($checkingAccountTransactGet))
#end

#set($transactItems = [])
$util.qr($transactItems.addAll($savingAccountsTransactGets))
$util.qr($transactItems.addAll($checkingAccountsTransactGets))

{
 "version" : "2018-05-29",
 "operation" : "TransactGetItems",
 "transactItems" : $util.toJson($transactItems)
}

Response Mapping Template

#if ($ctx.error)
 $util.appendError($ctx.error.message, $ctx.error.type, null,
 $ctx.result.cancellationReasons)
#end

Transactions 503

AWS AppSync Developer Guide

#set($savingAccounts = [])
#foreach($index in [0..2])
 $util.qr($savingAccounts.add(${ctx.result.items[$index]}))
#end

#set($checkingAccounts = [])
#foreach($index in [3..4])
 $util.qr($checkingAccounts.add($ctx.result.items[$index]))
#end

#set($transactionResult = {})
$util.qr($transactionResult.put('savingAccounts', $savingAccounts))
$util.qr($transactionResult.put('checkingAccounts', $checkingAccounts))

$util.toJson($transactionResult)

Save the resolver and navigate to the Queries sections of the AWS AppSync console. In order to
retrieve the saving accounts and checing accounts, execute the following query:

query getAccounts {
 getAccounts(
 savingAccountNumbers: ["1", "2", "3"],
 checkingAccountNumbers: ["1", "2"]
) {
 savingAccounts {
 accountNumber
 username
 balance
 }
 checkingAccounts {
 accountNumber
 username
 balance
 }
 }
}

We have successfully demonstrated the use of DynamoDB transactions using AWS AppSync.

Transactions 504

AWS AppSync Developer Guide

Tutorial: HTTP Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync enables you to use supported data sources (that is, AWS Lambda, Amazon
DynamoDB, Amazon OpenSearch Service, or Amazon Aurora) to perform various operations, in
addition to any arbitrary HTTP endpoints to resolve GraphQL fields. After your HTTP endpoints are
available, you can connect to them using a data source. Then, you can configure a resolver in the
schema to perform GraphQL operations such as queries, mutations, and subscriptions. This tutorial
walks you through some common examples.

In this tutorial you use a REST API (created using Amazon API Gateway and Lambda) with an AWS
AppSync GraphQL endpoint.

One-Click Setup

If you want to automatically set up a GraphQL endpoint in AWS AppSync with an HTTP
endpoint configured (using Amazon API Gateway and Lambda), you can use the following AWS
CloudFormation template :

Creating a REST API

You can use the following AWS CloudFormation template to set up a REST endpoint that works for
this tutorial:

The AWS CloudFormation stack performs the following steps:

1. Sets up a Lambda function that contains your business logic for your microservice.

Tutorial: HTTP Resolvers 505

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/http/http-full.yaml
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/http/http-api-gw.yaml

AWS AppSync Developer Guide

2. Sets up an API Gateway REST API with the following endpoint/method/content type
combination:

API Resource Path HTTP Method Supported Content Type

/v1/users POST application/json

/v1/users GET application/json

/v1/users/1 GET application/json

/v1/users/1 PUT application/json

/v1/users/1 DELETE application/json

Creating Your GraphQL API

To create the GraphQL API in AWS AppSync:

• Open the AWS AppSync console and choose Create API.

• For the API name, type UserData.

• Choose Custom schema.

• Choose Create.

The AWS AppSync console creates a new GraphQL API for you using the API key authentication
mode. You can use the console to set up the rest of the GraphQL API and run queries on it for the
remainder of this tutorial.

Creating a GraphQL Schema

Now that you have a GraphQL API, let’s create a GraphQL schema. From the schema editor in the
AWS AppSync console, make sure you schema matches the following schema:

schema {
 query: Query
 mutation: Mutation

Creating Your GraphQL API 506

AWS AppSync Developer Guide

}

type Mutation {
 addUser(userInput: UserInput!): User
 deleteUser(id: ID!): User
}

type Query {
 getUser(id: ID): User
 listUser: [User!]!
}

type User {
 id: ID!
 username: String!
 firstname: String
 lastname: String
 phone: String
 email: String
}

input UserInput {
 id: ID!
 username: String!
 firstname: String
 lastname: String
 phone: String
 email: String
}

Configure Your HTTP Data Source

To configure your HTTP data source, do the following:

• On the DataSources tab, choose New, and then type a friendly name for the data source (for
example, HTTP).

• In Data source type, choose HTTP.

• Set the endpoint to the API Gateway endpoint that is created. Make sure that you don’t include
the stage name as part of the endpoint.

Note: At this time only public endpoints are supported by AWS AppSync.

Configure Your HTTP Data Source 507

AWS AppSync Developer Guide

Note: For more information about the certifying authorities that are recognized by the AWS
AppSync service, see Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints.

Configuring Resolvers

In this step, you connect the http data source to the getUser query.

To set up the resolver:

• Choose the Schema tab.

• In the Data types pane on the right under the Query type, find the getUser field and choose
Attach.

• In Data source name, choose HTTP.

• In Configure the request mapping template, paste the following code:

{
 "version": "2018-05-29",
 "method": "GET",
 "params": {
 "headers": {
 "Content-Type": "application/json"
 }
 },
 "resourcePath": $util.toJson("/v1/users/${ctx.args.id}")
}

• In Configure the response mapping template, paste the following code:

return the body
#if($ctx.result.statusCode == 200)
 ##if response is 200
 $ctx.result.body
#else
 ##if response is not 200, append the response to error block.
 $utils.appendError($ctx.result.body, "$ctx.result.statusCode")
#end

• Choose the Query tab, and then run the following query:

Configuring Resolvers 508

AWS AppSync Developer Guide

query GetUser{
 getUser(id:1){
 id
 username
 }
}

This should return the following response:

{
 "data": {
 "getUser": {
 "id": "1",
 "username": "nadia"
 }
 }
}

• Choose the Schema tab.

• In the Data types pane on the right under Mutation, find the addUser field and choose Attach.

• In Data source name, choose HTTP.

• In Configure the request mapping template, paste the following code:

{
 "version": "2018-05-29",
 "method": "POST",
 "resourcePath": "/v1/users",
 "params":{
 "headers":{
 "Content-Type": "application/json",
 },
 "body": $util.toJson($ctx.args.userInput)
 }
}

• In Configure the response mapping template, paste the following code:

Raise a GraphQL field error in case of a datasource invocation error

Configuring Resolvers 509

AWS AppSync Developer Guide

#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type)
#end
if the response status code is not 200, then return an error. Else return the body
 **
#if($ctx.result.statusCode == 200)
 ## If response is 200, return the body.
 $ctx.result.body
#else
 ## If response is not 200, append the response to error block.
 $utils.appendError($ctx.result.body, "$ctx.result.statusCode")
#end

• Choose the Query tab, and then run the following query:

mutation addUser{
 addUser(userInput:{
 id:"2",
 username:"shaggy"
 }){
 id
 username
 }
}

This should return the following response:

{
 "data": {
 "getUser": {
 "id": "2",
 "username": "shaggy"
 }
 }
}

Invoking AWS Services

You can use HTTP resolvers to set up a GraphQL API interface for AWS services. HTTP requests to
AWS must be signed with the Signature Version 4 process so that AWS can identify who sent them.

Invoking AWS Services 510

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS AppSync Developer Guide

AWS AppSync calculates the signature on your behalf when you associate an IAM role with the
HTTP data source.

You provide two additional components to invoke AWS services with HTTP resolvers:

• An IAM role with permissions to call the AWS service APIs

• Signing configuration in the data source

For example, if you want to call the ListGraphqlApis operation with HTTP resolvers, you first create
an IAM role that AWS AppSync assumes with the following policy attached:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "appsync:ListGraphqlApis"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Next, create the HTTP data source for AWS AppSync. In this example, you call AWS AppSync in the
US West (Oregon) Region. Set up the following HTTP configuration in a file named http.json,
which includes the signing region and service name:

{
 "endpoint": "https://appsync.us-west-2.amazonaws.com/",
 "authorizationConfig": {
 "authorizationType": "AWS_IAM",
 "awsIamConfig": {
 "signingRegion": "us-west-2",
 "signingServiceName": "appsync"
 }
 }
}

Then, use the AWS CLI to create the data source with an associated role as follows:

Invoking AWS Services 511

https://docs.aws.amazon.com/appsync/latest/APIReference/API_ListGraphqlApis.html

AWS AppSync Developer Guide

aws appsync create-data-source --api-id <API-ID> \
 --name AWSAppSync \
 --type HTTP \
 --http-config file:///http.json \
 --service-role-arn <ROLE-ARN>

When you attach a resolver to the field in the schema, use the following request mapping template
to call AWS AppSync:

{
 "version": "2018-05-29",
 "method": "GET",
 "resourcePath": "/v1/apis"
}

When you run a GraphQL query for this data source, AWS AppSync signs the request using the role
you provided and includes the signature in the request. The query returns a list of AWS AppSync
GraphQL APIs in your account in that AWS Region.

Tutorial: Aurora Serverless

AWS AppSync provides a data source for executing SQL commands against Amazon Aurora
Serverless clusters which have been enabled with a Data API. You can use AppSync resolvers to
execute SQL statements against the Data API with GraphQL queries, mutations, and subscriptions.

Create cluster

Before adding an RDS data source to AppSync you must first enable a Data API on an Aurora
Serverless cluster and configure a secret using AWS Secrets Manager. You can create an Aurora
Serverless cluster first with AWS CLI:

aws rds create-db-cluster --db-cluster-identifier http-endpoint-test --master-username
 USERNAME \
--master-user-password COMPLEX_PASSWORD --engine aurora --engine-mode serverless \
--region us-east-1

This will return an ARN for the cluster.

Create a Secret via the AWS Secrets Manager Console or also via the CLI with an input file such as
the following using the USERNAME and COMPLEX_PASSWORD from the previous step:

Tutorial: Aurora Serverless 512

AWS AppSync Developer Guide

{
 "username": "USERNAME",
 "password": "COMPLEX_PASSWORD"
}

Pass this as a parameter to the AWS CLI:

aws secretsmanager create-secret --name HttpRDSSecret --secret-string file://creds.json
 --region us-east-1

This will return an ARN for the secret.

Note the ARN of your Aurora Serverless cluster and Secret for later use in the AppSync console
when creating a data source.

Enable Data API

You can enable the Data API on your cluster by following the instructions in the RDS
documentation. The Data API must be enabled before adding as an AppSync data source.

Create database and table

Once you have enabled your Data API you can ensure it works with the aws rds-data execute-
statement command in the AWS CLI. This will ensure that your Aurora Serverless cluster is
configured correctly before adding it to your AppSync API. First create a database called TESTDB
with the --sql parameter like so:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789000:cluster:http-endpoint-test" \
--schema "mysql" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789000:secret:testHttp2-AmNvc1" \
--region us-east-1 --sql "create DATABASE TESTDB"

If this runs without error, add a table with the create table command:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789000:cluster:http-endpoint-test" \
 --schema "mysql" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789000:secret:testHttp2-AmNvc1" \

Enable Data API 513

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html

AWS AppSync Developer Guide

 --region us-east-1 \
 --sql "create table Pets(id varchar(200), type varchar(200), price float)" --database
 "TESTDB"

If everything has run without issue you can move forward to adding the cluster as a data source in
your AppSync API.

GraphQL schema

Now that your Aurora Serverless Data API is up and running with a table, we will create a GraphQL
schema and attach resolvers for performing mutations and subscriptions. Create a new API in the
AWS AppSync console and navigate to the Schema page, and enter the following:

type Mutation {
 createPet(input: CreatePetInput!): Pet
 updatePet(input: UpdatePetInput!): Pet
 deletePet(input: DeletePetInput!): Pet
}

input CreatePetInput {
 type: PetType
 price: Float!
}

input UpdatePetInput {
id: ID!
 type: PetType
 price: Float!
}

input DeletePetInput {
 id: ID!
}

type Pet {
 id: ID!
 type: PetType
 price: Float
}

enum PetType {
 dog
 cat

GraphQL schema 514

AWS AppSync Developer Guide

 fish
 bird
 gecko
}

type Query {
 getPet(id: ID!): Pet
 listPets: [Pet]
 listPetsByPriceRange(min: Float, max: Float): [Pet]
}

schema {
 query: Query
 mutation: Mutation
}

Save your schema and navigate to the Data Sources page and create a new data source. Select
Relational database for the Data source type, and provide a friendly name. Use the database name
that you created in the last step, as well as the Cluster ARN that you created it in. For the Role you
can either have AppSync create a new role or create one with a policy similar to the below:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-data:DeleteItems",
 "rds-data:ExecuteSql",
 "rds-data:ExecuteStatement",
 "rds-data:GetItems",
 "rds-data:InsertItems",
 "rds-data:UpdateItems"
],
 "Resource": [
 "arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster",
 "arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"

GraphQL schema 515

AWS AppSync Developer Guide

],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret",
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret:*"
]
 }
]
}

Note there are two Statements in this policy which you are granting role access. The first Resource
is your Aurora Serverless cluster and the second is your AWS Secrets Manager ARN. You will need to
provide BOTH ARNs in the AppSync data source configuration before clicking Create.

Configuring Resolvers

Now that we have a valid GraphQL schema and an RDS data source, we can attach resolvers to the
GraphQL fields on our schema. Our API will offer the following capabilities:

1. create a pet via the Mutation.createPet field

2. update a pet via the Mutation.updatePet field

3. delete a pet via the Mutation.deletePet field

4. get a single pet via the Query.getPet field

5. list all pets via the Query.listPets field

6. list pets in a price range via the Query.listPetsByPriceRange field

Mutation.createPet

From the schema editor in the AWS AppSync console, on the right side choose Attach Resolver for
createPet(input: CreatePetInput!): Pet. Choose your RDS data source. In the request
mapping template section, add the following template:

#set($id=$utils.autoId())
{
"version": "2018-05-29",
 "statements": [
 "insert into Pets VALUES (:ID, :TYPE, :PRICE)",
 "select * from Pets WHERE id = :ID"
],

Configuring Resolvers 516

AWS AppSync Developer Guide

 "variableMap": {
 ":ID": "$ctx.args.input.id",
 ":TYPE": $util.toJson($ctx.args.input.type),
 ":PRICE": $util.toJson($ctx.args.input.price)
 }
}

The SQL statements will execute sequentially, based on the order in the statements array. The
results will come back in the same order. Since this is a mutation, we run a select statement after
the insert to retrieve the committed values in order to populate the GraphQL response mapping
template.

In the response mapping template section, add the following template:

$utils.toJson($utils.rds.toJsonObject($ctx.result)[1][0])

Because the statements has two SQL queries, we need to specify the second result in the matrix
that comes back from the database with: $utils.rds.toJsonString($ctx.result))[1]
[0]).

Mutation.updatePet

From the schema editor in the AWS AppSync console, on the right side choose Attach Resolver for
updatePet(input: UpdatePetInput!): Pet. Choose your RDS data source. In the request
mapping template section, add the following template:

{
"version": "2018-05-29",
 "statements": [
 $util.toJson("update Pets set type=:TYPE, price=:PRICE WHERE id=:ID"),
 $util.toJson("select * from Pets WHERE id = :ID")
],
 "variableMap": {
 ":ID": "$ctx.args.input.id",
 ":TYPE": $util.toJson($ctx.args.input.type),
 ":PRICE": $util.toJson($ctx.args.input.price)
 }
}

In the response mapping template section, add the following template:

Configuring Resolvers 517

AWS AppSync Developer Guide

$utils.toJson($utils.rds.toJsonObject($ctx.result)[1][0])

Mutation.deletePet

From the schema editor in the AWS AppSync console, on the right side choose Attach Resolver for
deletePet(input: DeletePetInput!): Pet. Choose your RDS data source. In the request
mapping template section, add the following template:

{
"version": "2018-05-29",
 "statements": [
 $util.toJson("select * from Pets WHERE id=:ID"),
 $util.toJson("delete from Pets WHERE id=:ID")
],
 "variableMap": {
 ":ID": "$ctx.args.input.id"
 }
}

In the response mapping template section, add the following template:

$utils.toJson($utils.rds.toJsonObject($ctx.result)[0][0])

Query.getPet

Now that the mutations are created for your schema, we will connect the three queries to showcase
how to get individual items, lists, and apply SQL filtering. From the schema editor in the AWS
AppSync console, on the right side choose Attach Resolver for getPet(id: ID!): Pet. Choose
your RDS data source. In the request mapping template section, add the following template:

{
"version": "2018-05-29",
 "statements": [
 $util.toJson("select * from Pets WHERE id=:ID")
],
 "variableMap": {
 ":ID": "$ctx.args.id"
 }
}

Configuring Resolvers 518

AWS AppSync Developer Guide

In the response mapping template section, add the following template:

$utils.toJson($utils.rds.toJsonObject($ctx.result)[0][0])

Query.listPets

From the schema editor in the AWS AppSync console, on the right side choose Attach Resolver
for getPet(id: ID!): Pet. Choose your RDS data source. In the request mapping template
section, add the following template:

{
 "version": "2018-05-29",
 "statements": [
 "select * from Pets"
]
}

In the response mapping template section, add the following template:

$utils.toJson($utils.rds.toJsonObject($ctx.result)[0])

Query.listPetsByPriceRange

From the schema editor in the AWS AppSync console, on the right side choose Attach Resolver
for getPet(id: ID!): Pet. Choose your RDS data source. In the request mapping template
section, add the following template:

{
 "version": "2018-05-29",
 "statements": [
 "select * from Pets where price > :MIN and price < :MAX"
],

 "variableMap": {
 ":MAX": $util.toJson($ctx.args.max),
 ":MIN": $util.toJson($ctx.args.min)
 }
}

In the response mapping template section, add the following template:

Configuring Resolvers 519

AWS AppSync Developer Guide

$utils.toJson($utils.rds.toJsonObject($ctx.result)[0])

Run mutations

Now that you have configured all of your resolvers with SQL statements and connected your
GraphQL API to your Serverless Aurora Data API, you can begin performing mutations and queries.
In AWS AppSync console, choose the Queries tab and enter the following to create a Pet:

mutation add {
 createPet(input : { type:fish, price:10.0 }){
 id
 type
 price
 }
}

The response should contain the id, type, and price like so:

{
 "data": {
 "createPet": {
 "id": "c6fedbbe-57ad-4da3-860a-ffe8d039882a",
 "type": "fish",
 "price": "10.0"
 }
 }
}

You can modify this item by running the updatePet mutation:

mutation update {
 updatePet(input : {
 id: ID_PLACEHOLDER,
 type:bird,
 price:50.0
 }){
 id
 type
 price
 }

Run mutations 520

AWS AppSync Developer Guide

}

Note that we used the id which was returned from the createPet operation earlier. This will be a
unique value for your record as the resolver leveraged $util.autoId(). You could delete a record
in a similar manner:

mutation delete {
 deletePet(input : {id:ID_PLACEHOLDER}){
 id
 type
 price
 }
}

Create a few records with the first mutation with different values for price and then run some
queries.

Run Queries

Still in the Queries tab of the console, use the following statement to list all of the records you’ve
created:

query allpets {
 listPets {
 id
 type
 price
 }
}

This is nice but let’s leverage the SQL WHERE predicate that had where price > :MIN and
price < :MAX in our mapping template for Query.listPetsByPriceRange with the following
GraphQL query:

query petsByPriceRange {
 listPetsByPriceRange(min:1, max:11) {
 id
 type
 price
 }

Run Queries 521

AWS AppSync Developer Guide

}

You should only see records with a price over $1 or less than $10. Finally, you can perform queries
to retrieve individual records as follows:

query onePet {
 getPet(id:ID_PLACEHOLDER){
 id
 type
 price
 }
}

Input Sanitization

We recommend that developers use variableMap for protection against SQL injection attacks.
If variable maps are not used, developers are responsible for sanitizing the arguments of their
GraphQL operations. One way to do this is to provide input specific validation steps in the request
mapping template before execution of a SQL statement against your Data API. Let’s see how we
can modify the request mapping template of the listPetsByPriceRange example. Instead of
relying solely on the user input you can do the following:

#set($validMaxPrice = $util.matches("\d{1,3}[,\\.]?(\\d{1,2})?",$ctx.args.maxPrice))

#set($validMinPrice = $util.matches("\d{1,3}[,\\.]?(\\d{1,2})?",$ctx.args.minPrice))

#if (!$validMaxPrice || !$validMinPrice)
 $util.error("Provided price input is not valid.")
#end
{
 "version": "2018-05-29",
 "statements": [
 "select * from Pets where price > :MIN and price < :MAX"
],

 "variableMap": {
 ":MAX": $util.toJson($ctx.args.maxPrice),
 ":MIN": $util.toJson($ctx.args.minPrice)
 }
}

Input Sanitization 522

AWS AppSync Developer Guide

Another way to protect against rogue input when executing resolvers against your Data API is to
use prepared statements together with stored procedure and parameterized inputs. For example,
in the resolver for listPets define the following procedure that executes the select as a prepared
statement:

CREATE PROCEDURE listPets (IN type_param VARCHAR(200))
 BEGIN
 PREPARE stmt FROM 'SELECT * FROM Pets where type=?';
 SET @type = type_param;
 EXECUTE stmt USING @type;
 DEALLOCATE PREPARE stmt;
 END

This can be created in your Aurora Serverless Instance using the following execute sql command:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:xxxxxxxxxxxx:cluster:http-endpoint-test" \
--schema "mysql" --secret-arn "arn:aws:secretsmanager:us-
east-1:xxxxxxxxxxxx:secret:httpendpoint-xxxxxx" \
--region us-east-1 --database "DB_NAME" \
--sql "CREATE PROCEDURE listPets (IN type_param VARCHAR(200)) BEGIN PREPARE stmt FROM
 'SELECT * FROM Pets where type=?'; SET @type = type_param; EXECUTE stmt USING @type;
 DEALLOCATE PREPARE stmt; END"

The resulting resolver code for listPets is simplified since we now simply call the stored procedure.
At a minimum, any string input should have single quotes escaped.

#set ($validType = $util.isString($ctx.args.type) && !
$util.isNullOrBlank($ctx.args.type))
#if (!$validType)
 $util.error("Input for 'type' is not valid.", "ValidationError")
#end

{
 "version": "2018-05-29",
 "statements": [
 "CALL listPets(:type)"
]
 "variableMap": {
 ":type": $util.toJson($ctx.args.type.replace("'", "''"))
 }

Input Sanitization 523

AWS AppSync Developer Guide

}

Escaping strings

Single quotes represent the start and end of string literals in an SQL statement, eg. 'some
string value'. To allow string values with one or more single quote characters (') to be used
within a string, each must be replaced with two single quotes (''). For example, if the input string
is Nadia's dog, you would escape it for the SQL statement like

update Pets set type='Nadia''s dog' WHERE id='1'

Tutorial: Pipeline Resolvers

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync provides a simple way to wire a GraphQL field to a single data source through unit
resolvers. However, executing a single operation might not be enough. Pipeline resolvers offer the
ability to serially execute operations against data sources. Create functions in your API and attach
them to a pipeline resolver. Each function execution result is piped to the next until no function is
left to execute. With pipeline resolvers you can now build more complex workflows directly in AWS
AppSync. In this tutorial, you build a simple pictures viewing app, where users can post and view
pictures posted by their friends.

One-Click Setup

If you want to automatically set up the GraphQL endpoint in AWS AppSync with all the resolvers
configured and the necessary AWS resources, you can use the following AWS CloudFormation
template :

This stack creates the following resources in your account:

• IAM Role for AWS AppSync to access the resources in your account

Tutorial: Pipeline Resolvers 524

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/pipeline/pipeline-resolvers-full.yaml

AWS AppSync Developer Guide

• 2 DynamoDB tables

• 1 Amazon Cognito user pool

• 2 Amazon Cognito user pool groups

• 3 Amazon Cognito user pool users

• 1 AWS AppSync API

At the end of the AWS CloudFormation stack creation process you receive one email for each of the
three Amazon Cognito users that were created. Each email contains a temporary password that you
use to log in as an Amazon Cognito user to the AWS AppSync console. Save the passwords for the
remainder of the tutorial.

Manual Setup

If you prefer to manually go through a step-by-step process through the AWS AppSync console,
follow the setup process below.

Setting Up Your Non AWS AppSync Resources

The API communicates with two DynamoDB tables: a pictures table that stores pictures and a
friends table that stores relationships between users. The API is configured to use Amazon Cognito
user pool as authentication type. The following AWS CloudFormation stack sets up these resources
in the account.

At the end of the AWS CloudFormation stack creation process you receive one email for each of the
three Amazon Cognito users that were created. Each email contains a temporary password that you
use to log in as an Amazon Cognito user to the AWS AppSync console. Save the passwords for the
remainder of the tutorial.

Creating Your GraphQL API

To create the GraphQL API in AWS AppSync:

1. Open the AWS AppSync console and choose Build From Scratch and choose Start.

2. Set the name of the API to AppSyncTutorial-PicturesViewer.

3. Choose Create.

Manual Setup 525

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/pipeline/pipeline-resolvers-resources-only.yaml

AWS AppSync Developer Guide

The AWS AppSync console creates a new GraphQL API for you using the API key authentication
mode. You can use the console to set up the rest of the GraphQL API and run queries against it for
the rest of this tutorial.

Configuring The GraphQL API

You need to configure the AWS AppSync API with the Amazon Cognito user pool that you just
created.

1. Choose the Settings tab.

2. Under the Authorization Type section, choose Amazon Cognito User Pool.

3. Under User Pool Configuration, choose US-WEST-2 for the AWS Region.

4. Choose the AppSyncTutorial-UserPool user pool.

5. Choose DENY as Default Action.

6. Leave the AppId client regex field blank.

7. Choose Save.

The API is now set up to use Amazon Cognito user pool as its authorization type.

Configuring Data Sources for the DynamoDB Tables

After the DynamoDB tables have been created, navigate to your AWS AppSync GraphQL API in
the console and choose the Data Sources tab. Now, you’re going to create a datasource in AWS
AppSync for each of the DynamoDB tables that you just created.

1. Choose the Data source tab.

2. Choose New to create a new data source.

3. For the data source name, enter PicturesDynamoDBTable.

4. For data source type, choose Amazon DynamoDB table.

5. For region, choose US-WEST-2.

6. From the list of tables, choose the AppSyncTutorial-PicturesDynamoDB table.

7. In the Create or use an existing role section, choose Existing role.

8. Choose the role that was just created from the CloudFormation template. If you did not change
the ResourceNamePrefix, the name of the role should be AppSyncTutorial-DynamoDBRole.

9. Choose Create.

Manual Setup 526

AWS AppSync Developer Guide

Repeat the same process for the friends table, the name of the DynamoDB table should be
AppSyncTutorial-Friends if you did not change the ResourceNamePrefix parameter at the time of
creating the CloudFormation stack.

Creating the GraphQL Schema

Now that the data sources are connected to your DynamoDB tables, let’s create a GraphQL
schema. From the schema editor in the AWS AppSync console, make sure your schema matches the
following schema:

schema {
 query: Query
 mutation: Mutation
}

type Mutation {
 createPicture(input: CreatePictureInput!): Picture!
 @aws_auth(cognito_groups: ["Admins"])
 createFriendship(id: ID!, target: ID!): Boolean
 @aws_auth(cognito_groups: ["Admins"])
}

type Query {
 getPicturesByOwner(id: ID!): [Picture]
 @aws_auth(cognito_groups: ["Admins", "Viewers"])
}

type Picture {
 id: ID!
 owner: ID!
 src: String
}

input CreatePictureInput {
 owner: ID!
 src: String!
}

Choose Save Schema to save your schema.

Some of the schema fields have been annotated with the @aws_auth directive. Since the API
default action configuration is set to DENY, the API rejects all users that are not members of

Manual Setup 527

AWS AppSync Developer Guide

the groups mentioned inside the @aws_auth directive. For more information about how to
secure your API, you can read the Security page. In this case, only admin users have access to the
Mutation.createPicture and Mutation.createFriendship fields, while users that are members of either
Admins or Viewers groups can access the Query.getPicturesByOwner field. All other users don’t have
access.

Configuring Resolvers

Now that you have a valid GraphQL schema and two data sources, you can attach resolvers to the
GraphQL fields on the schema. The API offers the following capabilities:

• Create a picture via the Mutation.createPicture field

• Create friendship via the Mutation.createFriendship field

• Retrieve a picture via the Query.getPicture field

Mutation.createPicture

From the schema editor in the AWS AppSync console, on the right side choose Attach
Resolver for createPicture(input: CreatePictureInput!): Picture!. Choose the
DynamoDBPicturesDynamoDBTable data source. In the request mapping template section, add the
following template:

#set($id = $util.autoId())

{
 "version" : "2018-05-29",

 "operation" : "PutItem",

 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($id),
 "owner": $util.dynamodb.toDynamoDBJson($ctx.args.input.owner)
 },

 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args.input)
}

In the response mapping template section, add the following template:

#if($ctx.error)

Manual Setup 528

AWS AppSync Developer Guide

 $util.error($ctx.error.message, $ctx.error.type)
#end
$util.toJson($ctx.result)

The create picture functionality is done. You are saving a picture in the Pictures table, using a
randomly generated UUID as id of the picture, and using the Cognito username as owner of the
picture.

Mutation.createFriendship

From the schema editor in the AWS AppSync console, on the right side choose Attach
Resolver for createFriendship(id: ID!, target: ID!): Boolean. Choose the
DynamoDBFriendsDynamoDBTable data source. In the request mapping template section, add
the following template:

#set($userToFriendFriendship = { "userId" : "$ctx.args.id", "friendId":
 "$ctx.args.target" })
#set($friendToUserFriendship = { "userId" : "$ctx.args.target", "friendId":
 "$ctx.args.id" })
#set($friendsItems = [$util.dynamodb.toMapValues($userToFriendFriendship),
 $util.dynamodb.toMapValues($friendToUserFriendship)])

{
 "version" : "2018-05-29",
 "operation" : "BatchPutItem",
 "tables" : {
 ## Replace 'AppSyncTutorial-' default below with the ResourceNamePrefix you
 provided in the CloudFormation template
 "AppSyncTutorial-Friends": $util.toJson($friendsItems)
 }
}

Important: In the BatchPutItem request template, the exact name of the DynamoDB table should
be present. The default table name is AppSyncTutorial-Friends. If you are using the wrong table
name, you get an error when AppSync tries to assume the provided role.

For the sake of simplicity in this tutorial, proceed as if the friendship request has been approved
and save the relationship entry directly into the AppSyncTutorialFriends table.

Effectively, you’re storing two items for each friendship as the relationship is bi-directional. For
more details about Amazon DynamoDB best practices to represent many-to-many relationships,
see DynamoDB Best Practices .

Manual Setup 529

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html

AWS AppSync Developer Guide

In the response mapping template section, add the following template:

#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type)
#end
true

Note: Make sure your request template contains the right table name. The default name is
AppSyncTutorial-Friends, but your table name might differ if you changed the CloudFormation
ResourceNamePrefix parameter.

Query.getPicturesByOwner

Now that you have friendships and pictures, you need to provide the ability for users to view their
friends’ pictures. To satisfy this requirement, you need to first check that the requester is friend
with the owner, and finally query for the pictures.

Because this functionality requires two data source operations, you’re going to create two
functions. The first function, isFriend, checks whether the requester and the owner are friends. The
second function, getPicturesByOwner, retrieves the requested pictures given an owner ID. Let’s
look at the execution flow below for the proposed resolver on the Query.getPicturesByOwner field:

1. Before mapping template: Prepare the context and field input arguments.

2. isFriend function: Checks whether the requester is the owner of the picture. If not, it checks
whether the requester and owner users are friends by doing a DynamoDB GetItem operation on
the friends table.

3. getPicturesByOwner function: Retrieves pictures from the Pictures table using a DynamoDB
Query operation on the owner-index Global Secondary Index.

4. After mapping template: Maps picture result so DynamoDB attributes map correctly to the
expected GraphQL type fields.

Let’s first create the functions.

isFriend Function

1. Choose the Functions tab.

2. Choose Create Function to create a function.

3. For the data source name, enter FriendsDynamoDBTable.

Manual Setup 530

AWS AppSync Developer Guide

4. For the function name, enter isFriend.

5. Inside the request mapping template text area, paste the following template:

#set($ownerId = $ctx.prev.result.owner)
#set($callerId = $ctx.prev.result.callerId)

if the owner is the caller, no need to make the check
#if($ownerId == $callerId)
 #return($ctx.prev.result)
#end

{
 "version" : "2018-05-29",

 "operation" : "GetItem",

 "key" : {
 "userId" : $util.dynamodb.toDynamoDBJson($callerId),
 "friendId" : $util.dynamodb.toDynamoDBJson($ownerId)
 }
}

6. Inside the response mapping template text area, paste the following template:

#if($ctx.error)
 $util.error("Unable to retrieve friend mapping message: ${ctx.error.message}",
 $ctx.error.type)
#end

if the users aren't friends
#if(!$ctx.result)
 $util.unauthorized()
#end

$util.toJson($ctx.prev.result)

7. Choose Create Function.

Result: You’ve created the isFriend function.

Manual Setup 531

AWS AppSync Developer Guide

getPicturesByOwner function

1. Choose the Functions tab.

2. Choose Create Function to create a function.

3. For the data source name, enter PicturesDynamoDBTable.

4. For the function name, enter getPicturesByOwner.

5. Inside the request mapping template text area, paste the following template:

{
 "version" : "2018-05-29",

 "operation" : "Query",

 "query" : {
 "expression": "#owner = :owner",
 "expressionNames": {
 "#owner" : "owner"
 },
 "expressionValues" : {
 ":owner" : $util.dynamodb.toDynamoDBJson($ctx.prev.result.owner)
 }
 },

 "index": "owner-index"
}

6. Inside the response mapping template text area, paste the following template:

#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type)
#end

$util.toJson($ctx.result)

7. Choose Create Function.

Result: You’ve created the getPicturesByOwner function. Now that the functions have been
created, attach a pipeline resolver to the Query.getPicturesByOwner field.

Manual Setup 532

AWS AppSync Developer Guide

From the schema editor in the AWS AppSync console, on the right side choose Attach Resolver
for Query.getPicturesByOwner(id: ID!): [Picture]. On the following page, choose the
Convert to pipeline resolver link that appears underneath the data source drop-down list. Use the
following for the before mapping template:

#set($result = { "owner": $ctx.args.id, "callerId": $ctx.identity.username })
$util.toJson($result)

In the after mapping template section, use the following:

#foreach($picture in $ctx.result.items)
 ## prepend "src://" to picture.src property
 #set($picture['src'] = "src://${picture['src']}")
#end
$util.toJson($ctx.result.items)

Choose Create Resolver. You have successfully attached your first pipeline resolver. On the same
page, add the two functions you created previously. In the functions section, choose Add A
Function and then choose or type the name of the first function, isFriend. Add the second function
by following the same process for the getPicturesByOwner function. Make sure the isFriend
function appears first in the list followed by the getPicturesByOwner function. You can use the up
and down arrows to rearrange to order of execution of the functions in the pipeline.

Now that the pipeline resolver is created and you’ve attached the functions, let’s test the newly
created GraphQL API.

Testing Your GraphQL API

First, you need to populate pictures and friendships by executing a few mutations using the admin
user you created. On the left side of the AWS AppSync console, choose the Queries tab.

createPicture Mutation

1. In AWS AppSync console, choose the Queries tab.

2. Choose Login With User Pools.

3. On the modal, enter the Cognito Sample Client ID that was created by the CloudFormation stack
for example, 37solo6mmhh7k4v63cqdfgdg5d).

4. Enter the user name you passed as parameter to the CloudFormation stack. Default is nadia.

Testing Your GraphQL API 533

AWS AppSync Developer Guide

5. Use the temporary password that was sent to the email you provided as parameter to the
CloudFormation stack (for example, UserPoolUserEmail).

6. Choose Login. You should now see the button renamed to Logout nadia, or whatever user name
you chose when creating the CloudFormation stack (that is, UserPoolUsername).

Let’s send a few createPicture mutations to populate the pictures table. Execute the following
GraphQL query inside the console:

mutation {
 createPicture(input:{
 owner: "nadia"
 src: "nadia.jpg"
 }) {
 id
 owner
 src
 }
}

The response should look like below:

{
 "data": {
 "createPicture": {
 "id": "c6fedbbe-57ad-4da3-860a-ffe8d039882a",
 "owner": "nadia",
 "src": "nadia.jpg"
 }
 }
}

Let’s add a few more pictures:

mutation {
 createPicture(input:{
 owner: "shaggy"
 src: "shaggy.jpg"
 }) {
 id
 owner
 src

Testing Your GraphQL API 534

AWS AppSync Developer Guide

 }
}

mutation {
 createPicture(input:{
 owner: "rex"
 src: "rex.jpg"
 }) {
 id
 owner
 src
 }
}

You’ve added three pictures using nadia as the admin user.

createFriendship Mutation

Let’s add a friendship entry. Execute the following mutations in the console.

Note: You must still be logged in as the admin user (the default admin user is nadia).

mutation {
 createFriendship(id: "nadia", target: "shaggy")
}

The response should look like:

{
 "data": {
 "createFriendship": true
 }
}

nadia and shaggy are friends. rex is not friends with anybody.

getPicturesByOwner Query

For this step, log in as the nadia user using Cognito User Pools, using the credentials set up in the
beginning of this tutorial. As nadia, retrieve the pictures owned by shaggy.

query {

Testing Your GraphQL API 535

AWS AppSync Developer Guide

 getPicturesByOwner(id: "shaggy") {
 id
 owner
 src
 }
}

Since nadia and shaggy are friends, the query should return the corresponding picture.

{
 "data": {
 "getPicturesByOwner": [
 {
 "id": "05a16fba-cc29-41ee-a8d5-4e791f4f1079",
 "owner": "shaggy",
 "src": "src://shaggy.jpg"
 }
]
 }
}

Similarly, if nadia attempts to retrieve her own pictures, it also succeeds. The pipeline resolver has
been optimized to avoid running the isFriend GetItem operation in that case. Try the following
query:

query {
 getPicturesByOwner(id: "nadia") {
 id
 owner
 src
 }
}

If you enable logging on your API (in the Settings pane), set the debug level to ALL, and run the
same query again, it returns logs for the field execution. By looking at the logs, you can determine
whether the isFriend function returned early at the Request Mapping Template stage:

{
 "errors": [],
 "mappingTemplateType": "Request Mapping",
 "path": "[getPicturesByOwner]",

Testing Your GraphQL API 536

AWS AppSync Developer Guide

 "resolverArn": "arn:aws:appsync:us-west-2:XXXX:apis/XXXX/types/Query/fields/
getPicturesByOwner",
 "functionArn": "arn:aws:appsync:us-west-2:XXXX:apis/XXXX/functions/
o2f42p2jrfdl3dw7s6xub2csdfs",
 "functionName": "isFriend",
 "earlyReturnedValue": {
 "owner": "nadia",
 "callerId": "nadia"
 },
 "context": {
 "arguments": {
 "id": "nadia"
 },
 "prev": {
 "result": {
 "owner": "nadia",
 "callerId": "nadia"
 }
 },
 "stash": {},
 "outErrors": []
 },
 "fieldInError": false
}

The earlyReturnedValue key represents the data that was returned by the #return directive.

Finally, even though rex is a member of the Viewers Cognito UserPool Group, and because rex isn’t
friends with anybody, he won’t be able to access any of the pictures owned by shaggy or nadia. If
you log in as rex in the console and execute the following query:

query {
 getPicturesByOwner(id: "nadia") {
 id
 owner
 src
 }
}

You get the following unauthorized error:

{
 "data": {

Testing Your GraphQL API 537

AWS AppSync Developer Guide

 "getPicturesByOwner": null
 },
 "errors": [
 {
 "path": [
 "getPicturesByOwner"
],
 "data": null,
 "errorType": "Unauthorized",
 "errorInfo": null,
 "locations": [
 {
 "line": 2,
 "column": 9,
 "sourceName": null
 }
],
 "message": "Not Authorized to access getPicturesByOwner on type Query"
 }
]
}

You have successfully implemented complex authorization using pipeline resolvers.

Tutorial: Delta Sync

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Client applications in AWS AppSync store data by caching GraphQL responses locally to disk
in a mobile/web application. Versioned data sources and Sync operations give customers the
ability to perform the sync process using a single resolver. This allows clients to hydrate their local
cache with results from one base query that might have a lot of records, and then receive only
the data altered since their last query (the delta updates). By allowing clients to perform the base
hydration of the cache with an initial request and incremental updates in another, you can move
the computation from your client application to the backend. This is substantially more efficient for
client applications that frequently switch between online and offline states.

Tutorial: Delta Sync 538

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html

AWS AppSync Developer Guide

To implement Delta Sync, the Sync query uses the Sync operation on a versioned data source.
When an AWS AppSync mutation changes an item in a versioned data source, a record of that
change will be stored in the Delta table as well. You can choose to use different Delta tables (e.g.
one per type, one per domain area) for other versioned data sources or a single Delta table for your
API. AWS AppSync recommends against using a single Delta table for multiple APIs to avoid the
collision of primary keys.

In addition, Delta Sync clients can also receive a subscription as an argument, and then the
client coordinates subscription reconnects and writes between offline to online transitions. Delta
Sync performs this by automatically resuming subscriptions (including exponential backoff and
retry with jitter through different network error scenarios), and storing events in a queue. The
appropriate delta or base query is then run before merging any events from the queue, and finally
processing subscriptions as normal.

Documentation for client configuration options, including the Amplify DataStore, is available on
the Amplify Framework website. This documentation outlines how to set up versioned DynamoDB
data sources and Sync operations to work with the Delta Sync client for optimal data access.

One-Click Setup

To automatically set up the GraphQL endpoint in AWS AppSync with all the resolvers configured
and the necessary AWS resources, use this AWS CloudFormation template:

This stack creates the following resources in your account:

• 2 DynamoDB tables (Base and Delta)

• 1 AWS AppSync API with API key

• 1 IAM Role with policy for DynamoDB tables

Two tables are used to partition your sync queries into a second table that acts as a journal of
missed events when the clients were offline. To keep the queries efficient on the delta table,
Amazon DynamoDB TTLs are used to automatically groom the events as necessary. The TTL time is
configurable for your needs on the data source (you might want this as 1hour, 1day, etc.).

One-Click Setup 539

https://aws-amplify.github.io/
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?templateURL=https://s3.us-west-2.amazonaws.com/awsappsync/resources/deltasync/deltasync-v2-full.yaml
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html

AWS AppSync Developer Guide

Schema

To demonstrate Delta Sync, the sample application creates a Posts schema backed by a Base and
Delta table in DynamoDB. AWS AppSync automatically writes the mutations to both tables. The
sync query pulls records from the Base or Delta table as appropriate, and a single subscription is
defined to show how clients can leverage this in their reconnection logic.

input CreatePostInput {
 author: String!
 title: String!
 content: String!
 url: String
 ups: Int
 downs: Int
 _version: Int
}

interface Connection {
 nextToken: String
 startedAt: AWSTimestamp!
}

type Mutation {
 createPost(input: CreatePostInput!): Post
 updatePost(input: UpdatePostInput!): Post
 deletePost(input: DeletePostInput!): Post
}

type Post {
 id: ID!
 author: String!
 title: String!
 content: String!
 url: AWSURL
 ups: Int
 downs: Int
 _version: Int
 _deleted: Boolean
 _lastChangedAt: AWSTimestamp!
}

type PostConnection implements Connection {
 items: [Post!]!

Schema 540

AWS AppSync Developer Guide

 nextToken: String
 startedAt: AWSTimestamp!
}

type Query {
 getPost(id: ID!): Post
 syncPosts(limit: Int, nextToken: String, lastSync: AWSTimestamp): PostConnection!
}

type Subscription {
 onCreatePost: Post
 @aws_subscribe(mutations: ["createPost"])
 onUpdatePost: Post
 @aws_subscribe(mutations: ["updatePost"])
 onDeletePost: Post
 @aws_subscribe(mutations: ["deletePost"])
}

input DeletePostInput {
 id: ID!
 _version: Int!
}

input UpdatePostInput {
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int
 downs: Int
 _version: Int!
}

schema {
 query: Query
 mutation: Mutation
 subscription: Subscription
}

The GraphQL schema is standard, but a couple things are worth calling out before moving forward.
First, all of the mutations automatically first write to the Base table and then to the Delta table.
The Base table is the central source of truth for state while the Delta table is your journal. If you

Schema 541

AWS AppSync Developer Guide

don’t pass in the lastSync: AWSTimestamp, the syncPosts query runs against the Base table
and hydrates the cache as well as running at periodic times as a global catchup process for edge
cases when clients are offline longer than your configured TTL time in the Delta table. If you do
pass in the lastSync: AWSTimestamp, the syncPosts query runs against your Delta table
and is used by clients to retrieve changed events since they were last offline. Amplify clients
automatically pass the lastSync: AWSTimestamp value, and persist to disk appropriately.

The _deleted field on Post is used for DELETE operations. When clients are offline and records are
removed from the Base table, this attribute notifies clients performing synchronization to evict
items from their local cache. In cases where clients are offline for longer periods of time and the
item has been removed before the client can retrieve this value with a Delta Sync query, the global
catch-up event in the base query (configurable in the client) runs and removes the item from the
cache. This field is marked optional because it only returns a value when running a sync query that
has deleted items present.

Mutations

For all of the mutations, AWS AppSync does a standard Create/Update/Delete operation in the
Base table and also records the change in the Delta table automatically. You can reduce or extend
the time to keep records by modifying the DeltaSyncTableTTL value on the data source. For
organizations with a high velocity of data, it may make sense to keep this short. Alternatively, if
your clients are offline for longer periods of time, it might be prudent to keep this longer.

Sync Queries

The base query is a DynamoDB Sync operation without a lastSync value specified. For many
organizations, this works because the base query only runs on startup and at a periodic basis
thereafter.

The delta query is a DynamoDB Sync operation with a lastSync value specified. The delta query
executes whenever the client comes back online from an offline state (as long as the base query
periodic time hasn’t triggered to run). Clients automatically track the last time they successfully ran
a query to sync data.

When a delta query is run, the query’s resolver uses the ds_pk and ds_sk to query only for the
records that have changed since the last time the client performed a sync. The client stores the
appropriate GraphQL response.

For more information on executing Sync Queries, see the Sync Operation documentation.

Mutations 542

AWS AppSync Developer Guide

Example

Let’s start first by calling a createPost mutation to create an item:

mutation create {
 createPost(input: {author: "Nadia", title: "My First Post", content: "Hello World"})
 {
 id
 author
 title
 content
 _version
 _lastChangedAt
 _deleted
 }
}

The return value of this mutation will look as follows:

{
 "data": {
 "createPost": {
 "id": "81d36bbb-1579-4efe-92b8-2e3f679f628b",
 "author": "Nadia",
 "title": "My First Post",
 "content": "Hello World",
 "_version": 1,
 "_lastChangedAt": 1574469356331,
 "_deleted": null
 }
 }
}

If you examine the contents of the Base table, you will see a record that looks like:

{
 "_lastChangedAt": {
 "N": "1574469356331"
 },
 "_version": {
 "N": "1"
 },

Example 543

AWS AppSync Developer Guide

 "author": {
 "S": "Nadia"
 },
 "content": {
 "S": "Hello World"
 },
 "id": {
 "S": "81d36bbb-1579-4efe-92b8-2e3f679f628b"
 },
 "title": {
 "S": "My First Post"
 }
}

If you examine the contents of the Delta table, you will see a record that looks like:

{
 "_lastChangedAt": {
 "N": "1574469356331"
 },
 "_ttl": {
 "N": "1574472956"
 },
 "_version": {
 "N": "1"
 },
 "author": {
 "S": "Nadia"
 },
 "content": {
 "S": "Hello World"
 },
 "ds_pk": {
 "S": "AppSync-delta-sync-post:2019-11-23"
 },
 "ds_sk": {
 "S": "00:35:56.331:81d36bbb-1579-4efe-92b8-2e3f679f628b:1"
 },
 "id": {
 "S": "81d36bbb-1579-4efe-92b8-2e3f679f628b"
 },
 "title": {
 "S": "My First Post"

Example 544

AWS AppSync Developer Guide

 }
}

Now we can simulate a Base query that a client will run to hydrate its local data store using a
syncPosts query like:

query baseQuery {
 syncPosts(limit: 100, lastSync: null, nextToken: null) {
 items {
 id
 author
 title
 content
 _version
 _lastChangedAt
 }
 startedAt
 nextToken
 }
}

The return value of this Base query will look as follows:

{
 "data": {
 "syncPosts": {
 "items": [
 {
 "id": "81d36bbb-1579-4efe-92b8-2e3f679f628b",
 "author": "Nadia",
 "title": "My First Post",
 "content": "Hello World",
 "_version": 1,
 "_lastChangedAt": 1574469356331
 }
],
 "startedAt": 1574469602238,
 "nextToken": null
 }
 }
}

Example 545

AWS AppSync Developer Guide

We’ll save the startedAt value later to simulate a Delta query, but first we need to make a
change to our table. Let’s use the updatePost mutation to modify our existing Post:

mutation updatePost {
 updatePost(input: {id: "81d36bbb-1579-4efe-92b8-2e3f679f628b", _version: 1, title:
 "Actually this is my Second Post"}) {
 id
 author
 title
 content
 _version
 _lastChangedAt
 _deleted
 }
}

The return value of this mutation will look as follows:

{
 "data": {
 "updatePost": {
 "id": "81d36bbb-1579-4efe-92b8-2e3f679f628b",
 "author": "Nadia",
 "title": "Actually this is my Second Post",
 "content": "Hello World",
 "_version": 2,
 "_lastChangedAt": 1574469851417,
 "_deleted": null
 }
 }
}

If you examine the contents of the Base table now, you should see the updated item:

{
 "_lastChangedAt": {
 "N": "1574469851417"
 },
 "_version": {
 "N": "2"
 },
 "author": {

Example 546

AWS AppSync Developer Guide

 "S": "Nadia"
 },
 "content": {
 "S": "Hello World"
 },
 "id": {
 "S": "81d36bbb-1579-4efe-92b8-2e3f679f628b"
 },
 "title": {
 "S": "Actually this is my Second Post"
 }
}

If you examine the contents of the Delta table now, you should see two records:

1. A record when the item was created

2. A record for when the item was updated.

The new item will look like:

{
 "_lastChangedAt": {
 "N": "1574469851417"
 },
 "_ttl": {
 "N": "1574473451"
 },
 "_version": {
 "N": "2"
 },
 "author": {
 "S": "Nadia"
 },
 "content": {
 "S": "Hello World"
 },
 "ds_pk": {
 "S": "AppSync-delta-sync-post:2019-11-23"
 },
 "ds_sk": {
 "S": "00:44:11.417:81d36bbb-1579-4efe-92b8-2e3f679f628b:2"
 },

Example 547

AWS AppSync Developer Guide

 "id": {
 "S": "81d36bbb-1579-4efe-92b8-2e3f679f628b"
 },
 "title": {
 "S": "Actually this is my Second Post"
 }
}

Now we can simulate a Delta query to retrieve modifications that occurred when a client was
offline. We will use the startedAt value returned from our Base query to make the request:

query delta {
 syncPosts(limit: 100, lastSync: 1574469602238, nextToken: null) {
 items {
 id
 author
 title
 content
 _version
 }
 startedAt
 nextToken
 }
}

The return value of this Delta query will look as follows:

{
 "data": {
 "syncPosts": {
 "items": [
 {
 "id": "81d36bbb-1579-4efe-92b8-2e3f679f628b",
 "author": "Nadia",
 "title": "Actually this is my Second Post",
 "content": "Hello World",
 "_version": 2
 }
],
 "startedAt": 1574470400808,
 "nextToken": null
 }
 }

Example 548

AWS AppSync Developer Guide

}

Example 549

AWS AppSync Developer Guide

Configuration and settings
AWS AppSync enables you to:

• Cache data that's requested often but unlikely to change from request to request. This can
reduce the load on your resolvers. For more information, see the section called “Caching and
compression”.

• Version GraphQL objects to handle and avoid conflict among multiple clients. For more
information, see the section called “Conflict Detection and Sync”.

• Use custom domain names to configure a single, memorable domain that works for both your
GraphQL and real-time APIs. For more information, see Configuring custom domain names.

• Allow access to your GraphQL APIs through a VPC. For more information, see Using AWS
AppSync Private APIs.

• Enable introspection and set query depth and resolver limits per query. For more information,
see Configuration limits.

Additionally, AWS AppSync includes the following standard AWS tools for logging, monitoring, and
tracing:

• Logging in AWS CloudTrail

• Monitoring with Amazon CloudWatch

• Tracing with AWS X-Ray

Caching and compression

AWS AppSync's server-side data caching capabilities make data available in a high speed, in-
memory cache, improving performance and decreasing latency. This reduces the need to directly
access data sources. Caching is available for both unit and pipeline resolvers.

AWS AppSync also allows you to compress API responses so that payload content loads and
downloads faster. This potentially reduces the strain on your applications while also potentially
reducing your data transfer charges. Compression behavior is configurable and can be set at your
own discretion.

Refer to this section for help defining the desired behavior of server-side caching and compression
in your AWS AppSync API.

Caching and compression 550

https://docs.aws.amazon.com/appsync/latest/devguide/custom-domain-name.html
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/custom-domain-name.html

AWS AppSync Developer Guide

Instance types

AWS AppSync hosts Amazon ElastiCache for Redis instances in the same AWS account and AWS
Region as your AWS AppSync API.

The following ElastiCache for Redis instance types are available:

small

1 vCPU, 1.5 GiB RAM, low to moderate network performance

medium

2 vCPU, 3 GiB RAM, low to moderate network performance

large

2 vCPU, 12.3 GiB RAM, up to 10 Gigabit network performance

xlarge

4 vCPU, 25.05 GiB RAM, up to 10 Gigabit network performance

2xlarge

8 vCPU, 50.47 GiB RAM, up to 10 Gigabit network performance

4xlarge

16 vCPU, 101.38 GiB RAM, up to 10 Gigabit network performance

8xlarge

32 vCPU, 203.26 GiB RAM, 10 Gigabit network performance (not available in all Regions)

12xlarge

48 vCPU, 317.77 GiB RAM, 10 Gigabit network performance

Note

Historically, you specified a specific instance type (such as t2.medium). As of July 2020,
these legacy instance types continue to be available, but their use is deprecated and
discouraged. We recommend that you use the generic instance types described here.

Instance types 551

AWS AppSync Developer Guide

Caching behavior

The following are the behaviors related to caching:

None

No server-side caching.

Full request caching

If the data is not in the cache, it is retrieved from the data source and populates the cache until
the time to live (TTL) expiration. All subsequent requests to your API are returned from the
cache. This means that data sources aren't contacted directly unless the TTL expires. In this
setting, we use the contents of the context.arguments and context.identity maps as
caching keys.

Per-resolver caching

With this setting, each resolver must be explicitly opted in for it to cache responses. You can
specify a TTL and caching keys on the resolver. Caching keys that you can specify are the top-
level maps context.arguments, context.source, and context.identity, and/or string
fields from these maps. The TTL value is mandatory, but the caching keys are optional. If you
don't specify any caching keys, the defaults are the contents of the context.arguments,
context.source, and context.identity maps.

For example, you could use the following combinations:

• context.arguments and context.source

• context.arguments and context.identity.sub

• context.arguments.id or context.arguments.InputType.id

• context.source.id and context.identity.sub

• context.identity.claims.username

When you specify only a TTL and no caching keys, the behavior of the resolver is the same as
full request caching.

Cache time to live

This setting defines the amount of time to store cached entries in memory. The maximum TTL is
3,600 seconds (1 hour), after which entries are automatically deleted.

Caching behavior 552

AWS AppSync Developer Guide

Cache encryption

Cache encryption comes in the following two flavors. These are similar to the settings that
ElastiCache for Redis allows. You can enable the encryption settings only when first enabling
caching for your AWS AppSync API.

• Encryption in transit – Requests between AWS AppSync, the cache, and data sources (except
insecure HTTP data sources) are encrypted at the network level. Because there is some
processing needed to encrypt and decrypt the data at the endpoints, in-transit encryption can
impact performance.

• Encryption at rest – Data saved to disk from memory during swap operations are encrypted at
the cache instance. This setting also impacts performance.

To invalidate cache entries, you can make a flush cache API call using either the AWS AppSync
console or the AWS Command Line Interface (AWS CLI).

For more information, see the ApiCache data type in the AWS AppSync API Reference.

Cache eviction

When you set up AWS AppSync's server-side caching, you can configure a maximum TTL. This value
defines the amount of time that cached entries are stored in memory. In situations where you
must remove specific entries from your cache, you can use AWS AppSync's evictFromApiCache
extensions utility in your resolver's request or response. (For example, when your data in your data
sources have changed, and your cache entry is now stale.) To evict an item from the cache, you
must know its key. For this reason, if you must evict items dynamically, we recommend using per-
resolver caching and explicitly defining a key to use to add entries to your cache.

Evicting a cache entry

To evict an item from the cache, use the evictFromApiCache extensions utility. Specify the type
name and field name, then provide an object of key-value items to build the key of the entry that
you want to evict. In the object, each key represents a valid entry from the context object that is
used in the cached resolver's cachingKey list. Each value is the actual value used to construct the
value of the key. You must put the items in the object in the same order as the caching keys in the
cached resolver's cachingKey list.

For example, see the following schema:

Cache encryption 553

https://docs.aws.amazon.com/appsync/latest/APIReference/API_ApiCache.html

AWS AppSync Developer Guide

type Note {
 id: ID!
 title: String
 content: String!
}

type Query {
 getNote(id: ID!): Note
}

type Mutation {
 updateNote(id: ID!, content: String!): Note
}

In this example, you can enable per-resolver caching, then enable it for the getNote query. Then,
you can configure the caching key to consist of [context.arguments.id].

When you try to get a Note, to build the cache key, AWS AppSync performs a lookup in its server-
side cache using the id argument of the getNote query.

When you update a Note, you must evict the entry for the specific note to make sure that the next
request fetches it from the backend data source. To do this, you must create a request handler.

The following example shows one way to handle the eviction using this method:

import { util, Context } from '@aws-appsync/utils';
import { update } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 extensions.evictFromApiCache('Query', 'getNote', { 'ctx.args.id': ctx.args.id });
 return update({ key: { id: ctx.args.id }, update: { context: ctx.args.content } });
}

export const response = (ctx) => ctx.result;

Alternatively, you can also handle the eviction in the response handler.

When the updateNote mutation is processed, AWS AppSync tries to evict the entry. If an entry
is successfully cleared, the response contains an apiCacheEntriesDeleted value in the
extensions object that shows how many entries were deleted:

Evicting a cache entry 554

AWS AppSync Developer Guide

"extensions": { "apiCacheEntriesDeleted": 1}

Evicting a cache entry based on identity

You can create caching keys based on multiple values from the context object.

For example, take the following schema that uses Amazon Cognito user pools as the default auth
mode and is backed by an Amazon DynamoDB data source:

type Note {
 id: ID! # a slug; e.g.: "my-first-note-on-graphql"
 title: String
 content: String!
}

type Query {
 getNote(id: ID!): Note
}

type Mutation {
 updateNote(id: ID!, content: String!): Note
}

The Note object types are saved in a DynamoDB table. The table has a composite key that uses
the Amazon Cognito user name as the primary key and the id (a slug) of the Note as the partition
key. This is a multi-tenant system that allows multiple users to host and update their private Note
objects, which are never shared.

Since this is a read-heavy system, the getNote query is cached using per-resolver caching, with the
caching key composed of [context.identity.username, context.arguments.id]. When
a Note is updated, you can evict the entry for that specific Note. You must add the components in
the object in the same order that they are specified in your resolver's cachingKeys list.

The following example shows this:

import { util, Context } from '@aws-appsync/utils';
import { update } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 extensions.evictFromApiCache('Query', 'getNote', {

Evicting a cache entry based on identity 555

AWS AppSync Developer Guide

 'ctx.identity.username': ctx.identity.username,
 'ctx.args.id': ctx.args.id,
 });
 return update({ key: { id: ctx.args.id }, update: { context: ctx.args.content } });
}

export const response = (ctx) => ctx.result;

A backend system can also update the Note and evict the entry. For example, take this mutation:

type Mutation {
 updateNoteFromBackend(id: ID!, content: String!, username: ID!): Note @aws_iam
}

You can evict the entry, but add the components of the caching key to the cachingKeys object.

In the following example, the eviction occurs in the response of the resolver:

import { util, Context } from '@aws-appsync/utils';
import { update } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 extensions.evictFromApiCache('Query', 'getNote', {
 'ctx.identity.username': ctx.args.username,
 'ctx.args.id': ctx.args.id,
 });
 return update({ key: { id: ctx.args.id }, update: { context: ctx.args.content } });
}

export const response = (ctx) => ctx.result;

In cases where your backend data has been updated outside of AWS AppSync, you can evict an
item from the cache by calling a mutation that uses a NONE data source.

Compressing API responses

AWS AppSync allows clients to request compressed payloads. If requested, API responses are
compressed and returned in response to requests that indicate that compressed content is
preferred. Compressed API responses load faster, content is downloaded faster, and your data
transfer charges may be reduced as well.

Compressing API responses 556

AWS AppSync Developer Guide

Note

Compression is available on all new APIs created after June 1st, 2020.
AWS AppSync compresses objects on a best-effort basis. In rare cases, AWS AppSync may
skip compression based on a variety of factors, including current capacity.

AWS AppSync can compress GraphQL query payload sizes between 1,000 to 10,000,000 bytes.
To enable compression, a client must send the Accept-Encoding header with the value gzip.
Compression can be verified by checking the Content-Encoding header's value in the response
(gzip).

The query explorer in the AWS AppSync console automatically sets the header value in the request
by default. If you execute a query that has a large enough response, compression can be confirmed
using your browser developer tools.

Configuring custom domain names

With AWS AppSync, you can use custom domain names to configure a single, memorable domain
that works for both your GraphQL and real-time APIs.

In other words, you can utilize simple and memorable endpoint URLs with domain names of your
choice by creating custom domain names that you associate with the AWS AppSync APIs in your
account.

When you configure an AWS AppSync API, two endpoints are provisioned:

AWS AppSync GraphQL endpoint:

https://example1234567890000.appsync-api.us-east-1.amazonaws.com/graphql

AWS AppSync real-time endpoint:

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/
graphql

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example.com as your custom domain, you can interact with both
your GraphQL and real-time endpoints using these URLs:

Configuring custom domain names 557

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ServingCompressedFiles.html#compressed-content-cloudfront-notes

AWS AppSync Developer Guide

AWS AppSync custom domain GraphQL endpoint:

https://api.example.com/graphql

AWS AppSync custom domain real-time endpoint:

wss://api.example.com/graphql/realtime

Note

AWS AppSync APIs support only TLS 1.2 and TLS 1.3 for custom domain names.

Registering and configuring a domain name

To set up custom domain names for your AWS AppSync APIs, you must have a registered internet
domain name. You can register an internet domain using Amazon Route 53 domain registration or
a third-party domain registrar of your choice. For more information about Route 53, see What is
Amazon Route 53? in the Amazon Route 53 Developer Guide.

An API's custom domain name can be the name of a subdomain or the root domain (also known
as the "zone apex") of a registered internet domain. After you create a custom domain name in
AWS AppSync, you must create or update your DNS provider's resource record to map to your API
endpoint. Without this mapping, API requests bound for the custom domain name cannot reach
AWS AppSync.

Creating a custom domain name in AWS AppSync

Creating a custom domain name for an AWS AppSync API sets up an Amazon CloudFront
distribution. You must set up a DNS record to map the custom domain name to the CloudFront
distribution domain name. This mapping is required to route API requests that are bound for the
custom domain name AWS AppSync through the mapped CloudFront distribution. You must also
provide a certificate for the custom domain name.

To set up the custom domain name or to update its certificate, you must have permission to update
CloudFront distributions and describe the AWS Certificate Manager (ACM) certificate that you plan
to use. To grant these permissions, attach the following AWS Identity and Access Management
(IAM) policy statement to an IAM user, group, or role in your account:

Registering and configuring a domain name 558

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/

AWS AppSync Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUpdateDistributionForAppSyncCustomDomainName",
 "Effect": "Allow",
 "Action": ["cloudfront:updateDistribution"],
 "Resource": ["*"]
 },
 {
 "Sid": "AllowDescribeCertificateForAppSyncCustomDomainName",
 "Effect": "Allow",
 "Action": "acm:DescribeCertificate",
 "Resource": "arn:aws:acm:<region>:<account-id>:certificate/<certificate-id>"
 }
]
}

AWS AppSync supports custom domain names by leveraging Server Name Indication (SNI) on the
CloudFront distribution. For more information about using custom domain names on a CloudFront
distribution, including the required certificate format and the maximum certificate key length, see
Using HTTPS with CloudFront in the Amazon CloudFront Developer Guide.

To set up a custom domain name as the API's hostname, the API owner must provide an SSL/TLS
certificate for the custom domain name. To provide a certificate, do one of the following:

• Request a new certificate in ACM, or import a certificate issued by a third-party certificate
authority into ACM in the us-east-1 AWS Region (US East (N. Virginia)). For more information
about ACM, see What is AWS Certificate Manager? in the AWS Certificate Manager User Guide.

• Provide an IAM server certificate. For more information, see Managing server certificates in IAM
in the IAM User Guide.

Wildcard custom domain names in AWS AppSync

AWS AppSync supports wildcard custom domain names. To configure a wildcard custom domain
name, specify a wildcard character (*) as the first subdomain of a custom domain. This represents
all possible subdomains of the root domain. For example, the wildcard custom domain name
*.example.com results in subdomains such as a.example.com, b.example.com, and
c.example.com. All these subdomains route to the same domain.

Wildcard custom domain names in AWS AppSync 559

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html

AWS AppSync Developer Guide

To use a wildcard custom domain name in AWS AppSync, you must provide a certificate issued
by ACM containing a wildcard name that can protect several sites in the same domain. For more
information, see ACM certificate characteristics in the AWS Certificate Manager User Guide.

Conflict Detection and Sync

Versioned Data Sources

AWS AppSync currently supports versioning on DynamoDB data sources. Conflict Detection,
Conflict Resolution, and Sync operations require a Versioned data source. When you enable
versioning on a data source, AWS AppSync will automatically:

• Enhance items with object versioning metadata.

• Record changes made to items with AWS AppSync mutations to a Delta table.

• Maintain deleted items in the Base table with a “tombstone” for a configurable amount of time.

Versioned Data Source Configuration

When you enable versioning on a DynamoDB data source, you specify the following fields:

BaseTableTTL

The number of minutes to retain deleted items in the Base table with a “tombstone” - a
metadata field indicating that the item has been deleted. You can set this value to 0 if you want
items to be removed immediately when they are deleted. This field is required.

DeltaSyncTableName

The name of the table where changes made to items with AWS AppSync mutations are stored.
This field is required.

DeltaSyncTableTTL

The number of minutes to retain items in the Delta table. This field is required.

Delta Sync Table

AWS AppSync currently supports Delta Sync Logging for mutations using PutItem, UpdateItem,
and DeleteItem DynamoDB operations.

Conflict Detection and Sync 560

https://docs.aws.amazon.com/acm/latest/userguide/acm-certificate.html

AWS AppSync Developer Guide

When an AWS AppSync mutation changes an item in a versioned data source, a record of that
change will be stored in a Delta table that is optimized for incremental updates. You can choose to
use different Delta tables (e.g. one per type, one per domain area) for other versioned data sources
or a single Delta table for your API. AWS AppSync recommends against using a single Delta table
for multiple APIs to avoid the collision of primary keys.

The schema required for this table is as follows:

ds_pk

A string value that is used as the partition key. It is constructed by concatenating the
Base data source name and the ISO 8601 format of the date the change occurred (e.g.
Comments:2019-01-01).

When the customPartitionKey flag from the VTL mapping template is set as the column
name of the partition key (see Resolver Mapping Template Reference for DynamoDB in the
AWS AppSync Developer Guide), the format of ds_pk changes, and the string is constructed by
appending it the value of the partition key in the new record in the Base table. For example, if
the record in the Base table has a partition key value of 1a and a sort key value of 2b, the new
value of the string will be: Comments:2019-01-01:1a.

ds_sk

A string value that is used as the sort key. It is constructed by concatenating the ISO 8601
format of the time the change occurred, the primary key of the item, and the version of the
item. The combination of these fields guarantees uniqueness for every entry in the Delta table
(e.g. for a time of 09:30:00 and an ID of 1a and version of 2, this would be 09:30:00:1a:2).

When the customPartitionKey flag from the VTL mapping template is set to the column
name of the partition key (see Resolver Mapping Template Reference for DynamoDB in the
AWS AppSync Developer Guide), the format of ds_sk changes, and the string is constructed
by replacing the value of the combination key with the value of the sort key in the Base table.
Using the previous example above, if the record in the Base table has a partition key value of 1a
and a sort key value of 2b, the new value of the string will be: 09:30:00:2b:3.

_ttl

A numeric value that stores the timestamp, in epoch seconds, when an item should be removed
from the Delta table. This value is determined by adding the DeltaSyncTableTTL value
configured on the data source to the moment when the change occurred. This field should be
configured as the DynamoDB TTL Attribute.

Versioned Data Sources 561

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem

AWS AppSync Developer Guide

The IAM role configured for use with the Base table must also contain permission to operate on the
Delta table. In this example, the permissions policy for a Base table called Comments and a Delta
table called ChangeLog is displayed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:000000000000:table/Comments",
 "arn:aws:dynamodb:us-east-1:000000000000:table/Comments/*",
 "arn:aws:dynamodb:us-east-1:000000000000:table/ChangeLog",
 "arn:aws:dynamodb:us-east-1:000000000000:table/ChangeLog/*"
]
 }
]
}

Versioned Data Source Metadata

AWS AppSync manages metadata fields on Versioned data sources on your behalf. Modifying
these fields yourself may cause errors in your application or data loss. These fields include:

_version

A monotonically increasing counter that is updated any time that a change occurs to an item.

_lastChangedAt

A numeric value that stores the timestamp, in epoch milliseconds, when an item was last
modified.

Versioned Data Sources 562

AWS AppSync Developer Guide

_deleted

A Boolean “tombstone” value that indicates that an item has been deleted. This can be used by
applications to evict deleted items from local data stores.

_ttl

A numeric value that stores the timestamp, in epoch seconds, when an item should be removed
from the underlying data source.

ds_pk

A string value that is used as the partition key for Delta tables.

ds_sk

A string value that is used as the sort key for Delta tables.

gsi_ds_pk

A string value attribute that's generated to support a global secondary index as a partition
key. It will be included only if both the customPartitionKey and populateIndexFields
flags are enabled in the VTL mapping template (see Resolver Mapping Template Reference
for DynamoDB in the AWS AppSync Developer Guide). If enabled, the value will be constructed
by concatenating the Base data source name and the ISO 8601 format of the date at which
the change occurred (e.g. if the Base table is named Comments, this record will be set as
Comments:2019-01-01).

gsi_ds_sk

A string value attribute that's generated to support a global secondary index as a sort key. It
will be included only if both the customPartitionKey and populateIndexFields flags
are enabled in the VTL mapping template (see Resolver Mapping Template Reference for
DynamoDB in the AWS AppSync Developer Guide). If enabled, the value will be constructed by
concatenating the ISO 8601 format of the time at which the change occurred, the partition
key of the item in the Base table, the sort key of the item in the Base table, and the version of
the item (e.g. for a time of 09:30:00, a partition key value of 1a, a sort key value of 2b, and
version of 3, this would be 09:30:00:1a#2b:3).

These metadata fields will impact the overall size of items in the underlying data source. AWS
AppSync recommends reserving 500 bytes + Max Primary Key Size of storage for versioned data
source metadata when designing your application. To use this metadata in client applications,

Versioned Data Sources 563

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem

AWS AppSync Developer Guide

include the _version, _lastChangedAt, and _deleted fields on your GraphQL types and in the
selection set for mutations.

Conflict Detection and Resolution

When concurrent writes happen with AWS AppSync, you can configure Conflict Detection and
Conflict Resolution strategies to handle updates appropriately. Conflict Detection determines if the
mutation is in conflict with the actual written item in the data source. Conflict Detection is enabled
by setting the value in the SyncConfig for the conflictDetection field to VERSION.

Conflict Resolution is the action that is taken in the event that a conflict is detected. This is
determined by setting the Conflict Handler field in the SyncConfig. There are three Conflict
Resolution strategies:

• OPTIMISTIC_CONCURRENCY

• AUTOMERGE

• LAMBDA

Each of these Conflict Resolution strategies are detailed in depth below.

Versions are automatically incremented by AppSync during write operations and should not be
modified by clients or outside of a resolver configured with a version-enabled data source. Doing so
will change the consistency behavior of the system and could result in data loss.

Optimistic Concurrency

Optimistic Concurrency is a conflict resolution strategy that AWS AppSync provides for versioned
data sources. When the conflict resolver is set to Optimistic Concurrency, if an incoming mutation
is detected to have a version that differs from the actual version of the object, the conflict handler
will simply reject the incoming request. Inside the GraphQL response, the existing item on the
server that has the latest version will be provided. The client is then expected to handle this
conflict locally and retry the mutation with the updated version of the item.

Automerge

Automerge provides developers an easy way to configure a conflict resolution strategy without
writing client-side logic to manually merge conflicts that were unable to be handled by other
strategies. Automerge adheres to a strict rule set when merging data to resolve conflicts. The

Conflict Detection and Resolution 564

AWS AppSync Developer Guide

tenets of Automerge revolve around the underlying data type of the GraphQL field. They are as
follows:

• Conflict on a scalar field: GraphQL scalar or any field that is not a collection (i.e. List, Set, Map).
Reject the incoming value for the scalar field and select the value existing in the server.

• Conflict on a list: GraphQL type and database type are lists. Concatenate the incoming list with
the existing list in the server. The list values in the incoming mutation will be appended to the
end of the list in the server. Duplicate values will be retained.

• Conflict on a set: GraphQL type is a list and database type is a Set. Apply a set union using
incoming the set and the existing set in the server. This adheres to the properties of a Set,
meaning no duplicate entries.

• When an incoming mutation adds a new field to the item or is made against a field with the
value of null, merge that on to the existing item.

• Conflict on a map: When the underlying data type in the database is a Map (i.e. key-value
document), apply the above rules as it parses and processes each property of the Map.

Automerge is designed to automatically detect, merge, and retry requests with an updated version,
absolving the client from needing to manually merge any conflicting data.

To show an example of how Automerge handles a Conflict on a Scalar type. We will use the
following record as our starting point.

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "_version" : 4
}

Now an incoming mutation might be attempting to update the item but with an older version since
the client has not synchronized with the server yet. That looks like this:

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 55,
 "_version" : 2
}

Conflict Detection and Resolution 565

AWS AppSync Developer Guide

Notice the outdated version of 2 in the incoming request. During this flow, Automerge will merge
the data by rejecting the ‘jersey’ field update to ‘55’ and keep the value at ‘5’ resulting in the
following image of the item being saved in the server.

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "_version" : 5 # version is incremented every time automerge performs a merge that is
 stored on the server.
}

Given the state of the item shown above at version 5, now suppose an incoming mutation that
attempts to mutate the item with the following image:

{
 "id" : 1,
 "name" : "Shaggy",
 "jersey" : 5,
 "interests" : ["breakfast", "lunch", "dinner"] # underlying data type is a Set
 "points": [24, 30, 27] # underlying data type is a List
 "_version" : 3
}

There are three points of interest in the incoming mutation. The name, a scalar, has been changed
but two new fields “interests”, a Set, and “points”, a List, have been added. In this scenario, a
conflict will be detected due to the version mismatch. Automerge adheres to its properties and
rejects the name change due to it being a scalar and add on the non-conflicting fields. This results
in the item that is saved in the server to appear as follows.

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "interests" : ["breakfast", "lunch", "dinner"] # underlying data type is a Set
 "points": [24, 30, 27] # underlying data type is a List
 "_version" : 6
}

With the updated image of the item with version 6, now suppose an incoming mutation (with
another version mismatch) tries to transform the item to the following:

Conflict Detection and Resolution 566

AWS AppSync Developer Guide

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "interests" : ["breakfast", "lunch", "brunch"] # underlying data type is a Set
 "points": [30, 35] # underlying data type is a List
 "_version" : 5
}

Here we observe that the incoming field for “interests” has one duplicate value that exists in the
server and two new values. In this case, since the underlying data type is a Set, Automerge will
combine the values existing in the server with the ones in the incoming request and strip out any
duplicates. Similarly there is a conflict on the “points” field where there is one duplicate value and
one new value. But since the underlying data type here is a List, Automerge will simply append all
values in the incoming request to the end of the values already existing in the server. The resulting
merged image stored on the server would appear as follows:

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "interests" : ["breakfast", "lunch", "dinner", "brunch"] # underlying data type is a
 Set
 "points": [24, 30, 27, 30, 35] # underlying data type is a List
 "_version" : 7
}

Now let’s assume the item stored in the server appears as follows, at version 8.

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "interests" : ["breakfast", "lunch", "dinner", "brunch"] # underlying data type is a
 Set
 "points": [24, 30, 27, 30, 35] # underlying data type is a List
 "stats": {
 "ppg": "35.4",
 "apg": "6.3"
 }
 "_version" : 8

Conflict Detection and Resolution 567

AWS AppSync Developer Guide

}

But an incoming request tries to update the item with the following image, once again with a
version mismatch:

{
 "id" : 1,
 "name" : "Nadia",
 "stats": {
 "ppg": "25.7",
 "rpg": "6.9"
 }
 "_version" : 3
}

Now in this scenario, we can see that the fields that already exist in the server are missing
(interests, points, jersey). In addition, the value for “ppg” within the map “stats” is being edited,
a new value “rpg” is being added, and “apg” is omitted. Automerge preserve the fields that have
been omitted (note: if fields are intended to be removed, then the request must be tried again with
the matching version), and so they will not be lost. It will also apply the same rules to fields within
maps and therefore the change to “ppg” will be rejected whereas “apg” is preserved and “rpg”, a
new field”, is added on. The resulting item stored in the server will now appear as:

{
 "id" : 1,
 "name" : "Nadia",
 "jersey" : 5,
 "interests" : ["breakfast", "lunch", "dinner", "brunch"] # underlying data type is a
 Set
 "points": [24, 30, 27, 30, 35] # underlying data type is a List
 "stats": {
 "ppg": "35.4",
 "apg": "6.3",
 "rpg": "6.9"
 }
 "_version" : 9
}

Lambda

Conflict Resolution options:

Conflict Detection and Resolution 568

AWS AppSync Developer Guide

• RESOLVE: Replace the existing item with new item supplied in response payload. You can
only retry the same operation on a single item at a time. Currently supported for DynamoDB
PutItem & UpdateItem.

• REJECT: Reject the mutation and returns an error with the existing item in the GraphQL
response. Currently supported for DynamoDB PutItem, UpdateItem, & DeleteItem.

• REMOVE: Remove the existing item. Currently supported for DynamoDB DeleteItem.

The Lambda Invocation Request

The AWS AppSync DynamoDB resolver invokes the Lambda function specified in the
LambdaConflictHandlerArn. It uses the same service-role-arn configured on the data
source. The payload of the invocation has the following structure:

{
 "newItem": { ... },
 "existingItem": {... },
 "arguments": { ... },
 "resolver": { ... },
 "identity": { ... }
}

The fields are defined as follows:

newItem

The preview item, if the mutation succeeded.

existingItem

The item currently resided in DynamoDB table.

arguments

The arguments from the GraphQL mutation.

resolver

Information about the AWS AppSync resolver.

identity

Information about the caller. This field is set to null, if access with API key.

Conflict Detection and Resolution 569

AWS AppSync Developer Guide

Example payload:

{
 "newItem": {
 "id": "1",
 "author": "Jeff",
 "title": "Foo Bar",
 "rating": 5,
 "comments": ["hello world"],
 },
 "existingItem": {
 "id": "1",
 "author": "Foo",
 "rating": 5,
 "comments": ["old comment"]
 },
 "arguments": {
 "id": "1",
 "author": "Jeff",
 "title": "Foo Bar",
 "comments": ["hello world"]
 },
 "resolver": {
 "tableName": "post-table",
 "awsRegion": "us-west-2",
 "parentType": "Mutation",
 "field": "updatePost"
 },
 "identity": {
 "accountId": "123456789012",
 "sourceIp": "x.x.x.x",
 "username": "AIDAAAAAAAAAAAAAAAAAA",
 "userArn": "arn:aws:iam::123456789012:user/appsync"
 }
}

The Lambda Invocation Response

For PutItem and UpdateItem conflict resolution

RESOLVE the mutation. The response must be in the following format.

{

Conflict Detection and Resolution 570

AWS AppSync Developer Guide

 "action": "RESOLVE",
 "item": { ... }
}

The item field represents an object that will be used to replace the existing item in the underlying
data source. The primary key and sync metadata will be ignored if included in item.

REJECT the mutation. The response must be in the following format.

{
 "action": "REJECT"
}

For DeleteItem conflict resolution

REMOVE the item. The response must be in the following format.

{
 "action": "REMOVE"
}

REJECT the mutation. The response must be in the following format.

{
 "action": "REJECT"
}

The example Lambda function below checks who makes the call and the resolver name. If it is
made by jeffTheAdmin, REMOVE the object for DeletePost resolver or RESOLVE the conflict with
new item for Update/Put resolvers. If not, the mutation is REJECT.

exports.handler = async (event, context, callback) => {
 console.log("Event: "+ JSON.stringify(event));

 // Business logic goes here.
 var response;
 if (event.identity.user == "jeffTheAdmin") {
 let resolver = event.resolver.field;

 switch(resolver) {
 case "deletePost":

Conflict Detection and Resolution 571

AWS AppSync Developer Guide

 response = {
 "action" : "REMOVE"
 }
 break;

 case "updatePost":
 case "createPost":
 response = {
 "action" : "RESOLVE",
 "item": event.newItem
 }
 break;
 default:
 response = { "action" : "REJECT" };
 }
 } else {
 response = { "action" : "REJECT" };
 }

 console.log("Response: "+ JSON.stringify(response));
 return response;
}

Errors

ConflictUnhandled

Conflict detection finds a version mismatch and the conflict handler rejects the mutation.

Example: Conflict resolution with an Optimistic Concurrency conflict handler. Or, Lambda
conflict handler returned with REJECT.

ConflictError

An internal error occurs when trying to resolve a conflict.

Example: Lambda conflict handler returned a malformed response. Or, cannot invoke Lambda
conflict handler because the supplied resource LambdaConflictHandlerArn is not found.

MaxConflicts

Max retry attempts were reached for conflict resolution.

Example: Too many concurrent requests on the same object. Before the conflict is resolved, the
object is updated to a new version by another client.

Conflict Detection and Resolution 572

AWS AppSync Developer Guide

BadRequest

Client tries to update metadata fields (_version, _ttl, _lastChangedAt, _deleted).

Example: Client tries to update _version of an object with an update mutation.

DeltaSyncWriteError

Failed to write delta sync record.

Example: Mutation succeeded, but an internal error occurred when trying to write to the delta
sync table.

InternalFailure

An internal error occurred.

CloudWatch Logs

If an AWS AppSync API has enabled CloudWatch Logs with the logging settings set to Field-Level
Logs enabled and log-level for the Field-Level Logs set to ALL, then AWS AppSync will emit
Conflict Detection and Resolution information to the log group. For information about the format
of the log messages, see the documentation for Conflict Detection and Sync Logging.

Sync Operations

Versioned data sources support Sync operations that allow you to retrieve all the results from a
DynamoDB table and then receive only the data altered since your last query (the delta updates).
When AWS AppSync receives a request for a Sync operation, it uses the fields specified in the
request to determine if the Base table or the Delta table should be accessed.

• If the lastSync field is not specified, a Scan on the Base table is performed.

• If the lastSync field is specified, but the value is before the current moment -
DeltaSyncTTL, a Scan on the Base table is performed.

• If the lastSync field is specified, and the value is on or after the current moment -
DeltaSyncTTL, a Query on the Delta table is performed.

AWS AppSync returns the startedAt field to the response mapping template for all Sync
operations. The startedAt field is the moment, in epoch milliseconds, when the Sync operation
started that you can store locally and use in another request. If a pagination token was included

Sync Operations 573

AWS AppSync Developer Guide

in the request, this value will be the same as the one returned by the request for the first page of
results.

For information about the format for Sync mapping templates, see the mapping template
reference.

Monitoring and logging

To monitor your AWS AppSync GraphQL API and help debug issues related to requests, you can
turn on logging to Amazon CloudWatch Logs.

Setup and configuration

To turn on automatic logging on a GraphQL API, use the AWS AppSync console.

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of a GraphQL API.

3. On your API's homepage, in the navigation pane, choose Settings.

4. Under Logging, do the following:

a. Turn on Enable Logs.

b. For detailed request-level logging, select the check box under Include verbose content.
(optional)

c. Under Field resolver log level, choose your preferred field-level logging level (None,
Error, or All). (optional)

d. Under Create or use an existing role, choose New role to create a new AWS Identity and
Access Management (IAM) that allows AWS AppSync to write logs to CloudWatch. Or,
choose Existing role to select the Amazon Resource Name (ARN) of an existing IAM role in
your AWS account.

5. Choose Save.

Manual IAM role configuration

If you choose to use an existing IAM role, the role must grant AWS AppSync the required
permissions to write logs to CloudWatch. To configure this manually, you must provide a service
role ARN so that AWS AppSync can assume the role when writing the logs.

Monitoring and logging 574

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

In the IAM console, create a new policy with the name
AWSAppSyncPushToCloudWatchLogsPolicy that has the following definition:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Next, create a new role with the name AWSAppSyncPushToCloudWatchLogsRole, and attach the
newly created policy to the role. Edit the trust relationship for this role to the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Copy the role ARN and use it when setting up logging for an AWS AppSync GraphQL API.

CloudWatch metrics

You can use CloudWatch metrics to monitor and provide alerts about specific events that can result
in HTTP status codes or from latency. The following metrics are emitted.

CloudWatch metrics 575

https://console.aws.amazon.com/iam

AWS AppSync Developer Guide

Metrics list

4XXError

Errors resulting from requests that are not valid due to an incorrect client configuration.
Typically, these errors happen anywhere outside of GraphQL processing. For example, these
errors can occur when the request includes an incorrect JSON payload or an incorrect query,
when the service is throttled, or when the authorization settings are misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

5XXError

Errors encountered during the running of a GraphQL query. For example, this can occur when
invoking a query for an empty or incorrect schema. It can also occur when the Amazon Cognito
user pool ID or AWS Region is not valid. Alternatively, this could also happen if AWS AppSync
encounters an issue during processing of a request.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

Latency

The time between when AWS AppSync receives a request from a client and when it returns a
response to the client. This doesn’t include the network latency encountered for a response to
reach the end devices.

Unit: Millisecond. Use the Average statistic to evaluate expected latencies.

Requests

The number of requests (queries + mutations) that all APIs in your account have processed, by
Region.

Unit: Count. The number of all requests processed in a particular Region.

TokensConsumed

Tokens are allocated to Requests based on the amount of resources (processing time and
memory used) that a Request consumes. Usually, each Request consumes one token.
However, a Request that consumes large amounts of resources is allocated additional tokens
as needed.

Unit: Count. The number of tokens allocated to requests processed in a particular Region.

CloudWatch metrics 576

AWS AppSync Developer Guide

Real-time subscriptions

All metrics are emitted in one dimension: GraphQLAPIId. This means that all metrics are coupled
with GraphQL API IDs. The following metrics are related to GraphQL subscriptions over pure
WebSockets:

Metrics list

ConnectRequests

The number of WebSocket connection requests made to AWS AppSync, including both
successful and unsuccessful attempts.

Unit: Count. Use the Sum statistic to get the total number of connection requests.

ConnectSuccess

The number of successful WebSocket connections to AWS AppSync. It is possible to have
connections without subscriptions.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful connections.

ConnectClientError

The number of WebSocket connections that were rejected by AWS AppSync because of client-
side errors. This could imply that the service is throttled or that the authorization settings are
misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side connection
errors.

ConnectServerError

The number of errors that originated from AWS AppSync while processing connections. This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side connection
errors.

DisconnectSuccess

The number of successful WebSocket disconnections from AWS AppSync.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful disconnections.

CloudWatch metrics 577

AWS AppSync Developer Guide

DisconnectClientError

The number of client errors that originated from AWS AppSync while disconnecting WebSocket
connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the disconnection errors.

DisconnectServerError

The number of server errors that originated from AWS AppSync while disconnecting WebSocket
connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the disconnection errors.

SubscribeSuccess

The number of subscriptions that were successfully registered to AWS AppSync through
WebSocket. It's possible to have connections without subscriptions, but it's not possible to have
subscriptions without connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful subscriptions.

SubscribeClientError

The number of subscriptions that were rejected by AWS AppSync because of client-side errors.
This can occur when a JSON payload is incorrect, the service is throttled, or the authorization
settings are misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side subscription
errors.

SubscribeServerError

The number of errors that originated from AWS AppSync while processing subscriptions. This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side subscription
errors.

UnsubscribeSuccess

The number of unsubscribe requests that were successfully processed.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful unsubscribe
requests.

CloudWatch metrics 578

AWS AppSync Developer Guide

UnsubscribeClientError

The number of unsubscribe requests that were rejected by AWS AppSync because of client-side
errors.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side unsubscribe
request errors.

UnsubscribeServerError

The number of errors that originated from AWS AppSync while processing unsubscribe requests.
This usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side unsubscribe
request errors.

PublishDataMessageSuccess

The number of subscription event messages that were successfully published.

Unit: Count. Use the Sum statistic to get the total of the subscription event messages were
successfully published.

PublishDataMessageClientError

The number of subscription event messages that failed to publish because of client-side errors.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side publishing
subscription events errors.

PublishDataMessageServerError

The number of errors that originated from AWS AppSync while publishing subscription event
messages. This usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side publishing
subscription events errors.

PublishDataMessageSize

The size of subscription event messages published.

Unit: Bytes.

CloudWatch metrics 579

AWS AppSync Developer Guide

ActiveConnections

The number of concurrent WebSocket connections from clients to AWS AppSync in 1 minute.

Unit: Count. Use the Sum statistic to get the total opened connections.

ActiveSubscriptions

The number of concurrent subscriptions from clients in 1 minute.

Unit: Count. Use the Sum statistic to get the total active subscriptions.

ConnectionDuration

The amount of time that the connection stays open.

Unit: Milliseconds. Use the Average statistic to evaluate connection duration.

OutboundMessages

The number of metered messages successfully published, where one metered message equals 5
KB of delivered data.

Unit: Count. Use the Sum statistic to get the total number of successfully published metered
messages.

InboundMessageSuccess

The number of inbound messages successfully processed. Each subscription type invoked by a
mutation generates one inbound message.

Unit: Count. Use the Sum statistic to get the total number of successfully processed inbound
messages.

InboundMessageError

The number of inbound messages that failed processing due to invalid API requests, such as
exceeding the 240kB subscription payload size limit.

Unit: Count. Use the Sum statistic to get the total number of inbound messages with API-
related processing failures.

InboundMessageFailure

The number of inbound messages that failed processing due to errors from AWS AppSync.

CloudWatch metrics 580

AWS AppSync Developer Guide

Unit: Count. Use the Sum statistic to get the total number of inbound messages with AWS
AppSync-related processing failures.

InvalidationSuccess

The number of subscriptions successfully invalidated (unsubscribed) by a mutation with
$extensions.invalidateSubscriptions().

Unit: Count. Use the Sum statistic to retrieve the total number of subscriptions that were
successfully unsubscribed.

InvalidationRequestSuccess

The number of invalidation requests successfully processed.

Unit: Count. Use the Sum statistic to get the total number of successfully processed invalidation
requests.

InvalidationRequestError

The number of invalidation requests that failed processing due to invalid API requests.

Unit: Count. Use the Sum statistic to get the total number of invalidation requests with API-
related processing failures.

InvalidationRequestFailure

The number of invalidation requests that failed processing due to errors from AWS AppSync.

Unit: Count. Use the Sum statistic to get the total number of invalidation requests with AWS
AppSync-related processing failures.

InvalidationRequestDropped

The number of invalidation requests dropped when the invalidation request quota was
exceeded.

Unit: Count. Use the Sum statistic to get the total number of dropped invalidation requests.

Comparing inbound and outbound messages

Executing a mutation triggers subscription fields with the @aws_subscribe directive for that
mutation. Each subscription field invocation generates one inbound message. For example, if

CloudWatch metrics 581

AWS AppSync Developer Guide

two subscription fields specify the same mutation in @aws_subscribe, two inbound messages are
created when that mutation executes.

One outbound message equals 5 KB of data delivered to WebSocket clients. As an example,
sending 15 KB of data to 10 clients results in 30 outbound messages (15 KB * 10 clients / 5 KB per
message = 30 messages).

CloudWatch logs

You can configure two types of logging on any new or existing GraphQL API: request-level and
field-level.

Request-level logs

When request-level logging (Include verbose content) is configured, the following information is
logged:

• The number of tokens consumed

• The request and response HTTP headers

• The GraphQL query that is running in the request

• The overall operation summary

• New and existing GraphQL subscriptions that are registered

Field-level logs

When field-level logging is configured, the following information is logged:

• Generated request mapping with source and arguments for each field

• The transformed response mapping for each field, which includes the data as a result of
resolving that field

• Tracing information for each field

If you turn on logging, AWS AppSync manages the CloudWatch Logs. The process includes creating
log groups and log streams, and reporting to the log streams with these logs.

When you turn on logging on a GraphQL API and make requests, AWS AppSync creates a log group
and log streams under the log group. The log group is named following the /aws/appsync/

CloudWatch logs 582

AWS AppSync Developer Guide

apis/{graphql_api_id} format. Within each log group, the logs are further divided into log
streams. These are ordered by Last Event Time as logged data is reported.

Every log event is tagged with the x-amzn-RequestId of that request. This helps you filter log
events in CloudWatch to get all logged information about that request. You can get the RequestId
from the response headers of every GraphQL AWS AppSync request.

The field-Level logging is configured with the following log levels:

• None - No field-level logs are captured.

• Error - Logs the following information only for the fields that are in error:

• The error section in the server response

• Field-level errors

• The generated request/response functions that got resolved for error fields

• All - Logs the following information for all fields in the query:

• Field-level tracing information

• The generated request/response functions that got resolved for each field

Benefits of monitoring

You can use logging and metrics to identify, troubleshoot, and optimize your GraphQL queries. For
example, these will help you debug latency issues using the tracing information that is logged for
each field in the query. To demonstrate this, suppose you are using one or more resolvers nested in
a GraphQL query. A sample field operation in CloudWatch Logs might look similar to the following:

{
 "path": [
 "singlePost",
 "authors",
 0,
 "name"
],
 "parentType": "Post",
 "returnType": "String!",
 "fieldName": "name",
 "startOffset": 416563350,
 "duration": 11247
}

CloudWatch logs 583

AWS AppSync Developer Guide

This might correspond to a GraphQL schema, similar to the following:

type Post {
 id: ID!
 name: String!
 authors: [Author]
}

type Author {
 id: ID!
 name: String!
}

type Query {
 singlePost(id:ID!): Post
}

In the preceding log results, path shows a single item in your data returned from running a query
named singlePost(). In this example, it’s representing the name field at the first index (0).
The startOffset gives an offset from the start of the GraphQL query operation. The duration is
the total time to resolve the field. These values can be useful to troubleshoot why data from a
particular data source might be running slower than expected, or if a specific field is slowing down
the entire query. For example, you might choose to increase provisioned throughput for an Amazon
DynamoDB table, or remove a specific field from a query that is causing the overall operation to
perform poorly.

As of May 8, 2019, AWS AppSync generates log events as fully structured JSON. This can help you
use log analytics services such as CloudWatch Logs Insights and Amazon OpenSearch Service to
understand the performance of your GraphQL requests and usage characteristics of your schema
fields. For example, you can easily identify resolvers with large latencies that may be the root cause
of a performance issue. You can also identify the most and least frequently used fields in your
schema and assess the impact of deprecating GraphQL fields.

Conflict detection and sync logging

If an AWS AppSync API has logging to CloudWatch Logs configured with the Field resolver log
level set to All, then AWS AppSync emits conflict detection and resolution information to the log
group. This provides granular insight into how the AWS AppSync API responded to a conflict. To
help you interpret the response, the following information is provided in the logs:

CloudWatch logs 584

AWS AppSync Developer Guide

Metrics list

conflictType

Details whether a conflict occurred due to a version mismatch or the customer-supplied
condition.

conflictHandlerConfigured

States the conflict handler configured on the resolver at the time of the request.

message

Provides information on how the conflict was detected and resolved.

syncAttempt

The number of tries the server attempted in order to synchronize the data before ultimately
rejecting the request.

data

If the conflict handler configured is Automerge, this field is populated to show what decision
Automerge took for each field. Actions provided can be:

• REJECTED - When Automerge rejects the incoming field value in favor of the value in the
server.

• ADDED - When Automerge adds on the incoming field due to no pre-existing value in the
server.

• APPENDED - When Automerge appends the incoming values to the values for the List that
exists in the server.

• MERGED - When Automerge merges the incoming values to the values for the Set that exists
in the server.

Using token counts to optimize your requests

Requests that consume less than or equal to 1,500 KB-seconds of memory and vCPU time are
allocated one token. Requests with resource consumption greater than 1,500 KB-seconds receive
additional tokens. For example, if a request consumes 3,350 KB-seconds, AWS AppSync allocates
three tokens (rounded up to the next integer value) to the request. By default, AWS AppSync
allocates a maximum of 2,000 request tokens per second to the APIs in your account, per AWS
Region. If your APIs each use an average of two tokens per second, you'll be limited to 1,000

CloudWatch logs 585

AWS AppSync Developer Guide

requests per second. If you need more tokens per second than the allotted amount, you can submit
a request to increase the default quota for the rate of request tokens. For more information, see
AWS AppSync endpoints and quotas in the AWS General Reference guide and Requesting a quota
increase in the Service Quotas User Guide.

A high per-request token count could indicate that there's an opportunity to optimize your
requests and improve the performance of your API. Factors that can increase your per-request
token count include:

• The size and complexity of your GraphQL schema.

• The complexity of request and response mapping templates.

• The number of resolver invocations per request.

• The amount of data returned from resolvers.

• The latency of downstream data sources.

• Schema and query designs that require successive data source calls (as opposed to parallel or
batched calls).

• Logging configuration, particularly field-level and verbose log content.

Note

In addition to AWS AppSync metrics and logs, clients can access the number of tokens
consumed in a request via the response header x-amzn-appsync-TokensConsumed.

Log type reference

RequestSummary

• requestId: Unique identifier for the request.

• graphQLAPIId: ID of the GraphQL API making the request.

• statusCode: HTTP status code response.

• latency: End-to-end latency of the request, in nanoseconds, as an integer.

{
 "logType": "RequestSummary",

Log type reference 586

https://docs.aws.amazon.com/general/latest/gr/appsync.html#limits_appsync
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS AppSync Developer Guide

 "requestId": "dbe87af3-c114-4b32-ae79-8af11f3f96f1",
 "graphQLAPIId": "pmo28inf75eepg63qxq4ekoeg4",
 "statusCode": 200,
 "latency": 242000000
}

ExecutionSummary

• requestId: Unique identifier for the request.

• graphQLAPIId: ID of the GraphQL API making the request.

• startTime: The start timestamp of GraphQL processing for the request, in RFC 3339 format.

• endTime: The end timestamp of GraphQL processing for the request, in RFC 3339 format.

• duration: The total elapsed GraphQL processing time, in nanoseconds, as an integer.

• version: The schema version of the ExecutionSummary.

• parsing:

• startOffset: The start offset for parsing, in nanoseconds, relative to the invocation, as an
integer.

• duration: The time spent parsing, in nanoseconds, as an integer.

• validation:

• startOffset: The start offset for validation, in nanoseconds, relative to the invocation, as an
integer.

• duration: The time spent performing validation, in nanoseconds, as an integer.

{
 "duration": 217406145,
 "logType": "ExecutionSummary",
 "requestId": "dbe87af3-c114-4b32-ae79-8af11f3f96f1",
 "startTime": "2019-01-01T06:06:18.956Z",
 "endTime": "2019-01-01T06:06:19.174Z",
 "parsing": {
 "startOffset": 49033,
 "duration": 34784
 },
 "version": 1,
 "validation": {
 "startOffset": 129048,
 "duration": 69126

Log type reference 587

AWS AppSync Developer Guide

 },
 "graphQLAPIId": "pmo28inf75eepg63qxq4ekoeg4"
}

Tracing

• requestId: Unique identifier for the request.

• graphQLAPIId: ID of the GraphQL API making the request.

• startOffset: The start offset for field resolution, in nanoseconds, relative to the invocation, as an
integer.

• duration: The time spent resolving the field, in nanoseconds, as an integer.

• fieldName: The name of the field being resolved.

• parentType: The parent type of the field being resolved.

• returnType: The return type of the field being resolved.

• path: A list of path segments, starting at the root of the response and ending with the field
being resolved.

• resolverArn: The ARN of the resolver used for field resolution. Might not be present on nested
fields.

{
 "duration": 216820346,
 "logType": "Tracing",
 "path": [
 "putItem"
],
 "fieldName": "putItem",
 "startOffset": 178156,
 "resolverArn": "arn:aws:appsync:us-east-1:111111111111:apis/
pmo28inf75eepg63qxq4ekoeg4/types/Mutation/fields/putItem",
 "requestId": "dbe87af3-c114-4b32-ae79-8af11f3f96f1",
 "parentType": "Mutation",
 "returnType": "Item",
 "graphQLAPIId": "pmo28inf75eepg63qxq4ekoeg4"
}

Log type reference 588

AWS AppSync Developer Guide

Analyzing your logs with CloudWatch Logs Insights

The following are examples of queries you can run to get actionable insights into the performance
and health of your GraphQL operations. These examples are available as sample queries in the
CloudWatch Logs Insights console. In the CloudWatch console, choose Logs Insights, select the
AWS AppSync log group for your GraphQL API, and then choose AWS AppSync queries under
Sample queries.

The following query returns the top 10 GraphQL requests with maximum tokens consumed:

filter @message like "Tokens Consumed"
| parse @message "* Tokens Consumed: *" as requestId, tokens
| sort tokens desc
| display requestId, tokens
| limit 10

The following query returns the top 10 resolvers with maximum latency:

 fields resolverArn, duration
| filter logType = "Tracing"
| limit 10
| sort duration desc

The following query returns the most frequently invoked resolvers:

 fields ispresent(resolverArn) as isRes
| stats count() as invocationCount by resolverArn
| filter isRes and logType = "Tracing"
| limit 10
| sort invocationCount desc

The following query returns resolvers with the most errors in mapping templates:

 fields ispresent(resolverArn) as isRes
| stats count() as errorCount by resolverArn, logType
| filter isRes and (logType = "RequestMapping" or logType = "ResponseMapping") and
 fieldInError
| limit 10
| sort errorCount desc

Analyzing your logs with CloudWatch Logs Insights 589

https://console.aws.amazon.com/cloudwatch

AWS AppSync Developer Guide

The following query returns resolver latency statistics:

 fields ispresent(resolverArn) as isRes
| stats min(duration), max(duration), avg(duration) as avg_dur by resolverArn
| filter isRes and logType = "Tracing"
| limit 10
| sort avg_dur desc

The following query returns field latency statistics:

 stats min(duration), max(duration), avg(duration) as avg_dur
 by concat(parentType, '/', fieldName) as fieldKey
| filter logType = "Tracing"
| limit 10
| sort avg_dur desc

The results of CloudWatch Logs Insights queries can be exported to CloudWatch dashboards.

Analyze your logs with OpenSearch Service

You can search, analyze, and visualize your AWS AppSync logs with Amazon OpenSearch Service
to identify performance bottlenecks and root causes of operational issues. You can identify
resolvers with the maximum latency and errors. In addition, you can use OpenSearch Dashboards
to create dashboards with powerful visualizations. OpenSearch Dashboards is an open source data
visualization and exploration tool available in OpenSearch Service. Using OpenSearch Dashboards,
you can continuously monitor the performance and health of your GraphQL operations. For
example, you can create dashboards to visualize the P90 latency of your GraphQL requests and drill
down into the P90 latencies of each resolver.

When using OpenSearch Service, use “cwl*” as the filter pattern to search OpenSearch
indexes. OpenSearch Service indexes the logs streamed from CloudWatch Logs with a
prefix of “cwl-”. To differentiate AWS AppSync API logs from other CloudWatch logs
sent to OpenSearch Service, we recommend adding an additional filter expression of
graphQLAPIID.keyword=YourGraphQLAPIID to your search.

Log format migration

Log events that AWS AppSync generates on or after May 8, 2019 are formatted as fully structured
JSON. To analyze GraphQL requests prior to May 8, 2019, you can migrate older logs to fully

Analyze your logs with OpenSearch Service 590

AWS AppSync Developer Guide

structured JSON using a script available in the GitHub Sample. If you need to use the log format
prior to May 8, 2019, create a support ticket with the following settings: set Type to Account
Management and then set Category to General Account Question.

You can also use metric filters in CloudWatch to turn log data into numerical CloudWatch metrics,
so that you can graph or set an alarm on them.

Tracing with AWS X-Ray

You can use AWS X-Ray to trace requests as they are executed in AWS AppSync. You can use X-
Ray with AWS AppSync in all AWS Regions where X-Ray is available. X-Ray gives you a detailed
overview of an entire GraphQL request. This enables you to analyze latencies in your APIs and
their underlying resolvers and data sources. You can use an X-Ray service map to view the latency
of a request, including any AWS services that are integrated with X-Ray. You can also configure
sampling rules to tell X-Ray which requests to record, and at what sampling rates, according to
criteria that you specify.

For more information about sampling in X-Ray, see Configuring Sampling Rules in the AWS X-Ray
Console.

Setup and Configuration

You can enable X-Ray tracing for a GraphQL API through the AWS AppSync console.

1. Sign in to the AWS AppSync console.

2. Choose Settings from the navigation panel.

3. Under X-Ray, turn on Enable X-Ray.

4. Choose Save. X-Ray tracing is now enabled for your API.

If you’re using the AWS CLI or AWS CloudFormation, you can also enable X-Ray tracing when
you create a new AWS AppSync API, or update an existing AWS AppSync API, by setting the
xrayEnabled property to true.

When X-Ray tracing is enabled for an AWS AppSync API, an AWS Identity and Access Management
service-linked role is automatically created in your account with the appropriate permissions. This
allows AWS AppSync to send traces to X-Ray in a secure way.

Tracing with AWS X-Ray 591

https://github.com/aws-samples/aws-appsync-cwl-migrator
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogsConcepts.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

AWS AppSync Developer Guide

Tracing Your API with X-Ray

Sampling

By using sampling rules, you can control the amount of data that you record in AWS AppSync, and
can modify sampling behavior on the fly without modifying or redeploying your code. For example,
this rule samples requests to the GraphQL API with the API ID 3n572shhcpfokwhdnq1ogu59v6.

• Rule name — test-sample

• Priority — 10

• Reservoir size — 10

• Fixed rate — 10

• Service name — *

• Service type — AWS::AppSync::GraphQLAPI

• HTTP method — *

• Resource ARN — arn:aws:appsync:us-
west-2:123456789012:apis/3n572shhcpfokwhdnq1ogu59v6

• Host — *

Understanding Traces

When you enable X-Ray tracing for your GraphQL API, you can use the X-Ray trace detail page to
examine detailed latency information about requests made to your API. The following example
shows the trace view along with the service map for this specific request. The request was made to
an API called postAPI with a Post type, whose data is contained in an Amazon DynamoDB table
called PostTable-Example.

The following trace image corresponds to the following GraphQL query:

query getPost {
 getPost(id: "1") {
 id
 title
 }
}

Tracing Your API with X-Ray 592

AWS AppSync Developer Guide

The resolver for the getPost query uses the underlying DynamoDB data source. The following
trace view shows the call to DynamoDB, as well as the latencies of various parts of the query’s
execution:

• In the preceding image, /getPost represents the complete path to the element that is being
resolved. In this case, because getPost is a field on the root Query type, it appears directly after
the root of the path.

• requestMappingTemplateEvaluation represents the time spent by AWS AppSync
evaluating the request mapping template for this element in the query.

• Query.getPost represents a type and field (in Type.field format). It can contain multiple
subsegments, depending on the structure of the API and the request being traced.

• DynamoDB represents the data source that is attached to this resolver. It contains the latency
for the network call to DynamoDB to resolve the field.

• responseMappingTemplateEvaluation represents the time spent by AWS AppSync
evaluating the response mapping template for this element in the query.

Tracing Your API with X-Ray 593

AWS AppSync Developer Guide

When you view traces in X-Ray, you can get additional contextual and metadata information about
the subsegments in the AWS AppSync segment by choosing the subsegments and exploring the
detailed view.

For certain deeply nested or complex queries, note that the segment delivered to X-Ray by AWS
AppSync can be larger than the maximum size allowed for segment documents, as defined in AWS
X-Ray Segment Documents. X-Ray doesn’t display segments that exceed the limit.

Logging AWS AppSync API calls using AWS CloudTrail

AWS AppSync is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or AWS service in AWS AppSync. CloudTrail captures all API calls for AWS AppSync
as events. The calls captured include calls from the AWS AppSync console and from code calls
to the AWS AppSync APIs. You can use the information collected by CloudTrail to determine the
request that was made to AWS AppSync, the IP address of the requester, who made the request,
when the request was made, and additional details.

You can create a trail to enable continuous delivery of CloudTrail events to an Amazon Simple
Storage Service (Amazon S3) bucket, including events for AWS AppSync. If you don't configure a
trail, you can still view the most recent events in the CloudTrail console.

Important

Not all GraphQL actions are currently logged. AppSync does not log Query and Mutation
actions to CloudTrail.

For more information about CloudTrail, see the AWS CloudTrail User Guide.

AWS AppSync information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. In the CloudTrail console
in Event history, you can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History in the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for AWS AppSync, create
a trail. By default, when you create a trail in the console, the trail applies to all AWS Regions. The
trail logs events from all Regions in the AWS partition and delivers the log files to the Amazon S3

Logging AWS AppSync API calls using AWS CloudTrail 594

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

AWS AppSync Developer Guide

bucket that you specify. Additionally, you can configure other AWS services to further analyze and
act upon the event data collected in CloudTrail logs. For more information, see the following in the
AWS CloudTrail User Guide:

• Creating a Trail For Your AWS Account

• AWS Service Integrations With CloudTrail Logs

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions

• Receiving CloudTrail Log Files from Multiple Accounts

CloudTrail logs all AWS AppSync API operations. For example, calls to the CreateGraphqlApi,
CreateDataSource, and ListResolvers APIs generate entries in the CloudTrail log files. These
and other operations are documented in the AWS AppSync API Reference.

Every event or log entry contains information about who generated the request. The identity
information helps you determine:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see CloudTrail userIdentity Element in the AWS CloudTrail User Guide.

Understanding AWS AppSync log file entries

CloudTrail delivers events as log files that contain one or more log entries. An event represents a
single request from any source and includes information about the requested operation, the date
and time of the operation, the request parameters, and so on. Because these log files aren't an
ordered stack trace of the public API calls, they don't appear in any specific order.

The following example CloudTrail log entry demonstrates the CreateApiKey operation.

{
 "Records": [{
 "eventVersion": "1.05",
 "userIdentity": {

Understanding AWS AppSync log file entries 595

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/appsync/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS AppSync Developer Guide

 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"
 },
 "eventTime": "2018-01-31T21:49:09Z",
 "eventSource": "appsync.amazonaws.com",
 "eventName": "CreateApiKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.2.0.1",
 "userAgent": "aws-cli/1.11.72 Python/2.7.11 Darwin/16.7.0 botocore/1.5.35",
 "requestParameters": {
 "apiId": "a1b2c3d4e5f6g7h8i9jexample"
 },
 "responseElements": {
 "apiKey": {
 "id": "***",
 "expires": 1518037200000
 }
 },
 "requestID": "99999999-9999-9999-9999-999999999999",
 "eventID": "99999999-9999-9999-9999-999999999999",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

The following example CloudTrail log entry demonstrates the ListApiKeys operation.

{
 "Records": [{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"

Understanding AWS AppSync log file entries 596

AWS AppSync Developer Guide

 },
 "eventTime": "2018-01-31T21:49:09Z",
 "eventSource": "appsync.amazonaws.com",
 "eventName": "ListApiKeys",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.2.0.1",
 "userAgent": "aws-cli/1.11.72 Python/2.7.11 Darwin/16.7.0 botocore/1.5.35",
 "requestParameters": {
 "apiId": "a1b2c3d4e5f6g7h8i9jexample"
 },
 "responseElements": {
 "apiKeys": [
 {
 "id": "***",
 "expires": 1517954400000
 },
 {
 "id": "***",
 "expires": 1518037200000
 },
]
 },
 "requestID": "99999999-9999-9999-9999-999999999999",
 "eventID": "99999999-9999-9999-9999-999999999999",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

The following example CloudTrail log entry demonstrates the DeleteApiKey operation.

{
 "Records": [{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"

Understanding AWS AppSync log file entries 597

AWS AppSync Developer Guide

 },
 "eventTime": "2018-01-31T21:49:09Z",
 "eventSource": "appsync.amazonaws.com",
 "eventName": "DeleteApiKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.2.0.1",
 "userAgent": "aws-cli/1.11.72 Python/2.7.11 Darwin/16.7.0 botocore/1.5.35",
 "requestParameters": {
 "id": "***",
 "apiId": "a1b2c3d4e5f6g7h8i9jexample"
 },
 "responseElements": null,
 "requestID": "99999999-9999-9999-9999-999999999999",
 "eventID": "99999999-9999-9999-9999-999999999999",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

Using AWS AppSync Private APIs

If you use Amazon Virtual Private Cloud (Amazon VPC), you can create AWS AppSync Private
APIs, which are APIs that can only be accessed from a VPC. With a Private API, you can restrict API
access to your internal applications and connect to your GraphQL and Realtime endpoints without
exposing data publicly.

To establish a private connection between your VPC and the AWS AppSync service, you must
create an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, which
enables you to privately access AWS AppSync APIs without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP
addresses to communicate with AWS AppSync APIs. Traffic between your VPC and AWS AppSync
doesn't leave the AWS network.

Using AWS AppSync Private APIs 598

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
http://aws.amazon.com/privatelink

AWS AppSync Developer Guide

There are some additional factors to consider before enabling Private API features:

• Setting up VPC interface endpoints for AWS AppSync with Private DNS features enabled will
prevent resources in the VPC from being able to invoke other AWS AppSync public APIs using
the AWS AppSync generated API URL. This is due to the request to the public API being routed
via the interface endpoint, which is not allowed for public APIs. To invoke public APIs in this
scenario, it is recommended to configure custom domain names on public APIs, which can then
be used by resources in the VPC to invoke the public API.

Using AWS AppSync Private APIs 599

AWS AppSync Developer Guide

• Your AWS AppSync Private APIs will only be available from your VPC. The AWS AppSync console
Query editor will only be able to reach your API if your browser's network configuration can
route traffic to your VPC (e.g., connection via VPN or over AWS Direct Connect).

• With a VPC interface endpoint for AWS AppSync, you can access any Private API in the same AWS
account and Region. To further restrict access to Private APIs, you can consider the following
options:

• Ensuring only the required administrators can create VPC endpoint interfaces for AWS
AppSync.

• Using VPC endpoint custom policies to restrict which APIs can be invoked from resources in the
VPC.

• For resources in the VPC, we recommend that you use IAM authorization to invoke AWS
AppSync APIs by ensuring that the resources are given scoped-down roles to the APIs.

• When creating or using policies that restrict IAM principals, you must set the
authorizationType of the method to AWS_IAM or NONE.

Creating AWS AppSync Private APIs

The following steps below show you how to create Private APIs in the AWS AppSync service.

Warning

You can enable Private API features only during the creation of the API. This setting cannot
be modified on an AWS AppSync API or an AWS AppSync Private API after it has been
created.

1. Sign in to the AWS Management Console and open the AppSync console.

• In the Dashboard, choose Create API.

2. Choose Design an API from scratch, then choose Next.

3. In the Private API section, choose Use Private API features.

4. Configure the rest of the options, review your API's data, then choose Create.

Creating AWS AppSync Private APIs 600

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

Before you can use your AWS AppSync Private API, you must configure an interface endpoint for
AWS AppSync in your VPC. Note that both the Private API and VPC must be in the same AWS
account and Region.

Creating an interface endpoint for AWS AppSync

You can create an interface endpoint for AWS AppSync using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint
in the Amazon VPC User Guide.

Console

1. Sign in to the AWS Management Console and open the Endpoints page of the Amazon VPC
console.

2. Choose Create endpoint.

a. In the Service category field, verify that AWS services is selected.

b. In the Services table, choose com.amazonaws.{region}.appsync-api. Verify that
the Type column value is Interface.

c. In the VPC field, choose a VPC and its subnets.

d. To enable private DNS features for the interface endpoint, tick the Enable DNS Name
check box.

e. In the Security group field, choose one or more security groups.

3. Choose Create endpoint.

CLI

Use the create-vpc-endpoint command and specify the VPC ID, VPC endpoint type
(interface), service name, subnets that will use the endpoint, and security groups to associate
with the endpoint's network interfaces. For example:

$ aws ec2 create-vpc-endpoint —vpc-id vpc-ec43eb89 \
 —vpc-endpoint-type Interface \
 —service-name com.amazonaws.{region}.appsync-api \
 —subnet-id subnet-abababab —security-group-id sg-1a2b3c4d

Creating an interface endpoint for AWS AppSync 601

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://console.aws.amazon.com/vpc/home?#Endpoints
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html

AWS AppSync Developer Guide

To use the private DNS option, you must set the enableDnsHostnames and
enableDnsSupportattributes values of your VPC. For more information, see Viewing and
updating DNS support for your VPC in the Amazon VPC User Guide. If you enable private DNS
features for the interface endpoint, you can make requests to your AWS AppSync API GraphQL and
Real-time endpoint using its default public DNS endpoints using the format below:

https://{api_url_identifier}.appsync-api.{region}.amazonaws.com/graphql

For more information on service endpoints, see Service endpoints and quotas in the AWS General
Reference.

For more information on service interactions with interface endpoints, see Accessing a service
through an interface endpoint in the Amazon VPC User Guide.

For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

Advanced examples

If you enable private DNS features for the interface endpoint, you can make requests to your AWS
AppSync API GraphQL and Real-time endpoint using its default public DNS endpoints using the
format below:

https://{api_url_identifier}.appsync-api.{region}.amazonaws.com/graphql

Using the interface VPC endpoint public DNS hostnames, the base URL to invoke the API will be in
the following format:

https://{vpc_endpoint_id}-{endpoint_dns_identifier}.appsync-api.
{region}.vpce.amazonaws.com/graphql

You can also use the AZ-specific DNS hostname if you have deployed an endpoint in the AZ:

https://{vpc_endpoint_id}-{endpoint_dns_identifier}-{az_id}.appsync-api.
{region}.vpce.amazonaws.com/graphql.

Using the VPC endpoint public DNS name will require the AWS AppSync API endpoint hostname
to be passed as Host or as a x-appsync-domain header to the request. These examples use a
TodoAPI that was created in the Launch a sample schema guide:

Advanced examples 602

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.aws.amazon.com/appsync/latest/devguide/quickstart-launch-a-sample-schema.html

AWS AppSync Developer Guide

curl https://{vpc_endpoint_id}-{endpoint_dns_identifier}.appsync-api.
{region}.vpce.amazonaws.com/graphql \
-H "Content-Type:application/graphql" \
-H "x-api-key:da2-{xxxxxxxxxxxxxxxxxxxxxxxxxx}" \
-H "Host:{api_url_identifier}.appsync-api.{region}.amazonaws.com" \
-d '{"query":"mutation add($createtodoinput: CreateTodoInput!) {\n createTodo(input:
 $createtodoinput) {\n id\n name\n where\n when\n description\n }\n}","variables":
{"createtodoinput":{"name":"My first GraphQL task","when":"Friday Night","where":"Day
 1","description":"Learn more about GraphQL"}}}'

In the following examples, we will use the Todo app that is generated in the Launch a sample
schema guide. To test out the sample Todo API, we will be using the Private DNS to invoke the
API. You can use any command line tool of your choice; this example uses curl to send queries
and mutations and wscat to set up subscriptions. To emulate our example, replace the values in
brackets { } in the commands below with the corresponding values from your AWS account.

Testing Mutation Operation – createTodo Request

curl https://{api_url_identifier}.appsync-api.{region}.amazonaws.com/graphql \
-H "Content-Type:application/graphql" \
-H "x-api-key:da2-{xxxxxxxxxxxxxxxxxxxxxxxxxx}" \
-d '{"query":"mutation add($createtodoinput: CreateTodoInput!) {\n createTodo(input:
 $createtodoinput) {\n id\n name\n where\n when\n description\n }\n}","variables":
{"createtodoinput":{"name":"My first GraphQL task","when":"Friday Night","where":"Day
 1","description":"Learn more about GraphQL"}}}'

Testing Mutation Operation – createTodo Response

{
 "data": {
 "createTodo": {
 "id": "<todo-id>",
 "name": "My first GraphQL task",
 "where": "Day 1",
 "when": "Friday Night",
 "description": "Learn more about GraphQL"
 }
 }
}

Testing Query Operation – listTodos Request

Advanced examples 603

https://docs.aws.amazon.com/appsync/latest/devguide/quickstart-launch-a-sample-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/quickstart-launch-a-sample-schema.html
https://curl.se/
https://www.npmjs.com/package/wscat

AWS AppSync Developer Guide

curl https://{api_url_identifier}.appsync-api.{region}.amazonaws.com/graphql \
-H "Content-Type:application/graphql" \
-H "x-api-key:da2-{xxxxxxxxxxxxxxxxxxxxxxxxxx}" \
-d '{"query":"query ListTodos {\n listTodos {\n items {\n description\n id\n name
\n when\n where\n }\n }\n}\n","variables":{"createtodoinput":{"name":"My first
 GraphQL task","when":"Friday Night","where":"Day 1","description":"Learn more about
 GraphQL"}}}'

Testing Query Operation – listTodos Request

{
 "data": {
 "listTodos": {
 "items": [
 {
 "description": "Learn more about GraphQL",
 "id": "<todo-id>",
 "name": "My first GraphQL task",
 "when": "Friday night",
 "where": "Day 1"
 }
]
 }
 }
}

Testing Subscription Operation – Subscribing to createTodo mutation

To set up GraphQL subscriptions in AWS AppSync, see Building a real-time WebSocket client.
From an Amazon EC2 instance in a VPC, you can test your AWS AppSync Private API subscription
endpoint using wscat. The example below uses an API KEY for authorization.

$ header=`echo '{"host":"{api_url_identifier}.appsync-api.{region}.amazonaws.com","x-
api-key":"da2-{xxxxxxxxxxxxxxxxxxxxxxxxxx}"}' | base64 | tr -d '\n'`
$ wscat -p 13 -s graphql-ws -c "wss://{api_url_identifier}.appsync-realtime-api.us-
west-2.amazonaws.com/graphql?header=$header&payload=e30="
Connected (press CTRL+C to quit)
> {"type": "connection_init"}
< {"type":"connection_ack","payload":{"connectionTimeoutMs":300000}}
< {"type":"ka"}
> {"id":"f7a49717","payload":{"data":"{\"query\":\"subscription
 onCreateTodo {onCreateTodo {description id name where when}}\",

Advanced examples 604

https://docs.aws.amazon.com/appsync/latest/devguide/real-time-websocket-client.html
https://github.com/websockets/wscat

AWS AppSync Developer Guide

\"variables\":{}}","extensions":{"authorization":{"x-api-key":"da2-
{xxxxxxxxxxxxxxxxxxxxxxxxxx}","host":"{api_url_identifier}.appsync-api.
{region}.amazonaws.com"}}},"type":"start"}
< {"id":"f7a49717","type":"start_ack"}

Alternatively, use the VPC endpoint domain name while making sure to specify the Host header in
the wscat command to establish the websocket:

$ header=`echo '{"host":"{api_url_identifier}.appsync-api.{region}.amazonaws.com","x-
api-key":"da2-{xxxxxxxxxxxxxxxxxxxxxxxxxx}"}' | base64 | tr -d '\n'`
$ wscat -p 13 -s graphql-ws -c "wss://{vpc_endpoint_id}-
{endpoint_dns_identifier}.appsync-api.{region}.vpce.amazonaws.com/graphql?header=
$header&payload=e30=" --header Host:{api_url_identifier}.appsync-realtime-api.us-
west-2.amazonaws.com
Connected (press CTRL+C to quit)
> {"type": "connection_init"}
< {"type":"connection_ack","payload":{"connectionTimeoutMs":300000}}
< {"type":"ka"}
> {"id":"f7a49717","payload":{"data":"{\"query\":\"subscription
 onCreateTodo {onCreateTodo {description id priority title}}\",
\"variables\":{}}","extensions":{"authorization":{"x-api-key":"da2-
{xxxxxxxxxxxxxxxxxxxxxxxxxx}","host":"{api_url_identifier}.appsync-api.
{region}.amazonaws.com"}}},"type":"start"}
< {"id":"f7a49717","type":"start_ack"}

Run the mutation code below:

curl https://{api_url_identifier}.appsync-api.{region}.amazonaws.com/graphql \
-H "Content-Type:application/graphql" \
-H "x-api-key:da2-{xxxxxxxxxxxxxxxxxxxxxxxxxx}" \
-d '{"query":"mutation add($createtodoinput: CreateTodoInput!) {\n createTodo(input:
 $createtodoinput) {\n id\n name\n where\n when\n description\n }\n}","variables":
{"createtodoinput":{"name":"My first GraphQL task","when":"Friday Night","where":"Day
 1","description":"Learn more about GraphQL"}}}'

Afterwards, a subscription is trigged, and the message notification appears as shown below:

< {"id":"f7a49717","type":"data","payload":{"data":{"onCreateTodo":{"description":"Go
 to the shops","id":"169ce516-b7e8-4a6a-88c1-ab840184359f","priority":5,"title":"Go to
 the shops"}}}}

Advanced examples 605

AWS AppSync Developer Guide

Using IAM policies to limit public API creation

AWS AppSync supports IAM Condition statements for use with Private APIs. The visibility
field can be included with IAM policy statements for the appsync:CreateGraphqlApi operation
to control which IAM roles and users can create private and public APIs. This gives an IAM
administrator the ability to define an IAM policy that will only allow a user to create a Private
GraphQL API. A user attempting to create a public API will receive an unauthorized message.

For example, an IAM administrator could create the following IAM policy statement to allow for the
creation of Private APIs:

{
 "Sid": "AllowPrivateAppSyncApis",
 "Effect": "Allow",
 "Action": "appsync:CreateGraphqlApi",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "appsync:Visibility": "PRIVATE"
 }
 }
}

An IAM administrator could also add the following service control policy to block all users in an
AWS organization from creating AWS AppSync APIs other than Private APIs:

{
 "Sid": "BlockNonPrivateAppSyncApis",
 "Effect": "Deny",
 "Action": "appsync:CreateGraphqlApi",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringNotEquals": {
 "appsync:Visibility": "PRIVATE"
 }
 }
}

Using IAM policies to limit public API creation 606

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS AppSync Developer Guide

Configuring GraphQL run complexity, query depth, and
introspection with AWS AppSync

AWS AppSync allows you to enable or disable introspection features and set limits to the amount
of nested levels and resolvers in a single query.

Using the introspection feature

Tip

For more information about introspection in GraphQL, see this article on the GraphQL
foundation's website.

By default, GraphQL allows you to use introspection to query the schema itself to discover its
types, fields, queries, mutations, subscriptions, etc. This is an important feature for learning how
the data is shaped and processed by your GraphQL service. However, there are some things to
consider when dealing with introspection. You may have a use case that would benefit from
introspection being disabled, such as a case in which field names may be sensitive or hidden or
the full API schema is intended to be left undocumented for consumers. In these cases, publishing
schema data through introspection could result in the leakage of intentionally private data.

To prevent this from happening, you can disable introspection. This will prevent unauthorized
parties from using introspection fields on your schema. However, it's important to note that
introspection is useful for development teams to learn how data in their service is processed.
Internally, it might be helpful to keep introspection enabled while disabling it in production code
as an extra layer of security. Another way to handle this is to add an authorization method, which
AWS AppSync also provides. For more information, see authorization.

AWS AppSync allows you to enable or disable introspection at the API level. To enable or disable
introspection, do the following:

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of a GraphQL API.

3. On your API's homepage, in the navigation pane, choose Settings.

4. In API configurations, choose Edit.

Configuring GraphQL run complexity, query depth, and introspection with AWS AppSync 607

https://graphql.org/learn/introspection/
https://graphql.org/learn/introspection/
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

5. Under Introspection queries, do the following:

• Turn on or off Enable introspection queries.

6. Choose Save.

When introspection is enabled (the default behavior), using the introspection system will work
normally. For example, the image below shows a __schema field processing all available types in
the schema:

When disabling this feature, a validation error will appear in the response instead:

Using the introspection feature 608

AWS AppSync Developer Guide

Configuring query depth limits

There are times during which you may want more granular control over how the API functions
during an operation. One such control is adding a limit to the amount of nested levels a query
may process. By default, queries are able to process an unlimited amount of nested levels. Limiting
queries to a specified amount of nested levels has potential implications for the performance and
flexibility of your project. Take the following query:

query MyQuery {
 L1: nextLayer {
 L2: nextLayer {
 L3: nextLayer {
 L4: value
 }
 }
 }
}

Your project may call for limiting queries to L1 or L2 for some purpose. By default, the entire query
from L1 to L4 would be processed with no way to control that. By setting a limit, you could prevent
queries from accessing anything past the specified level.

To add a query depth limit, do the following:

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of a GraphQL API.

3. On your API's homepage, in the navigation pane, choose Settings.

4. In API configurations, choose Edit.

5. Under Query depth, do the following:

a. Turn on or off Enable query depth.

b. In Maximum depth, set the depth limit. This can be between 1 and 75.

6. Choose Save.

When a limit is set, going past its upper bound will result in a QueryDepthLimitReached error.
For example, the image below shows a query with a depth limit of 2 going past the limit to the
third (L3) and fourth (L4) levels:

Configuring query depth limits 609

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

Note that fields can still be marked as nullable or non-nullable in the schema. If a non-nullable
field receives a QueryDepthLimitReached error, that error will be thrown to the first nullable
parent field.

Configuring resolver count limits

You can also control how many resolvers each query can process. Like the query depth, you can set
a limit to this amount. Take the following query that contains three resolvers:

query MyQuery {
 resolver1: resolver
 resolver2: resolver
 resolver3: resolver
}

By default, each query can process up to 10000 resolvers. In the example above, resolver1,
resolver2, and resolver3 will be processed. However, your project may call for limiting each
query to handling one or two resolvers in total. By setting a limit, you can tell the query to not
handle any resolver past a certain number like the first (resolver1) or second (resolver2)
resolvers.

To add a resolver count limit, do the following:

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of a GraphQL API.

3. On your API's homepage, in the navigation pane, choose Settings.

Configuring resolver count limits 610

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

4. In API configurations, choose Edit.

5. Under Resolver count limit, do the following:

a. Turn on Enable resolver count.

b. In Maximum resolver count, set the count limit. This can be between 1 and 10000.

6. Choose Save.

Like the query depth limit, exceeding the configured resolver limit causes the query to end with a
ResolverExecutionLimitReached error on additional resolvers. In the image below, a query
with a resolver count limit of 2 tries to process three resolvers. Because of the limit, the third
resolver throws an error and doesn't run.

Using environmental variables in AWS AppSync

You can use environmental variables to adjust your AWS AppSync resolvers' and functions' behavior
without updating your code. Environmental variables are pairs of strings stored with your API
configuration that are made available to your resolvers and functions to leverage at runtime.
They're particularly useful for situations in which you must reference configuration data that's only
available during the initial setup but needs to be used by your resolvers and functions during the
run. Environmental variables expose configuration data in your code, thereby reducing the need to
hard-code those values.

Using environmental variables in AWS AppSync 611

AWS AppSync Developer Guide

Note

To increase database security, we recommend that you use Secrets Manager or AWS
Systems Manager Parameter Store instead of environmental variables to store credentials
or sensitive information. To leverage this feature, see Invoking AWS services with AWS
AppSync HTTP data sources.

Environmental variables must follow several behaviors and rules to function properly:

• Both JavaScript and VTL templates support environmental variables.

• Environmental variables are not evaluated before function invocation.

• Environmental variables only support string values.

• Any defined value in an environmental variable is considered a string literal and not expanded.

• Variable evaluations should ideally be performed in the function code.

Configuring environmental variables (console)

You can configure environmental variables for your AWS AppSync GraphQL API by creating the
variable and defining its key-value pair. Your resolvers and functions will use the environmental
variable's key name to retrieve the value at runtime. To set environmental variables in the AWS
AppSync console:

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of a GraphQL API.

3. On your API's homepage, in the navigation pane, choose Settings.

4. Under Environment variables, choose Add environment variable.

5. Choose Add environment variable.

6. Enter a key and value.

7. If necessary, repeat steps 5 and 6 to add more key values. If you need to remove a key value,
choose the Remove option and the key(s) to remove.

8. Choose Submit.

Configuring environmental variables (console) 612

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-http-resolvers-js.html#invoking-aws-services-js
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-http-resolvers-js.html#invoking-aws-services-js
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

Tip

There are a few rules you must follow when creating keys and values:

• Keys must begin with a letter.

• Keys must be at least two characters long.

• Keys can only contain letters, numbers, and the underscore character (_).

• Values can be up to 512 characters long.

• You can configure up to 50 key-value pairs in a GraphQL API.

Configuring environmental variables (API)

To set an environmental variable using APIs, you can use
PutGraphqlApiEnvironmentVariables. The corresponding CLI command is put-graphql-
api-environment-variables.

To retrieve an environmental variable using APIs, you can use
GetGraphqlApiEnvironmentVariables. The corresponding CLI command is get-graphql-
api-environment-variables.

The command must contain the API ID and list of environmental variables:

aws appsync put-graphql-api-environment-variables \
 --api-id "<api-id>" \
 --environment-variables '{"key1":"value1","key2":"value2", …}'

The following example sets two environmental variables in an API with the ID of
abcdefghijklmnopqrstuvwxyz using the put-graphql-api-environment-variables
command:

aws appsync put-graphql-api-environment-variables \
 --api-id "abcdefghijklmnopqrstuvwxyz" \
 --environment-variables '{"USER_TABLE":"users_prod","DEBUG":"true"}'

Note that when you apply environmental variables with the put-graphql-api-environment-
variables command, the contents of the environmental variables' structure are overwritten;
this means existing environmental variables will be lost. To retain existing environmental variables

Configuring environmental variables (API) 613

AWS AppSync Developer Guide

when adding new ones, include all existing key-value pairs along with the new ones in your
request. Using the example above, if you wanted to add "EMPTY":"", you could do the following:

aws appsync put-graphql-api-environment-variables \
 --api-id "abcdefghijklmnopqrstuvwxyz" \
 --environment-variables '{"USER_TABLE":"users_prod","DEBUG":"true", "EMPTY":""}'

To retrieve the current configuration, use the get-graphql-api-environment-variables
command:

aws appsync get-graphql-api-environment-variables --api-id "<api-id>"

Using the example above, you could use the following command:

aws appsync get-graphql-api-environment-variables --api-id "abcdefghijklmnopqrstuvwxyz"

The result will show the list of environmental variables along with their key values:

{
 "environmentVariables": {
 "USER_TABLE": "users_prod",
 "DEBUG": "true",
 "EMPTY": ""
 }
}

Configuring environmental variables (CFN)

You can use the template below to create environmental variables:

AWSTemplateFormatVersion: 2010-09-09
Resources:
 GraphQLApiWithEnvVariables:
 Type: "AWS::AppSync::GraphQLApi"
 Properties:
 Name: "MyApiWithEnvVars"
 AuthenticationType: "AWS_IAM"
 EnvironmentVariables:
 EnvKey1: "non-empty"
 EnvKey2: ""

Configuring environmental variables (CFN) 614

AWS AppSync Developer Guide

Environmental variables and merged APIs

Environmental variables defined in Source APIs are also available in your Merged APIs.
Environmental variables in Merged APIs are read-only and cannot be updated. Note that your
environmental variable keys must be unique across all Source APIs for your merges to succeed;
duplicate keys will always result in a merge failure.

Retrieving environmental variables

To retrieve environmental variables in your function code, retrieve the value from the ctx.env
object in your resolvers and functions. Below are some examples of this in action.

Publishing to Amazon SNS

In this example, our HTTP resolver sends a message to an Amazon SNS topic. The ARN of
the topic is only known after the stack that defines the GraphQL API and the topic has been
deployed.

/**
 * Sends a publish request to the SNS topic
 */
export function request(ctx) {
 const TOPIC_ARN = ctx.env.TOPIC_ARN;
 const { input: values } = ctx.args;
 // this custom function sends values to the SNS topic
 return publishToSNSRequest(TOPIC_ARN, values);
}

Transactions with DynamoDB

In this example, the names of the DynamoDB table are different if the API is deployed for
staging or is already in production. The resolver code doesn't need to change. The values of the
environment variables are updated based on where the API is deployed.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { authorId, postId } = ctx.args;
 return {
 operation: 'TransactWriteItems',
 transactItems: [
 {

Environmental variables and merged APIs 615

AWS AppSync Developer Guide

 table: ctx.env.POST_TABLE,
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ postId }),
 // rest of the configuration
 },
 {
 table: ctx.env.AUTHOR_TABLE,
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ authorId }),
 // rest of the configuration
 },
],
 };
}

Retrieving environmental variables 616

AWS AppSync Developer Guide

Authorization and authentication

This section describes options for configuring security and data protection for your applications.

Authorization types

There are five ways you can authorize applications to interact with your AWS AppSync GraphQL
API. You specify which authorization type you use by specifying one of the following authorization
type values in your AWS AppSync API or CLI call:

• API_KEY

For using API keys.

• AWS_LAMBDA

For using an AWS Lambda function.

• AWS_IAM

For using AWS Identity and Access Management (IAM) permissions.

• OPENID_CONNECT

For using your OpenID Connect provider.

• AMAZON_COGNITO_USER_POOLS

For using an Amazon Cognito user pool.

These basic authorization types work for most developers. For more advanced use cases, you
can add additional authorization modes through the console, the CLI, and AWS CloudFormation.
For additional authorization modes, AWS AppSync provides an authorization type that takes
the values listed above (that is, API_KEY, AWS_LAMBDA, AWS_IAM, OPENID_CONNECT, and
AMAZON_COGNITO_USER_POOLS).

When you specify API_KEY,AWS_LAMBDA, or AWS_IAM as the main or default authorization type,
you can’t specify them again as one of the additional authorization modes. Similarly, you can’t
duplicate API_KEY, AWS_LAMBDA or AWS_IAM inside the additional authorization modes. You
can use multiple Amazon Cognito User Pools and OpenID Connect providers. However, you can’t
use duplicate Amazon Cognito User Pools or OpenID Connect providers between the default

Authorization types 617

https://aws.amazon.com/iam/

AWS AppSync Developer Guide

authorization mode and any of the additional authorization modes. You can specify different
clients for your Amazon Cognito User Pool or OpenID Connect provider using the corresponding
configuration regular expression.

API_KEY authorization

Unauthenticated APIs require more strict throttling than authenticated APIs. One way to control
throttling for unauthenticated GraphQL endpoints is through the use of API keys. An API key is
a hard-coded value in your application that is generated by the AWS AppSync service when you
create an unauthenticated GraphQL endpoint. You can rotate API keys from the console, from the
CLI, or from the AWS AppSync API reference.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. In the APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Settings.

2. Under Default authorization mode, choose API key.

3. In the API keys table, choose Add API key.

A new API key will be generated in the table.

• To delete an old API key, select the API key in the table and then choose Delete.

4. Choose Save at the bottom of the page.

CLI

1. If you haven't already done so, configure your access to the AWS CLI. For more information,
see Configuration basics.

2. Create a GraphQL API object by running the update-graphql-api command.

You'll need to type in two parameters for this particular command:

1. The api-id of your GraphQL API.

2. The new name of your API. You can use the same name.

3. The authentication-type, which will be API_KEY.

API_KEY authorization 618

https://docs.aws.amazon.com/appsync/latest/APIReference/
https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-graphql-api.html

AWS AppSync Developer Guide

Note

There are other parameters such as Region that must be configured but will
usually default to your CLI configuration values.

An example command may look like this:

aws appsync update-graphql-api --api-id abcdefghijklmnopqrstuvwxyz --name
 TestAPI --authentication-type API_KEY

An output will be returned in the CLI. Here's an example in JSON:

{
 "graphqlApi": {
 "xrayEnabled": false,
 "name": "TestAPI",
 "authenticationType": "API_KEY",
 "tags": {},
 "apiId": "abcdefghijklmnopqrstuvwxyz",
 "uris": {
 "GRAPHQL": "https://s8i3kk3ufhe9034ujnv73r513e.appsync-api.us-
west-2.amazonaws.com/graphql",
 "REALTIME": "wss://s8i3kk3ufhe9034ujnv73r513e.appsync-realtime-
api.us-west-2.amazonaws.com/graphql"
 },
 "arn": "arn:aws:appsync:us-west-2:348581070237:apis/
abcdefghijklmnopqrstuvwxyz"
 }
}

API keys are configurable for up to 365 days, and you can extend an existing expiration date for up
to another 365 days from that day. API Keys are recommended for development purposes or use
cases where it’s safe to expose a public API.

On the client, the API key is specified by the header x-api-key.

For example, if your API_KEY is 'ABC123', you can send a GraphQL query via curl as follows:

API_KEY authorization 619

AWS AppSync Developer Guide

$ curl -XPOST -H "Content-Type:application/graphql" -H "x-api-key:ABC123" -d
 '{ "query": "query { movies { id } }" }' https://YOURAPPSYNCENDPOINT/graphql

AWS_LAMBDA authorization

You can implement your own API authorization logic using an AWS Lambda function. You can
use a Lambda function for either your primary or secondary authorizer, but there may only be
one Lambda authorization function per API. When using Lambda functions for authorization, the
following applies:

• If the API has the AWS_LAMBDA and AWS_IAM authorization modes enabled, then the SigV4
signature cannot be used as the AWS_LAMBDA authorization token.

• If the API has the AWS_LAMBDA and OPENID_CONNECT authorization modes or the
AMAZON_COGNITO_USER_POOLS authorization mode enabled, then the OIDC token cannot be
used as the AWS_LAMBDA authorization token. Note that the OIDC token can be a Bearer scheme.

• A Lambda function must not return more than 5MB of contextual data for resolvers.

For example, if your authorization token is 'ABC123', you can send a GraphQL query via curl as
follows:

$ curl -XPOST -H "Content-Type:application/graphql" -H "Authorization:ABC123" -d
 '{ "query":
 "query { movies { id } }" }' https://YOURAPPSYNCENDPOINT/graphql

Lambda functions are called before each query or mutation. The return value can be cached based
on the API ID and the authentication token. By default, caching is not turned on, but this can be
enabled at the API level or by setting the ttlOverride value in a function's return value.

A regular expression that validates authorization tokens before the function is called can be
specified if desired. These regular expressions are used to validate that an authorization token is of
the correct format before your function is called. Any request using a token which does not match
this regular expression will be denied automatically.

Lambda functions used for authorization require a principal policy for appsync.amazonaws.com
to be applied on them to allow AWS AppSync to call them. This action is done automatically

AWS_LAMBDA authorization 620

AWS AppSync Developer Guide

in the AWS AppSync console; The AWS AppSync console does not remove the policy. For more
information on attaching policies to Lambda functions, see Resource-based policies in the AWS
Lambda Developer Guide.

The Lambda function you specify will receive an event with the following shape:

{
 "authorizationToken": "ExampleAUTHtoken123123123",
 "requestContext": {
 "apiId": "aaaaaa123123123example123",
 "accountId": "111122223333",
 "requestId": "f4081827-1111-4444-5555-5cf4695f339f",
 "queryString": "mutation CreateEvent {...}\n\nquery MyQuery {...}\n",
 "operationName": "MyQuery",
 "variables": {}
 }
}

The authorization function must return at least isAuthorized, a boolean indicating if the request
is authorized. AWS AppSync recognizes the following keys returned from Lambda authorization
functions:

Functions list

isAuthorized (boolean, required)

A boolean value indicating if the value in authorizationToken is authorized to make calls to
the GraphQL API.

If this value is true, execution of the GraphQL API continues. If this value is false, an
UnauthorizedException is raised

deniedFields (list of string, optional)

A list of which are forcibly changed to null, even if a value was returned from a resolver.

Each item is either a fully qualified field ARN in the form of arn:aws:appsync:us-
east-1:111122223333:apis/GraphQLApiId/types/TypeName/fields/FieldName or
a short form of TypeName.FieldName. The full ARN form should be used when two APIs share
a lambda function authorizer and there might be ambiguity between common types and fields
between the two APIs.

AWS_LAMBDA authorization 621

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke

AWS AppSync Developer Guide

resolverContext (JSON Object, optional)

A JSON object visible as $ctx.identity.resolverContext in resolver templates. For
example, if the following structure is returned by a resolver:

{
 "isAuthorized":true
 "resolverContext": {
 "banana":"very yellow",
 "apple":"very green"
 }
}

The value of ctx.identity.resolverContext.apple in resolver templates will be "very
green". The resolverContext object only supports key-value pairs. Nested keys are not
supported.

Warning

The total size of this JSON object must not exceed 5MB.

ttlOverride (integer, optional)

The number of seconds that the response should be cached for. If no value is returned, the
value from the API is used. If this is 0, the response is not cached.

Lambda authorizers have a timeout of 10 seconds. We recommend designing functions to execute
in the shortest amount of time as possible to scale the performance of your API.

Multiple AWS AppSync APIs can share a single authentication Lambda function. Cross account
authorizer use is not permitted.

When sharing an authorization function between multiple APIs, be aware that short-form
field names (typename.fieldname) may inadvertently hide fields. To disambiguate
a field in deniedFields, you can specify an unambiguous field ARN in the form of
arn:aws:appsync:region:accountId:apis/GraphQLApiId/types/typeName/
fields/fieldName.

To add a Lambda function as the default authorization mode in AWS AppSync:

AWS_LAMBDA authorization 622

AWS AppSync Developer Guide

Console

1. Log into the AWS AppSync Console and navigate to the API you wish to update.

2. Navigate to the Settings page for your API.

Change the API-Level authorization to AWS Lambda.

3. Choose the AWS Region and Lambda ARN to authorize API calls against.

Note

The appropriate principal policy will be added automatically, allowing AWS
AppSync to call your Lambda function.

4. Optionally, set the response TTL and token validation regular expression.

AWS CLI

1. Attach the following policy to the Lambda function being used:

aws lambda add-permission --function-name "my-function" --statement-id "appsync"
 --principal appsync.amazonaws.com --action lambda:InvokeFunction --output text

Important

If you want the policy of the function to be locked to a single GraphQL API, you can
run this command:

aws lambda add-permission --function-name “my-function” --
statement-id “appsync” --principal appsync.amazonaws.com --action
 lambda:InvokeFunction --source-arn “<my AppSync API ARN>” --output text

2. Update your AWS AppSync API to use the given Lambda function ARN as the authorizer:

aws appsync update-graphql-api --api-id example2f0ur2oid7acexample --
name exampleAPI --authentication-type AWS_LAMBDA --lambda-authorizer-config
 authorizerUri="arn:aws:lambda:us-east-2:111122223333:function:my-function"

AWS_LAMBDA authorization 623

AWS AppSync Developer Guide

Note

You can also include other configuration options such as the token regular
expression.

The following example describes a Lambda function that demonstrates the various authentication
and failure states a Lambda function can have when used as a AWS AppSync authorization
mechanism:

def handler(event, context):
 # This is the authorization token passed by the client
 token = event.get('authorizationToken')
 # If a lambda authorizer throws an exception, it will be treated as unauthorized.
 if 'Fail' in token:
 raise Exception('Purposefully thrown exception in Lambda Authorizer.')

 if 'Authorized' in token and 'ReturnContext' in token:
 return {
 'isAuthorized': True,
 'resolverContext': {
 'key': 'value'
 }
 }

 # Authorized with no f
 if 'Authorized' in token:
 return {
 'isAuthorized': True
 }
 # Partial authorization
 if 'Partial' in token:
 return {
 'isAuthorized': True,
 'deniedFields':['user.favoriteColor']
 }
 if 'NeverCache' in token:
 return {
 'isAuthorized': True,
 'ttlOverride': 0

AWS_LAMBDA authorization 624

AWS AppSync Developer Guide

 }
 if 'Unauthorized' in token:
 return {
 'isAuthorized': False
 }
 # if nothing is returned, then the authorization fails.
 return {}

Circumventing SigV4 and OIDC token authorization limitations

The following methods can be used to circumvent the issue of not being able to use your SigV4
signature or OIDC token as your Lambda authorization token when certain authorization modes are
enabled.

If you want to use the SigV4 signature as the Lambda authorization token when the AWS_IAM and
AWS_LAMBDA authorization modes are enabled for AWS AppSync's API, do the following:

• To create a new Lambda authorization token, add random suffixes and/or prefixes to the SigV4
signature.

• To retrieve the original SigV4 signature, update your Lambda function by removing the random
prefixes and/or suffixes from the Lambda authorization token. Then, use the original SigV4
signature for authentication.

If you want to use the OIDC token as the Lambda authorization token when the OPENID_CONNECT
authorization mode or the AMAZON_COGNITO_USER_POOLS and AWS_LAMBDA authorization
modes are enabled for AWS AppSync's API, do the following:

• To create a new Lambda authorization token, add random suffixes and/or prefixes to the OIDC
token. The Lambda authorization token should not contain a Bearer scheme prefix.

• To retrieve the original OIDC token, update your Lambda function by removing the random
prefixes and/or suffixes from the Lambda authorization token. Then, use the original OIDC token
for authentication.

AWS_IAM authorization

This authorization type enforces the AWS signature version 4 signing process on the GraphQL API.
You can associate Identity and Access Management (IAM) access policies with this authorization
type. Your application can leverage this association by using an access key (which consists of an

Circumventing SigV4 and OIDC token authorization limitations 625

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/iam/

AWS AppSync Developer Guide

access key ID and secret access key) or by using short-lived, temporary credentials provided by
Amazon Cognito Federated Identities.

If you want a role that has access to perform all data operations:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:GraphQL"
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/*"
]
 }
]
}

You can find YourGraphQLApiId from the main API listing page in the AppSync console, directly
under the name of your API. Alternatively you can retrieve it with the CLI: aws appsync list-
graphql-apis

If you want to restrict access to just certain GraphQL operations, you can do this for the root
Query, Mutation, and Subscription fields.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:GraphQL"
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/Query/
fields/<Field-1>",
 "arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/Query/
fields/<Field-2>",
 "arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/
Mutation/fields/<Field-1>",

AWS_IAM authorization 626

AWS AppSync Developer Guide

 "arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/
Subscription/fields/<Field-1>"
]
 }
]
}

For example, suppose you have the following schema and you want to restrict access to getting all
posts:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 posts:[Post!]!
}

type Mutation {
 addPost(id:ID!, title:String!):Post!
}

The corresponding IAM policy for a role (that you could attach to an Amazon Cognito identity pool,
for example) would look like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:GraphQL"
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/
Query/fields/posts"
]
 }
]
}

AWS_IAM authorization 627

AWS AppSync Developer Guide

OPENID_CONNECT authorization

This authorization type enforces OpenID connect (OIDC) tokens provided by an OIDC-compliant
service. Your application can leverage users and privileges defined by your OIDC provider for
controlling access.

An Issuer URL is the only required configuration value that you provide to AWS AppSync
(for example, https://auth.example.com). This URL must be addressable over HTTPS.
AWS AppSync appends /.well-known/openid-configuration to the issuer URL and
locates the OpenID configuration at https://auth.example.com/.well-known/openid-
configuration per the OpenID Connect Discovery specification. It expects to retrieve an
RFC5785 compliant JSON document at this URL. This JSON document must contain a jwks_uri
key, which points to the JSON Web Key Set (JWKS) document with the signing keys. AWS AppSync
requires the JWKS to contain JSON fields of kty and kid.

AWS AppSync supports a wide range of signing algorithms.

Signing algorithms

RS256

RS384

RS512

PS256

PS384

PS512

HS256

HS384

HS512

ES256

ES384

OPENID_CONNECT authorization 628

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc5785

AWS AppSync Developer Guide

Signing algorithms

ES512

We recommend that you use the RSA algorithms. Tokens issued by the provider must include the
time at which the token was issued (iat) and may include the time at which it was authenticated
(auth_time). You can provide TTL values for issued time (iatTTL) and authentication time
(authTTL) in your OpenID Connect configuration for additional validation. If your provider
authorizes multiple applications, you can also provide a regular expression (clientId) that is used
to authorize by client ID. When the clientId is present in your OpenID Connect configuration,
AWS AppSync validates the claim by requiring the clientId to match with either the aud or azp
claim in the token.

To validate multiple client IDs use the pipeline operator (“|”) which is an “or” in regular expression.
For example, if your OIDC application has four clients with client IDs such as 0A1S2D, 1F4G9H,
1J6L4B, 6GS5MG, to validate for only the first three client ids you would place 1F4G9H|1J6L4B|
6GS5MG in the client ID field.

AMAZON_COGNITO_USER_POOLS authorization

This authorization type enforces OIDC tokens provided by Amazon Cognito User Pools. Your
application can leverage the users and groups in your user pools and associate these with GraphQL
fields for controlling access.

When using Amazon Cognito User Pools, you can create groups that users belong to. This
information is encoded in a JWT token that your application sends to AWS AppSync in an
authorization header when sending GraphQL operations. You can use GraphQL directives on
the schema to control which groups can invoke which resolvers on a field, thereby giving more
controlled access to your customers.

For example, suppose you have the following GraphQL schema:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 posts:[Post!]!

AMAZON_COGNITO_USER_POOLS authorization 629

AWS AppSync Developer Guide

}

type Mutation {
 addPost(id:ID!, title:String!):Post!
}
...

If you have two groups in Amazon Cognito User Pools - bloggers and readers - and you want to
restrict the readers so that they cannot add new entries, then your schema should look like this:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 posts:[Post!]!
 @aws_auth(cognito_groups: ["Bloggers", "Readers"])
}

type Mutation {
 addPost(id:ID!, title:String!):Post!
 @aws_auth(cognito_groups: ["Bloggers"])
}
...

Note that you can omit the @aws_auth directive if you want to default to a specific grant-or-deny
strategy on access. You can specify the grant-or-deny strategy in the user pool configuration when
you create your GraphQL API via the console or via the following CLI command:

$ aws appsync --region us-west-2 create-graphql-api --authentication-
type AMAZON_COGNITO_USER_POOLS --name userpoolstest --user-pool-config
 '{ "userPoolId":"test", "defaultEffect":"ALLOW", "awsRegion":"us-west-2"}'

Using additional authorization modes

When you add additional authorization modes, you can directly configure the authorization setting
at the AWS AppSync GraphQL API level (that is, the authenticationType field that you can
directly configure on the GraphqlApi object) and it acts as the default on the schema. This means
that any type that doesn’t have a specific directive has to pass the API level authorization setting.

Using additional authorization modes 630

AWS AppSync Developer Guide

At the schema level, you can specify additional authorization modes using directives on the
schema. You can specify authorization modes on individual fields in the schema. For example, for
API_KEY authorization you would use @aws_api_key on schema object type definitions/fields.
The following directives are supported on schema fields and object type definitions:

• @aws_api_key - To specify the field is API_KEY authorized.

• @aws_iam - To specify that the field is AWS_IAM authorized.

• @aws_oidc - To specify that the field is OPENID_CONNECT authorized.

• @aws_cognito_user_pools - To specify that the field is AMAZON_COGNITO_USER_POOLS
authorized.

• @aws_lambda - To specify that the field is AWS_LAMBDA authorized.

You can’t use the @aws_auth directive along with additional authorization modes. @aws_auth
works only in the context of AMAZON_COGNITO_USER_POOLS authorization with no additional
authorization modes. However, you can use the @aws_cognito_user_pools directive in place of
the @aws_auth directive, using the same arguments. The main difference between the two is that
you can specify @aws_cognito_user_pools on any field and object type definitions.

To understand how the additional authorization modes work and how they can be specified on a
schema, let’s have a look at the following schema:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 getPost(id: ID): Post
 getAllPosts(): [Post]
 @aws_api_key
}

type Mutation {
 addPost(
 id: ID!
 author: String!
 title: String!
 content: String!
 url: String!

Using additional authorization modes 631

AWS AppSync Developer Guide

): Post!
}

type Post @aws_api_key @aws_iam {
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int!
 downs: Int!
 version: Int!
}
...

For this schema, assume that AWS_IAM is the default authorization type on the AWS AppSync
GraphQL API. This means that fields that don’t have a directive are protected using AWS_IAM. For
example, that’s the case for the getPost field on the Query type. Schema directives enable you
to use more than one authorization mode. For example, you can have API_KEY configured as an
additional authorization mode on the AWS AppSync GraphQL API, and you can mark a field using
the @aws_api_key directive (for example, getAllPosts in this example). Directives work at
the field level so you need to give API_KEY access to the Post type too. You can do this either
by marking each field in the Post type with a directive, or by marking the Post type with the
@aws_api_key directive.

To further restrict access to fields in the Post type you can use directives against individual fields
in the Post type as shown following.

For example, you can add a restrictedContent field to the Post type and restrict
access to it by using the @aws_iam directive. AWS_IAM authenticated requests could access
restrictedContent, however, API_KEY requests wouldn’t be able to access it.

type Post @aws_api_key @aws_iam{
 id: ID!
 author: String
 title: String
 content: String
 url: String
 ups: Int!
 downs: Int!
 version: Int!

Using additional authorization modes 632

AWS AppSync Developer Guide

 restrictedContent: String!
 @aws_iam
}
...

Fine-grained access control

The preceding information demonstrates how to restrict or grant access to certain GraphQL fields.
If you want to set access controls on the data based on certain conditions (for example, based on
the user that’s making a call and whether the user owns the data) you can use mapping templates
in your resolvers. You can also perform more complex business logic, which we describe in Filtering
Information.

This section shows how to set access controls on your data using a DynamoDB resolver mapping
template.

Before proceeding any further, if you’re not familiar with mapping templates in AWS AppSync, you
may want to review the Resolver mapping template reference and the Resolver mapping template
reference for DynamoDB.

In the following example using DynamoDB, suppose you’re using the preceding blog post schema,
and only users that created a post are allowed to edit it. The evaluation process would be for
the user to gain credentials in their application, using Amazon Cognito User Pools for example,
and then pass these credentials as part of a GraphQL operation. The mapping template will then
substitute a value from the credentials (like the username)in a conditional statement which will
then be compared to a value in your database.

Fine-grained access control 633

AWS AppSync Developer Guide

To add this functionality, add a GraphQL field of editPost as follows:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 posts:[Post!]!
}

type Mutation {
 editPost(id:ID!, title:String, content:String):Post
 addPost(id:ID!, title:String!):Post!
}
...

The resolver mapping template for editPost (shown in an example at the end of this section)
needs to perform a logical check against your data store to allow only the user that created a post
to edit it. Since this is an edit operation, it corresponds to an UpdateItem in DynamoDB. You can
perform a conditional check before performing this action, using context passed through for user
identity validation. This is stored in an Identity object that has the following values:

{
 "accountId" : "12321434323",
 "cognitoIdentityPoolId" : "",
 "cognitoIdentityId" : "",
 "sourceIP" : "",
 "caller" : "ThisistheprincipalARN",
 "username" : "username",
 "userArn" : "Sameasabove"
}

To use this object in a DynamoDBUpdateItem call, you need to store the user identity information
in the table for comparison. First, your addPost mutation needs to store the creator. Second, your
editPost mutation needs to perform the conditional check before updating.

Here is an example of the resolver code for addPost that stores the user identity as an Author
column:

import { util, Context } from '@aws-appsync/utils';

Fine-grained access control 634

AWS AppSync Developer Guide

import { put } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { id: postId, ...item } = ctx.args;
 return put({
 key: { postId },
 item: { ...item, Author: ctx.identity.username },
 condition: { postId: { attributeExists: false } },
 });
}

export const response = (ctx) => ctx.result;

Note that the Author attribute is populated from the Identity object, which came from the
application.

Finally, here is an example of the resolver code for editPost, which only updates the content of
the blog post if the request comes from the user that created the post:

import { util, Context } from '@aws-appsync/utils';
import { put } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { id, ...item } = ctx.args;
 return put({
 key: { id },
 item,
 condition: { author: { contains: ctx.identity.username } },
 });
}

export const response = (ctx) => ctx.result;

This example uses a PutItem that overwrites all values rather than an UpdateItem, but the same
concept applies on the condition statement block.

Filtering information

There may be cases where you cannot control the response from your data source, but you don’t
want to send unnecessary information to clients on a successful write or read to the data source. In
these cases, you can filter information by using a response mapping template.

Filtering information 635

AWS AppSync Developer Guide

For example, suppose you don’t have an appropriate index on your blog post DynamoDB table
(such as an index on Author). You could use the following resolver:

import { util, Context } from '@aws-appsync/utils';
import { get } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 return get({ key: { ctx.args.id } });
}

export function response(ctx) {
 if (ctx.result.author === ctx.identity.username) {
 return ctx.result;
 }
 return null;
}

The request handler fetches the item even if the caller isn’t the author who created the post. To
prevent this from returning all data, the response handler checks to make sure the caller matches
the item’s author. If the caller doesn’t match this check, only a null response is returned.

Data source access

AWS AppSync communicates with data sources using Identity and Access Management (IAM) roles
and access policies. If you are using an existing role, a Trust Policy needs to be added in order for
AWS AppSync to assume the role. The trust relationship will look like below:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Data source access 636

https://aws.amazon.com/iam/

AWS AppSync Developer Guide

It’s important to scope down the access policy on the role to only have permissions to act on the
minimal set of resources necessary. When using the AppSync console to create a data source and
create a role, this is done automatically for you. However when using a built in sample template
from the IAM console to create a role outside of the AWS AppSync console the permissions will not
be automatically scoped down on a resource and you should perform this action before moving
your application to production.

Authorization use cases

In the Security section you learned about the different Authorization modes for protecting your
API and an introduction was given on Fine Grained Authorization mechanisms to understand the
concepts and flow. Since AWS AppSync allows you to perform logic full operations on data through
the use of GraphQL Resolver Mapping templates, you can protect data on read or write in a very
flexible manner using a combination of user identity, conditionals, and data injection.

If you’re not familiar with editing AWS AppSync Resolvers, review the programming guide.

Overview

Granting access to data in a system is traditionally done through an Access control matrix where
the intersection of a row (resource) and column (user/role) is the permissions granted.

AWS AppSync uses resources in your own account and threads identity (user/role) information
into the GraphQL request and response as a context object, which you can use in the resolver. This
means that permissions can be granted appropriately either on write or read operations based
on the resolver logic. If this logic is at the resource level, for example only certain named users
or groups can read/write to a specific database row, then that “authorization metadata” must
be stored. AWS AppSync does not store any data so therefore you must store this authorization
metadata with the resources so that permissions can be calculated. Authorization metadata is
usually an attribute (column) in a DynamoDB table, such as an owner or list of users/groups. For
example there could be Readers and Writers attributes.

From a high level, what this means is that if you are reading an individual item from a data source,
you perform a conditional #if () ... #end statement in the response template after the
resolver has read from the data source. The check will normally be using user or group values in
$context.identity for membership checks against the authorization metadata returned from a
read operation. For multiple records, such as lists returned from a table Scan or Query, you’ll send
the condition check as part of the operation to the data source using similar user or group values.

Authorization use cases 637

https://en.wikipedia.org/wiki/Access_Control_Matrix

AWS AppSync Developer Guide

Similarly when writing data you’ll apply a conditional statement to the action (like a PutItem
or UpdateItem to see if the user or group making a mutation has permission. The conditional
again will many times be using a value in $context.identity to compare against authorization
metadata on that resource. For both request and response templates you can also use custom
headers from clients to perform validation checks.

Reading data

As outlined above the authorization metadata to perform a check must be stored with a resource
or passed in to the GraphQL request (identity, header, etc.). To demonstrate this suppose you have
the DynamoDB table below:

The primary key is id and the data to be accessed is Data. The other columns are examples of
checks you can perform for authorization. Owner would be a String while PeopleCanAccess
and GroupsCanAccess would be String Sets as outlined in the Resolver mapping template
reference for DynamoDB.

In the resolver mapping template overview the diagram shows how the response template
contains not only the context object but also the results from the data source. For GraphQL queries
of individual items, you can use the response template to check if the user is allowed to see these
results or return an authorization error message. This is sometimes referred to as an “Authorization
filter”. For GraphQL queries returning lists, using a Scan or Query, it is more performant to perform
the check on the request template and return data only if an authorization condition is satisfied.
The implementation is then:

1. GetItem - authorization check for individual records. Done using #if() ... #end statements.

2. Scan/Query operations - authorization check is a "filter":{"expression":...} statement.
Common checks are equality (attribute = :input) or checking if a value is in a list
(contains(attribute, :input)).

In #2 the attribute in both statements represents the column name of the record in a table, such
as Owner in our above example. You can alias this with a # sign and use "expressionNames":
{...} but it’s not mandatory. The :input is a reference to the value you’re comparing to the

Reading data 638

AWS AppSync Developer Guide

database attribute, which you will define in "expressionValues":{...}. You’ll see these
examples below.

Use case: owner can read

Using the table above, if you only wanted to return data if Owner == Nadia for an individual read
operation (GetItem) your template would look like:

#if($context.result["Owner"] == $context.identity.username)
 $utils.toJson($context.result)
#else
 $utils.unauthorized()
#end

A couple things to mention here which will be re-used in the remaining sections. First, the check
uses $context.identity.username which will be the friendly user sign-up name if Amazon
Cognito user pools is used and will be the user identity if IAM is used (including Amazon Cognito
Federated Identities). There are other values to store for an owner such as the unique “Amazon
Cognito identity” value, which is useful when federating logins from multiple locations, and you
should review the options available in the Resolver Mapping Template Context Reference.

Second, the conditional else check responding with $util.unauthorized() is completely
optional but recommended as a best practice when designing your GraphQL API.

Use case: hardcode specific access

// This checks if the user is part of the Admin group and makes the call
#foreach($group in $context.identity.claims.get("cognito:groups"))
 #if($group == "Admin")
 #set($inCognitoGroup = true)
 #end
#end
#if($inCognitoGroup)
{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "attributeValues" : {
 "owner" : $util.dynamodb.toDynamoDBJson($context.identity.username)

Reading data 639

AWS AppSync Developer Guide

 #foreach($entry in $context.arguments.entrySet())
 ,"${entry.key}" : $util.dynamodb.toDynamoDBJson($entry.value)
 #end
 }
}
#else
 $utils.unauthorized()
#end

Use case: filtering a list of results

In the previous example you were able to perform a check against $context.result directly
as it returned a single item, however some operations like a scan will return multiple items in
$context.result.items where you need to perform the authorization filter and only return
results that the user is allowed to see. Suppose the Owner field had the Amazon Cognito IdentityID
this time set on the record, you could then use the following response mapping template to filter
to only show those records that the user owned:

#set($myResults = [])
#foreach($item in $context.result.items)
 ##For userpools use $context.identity.username instead
 #if($item.Owner == $context.identity.cognitoIdentityId)
 #set($added = $myResults.add($item))
 #end
#end
$utils.toJson($myResults)

Use case: multiple people can read

Another popular authorization option is to allow a group of people to be able to read data. In the
example below the "filter":{"expression":...} only returns values from a table scan if the
user running the GraphQL query is listed in the set for PeopleCanAccess.

{
 "version" : "2017-02-28",
 "operation" : "Scan",
 "limit": #if(${context.arguments.count}) $util.toJson($context.arguments.count)
 #else 20 #end,
 "nextToken": #if(${context.arguments.nextToken})
 $util.toJson($context.arguments.nextToken) #else null #end,
 "filter":{

Reading data 640

AWS AppSync Developer Guide

 "expression": "contains(#peopleCanAccess, :value)",
 "expressionNames": {
 "#peopleCanAccess": "peopleCanAccess"
 },
 "expressionValues": {
 ":value": $util.dynamodb.toDynamoDBJson($context.identity.username)
 }
 }
}

Use case: group can read

Similar to the last use case, it may be that only people in one or more groups have rights to read
certain items in a database. Use of the "expression": "contains()" operation is similar
however it’s a logical-OR of all the groups that a user might be a part of which needs to be
accounted for in the set membership. In this case we build up a $expression statement below for
each group the user is in and then pass this to the filter:

#set($expression = "")
#set($expressionValues = {})
#foreach($group in $context.identity.claims.get("cognito:groups"))
 #set($expression = "${expression} contains(groupsCanAccess, :var
$foreach.count)")
 #set($val = {})
 #set($test = $val.put("S", $group))
 #set($values = $expressionValues.put(":var$foreach.count", $val))
 #if ($foreach.hasNext)
 #set($expression = "${expression} OR")
 #end
#end
{
 "version" : "2017-02-28",
 "operation" : "Scan",
 "limit": #if(${context.arguments.count}) $util.toJson($context.arguments.count)
 #else 20 #end,
 "nextToken": #if(${context.arguments.nextToken})
 $util.toJson($context.arguments.nextToken) #else null #end,
 "filter":{
 "expression": "$expression",
 "expressionValues": $utils.toJson($expressionValues)
 }
}

Reading data 641

AWS AppSync Developer Guide

Writing data

Writing data on mutations is always controlled on the request mapping template. In the case of
DynamoDB data sources, the key is to use an appropriate "condition":{"expression"...}"
which performs validation against the authorization metadata in that table. In Security, we
provided an example you can use to check the Author field in a table. The use cases in this section
explore more use cases.

Use case: multiple owners

Using the example table diagram from earlier, suppose the PeopleCanAccess list

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "update" : {
 "expression" : "SET meta = :meta",
 "expressionValues": {
 ":meta" : $util.dynamodb.toDynamoDBJson($ctx.args.meta)
 }
 },
 "condition" : {
 "expression" : "contains(Owner,:expectedOwner)",
 "expressionValues" : {
 ":expectedOwner" :
 $util.dynamodb.toDynamoDBJson($context.identity.username)
 }
 }
}

Use case: group can create new record

#set($expression = "")
#set($expressionValues = {})
#foreach($group in $context.identity.claims.get("cognito:groups"))
 #set($expression = "${expression} contains(groupsCanAccess, :var
$foreach.count)")
 #set($val = {})
 #set($test = $val.put("S", $group))

Writing data 642

AWS AppSync Developer Guide

 #set($values = $expressionValues.put(":var$foreach.count", $val))
 #if ($foreach.hasNext)
 #set($expression = "${expression} OR")
 #end
#end
{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 ## If your table's hash key is not named 'id', update it here. **
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 ## If your table has a sort key, add it as an item here. **
 },
 "attributeValues" : {
 ## Add an item for each field you would like to store to Amazon DynamoDB. **
 "title" : $util.dynamodb.toDynamoDBJson($ctx.args.title),
 "content": $util.dynamodb.toDynamoDBJson($ctx.args.content),
 "owner": $util.dynamodb.toDynamoDBJson($context.identity.username)
 },
 "condition" : {
 "expression": $util.toJson("attribute_not_exists(id) AND $expression"),
 "expressionValues": $utils.toJson($expressionValues)
 }
}

Use case: group can update existing record

#set($expression = "")
#set($expressionValues = {})
#foreach($group in $context.identity.claims.get("cognito:groups"))
 #set($expression = "${expression} contains(groupsCanAccess, :var
$foreach.count)")
 #set($val = {})
 #set($test = $val.put("S", $group))
 #set($values = $expressionValues.put(":var$foreach.count", $val))
 #if ($foreach.hasNext)
 #set($expression = "${expression} OR")
 #end
#end
{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {

Writing data 643

AWS AppSync Developer Guide

 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "update":{
 "expression" : "SET title = :title, content = :content",
 "expressionValues": {
 ":title" : $util.dynamodb.toDynamoDBJson($ctx.args.title),
 ":content" : $util.dynamodb.toDynamoDBJson($ctx.args.content)
 }
 },
 "condition" : {
 "expression": $util.toJson($expression),
 "expressionValues": $utils.toJson($expressionValues)
 }
}

Public and private records

With the conditional filters you can also choose to mark data as private, public or some other
Boolean check. This can then be combined as part of an authorization filter inside the response
template. Using this check is a nice way to temporarily hide data or remove it from view without
trying to control group membership.

For example suppose you added an attribute on each item in your DynamoDB table called public
with either a value of yes or no. The following response template could be used on a GetItem call
to only display data if the user is in a group that has access AND if that data is marked as public:

#set($permissions = $context.result.GroupsCanAccess)
#set($claimPermissions = $context.identity.claims.get("cognito:groups"))

#foreach($per in $permissions)
 #foreach($cgroups in $claimPermissions)
 #if($cgroups == $per)
 #set($hasPermission = true)
 #end
 #end
#end

#if($hasPermission && $context.result.public == 'yes')
 $utils.toJson($context.result)
#else
 $utils.unauthorized()
#end

Public and private records 644

AWS AppSync Developer Guide

The above code could also use a logical OR (||) to allow people to read if they have permission to
a record or if it’s public:

#if($hasPermission || $context.result.public == 'yes')
 $utils.toJson($context.result)
#else
 $utils.unauthorized()
#end

In general, you will find the standard operators ==, !=, &&, and || helpful when performing
authorization checks.

Real-time data

You can apply Fine Grained Access Controls to GraphQL subscriptions at the time a client makes
a subscription, using the same techniques described earlier in this documentation. You attach
a resolver to the subscription field, at which point you can query data from a data source and
perform conditional logic in either the request or response mapping template. You can also return
additional data to the client, such as the initial results from a subscription, as long as the data
structure matches that of the returned type in your GraphQL subscription.

Use case: user can subscribe to specific conversations only

A common use case for real-time data with GraphQL subscriptions is building a messaging or
private chat application. When creating a chat application that has multiple users, conversations
can occur between two people or among multiple people. These might be grouped into “rooms”,
which are private or public. As such, you would only want to authorize a user to subscribe to a
conversation (which could be one to one or among a group) for which they have been granted
access. For demonstration purposes, the sample below shows a simple use case of one user sending
a private message to another. The setup has two Amazon DynamoDB tables:

• Messages table: (primary key) toUser, (sort key) id

• Permissions table: (primary key) username

The Messages table stores the actual messages that get sent via a GraphQL mutation. The
Permissions table is checked by the GraphQL subscription for authorization at client connection
time. The example below assumes you are using the following GraphQL schema:

input CreateUserPermissionsInput {

Real-time data 645

AWS AppSync Developer Guide

 user: String!
 isAuthorizedForSubscriptions: Boolean
}

type Message {
 id: ID
 toUser: String
 fromUser: String
 content: String
}

type MessageConnection {
 items: [Message]
 nextToken: String
}

type Mutation {
 sendMessage(toUser: String!, content: String!): Message
 createUserPermissions(input: CreateUserPermissionsInput!): UserPermissions
 updateUserPermissions(input: UpdateUserPermissionInput!): UserPermissions
}

type Query {
 getMyMessages(first: Int, after: String): MessageConnection
 getUserPermissions(user: String!): UserPermissions
}

type Subscription {
 newMessage(toUser: String!): Message
 @aws_subscribe(mutations: ["sendMessage"])
}

input UpdateUserPermissionInput {
 user: String!
 isAuthorizedForSubscriptions: Boolean
}

type UserPermissions {
 user: String
 isAuthorizedForSubscriptions: Boolean
}

schema {
 query: Query

Real-time data 646

AWS AppSync Developer Guide

 mutation: Mutation
 subscription: Subscription
}

Some of the standard operations, such as createUserPermissions(), are not covered below
to illustrate the subscription resolvers, but are standard implementations of DynamoDB resolvers.
Instead, we’ll focus on subscription authorization flows with resolvers. To send a message from one
user to another, attach a resolver to the sendMessage() field and select the Messages table data
source with the following request template:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "toUser" : $util.dynamodb.toDynamoDBJson($ctx.args.toUser),
 "id" : $util.dynamodb.toDynamoDBJson($util.autoId())
 },
 "attributeValues" : {
 "fromUser" : $util.dynamodb.toDynamoDBJson($context.identity.username),
 "content" : $util.dynamodb.toDynamoDBJson($ctx.args.content),
 }
}

In this example, we use $context.identity.username. This returns user information for AWS
Identity and Access Management or Amazon Cognito users. The response template is a simple
passthrough of $util.toJson($ctx.result). Save and go back to the schema page. Then
attach a resolver for the newMessage() subscription, using the Permissions table as a data source
and the following request mapping template:

{
 "version": "2018-05-29",
 "operation": "GetItem",
 "key": {
 "username": $util.dynamodb.toDynamoDBJson($ctx.identity.username),
 },
}

Then use the following response mapping template to perform your authorization checks using
data from the Permissions table:

#if(! ${context.result})

Real-time data 647

AWS AppSync Developer Guide

 $utils.unauthorized()
#elseif(${context.identity.username} != ${context.arguments.toUser})
 $utils.unauthorized()
#elseif(! ${context.result.isAuthorizedForSubscriptions})
 $utils.unauthorized()
#else
##User is authorized, but we return null to continue
 null
#end

In this case, you’re doing three authorization checks. The first ensures that a result is returned. The
second ensures that the user isn’t subscribing to messages that are meant for another person. The
third ensures that the user is allowed to subscribe to any fields, by checking a DynamoDB attribute
of isAuthorizedForSubscriptions stored as a BOOL.

To test things out, you could sign in to the AWS AppSync console using Amazon Cognito user pools
and a user named “Nadia”, and then run the following GraphQL subscription:

subscription AuthorizedSubscription {
 newMessage(toUser: "Nadia") {
 id
 toUser
 fromUser
 content
 }
}

If in the Permissions table there is a record for the username key attribute of Nadia with
isAuthorizedForSubscriptions set to true, you’ll see a successful response. If you try a
different username in the newMessage() query above, an error will be returned.

Using AWS WAF to protect your APIs

AWS WAF is a web application firewall that helps protect web applications and APIs from attacks. It
allows you to configure a set of rules, called a web access control list (web ACL), that allow, block,
or monitor (count) web requests based on customizable web security rules and conditions that
you define. When you integrate your AWS AppSync API with AWS WAF, you gain more control and
visibility into the HTTP traffic accepted by your API. To learn more about AWS WAF, see How AWS
WAF Works in the AWS WAF Developer Guide.

Using AWS WAF to protect APIs 648

https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html
https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html

AWS AppSync Developer Guide

You can use AWS WAF to protect your AppSync API from common web exploits, such as SQL
injection and cross-site scripting (XSS) attacks. These could affect API availability and performance,
compromise security, or consume excessive resources. For example, you can create rules to allow or
block requests from specified IP address ranges, requests from CIDR blocks, requests that originate
from a specific country or region, requests that contain malicious SQL code, or requests that
contain malicious script.

You can also create rules that match a specified string or a regular expression pattern in HTTP
headers, method, query string, URI, and the request body (limited to the first 8 KB). Additionally,
you can create rules to block attacks from specific user agents, bad bots, and content scrapers. For
example, you can use rate-based rules to specify the number of web requests that are allowed by
each client IP in a trailing, continuously updated, 5-minute period.

To learn more about the types of rules that are supported and additional AWS WAF features, see
the AWS WAF Developer Guide and the AWS WAF API Reference.

Important

AWS WAF is your first line of defense against web exploits. When AWS WAF is enabled on
an API, AWS WAF rules are evaluated before other access control features, such as API key
authorization, IAM policies, OIDC tokens, and Amazon Cognito user pools.

Integrate an AppSync API with AWS WAF

You can integrate an Appsync API with AWS WAF using the AWS Management Console, the AWS
CLI, AWS CloudFormation, or any other compatible client.

To integrate an AWS AppSync API with AWS WAF

1. Create an AWS WAF web ACL. For detailed steps using the AWS WAF Console, see Creating a
web ACL.

2. Define the rules for the web ACL. A rule or rules are defined in the process of creating the web
ACL. For information about how to structure rules, see AWS WAF rules. For examples of useful
rules you can define for your AWS AppSync API, see Creating rules for a web ACL.

3. Associate the web ACL with an AWS AppSync API. You can perform this step in the AWS WAF
Console or in the AppSync Console.

Integrate an AppSync API with AWS WAF 649

https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html
https://docs.aws.amazon.com/waf/latest/APIReference/API_Types_AWS_WAFV2.html
https://console.aws.amazon.com/waf/
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-creating.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-creating.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html
https://console.aws.amazon.com/wafv2/
https://console.aws.amazon.com/wafv2/
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

• To associate the web ACL with an AWS AppSync API in the AWS WAF Console, follow the
instructions for Associating or disassociating a Web ACL with an AWS resource in the AWS
WAF Developer Guide.

• To associate the web ACL with an AWS AppSync API in the AWS AppSync Console

a. Sign in to the AWS Management Console and open the AppSync Console.

b. Choose the API that you want to associate with a web ACL.

c. In the navigation pane, choose Settings.

d. In the Web application firewall section, turn on Enable AWS WAF.

e. In the Web ACL dropdown list, choose the name of the web ACL to associate with
your API.

f. Choose Save to associate the web ACL with your API.

Note

After you create a web ACL in the AWS WAF Console, it can take a few minutes for the new
web ACL to be available. If you do not see a newly created web ACL in the Web application
firewall menu, wait a few minutes and retry the steps to associate the web ACL with your
API.

Note

AWS WAF integration only supports the Subscription registration message event
for real-time endpoints. AWS AppSync will respond with an error message instead of a
start_ack message for any Subscription registration message blocked by AWS
WAF.

After you associate a web ACL with an AWS AppSync API, you will manage the web ACL using the
AWS WAF APIs. You do not need to re-associate the web ACL with your AWS AppSync API unless
you want to associate the AWS AppSync API with a different web ACL.

Integrate an AppSync API with AWS WAF 650

https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-associating-aws-resource.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

Creating rules for a web ACL

Rules define how to inspect web requests and what to do when a web request matches the
inspection criteria. Rules don't exist in AWS WAF on their own. You can access a rule by name in
a rule group or in the web ACL where it's defined. For more information, see AWS WAF rules. The
following examples demonstrate how to define and associate rules that are useful for protecting
an AppSync API.

Example web ACL rule to limit request body size

The following is an example of a rule that limits the body size of requests. This would be entered
into the Rule JSON editor when creating a web ACL in the AWS WAF Console.

{
 "Name": "BodySizeRule",
 "Priority": 1,
 "Action": {
 "Block": {}
 },
 "Statement": {
 "SizeConstraintStatement": {
 "ComparisonOperator": "GE",
 "FieldToMatch": {
 "Body": {}
 },
 "Size": 1024,
 "TextTransformations": [
 {
 "Priority": 0,
 "Type": "NONE"
 }
]
 }
 },
 "VisibilityConfig": {
 "CloudWatchMetricsEnabled": true,
 "MetricName": "BodySizeRule",
 "SampledRequestsEnabled": true
 }
}

Creating rules for a web ACL 651

https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html

AWS AppSync Developer Guide

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. As an alternative to using the AWS Management Console, you can perform this
step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

It can take a few minutes for the changes to propagate, but after running this command, requests
that contain a body larger than 1024 bytes will be rejected by AWS AppSync.

Note

After you create a new web ACL in the AWS WAF Console, it can take a few minutes for
the web ACL to be available to associate with an API. If you run the CLI command and get
a WAFUnavailableEntityException error, wait a few minutes and retry running the
command.

Example web ACL rule to limit requests from a single IP address

The following is an example of a rule that throttles an AppSync API to 100 requests from a single
IP address. This would be entered into the Rule JSON editor when creating a web ACL with a rate-
based rule in the AWS WAF Console.

{
 "Name": "Throttle",
 "Priority": 0,
 "Action": {
 "Block": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "Throttle"
 },
 "Statement": {
 "RateBasedStatement": {
 "Limit": 100,
 "AggregateKeyType": "IP"
 }
 }

Creating rules for a web ACL 652

AWS AppSync Developer Guide

}

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. You can perform this step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

Example web ACL rule to prevent GraphQL __schema introspection queries to an API

The following is an example of a rule that prevents GraphQL __schema introspection queries to an
API. Any HTTP body that includes the string "__schema" will be blocked. This would be entered into
the Rule JSON editor when creating a web ACL in the AWS WAF Console.

{
 "Name": "BodyRule",
 "Priority": 5,
 "Action": {
 "Block": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "BodyRule"
 },
 "Statement": {
 "ByteMatchStatement": {
 "FieldToMatch": {
 "Body": {}
 },
 "PositionalConstraint": "CONTAINS",
 "SearchString": "__schema",
 "TextTransformations": [
 {
 "Type": "NONE",
 "Priority": 0
 }
]
 }
 }
}

Creating rules for a web ACL 653

AWS AppSync Developer Guide

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. You can perform this step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

Creating rules for a web ACL 654

AWS AppSync Developer Guide

Security in AWS AppSync

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS AppSync, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS AppSync. The following topics show you how to configure AWS AppSync to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your AWS AppSync resources.

Topics

• Data protection in AWS AppSync

• Compliance validation for AWS AppSync

• Infrastructure security in AWS AppSync

• Resilience in AWS AppSync

• Identity and access management for AWS AppSync

• Logging AWS AppSync API calls with AWS CloudTrail

• Security best practices for AWS AppSync

655

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS AppSync Developer Guide

Data protection in AWS AppSync

The AWS shared responsibility model applies to data protection in AWS AppSync. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS AppSync or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Encryption in motion

AWS AppSync, like all AWS services, makes use of TLS1.2 and beyond for communication when
using the AWS published APIs and SDKs.

Data protection 656

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS AppSync Developer Guide

Using AWS AppSync with other AWS services such as Amazon DynamoDB ensures encryption
in transit: All AWS services use TLS 1.2 and beyond to communicate with one another unless
otherwise specified. For resolvers that utilize Amazon EC2 or CloudFront, it is your responsibility to
verify that TLS (HTTPS) is configured and secure. For information on configuring HTTPS in Amazon
EC2, see Configuring SSL/TLS on Amazon Linux 2 in the Amazon EC2 user guide. For information
about configuring HTTPS on CloudFront, see HTTPS in Amazon CloudFront in the CloudFront user
guide.

Compliance validation for AWS AppSync

Third-party auditors assess the security and compliance of AWS AppSync as part of multiple AWS
compliance programs. AWS AppSync is compliant with SOC, PCI, HIPAA/HIPAA BAA, IRAP, C5, ENS
High, OSPAR, and HITRUST CSF programs.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

Compliance validation 657

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-2.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/

AWS AppSync Developer Guide

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Infrastructure security in AWS AppSync

As a managed service, AWS AppSync is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To
design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS AppSync through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Infrastructure security 658

https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS AppSync Developer Guide

Resilience in AWS AppSync

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS AppSync allows most resources to be defined
using AWS CloudFormation templates; for an example of using AWS CloudFormation templates to
declare AWS AppSync resources, see Practical use cases for AWS AppSync Pipeline Resolvers on the
AWS blog and the AWS CloudFormation User Guide.

Identity and access management for AWS AppSync

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS AppSync resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS AppSync works with IAM

• Identity-based policies for AWS AppSync

• Troubleshooting AWS AppSync identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS AppSync.

Resilience 659

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/blogs/mobile/appsync-pipeline-resolvers-1/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

AWS AppSync Developer Guide

Service user – If you use the AWS AppSync service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more AWS AppSync features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
AWS AppSync, see Troubleshooting AWS AppSync identity and access.

Service administrator – If you're in charge of AWS AppSync resources at your company, you
probably have full access to AWS AppSync. It's your job to determine which AWS AppSync features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
AWS AppSync, see How AWS AppSync works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS AppSync. To view example AWS AppSync identity-
based policies that you can use in IAM, see Identity-based policies for AWS AppSync.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Authenticating with identities 660

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

AWS AppSync Developer Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Authenticating with identities 661

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

AWS AppSync Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Authenticating with identities 662

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS AppSync Developer Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most

Managing access using policies 663

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS AppSync Developer Guide

policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 664

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS AppSync Developer Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 665

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS AppSync Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS AppSync works with IAM

Before you use IAM to manage access to AWS AppSync, learn what IAM features are available to
use with AWS AppSync.

IAM features that you can use with AWS AppSync

IAM feature AWS AppSync support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) Partial

Service roles No

Service-linked roles Partial

To get a high-level view of how AWS AppSync and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

How AWS AppSync works with IAM 666

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS AppSync Developer Guide

Identity-based policies for AWS AppSync

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS AppSync

To view examples of AWS AppSync identity-based policies, see Identity-based policies for AWS
AppSync.

Resource-based policies within AWS AppSync

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

How AWS AppSync works with IAM 667

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS AppSync Developer Guide

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for AWS AppSync

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS AppSync actions, see Actions defined by AWS AppSync in the Service
Authorization Reference.

Policy actions in AWS AppSync use the following prefix before the action:

appsync

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "appsync:action1",
 "appsync:action2"
]

To view examples of AWS AppSync identity-based policies, see Identity-based policies for AWS
AppSync.

How AWS AppSync works with IAM 668

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html#awsappsync-actions-as-permissions

AWS AppSync Developer Guide

Policy resources for AWS AppSync

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AWS AppSync resource types and their ARNs, see Resources defined by AWS
AppSync in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions defined by AWS AppSync.

To view examples of AWS AppSync identity-based policies, see Identity-based policies for AWS
AppSync.

Policy condition keys for AWS AppSync

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How AWS AppSync works with IAM 669

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html#awsappsync-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html#awsappsync-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html#awsappsync-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

AWS AppSync Developer Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AWS AppSync condition keys, see Condition keys for AWS AppSync in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by AWS AppSync.

To view examples of AWS AppSync identity-based policies, see Identity-based policies for AWS
AppSync.

Access control lists (ACLs) in AWS AppSync

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with AWS AppSync

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How AWS AppSync works with IAM 670

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html#awsappsync-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html#awsappsync-actions-as-permissions

AWS AppSync Developer Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with AWS AppSync

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for AWS AppSync

Supports forward access sessions (FAS) Partial

How AWS AppSync works with IAM 671

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS AppSync Developer Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS AppSync

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AWS AppSync functionality. Edit
service roles only when AWS AppSync provides guidance to do so.

Service-linked roles for AWS AppSync

Supports service-linked roles Partial

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM
in the IAM User Guide. Find a service in the table that includes a Yes in the Service-linked role
column. Choose the Yes link to view the service-linked role documentation for that service.

How AWS AppSync works with IAM 672

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS AppSync Developer Guide

Identity-based policies for AWS AppSync

By default, users and roles don't have permission to create or modify AWS AppSync resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS AppSync, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS AppSync in
the Service Authorization Reference.

To learn the best practices for creating and configuring IAM identity-based policies, see the section
called “IAM policy best practices”.

For a list of IAM identity-based policies for AWS AppSync, see AWS managed policies for AWS
AppSync.

Topics

• Using the AWS AppSync console

• Allow users to view their own permissions

• Accessing one Amazon S3 bucket

• Viewing AWS AppSync widgets based on tags

• AWS managed policies for AWS AppSync

Using the AWS AppSync console

To access the AWS AppSync console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS AppSync resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policies 673

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html

AWS AppSync Developer Guide

To ensure that IAM users and roles can still use the AWS AppSync console, also attach the
AWS AppSync ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policies 674

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS AppSync Developer Guide

Accessing one Amazon S3 bucket

In this example, you want to grant an IAM user in your AWS account access to one of your Amazon
S3 buckets, examplebucket. You also want to allow the user to add, update, and delete objects.

In addition to granting the s3:PutObject, s3:GetObject, and s3:DeleteObject permissions
to the user, the policy also grants the s3:ListAllMyBuckets, s3:GetBucketLocation, and
s3:ListBucket permissions. These are the additional permissions required by the console. Also,
the s3:PutObjectAcl and the s3:GetObjectAcl actions are required to be able to copy, cut,
and paste objects in the console. For an example walkthrough that grants permissions to users and
tests them using the console, see An example walkthrough: Using user policies to control access to
your bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ListBucketsInConsole",
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws:s3:::*"
 },
 {
 "Sid":"ViewSpecificBucketInfo",
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource":"arn:aws:s3:::examplebucket"
 },
 {
 "Sid":"ManageBucketContents",
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:DeleteObject"

Identity-based policies 675

https://docs.aws.amazon.com/AmazonS3/latest/dev/walkthrough1.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/walkthrough1.html

AWS AppSync Developer Guide

],
 "Resource":"arn:aws:s3:::examplebucket/*"
 }
]
}

Viewing AWS AppSync widgets based on tags

You can use conditions in your identity-based policy to control access to AWS AppSync resources
based on tags. This example shows how you might create a policy that allows viewing a widget.
However, permission is granted only if the widget tag Owner has the value of that user's user
name. This policy also grants the permissions necessary to complete this action on the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListWidgetsInConsole",
 "Effect": "Allow",
 "Action": "appsync:ListWidgets",
 "Resource": "*"
 },
 {
 "Sid": "ViewWidgetIfOwner",
 "Effect": "Allow",
 "Action": "appsync:GetWidget",
 "Resource": "arn:aws:appsync:*:*:widget/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to view an AWS AppSync widget, the widget must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON policy elements: Condition in the IAM User Guide.

Identity-based policies 676

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS AppSync Developer Guide

AWS managed policies for AWS AppSync

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions that they need. To get started quickly, you can use
our AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AWSAppSyncInvokeFullAccess

Use the AWSAppSyncInvokeFullAccess AWS managed policy to allow your administrators to
access the AWS AppSync service through the console or independently.

You can attach the AWSAppSyncInvokeFullAccess policy to your IAM identities.

Permissions details

This policy includes the following permissions.

• AWS AppSync – Allows full administrative access to all resources in AWS AppSync

{

Identity-based policies 677

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS AppSync Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:GraphQL",
 "appsync:GetGraphqlApi",
 "appsync:ListGraphqlApis",
 "appsync:ListApiKeys"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSAppSyncSchemaAuthor

Use the AWSAppSyncSchemaAuthor AWS managed policy to allow IAM users to access to create,
update, and query their GraphQL schemas. For information about what users can do with these
permissions, see Designing GraphQL APIs.

You can attach the AWSAppSyncSchemaAuthor policy to your IAM identities.

Permissions details

This policy includes the following permissions.

• AWS AppSync – Allows the following actions:

• Creating GraphQL schemas

• Allowing the creation, modification, and deletion of GraphQL types, resolvers, and functions

• Evaluating request and response template logic

• Evaluating code with a runtime and context

• Sending GraphQL queries to GraphQL APIs

• Retrieving GraphQL data

{

Identity-based policies 678

AWS AppSync Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:GraphQL",
 "appsync:CreateResolver",
 "appsync:CreateType",
 "appsync:DeleteResolver",
 "appsync:DeleteType",
 "appsync:GetResolver",
 "appsync:GetType",
 "appsync:GetDataSource",
 "appsync:GetSchemaCreationStatus",
 "appsync:GetIntrospectionSchema",
 "appsync:GetGraphqlApi",
 "appsync:ListTypes",
 "appsync:ListApiKeys",
 "appsync:ListResolvers",
 "appsync:ListDataSources",
 "appsync:ListGraphqlApis",
 "appsync:StartSchemaCreation",
 "appsync:UpdateResolver",
 "appsync:UpdateType",
 "appsync:TagResource",
 "appsync:UntagResource",
 "appsync:ListTagsForResource",
 "appsync:CreateFunction",
 "appsync:UpdateFunction",
 "appsync:GetFunction",
 "appsync:DeleteFunction",
 "appsync:ListFunctions",
 "appsync:ListResolversByFunction",
 "appsync:EvaluateMappingTemplate",
 "appsync:EvaluateCode"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSAppSyncPushToCloudWatchLogs

Identity-based policies 679

AWS AppSync Developer Guide

AWS AppSync uses Amazon CloudWatch to monitor the performance of your application by
generating logs that you can use to troubleshoot and optimize your GraphQL requests. For more
information, see Monitoring and logging.

Use the AWSAppSyncPushToCloudWatchLogs AWS managed policy to allow AWS AppSync to
push logs to an IAM user's CloudWatch account.

You can attach the AWSAppSyncPushToCloudWatchLogs policy to your IAM identities.

Permissions details

This policy includes the following permissions.

• CloudWatch Logs – Allows AWS AppSync to create log groups and streams with specified
names. AWS AppSync pushes log events to the specified log stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSAppSyncAdministrator

Use the AWSAppSyncAdministrator AWS managed policy to allow your administrators to access
all of AWS AppSync except for the AWS console.

You can attach AWSAppSyncAdministrator to your IAM entities. AWS AppSync also attaches this
policy to a service role that allows it to perform actions on your behalf.

Identity-based policies 680

AWS AppSync Developer Guide

Permissions details

This policy includes the following permissions.

• AWS AppSync – Allows full administrative access to all resources in AWS AppSync

• IAM – Allows the following actions:

• Creating service-linked roles to allow AWS AppSync to analyze resources in other services on
your behalf

• Deleting service-linked roles

• Passing service-linked roles on to other AWS services to assume the role later and to perform
actions on your behalf

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "appsync.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",

Identity-based policies 681

AWS AppSync Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "appsync.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/appsync.amazonaws.com/
AWSServiceRoleForAppSync*"
 }
]
}

AWS managed policy: AWSAppSyncServiceRolePolicy

Use the AWSAppSyncServiceRolePolicy AWS managed policy to allow access to AWS services
and resources that AWS AppSync uses or manages.

You can't attach AWSAppSyncServiceRolePolicy to your IAM entities. This policy is attached
to a service-linked role that allows AWS AppSync to perform actions on your behalf. For more
information, see Service-linked roles for AWS AppSync.

Permissions details

This policy includes the following permissions.

• X-Ray – AWS AppSync uses AWS X-Ray to collect data about requests made within your
application. For more information, see Tracing with AWS X-Ray.

This policy allows the following actions:

• Retrieving sampling rules and their results

• Sending trace data to the X-Ray daemon

Identity-based policies 682

AWS AppSync Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingTargets",
 "xray:GetSamplingRules",
 "xray:GetSamplingStatisticSummaries"
],
 "Resource": [
 "*"
]
 }
]
}

AWS AppSync updates to AWS managed policies

View details about updates to AWS managed policies for AWS AppSync since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the AWS AppSync Document history page.

Change Description Date

AWSAppSyncSchemaAuthor -
Update to an existing policy

Added an EvaluateCode
policy action to allow users to
evaluate code with a runtime
and context.

February 7, 2023

AWSAppSyncSchemaAuthor -
Update to an existing policy

Added policy actions to allow
the list, get, create, update,
and delete functions for an
API.

Added an EvaluateM
appingTemplate

August 25, 2022

Identity-based policies 683

AWS AppSync Developer Guide

Change Description Date

policy action to allow users
to evaluate request and
response resolver mapping
template logic.

Added policy actions to allow
resource tagging.

AWS AppSync started
tracking changes

AWS AppSync started
tracking changes for its AWS
managed policies.

August 25, 2022

Troubleshooting AWS AppSync identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS AppSync and IAM.

I am not authorized to perform an action in AWS AppSync

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the IAM user mateojackson tries to use the console to
view details about a fictional my-example-widget resource, but he does not have the fictional
appsync:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 appsync:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the appsync:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS AppSync.

Troubleshooting 684

AWS AppSync Developer Guide

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS AppSync. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to view my access keys

After you create your IAM user access keys, you can view your access key ID at any time. However,
you can't view your secret access key again. If you lose your secret key, you must create a new
access key pair.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and
a secret access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). Like a
user name and password, you must use both the access key ID and secret access key together to
authenticate your requests. Manage your access keys as securely as you do your user name and
password.

Important

Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your AWS account.

When you create an access key pair, you are prompted to save the access key ID and secret access
key in a secure location. The secret access key is available only at the time you create it. If you lose
your secret access key, you must add new access keys to your IAM user. You can have a maximum of
two access keys. If you already have two, you must delete one key pair before creating a new one.
To view instructions, see Managing access keys in the IAM User Guide.

Troubleshooting 685

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html#FindCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey

AWS AppSync Developer Guide

I'm an administrator and want to allow others to access AWS AppSync

To allow others to access AWS AppSync, you must create an IAM entity (user or role) for the person
or application that needs access. They will use the credentials for that entity to access AWS. You
must then attach a policy to the entity that grants them the correct permissions in AWS AppSync.

To get started right away, see Creating your first IAM delegated user and group in the IAM User
Guide.

I want to allow people outside of my AWS account to access my AWS AppSync
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS AppSync supports these features, see How AWS AppSync works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging AWS AppSync API calls with AWS CloudTrail

AWS AppSync is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in AWS AppSync. CloudTrail captures API calls for AWS AppSync
as events. The calls captured include calls from the AWS AppSync console and code calls to the
AWS AppSync API operations. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for AWS AppSync. If you don't configure a

Logging AWS AppSync API calls with AWS CloudTrail 686

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS AppSync Developer Guide

trail, you can still view the most recent events in the CloudTrail console in Event history. Using
the information collected by CloudTrail, you can determine the request that was made to AWS
AppSync, the IP address from which the request was made, who made the request, when it was
made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS AppSync information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS AppSync, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for AWS AppSync, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

AWS AppSync supports logging of calls made through the AWS AppSync API. At this time, calls to
your APIs, as well as calls made to resolvers are not logged by AWS AppSync into CloudTrail.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

AWS AppSync information in CloudTrail 687

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS AppSync Developer Guide

For more information, see the CloudTrail userIdentity element.

Understanding AWS AppSync log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the GetGraphqlApi action
made through the AWS AppSync console:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "ABCDEFXAMPLEPRINCIPAL:nikkiwolf",
 "arn": "arn:aws:sts::111122223333:assumed-role/admin/nikkiwolf",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDAJ45Q7YFFAREXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/admin",
 "accountId": "111122223333",
 "userName": "admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2021-03-12T22:41:48Z"
 }
 }
 },
 "eventTime": "2021-03-12T22:46:18Z",
 "eventSource": "appsync.amazonaws.com",
 "eventName": "GetGraphqlApi",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.69",

Understanding AWS AppSync log file entries 688

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS AppSync Developer Guide

 "userAgent": "aws-internal/3 aws-sdk-java/1.11.942
 Linux/4.9.230-0.1.ac.223.84.332.metal1.x86_64 OpenJDK_64-Bit_Server_VM/25.282-b08
 java/1.8.0_282 vendor/Oracle_Corporation",
 "requestParameters": {
 "apiId": "xhxt3typtfnmidkhcexampleid"
 },
 "responseElements": null,
 "requestID": "2fc43a35-a552-4b5d-be6e-12553a03dd12",
 "eventID": "b95b0ad9-8c71-4252-a2ec-5dc2fe5f8ae8",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

The following example shows a CloudTrail log entry that demonstrates the CreateApikey action
made through the AWS CLI:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "ABCDEFXAMPLEPRINCIPAL",
 "arn": "arn:aws:iam::111122223333:user/nikkiwolf",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "nikkiwolf"
 },
 "eventTime": "2021-03-12T22:49:10Z",
 "eventSource": "appsync.amazonaws.com",
 "eventName": "CreateApiKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.69",
 "userAgent": "aws-cli/2.0.11 Python/3.7.4 Darwin/18.7.0 botocore/2.0.0dev15",
 "requestParameters": {
 "apiId": "xhxt3typtfnmidkhcexampleid"
 },
 "responseElements": {
 "apiKey": {
 "id": "***",
 "expires": 1616191200,
 "deletes": 1621375200

Understanding AWS AppSync log file entries 689

AWS AppSync Developer Guide

 }
 },
 "requestID": "e152190e-04ba-4d0a-ae7b-6bfc0bcea6af",
 "eventID": "ba3f39e0-9d87-41c5-abbb-2000abcb6013",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

Security best practices for AWS AppSync

Securing AWS AppSync is more than simply turning on a few levers or setting up logging. The
following sections discuss security best practices that vary depending on how you use the service.

Understand authentication methods

AWS AppSync provides multiple ways to authenticate your users to your GraphQL APIs. Each
method has trade-offs in security, auditability, and usability.

The following common authentication methods are available:

• Amazon Cognito user pools allow your GraphQL API to use user attributes for fine-grained access
control and filtering.

• API tokens have a limited lifetime and are appropriate for automated systems, such as
Continuous Integration systems and integration with external APIs.

• AWS Identity and Access Management (IAM) is appropriate for internal applications managed in
your AWS account.

• OpenID Connect allows you to control and federate access with the OpenID Connect protocol.

For more information on authentication and authorization in AWS AppSync, see Authorization and
authentication.

Use TLS for HTTP resolvers

When using HTTP resolvers, make sure to use TLS-secured (HTTPS) connections wherever possible.
For a full list of the TLS certificates that AWS AppSync trusts, see Certificate Authorities (CA)
Recognized by AWS AppSync for HTTPS Endpoints.

Best practices 690

AWS AppSync Developer Guide

Use roles with the least permissions possible

When using resolvers such as the DynamoDB resolver, use roles that provide the most restrictive
view to your resources, such as your Amazon DynamoDB tables.

IAM policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS AppSync
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

Use roles with the least permissions possible 691

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

AWS AppSync Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

IAM policy best practices 692

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS AppSync Developer Guide

Resolver reference (JavaScript)

The following sections describe the APPSYNC_JS runtime and JavaScript resolvers.

Topics

• JavaScript resolvers overview

• Resolver context object reference

• JavaScript runtime features for resolvers and functions

• JavaScript resolver function reference for DynamoDB

• JavaScript resolver function reference for OpenSearch

• JavaScript resolver function reference for Lambda

• JavaScript resolver function reference for EventBridge data source

• JavaScript Resolver function reference for None data source

• JavaScript resolver function reference for HTTP

• JavaScript resolver function reference for Amazon RDS

JavaScript resolvers overview

AWS AppSync lets you respond to GraphQL requests by performing operations on your data
sources. For each GraphQL field you wish to run a query, mutation, or subscription on, a resolver
must be attached.

Resolvers are the connectors between GraphQL and a data source. They tell AWS AppSync how to
translate an incoming GraphQL request into instructions for your backend data source and how to
translate the response from that data source back into a GraphQL response. With AWS AppSync,
you can write your resolvers using JavaScript and run them in the AWS AppSync (APPSYNC_JS)
environment.

AWS AppSync allows you to write unit resolvers or pipeline resolvers composed of multiple AWS
AppSync functions in a pipeline.

JavaScript resolvers overview 693

AWS AppSync Developer Guide

Supported runtime features

The AWS AppSync JavaScript runtime provides a subset of JavaScript libraries, utilities, and
features. For a complete list of features and functionality supported by the APPSYNC_JS runtime,
see JavaScript runtime features for resolvers and functions.

Unit resolvers

A unit resolver is composed of code that defines a request and response handler that are executed
against a data source. The request handler takes a context object as an argument and returns
the request payload used to call your data source. The response handler receives a payload back
from the data source with the result of the executed request. The response handler transforms the
payload into a GraphQL response to resolve the GraphQL field. In the example below, a resolver
retrieves an item from an DynamoDB data source:

import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 return ddb.get({ key: { id: ctx.args.id } });
}

export const response = (ctx) => ctx.result;

Anatomy of a JavaScript pipeline resolver

A pipeline resolver is composed of code that defines a request and response handler and a list of
functions. Each function has a request and response handler that it executes against a data source.
As a pipeline resolver delegates runs to a list of functions, it is therefore not linked to any data
source. Unit resolvers and functions are primitives that execute operation against data sources.

Pipeline resolver request handler

The request handler of a pipeline resolver (the before step) allows you to perform some
preparation logic before running the defined functions.

Functions list

The list of functions a pipeline resolver will run in sequence. The pipeline resolver request handler
evaluation result is made available to the first function as ctx.prev.result. Each function
evaluation result is available to the next function as ctx.prev.result.

Supported runtime features 694

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html

AWS AppSync Developer Guide

Pipeline resolver response handler

The response handler of a pipeline resolver allows you to perform some final logic from the
output of the last function to the expected GraphQL field type. The output of the last function in
the functions list is available in the pipeline resolver response handler as ctx.prev.result or
ctx.result.

Execution flow

Given a pipeline resolver comprised of two functions, the list below represents the execution flow
when the resolver is invoked:

1. Pipeline resolver request handler

2. Function 1: Function request handler

3. Function 1: Data source invocation

4. Function 1: Function response handler

5. Function 2: Function request handler

6. Function 2: Data source invocation

7. Function 2: Function response handler

8. Pipeline resolver response handler

Anatomy of a JavaScript pipeline resolver 695

AWS AppSync Developer Guide

Anatomy of a JavaScript pipeline resolver 696

AWS AppSync Developer Guide

Useful APPSYNC_JS runtime built-in utilities

The following utilities can help you when you’re working with pipeline resolvers.

ctx.stash

The stash is an object that is made available inside each resolver and function request and response
handler. The same stash instance lives through a single resolver run. This means that you can use
the stash to pass arbitrary data across request and response handlers and across functions in a
pipeline resolver. You can test the stash like a regular JavaScript object.

ctx.prev.result

The ctx.prev.result represents the result of the previous operation that was executed
in the pipeline. If the previous operation was the pipeline resolver request handler, then
ctx.prev.result is made available to the first function in the chain. If the previous operation
was the first function, then ctx.prev.result represents the output of the first function and
is made available to the second function in the pipeline. If the previous operation was the last
function, then ctx.prev.result represents the output of the last function and is made available
to the pipeline resolver response handler.

util.error

The util.error utility is useful to throw a field error. Using util.error inside a function
request or response handler throws a field error immediately, which prevents subsequent functions
from being executed. For more details and other util.error signatures, visit JavaScript runtime
features for resolvers and functions.

util.appendError

util.appendError is similar to util.error(), with the major distinction that it doesn’t
interrupt the evaluation of the handler. Instead, it signals there was an error with the field, but
allows the handler to be evaluated and consequently return data. Using util.appendError
inside a function will not disrupt the execution flow of the pipeline. For more details and other
util.error signatures, visit the JavaScript runtime features for resolvers and functions.

runtime.earlyReturn

The runtime.earlyReturn function allows you to prematurely return from any request function.
Using runtime.earlyReturn inside of a resolver request handler will return from the resolver.

Anatomy of a JavaScript pipeline resolver 697

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html

AWS AppSync Developer Guide

Calling it from an AWS AppSync function request handler will return from the function and will
continue the run to either the next function in the pipeline or the resolver response handler.

Writing pipeline resolvers

A pipeline resolver also has a request and a response handler surrounding the run of the functions
in the pipeline: its request handler is run before the first function’s request, and its response
handler is run after the last function’s response. The resolver request handler can set up data to
be used by functions in the pipeline. The resolver response handler is responsible for returning
data that maps to the GraphQL field output type. In the example below, a resolver request handler,
defines allowedGroups; the data returned should belong to one of these groups. This value can
be used by the resolver’s functions to request data. The resolver’s response handler conducts a
final check and filters the result to make sure that only items that belong to the allowed groups are
returned.

import { util } from '@aws-appsync/utils';

/**
 * Called before the request function of the first AppSync function in the pipeline.
 * @param ctx the context object holds contextual information about the function
 invocation.
 */
export function request(ctx) {
 ctx.stash.allowedGroups = ['admin'];
 ctx.stash.startedAt = util.time.nowISO8601();
 return {};
}
/**
 * Called after the response function of the last AppSync function in the pipeline.
 * @param ctx the context object holds contextual information about the function
 invocation.
 */
export function response(ctx) {
 const result = [];
 for (const item of ctx.prev.result) {
 if (ctx.stash.allowedGroups.indexOf(item.group) > -1) result.push(item);
 }
 return result;
}

Anatomy of a JavaScript pipeline resolver 698

AWS AppSync Developer Guide

Writing AWS AppSync functions

AWS AppSync functions enable you to write common logic that you can reuse across multiple
resolvers in your schema. For example, you can have one AWS AppSync function called
QUERY_ITEMS that is responsible for querying items from an Amazon DynamoDB data source. For
resolvers that you'd like to query items with, simply add the function to the resolver's pipeline and
provide the query index to be used. The logic doesn't have to be re-implemented.

Writing code

Suppose you wanted to attach a pipeline resolver on a field named getPost(id:ID!) that
returns a Post type from an Amazon DynamoDB data source with the following GraphQL query:

getPost(id:1){
 id
 title
 content
}

First, attach a simple resolver to Query.getPost with the code below. This is an example of
simple resolver code. There is no logic defined in the request handler, and the response handler
simply returns the result of the last function.

/**
 * Invoked **before** the request handler of the first AppSync function in the
 pipeline.
 * The resolver `request` handler allows to perform some preparation logic
 * before executing the defined functions in your pipeline.
 * @param ctx the context object holds contextual information about the function
 invocation.
 */
export function request(ctx) {
 return {}
}

/**
 * Invoked **after** the response handler of the last AppSync function in the pipeline.
 * The resolver `response` handler allows to perform some final evaluation logic
 * from the output of the last function to the expected GraphQL field type.
 * @param ctx the context object holds contextual information about the function
 invocation.

Writing code 699

AWS AppSync Developer Guide

 */
export function response(ctx) {
 return ctx.prev.result
}

Next, define function GET_ITEM that retrieves a postitem from your data source:

import { util } from '@aws-appsync/utils'
import * as ddb from '@aws-appsync/utils/dynamodb'

/**
 * Request a single item from the attached DynamoDB table datasource
 * @param ctx the context object holds contextual information about the function
 invocation.
 */
export function request(ctx) {
 const { id } = ctx.args
 return ddb.get({ key: { id } })
}

/**
 * Returns the result
 * @param ctx the context object holds contextual information about the function
 invocation.
 */
export function response(ctx) {
 const { error, result } = ctx
 if (error) {
 return util.appendError(error.message, error.type, result)
 }
 return ctx.result
}

If there is an error during the request, the function’s response handler appends an error that will
be returned to the calling client in the GraphQL response. Add the GET_ITEM function to your
resolver functions list. When you execute the query, the GET_ITEM function’s request handler uses
the utils provided by AWS AppSync's DynamoDB module to create a DynamoDBGetItem request
using the id as the key. ddb.get({ key: { id } }) generates the appropriate GetItem
operation:

{
 "operation" : "GetItem",

Writing code 700

AWS AppSync Developer Guide

 "key" : {
 "id" : { "S" : "1" }
 }
}

AWS AppSync uses the request to fetch the data from Amazon DynamoDB. Once the data is
returned, it is handled by the GET_ITEM function’s response handler, which checks for errors and
then returns the result.

{
 "result" : {
 "id": 1,
 "title": "hello world",
 "content": "<long story>"
 }
}

Finally, the resolver’s response handler returns the result directly.

Working with errors

If an error occurs in your function during a request, the error will be made available in your
function response handler in ctx.error. You can append the error to your GraphQL response
using the util.appendError utility. You can make the error available to other functions in the
pipeline by using the stash. See the example below:

/**
 * Returns the result
 * @param ctx the context object holds contextual information about the function
 invocation.
 */
export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 if (!ctx.stash.errors) ctx.stash.errors = []
 ctx.stash.errors.push(ctx.error)
 return util.appendError(error.message, error.type, result);
 }
 return ctx.result;
}

Writing code 701

AWS AppSync Developer Guide

Utilities

AWS AppSync provides two libraries that aid in the development of resolvers with the APPSYNC_JS
runtime:

• @aws-appsync/eslint-plugin - Catches and fixes problems quickly during development.

• @aws-appsync/utils - Provides type validation and autocompletion in code editors.

Configuring the eslint plugin

ESLint is a tool that statically analyzes your code to quickly find problems. You can run ESLint as
part of your continuous integration pipeline. @aws-appsync/eslint-plugin is an ESLint plugin
that catches invalid syntax in your code when leveraging the APPSYNC_JS runtime. The plugin
allows you to quickly get feedback about your code during development without having to push
your changes to the cloud.

@aws-appsync/eslint-plugin provides two rule sets that you can use during development.

"plugin:@aws-appsync/base" configures a base set of rules that you can leverage in your project:

Rule Description

no-async Async processes and promises are not
supported.

no-await Async processes and promises are not
supported.

no-classes Classes are not supported.

no-for for is not supported (except for for-in and
for-of, which are supported)

no-continue continue is not supported.

no-generators Generators are not supported.

no-yield yield is not supported.

Utilities 702

https://eslint.org/

AWS AppSync Developer Guide

Rule Description

no-labels Labels are not supported.

no-this this keyword is not supported.

no-try Try/catch structure is not supported.

no-while While loops are not supported.

no-disallowed-unary-operators ++, --, and ~ unary operators are not allowed.

no-disallowed-binary-operators The instanceof operator is not allowed.

no-promise Async processes and promises are not
supported.

"plugin:@aws-appsync/recommended" provides some additional rules but also requires you to
add TypeScript configurations to your project.

Rule Description

no-recursion Recursive function calls are not allowed.

no-disallowed-methods Some methods are not allowed. See the
reference for a full set of supported built-in
functions.

no-function-passing Passing functions as function arguments to
functions is not allowed.

no-function-reassign Functions cannot be reassigned.

no-function-return Functions cannot be the return value of
functions.

Utilities 703

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html

AWS AppSync Developer Guide

To add the plugin to your project, follow the installation and usage steps at Getting Started with
ESLint. Then, install the plugin in your project using your project package manager (e.g., npm, yarn,
or pnpm):

$ npm install @aws-appsync/eslint-plugin

In your .eslintrc.{js,yml,json} file, add "plugin:@aws-appsync/base" or "plugin:@aws-
appsync/recommended" to the extends property. The snippet below is a basic sample
.eslintrc configuration for JavaScript:

{
 "extends": ["plugin:@aws-appsync/base"]
}

To use the "plugin:@aws-appsync/recommended" rule set, install the required dependency:

$ npm install -D @typescript-eslint/parser

Then, create an .eslintrc.js file:

{
 "parser": "@typescript-eslint/parser",
 "parserOptions": {
 "ecmaVersion": 2018,
 "project": "./tsconfig.json"
 },
 "extends": ["plugin:@aws-appsync/recommended"]
}

Bundling, TypeScript, and source maps

Leveraging libraries and bundling your code

In your resolver and function code, you can leverage both custom and external libraries so long
as they comply with the APPSYNC_JS requirements. This makes it possible to reuse existing code
in your application. To make use of libraries that are defined by multiple files, you must use a
bundling tool, such as esbuild, to combine your code in a single file that can then be saved to your
AWS AppSync resolver or function.

When bundling your code, keep the following in mind:

Bundling, TypeScript, and source maps 704

https://eslint.org/docs/latest/user-guide/getting-started#installation-and-usage
https://eslint.org/docs/latest/user-guide/getting-started#installation-and-usage
https://www.npmjs.com/package/@aws-appsync/eslint-plugin
https://esbuild.github.io/

AWS AppSync Developer Guide

• APPSYNC_JS only supports ECMAScript modules (ESM).

• @aws-appsync/* modules are integrated into APPSYNC_JS and should not be bundled with
your code.

• The APPSYNC_JS runtime environment is similar to NodeJS in that code does not run in a
browser environment.

• You can include an optional source map. However, do not include the source content.

To learn more about source maps, see Using source maps.

For example, to bundle your resolver code located at src/appsync/getPost.resolver.js, you
can use the following esbuild CLI command:

$ esbuild --bundle \
--sourcemap=inline \
--sources-content=false \
--target=esnext \
--platform=node \
--format=esm \
--external:@aws-appsync/utils \
--outdir=out/appsync \
 src/appsync/getPost.resolver.js

Building your code and working with TypeScript

TypeScript is a programming language developed by Microsoft that offers all of JavaScript’s
features along with the TypeScript typing system. You can use TypeScript to write type-safe code
and catch errors and bugs at build time before saving your code to AWS AppSync. The @aws-
appsync/utils package is fully typed.

The APPSYNC_JS runtime doesn't support TypeScript directly. You must first transpile your
TypeScript code to JavaScript code that the APPSYNC_JS runtime supports before saving
your code to AWS AppSync. You can use TypeScript to write your code in your local integrated
development environment (IDE), but note that you cannot create TypeScript code in the AWS
AppSync console.

To get started, make sure you have TypeScript installed in your project. Then, configure your
TypeScript transcompilation settings to work with the APPSYNC_JS runtime using TSConfig. Here’s
an example of a basic tsconfig.json file that you can use:

Bundling, TypeScript, and source maps 705

https://www.typescriptlang.org/
https://www.typescriptlang.org/download
https://www.typescriptlang.org/tsconfig

AWS AppSync Developer Guide

// tsconfig.json
{
 "compilerOptions": {
 "target": "esnext",
 "module": "esnext",
 "noEmit": true,
 "moduleResolution": "node",
 }
}

You can then use a bundling tool like esbuild to compile and bundle your code. For example,
given a project with your AWS AppSync code located at src/appsync, you can use the following
command to compile and bundle your code:

$ esbuild --bundle \
--sourcemap=inline \
--sources-content=false \
--target=esnext \
--platform=node \
--format=esm \
--external:@aws-appsync/utils \
--outdir=out/appsync \
 src/appsync/**/*.ts

Using Amplify codegen

You can use the Amplify CLI to generate the types for your schema. From the directory where your
schema.graphql file is located, run the following command and review the prompts to configure
your codegen:

$ npx @aws-amplify/cli codegen add

To regenerate your codegen under certain circumstances (e.g., when your schema is updated), run
the following command:

$ npx @aws-amplify/cli codegen

You can then use the generated types in your resolver code. For example, given the following
schema:

Bundling, TypeScript, and source maps 706

https://docs.amplify.aws/cli/

AWS AppSync Developer Guide

type Todo {
 id: ID!
 title: String!
 description: String
}

type Mutation {
 createTodo(title: String!, description: String): Todo
}

type Query {
 listTodos: Todo
}

You could use the generated types in the following example AWS AppSync function:

import { Context, util } from '@aws-appsync/utils'
import * as ddb from '@aws-appsync/utils/dynamodb'
import { CreateTodoMutationVariables, Todo } from './API' // codegen

export function request(ctx: Context<CreateTodoMutationVariables>) {
 ctx.args.description = ctx.args.description ?? 'created on ' + util.time.nowISO8601()
 return ddb.put<Todo>({ key: { id: util.autoId() }, item: ctx.args })
}

export function response(ctx) {
 return ctx.result as Todo
}

Using generics in TypeScript

You can use generics with several of the provided types. For example, the snippet below is a Todo
type:

export type Todo = {
 __typename: "Todo",
 id: string,
 title: string,
 description?: string | null,
};

Bundling, TypeScript, and source maps 707

AWS AppSync Developer Guide

You can write a resolver for a subscription that makes use of Todo. In your IDE, type definitions and
auto-complete hints will guide you into properly using the toSubscriptionFilter transform
utility:

import { util, Context, extensions } from '@aws-appsync/utils'
import { Todo } from './API'

export function request(ctx: Context) {
 return {}
}

export function response(ctx: Context) {
 const filter = util.transform.toSubscriptionFilter<Todo>({
 title: { beginsWith: 'hello' },
 description: { contains: 'created' },
 })
 extensions.setSubscriptionFilter(filter)
 return null
}

Linting your bundles

You can automatically lint your bundles by importing the esbuild-plugin-eslint plugin. You
can then enable it by providing a plugins value that enables eslint capabilities. Below is a snippet
that uses the esbuild JavaScript API in a file called build.mjs:

/* eslint-disable */
import { build } from 'esbuild'
import eslint from 'esbuild-plugin-eslint'
import glob from 'glob'
const files = await glob('src/**/*.ts')

await build({
 format: 'esm',
 target: 'esnext',
 platform: 'node',
 external: ['@aws-appsync/utils'],
 outdir: 'dist/',
 entryPoints: files,
 bundle: true,
 plugins: [eslint({ useEslintrc: true })],
})

Bundling, TypeScript, and source maps 708

AWS AppSync Developer Guide

Using source maps

You can provide an inline source map (sourcemap) with your JavaScript code. Source maps are
useful for when you bundle JavaScript or TypeScript code and want to see references to your input
source files in your logs and runtime JavaScript error messages.

Your sourcemap must appear at the end of your code. It is defined by a single comment line that
follows the following format:

//# sourceMappingURL=data:application/json;base64,<base64 encoded string>

Here's an example:

//# sourceMappingURL=data:application/
json;base64,ewogICJ2ZXJzaW9uIjogMywKICAic291cmNlcyI6IFsibGliLmpzIiwgImNvZGUuanMiXSwKICAibWFwcGluZ3MiOiAiO0FBQU8sU0FBUyxRQUFRO0FBQ3RCLFNBQU87QUFDVDs7O0FDRE8sU0FBUyxRQUFRLEtBQUs7QUFDM0IsU0FBTyxNQUFNO0FBQ2Y7IiwKICAibmFtZXMiOiBbXQp9Cg==

Source maps can be created with esbuild. The example below shows you how to use the esbuild
JavaScript API to include an inline source map when code is built and bundled:

/* eslint-disable */
import { build } from 'esbuild'
import eslint from 'esbuild-plugin-eslint'
import glob from 'glob'
const files = await glob('src/**/*.ts')

await build({
 sourcemap: 'inline',
 sourcesContent: false,

 format: 'esm',
 target: 'esnext',
 platform: 'node',
 external: ['@aws-appsync/utils'],
 outdir: 'dist/',
 entryPoints: files,
 bundle: true,
 plugins: [eslint({ useEslintrc: true })],
})

In particular, the sourcemap and sourcesContent options specify that a source map should be
added in line at the end of each build but should not include the source content. As a convention,

Bundling, TypeScript, and source maps 709

AWS AppSync Developer Guide

we recommend not including source content in your sourcemap. You can disable this in esbuild by
setting sources-content to false.

To illustrate how source maps work, review the following example in which a resolver code
references helper functions from a helper library. The code contains log statements in the resolver
code and in the helper library:

./src/default.resolver.ts (your resolver)

import { Context } from '@aws-appsync/utils'
import { hello, logit } from './helper'

export function request(ctx: Context) {
 console.log('start >')
 logit('hello world', 42, true)
 console.log('< end')
 return 'test'
}

export function response(ctx: Context): boolean {
 hello()
 return ctx.prev.result
}

.src/helper.ts (a helper file)

export const logit = (...rest: any[]) => {
 // a special logger
 console.log('[logger]', ...rest.map((r) => `<${r}>`))
}

export const hello = () => {
 // This just returns a simple sentence, but it could do more.
 console.log('i just say hello..')
}

When you build and bundle the resolver file, your resolver code will include an inline source map.
When your resolver runs, the following entries appear in the CloudWatch logs:

Bundling, TypeScript, and source maps 710

AWS AppSync Developer Guide

Looking at the entries in the CloudWatch log, you'll notice that the functionality of the two files
have been bundled together and are running concurrently. The original file name of each file is also
clearly reflected in the logs.

Testing

You can use the EvaluateCode API command to remotely test your resolver and function
handlers with mocked data before ever saving your code to a resolver or function. To get started
with the command, make sure you have added the appsync:evaluatecode permission to your
policy. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "appsync:evaluateCode",
 "Resource": "arn:aws:appsync:<region>:<account>:*"
 }
]
}

You can leverage the command by using the AWS CLI or AWS SDKs. For example, to test your code
using the CLI, simply point to your file, provide a context, and specify the handler you want to
evaluate:

aws appsync evaluate-code \
 --code file://code.js \
 --function request \
 --context file://context.json \
 --runtime name=APPSYNC_JS,runtimeVersion=1.0.0

Testing 711

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/index.html
https://aws.amazon.com/tools/

AWS AppSync Developer Guide

The response contains an evaluationResult containing the payload returned by your handler. It
also contains a logs object that holds the list of logs that were generated by your handler during
the evaluation. This makes it easy to debug your code execution and see information about your
evaluation to help troubleshoot. For example:

{
 "evaluationResult": "{\"operation\":\"PutItem\",\"key\":{\"id\":{\"S\":\"record-id
\"}},\"attributeValues\":{\"owner\":{\"S\":\"John doe\"},\"expectedVersion\":{\"N\":2},
\"authorId\":{\"S\":\"Sammy Davis\"}}}",
 "logs": [
 "INFO - code.js:5:3: \"current id\" \"record-id\"",
 "INFO - code.js:9:3: \"request evaluated\""
]
}

The evaluation result can be parsed as JSON, which gives:

{
 "operation": "PutItem",
 "key": {
 "id": {
 "S": "record-id"
 }
 },
 "attributeValues": {
 "owner": {
 "S": "John doe"
 },
 "expectedVersion": {
 "N": 2
 },
 "authorId": {
 "S": "Sammy Davis"
 }
 }
}

Using the SDK, you can easily incorporate tests from your test suite to validate your code's
behavior. Our example here uses the Jest Testing Framework, but any testing suite works. The
following snippet shows a hypothetical validation run. Note that we expect the evaluation response
to be valid JSON, so we use JSON.parse to retrieve JSON from the string response:

Testing 712

https://jestjs.io/

AWS AppSync Developer Guide

const AWS = require('aws-sdk')
const fs = require('fs')
const client = new AWS.AppSync({ region: 'us-east-2' })
const runtime = {name:'APPSYNC_JS',runtimeVersion:'1.0.0')

test('request correctly calls DynamoDB', async () => {
 const code = fs.readFileSync('./code.js', 'utf8')
 const context = fs.readFileSync('./context.json', 'utf8')
 const contextJSON = JSON.parse(context)

 const response = await client.evaluateCode({ code, context, runtime, function:
 'request' }).promise()
 const result = JSON.parse(response.evaluationResult)

 expect(result.key.id.S).toBeDefined()
 expect(result.attributeValues.firstname.S).toEqual(contextJSON.arguments.firstname)
})

This yields the following result:

Ran all test suites.
> jest

PASS ./index.test.js
request correctly calls DynamoDB (543 ms)
Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 totalTime: 1.511 s, estimated 2 s

Migrating from VTL to JavaScript

AWS AppSync allows you to write your business logic for your resolvers and functions using VTL or
JavaScript. With both languages, you write logic that instructs the AWS AppSync service on how
to interact with your data sources. With VTL, you write mapping templates that must evaluate to
a valid JSON-encoded string. With JavaScript, you write request and response handlers that return
objects. You don't return a JSON-encoded string.

For example, take the following VTL mapping template to get an Amazon DynamoDB item:

{
 "operation": "GetItem",

Migrating from VTL to JavaScript 713

AWS AppSync Developer Guide

 "key": {
 "id": $util.dynamodb.toDynamoDBJson($ctx.args.id),
 }
}

The utility $util.dynamodb.toDynamoDBJson returns a JSON-encoded string. If
$ctx.args.id is set to <id>, the template evaluates to a valid JSON-encoded string:

{
 "operation": "GetItem",
 "key": {
 "id": {"S": "<id>"},
 }
}

When working with JavaScript, you do not need to print out raw JSON-encoded strings within
your code, and using a utility like toDynamoDBJson is not needed. An equivalent example of the
mapping template above is:

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 return {
 operation: 'GetItem',
 key: {id: util.dynamodb.toDynamoDB(ctx.args.id)}
 };
}

An alternative is to use util.dynamodb.toMapValues, which is the recommended approach to
handle an object of values:

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 return {
 operation: 'GetItem',
 key: util.dynamodb.toMapValues({ id: ctx.args.id }),
 };
}

This evaluates to:

{

Migrating from VTL to JavaScript 714

AWS AppSync Developer Guide

 "operation": "GetItem",
 "key": {
 "id": {
 "S": "<id>"
 }
 }
}

Note

We recommend using the DynamoDB module with DynamoDB data sources:

import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 ddb.get({ key: { id: ctx.args.id } })
}

As another example, take the following mapping template to put an item in an Amazon DynamoDB
data source:

{
 "operation" : "PutItem",
 "key" : {
 "id": $util.dynamodb.toDynamoDBJson($util.autoId()),
 },
 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

When evaluated, this mapping template string must produce a valid JSON-encoded string. When
using JavaScript, your code returns the request object directly:

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { id = util.autoId(), ...values } = ctx.args;
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ id }),
 attributeValues: util.dynamodb.toMapValues(values),

Migrating from VTL to JavaScript 715

AWS AppSync Developer Guide

 };
}

which evaluates to:

{
 "operation": "PutItem",
 "key": {
 "id": { "S": "2bff3f05-ff8c-4ed8-92b4-767e29fc4e63" }
 },
 "attributeValues": {
 "firstname": { "S": "Shaggy" },
 "age": { "N": 4 }
 }
}

Note

We recommend using the DynamoDB module with DynamoDB data sources:

import { util } from '@aws-appsync/utils'
import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 const { id = util.autoId(), ...item } = ctx.args
 return ddb.put({ key: { id }, item })
}

Choosing between direct data source access and proxying via a Lambda
data source

With AWS AppSync and the APPSYNC_JS runtime, you can write your own code that implements
your custom business logic by using AWS AppSync functions to access your data sources. This
makes it easy for you to directly interact with data sources like Amazon DynamoDB, Aurora
Serverless, OpenSearch Service, HTTP APIs, and other AWS services without having to deploy
additional computational services or infrastructure. AWS AppSync also makes it easy to interact
with an AWS Lambda function by configuring a Lambda data source. Lambda data sources allow
you to run complex business logic using AWS Lambda’s full set capabilities to resolve a GraphQL

Choosing between direct data source access and proxying via a Lambda data source 716

AWS AppSync Developer Guide

request. In most cases, an AWS AppSync function directly connected to its target data source will
provide all of the functionality you need. In situations where you need to implement complex
business logic that is not supported by the APPSYNC_JS runtime, you can use a Lambda data
source as a proxy to interact with your target data source.

Direct data source integrati
on

Lambda data source as a
proxy

Use case AWS AppSync functions
interact directly with API data
sources.

AWS AppSync functions call
Lambdas that interact with
API data sources.

Runtime APPSYNC_JS (JavaScript) Any supported Lambda
runtime

Maximum size of code 32,000 characters per AWS
AppSync function

50 MB (zipped, for direct
upload) per Lambda

External modules Limited - APPSYNC_JS
supported features only

Yes

Call any AWS service Yes - Using AWS AppSync
HTTP datasource

Yes - Using AWS SDK

Access to the request header Yes Yes

Network access No Yes

File system access No Yes

Logging and metrics Yes Yes

Build and test entirely within
AppSync

Yes No

Cold start No No - With provisioned
concurrency

Auto-scaling Yes - transparently by AWS
AppSync

Yes - As configured in Lambda

Choosing between direct data source access and proxying via a Lambda data source 717

AWS AppSync Developer Guide

Pricing No additional charge Charged for Lambda usage

AWS AppSync functions that integrate directly with their target data source are ideal for use cases
like the following:

• Interacting with Amazon DynamoDB, Aurora Serverless, and OpenSearch Service

• Interacting with HTTP APIs and passing incoming headers

• Interacting with AWS services using HTTP data sources (with AWS AppSync automatically signing
requests with the provided data source role)

• Implementing access control before accessing data sources

• Implementing the filtering of retrieved data prior to fulfilling a request

• Implementing simple orchestration with sequential execution of AWS AppSync functions in a
resolver pipeline

• Controlling caching and subscription connections in queries and mutations.

AWS AppSync functions that use a Lambda data source as a proxy are ideal for use cases like the
following:

• Using a language other than JavaScript or Velocity Template Language (VTL)

• Adjusting and controlling CPU or memory to optimize performance

• Importing third-party libraries or requiring unsupported features in APPSYNC_JS

• Making multiple network requests and/or getting file system access to fulfill a query

• Batching requests using batching configuration.

Resolver context object reference

AWS AppSync defines a set of variables and functions for working with request and response
handlers. This makes logical operations on data easier with GraphQL. This document describes
those functions and provides examples.

Accessing the context

The context argument of a request and response handler is an object that holds all of the
contextual information for your resolver invocation. It has the following structure:

Resolver context object reference 718

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-lambda-js.html

AWS AppSync Developer Guide

type Context = {
 arguments: any;
 args: any;
 identity: Identity;
 source: any;
 error?: {
 message: string;
 type: string;
 };
 stash: any;
 result: any;
 prev: any;
 request: Request;
 info: Info;
};

Note

You will often find that the context object is referred to as ctx.

Each field in the context object is defined as follows:

context fields

arguments

A map that contains all GraphQL arguments for this field.

identity

An object that contains information about the caller. For more information about the structure
of this field, see Identity.

source

A map that contains the resolution of the parent field.

stash

The stash is an object that is made available inside each resolver and function handler. The
same stash object lives through a single resolver run. This means that you can use the stash

Accessing the context 719

AWS AppSync Developer Guide

to pass arbitrary data across request and response handlers and across functions in a pipeline
resolver.

Note

You cannot delete or replace the entire stash, but you can add, update, delete, and read
properties of the stash.

You can add items to the stash by modifying one of the code examples below:

//Example 1
ctx.stash.newItem = { key: "something" }

//Example 2
Object.assign(ctx.stash, {key1: value1, key2: value})

You can remove items from the stash by modifying the code below:

delete ctx.stash.key

result

A container for the results of this resolver. This field is available only to response handlers.

For example, if you're resolving the author field of the following query:

query {
 getPost(id: 1234) {
 postId
 title
 content
 author {
 id
 name
 }
 }
}

Then the full context variable is available when a response handler is evaluated:

Accessing the context 720

AWS AppSync Developer Guide

{
 "arguments" : {
 id: "1234"
 },
 "source": {},
 "result" : {
 "postId": "1234",
 "title": "Some title",
 "content": "Some content",
 "author": {
 "id": "5678",
 "name": "Author Name"
 }
 },
 "identity" : {
 "sourceIp" : ["x.x.x.x"],
 "userArn" : "arn:aws:iam::123456789012:user/appsync",
 "accountId" : "666666666666",
 "user" : "AIDAAAAAAAAAAAAAAAAAA"
 }
}

prev.result

The result of whatever previous operation was executed in a pipeline resolver.

If the previous operation was the pipeline resolver's request handler, then ctx.prev.result
represents that evaluation result and is made available to the first function in the pipeline.

If the previous operation was the first function, then ctx.prev.result represents the
evaluation result of the first function response handler and is made available to the second
function in the pipeline.

If the previous operation was the last function, then ctx.prev.result represents the
evaluation result of the last function and is made available to the pipeline resolver's response
handler.

info

An object that contains information about the GraphQL request. For the structure of this field,
see Info.

Accessing the context 721

AWS AppSync Developer Guide

Identity

The identity section contains information about the caller. The shape of this section depends on
the authorization type of your AWS AppSync API.

For more information about AWS AppSync security options, see Authorization and authentication.

API_KEY authorization

The identity field isn't populated.

AWS_LAMBDA authorization

The identity has the following form:

type AppSyncIdentityLambda = {
 resolverContext: any;
};

The identity contains the resolverContext key, containing the same resolverContext
content returned by the Lambda function authorizing the request.

AWS_IAM authorization

The identity has the following form:

type AppSyncIdentityIAM = {
 accountId: string;
 cognitoIdentityPoolId: string;
 cognitoIdentityId: string;
 sourceIp: string[];
 username: string;
 userArn: string;
 cognitoIdentityAuthType: string;
 cognitoIdentityAuthProvider: string;
};

AMAZON_COGNITO_USER_POOLS authorization

The identity has the following form:

type AppSyncIdentityCognito = {
 sourceIp: string[];

Accessing the context 722

AWS AppSync Developer Guide

 username: string;
 groups: string[] | null;
 sub: string;
 issuer: string;
 claims: any;
 defaultAuthStrategy: string;
};

Each field is defined as follows:

accountId

The AWS account ID of the caller.

claims

The claims that the user has.

cognitoIdentityAuthType

Either authenticated or unauthenticated based on the identity type.

cognitoIdentityAuthProvider

A comma-separated list of external identity provider information used in obtaining the
credentials used to sign the request.

cognitoIdentityId

The Amazon Cognito identity ID of the caller.

cognitoIdentityPoolId

The Amazon Cognito identity pool ID associated with the caller.

defaultAuthStrategy

The default authorization strategy for this caller (ALLOW or DENY).

issuer

The token issuer.

sourceIp

The source IP address of the caller that AWS AppSync receives. If the request doesn't include
the x-forwarded-for header, the source IP value contains only a single IP address from the

Accessing the context 723

AWS AppSync Developer Guide

TCP connection. If the request includes a x-forwarded-for header, the source IP is a list of
IP addresses from the x-forwarded-for header, in addition to the IP address from the TCP
connection.

sub

The UUID of the authenticated user.

user

The IAM user.

userArn

The Amazon Resource Name (ARN) of the IAM user.

username

The user name of the authenticated user. In the case of AMAZON_COGNITO_USER_POOLS
authorization, the value of username is the value of attribute cognito:username. In the case of
AWS_IAM authorization, the value of username is the value of the AWS user principal. If you're
using IAM authorization with credentials vended from Amazon Cognito identity pools, we
recommend that you use cognitoIdentityId.

Access request headers

AWS AppSync supports passing custom headers from clients and accessing them in your GraphQL
resolvers by using ctx.request.headers. You can then use the header values for actions such
as inserting data into a data source or authorization checks. You can use single or multiple request
headers using $curl with an API key from the command line, as shown in the following examples:

Single header example

Suppose you set a header of custom with a value of nadia like the following:

curl -XPOST -H "Content-Type:application/graphql" -H "custom:nadia" -H "x-api-key:<API-
KEY-VALUE>" -d '{"query":"mutation { createEvent(name: \"demo\", when: \"Next Friday!
\", where: \"Here!\") {id name when where description}}"}' https://<ENDPOINT>/graphql

This could then be accessed with ctx.request.headers.custom. For example, it might be in
the following code for DynamoDB:

Accessing the context 724

AWS AppSync Developer Guide

"custom": util.dynamodb.toDynamoDB(ctx.request.headers.custom)

Multiple header example

You can also pass multiple headers in a single request and access these in the resolver handler. For
example, if the custom header is set with two values:

curl -XPOST -H "Content-Type:application/graphql" -H "custom:bailey" -H "custom:nadia"
 -H "x-api-key:<API-KEY-VALUE>" -d '{"query":"mutation { createEvent(name: \"demo
\", when: \"Next Friday!\", where: \"Here!\") {id name when where description}}"}'
 https://<ENDPOINT>/graphql

You could then access these as an array, such as ctx.request.headers.custom[1].

Note

AWS AppSync doesn't expose the cookie header in ctx.request.headers.

Access the request custom domain name

AWS AppSync supports configuring a custom domain that you can use to access your GraphQL and
real-time endpoints for your APIs. When making a request with a custom domain name, you can
get the domain name using ctx.request.domainName.

When using the default GraphQL endpoint domain name, the value is null.

Info

The info section contains information about the GraphQL request. This section has the following
form:

type Info = {
 fieldName: string;
 parentTypeName: string;
 variables: any;
 selectionSetList: string[];
 selectionSetGraphQL: string;
};

Accessing the context 725

AWS AppSync Developer Guide

Each field is defined as follows:

fieldName

The name of the field that is currently being resolved.

parentTypeName

The name of the parent type for the field that is currently being resolved.

variables

A map which holds all variables that are passed into the GraphQL request.

selectionSetList

A list representation of the fields in the GraphQL selection set. Fields that are aliased are
referenced only by the alias name, not the field name. The following example shows this in
detail.

selectionSetGraphQL

A string representation of the selection set, formatted as GraphQL schema definition language
(SDL). Although fragments aren't merged into the selection set, inline fragments are preserved,
as shown in the following example.

Note

JSON.stringify will not include selectionSetGraphQL and selectionSetList in
the string serialization. You must reference these properties directly.

For example, if you are resolving the getPost field of the following query:

query {
 getPost(id: $postId) {
 postId
 title
 secondTitle: title
 content
 author(id: $authorId) {
 authorId
 name

Accessing the context 726

AWS AppSync Developer Guide

 }
 secondAuthor(id: "789") {
 authorId
 }
 ... on Post {
 inlineFrag: comments: {
 id
 }
 }
 ... postFrag
 }
}

fragment postFrag on Post {
 postFrag: comments: {
 id
 }
}

Then the full ctx.info variable that is available when processing a handler might be:

{
 "fieldName": "getPost",
 "parentTypeName": "Query",
 "variables": {
 "postId": "123",
 "authorId": "456"
 },
 "selectionSetList": [
 "postId",
 "title",
 "secondTitle"
 "content",
 "author",
 "author/authorId",
 "author/name",
 "secondAuthor",
 "secondAuthor/authorId",
 "inlineFragComments",
 "inlineFragComments/id",
 "postFragComments",
 "postFragComments/id"
],

Accessing the context 727

AWS AppSync Developer Guide

 "selectionSetGraphQL": "{\n getPost(id: $postId) {\n postId\n title\n
 secondTitle: title\n content\n author(id: $authorId) {\n authorId\n
 name\n }\n secondAuthor(id: \"789\") {\n authorId\n }\n ... on Post
 {\n inlineFrag: comments {\n id\n }\n }\n ... postFrag\n }\n}"
}

selectionSetList exposes only fields that belong to the current type. If the current type is an
interface or union, only selected fields that belong to the interface are exposed. For example, given
the following schema:

type Query {
 node(id: ID!): Node
}

interface Node {
 id: ID
}

type Post implements Node {
 id: ID
 title: String
 author: String
}

type Blog implements Node {
 id: ID
 title: String
 category: String
}

And the following query:

query {
 node(id: "post1") {
 id
 ... on Post {
 title
 }

 ... on Blog {
 title
 }

Accessing the context 728

AWS AppSync Developer Guide

 }
}

When calling ctx.info.selectionSetList at the Query.node field resolution, only id is
exposed:

"selectionSetList": [
 "id"
]

JavaScript runtime features for resolvers and functions

The APPSYNC_JS runtime environment provides functionality similar to ECMAScript (ES) version
6.0. It supports a subset of its features and provides some additional methods (utilities) that are
not part of the ES specifications. The following topics list all the supported language features.

Note

Currently, this reference only applies to runtime version 1.0.0.

Topics

• Supported runtime features

• Built-in utilities

• Built-in modules

• Runtime utilities

• Time helpers in util.time

• DynamoDB helpers in util.dynamodb

• HTTP helpers in util.http

• Transformation helpers in util.transform

• String helpers in util.str

• Extensions

• XML helpers in util.xml

JavaScript runtime features for resolvers and functions 729

https://262.ecma-international.org/6.0/
https://262.ecma-international.org/6.0/

AWS AppSync Developer Guide

Supported runtime features

The sections below describe the supported feature set of the APPSYNC_JS runtime.

Core features

The following core features are supported.

Types

The following types are supported:

• numbers

• strings

• booleans

• objects

• arrays

• functions

Operators

Operators are supported, including:

• standard math operators (+, -, /, %, *, etc.)

• nullish coalescing operator (??)

• Optional chaining (?.)

• bitwise operators

• void and typeof operators

The following operators are not supported:

• unary operators (++, --, and ~)

• in operator

Supported runtime features 730

AWS AppSync Developer Guide

Note

Use the Object.hasOwn operator to check if the specified property is in the specified
object.

Statements

The following statements are supported:

• const

• let

• var

• break

• else

• for-in

• for-of

• if

• return

• switch

• spread syntax

The following are not supported:

• catch

• continue

• do-while

• finally

• for(initialization; condition; afterthought)

Note

The exceptions are for-in and for-of expressions, which are supported.

Supported runtime features 731

AWS AppSync Developer Guide

• throw

• try

• while

• labeled statements

Literals

The following ES 6 template literals are supported:

• Multi-line strings

• Expression interpolation

• Nesting templates

Functions

The following function syntax is supported:

• Function declarations are supported.

• ES 6 arrow functions are supported.

• ES 6 rest parameter syntax is supported.

Strict mode

Functions operate in strict mode by default, so you don’t need to add a use_strict statement in
your function code. This cannot be changed.

Primitive objects

The following primitive objects of ES and their functions are supported.

Object

The following objects are supported:

• Object.assign()

• Object.entries()

• Object.hasOwn()

Supported runtime features 732

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

AWS AppSync Developer Guide

• Object.keys()

• Object.values()

• delete

String

The following strings are supported:

• String.prototype.length()

• String.prototype.charAt()

• String.prototype.concat()

• String.prototype.endsWith()

• String.prototype.indexOf()

• String.prototype.lastIndexOf()

• String.raw()

• String.prototype.replace()

Note

Regular expressions are not supported.

• String.prototype.replaceAll()

Note

Regular expressions are not supported.

• String.prototype.slice()

• String.prototype.split()

• String.prototype.startsWith()

• String.prototype.toLowerCase()

• String.prototype.toUpperCase()

• String.prototype.trim()

• String.prototype.trimEnd()

Supported runtime features 733

AWS AppSync Developer Guide

• String.prototype.trimStart()

Number

The following numbers are supported:

• Number.isFinite

• Number.isNaN

Built-in objects and functions

The following functions and objects are supported.

Math

The following math functions are supported:

• Math.random()

• Math.min()

• Math.max()

• Math.round()

• Math.floor()

• Math.ceil()

Array

The following array methods are supported:

• Array.prototype.length

• Array.prototype.concat()

• Array.prototype.fill()

• Array.prototype.flat()

• Array.prototype.indexOf()

• Array.prototype.join()

• Array.prototype.lastIndexOf()

Supported runtime features 734

AWS AppSync Developer Guide

• Array.prototype.pop()

• Array.prototype.push()

• Array.prototype.reverse()

• Array.prototype.shift()

• Array.prototype.slice()

• Array.prototype.sort()

Note

Array.prototype.sort() doesn't support arguments.

• Array.prototype.splice()

• Array.prototype.unshift()

• Array.prototype.forEach()

• Array.prototype.map()

• Array.prototype.flatMap()

• Array.prototype.filter()

• Array.prototype.reduce()

• Array.prototype.reduceRight()

• Array.prototype.find()

• Array.prototype.some()

• Array.prototype.every()

• Array.prototype.findIndex()

• Array.prototype.findLast()

• Array.prototype.findLastIndex()

• delete

Console

The console object is available for debugging. During live query execution, console log/error
statements are sent to Amazon CloudWatch Logs (if logging is enabled). During code evaluation
with evaluateCode, log statements are returned in the command response.

Supported runtime features 735

AWS AppSync Developer Guide

• console.error()

• console.log()

JSON

The following JSON methods are supported:

• JSON.parse()

Note

Returns a blank string if the parsed string is not valid JSON.

• JSON.stringify()

Function

• The apply, bind, and call methods not are supported.

• Function constructors are not supported.

• Passing a function as an argument is not supported.

• Recursive function calls are not supported.

Promises

Async processes are not supported, and promises are not supported.

Note

Network and file system access is not supported within the APPSYNC_JS runtime in AWS
AppSync. AWS AppSync handles all I/O operations based on the requests made by the AWS
AppSync resolver or AWS AppSync function.

Globals

The following global constants are supported:

• NaN

Supported runtime features 736

AWS AppSync Developer Guide

• Infinity

• undefined

• util

• extensions

• runtime

Error types

Throwing errors with throw is not supported. You can return an error by using util.error()
function. You can include an error in your GraphQL response by using the util.appendError
function.

For more information, see Error utils.

Built-in utilities

The util variable contains general utility methods to help you work with data. Unless otherwise
specified, all utilities use the UTF-8 character set.

Encoding utils

Encoding utils list

util.urlEncode(String)

Returns the input string as an application/x-www-form-urlencoded encoded string.

util.urlDecode(String)

Decodes an application/x-www-form-urlencoded encoded string back to its non-encoded
form.

util.base64Encode(string) : string

Encodes the input into a base64-encoded string.

util.base64Decode(string) : string

Decodes the data from a base64-encoded string.

Built-in utilities 737

https://docs.aws.amazon.com/appsync/latest/devguide/built-in-util-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/built-in-util-js.html#utility-helpers-in-error-js

AWS AppSync Developer Guide

ID generation utils

ID generation utils list

util.autoId()

Returns a 128-bit randomly generated UUID.

util.autoUlid()

Returns a 128-bit randomly generated ULID (Universally Unique Lexicographically Sortable
Identifier).

util.autoKsuid()

Returns a 128-bit randomly generated KSUID (K-Sortable Unique Identifier) base62 encoded as
a String with a length of 27.

Error utils

Error utils list

util.error(String, String?, Object?, Object?)

Throws a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an
errorType field, a data field, and an errorInfo field can be specified. The data value will be
added to the corresponding error block inside errors in the GraphQL response.

Note

data will be filtered based on the query selection set. The errorInfo value will be
added to the corresponding error block inside errors in the GraphQL response.
errorInfo will not be filtered based on the query selection set.

util.appendError(String, String?, Object?, Object?)

Appends a custom error. This can be used in request or response mapping templates if
the template detects an error with the request or with the invocation result. Additionally,

Built-in utilities 738

AWS AppSync Developer Guide

an errorType field, a data field, and an errorInfo field can be specified. Unlike
util.error(String, String?, Object?, Object?), the template evaluation will not
be interrupted, so that data can be returned to the caller. The data value will be added to the
corresponding error block inside errors in the GraphQL response.

Note

data will be filtered based on the query selection set. The errorInfo value will be
added to the corresponding error block inside errors in the GraphQL response.
errorInfo will not be filtered based on the query selection set.

Type and pattern matching utils

Type and pattern matching utils list

util.matches(String, String) : Boolean

Returns true if the specified pattern in the first argument matches the supplied data in the
second argument. The pattern must be a regular expression such as util.matches("a*b",
"aaaaab"). The functionality is based on Pattern, which you can reference for further
documentation.

util.authType()

Returns a String describing the multi-auth type being used by a request, returning back either
"IAM Authorization", "User Pool Authorization", "Open ID Connect Authorization", or "API Key
Authorization".

Return value behavior utils

Return value behavior utils list

util.escapeJavaScript(String)

Returns the input string as a JavaScript escaped string.

Built-in utilities 739

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

AWS AppSync Developer Guide

Resolver authorization utils

Resolver authorization utils list

util.unauthorized()

Throws Unauthorized for the field being resolved. Use this in request or response mapping
templates to determine whether to allow the caller to resolve the field.

Built-in modules

Modules are a part of the APPSYNC_JS runtime and provide utilities to help write JavaScript
resolvers and functions.

DynamoDB module functions

DynamoDB module functions provide an enhanced experience when interacting with DynamoDB
data sources. You can make requests toward your DynamoDB data sources using the functions and
without adding type mapping.

Modules are imported using @aws-appsync/utils/dynamodb:

// Modules are imported using @aws-appsync/utils/dynamodb
import * as ddb from '@aws-appsync/utils/dynamodb';

Functions

Functions list

get<T>(payload: GetInput): DynamoDBGetItemRequest

Tip

See the section called “Inputs” for information about GetInput.

Generates a DynamoDBGetItemRequest object to make a GetItem request to DynamoDB.

import { get } from '@aws-appsync/utils/dynamodb';

Built-in modules 740

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-getitem

AWS AppSync Developer Guide

export function request(ctx) {
 return get({ key: { id: ctx.args.id } });
}

put<T>(payload): DynamoDBPutItemRequest

Generates a DynamoDBPutItemRequest object to make a PutItem request to DynamoDB.

import * as ddb from '@aws-appsync/utils/dynamodb'

export function request(ctx) {
 return ddb.put({ key: { id: util.autoId() }, item: ctx.args });
}

remove<T>(payload): DynamoDBDeleteItemRequest

Generates a DynamoDBDeleteItemRequest object to make a DeleteItem request to
DynamoDB.

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 return ddb.remove({ key: { id: ctx.args.id } });
}

scan<T>(payload): DynamoDBScanRequest

Generates a DynamoDBScanRequest to make a Scan request to DynamoDB.

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { limit = 10, nextToken } = ctx.args;
 return ddb.scan({ limit, nextToken });
}

sync<T>(payload): DynamoDBSyncRequest

Generates a DynamoDBSyncRequest object to make a Sync request. The request only receives
the data altered since the last query (delta updates). Requests can only be made to versioned
DynamoDB data sources.

Built-in modules 741

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-putitem
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-deleteitem
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-scan
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-sync

AWS AppSync Developer Guide

import * as ddb from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const { limit = 10, nextToken, lastSync } = ctx.args;
 return ddb.sync({ limit, nextToken, lastSync });
}

update<T>(payload): DynamoDBUpdateItemRequest

Generates a DynamoDBUpdateItemRequest object to make an UpdateItem request to
DynamoDB.

Operations

Operation helpers allow you to take specific actions on parts of your data during updates. To get
started, import operations from @aws-appsync/utils/dynamodb:

// Modules are imported using operations
import {operations} from '@aws-appsync/utils/dynamodb';

Operations list

add<T>(payload)

A helper function that adds a new attribute item when updating DynamoDB.

Example

To add an address (street, city, and zip code) to an existing DynamoDB item using the ID value:

import { update, operations } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const updateObj = {
 address: operations.add({
 street1: '123 Main St',
 city: 'New York',
 zip: '10001',
 }),
 };
 return update({ key: { id: 1 }, update: updateObj });

Built-in modules 742

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-updateitem

AWS AppSync Developer Guide

}

append <T>(payload)

A helper function that appends a payload to the existing list in DynamoDB.

Example

To append newly added friend IDs (newFriendIds) to an existing friends list (friendsIds)
during an update:

import { update, operations } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const newFriendIds = [101, 104, 111];
 const updateObj = {
 friendsIds: operations.append(newFriendIds),
 };
 return update({ key: { id: 1 }, update: updateObj });
}

decrement (by?)

A helper function that decrements the existing attribute value in the item when updating
DynamoDB.

Example

To decrement a friends counter (friendsCount) by 10:

import { update, operations } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const updateObj = {
 friendsCount: operations.decrement(10),
 };
 return update({ key: { id: 1 }, update: updateObj });
}

increment (by?)

A helper function that increments the existing attribute value in the item when updating
DynamoDB.

Built-in modules 743

AWS AppSync Developer Guide

Example

To increment a friends counter (friendsCount) by 10:

import { update, operations } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const updateObj = {
 friendsCount: operations.increment(10),
 };
 return update({ key: { id: 1 }, update: updateObj });
}

prepend <T>(payload)

A helper function that prepends to the existing list in DynamoDB.

Example

To prepend newly added friend IDs (newFriendIds) to an existing friends list (friendsIds)
during an update:

import { update, operations } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const newFriendIds = [101, 104, 111];
 const updateObj = {
 friendsIds: operations.prepend(newFriendIds),
 };
 return update({ key: { id: 1 }, update: updateObj });
}

replace <T>(payload)

A helper function that replaces an existing attribute when updating an item in DynamoDB. This
is useful for when you want to update the entire object or subobject in the attribute and not
just the keys in the payload.

Example

To replace an address (street, city, and zip code) in an info object:

import { update, operations } from '@aws-appsync/utils/dynamodb';

Built-in modules 744

AWS AppSync Developer Guide

export function request(ctx) {
 const updateObj = {
 info: {
 address: operations.replace({
 street1: '123 Main St',
 city: 'New York',
 zip: '10001',
 }),
 },
 };
 return update({ key: { id: 1 }, update: updateObj });
}

updateListItem <T>(payload, index)

A helper function that replaces an item in a list.

Example

In the scope of the update (newFriendIds), this example used updateListItem to update
the ID values of the second item (index: 1, new ID: 102) and third item (index: 2, new ID: 112) in
a list (friendsIds).

import { update, operations as ops } from '@aws-appsync/utils/dynamodb';

export function request(ctx) {
 const newFriendIds = [
 ops.updateListItem('102', 1), ops.updateListItem('112', 2)
];
 const updateObj = { friendsIds: newFriendIds };
 return update({ key: { id: 1 }, update: updateObj });
}

Inputs

Inputs list

Type GetInput<T>

GetInput<T>: {
 consistentRead?: boolean;

Built-in modules 745

AWS AppSync Developer Guide

 key: DynamoDBKey<T>;
}

Type Declaration

• consistentRead?: boolean (optional)

An optional boolean to specify whether you want to perform a strongly consistent read with
DynamoDB.

• key: DynamoDBKey<T> (required)

A required parameter that specifies the key of the item in DynamoDB. DynamoDB items may
have a single hash key or hash and sort keys.

Type PutInput<T>

PutInput<T>: {
 _version?: number;
 condition?: DynamoDBFilterObject<T> | null;
 customPartitionKey?: string;
 item: Partial<T>;
 key: DynamoDBKey<T>;
 populateIndexFields?: boolean;
}

Type Declaration

• _version?: number (optional)

• condition?: DynamoDBFilterObject<T> | null (optional)

When you put an object in a DynamoDB table, you can optionally specify a conditional
expression that controls whether the request should succeed or not based on the state of the
object already in DynamoDB before the operation is performed.

• customPartitionKey?: string (optional)

When enabled, this string value modifies the format of the ds_sk and ds_pk records used by
the delta sync table when versioning has been enabled. When enabled, the processing of the
populateIndexFields entry is also enabled.

• item: Partial<T> (required)

The rest of the attributes of the item to be placed into DynamoDB.

Built-in modules 746

AWS AppSync Developer Guide

• key: DynamoDBKey<T> (required)

A required parameter that specifies the key of the item in DynamoDB on which the put will be
performed. DynamoDB items may have a single hash key or hash and sort keys.

• populateIndexFields?: boolean (optional)

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide.

Type QueryInput<T>

QueryInput<T>: ScanInput<T> & {
 query: DynamoDBKeyCondition<Required<T>>;
}

Type Declaration

• query: DynamoDBKeyCondition<Required<T>> (required)

Specifies a key condition that describes items to query. For a given index, the condition for a
partition key should be an equality and the sort key a comparison or a beginsWith (when
it's a string). Only number and string types are supported for partition and sort keys.

Example

Take the User type below:

type User = {
 id: string;
 name: string;
 age: number;
 isVerified: boolean;
 friendsIds: string[]
}

The query can only include the following fields: id, name, and age:

const query: QueryInput<User> = {
 name: { eq: 'John' },

Built-in modules 747

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

 age: { gt: 20 },
}

Type RemoveInput<T>

RemoveInput<T>: {
 _version?: number;
 condition?: DynamoDBFilterObject<T>;
 customPartitionKey?: string;
 key: DynamoDBKey<T>;
 populateIndexFields?: boolean;
}

Type Declaration

• _version?: number (optional)

• condition?: DynamoDBFilterObject<T> (optional)

When you remove an object in DynamoDB, you can optionally specify a conditional
expression that controls whether the request should succeed or not based on the state of the
object already in DynamoDB before the operation is performed.

Example

The following example is a DeleteItem expression containing a condition that allows the
operation succeed only if the owner of the document matches the user making the request.

type Task = {
 id: string;
 title: string;
 description: string;
 owner: string;
 isComplete: boolean;
}
const condition: DynamoDBFilterObject<Task> = {
 owner: { eq: 'XXXXXXXXXXXXXXXX' },
}

remove<Task>({
 key: {
 id: 'XXXXXXXXXXXXXXXX',
 },
 condition,

Built-in modules 748

AWS AppSync Developer Guide

});

• customPartitionKey?: string (optional)

When enabled, the customPartitionKey value modifies the format of the ds_sk and
ds_pk records used by the delta sync table when versioning has been enabled. When
enabled, the processing of the populateIndexFields entry is also enabled.

• key: DynamoDBKey<T> (required)

A required parameter that specifies the key of the item in DynamoDB that is being removed.
DynamoDB items may have a single hash key or hash and sort keys.

Example

If a User only has the hash key with a user id, then the key would look like this:

type User = {
 id: number
 name: string
 age: number
 isVerified: boolean
}
const key: DynamoDBKey<User> = {
 id: 1,
}

If the table user has a hash key (id) and sort key (name), then the key would look like this:

type User = {
 id: number
 name: string
 age: number
 isVerified: boolean
 friendsIds: string[]
}

const key: DynamoDBKey<User> = {
 id: 1,
 name: 'XXXXXXXXXX',
}

• populateIndexFields?: boolean (optional)

Built-in modules 749

AWS AppSync Developer Guide

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns.

Type ScanInput<T>

ScanInput<T>: {
 consistentRead?: boolean | null;
 filter?: DynamoDBFilterObject<T> | null;
 index?: string | null;
 limit?: number | null;
 nextToken?: string | null;
 scanIndexForward?: boolean | null;
 segment?: number;
 select?: DynamoDBSelectAttributes;
 totalSegments?: number;
}

Type Declaration

• consistentRead?: boolean | null (optional)

An optional boolean to indicate consistent reads when querying DynamoDB. The default
value is false.

• filter?: DynamoDBFilterObject<T> | null (optional)

An optional filter to apply to the results after retrieving it from the table.

• index?: string | null (optional)

An optional name of the index to scan.

• limit?: number | null (optional)

An optional max number of results to return.

• nextToken?: string | null (optional)

An optional pagination token to continue a previous query. This would have been obtained
from a previous query.

• scanIndexForward?: boolean | null (optional)

Built-in modules 750

AWS AppSync Developer Guide

An optional boolean to indicate whether the query is performed in ascending or descending
order. By default, this value is set to true.

• segment?: number (optional)

• select?: DynamoDBSelectAttributes (optional)

Attributes to return from DynamoDB. By default, the AWS AppSync DynamoDB resolver only
returns attributes that are projected into the index. The supported values are:

• ALL_ATTRIBUTES

Returns all the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of
the data can be obtained from the local secondary index and no fetching is required.

• ALL_PROJECTED_ATTRIBUTES

Returns all attributes that have been projected into the index. If the index is configured to
project all attributes, this return value is equivalent to specifying ALL_ATTRIBUTES.

• SPECIFIC_ATTRIBUTES

Returns only the attributes listed in ProjectionExpression. This return value is
equivalent to specifying ProjectionExpression without specifying any value for
AttributesToGet.

• totalSegments?: number (optional)

Type DynamoDBSyncInput<T>

DynamoDBSyncInput<T>: {
 basePartitionKey?: string;
 deltaIndexName?: string;
 filter?: DynamoDBFilterObject<T> | null;
 lastSync?: number;
 limit?: number | null;
 nextToken?: string | null;
}

Type Declaration

• basePartitionKey?: string (optional)

Built-in modules 751

AWS AppSync Developer Guide

The partition key of the base table to be used when performing a Sync operation. This field
allows a Sync operation to be performed when the table utilizes a custom partition key.

• deltaIndexName?: string (optional)

The index used for the Sync operation. This index is required to enable a Sync operation on
the whole delta store table when the table uses a custom partition key. The Sync operation
will be performed on the GSI (created on gsi_ds_pk and gsi_ds_sk).

• filter?: DynamoDBFilterObject<T> | null (optional)

An optional filter to apply to the results after retrieving it from the table.

• lastSync?: number (optional)

The moment, in epoch milliseconds, at which the last successful Sync operation started. If
specified, only items that have changed after lastSync are returned. This field should only
be populated after retrieving all pages from an initial Sync operation. If omitted, results from
the base table will be returned. Otherwise, results from the delta table will be returned.

• limit?: number | null (optional)

An optional maximum number of items to evaluate at a single time. If omitted, the default
limit will be set to 100 items. The maximum value for this field is 1000 items.

• nextToken?: string | null (optional)

Type DynamoDBUpdateInput<T>

DynamoDBUpdateInput<T>: {
 _version?: number;
 condition?: DynamoDBFilterObject<T>;
 customPartitionKey?: string;
 key: DynamoDBKey<T>;
 populateIndexFields?: boolean;
 update: DynamoDBUpdateObject<T>;
}

Type Declaration

• _version?: number (optional)

• condition?: DynamoDBFilterObject<T> (optional)

Built-in modules 752

AWS AppSync Developer Guide

When you update an object in DynamoDB, you can optionally specify a conditional expression
that controls whether the request should succeed or not based on the state of the object
already in DynamoDB before the operation is performed.

• customPartitionKey?: string (optional)

When enabled, the customPartitionKey value modifies the format of the ds_sk and
ds_pk records used by the delta sync table when versioning has been enabled. When
enabled, the processing of the populateIndexFields entry is also enabled.

• key: DynamoDBKey<T> (required)

A required parameter that specifies the key of the item in DynamoDB that is being updated.
DynamoDB items may have a single hash key or hash and sort keys.

• populateIndexFields?: boolean (optional)

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns.

• update: DynamoDBUpdateObject<T>

An object that specifies the attributes to be updated along with the new values for them. The
update object can be used with add, remove, replace, increment, decrement, append,
prepend, updateListItem.

Amazon RDS module functions

Amazon RDS module functions provide an enhanced experience when interacting with databases
configured with the Amazon RDS Data API. The module is imported using @aws-appsync/utils/
rds:

import * as rds from '@aws-appsync/utils/rds';

Functions can also be imported individually. For instance, the import below uses sql:

import { sql } from '@aws-appsync/utils/rds';

Built-in modules 753

AWS AppSync Developer Guide

Functions

You can use the AWS AppSync RDS module's utility helpers to interact with your database.

Select

The select utility creates a SELECT statement to query your relational database.

Basic use

In its basic form, you can specify the table you want to query:

import { select, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {

 // Generates statement:
 // "SELECT * FROM "persons"
 return createPgStatement(select({table: 'persons'}));
}

Note that you can also specify the schema in your table identifier:

import { select, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {

 // Generates statement:
 // SELECT * FROM "private"."persons"
 return createPgStatement(select({table: 'private.persons'}));
}

Specifying columns

You can specify columns with the columns property. If this isn't set to a value, it defaults to *:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 return createPgStatement(select({
 table: 'persons',

Built-in modules 754

AWS AppSync Developer Guide

 columns: ['id', 'name']
 }));
}

You can specify a column's table as well:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "persons"."name"
 // FROM "persons"
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'persons.name']
 }));
}

Limits and offsets

You can apply limit and offset to the query:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // LIMIT :limit
 // OFFSET :offset
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 limit: 10,
 offset: 40
 }));
}

Order By

You can sort your results with the orderBy property. Provide an array of objects specifying the
column and an optional dir property:

export function request(ctx) {

Built-in modules 755

AWS AppSync Developer Guide

 // Generates statement:
 // SELECT "id", "name" FROM "persons"
 // ORDER BY "name", "id" DESC
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 orderBy: [{column: 'name'}, {column: 'id', dir: 'DESC'}]
 }));
}

Filters

You can build filters by using the special condition object:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: {name: {eq: 'Stephane'}}
 }));
}

You can also combine filters:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME and "id" > :ID
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: {name: {eq: 'Stephane'}, id: {gt: 10}}
 }));
}

Built-in modules 756

AWS AppSync Developer Guide

You can also create OR statements:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME OR "id" > :ID
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: { or: [
 { name: { eq: 'Stephane'} },
 { id: { gt: 10 } }
]}
 }));
}

You can also negate a condition with not:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE NOT ("name" = :NAME AND "id" > :ID)
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: { not: [
 { name: { eq: 'Stephane'} },
 { id: { gt: 10 } }
]}
 }));
}

You can also use the following operators to compare values:

Operator Description Possible value types

eq Equal number, string, boolean

Built-in modules 757

AWS AppSync Developer Guide

ne Not equal number, string, boolean

le Less than or equal number, string

lt Less than number, string

ge Greater than or equal number, string

gt Greater than number, string

contains Like string

notContains Not like string

beginsWith Starts with prefix string

between Between two values number, string

attributeExists The attribute is not null number, string, boolean

size checks the length of the
element

string

Insert

The insert utility provides a straightforward way of inserting single row items in your database
with the INSERT operation.

Single item insertions

To insert an item, specify the table and then pass in your object of values. The object keys are
mapped to your table columns. Columns names are automatically escaped, and values are sent to
the database using the variable map:

import { insert, createMySQLStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({ table: 'persons', values });

 // Generates statement:

Built-in modules 758

AWS AppSync Developer Guide

 // INSERT INTO `persons`(`name`)
 // VALUES(:NAME)
 return createMySQLStatement(insertStatement)
}

MySQL use case

You can combine an insert followed by a select to retrieve your inserted row:

import { insert, select, createMySQLStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({ table: 'persons', values });
 const selectStatement = select({
 table: 'persons',
 columns: '*',
 where: { id: { eq: values.id } },
 limit: 1,
 });

 // Generates statement:
 // INSERT INTO `persons`(`name`)
 // VALUES(:NAME)
 // and
 // SELECT *
 // FROM `persons`
 // WHERE `id` = :ID
 return createMySQLStatement(insertStatement, selectStatement)
}

Postgres use case

With Postgres, you can use returning to obtain data from the row that you inserted. It accepts *
or an array of column names:

import { insert, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({
 table: 'persons',
 values,

Built-in modules 759

https://www.postgresql.org/docs/current/dml-returning.html

AWS AppSync Developer Guide

 returning: '*'
 });

 // Generates statement:
 // INSERT INTO "persons"("name")
 // VALUES(:NAME)
 // RETURNING *
 return createPgStatement(insertStatement)
}

Update

The update utility allows you to update existing rows. You can use the condition object to apply
changes to the specified columns in all the rows that satisfy the condition. For example, let's say we
have a schema that allows us to make this mutation. We want to update the name of Person with
the id value of 3 but only if we've known them (known_since) since the year 2000:

mutation Update {
 updatePerson(
 input: {id: 3, name: "Jon"},
 condition: {known_since: {ge: "2000"}}
) {
 id
 name
 }
}

Our update resolver looks like this:

import { update, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: { id, ...values }, condition } = ctx.args;
 const where = {
 ...condition,
 id: { eq: id },
 };
 const updateStatement = update({
 table: 'persons',
 values,
 where,
 returning: ['id', 'name'],

Built-in modules 760

AWS AppSync Developer Guide

 });

 // Generates statement:
 // UPDATE "persons"
 // SET "name" = :NAME, "birthday" = :BDAY, "country" = :COUNTRY
 // WHERE "id" = :ID
 // RETURNING "id", "name"
 return createPgStatement(updateStatement)
}

We can add a check to our condition to make sure that only the row that has the primary key id
equal to 3 is updated. Similarly, for Postgres inserts, you can use returning to return the
modified data.

Remove

The remove utility allows you to delete existing rows. You can use the condition object on all rows
that satisfy the condition. Note that delete is a reserved keyword in JavaScript. remove should be
used instead:

import { remove, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: { id }, condition } = ctx.args;
 const where = { ...condition, id: { eq: id } };
 const deleteStatement = remove({
 table: 'persons',
 where,
 returning: ['id', 'name'],
 });

 // Generates statement:
 // DELETE "persons"
 // WHERE "id" = :ID
 // RETURNING "id", "name"
 return createPgStatement(updateStatement)
}

Casting

In some cases, you may want more specificity about the correct object type to use in your
statement. You can use the provided type hints to specify the type of your parameters. AWS

Built-in modules 761

AWS AppSync Developer Guide

AppSync supports the same type hints as the Data API. You can cast your parameters by using the
typeHint functions from the AWS AppSync rds module.

The following example allows you to send an array as a value that is casted as a JSON object. We
use the -> operator to retrieve the element at the index 2 in the JSON array:

import { sql, createPgStatement, toJsonObject, typeHint } from '@aws-appsync/utils/
rds';

export function request(ctx) {
 const arr = ctx.args.list_of_ids
 const statement = sql`select ${typeHint.JSON(arr)}->2 as value`
 return createPgStatement(statement)
}

export function response(ctx) {
 return toJsonObject(ctx.result)[0][0].value
}

Casting is also useful when handling and comparing DATE, TIME, and TIMESTAMP:

import { select, createPgStatement, typeHint } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const when = ctx.args.when
 const statement = select({
 table: 'persons',
 where: { createdAt : { gt: typeHint.DATETIME(when) } }
 })
 return createPgStatement(statement)
}

Here's another example showing how you can send the current date and time:

import { sql, createPgStatement, typeHint } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const now = util.time.nowFormatted('YYYY-MM-dd HH:mm:ss')
 return createPgStatement(sql`select ${typeHint.TIMESTAMP(now)}`)
}

Available type hints

Built-in modules 762

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html#rdsdtataservice-Type-SqlParameter-typeHint

AWS AppSync Developer Guide

• typeHint.DATE - The corresponding parameter is sent as an object of the DATE type to the
database. The accepted format is YYYY-MM-DD.

• typeHint.DECIMAL - The corresponding parameter is sent as an object of the DECIMAL type to
the database.

• typeHint.JSON - The corresponding parameter is sent as an object of the JSON type to the
database.

• typeHint.TIME - The corresponding string parameter value is sent as an object of the TIME
type to the database. The accepted format is HH:MM:SS[.FFF].

• typeHint.TIMESTAMP - The corresponding string parameter value is sent as an object of the
TIMESTAMP type to the database. The accepted format is YYYY-MM-DD HH:MM:SS[.FFF].

• typeHint.UUID - The corresponding string parameter value is sent as an object of the UUID
type to the database.

Runtime utilities

The runtime library provides utilities to control or modify the runtime properties of your resolvers
and functions.

Runtime utils list

runtime.earlyReturn(obj?: unknown): never

Invoking this function will halt the execution of the current AWS AppSync function or resolver
(Unit or Pipeline Resolver) depending on the current context. The specified object is returned as
the result.

• When called in an AWS AppSync function request handler, the data source and response
handler are skipped, and the next function request handler (or the pipeline resolver response
handler if this was the last AWS AppSync function) is called.

• When called in an AWS AppSync pipeline resolver request handler, the pipeline execution is
skipped, and the pipeline resolver response handler is called immediately.

Example

import { runtime } from '@aws-appsync/utils'

export function request(ctx) {

Runtime utilities 763

AWS AppSync Developer Guide

 runtime.earlyReturn({ hello: 'world' })
 // code below is not executed
 return ctx.args
}

// never called because request returned early
export function response(ctx) {
 return ctx.result
}

Time helpers in util.time

The util.time variable contains datetime methods to help generate timestamps, convert
between datetime formats, and parse datetime strings. The syntax for datetime formats is based
on DateTimeFormatter which you can reference for further documentation. We provide some
examples below, as well as a list of available methods and descriptions.

Time utils

Time utils list

util.time.nowISO8601()

Returns a String representation of UTC in ISO8601 format.

util.time.nowEpochSeconds()

Returns the number of seconds from the epoch of 1970-01-01T00:00:00Z to now.

util.time.nowEpochMilliSeconds()

Returns the number of milliseconds from the epoch of 1970-01-01T00:00:00Z to now.

util.time.nowFormatted(String)

Returns a string of the current timestamp in UTC using the specified format from a String input
type.

util.time.nowFormatted(String, String)

Returns a string of the current timestamp for a timezone using the specified format and
timezone from String input types.

Time helpers in util.time 764

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://en.wikipedia.org/wiki/ISO_8601

AWS AppSync Developer Guide

util.time.parseFormattedToEpochMilliSeconds(String, String)

Parses a timestamp passed as a String along with a format, then returns the timestamp as
milliseconds since epoch.

util.time.parseFormattedToEpochMilliSeconds(String, String, String)

Parses a timestamp passed as a String along with a format and time zone, then returns the
timestamp as milliseconds since epoch.

util.time.parseISO8601ToEpochMilliSeconds(String)

Parses an ISO8601 timestamp passed as a String, then returns the timestamp as milliseconds
since epoch.

util.time.epochMilliSecondsToSeconds(long)

Converts an epoch milliseconds timestamp to an epoch seconds timestamp.

util.time.epochMilliSecondsToISO8601(long)

Converts an epoch milliseconds timestamp to an ISO8601 timestamp.

util.time.epochMilliSecondsToFormatted(long, String)

Converts an epoch milliseconds timestamp, passed as long, to a timestamp formatted according
to the supplied format in UTC.

util.time.epochMilliSecondsToFormatted(long, String, String)

Converts an epoch milliseconds timestamp, passed as a long, to a timestamp formatted
according to the supplied format in the supplied timezone.

DynamoDB helpers in util.dynamodb

util.dynamodb contains helper methods that make it easier to write and read data to Amazon
DynamoDB, such as automatic type mapping and formatting.

toDynamoDB

toDynamoDB utils list

util.dynamodb.toDynamoDB(Object)

General object conversion tool for DynamoDB that converts input objects to the appropriate
DynamoDB representation. It's opinionated about how it represents some types: e.g., it will use

DynamoDB helpers in util.dynamodb 765

AWS AppSync Developer Guide

lists ("L") rather than sets ("SS", "NS", "BS"). This returns an object that describes the DynamoDB
attribute value.

String example

Input: util.dynamodb.toDynamoDB("foo")
Output: { "S" : "foo" }

Number example

Input: util.dynamodb.toDynamoDB(12345)
Output: { "N" : 12345 }

Boolean example

Input: util.dynamodb.toDynamoDB(true)
Output: { "BOOL" : true }

List example

Input: util.dynamodb.toDynamoDB(["foo", 123, { "bar" : "baz" }])
Output: {
 "L" : [
 { "S" : "foo" },
 { "N" : 123 },
 {
 "M" : {
 "bar" : { "S" : "baz" }
 }
 }
]
 }

Map example

Input: util.dynamodb.toDynamoDB({ "foo": "bar", "baz" : 1234, "beep":
 ["boop"] })
Output: {
 "M" : {
 "foo" : { "S" : "bar" },

DynamoDB helpers in util.dynamodb 766

AWS AppSync Developer Guide

 "baz" : { "N" : 1234 },
 "beep" : {
 "L" : [
 { "S" : "boop" }
]
 }
 }
 }

toString utils

toString utils list

util.dynamodb.toString(String)

Converts an input string to the DynamoDB string format. This returns an object that describes
the DynamoDB attribute value.

Input: util.dynamodb.toString("foo")
Output: { "S" : "foo" }

util.dynamodb.toStringSet(List<String>)

Converts a list with Strings to the DynamoDB string set format. This returns an object that
describes the DynamoDB attribute value.

Input: util.dynamodb.toStringSet(["foo", "bar", "baz"])
Output: { "SS" : ["foo", "bar", "baz"] }

toNumber utils

toNumber utils list

util.dynamodb.toNumber(Number)

Converts a number to the DynamoDB number format. This returns an object that describes the
DynamoDB attribute value.

Input: util.dynamodb.toNumber(12345)

DynamoDB helpers in util.dynamodb 767

AWS AppSync Developer Guide

Output: { "N" : 12345 }

util.dynamodb.toNumberSet(List<Number>)

Converts a list of numbers to the DynamoDB number set format. This returns an object that
describes the DynamoDB attribute value.

Input: util.dynamodb.toNumberSet([1, 23, 4.56])
Output: { "NS" : [1, 23, 4.56] }

toBinary utils

toBinary utils list

util.dynamodb.toBinary(String)

Converts binary data encoded as a base64 string to DynamoDB binary format. This returns an
object that describes the DynamoDB attribute value.

Input: util.dynamodb.toBinary("foo")
Output: { "B" : "foo" }

util.dynamodb.toBinarySet(List<String>)

Converts a list of binary data encoded as base64 strings to DynamoDB binary set format. This
returns an object that describes the DynamoDB attribute value.

Input: util.dynamodb.toBinarySet(["foo", "bar", "baz"])
Output: { "BS" : ["foo", "bar", "baz"] }

toBoolean utils

toBoolean utils list

util.dynamodb.toBoolean(Boolean)

Converts a Boolean to the appropriate DynamoDB Boolean format. This returns an object that
describes the DynamoDB attribute value.

DynamoDB helpers in util.dynamodb 768

AWS AppSync Developer Guide

Input: util.dynamodb.toBoolean(true)
Output: { "BOOL" : true }

toNull utils

toNull utils list

util.dynamodb.toNull()

Returns a null in DynamoDB null format. This returns an object that describes the DynamoDB
attribute value.

Input: util.dynamodb.toNull()
Output: { "NULL" : null }

toList utils

toList utils list

util.dynamodb.toList(List)

Converts a list of objects to the DynamoDB list format. Each item in the list is also converted to
its appropriate DynamoDB format. It's opinionated about how it represents some of the nested
objects: e.g., it will use lists ("L") rather than sets ("SS", "NS", "BS"). This returns an object that
describes the DynamoDB attribute value.

Input: util.dynamodb.toList(["foo", 123, { "bar" : "baz" }])
Output: {
 "L" : [
 { "S" : "foo" },
 { "N" : 123 },
 {
 "M" : {
 "bar" : { "S" : "baz" }
 }
 }
]
 }

DynamoDB helpers in util.dynamodb 769

AWS AppSync Developer Guide

toMap utils

toMap utils list

util.dynamodb.toMap(Map)

Converts a map to the DynamoDB map format. Each value in the map is also converted to its
appropriate DynamoDB format. It's opinionated about how it represents some of the nested
objects: e.g., it will use lists ("L") rather than sets ("SS", "NS", "BS"). This returns an object that
describes the DynamoDB attribute value.

Input: util.dynamodb.toMap({ "foo": "bar", "baz" : 1234, "beep": ["boop"] })
Output: {
 "M" : {
 "foo" : { "S" : "bar" },
 "baz" : { "N" : 1234 },
 "beep" : {
 "L" : [
 { "S" : "boop" }
]
 }
 }
 }

util.dynamodb.toMapValues(Map)

Creates a copy of the map where each value has been converted to its appropriate DynamoDB
format. It's opinionated about how it represents some of the nested objects: e.g., it will use lists
("L") rather than sets ("SS", "NS", "BS").

Input: util.dynamodb.toMapValues({ "foo": "bar", "baz" : 1234, "beep":
 ["boop"] })
Output: {
 "foo" : { "S" : "bar" },
 "baz" : { "N" : 1234 },
 "beep" : {
 "L" : [
 { "S" : "boop" }
]
 }
 }

DynamoDB helpers in util.dynamodb 770

AWS AppSync Developer Guide

Note

This is slightly different to util.dynamodb.toMap(Map) as it returns only the
contents of the DynamoDB attribute value, but not the whole attribute value itself. For
example, the following statements are exactly the same:

util.dynamodb.toMapValues(<map>)
util.dynamodb.toMap(<map>)("M")

S3Object utils

S3Object utils list

util.dynamodb.toS3Object(String key, String bucket, String region)

Converts the key, bucket and region into the DynamoDB S3 Object representation. This returns
an object that describes the DynamoDB attribute value.

Input: util.dynamodb.toS3Object("foo", "bar", region = "baz")
Output: { "S" : "{ \"s3\" : { \"key\" : \"foo", \"bucket\" : \"bar", \"region
\" : \"baz" } }" }

util.dynamodb.toS3Object(String key, String bucket, String region, String
version)

Converts the key, bucket, region and optional version into the DynamoDB S3 Object
representation. This returns an object that describes the DynamoDB attribute value.

Input: util.dynamodb.toS3Object("foo", "bar", "baz", "beep")
Output: { "S" : "{ \"s3\" : { \"key\" : \"foo\", \"bucket\" : \"bar\", \"region
\" : \"baz\", \"version\" = \"beep\" } }" }

util.dynamodb.fromS3ObjectJson(String)

Accepts the string value of a DynamoDB S3 Object and returns a map that contains the key,
bucket, region and optional version.

Input: util.dynamodb.fromS3ObjectJson({ "S" : "{ \"s3\" : { \"key\" : \"foo\",
 \"bucket\" : \"bar\", \"region\" : \"baz\", \"version\" = \"beep\" } }" })

DynamoDB helpers in util.dynamodb 771

AWS AppSync Developer Guide

Output: { "key" : "foo", "bucket" : "bar", "region" : "baz", "version" :
 "beep" }

HTTP helpers in util.http

The util.http utility provides helper methods that you can use to manage HTTP request
parameters and to add response headers.

util.http utils list

util.http.copyHeaders(headers)

Copies the header from the map without the restricted set of HTTP headers. You can use this to
forward request headers to your downstream HTTP endpoint.

util.http.addResponseHeader(String, Object)

Adds a single custom header with the name (String) and value (Object) of the response. The
following limitations apply:

• Header names can't match any of the existing or restricted AWS or AWS AppSync headers.

• Header names can't start with restricted prefixes, such as x-amzn- or x-amz-.

• The size of custom response headers can't exceed 4 KB. This includes header names and
values.

• You should define each response header once per GraphQL operation. However, if you define
a custom header with the same name multiple times, the most recent definition appears in
the response. All headers count towards the header size limit regardless of naming.

util.http.addResponseHeaders(Map)

Adds multiple response headers to the response from the specified map of names (String) and
values (Object). The same limitations listed for the addResponseHeader(String, Object)
method also apply to this method.

Transformation helpers in util.transform

util.transform contains helper methods that make it easier to perform complex operations
against data sources.

HTTP helpers in util.http 772

AWS AppSync Developer Guide

Transformation helpers utils list

util.transform.toDynamoDBFilterExpression(filterObject:
DynamoDBFilterObject) : string

Converts an input string to a filter expression for use with DynamoDB. We recommend using
toDynamoDBFilterExpression with built-in module functions.

util.transform.toElasticsearchQueryDSL(object: OpenSearchQueryObject) :
string

Converts the given input into its equivalent OpenSearch Query DSL expression, returning it as a
JSON string.

Example input:

util.transform.toElasticsearchQueryDSL({
 "upvotes":{
 "ne":15,
 "range":[
 10,
 20
]
 },
 "title":{
 "eq":"hihihi",
 "wildcard":"h*i"
 }
 })

Example output:

{
 "bool":{
 "must":[
 {
 "bool":{
 "must":[
 {
 "bool":{
 "must_not":{
 "term":{

Transformation helpers in util.transform 773

https://docs.aws.amazon.com/appsync/latest/devguide/built-in-modules-js.html

AWS AppSync Developer Guide

 "upvotes":15
 }
 }
 }
 },
 {
 "range":{
 "upvotes":{
 "gte":10,
 "lte":20
 }
 }
 }
]
 }
 },
 {
 "bool":{
 "must":[
 {
 "term":{
 "title":"hihihi"
 }
 },
 {
 "wildcard":{
 "title":"h*i"
 }
 }
]
 }
 }
]
 }
}

Note

The default operator is assumed to be AND.

Transformation helpers in util.transform 774

AWS AppSync Developer Guide

util.transform.toSubscriptionFilter(objFilter, ignoredFields?, rules?):
SubscriptionFilter

Converts a Map input object to a SubscriptionFilter expression object. The
util.transform.toSubscriptionFilter method is used as an input to the
extensions.setSubscriptionFilter() extension. For more information, see Extensions.

Note

The parameters and return statement is listed below:
Parameters

• objFilter: SubscriptionFilterObject

A Map input object that's converted to the SubscriptionFilter expression object.

• ignoredFields: SubscriptionFilterExcludeKeysType (optional)

A List of field names in the first object that will be ignored.

• rules: SubscriptionFilterRuleObject (optional)

A Map input object with strict rules that's included when you're constructing the
SubscriptionFilter expression object. These strict rules will be included in the
SubscriptionFilter expression object so that at least one of the rules will be
satisfied to pass the subscription filter.

Response
Returns a SubscriptionFilter.

util.transform.toSubscriptionFilter(Map, List)

Converts a Map input object to a SubscriptionFilter expression object. The
util.transform.toSubscriptionFilter method is used as an input to the
extensions.setSubscriptionFilter() extension. For more information, see Extensions.

The first argument is the Map input object that's converted to the SubscriptionFilter
expression object. The second argument is a List of field names that are ignored in the first
Map input object while constructing the SubscriptionFilter expression object.

Transformation helpers in util.transform 775

https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html

AWS AppSync Developer Guide

util.transform.toSubscriptionFilter(Map, List, Map)

Converts a Map input object to a SubscriptionFilter expression object. The
util.transform.toSubscriptionFilter method is used as an input to the
extensions.setSubscriptionFilter() extension. For more information, see Extensions.

util.transform.toDynamoDBConditionExpression(conditionObject)

Creates a DynamoDB condition expression.

Subscription filter arguments

The following table explains the how the arguments of the following utilities are defined:

• Util.transform.toSubscriptionFilter(objFilter, ignoredFields?, rules?):
SubscriptionFilter

Argument 1: Map

Argument 1 is a Map object with the following key values:

• field names

• "and"

• "or"

For field names as keys, the conditions on these fields' entries are in the form of
"operator" : "value".

The following example shows how entries can be added to the Map:

"field_name" : {
 "operator1" : value
 }

We can have multiple conditions for the same field_name:

"field_name" : {
 "operator1" : value
 "operator2" : value
 .
 .

Transformation helpers in util.transform 776

https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html

AWS AppSync Developer Guide

 .
 }

When a field has two or more conditions on it, all of these conditions are considered to use the
OR operation.

The input Map can also have "and" and "or" as keys, implying that all entries within these should
be joined using AND or OR logic depending on the key. The key values "and" and "or" expect an
array of conditions.

"and" : [

 {
 "field_name1" : {
 "operator1" : value
 }
 },

 {
 "field_name2" : {
 "operator1" : value
 }
 },
 .
 .
].

Note that you can nest "and" and "or". That is, you can have nested "and"/"or" within another
"and"/"or" block. However, this doesn't work for simple fields.

"and" : [

 {
 "field_name1" : {
 "operator" : value
 }
 },

 {
 "or" : [
 {
 "field_name2" : {

Transformation helpers in util.transform 777

AWS AppSync Developer Guide

 "operator" : value
 }
 },

 {
 "field_name3" : {
 "operator" : value
 }
 }

].

The following example shows an input of argument 1 using
util.transform.toSubscriptionFilter(Map) : Map.

Input(s)

Argument 1: Map:

{
 "percentageUp": {
 "lte": 50,
 "gte": 20
 },
 "and": [
 {
 "title": {
 "ne": "Book1"
 }
 },
 {
 "downvotes": {
 "gt": 2000
 }
 }
],
 "or": [
 {
 "author": {
 "eq": "Admin"
 }
 },
 {

Transformation helpers in util.transform 778

AWS AppSync Developer Guide

 "isPublished": {
 "eq": false
 }
 }
]
}

Output

The result is a Map object:

{
 "filterGroup": [
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "lte",
 "value": 50
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "author",
 "operator": "eq",
 "value": "Admin"
 }
]
 },
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "lte",
 "value": 50
 },

Transformation helpers in util.transform 779

AWS AppSync Developer Guide

 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 }
]
 },
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "gte",
 "value": 20
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "author",
 "operator": "eq",
 "value": "Admin"
 }
]
 },
 {
 "filters": [
 {

Transformation helpers in util.transform 780

AWS AppSync Developer Guide

 "fieldName": "percentageUp",
 "operator": "gte",
 "value": 20
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 }
]
 }
]
}

Argument 2: List

Argument 2 contains a List of field names that shouldn't be considered in the input Map
(argument 1) while constructing the SubscriptionFilter expression object. The List can
also be empty.

The following example shows the inputs of argument 1 and argument 2 using
util.transform.toSubscriptionFilter(Map, List) : Map.

Input(s)

Argument 1: Map:

{
 "percentageUp": {
 "lte": 50,
 "gte": 20
 },
 "and": [

Transformation helpers in util.transform 781

AWS AppSync Developer Guide

 {
 "title": {
 "ne": "Book1"
 }
 },
 {
 "downvotes": {
 "gt": 20
 }
 }
],
 "or": [
 {
 "author": {
 "eq": "Admin"
 }
 },
 {
 "isPublished": {
 "eq": false
 }
 }
]
}

Argument 2: List:

["percentageUp", "author"]

Output

The result is a Map object:

{
 "filterGroup": [
 {
 "filters": [
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {

Transformation helpers in util.transform 782

AWS AppSync Developer Guide

 "fieldName": "downvotes",
 "operator": "gt",
 "value": 20
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 }
]
 }
]
}

Argument 3: Map

Argument 3 is a Map object that has field names as key values (cannot have "and" or "or"). For
field names as keys, the conditions on these fields are entries in the form of "operator" :
"value". Unlike argument 1, argument 3 cannot have multiple conditions in the same key. In
addition, argument 3 doesn't have an "and" or "or" clause, so there's no nesting involved either.

Argument 3 represents a list of strict rules, which are added to the SubscriptionFilter
expression object so that at least one of these conditions is met to pass the filter.

{
 "fieldname1": {
 "operator": value
 },
 "fieldname2": {
 "operator": value
 }
}
.
.
.

The following example shows the inputs of argument 1, argument 2, and argument 3 using
util.transform.toSubscriptionFilter(Map, List, Map) : Map.

Input(s)

Argument 1: Map:

Transformation helpers in util.transform 783

AWS AppSync Developer Guide

{
 "percentageUp": {
 "lte": 50,
 "gte": 20
 },
 "and": [
 {
 "title": {
 "ne": "Book1"
 }
 },
 {
 "downvotes": {
 "lt": 20
 }
 }
],
 "or": [
 {
 "author": {
 "eq": "Admin"
 }
 },
 {
 "isPublished": {
 "eq": false
 }
 }
]
}

Argument 2: List:

["percentageUp", "author"]

Argument 3: Map:

{
 "upvotes": {
 "gte": 250
 },
 "author": {

Transformation helpers in util.transform 784

AWS AppSync Developer Guide

 "eq": "Person1"
 }
}

Output

The result is a Map object:

{
 "filterGroup": [
 {
 "filters": [
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 20
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 },
 {
 "fieldName": "upvotes",
 "operator": "gte",
 "value": 250
 }
]
 },
 {
 "filters": [
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",

Transformation helpers in util.transform 785

AWS AppSync Developer Guide

 "value": 20
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 },
 {
 "fieldName": "author",
 "operator": "eq",
 "value": "Person1"
 }
]
 }
]
}

String helpers in util.str

util.str contains methods to help with common String operations.

util.str utils list

util.str.normalize(String, String)

Normalizes a string using one of the four unicode normalization forms: NFC, NFD, NFKC, or
NFKD. The first argument is the string to normalize. The second argument is either "nfc", "nfd",
"nfkc", or "nfkd" specifying the normalization type to use for the normalization process.

Extensions

extensions contains a set of methods to make additional actions within your resolvers.

Caching extensions

extensions.evictFromApiCache(typeName: string, fieldName: string,
keyValuePair: Record<string, string>) : Object

Evicts an item from the AWS AppSync server-side cache. The first argument is the type name.
The second argument is the field name. The third argument is an object containing key-value

String helpers in util.str 786

AWS AppSync Developer Guide

pair items that specify the caching key value. You must put the items in the object in the same
order as the caching keys in the cached resolver's cachingKey. For more information about
caching, see Caching behavior.

Example 1:

This example evicts the items that were cached for a resolver called Query.allClasses on
which a caching key called context.arguments.semester was used. When the mutation is
called and the resolver runs, if an entry is successfully cleared, then the response contains an
apiCacheEntriesDeleted value in the extensions object that shows how many entries were
deleted.

import { util, extensions } from '@aws-appsync/utils';

export const request = (ctx) => ({ payload: null });

export function response(ctx) {
 extensions.evictFromApiCache('Query', 'allClasses', {
 'context.arguments.semester': ctx.args.semester,
 });
 return null;
}

Note

This function only works for mutations, not queries.

Subscription extensions

extensions.setSubscriptionFilter(filterJsonObject)

Defines enhanced subscription filters. Each subscription notification event is evaluated against
provided subscription filters and delivers notifications to clients if all filters evaluate to true.
The argument is filterJsonObject (More information about this argument can be found
below in the Argument: filterJsonObject section.). See Enhanced subscription filtering.

Extensions 787

https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html#caching-behavior
https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-enhanced-filtering.html

AWS AppSync Developer Guide

Note

You can use this extension function only in the response handler of a subscription
resolver. Also, we recommend using util.transform.toSubscriptionFilter to
create your filter.

extensions.setSubscriptionInvalidationFilter(filterJsonObject)

Defines subscription invalidation filters. Subscription filters are evaluated against the
invalidation payload, then invalidate a given subscription if the filters evaluate to true. The
argument is filterJsonObject (More information about this argument can be found below
in the Argument: filterJsonObject section.). See Enhanced subscription filtering.

Note

You can use this extension function only in the response handler of a subscription
resolver. Also, we recommend using util.transform.toSubscriptionFilter to
create your filter.

extensions.invalidateSubscriptions(invalidationJsonObject)

Used to initiate a subscription invalidation from a mutation. The argument is
invalidationJsonObject (More information about this argument can be found below in the
Argument: invalidationJsonObject section.).

Note

This extension can be used only in the response mapping templates of the mutation
resolvers.
You can only use at most five unique extensions.invalidateSubscriptions()
method calls in any single request. If you exceed this limit, you will receive a GraphQL
error.

Extensions 788

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-enhanced-filtering.html

AWS AppSync Developer Guide

Argument: filterJsonObject

The JSON object defines either subscription or invalidation filters. It's an array of filters in a
filterGroup. Each filter is a collection of individual filters.

{
 "filterGroup": [
 {
 "filters" : [
 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 }
]

 },
 {
 "filters" : [
 {
 "fieldName" : "group",
 "operator" : "in",
 "value" : ["Admin", "Developer"]
 }
]

 }
]
}

Each filter has three attributes:

• fieldName – The GraphQL schema field.

• operator – The operator type.

• value – The values to compare to the subscription notification fieldName value.

The following is an example assignment of these attributes:

{
 "fieldName" : "severity",
 "operator" : "le",

Extensions 789

AWS AppSync Developer Guide

 "value" : context.result.severity
}

Argument: invalidationJsonObject

The invalidationJsonObject defines the following:

• subscriptionField – The GraphQL schema subscription to invalidate. A single subscription,
defined as a string in the subscriptionField, is considered for invalidation.

• payload – A key-value pair list that's used as the input for invalidating subscriptions if the
invalidation filter evaluates to true against their values.

The following example invalidates subscribed and connected clients using the onUserDelete
subscription when the invalidation filter defined in the subscription resolver evaluates to true
against the payload value.

export const request = (ctx) => ({ payload: null });

export function response(ctx) {
 extensions.invalidateSubscriptions({
 subscriptionField: 'onUserDelete',
 payload: { group: 'Developer', type: 'Full-Time' },
 });
 return ctx.result;
}

XML helpers in util.xml

util.xml contains methods to help with XML string conversion.

util.xml utils list

util.xml.toMap(String) : Object

Converts a XML string to a dictionary.

Example 1:

Input:

XML helpers in util.xml 790

AWS AppSync Developer Guide

<?xml version="1.0" encoding="UTF-8"?>
<posts>
<post>
 <id>1</id>
 <title>Getting started with GraphQL</title>
</post>
</posts>

Output (object):

{
 "posts":{
 "post":{
 "id":1,
 "title":"Getting started with GraphQL"
 }
 }
}

Example 2:

Input:

<?xml version="1.0" encoding="UTF-8"?>
<posts>
<post>
 <id>1</id>
 <title>Getting started with GraphQL</title>
</post>
<post>
 <id>2</id>
 <title>Getting started with AppSync</title>
</post>
</posts>

Output (JavaScript object):

{
 "posts":{
 "post":[
 {
 "id":1,
 "title":"Getting started with GraphQL"

XML helpers in util.xml 791

AWS AppSync Developer Guide

 },
 {
 "id":2,
 "title":"Getting started with AppSync"
 }
]
 }
}

util.xml.toJsonString(String, Boolean?) : String

Converts a XML string to a JSON string. This is similar to toMap, except that the output is a
string. This is useful if you want to directly convert and return the XML response from an HTTP
object to JSON. You can set an optional boolean parameter to determine if you want to string-
encode the JSON.

JavaScript resolver function reference for DynamoDB

The AWS AppSync DynamoDB function enables you to use GraphQL to store and retrieve data in
existing Amazon DynamoDB tables in your account. This resolver works by enabling you to map
an incoming GraphQL request into a DynamoDB call, and then map the DynamoDB response back
to GraphQL. This section describes the request and response handlers for supported DynamoDB
operations.

GetItem

The GetItem request lets you tell the AWS AppSync DynamoDB function to make a GetItem
request to DynamoDB, and enables you to specify:

• The key of the item in DynamoDB

• Whether to use a consistent read or not

The GetItem request has the following structure:

type DynamoDBGetItem = {
 operation: 'GetItem';
 key: { [key: string]: any };
 consistentRead?: ConsistentRead;
 projection?: {

JavaScript resolver function reference for DynamoDB 792

https://graphql.org

AWS AppSync Developer Guide

 expression: string;
 expressionNames?: { [key: string]: string };
 };
};

The fields are defined as follows:

GetItem fields

GetItem fields list

operation

The DynamoDB operation to perform. To perform the GetItem DynamoDB operation, this
must be set to GetItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about how to specify a
“typed value”, see Type system (request mapping). This value is required.

consistentRead

Whether or not to perform a strongly consistent read with DynamoDB. This is optional, and
defaults to false.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The item returned from DynamoDB is automatically converted into GraphQL and JSON primitive
types, and is available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

Example

The following example is a function request handler for a GraphQL query getThing(foo:
String!, bar: String!):

GetItem 793

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-projections
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

export function request(ctx) {
 const {foo, bar} = ctx.args
 return {
 operation : "GetItem",
 key : util.dynamodb.toMapValues({foo, bar}),
 consistentRead : true
 }
}

For more information about the DynamoDB GetItem API, see the DynamoDB API documentation.

PutItem

The PutItem request mapping document lets you tell the AWS AppSync DynamoDB function to
make a PutItem request to DynamoDB, and enables you to specify the following:

• The key of the item in DynamoDB

• The full contents of the item (composed of key and attributeValues)

• Conditions for the operation to succeed

The PutItem request has the following structure:

type DynamoDBPutItemRequest = {
 operation: 'PutItem';
 key: { [key: string]: any };
 attributeValues: { [key: string]: any};
 condition?: ConditionCheckExpression;
 customPartitionKey?: string;
 populateIndexFields?: boolean;
 _version?: number;
};

The fields are defined as follows:

PutItem 794

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

AWS AppSync Developer Guide

PutItem fields

PutItem fields list

operation

The DynamoDB operation to perform. To perform the PutItem DynamoDB operation, this
must be set to PutItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about how to specify a
“typed value”, see Type system (request mapping). This value is required.

attributeValues

The rest of the attributes of the item to be put into DynamoDB. For more information about
how to specify a “typed value”, see Type system (request mapping). This field is optional.

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the PutItem request overwrites any existing
entry for that item. For more information about conditions, see Condition expressions. This
value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

PutItem 795

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

The item written to DynamoDB is automatically converted to GraphQL and JSON primitive
types and is available in the context result (context.result).

The item written to DynamoDB is automatically converted into GraphQL and JSON primitive types
and is available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

Example 1

The following example is a function request handler for a GraphQL mutation updateThing(foo:
String!, bar: String!, name: String!, version: Int!).

If no item with the specified key exists, it’s created. If an item already exists with the specified key,
it’s overwritten.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { foo, bar, ...values} = ctx.args
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({foo, bar}),
 attributeValues: util.dynamodb.toMapValues(values),
 };
}

Example 2

The following example is a function request handler for a GraphQL mutation updateThing(foo:
String!, bar: String!, name: String!, expectedVersion: Int!).

This example verifies that the item currently in DynamoDB has the version field set to
expectedVersion.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { foo, bar, name, expectedVersion } = ctx.args;
 const values = { name, version: expectedVersion + 1 };

PutItem 796

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

 let condition = util.transform.toDynamoDBConditionExpression({
 version: { eq: expectedVersion },
 });

 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ foo, bar }),
 attributeValues: util.dynamodb.toMapValues(values),
 condition,
 };
}

For more information about the DynamoDB PutItem API, see the DynamoDB API documentation.

UpdateItem

The UpdateItem request enables you to tell the AWS AppSync DynamoDB function to make a
UpdateItem request to DynamoDB and allows you to specify the following:

• The key of the item in DynamoDB

• An update expression describing how to update the item in DynamoDB

• Conditions for the operation to succeed

The UpdateItem request has the following structure:

type DynamoDBUpdateItemRequest = {
 operation: 'UpdateItem';
 key: { [key: string]: any };
 update: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
 condition?: ConditionCheckExpression;
 customPartitionKey?: string;
 populateIndexFields?: boolean;
 _version?: number;
};

The fields are defined as follows:

UpdateItem 797

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS AppSync Developer Guide

UpdateItem fields

UpdateItem fields list

operation

The DynamoDB operation to perform. To perform the UpdateItem DynamoDB operation, this
must be set to UpdateItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about specifying a “typed
value”, see Type system (request mapping). This value is required.

update

The update section lets you specify an update expression that describes how to update the
item in DynamoDB. For more information about how to write update expressions, see the
DynamoDB UpdateExpressions documentation. This section is required.

The update section has three components:

expression

The update expression. This value is required.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be
a string corresponding to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must
be a typed value. For more information about how to specify a “typed value”, see Type
system (request mapping). This must be specified. This field is optional, and should only
be populated with substitutions for expression attribute value placeholders used in the
expression.

UpdateItem 798

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request

AWS AppSync Developer Guide

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the UpdateItem request updates the existing
entry regardless of its current state. For more information about conditions, see Condition
expressions. This value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

The item updated in DynamoDB is automatically converted into GraphQL and JSON primitive types
and is available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

Example 1

The following example is a function request handler for the GraphQL mutation upvote(id:
ID!).

In this example, an item in DynamoDB has its upvotes and version fields incremented by 1.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { id } = ctx.args;

UpdateItem 799

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

 return {
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ id }),
 update: {
 expression: 'ADD #votefield :plusOne, version :plusOne',
 expressionNames: { '#votefield': 'upvotes' },
 expressionValues: { ':plusOne': { N: 1 } },
 },
 };
}

Example 2

The following example is a function request handler for a GraphQL mutation updateItem(id:
ID!, title: String, author: String, expectedVersion: Int!).

This is a complex example that inspects the arguments and dynamically generates the update
expression that only includes the arguments that have been provided by the client. For example,
if title and author are omitted, they are not updated. If an argument is specified but its value
is null, then that field is deleted from the object in DynamoDB. Finally, the operation has a
condition, which verifies whether the item currently in DynamoDB has the version field set to
expectedVersion:

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { args: { input: { id, ...values } } } = ctx;

 const condition = {
 id: { attributeExists: true },
 version: { eq: values.expectedVersion },
 };
 values.expectedVersion += 1;
 return dynamodbUpdateRequest({ keys: { id }, values, condition });
}

/**
 * Helper function to update an item
 * @returns an UpdateItem request
 */
function dynamodbUpdateRequest(params) {
 const { keys, values, condition: inCondObj } = params;

UpdateItem 800

AWS AppSync Developer Guide

 const sets = [];
 const removes = [];
 const expressionNames = {};
 const expValues = {};

 // Iterate through the keys of the values
 for (const [key, value] of Object.entries(values)) {
 expressionNames[`#${key}`] = key;
 if (value) {
 sets.push(`#${key} = :${key}`);
 expValues[`:${key}`] = value;
 } else {
 removes.push(`#${key}`);
 }
 }

 let expression = sets.length ? `SET ${sets.join(', ')}` : '';
 expression += removes.length ? ` REMOVE ${removes.join(', ')}` : '';

 const condition = JSON.parse(
 util.transform.toDynamoDBConditionExpression(inCondObj)
);

 return {
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues(keys),
 condition,
 update: {
 expression,
 expressionNames,
 expressionValues: util.dynamodb.toMapValues(expValues),
 },
 };
}

For more information about the DynamoDB UpdateItem API, see the DynamoDB API
documentation.

DeleteItem

The DeleteItem request lets you tell the AWS AppSync DynamoDB function to make a
DeleteItem request to DynamoDB, and enables you to specify the following:

DeleteItem 801

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

AWS AppSync Developer Guide

• The key of the item in DynamoDB

• Conditions for the operation to succeed

The DeleteItem request has the following structure:

type DynamoDBDeleteItemRequest = {
 operation: 'DeleteItem';
 key: { [key: string]: any };
 condition?: ConditionCheckExpression;
 customPartitionKey?: string;
 populateIndexFields?: boolean;
 _version?: number;
};

The fields are defined as follows:

DeleteItem fields

DeleteItem fields list

operation

The DynamoDB operation to perform. To perform the DeleteItem DynamoDB operation, this
must be set to DeleteItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about specifying a “typed
value”, see Type system (request mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the DeleteItem request deletes
an item regardless of its current state. For more information about conditions, see Condition
expressions. This value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

DeleteItem 802

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions

AWS AppSync Developer Guide

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

The item deleted from DynamoDB is automatically converted into GraphQL and JSON primitive
types and is available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

Example 1

The following example is a function request handler for a GraphQL mutation deleteItem(id:
ID!). If an item exists with this ID, it’s deleted.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 return {
 operation: 'DeleteItem',
 key: util.dynamodb.toMapValues({ id: ctx.args.id }),
 };
}

Example 2

The following example is a function request handler for a GraphQL mutation deleteItem(id:
ID!, expectedVersion: Int!). If an item exists with this ID, it’s deleted, but only if its
version field set to expectedVersion:

import { util } from '@aws-appsync/utils';

DeleteItem 803

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

export function request(ctx) {
 const { id, expectedVersion } = ctx.args;
 const condition = {
 id: { attributeExists: true },
 version: { eq: expectedVersion },
 };
 return {
 operation: 'DeleteItem',
 key: util.dynamodb.toMapValues({ id }),
 condition: util.transform.toDynamoDBConditionExpression(condition),
 };
}

For more information about the DynamoDB DeleteItem API, see the DynamoDB API
documentation.

Query

The Query request object lets you tell the AWS AppSync DynamoDB resolver to make a Query
request to DynamoDB, and enables you to specify the following:

• Key expression

• Which index to use

• Any additional filter

• How many items to return

• Whether to use consistent reads

• query direction (forward or backward)

• Pagination token

The Query request object has the following structure:

type DynamoDBQueryRequest = {
 operation: 'Query';
 query: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };

Query 804

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

AWS AppSync Developer Guide

 };
 index?: string;
 nextToken?: string;
 limit?: number;
 scanIndexForward?: boolean;
 consistentRead?: boolean;
 select?: 'ALL_ATTRIBUTES' | 'ALL_PROJECTED_ATTRIBUTES' | 'SPECIFIC_ATTRIBUTES';
 filter?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
};

The fields are defined as follows:

Query fields

Query fields list

operation

The DynamoDB operation to perform. To perform the Query DynamoDB operation, this must
be set to Query. This value is required.

query

The query section lets you specify a key condition expression that describes which items to
retrieve from DynamoDB. For more information about how to write key condition expressions,
see the DynamoDB KeyConditions documentation . This section must be specified.

expression

The query expression. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be

Query 805

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.KeyConditions.html

AWS AppSync Developer Guide

a string corresponding to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must
be a typed value. For more information about how to specify a “typed value”, see Type
system (request mapping). This value is required. This field is optional, and should only
be populated with substitutions for expression attribute value placeholders used in the
expression.

filter

An additional filter that can be used to filter the results from DynamoDB before they are
returned. For more information about filters, see Filters. This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a
hash key. If specified, this tells DynamoDB to query the specified index. If omitted, the primary
key index is queried.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

limit

The maximum number of items to evaluate (not necessarily the number of matching items).
This field is optional.

scanIndexForward

A boolean indicating whether to query forwards or backwards. This field is optional, and
defaults to true.

consistentRead

A boolean indicating whether to use consistent reads when querying DynamoDB. This field is
optional, and defaults to false.

Query 806

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-filter

AWS AppSync Developer Guide

select

By default, the AWS AppSync DynamoDB resolver only returns attributes that are projected
into the index. If more attributes are required, you can set this field. This field is optional. The
supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of the
data can be obtained from the local secondary index and no fetching is required.

ALL_PROJECTED_ATTRIBUTES

Allowed only when querying an index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL_ATTRIBUTES.

SPECIFIC_ATTRIBUTES

Returns only the attributes listed in the projection's expression. This return value is
equivalent to specifying the projection's expression without specifying any value for
Select.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The results from DynamoDB are automatically converted into GraphQL and JSON primitive types
and are available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",

Query 807

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-projections
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

 scannedCount = 10
}

The fields are defined as follows:

items

A list containing the items returned by the DynamoDB query.

nextToken

If there might be more results, nextToken contains a pagination token that you can use
in another request. Note that AWS AppSync encrypts and obfuscates the pagination token
returned from DynamoDB. This prevents your table data from being inadvertently leaked to
the caller. Also note that these pagination tokens cannot be used across different functions or
resolvers.

scannedCount

The number of items that matched the query condition expression, before a filter expression (if
present) was applied.

Example

The following example is a function request handler for a GraphQL query getPosts(owner:
ID!).

In this example, a global secondary index on a table is queried to return all posts owned by the
specified ID.

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { owner } = ctx.args;
 return {
 operation: 'Query',
 query: {
 expression: 'ownerId = :ownerId',
 expressionValues: util.dynamodb.toMapValues({ ':ownerId': owner }),
 },
 index: 'owner-index',

Query 808

AWS AppSync Developer Guide

 };
}

For more information about the DynamoDB Query API, see the DynamoDB API documentation.

Scan

The Scan request lets you tell the AWS AppSync DynamoDB function to make a Scan request to
DynamoDB, and enables you to specify the following:

• A filter to exclude results

• Which index to use

• How many items to return

• Whether to use consistent reads

• Pagination token

• Parallel scans

The Scan request object has the following structure:

type DynamoDBScanRequest = {
 operation: 'Scan';
 index?: string;
 limit?: number;
 consistentRead?: boolean;
 nextToken?: string;
 totalSegments?: number;
 segment?: number;
 filter?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
};

The fields are defined as follows:

Scan 809

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

AWS AppSync Developer Guide

Scan fields

Scan fields list

operation

The DynamoDB operation to perform. To perform the Scan DynamoDB operation, this must be
set to Scan. This value is required.

filter

A filter that can be used to filter the results from DynamoDB before they are returned. For more
information about filters, see Filters. This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a
hash key. If specified, this tells DynamoDB to query the specified index. If omitted, the primary
key index is queried.

limit

The maximum number of items to evaluate at a single time. This field is optional.

consistentRead

A Boolean that indicates whether to use consistent reads when querying DynamoDB. This field
is optional, and defaults to false.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

select

By default, the AWS AppSync DynamoDB function only returns whatever attributes are
projected into the index. If more attributes are required, then this field can be set. This field is
optional. The supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each

Scan 810

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-filter

AWS AppSync Developer Guide

matching item in the index. If the index is configured to project all item attributes, all of the
data can be obtained from the local secondary index and no fetching is required.

ALL_PROJECTED_ATTRIBUTES

Allowed only when querying an index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL_ATTRIBUTES.

SPECIFIC_ATTRIBUTES

Returns only the attributes listed in the projection's expression. This return value is
equivalent to specifying the projection's expression without specifying any value for
Select.

totalSegments

The number of segments to partition the table by when performing a parallel scan. This field is
optional, but must be specified if segment is specified.

segment

The table segment in this operation when performing a parallel scan. This field is optional, but
must be specified if totalSegments is specified.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The results returned by the DynamoDB scan are automatically converted into GraphQL and JSON
primitive types and is available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",

Scan 811

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-projections
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

 scannedCount = 10
}

The fields are defined as follows:

items

A list containing the items returned by the DynamoDB scan.

nextToken

If there might be more results, nextToken contains a pagination token that you can use in
another request. AWS AppSync encrypts and obfuscates the pagination token returned from
DynamoDB. This prevents your table data from being inadvertently leaked to the caller. Also,
these pagination tokens can’t be used across different functions or resolvers.

scannedCount

The number of items that were retrieved by DynamoDB before a filter expression (if present)
was applied.

Example 1

The following example is a function request handler for the GraphQL query: allPosts.

In this example, all entries in the table are returned.

export function request(ctx) {
 return { operation: 'Scan' };
}

Example 2

The following example is a function request handler for the GraphQL query:
postsMatching(title: String!).

In this example, all entries in the table are returned where the title starts with the title
argument.

export function request(ctx) {

Scan 812

AWS AppSync Developer Guide

 const { title } = ctx.args;
 const filter = { filter: { beginsWith: title } };
 return {
 operation: 'Scan',
 filter: JSON.parse(util.transform.toDynamoDBFilterExpression(filter)),
 };
}

For more information about the DynamoDB Scan API, see the DynamoDB API documentation.

Sync

The Sync request object lets you retrieve all the results from a DynamoDB table and then receive
only the data altered since your last query (the delta updates). Sync requests can only be made to
versioned DynamoDB data sources. You can specify the following:

• A filter to exclude results

• How many items to return

• Pagination Token

• When your last Sync operation was started

The Sync request object has the following structure:

type DynamoDBSyncRequest = {
 operation: 'Sync';
 basePartitionKey?: string;
 deltaIndexName?: string;
 limit?: number;
 nextToken?: string;
 lastSync?: number;
 filter?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
};

The fields are defined as follows:

Sync 813

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

AWS AppSync Developer Guide

Sync fields

Sync fields list

operation

The DynamoDB operation to perform. To perform the Sync operation, this must be set to Sync.
This value is required.

filter

A filter that can be used to filter the results from DynamoDB before they are returned. For more
information about filters, see Filters. This field is optional.

limit

The maximum number of items to evaluate at a single time. This field is optional. If omitted,
the default limit will be set to 100 items. The maximum value for this field is 1000 items.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

lastSync

The moment, in epoch milliseconds, when the last successful Sync operation started. If
specified, only items that have changed after lastSync are returned. This field is optional, and
should only be populated after retrieving all pages from an initial Sync operation. If omitted,
results from the Base table will be returned, otherwise, results from the Delta table will be
returned.

basePartitionKey

The partition key of the Base table used when performing a Sync operation. This field allows
a Sync operation to be performed when the table utilizes a custom partition key. This is an
optional field.

deltaIndexName

The index used for the Sync operation. This index is required to enable a Sync operation on the
whole delta store table when the table uses a custom partition key. The Sync operation will be
performed on the GSI (created on gsi_ds_pk and gsi_ds_sk). This field is optional.

Sync 814

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-filter

AWS AppSync Developer Guide

The results returned by the DynamoDB sync are automatically converted into GraphQL and JSON
primitive types and are available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about JavaScript resolvers, see JavaScript resolvers overview.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",
 scannedCount = 10,
 startedAt = 1550000000000
}

The fields are defined as follows:

items

A list containing the items returned by the sync.

nextToken

If there might be more results, nextToken contains a pagination token that you can use in
another request. AWS AppSync encrypts and obfuscates the pagination token returned from
DynamoDB. This prevents your table data from being inadvertently leaked to the caller. Also,
these pagination tokens can’t be used across different functions or resolvers.

scannedCount

The number of items that were retrieved by DynamoDB before a filter expression (if present)
was applied.

startedAt

The moment, in epoch milliseconds, when the sync operation started that you can store locally
and use in another request as your lastSync argument. If a pagination token was included in
the request, this value will be the same as the one returned by the request for the first page of
results.

Sync 815

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-responses
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

Example 1

The following example is a function request handler for the GraphQL query:
syncPosts(nextToken: String, lastSync: AWSTimestamp).

In this example, if lastSync is omitted, all entries in the base table are returned. If lastSync is
supplied, only the entries in the delta sync table that have changed since lastSync are returned.

export function request(ctx) {
 const { nextToken, lastSync } = ctx.args;
 return { operation: 'Sync', limit: 100, nextToken, lastSync };
}

BatchGetItem

The BatchGetItem request object lets you tell the AWS AppSync DynamoDB function to make
a BatchGetItem request to DynamoDB to retrieve multiple items, potentially across multiple
tables. For this request object, you must specify the following:

• The table names where to retrieve the items from

• The keys of the items to retrieve from each table

The DynamoDB BatchGetItem limits apply and no condition expression can be provided.

The BatchGetItem request object has the following structure:

type DynamoDBBatchGetItemRequest = {
 operation: 'BatchGetItem';
 tables: {
 [tableName: string]: {
 keys: { [key: string]: any }[];
 consistentRead?: boolean;
 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
 };
 };
};

The fields are defined as follows:

BatchGetItem 816

AWS AppSync Developer Guide

BatchGetItem fields

BatchGetItem fields list

operation

The DynamoDB operation to perform. To perform the BatchGetItem DynamoDB operation,
this must be set to BatchGetItem. This value is required.

tables

The DynamoDB tables to retrieve the items from. The value is a map where table names are
specified as the keys of the map. At least one table must be provided. This tables value is
required.

keys

List of DynamoDB keys representing the primary key of the items to retrieve. DynamoDB
items may have a single hash key, or a hash key and sort key, depending on the table
structure. For more information about how to specify a “typed value”, see Type system
(request mapping).

consistentRead

Whether to use a consistent read when executing a GetItem operation. This value is optional
and defaults to false.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation.
For more information about projections, see Projections. This field is optional.

Things to remember:

• If an item has not been retrieved from the table, a null element appears in the data block for
that table.

• Invocation results are sorted per table, based on the order in which they were provided inside the
request object.

• Each Get command inside a BatchGetItem is atomic, however, a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

BatchGetItem 817

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-projections

AWS AppSync Developer Guide

• BatchGetItem is limited to 100 keys.

For the following example function request handler:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { authorId, postId } = ctx.args;
 return {
 operation: 'BatchGetItem',
 tables: {
 authors: [util.dynamodb.toMapValues({ authorId })],
 posts: [util.dynamodb.toMapValues({ authorId, postId })],
 },
 };
}

The invocation result available in ctx.result is as follows:

{
 "data": {
 "authors": [null],
 "posts": [
 // Was retrieved
 {
 "authorId": "a1",
 "postId": "p2",
 "postTitle": "title",
 "postDescription": "description",
 }
]
 },
 "unprocessedKeys": {
 "authors": [
 // This item was not processed due to an error
 {
 "authorId": "a1"
 }
],
 "posts": []
 }
}

BatchGetItem 818

AWS AppSync Developer Guide

The ctx.error contains details about the error. The keys data, unprocessedKeys, and each
table key that was provided in the result in the function request object are guaranteed to be
present in the invocation result. Items that have been deleted appear in the data block. Items
that haven’t been processed are marked as null inside the data block and are placed inside the
unprocessedKeys block.

BatchDeleteItem

The BatchDeleteItem request object lets you tell the AWS AppSync DynamoDB function to make
a BatchWriteItem request to DynamoDB to delete multiple items, potentially across multiple
tables. For this request object, you must specify the following:

• The table names where to delete the items from

• The keys of the items to delete from each table

The DynamoDB BatchWriteItem limits apply and no condition expression can be provided.

The BatchDeleteItem request object has the following structure:

type DynamoDBBatchDeleteItemRequest = {
 operation: 'BatchDeleteItem';
 tables: {
 [tableName: string]: { [key: string]: any }[];
 };
};

The fields are defined as follows:

BatchDeleteItem fields

BatchDeleteItem fields list

operation

The DynamoDB operation to perform. To perform the BatchDeleteItem DynamoDB
operation, this must be set to BatchDeleteItem. This value is required.

tables

The DynamoDB tables to delete the items from. Each table is a list of DynamoDB keys
representing the primary key of the items to delete. DynamoDB items may have a single hash

BatchDeleteItem 819

AWS AppSync Developer Guide

key, or a hash key and sort key, depending on the table structure. For more information about
how to specify a “typed value”, see Type system (request mapping). At least one table must be
provided. The tables value is required.

Things to remember:

• Contrary to the DeleteItem operation, the fully deleted item isn’t returned in the response.
Only the passed key is returned.

• If an item has not been deleted from the table, a null element appears in the data block for that
table.

• Invocation results are sorted per table, based on the order in which they were provided inside the
request object.

• Each Delete command inside a BatchDeleteItem is atomic. However a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchDeleteItem is limited to 25 keys.

For the following example function request handler:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { authorId, postId } = ctx.args;
 return {
 operation: 'BatchDeleteItem',
 tables: {
 authors: [util.dynamodb.toMapValues({ authorId })],
 posts: [util.dynamodb.toMapValues({ authorId, postId })],
 },
 };
}

The invocation result available in ctx.result is as follows:

{
 "data": {
 "authors": [null],
 "posts": [

BatchDeleteItem 820

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request

AWS AppSync Developer Guide

 // Was deleted
 {
 "authorId": "a1",
 "postId": "p2"
 }
]
 },
 "unprocessedKeys": {
 "authors": [
 // This key was not processed due to an error
 {
 "authorId": "a1"
 }
],
 "posts": []
 }
}

The ctx.error contains details about the error. The keys data, unprocessedKeys, and each table
key that was provided in the function request object are guaranteed to be present in the invocation
result. Items that have been deleted are present in the data block. Items that haven’t been
processed are marked as null inside the data block and are placed inside the unprocessedKeys
block.

BatchPutItem

The BatchPutItem request object lets you tell the AWS AppSync DynamoDB function to make a
BatchWriteItem request to DynamoDB to put multiple items, potentially across multiple tables.
For this request object, you must specify the following:

• The table names where to put the items in

• The full items to put in each table

The DynamoDB BatchWriteItem limits apply and no condition expression can be provided.

The BatchPutItem request object has the following structure:

type DynamoDBBatchPutItemRequest = {
 operation: 'BatchPutItem';
 tables: {

BatchPutItem 821

AWS AppSync Developer Guide

 [tableName: string]: { [key: string]: any}[];
 };
};

The fields are defined as follows:

BatchPutItem fields

BatchPutItem fields list

operation

The DynamoDB operation to perform. To perform the BatchPutItem DynamoDB operation,
this must be set to BatchPutItem. This value is required.

tables

The DynamoDB tables to put the items in. Each table entry represents a list of DynamoDB items
to insert for this specific table. At least one table must be provided. This value is required.

Things to remember:

• The fully inserted items are returned in the response, if successful.

• If an item hasn’t been inserted in the table, a null element is displayed in the data block for that
table.

• The inserted items are sorted per table, based on the order in which they were provided inside
the request object.

• Each Put command inside a BatchPutItem is atomic, however, a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchPutItem is limited to 25 items.

For the following example function request handler:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { authorId, postId, name, title } = ctx.args;

BatchPutItem 822

AWS AppSync Developer Guide

 return {
 operation: 'BatchPutItem',
 tables: {
 authors: [util.dynamodb.toMapValues({ authorId, name })],
 posts: [util.dynamodb.toMapValues({ authorId, postId, title })],
 },
 };
}

The invocation result available in ctx.result is as follows:

{
 "data": {
 "authors": [
 null
],
 "posts": [
 // Was inserted
 {
 "authorId": "a1",
 "postId": "p2",
 "title": "title"
 }
]
 },
 "unprocessedItems": {
 "authors": [
 // This item was not processed due to an error
 {
 "authorId": "a1",
 "name": "a1_name"
 }
],
 "posts": []
 }
}

The ctx.error contains details about the error. The keys data, unprocessedItems, and each table
key that was provided in the request object are guaranteed to be present in the invocation result.
Items that have been inserted are in the data block. Items that haven’t been processed are marked
as null inside the data block and are placed inside the unprocessedItems block.

BatchPutItem 823

AWS AppSync Developer Guide

TransactGetItems

The TransactGetItems request object lets you to tell the AWS AppSync DynamoDB function to
make a TransactGetItems request to DynamoDB to retrieve multiple items, potentially across
multiple tables. For this request object, you must specify the following:

• The table name of each request item where to retrieve the item from

• The key of each request item to retrieve from each table

The DynamoDB TransactGetItems limits apply and no condition expression can be provided.

The TransactGetItems request object has the following structure:

type DynamoDBTransactGetItemsRequest = {
 operation: 'TransactGetItems';
 transactItems: { table: string; key: { [key: string]: any }; projection?:
 { expression: string; expressionNames?: { [key: string]: string }; }[];
 };
};

The fields are defined as follows:

TransactGetItems fields

TransactGetItems fields list

operation

The DynamoDB operation to perform. To perform the TransactGetItems DynamoDB
operation, this must be set to TransactGetItems. This value is required.

transactItems

The request items to include. The value is an array of request items. At least one request item
must be provided. This transactItems value is required.

table

The DynamoDB table to retrieve the item from. The value is a string of the table name. This
table value is required.

TransactGetItems 824

AWS AppSync Developer Guide

key

The DynamoDB key representing the primary key of the item to retrieve. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure. For
more information about how to specify a “typed value”, see Type system (request mapping).

projection

A projection that's used to specify the attributes to return from the DynamoDB operation.
For more information about projections, see Projections. This field is optional.

Things to remember:

• If a transaction succeeds, the order of retrieved items in the items block will be the same as the
order of request items.

• Transactions are performed in an all-or-nothing way. If any request item causes an error, the
whole transaction will not be performed and error details will be returned.

• A request item being unable to be retrieved is not an error. Instead, a null element appears in the
items block in the corresponding position.

• If the error of a transaction is TransactionCanceledException, the cancellationReasons block
will be populated. The order of cancellation reasons in cancellationReasons block will be the
same as the order of request items.

• TransactGetItems is limited to 25 request items.

For the following example function request handler:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { authorId, postId } = ctx.args;
 return {
 operation: 'TransactGetItems',
 transactItems: [
 {
 table: 'posts',
 key: util.dynamodb.toMapValues({ postId }),
 },
 {
 table: 'authors',

TransactGetItems 825

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-projections

AWS AppSync Developer Guide

 key: util.dynamodb.toMapValues({ authorId }),
 },
],
 };
}

If the transaction succeeds and only the first requested item is retrieved, the invocation result
available in ctx.result is as follows:

{
 "items": [
 {
 // Attributes of the first requested item
 "post_id": "p1",
 "post_title": "title",
 "post_description": "description"
 },
 // Could not retrieve the second requested item
 null,
],
 "cancellationReasons": null
}

If the transaction fails due to TransactionCanceledException caused by the first request item, the
invocation result available in ctx.result is as follows:

{
 "items": null,
 "cancellationReasons": [
 {
 "type":"Sample error type",
 "message":"Sample error message"
 },
 {
 "type":"None",
 "message":"None"
 }
]
}

The ctx.error contains details about the error. The keys items and cancellationReasons are
guaranteed to be present in ctx.result.

TransactGetItems 826

AWS AppSync Developer Guide

TransactWriteItems

The TransactWriteItems request object lets you tell the AWS AppSync DynamoDB function
to make a TransactWriteItems request to DynamoDB to write multiple items, potentially to
multiple tables. For this request object, you must specify the following:

• The destination table name of each request item

• The operation of each request item to perform. There are four types of operations that are
supported: PutItem, UpdateItem, DeleteItem, and ConditionCheck

• The key of each request item to write

The DynamoDB TransactWriteItems limits apply.

The TransactWriteItems request object has the following structure:

type DynamoDBTransactWriteItemsRequest = {
 operation: 'TransactWriteItems';
 transactItems: TransactItem[];
};
type TransactItem =
 | TransactWritePutItem
 | TransactWriteUpdateItem
 | TransactWriteDeleteItem
 | TransactWriteConditionCheckItem;
type TransactWritePutItem = {
 table: string;
 operation: 'PutItem';
 key: { [key: string]: any };
 attributeValues: { [key: string]: string};
 condition?: TransactConditionCheckExpression;
};
type TransactWriteUpdateItem = {
 table: string;
 operation: 'UpdateItem';
 key: { [key: string]: any };
 update: DynamoDBExpression;
 condition?: TransactConditionCheckExpression;
};
type TransactWriteDeleteItem = {
 table: string;
 operation: 'DeleteItem';

TransactWriteItems 827

AWS AppSync Developer Guide

 key: { [key: string]: any };
 condition?: TransactConditionCheckExpression;
};
type TransactWriteConditionCheckItem = {
 table: string;
 operation: 'ConditionCheck';
 key: { [key: string]: any };
 condition?: TransactConditionCheckExpression;
};
type TransactConditionCheckExpression = {
 expression: string;
 expressionNames?: { [key: string]: string};
 expressionValues?: { [key: string]: any};
 returnValuesOnConditionCheckFailure: boolean;
};

TransactWriteItems fields

TransactWriteItems fields list

The fields are defined as follows:

operation

The DynamoDB operation to perform. To perform the TransactWriteItems DynamoDB
operation, this must be set to TransactWriteItems. This value is required.

transactItems

The request items to include. The value is an array of request items. At least one request
item must be provided. This transactItems value is required.

For PutItem, the fields are defined as follows:

table

The destination DynamoDB table. The value is a string of the table name. This table
value is required.

operation

The DynamoDB operation to perform. To perform the PutItem DynamoDB operation,
this must be set to PutItem. This value is required.

TransactWriteItems 828

AWS AppSync Developer Guide

key

The DynamoDB key representing the primary key of the item to put. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure.
For more information about how to specify a “typed value”, see Type system (request
mapping). This value is required.

attributeValues

The rest of the attributes of the item to be put into DynamoDB. For more information
about how to specify a “typed value”, see Type system (request mapping). This field is
optional.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the PutItem request overwrites
any existing entry for that item. You can specify whether to retrieve the existing item
back when condition check fails. For more information about transactional conditions,
see Transaction condition expressions. This value is optional.

For UpdateItem, the fields are defined as follows:

table

The DynamoDB table to update. The value is a string of the table name. This table value
is required.

operation

The DynamoDB operation to perform. To perform the UpdateItem DynamoDB
operation, this must be set to UpdateItem. This value is required.

key

The DynamoDB key representing the primary key of the item to update. DynamoDB
items may have a single hash key, or a hash key and sort key, depending on the table
structure. For more information about how to specify a “typed value”, see Type system
(request mapping). This value is required.

update

The update section lets you specify an update expression that describes how to update
the item in DynamoDB. For more information about how to write update expressions, see
the DynamoDB UpdateExpressions documentation. This section is required.

TransactWriteItems 829

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-transaction-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Developer Guide

condition

A condition to determine if the request should succeed or not, based on the state of
the object already in DynamoDB. If no condition is specified, the UpdateItem request
updates the existing entry regardless of its current state. You can specify whether to
retrieve the existing item back when condition check fails. For more information about
transactional conditions, see Transaction condition expressions. This value is optional.

For DeleteItem, the fields are defined as follows:

table

The DynamoDB table in which to delete the item. The value is a string of the table name.
This table value is required.

operation

The DynamoDB operation to perform. To perform the DeleteItem DynamoDB
operation, this must be set to DeleteItem. This value is required.

key

The DynamoDB key representing the primary key of the item to delete. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure.
For more information about how to specify a “typed value”, see Type system (request
mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of
the object already in DynamoDB. If no condition is specified, the DeleteItem request
deletes an item regardless of its current state. You can specify whether to retrieve the
existing item back when condition check fails. For more information about transactional
conditions, see Transaction condition expressions. This value is optional.

For ConditionCheck, the fields are defined as follows:

table

The DynamoDB table in which to check the condition. The value is a string of the table
name. This table value is required.

TransactWriteItems 830

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-transaction-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-transaction-condition-expressions

AWS AppSync Developer Guide

operation

The DynamoDB operation to perform. To perform the ConditionCheck DynamoDB
operation, this must be set to ConditionCheck. This value is required.

key

The DynamoDB key representing the primary key of the item to condition check.
DynamoDB items may have a single hash key, or a hash key and sort key, depending on
the table structure. For more information about how to specify a “typed value”, see Type
system (request mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. You can specify whether to retrieve the existing item back
when condition check fails. For more information about transactional conditions, see
Transaction condition expressions. This value is required.

Things to remember:

• Only keys of request items are returned in the response, if successful. The order of keys will be
the same as the order of request items.

• Transactions are performed in an all-or-nothing way. If any request item causes an error, the
whole transaction will not be performed and error details will be returned.

• No two request items can target the same item. Otherwise they will cause
TransactionCanceledException error.

• If the error of a transaction is TransactionCanceledException, the cancellationReasons
block will be populated. If a request item’s condition check fails and you did not specify
returnValuesOnConditionCheckFailure to be false, the item existing in the table will be
retrieved and stored in item at the corresponding position of cancellationReasons block.

• TransactWriteItems is limited to 25 request items.

For the following example function request handler:

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { authorId, postId, title, description, oldTitle, authorName } = ctx.args;

TransactWriteItems 831

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-transaction-condition-expressions

AWS AppSync Developer Guide

 return {
 operation: 'TransactWriteItems',
 transactItems: [
 {
 table: 'posts',
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({ postId }),
 attributeValues: util.dynamodb.toMapValues({ title, description }),
 condition: util.transform.toDynamoDBConditionExpression({
 title: { eq: oldTitle },
 }),
 },
 {
 table: 'authors',
 operation: 'UpdateItem',
 key: util.dynamodb.toMapValues({ authorId }),
 update: {
 expression: 'SET authorName = :name',
 expressionValues: util.dynamodb.toMapValues({ ':name': authorName }),
 },
 },
],
 };
}

If the transaction succeeds, the invocation result available in ctx.result is as follows:

{
 "keys": [
 // Key of the PutItem request
 {
 "post_id": "p1",
 },
 // Key of the UpdateItem request
 {
 "author_id": "a1"
 }
],
 "cancellationReasons": null
}

If the transaction fails due to condition check failure of the PutItem request, the invocation result
available in ctx.result is as follows:

TransactWriteItems 832

AWS AppSync Developer Guide

{
 "keys": null,
 "cancellationReasons": [
 {
 "item": {
 "post_id": "p1",
 "post_title": "Actual old title",
 "post_description": "Old description"
 },
 "type": "ConditionCheckFailed",
 "message": "The condition check failed."
 },
 {
 "type": "None",
 "message": "None"
 }
]
}

The ctx.error contains details about the error. The keys keys and cancellationReasons are
guaranteed to be present in ctx.result.

Type system (request mapping)

When using the AWS AppSync DynamoDB function to call your DynamoDB tables, AWS AppSync
needs to know the type of each value to use in that call. This is because DynamoDB supports more
type primitives than GraphQL or JSON (such as sets and binary data). AWS AppSync needs some
hints when translating between GraphQL and DynamoDB, otherwise it would have to make some
assumptions on how data is structured in your table.

For more information about DynamoDB data types, see the DynamoDB Data type descriptors and
Data types documentation.

A DynamoDB value is represented by a JSON object containing a single key-value pair. The key
specifies the DynamoDB type, and the value specifies the value itself. In the following example, the
key S denotes that the value is a string, and the value identifier is the string value itself.

{ "S" : "identifier" }

Note that the JSON object cannot have more than one key-value pair. If more than one key-value
pair is specified, the request object isn’t parsed.

Type system (request mapping) 833

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes

AWS AppSync Developer Guide

A DynamoDB value is used anywhere in a request object where you need to specify a value.
Some places where you need to do this include: key and attributeValue sections, and the
expressionValues section of expression sections. In the following example, the DynamoDB
String value identifier is being assigned to the id field in a key section (perhaps in a GetItem
request object).

"key" : {
 "id" : { "S" : "identifier" }
}

Supported Types

AWS AppSync supports the following DynamoDB scalar, document, and set types:

String type S

A single string value. A DynamoDB String value is denoted by:

{ "S" : "some string" }

An example usage is:

"key" : {
 "id" : { "S" : "some string" }
}

String set type SS

A set of string values. A DynamoDB String Set value is denoted by:

{ "SS" : ["first value", "second value", ...] }

An example usage is:

"attributeValues" : {
 "phoneNumbers" : { "SS" : ["+1 555 123 4567", "+1 555 234 5678"] }
}

Number type N

A single numeric value. A DynamoDB Number value is denoted by:

Type system (request mapping) 834

AWS AppSync Developer Guide

{ "N" : 1234 }

An example usage is:

"expressionValues" : {
 ":expectedVersion" : { "N" : 1 }
}

Number set type NS

A set of number values. A DynamoDB Number Set value is denoted by:

{ "NS" : [1, 2.3, 4 ...] }

An example usage is:

"attributeValues" : {
 "sensorReadings" : { "NS" : [67.8, 12.2, 70] }
}

Binary type B

A binary value. A DynamoDB Binary value is denoted by:

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

Note that the value is actually a string, where the string is the base64-encoded representation
of the binary data. AWS AppSync decodes this string back into its binary value before sending
it to DynamoDB. AWS AppSync uses the base64 decoding scheme as defined by RFC 2045: any
character that isn’t in the base64 alphabet is ignored.

An example usage is:

"attributeValues" : {
 "binaryMessage" : { "B" : "SGVsbG8sIFdvcmxkIQo=" }
}

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is denoted by:

Type system (request mapping) 835

AWS AppSync Developer Guide

{ "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...] }

Note that the value is actually a string, where the string is the base64-encoded representation
of the binary data. AWS AppSync decodes this string back into its binary value before sending
it to DynamoDB. AWS AppSync uses the base64 decoding scheme as defined by RFC 2045: any
character that is not in the base64 alphabet is ignored.

An example usage is:

"attributeValues" : {
 "binaryMessages" : { "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg=="] }
}

Boolean type BOOL

A Boolean value. A DynamoDB Boolean value is denoted by:

{ "BOOL" : true }

Note that only true and false are valid values.

An example usage is:

"attributeValues" : {
 "orderComplete" : { "BOOL" : false }
}

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is denoted by:

{ "L" : [...] }

Note that the value is a compound value, where the list can contain zero or more of any
supported DynamoDB value (including other lists). The list can also contain a mix of different
types.

An example usage is:

{ "L" : [

Type system (request mapping) 836

AWS AppSync Developer Guide

 { "S" : "A string value" },
 { "N" : 1 },
 { "SS" : ["Another string value", "Even more string values!"] }
]
}

Map type M

Representing an unordered collection of key-value pairs of other supported DynamoDB values.
A DynamoDB Map value is denoted by:

{ "M" : { ... } }

Note that a map can contain zero or more key-value pairs. The key must be a string, and the
value can be any supported DynamoDB value (including other maps). The map can also contain
a mix of different types.

An example usage is:

{ "M" : {
 "someString" : { "S" : "A string value" },
 "someNumber" : { "N" : 1 },
 "stringSet" : { "SS" : ["Another string value", "Even more string
 values!"] }
 }
}

Null type NULL

A null value. A DynamoDB Null value is denoted by:

{ "NULL" : null }

An example usage is:

"attributeValues" : {
 "phoneNumbers" : { "NULL" : null }
}

For more information about each type, see the DynamoDB documentation .

Type system (request mapping) 837

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS AppSync Developer Guide

Type system (response mapping)

When receiving a response from DynamoDB, AWS AppSync automatically converts it into GraphQL
and JSON primitive types. Each attribute in DynamoDB is decoded and returned in the response
handler's context.

For example, if DynamoDB returns the following:

{
 "id" : { "S" : "1234" },
 "name" : { "S" : "Nadia" },
 "age" : { "N" : 25 }
}

When the result is returned from your pipeline resolver, AWS AppSync converts it into GraphQL
and JSON types as:

{
 "id" : "1234",
 "name" : "Nadia",
 "age" : 25
}

This section explains how AWS AppSync converts the following DynamoDB scalar, document, and
set types:

String type S

A single string value. A DynamoDB String value is returned as a string.

For example, if DynamoDB returned the following DynamoDB String value:

{ "S" : "some string" }

AWS AppSync converts it to a string:

"some string"

String set type SS

A set of string values. A DynamoDB String Set value is returned as a list of strings.

Type system (response mapping) 838

AWS AppSync Developer Guide

For example, if DynamoDB returned the following DynamoDB String Set value:

{ "SS" : ["first value", "second value", ...] }

AWS AppSync converts it to a list of strings:

["+1 555 123 4567", "+1 555 234 5678"]

Number type N

A single numeric value. A DynamoDB Number value is returned as a number.

For example, if DynamoDB returned the following DynamoDB Number value:

{ "N" : 1234 }

AWS AppSync converts it to a number:

1234

Number set type NS

A set of number values. A DynamoDB Number Set value is returned as a list of numbers.

For example, if DynamoDB returned the following DynamoDB Number Set value:

{ "NS" : [67.8, 12.2, 70] }

AWS AppSync converts it to a list of numbers:

[67.8, 12.2, 70]

Binary type B

A binary value. A DynamoDB Binary value is returned as a string containing the base64
representation of that value.

For example, if DynamoDB returned the following DynamoDB Binary value:

Type system (response mapping) 839

AWS AppSync Developer Guide

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

AWS AppSync converts it to a string containing the base64 representation of the value:

"SGVsbG8sIFdvcmxkIQo="

Note that the binary data is encoded in the base64 encoding scheme as specified in RFC 4648
and RFC 2045.

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is returned as a list of strings containing
the base64 representation of the values.

For example, if DynamoDB returned the following DynamoDB Binary Set value:

{ "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...] }

AWS AppSync converts it to a list of strings containing the base64 representation of the values:

["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...]

Note that the binary data is encoded in the base64 encoding scheme as specified in RFC 4648
and RFC 2045.

Boolean type BOOL

A Boolean value. A DynamoDB Boolean value is returned as a Boolean.

For example, if DynamoDB returned the following DynamoDB Boolean value:

{ "BOOL" : true }

AWS AppSync converts it to a Boolean:

true

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is returned as a list of
values, where each inner value is also converted.

Type system (response mapping) 840

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045

AWS AppSync Developer Guide

For example, if DynamoDB returned the following DynamoDB List value:

{ "L" : [
 { "S" : "A string value" },
 { "N" : 1 },
 { "SS" : ["Another string value", "Even more string values!"] }
]
}

AWS AppSync converts it to a list of converted values:

["A string value", 1, ["Another string value", "Even more string values!"]]

Map type M

A key/value collection of any other supported DynamoDB value. A DynamoDB Map value is
returned as a JSON object, where each key/value is also converted.

For example, if DynamoDB returned the following DynamoDB Map value:

{ "M" : {
 "someString" : { "S" : "A string value" },
 "someNumber" : { "N" : 1 },
 "stringSet" : { "SS" : ["Another string value", "Even more string
 values!"] }
 }
}

AWS AppSync converts it to a JSON object:

{
 "someString" : "A string value",
 "someNumber" : 1,
 "stringSet" : ["Another string value", "Even more string values!"]
}

Null type NULL

A null value.

For example, if DynamoDB returned the following DynamoDB Null value:

Type system (response mapping) 841

AWS AppSync Developer Guide

{ "NULL" : null }

AWS AppSync converts it to a null:

null

Filters

When querying objects in DynamoDB using the Query and Scan operations, you can optionally
specify a filter that evaluates the results and returns only the desired values.

The filter property of a Query or Scan request has the following structure:

type DynamoDBExpression = {
 expression: string;
 expressionNames?: { [key: string]: string};
 expressionValues?: { [key: string]: any};
};

The fields are defined as follows:

expression

The query expression. For more information about how to write filter expressions, see the
DynamoDB QueryFilter and DynamoDB ScanFilter documentation. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression. The value must be a
string that corresponds to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must be
a typed value. For more information about how to specify a “typed value”, see Type system

Filters 842

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.QueryFilter.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.ScanFilter.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request

AWS AppSync Developer Guide

(request mapping). This must be specified. This field is optional, and should only be populated
with substitutions for expression attribute value placeholders used in the expression.

Example

The following example is a filter section for a request, where entries retrieved from DynamoDB are
only returned if the title starts with the title argument.

Here we use the util.transform.toDynamoDBFilterExpression to automatically create a
filter from an object:

const filter = util.transform.toDynamoDBFilterExpression({
 title: { beginsWith: 'far away' },
});

const request = {};
request.filter = JSON.parse(filter);

This generates the following filter:

{
 "filter": {
 "expression": "(begins_with(#title,:title_beginsWith))",
 "expressionNames": { "#title": "title" },
 "expressionValues": {
 ":title_beginsWith": { "S": "far away" }
 }
 }
}

Condition expressions

When you mutate objects in DynamoDB by using the PutItem, UpdateItem, and DeleteItem
DynamoDB operations, you can optionally specify a condition expression that controls whether the
request should succeed or not, based on the state of the object already in DynamoDB before the
operation is performed.

The AWS AppSync DynamoDB function allows a condition expression to be specified in PutItem,
UpdateItem, and DeleteItem request objects, and also a strategy to follow if the condition fails
and the object was not updated.

Condition expressions 843

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request

AWS AppSync Developer Guide

Example 1

The following PutItem request object doesn’t have a condition expression. As a result, it puts
an item in DynamoDB even if an item with the same key already exists, thereby overwriting the
existing item.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { foo, bar, ...values} = ctx.args
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({foo, bar}),
 attributeValues: util.dynamodb.toMapValues(values),
 };
}

Example 2

The following PutItem object does have a condition expression that allows the operation succeed
only if an item with the same key does not exist in DynamoDB.

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { foo, bar, ...values} = ctx.args
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({foo, bar}),
 attributeValues: util.dynamodb.toMapValues(values),
 condition: { expression: "attribute_not_exists(id)" }
 };
}

By default, if the condition check fails, the AWS AppSync DynamoDB function provides an error
in ctx.error. You can return the error for the mutation and the current value of the object in
DynamoDB in a data field in the error section of the GraphQL response.

However, the AWS AppSync DynamoDB function offers some additional features to help developers
handle some common edge cases:

• If AWS AppSync DynamoDB functions can determine that the current value in DynamoDB
matches the desired result, it treats the operation as if it succeeded anyway.

Condition expressions 844

AWS AppSync Developer Guide

• Instead of returning an error, you can configure the function to invoke a custom Lambda
function to decide how the AWS AppSync DynamoDB function should handle the failure.

These are described in greater detail in the Handling a condition check failure section.

For more information about DynamoDB conditions expressions, see the DynamoDB
ConditionExpressions documentation .

Specifying a condition

The PutItem, UpdateItem, and DeleteItem request objects all allow an optional condition
section to be specified. If omitted, no condition check is made. If specified, the condition must be
true for the operation to succeed.

A condition section has the following structure:

type ConditionCheckExpression = {
 expression: string;
 expressionNames?: { [key: string]: string};
 expressionValues?: { [key: string]: any};
 equalsIgnore?: string[];
 consistentRead?: boolean;
 conditionalCheckFailedHandler?: {
 strategy: 'Custom' | 'Reject';
 lambdaArn?: string;
 };
};

The following fields specify the condition:

expression

The update expression itself. For more information about how to write condition expressions,
see the DynamoDB ConditionExpressions documentation . This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be a
string corresponding to the attribute name of the item in DynamoDB. This field is optional, and
should only be populated with substitutions for expression attribute name placeholders used in
the expression.

Condition expressions 845

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Developer Guide

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs. The
key corresponds to a value placeholder used in the expression, and the value must be a typed
value. For more information about how to specify a “typed value”, see Type system (request
mapping). This must be specified. This field is optional, and should only be populated with
substitutions for expression attribute value placeholders used in the expression.

The remaining fields tell the AWS AppSync DynamoDB function how to handle a condition check
failure:

equalsIgnore

When a condition check fails when using the PutItem operation, the AWS AppSync DynamoDB
function compares the item currently in DynamoDB against the item it tried to write. If they
are the same, it treats the operation as it if succeeded anyway. You can use the equalsIgnore
field to specify a list of attributes that AWS AppSync should ignore when performing that
comparison. For example, if the only difference was a version attribute, it treats the operation
as if it succeeded. This field is optional.

consistentRead

When a condition check fails, AWS AppSync gets the current value of the item from DynamoDB
using a strongly consistent read. You can use this field to tell the AWS AppSync DynamoDB
function to use an eventually consistent read instead. This field is optional, and defaults to
true.

conditionalCheckFailedHandler

This section allows you to specify how the AWS AppSync DynamoDB function treats a condition
check failure after it has compared the current value in DynamoDB against the expected result.
This section is optional. If omitted, it defaults to a strategy of Reject.

strategy

The strategy the AWS AppSync DynamoDB function takes after it has compared the current
value in DynamoDB against the expected result. This field is required and has the following
possible values:

Condition expressions 846

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request

AWS AppSync Developer Guide

Reject

The mutation fails, and an error for the mutation and the current value of the object in
DynamoDB in a data field in the error section of the GraphQL response.

Custom

The AWS AppSync DynamoDB function invokes a custom Lambda function to decide
how to handle the condition check failure. When the strategy is set to Custom, the
lambdaArn field must contain the ARN of the Lambda function to invoke.

lambdaArn

The ARN of the Lambda function to invoke that determines how the AWS AppSync
DynamoDB function should handle the condition check failure. This field must only be
specified when strategy is set to Custom. For more information about how to use this
feature, see Handling a condition check failure.

Handling a condition check failure

When a condition check fails, the AWS AppSync DynamoDB function can pass on the error for
the mutation and the current value of the object by using the util.appendError utility. This
adds the data field in the error section of the GraphQL response. However, the AWS AppSync
DynamoDB function offers some additional features to help developers handle some common
edge cases:

• If AWS AppSync DynamoDB functions can determine that the current value in DynamoDB
matches the desired result, it treats the operation as if it succeeded anyway.

• Instead of returning an error, you can configure the function to invoke a custom Lambda
function to decide how the AWS AppSync DynamoDB function should handle the failure.

The flowchart for this process is:

Checking for the desired result

When the condition check fails, the AWS AppSync DynamoDB function performs a GetItem
DynamoDB request to get the current value of the item from DynamoDB. By default, it uses a
strongly consistent read, however this can be configured using the consistentRead field in the
condition block and compare it against the expected result:

Condition expressions 847

AWS AppSync Developer Guide

• For the PutItem operation, the AWS AppSync DynamoDB function compares the current value
against the one it attempted to write, excluding any attributes listed in equalsIgnore from the
comparison. If the items are the same, it treats the operation as successful and returns the item
that was retrieved from DynamoDB. Otherwise, it follows the configured strategy.

For example, if the PutItem request object looked like the following:

import { util } from '@aws-appsync/utils';
export function request(ctx) {
 const { id, name, version} = ctx.args
 return {
 operation: 'PutItem',
 key: util.dynamodb.toMapValues({foo, bar}),
 attributeValues: util.dynamodb.toMapValues({ name, version: version+1 }),
 condition: {
 expression: "version = :expectedVersion",
 expressionValues: util.dynamodb.toMapValues({':expectedVersion': version}),
 equalsIgnore: ['version']
 }
 };
}

And the item currently in DynamoDB looked like the following:

{
 "id" : { "S" : "1" },
 "name" : { "S" : "Steve" },
 "version" : { "N" : 8 }
}

The AWS AppSync DynamoDB function would compare the item it tried to write against the
current value, see that the only difference was the version field, but because it’s configured
to ignore the version field, it treats the operation as successful and returns the item that was
retrieved from DynamoDB.

• For the DeleteItem operation, the AWS AppSync DynamoDB function checks to verify that an
item was returned from DynamoDB. If no item was returned, it treats the operation as successful.
Otherwise, it follows the configured strategy.

Condition expressions 848

AWS AppSync Developer Guide

• For the UpdateItem operation, the AWS AppSync DynamoDB function does not have enough
information to determine if the item currently in DynamoDB matches the expected result, and
therefore follows the configured strategy.

If the current state of the object in DynamoDB is different from the expected result, the AWS
AppSync DynamoDB function follows the configured strategy, to either reject the mutation or
invoke a Lambda function to determine what to do next.

Following the “reject” strategy

When following the Reject strategy, the AWS AppSync DynamoDB function returns an error for
the mutation, and the current value of the object in DynamoDB is also returned in a data field in
the error section of the GraphQL response. The item returned from DynamoDB is put through the
function response handler to translate it into a format the client expects, and it is filtered by the
selection set.

For example, given the following mutation request:

mutation {
 updatePerson(id: 1, name: "Steve", expectedVersion: 1) {
 Name
 theVersion
 }
}

If the item returned from DynamoDB looks like the following:

{
 "id" : { "S" : "1" },
 "name" : { "S" : "Steve" },
 "version" : { "N" : 8 }
}

And the function response handler looks like the following:

import { util } from '@aws-appsync/utils';
export function response(ctx) {
 const { version, ...values } = ctx.result;
 const result = { ...values, theVersion: version };
 if (ctx.error) {

Condition expressions 849

AWS AppSync Developer Guide

 if (error) {
 return util.appendError(error.message, error.type, result, null);
 }
 }
 return result
}

The GraphQL response looks like the following:

{
 "data": null,
 "errors": [
 {
 "message": "The conditional request failed (Service: AmazonDynamoDBv2;
 Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
 ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ)"
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "data": {
 "Name": "Steve",
 "theVersion": 8
 },
 ...
 }
]
}

Also, if any fields in the returned object are filled by other resolvers and the mutation had
succeeded, they won’t be resolved when the object is returned in the error section.

Following the “custom” strategy

When following the Custom strategy, the AWS AppSync DynamoDB function invokes a Lambda
function to decide what to do next. The Lambda function chooses one of the following options:

• reject the mutation. This tells the AWS AppSync DynamoDB function to behave as if the
configured strategy was Reject, returning an error for the mutation and the current value of
the object in DynamoDB as described in the previous section.

• discard the mutation. This tells the AWS AppSync DynamoDB function to silently ignore the
condition check failure and returns the value in DynamoDB.

• retry the mutation. This tells the AWS AppSync DynamoDB function to retry the mutation with
a new request object.

Condition expressions 850

AWS AppSync Developer Guide

The Lambda invocation request

The AWS AppSync DynamoDB function invokes the Lambda function specified in the lambdaArn.
It uses the same service-role-arn configured on the data source. The payload of the invocation
has the following structure:

{
 "arguments": { ... },
 "requestMapping": {... },
 "currentValue": { ... },
 "resolver": { ... },
 "identity": { ... }
}

The fields are defined as follows:

arguments

The arguments from the GraphQL mutation. This is the same as the arguments available to the
request object in context.arguments.

requestMapping

The request object for this operation.

currentValue

The current value of the object in DynamoDB.

resolver

Information about the AWS AppSync resolver or function.

identity

Information about the caller. This is the same as the identity information available to the
request object in context.identity.

A full example of the payload:

{
 "arguments": {

Condition expressions 851

AWS AppSync Developer Guide

 "id": "1",
 "name": "Steve",
 "expectedVersion": 1
 },
 "requestMapping": {
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "1" }
 },
 "attributeValues" : {
 "name" : { "S" : "Steve" },
 "version" : { "N" : 2 }
 },
 "condition" : {
 "expression" : "version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" : { "N" : 1 }
 },
 "equalsIgnore": ["version"]
 }
 },
 "currentValue": {
 "id" : { "S" : "1" },
 "name" : { "S" : "Steve" },
 "version" : { "N" : 8 }
 },
 "resolver": {
 "tableName": "People",
 "awsRegion": "us-west-2",
 "parentType": "Mutation",
 "field": "updatePerson",
 "outputType": "Person"
 },
 "identity": {
 "accountId": "123456789012",
 "sourceIp": "x.x.x.x",
 "user": "AIDAAAAAAAAAAAAAAAAAA",
 "userArn": "arn:aws:iam::123456789012:user/appsync"
 }
}

The Lambda Invocation Response

Condition expressions 852

AWS AppSync Developer Guide

The Lambda function can inspect the invocation payload and apply any business logic to decide
how the AWS AppSync DynamoDB function should handle the failure. There are three options for
handling the condition check failure:

• reject the mutation. The response payload for this option must have this structure:

{
 "action": "reject"
}

This tells the AWS AppSync DynamoDB function to behave as if the configured strategy was
Reject, returning an error for the mutation and the current value of the object in DynamoDB, as
described in the section above.

• discard the mutation. The response payload for this option must have this structure:

{
 "action": "discard"
}

This tells the AWS AppSync DynamoDB function to silently ignore the condition check failure and
returns the value in DynamoDB.

• retry the mutation. The response payload for this option must have this structure:

{
 "action": "retry",
 "retryMapping": { ... }
}

This tells the AWS AppSync DynamoDB function to retry the mutation with a new request object.
The structure of the retryMapping section depends on the DynamoDB operation, and is a
subset of the full request object for that operation.

For PutItem, the retryMapping section has the following structure. For a description of the
attributeValues field, see PutItem.

{
 "attributeValues": { ... },
 "condition": {
 "equalsIgnore" = [...],

Condition expressions 853

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-putitem

AWS AppSync Developer Guide

 "consistentRead" = true
 }
}

For UpdateItem, the retryMapping section has the following structure. For a description of
the update section, see UpdateItem.

{
 "update" : {
 "expression" : "someExpression"
 "expressionNames" : {
 "#foo" : "foo"
 },
 "expressionValues" : {
 ":bar" : ... typed value
 }
 },
 "condition": {
 "consistentRead" = true
 }
}

For DeleteItem, the retryMapping section has the following structure.

{
 "condition": {
 "consistentRead" = true
 }
}

There is no way to specify a different operation or key to work on. The AWS AppSync DynamoDB
function only allows retries of the same operation on the same object. Also, the condition
section doesn’t allow a conditionalCheckFailedHandler to be specified. If the retry fails,
the AWS AppSync DynamoDB function follows the Reject strategy.

Here is an example Lambda function to deal with a failed PutItem request. The business logic
looks at who made the call. If it was made by jeffTheAdmin, it retries the request, updating the
version and expectedVersion from the item currently in DynamoDB. Otherwise, it rejects the
mutation.

Condition expressions 854

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-updateitem

AWS AppSync Developer Guide

exports.handler = (event, context, callback) => {
 console.log("Event: "+ JSON.stringify(event));

 // Business logic goes here.

 var response;
 if (event.identity.user == "jeffTheAdmin") {
 response = {
 "action" : "retry",
 "retryMapping" : {
 "attributeValues" : event.requestMapping.attributeValues,
 "condition" : {
 "expression" : event.requestMapping.condition.expression,
 "expressionValues" :
 event.requestMapping.condition.expressionValues
 }
 }
 }
 response.retryMapping.attributeValues.version = { "N" :
 event.currentValue.version.N + 1 }
 response.retryMapping.condition.expressionValues[':expectedVersion'] =
 event.currentValue.version

 } else {
 response = { "action" : "reject" }
 }

 console.log("Response: "+ JSON.stringify(response))
 callback(null, response)
};

Transaction condition expressions

Transaction condition expressions are available in requests of all four types of operations in
TransactWriteItems, namely, PutItem, DeleteItem, UpdateItem, and ConditionCheck.

For PutItem, DeleteItem, and UpdateItem, the transaction condition expression is optional. For
ConditionCheck, the transaction condition expression is required.

Transaction condition expressions 855

AWS AppSync Developer Guide

Example 1

The following transactional DeleteItem function request handler does not have a condition
expression. As a result, it deletes the item in DynamoDB.

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { postId } = ctx.args;
 return {
 operation: 'TransactWriteItems',
 transactItems: [
 {
 table: 'posts',
 operation: 'DeleteItem',
 key: util.dynamodb.toMapValues({ postId }),
 }
],
 };
}

Example 2

The following transactional DeleteItem function request handler does have a transaction
condition expression that allows the operation succeed only if the author of that post equals a
certain name.

import { util } from '@aws-appsync/utils';

export function request(ctx) {
 const { postId, authorName} = ctx.args;
 return {
 operation: 'TransactWriteItems',
 transactItems: [
 {
 table: 'posts',
 operation: 'DeleteItem',
 key: util.dynamodb.toMapValues({ postId }),
 condition: util.transform.toDynamoDBConditionExpression({
 authorName: { eq: authorName },
 }),
 }

Transaction condition expressions 856

AWS AppSync Developer Guide

],
 };
}

If the condition check fails, it will cause TransactionCanceledException and the
error detail will be returned in ctx.result.cancellationReasons. Note that by
default, the old item in DynamoDB that made condition check fail will be returned in
ctx.result.cancellationReasons.

Specifying a condition

The PutItem, UpdateItem, and DeleteItem request objects all allow an optional condition
section to be specified. If omitted, no condition check is made. If specified, the condition must be
true for the operation to succeed. The ConditionCheck must have a condition section to be
specified. The condition must be true for the whole transaction to succeed.

A condition section has the following structure:

type TransactConditionCheckExpression = {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: string };
 returnValuesOnConditionCheckFailure: boolean;
};

The following fields specify the condition:

expression

The update expression itself. For more information about how to write condition expressions,
see the DynamoDB ConditionExpressions documentation . This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be a
string corresponding to the attribute name of the item in DynamoDB. This field is optional, and
should only be populated with substitutions for expression attribute name placeholders used in
the expression.

Transaction condition expressions 857

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Developer Guide

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs. The
key corresponds to a value placeholder used in the expression, and the value must be a typed
value. For more information about how to specify a “typed value”, see Type system (request
mapping). This must be specified. This field is optional, and should only be populated with
substitutions for expression attribute value placeholders used in the expression.

returnValuesOnConditionCheckFailure

Specify whether to retrieve the item in DynamoDB back when a condition check fails. The
retrieved item will be in ctx.result.cancellationReasons[<index>].item, where
<index> is the index of the request item that failed the condition check. This value defaults to
true.

Projections

When reading objects in DynamoDB using the GetItem, Scan, Query, BatchGetItem, and
TransactGetItems operations, you can optionally specify a projection that identifies the
attributes that you want. The projection property has the following structure, which is similar to
filters:

type DynamoDBExpression = {
 expression: string;
 expressionNames?: { [key: string]: string}
};

The fields are defined as follows:

expression

The projection expression, which is a string. To retrieve a single attribute, specify its name. For
multiple attributes, the names must be comma-separated values. For more information on
writing projection expressions, see the DynamoDB projection expressions documentation. This
field is required.

expressionNames

The substitutions for expression attribute name placeholders in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression. The value must be a

Projections 858

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-typed-values-request
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ProjectionExpressions.html

AWS AppSync Developer Guide

string that corresponds to the attribute name of the item in DynamoDB. This field is optional
and should only be populated with substitutions for expression attribute name placeholders
used in the expression. For more information about expressionNames, see the DynamoDB
documentation.

Example 1

The following example is a projection section for a JavaScript function in which only the attributes
author and id are returned from DynamoDB:

projection : {
 expression : "#author, id",
 expressionNames : {
 "#author" : "author"
 }
}

Tip

You can access your GraphQL request selection set using selectionSetList. This field allows
you to frame your projection expression dynamically according to your requirements.

Note

While using projection expressions with the Query and Scan operations, the value for
select must be SPECIFIC_ATTRIBUTES. For more information, see the DynamoDB
documentation.

JavaScript resolver function reference for OpenSearch

The AWS AppSync resolver for Amazon OpenSearch Service enables you to use GraphQL to store
and retrieve data in existing OpenSearch Service domains in your account. This resolver works
by allowing you to map an incoming GraphQL request into an OpenSearch Service request, and
then map the OpenSearch Service response back to GraphQL. This section describes the function
request and response handlers for the supported OpenSearch Service operations.

JavaScript resolver function reference for OpenSearch 859

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html#aws-appsync-resolver-context-reference-info-js
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html#DDB-Query-request-Select
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html#DDB-Query-request-Select

AWS AppSync Developer Guide

Request

Most OpenSearch Service request objects have a common structure where just a few pieces change.
The following example runs a search against an OpenSearch Service domain, where documents are
of type post and are indexed under id. The search parameters are defined in the body section,
with many of the common query clauses being defined in the query field. This example will search
for documents containing "Nadia", or "Bailey", or both, in the author field of a document:

export function request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: {
 from: 0,
 size: 50,
 query: {
 bool: {
 should: [
 { match: { author: 'Nadia' } },
 { match: { author: 'Bailey' } },
],
 },
 },
 },
 },
 };
}

Response

As with other data sources, OpenSearch Service sends a response to AWS AppSync that needs to be
converted to GraphQL. .

Most GraphQL queries are looking for the _source field from an OpenSearch Service response.
Because you can do searches to return either an individual document or a list of documents, there
are two common response patterns used in OpenSearch Service:

List of Results

Request 860

AWS AppSync Developer Guide

export function response(ctx) {
 const entries = [];
 for (const entry of ctx.result.hits.hits) {
 entries.push(entry['_source']);
 }
 return entries;
}

Individual Item

export function response(ctx) {
 return ctx.result['_source']
}

operation field

(REQUEST handler only)

HTTP method or verb (GET, POST, PUT, HEAD or DELETE) that AWS AppSync sends to the
OpenSearch Service domain. Both the key and the value must be a string.

"operation" : "PUT"

path field

(REQUEST handler only)

The search path for an OpenSearch Service request from AWS AppSync. This forms a URL for the
operation’s HTTP verb. Both the key and the value must be strings.

"path" : "/indexname/type"

"path" : "/indexname/type/_search"

When the request handler is evaluated, this path is sent as part of the HTTP request, including the
OpenSearch Service domain. For example, the previous example might translate to:

GET https://opensearch-domain-name.REGION.es.amazonaws.com/indexname/type/_search

operation field 861

AWS AppSync Developer Guide

params field

(REQUEST handler only)

Used to specify what action your search performs, most commonly by setting the query value
inside of the body. However, there are several other capabilities that can be configured, such as the
formatting of responses.

• headers

The header information, as key-value pairs. Both the key and the value must be strings. For
example:

"headers" : {
 "Content-Type" : "application/json"
}

Note

AWS AppSync currently supports only JSON as a Content-Type.

• queryString

Key-value pairs that specify common options, such as code formatting for JSON responses. Both
the key and the value must be a string. For example, if you want to get pretty-formatted JSON,
you would use:

"queryString" : {
 "pretty" : "true"
}

• body

This is the main part of your request, allowing AWS AppSync to craft a well-formed search
request to your OpenSearch Service domain. The key must be a string comprised of an object. A
couple of demonstrations are shown below.

Example 1

params field 862

AWS AppSync Developer Guide

Return all documents with a city matching “seattle”:

export function request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: { from: 0, size: 50, query: { match: { city: 'seattle' } } },
 },
 };
}

Example 2

Return all documents matching “washington” as the city or the state:

export function request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: {
 from: 0,
 size: 50,
 query: {
 multi_match: { query: 'washington', fields: ['city', 'state'] },
 },
 },
 },
 };
}

Passing variables

(REQUEST handler only)

You can also pass variables as part of evaluation in your request handler. For example, suppose you
had a GraphQL query such as the following:

Passing variables 863

AWS AppSync Developer Guide

query {
 searchForState(state: "washington"){
 ...
 }
}

The function request handler could be the following:

export function request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: {
 from: 0,
 size: 50,
 query: {
 multi_match: { query: ctx.args.state, fields: ['city', 'state'] },
 },
 },
 },
 };
}

JavaScript resolver function reference for Lambda

You can use the AWS AppSync function for AWS Lambda to shape requests from AWS AppSync
to Lambda functions located in your account, and responses from your Lambda functions back to
AWS AppSync. You can also specify the type of operation to perform in your request object. This
section describes the requests for the supported Lambda operations.

Request object

The Lambda request object is fairly simple and allows as much context information as possible to
pass to your Lambda function.

type LambdaRequest = {

JavaScript resolver function reference for Lambda 864

AWS AppSync Developer Guide

 operation: 'Invoke' | 'BatchInvoke';
 payload: any;
};

Here is an example where we pass the field value and the GraphQL field arguments from the
context.

export function request(ctx) {
 return {
 operation: 'Invoke',
 payload: { field: 'getPost', arguments: ctx.args },
 };
}

The entire mapping document is passed as input to your Lambda function, so that the previous
example would now look like the following:

{
 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "arguments": {
 "id": "postId1"
 }
 }
}

Operation

The Lambda data source lets you define two operations: Invoke and BatchInvoke. The Invoke
operation lets AWS AppSync know to call your Lambda function for every GraphQL field resolver.
BatchInvoke instructs AWS AppSync to batch requests for the current GraphQL field.

operation is required.

For Invoke, the resolved request exactly matches the input payload of the Lambda function. So
the following example request handler:

export function request(ctx) {

Request object 865

AWS AppSync Developer Guide

 return {
 operation: 'Invoke',
 payload: { field: 'getPost', arguments: ctx.args },
 };
}

is resolved and passed to the Lambda function, as follows:

{
 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "arguments": {
 "id": "postId1"
 }
 }
}

For BatchInvoke, the request is applied for every field resolver in the batch. For conciseness,
AWS AppSync merges all the request payload values into a list under a single object matching the
request object.

The following example request handler shows the merge:

export function request(ctx) {
 return {
 operation: 'Invoke',
 payload: ctx,
 };
}

This request is evaluated and resolved into the following mapping document:

{
 "version": "2018-05-29",
 "operation": "BatchInvoke",
 "payload": [
 {...}, // context for batch item 1
 {...}, // context for batch item 2
 {...} // context for batch item 3
]

Request object 866

AWS AppSync Developer Guide

}

where each element of the payload list corresponds to a single batch item. The Lambda function
is also expected to return a list-shaped response, matching the order of the items sent in the
request, as follows:

[
 { "data": {...}, "errorMessage": null, "errorType": null }, // result for batch
 item 1
 { "data": {...}, "errorMessage": null, "errorType": null }, // result for batch
 item 2
 { "data": {...}, "errorMessage": null, "errorType": null } // result for batch
 item 3
]

operation is required.

Payload

The payload field is a container that you can use to pass any data to the Lambda function.

If the operation field is set to BatchInvoke, AWS AppSync wraps the existing payload values
into a list.

payload is optional.

Response object

As with other data sources, your Lambda function sends a response to AWS AppSync that must be
converted to a GraphQL type.

The result of the Lambda function is set on the context result property (context.result).

If the shape of your Lambda function response exactly matches the shape of the GraphQL type,
you can forward the response using the following function response handler:

export function response(ctx) {
 return ctx.result
}

Response object 867

AWS AppSync Developer Guide

There are no required fields or shape restrictions that apply to the response object. However,
because GraphQL is strongly typed, the resolved response must match the expected GraphQL type.

Lambda function batched response

If the operation field is set to BatchInvoke, AWS AppSync expects a list of items back from the
Lambda function. In order for AWS AppSync to map each result back to the original request item,
the response list must match in size and order. It is OK to have null items in the response list;
ctx.result is set to null accordingly.

JavaScript resolver function reference for EventBridge data
source

The AWS AppSync resolver function request and response used with the EventBridge data source
allows you to send custom events to the Amazon EventBridge bus.

Request

The request handler allows you to send multiple custom events to an EventBridge event bus:

export function request(ctx) {
 return {
 "operation" : "PutEvents",
 "events" : [{}]
 }
}

An EventBridge PutEvents request has the following type definition:

type PutEventsRequest = {
 operation: 'PutEvents'
 events: {
 source: string
 detail: { [key: string]: any }
 detailType: string
 resources?: string[]
 time?: string // RFC3339 Timestamp format
 }[]
}

Lambda function batched response 868

AWS AppSync Developer Guide

Response

If the PutEvents operation is successful, the response from EventBridge is included in the
ctx.result:

export function response(ctx) {
 if(ctx.error)
 util.error(ctx.error.message, ctx.error.type, ctx.result)
 else
 return ctx.result
}

Errors that occur while performing PutEvents operations such as InternalExceptions
or Timeouts will appear in ctx.error. For a list of EventBridge's common errors, see the
EventBridge common error reference.

The result will have the following type definition:

type PutEventsResult = {
 Entries: {
 ErrorCode: string
 ErrorMessage: string
 EventId: string
 }[]
 FailedEntry: number
}

• Entries

The ingested event results, both successful and unsuccessful. If the ingestion was successful,
the entry has the EventID in it. Otherwise, you can use the ErrorCode and ErrorMessage to
identify the problem with the entry.

For each record, the index of the response element is the same as the index in the request array.

• FailedEntryCount

The number of failed entries. This value is represented as an integer.

For more information about the response of PutEvents, see PutEvents.

Response 869

https://docs.aws.amazon.com/eventbridge/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html#API_PutEvents_ResponseElements

AWS AppSync Developer Guide

Example sample response 1

The following example is a PutEvents operation with two successful events:

{
 "Entries" : [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 }
],
 "FailedEntryCount" : 0
}

Example sample response 2

The following example is a PutEvents operation with three events, two successes and one fail:

{
 "Entries" : [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 },
 {
 "ErrorCode" : "SampleErrorCode",
 "ErrorMessage" : "Sample Error Message"
 }
],
 "FailedEntryCount" : 1
}

PutEvents field

• Version

PutEvents field 870

AWS AppSync Developer Guide

Common to all request mapping templates, the version field defines the version that the
template uses. This field is required. The value 2018-05-29 is the only version supported for the
EventBridge mapping templates.

• Operation

The only supported operation is PutEvents. This operation allows you to add custom events to
your event bus.

• Events

An array of events that will be added to the event bus. This array should have an allocation of 1 -
10 items.

The Event object has the following fields:

• "source": A string that defines the source of the event.

• "detail": A JSON object that you can use to attach information about the event. This field
can be an empty map ({ }).

• "detailType: A string that identifies the type of event.

• "resources": A JSON array of strings that identifies resources involved in the event. This
field can be an empty array.

• "time": The event timestamp provided as a string. This should follow the RFC3339 timestamp
format.

The snippets below are some examples of valid Event objects:

Example 1

{
 "source" : "source1",
 "detail" : {
 "key1" : [1,2,3,4],
 "key2" : "strval"
 },
 "detailType" : "sampleDetailType",
 "resources" : ["Resouce1", "Resource2"],
 "time" : "2022-01-10T05:00:10Z"
}

PutEvents field 871

https://www.rfc-editor.org/rfc/rfc3339.txt

AWS AppSync Developer Guide

Example 2

{
 "source" : "source1",
 "detail" : {},
 "detailType" : "sampleDetailType"
}

Example 3

{
 "source" : "source1",
 "detail" : {
 "key1" : 1200
 },
 "detailType" : "sampleDetailType",
 "resources" : []
}

JavaScript Resolver function reference for None data source

The AWS AppSync resolver function request and response with the data source of type None
enables you to shape requests for AWS AppSync local operations.

Request

The request handler can be simple and enables you to pass as much contextual information as
possible via the payload field.

type NONERequest = {
 payload: any;
};

Here is an example where the field arguments are passed to the payload:

export function request(ctx) {
 return {
 payload: context.args
 };

JavaScript Resolver function reference for None data source 872

AWS AppSync Developer Guide

}

The value of the payload field will be forwarded to the function response handler and is available
in context.result.

Payload

The payload field is a container that can be used to pass any data that is then made available to
the function response handler.

The payload field is optional.

Response

Because there is no data source, the value of the payload field will be forwarded to the function
response handler and set on the context.result property.

If the shape of the payload field value exactly matches the shape of the GraphQL type, you can
forward the response using the following response handler:

export function request(ctx) {
 return ctx.result;
}

There are no required fields or shape restrictions that apply to the return response. However,
because GraphQL is strongly typed, the resolved response must match the expected GraphQL type.

JavaScript resolver function reference for HTTP

The AWS AppSync HTTP resolver functions enable you to send requests from AWS AppSync to any
HTTP endpoint, and responses from your HTTP endpoint back to AWS AppSync. With your request
handler, you can provide hints to AWS AppSync about the nature of the operation to be invoked.
This section describes the different configurations for the supported HTTP resolver.

Request

type HTTPRequest = {
 method: 'PUT' | 'POST' | 'GET' | 'DELETE' | 'PATCH';
 params?: {

Payload 873

AWS AppSync Developer Guide

 query?: { [key: string]: any };
 headers?: { [key: string]: string };
 body?: string;
 };
 resourcePath: string;
};

The following snippet is an example of an HTTP POST request, with a text/plain body:

export function request(ctx) {
 return {
 method: 'POST',
 params: {
 headers: { 'Content-Type': 'text/plain' },
 body: 'this is an example of text body',
 },
 resourcePath: '/',
 };
}

Method

Request handler only

HTTP method or verb (GET, POST, PUT, PATCH, or DELETE) that AWS AppSync sends to the HTTP
endpoint.

"method": "PUT"

ResourcePath

Request handler only

The resource path that you want to access. Along with the endpoint in the HTTP data source, the
resource path forms the URL that the AWS AppSync service makes a request to.

"resourcePath": "/v1/users"

When the request is evaluated, this path is sent as part of the HTTP request, including the HTTP
endpoint. For example, the previous example might translate to the following:

Method 874

AWS AppSync Developer Guide

PUT <endpoint>/v1/users

Params Field

Request handler only

Used to specify what action your search performs, most commonly by setting the query value
inside the body. However, there are several other capabilities that can be configured, such as the
formatting of responses.

headers

The header information, as key-value pairs. Both the key and the value must be strings.

For example:

"headers" : {
 "Content-Type" : "application/json"
}

Currently supported Content-Type headers are:

text/*
application/xml
application/json
application/soap+xml
application/x-amz-json-1.0
application/x-amz-json-1.1
application/vnd.api+json
application/x-ndjson

You can’t set the following HTTP headers:

HOST
CONNECTION
USER-AGENT
EXPECTATION
TRANSFER_ENCODING
CONTENT_LENGTH

Params Field 875

AWS AppSync Developer Guide

query

Key-value pairs that specify common options, such as code formatting for JSON responses.
Both the key and the value must be a string. The following example shows how you can send a
query string as ?type=json:

"query" : {
 "type" : "json"
}

body

The body contains the HTTP request body that you choose to set. The request body is always a
UTF-8 encoded string unless the content type specifies the charset.

"body":"body string"

Response

See an example here.

JavaScript resolver function reference for Amazon RDS

The AWS AppSync RDS function and resolver allows developers to send SQL queries to an Amazon
Aurora cluster database using the RDS Data API and get back the result of these queries. You can
write SQL statements that are sent to the Data API by using AWS AppSync's rds module sql-
tagged template or by using the rds module's select, insert, update, and remove helper
functions. AWS AppSync utilizes the RDS Data Service's ExecuteStatement action to run SQL
statements against the database.

Topics

• SQL tagged template

• Creating statements

• Retrieving data

• Utility functions

Response 876

https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-http-resolvers-js.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html

AWS AppSync Developer Guide

• SQL Select

• SQL Insert

• SQL Update

• SQL Delete

• Casting

SQL tagged template

AWS AppSync's sql tagged template enables you to create a static statement that can receive
dynamic values at runtime by using template expressions. AWS AppSync builds a variable map
from the expression values to construct a SqlParameterized query that is sent to the Amazon
Aurora Serverless Data API. With this method, it isn't possible for dynamic values passed at run
time to modify the original statement, which could cause unintented execution. All dynamic
values are passed as parameters, can't modify the original statement, and aren't executed by the
database. This makes your query less vulnerable to SQL injection attacks.

Note

In all cases, when writing SQL statements, you should follow security guidelines to properly
handle data that you receive as input.

Note

The sql tagged template only supports passing variable values. You can't use an
expression to dynamically specify the column or table names. However, you can use utility
functions to build dynamic statements.

In the following example, we create a query that filters based on the value of the col argument
that is set dynamically in the GraphQL query at run time. The value can only be added to the
statement using the tag expression:

import { sql, createMySQLStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const query = sql

SQL tagged template 877

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html

AWS AppSync Developer Guide

SELECT * FROM table
WHERE column = ${ctx.args.col}
 ;
 return createMySQLStatement(query);
}

By passing all dynamic values through the variable map, we rely on the database engine to securely
handle and sanitize values.

Creating statements

Functions and resolvers can interact with MySQL and PostgreSQL databases. Use
createMySQLStatement and createPgStatement respectively to build statements. For
example, createMySQLStatement can create a MySQL query. These functions accept up to two
statements, useful when a request should retrieve results immediately. With MySQL, you could do:

import { sql, createMySQLStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { id, text } = ctx.args;
 const s1 = sql`insert into Post(id, text) values(${id}, ${text})`;
 const s2 = sql`select * from Post where id = ${id}`;
 return createMySQLStatement(s1, s2);
}

Note

createPgStatement and createMySQLStatement does not escape or quote statements
built with the sql tagged template.

Retrieving data

The result of your executed SQL statement is available in your response handler in the
context.result object. The result is a JSON string with the response elements from the
ExecuteStatement action. When parsed, the result has the following shape:

type SQLStatementResults = {
 sqlStatementResults: {

Creating statements 878

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html#API_ExecuteStatement_ResponseElements

AWS AppSync Developer Guide

 records: any[];
 columnMetadata: any[];
 numberOfRecordsUpdated: number;
 generatedFields?: any[]
 }[]
}

You can use the toJsonObject utility to transform the result into a list of JSON objects
representing the returned rows. For example:

import { toJsonObject } from '@aws-appsync/utils/rds';

export function response(ctx) {
 const { error, result } = ctx;
 if (error) {
 return util.appendError(
 error.message,
 error.type,
 result
)
 }
 return toJsonObject(result)[1][0]
}

Note that toJsonObject returns an array of statement results. If you provided one statement,
the array length is 1. If you provided two statements, the array length is 2. Each result in the array
contains 0 or more rows. toJsonObject returns null if the result value is invalid or unexpected.

Utility functions

You can use the AWS AppSync RDS module's utility helpers to interact with your database.

SQL Select

The select utility creates a SELECT statement to query your relational database.

Basic use

In its basic form, you can specify the table you want to query:

import { select, createPgStatement } from '@aws-appsync/utils/rds';

Utility functions 879

AWS AppSync Developer Guide

export function request(ctx) {

 // Generates statement:
 // "SELECT * FROM "persons"
 return createPgStatement(select({table: 'persons'}));
}

Note that you can also specify the schema in your table identifier:

import { select, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {

 // Generates statement:
 // SELECT * FROM "private"."persons"
 return createPgStatement(select({table: 'private.persons'}));
}

Specifying columns

You can specify columns with the columns property. If this isn't set to a value, it defaults to *:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name']
 }));
}

You can specify a column's table as well:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "persons"."name"
 // FROM "persons"
 return createPgStatement(select({

Utility functions 880

AWS AppSync Developer Guide

 table: 'persons',
 columns: ['id', 'persons.name']
 }));
}

Limits and offsets

You can apply limit and offset to the query:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // LIMIT :limit
 // OFFSET :offset
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 limit: 10,
 offset: 40
 }));
}

Order By

You can sort your results with the orderBy property. Provide an array of objects specifying the
column and an optional dir property:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name" FROM "persons"
 // ORDER BY "name", "id" DESC
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 orderBy: [{column: 'name'}, {column: 'id', dir: 'DESC'}]
 }));
}

Filters

Utility functions 881

AWS AppSync Developer Guide

You can build filters by using the special condition object:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: {name: {eq: 'Stephane'}}
 }));
}

You can also combine filters:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME and "id" > :ID
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: {name: {eq: 'Stephane'}, id: {gt: 10}}
 }));
}

You can also create OR statements:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME OR "id" > :ID
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: { or: [
 { name: { eq: 'Stephane'} },

Utility functions 882

AWS AppSync Developer Guide

 { id: { gt: 10 } }
]}
 }));
}

You can also negate a condition with not:

export function request(ctx) {

 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE NOT ("name" = :NAME AND "id" > :ID)
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: { not: [
 { name: { eq: 'Stephane'} },
 { id: { gt: 10 } }
]}
 }));
}

You can also use the following operators to compare values:

Operator Description Possible value types

eq Equal number, string, boolean

ne Not equal number, string, boolean

le Less than or equal number, string

lt Less than number, string

ge Greater than or equal number, string

gt Greater than number, string

contains Like string

notContains Not like string

Utility functions 883

AWS AppSync Developer Guide

beginsWith Starts with prefix string

between Between two values number, string

attributeExists The attribute is not null number, string, boolean

size checks the length of the
element

string

SQL Insert

The insert utility provides a straightforward way of inserting single row items in your database
with the INSERT operation.

Single item insertions

To insert an item, specify the table and then pass in your object of values. The object keys are
mapped to your table columns. Columns names are automatically escaped, and values are sent to
the database using the variable map:

import { insert, createMySQLStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({ table: 'persons', values });

 // Generates statement:
 // INSERT INTO `persons`(`name`)
 // VALUES(:NAME)
 return createMySQLStatement(insertStatement)
}

MySQL use case

You can combine an insert followed by a select to retrieve your inserted row:

import { insert, select, createMySQLStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({ table: 'persons', values });

Utility functions 884

AWS AppSync Developer Guide

 const selectStatement = select({
 table: 'persons',
 columns: '*',
 where: { id: { eq: values.id } },
 limit: 1,
 });

 // Generates statement:
 // INSERT INTO `persons`(`name`)
 // VALUES(:NAME)
 // and
 // SELECT *
 // FROM `persons`
 // WHERE `id` = :ID
 return createMySQLStatement(insertStatement, selectStatement)
}

Postgres use case

With Postgres, you can use returning to obtain data from the row that you inserted. It accepts *
or an array of column names:

import { insert, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({
 table: 'persons',
 values,
 returning: '*'
 });

 // Generates statement:
 // INSERT INTO "persons"("name")
 // VALUES(:NAME)
 // RETURNING *
 return createPgStatement(insertStatement)
}

SQL Update

The update utility allows you to update existing rows. You can use the condition object to apply
changes to the specified columns in all the rows that satisfy the condition. For example, let's say we

Utility functions 885

https://www.postgresql.org/docs/current/dml-returning.html

AWS AppSync Developer Guide

have a schema that allows us to make this mutation. We want to update the name of Person with
the id value of 3 but only if we've known them (known_since) since the year 2000:

mutation Update {
 updatePerson(
 input: {id: 3, name: "Jon"},
 condition: {known_since: {ge: "2000"}}
) {
 id
 name
 }
}

Our update resolver looks like this:

import { update, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: { id, ...values }, condition } = ctx.args;
 const where = {
 ...condition,
 id: { eq: id },
 };
 const updateStatement = update({
 table: 'persons',
 values,
 where,
 returning: ['id', 'name'],
 });

 // Generates statement:
 // UPDATE "persons"
 // SET "name" = :NAME, "birthday" = :BDAY, "country" = :COUNTRY
 // WHERE "id" = :ID
 // RETURNING "id", "name"
 return createPgStatement(updateStatement)
}

We can add a check to our condition to make sure that only the row that has the primary key id
equal to 3 is updated. Similarly, for Postgres inserts, you can use returning to return the
modified data.

Utility functions 886

AWS AppSync Developer Guide

SQL Delete

The remove utility allows you to delete existing rows. You can use the condition object on all rows
that satisfy the condition. Note that delete is a reserved keyword in JavaScript. remove should be
used instead:

import { remove, createPgStatement } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const { input: { id }, condition } = ctx.args;
 const where = { ...condition, id: { eq: id } };
 const deleteStatement = remove({
 table: 'persons',
 where,
 returning: ['id', 'name'],
 });

 // Generates statement:
 // DELETE "persons"
 // WHERE "id" = :ID
 // RETURNING "id", "name"
 return createPgStatement(updateStatement)
}

Casting

In some cases, you may want more specificity about the correct object type to use in your
statement. You can use the provided type hints to specify the type of your parameters. AWS
AppSync supports the same type hints as the Data API. You can cast your parameters by using the
typeHint functions from the AWS AppSync rds module.

The following example allows you to send an array as a value that is casted as a JSON object. We
use the -> operator to retrieve the element at the index 2 in the JSON array:

import { sql, createPgStatement, toJsonObject, typeHint } from '@aws-appsync/utils/
rds';

export function request(ctx) {
 const arr = ctx.args.list_of_ids
 const statement = sql`select ${typeHint.JSON(arr)}->2 as value`
 return createPgStatement(statement)
}

Casting 887

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html#rdsdtataservice-Type-SqlParameter-typeHint

AWS AppSync Developer Guide

export function response(ctx) {
 return toJsonObject(ctx.result)[0][0].value
}

Casting is also useful when handling and comparing DATE, TIME, and TIMESTAMP:

import { select, createPgStatement, typeHint } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const when = ctx.args.when
 const statement = select({
 table: 'persons',
 where: { createdAt : { gt: typeHint.DATETIME(when) } }
 })
 return createPgStatement(statement)
}

Here's another example showing how you can send the current date and time:

import { sql, createPgStatement, typeHint } from '@aws-appsync/utils/rds';

export function request(ctx) {
 const now = util.time.nowFormatted('YYYY-MM-dd HH:mm:ss')
 return createPgStatement(sql`select ${typeHint.TIMESTAMP(now)}`)
}

Available type hints

• typeHint.DATE - The corresponding parameter is sent as an object of the DATE type to the
database. The accepted format is YYYY-MM-DD.

• typeHint.DECIMAL - The corresponding parameter is sent as an object of the DECIMAL type to
the database.

• typeHint.JSON - The corresponding parameter is sent as an object of the JSON type to the
database.

• typeHint.TIME - The corresponding string parameter value is sent as an object of the TIME
type to the database. The accepted format is HH:MM:SS[.FFF].

• typeHint.TIMESTAMP - The corresponding string parameter value is sent as an object of the
TIMESTAMP type to the database. The accepted format is YYYY-MM-DD HH:MM:SS[.FFF].

Casting 888

AWS AppSync Developer Guide

• typeHint.UUID - The corresponding string parameter value is sent as an object of the UUID
type to the database.

Casting 889

AWS AppSync Developer Guide

Resolver mapping template reference (VTL)

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The following sections will describe how utility operations can be used in mapping templates.

Topics

• Resolver mapping template overview

• Resolver mapping template programming guide

• Resolver mapping template context reference

• Resolver mapping template utility reference

• Resolver mapping template reference for DynamoDB

• Resolver mapping template reference for RDS

• Resolver Mapping Template Reference for OpenSearch

• Resolver mapping template reference for Lambda

• Resolver mapping template reference for EventBridge

• Resolver mapping template reference for None data source

• Resolver Mapping Template Reference for HTTP

• Resolver mapping template changelog

Resolver mapping template overview

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync lets you respond to GraphQL requests by performing operations on your resources.
For each GraphQL field you wish to run a query or mutation on, a resolver must be attached in

Resolver mapping template overview 890

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

order to communicate with a data source. The communication is typically through parameters or
operations that are unique to the data source.

Resolvers are the connectors between GraphQL and a data source. They tell AWS AppSync how to
translate an incoming GraphQL request into instructions for your backend data source, and how to
translate the response from that data source back into a GraphQL response. They are written in the
Apache Velocity Template Language (VTL), which takes your request as input and outputs a JSON
document containing the instructions for the resolver. You can use mapping templates for simple
instructions, such as passing in arguments from GraphQL fields, or for more complex instructions,
such as looping through arguments to build an item before inserting the item into DynamoDB.

There are two types of resolvers in AWS AppSync that leverage mapping templates in slightly
different ways:

• Unit resolvers

• Pipeline resolvers

Unit resolvers

Unit resolvers are self-contained entities which include a request and response template only. Use
these for simple, single operations such as listing items from a single data source.

• Request templates: Take the incoming request after a GraphQL operation is parsed and convert it
into a request configuration for the selected data source operation.

• Response templates: Interpret responses from your data source and map it to the shape of the
GraphQL field output type.

Pipeline resolvers

Pipeline resolvers contain one or more functions which are performed in sequential order. Each
function includes a request template and response template. A pipeline resolver also has a before
template and an after template that surround the sequence of functions that the template
contains. The after template maps to the GraphQL field output type. Pipeline resolvers differ from
unit resolvers in the way that the response template maps output. A pipeline resolver can map to
any output you want, including the input for another function or the after template of the pipeline
resolver.

Unit resolvers 891

https://velocity.apache.org/engine/1.7/user-guide.html

AWS AppSync Developer Guide

Pipeline resolver functions enable you to write common logic that you can reuse across multiple
resolvers in your schema. Functions are attached directly to a data source, and like a unit resolver,
contain the same request and response mapping template format.

The following diagram demonstrates the process flow of a unit resolver on the left and a pipeline
resolver on the right.

Pipeline resolvers contain a superset of the functionality that unit resolvers support, and more, at
the cost of a little more complexity.

Anatomy of a pipeline resolver

A pipeline resolver is composed of a Before mapping template, an After mapping template, and
a list of functions. Each function has a request and response mapping template that it executes
against a data source. As a pipeline resolver delegates execution to a list of functions, it is therefore
not linked to any data source. Unit resolvers and functions are primitives that execute operation
against data sources. See the Resolver mapping template overview for more information.

Before mapping template

The request mapping template of a pipeline resolver, or the Before step, allows you to perform
some preparation logic before executing the defined functions.

Pipeline resolvers 892

AWS AppSync Developer Guide

Functions list

The list of functions a pipeline resolver will run in sequence. The pipeline resolver request mapping
template evaluated result is made available to the first function as $ctx.prev.result. Each
function output is available to the next function as $ctx.prev.result.

After mapping template

The response mapping template of a pipeline resolver, or the After step, allows you to perform
some final mapping logic from the output of the last function to the expected GraphQL field type.
The output of the last function in the functions list is available in the pipeline resolver mapping
template as $ctx.prev.result or $ctx.result.

Execution flow

Given a pipeline resolver comprised of two functions, the list below represents the execution flow
when the resolver is invoked:

Pipeline resolvers 893

AWS AppSync Developer Guide

1. Pipeline resolver Before mapping template

2. Function 1: Function request mapping template

3. Function 1: Data source invocation

4. Function 1: Function response mapping template

5. Function 2: Function request mapping template

6. Function 2: Data source invocation

7. Function 2: Function response mapping template

8. Pipeline resolver After mapping template

Pipeline resolvers 894

AWS AppSync Developer Guide

Note

Pipeline resolver execution flow is unidirectional and defined statically on the resolver.

Useful Apache Velocity Template Language (VTL) utilities

As the complexity of an application increases, VTL utilities and directives are here to facilitate
development productivity. The following utilities can help you when you’re working with pipeline
resolvers.

$ctx.stash

The stash is a Map that is made available inside each resolver and function mapping template. The
same stash instance lives through a single resolver execution. What this means is you can use the
stash to pass arbitrary data across request and response mapping templates, and across functions
in a pipeline resolver. The stash exposes the same methods as the Java map data structure.

$ctx.prev.result

The $ctx.prev.result represents the result of the previous operation that was executed in the
pipeline resolver.

If the previous operation was the pipeline resolver's Before mapping template, then
$ctx.prev.result represents the output of the evaluation of the template and is made
available to the first function in the pipeline. If the previous operation was the first function,
then $ctx.prev.result represents the output of the first function and is made available
to the second function in the pipeline. If the previous operation was the last function, then
$ctx.prev.result represents the output of the last function and is made available to the
pipeline resolver's After mapping template.

#return(data: Object)

The #return(data: Object) directive comes handy if you need to return prematurely from
any mapping template. #return(data: Object) is analogous to the return keyword in
programming languages because it returns from the closest scoped block of logic. What this
means is that using #return inside a resolver mapping template returns from the resolver. Using
#return(data: Object) in a resolver mapping template sets data on the GraphQL field.
Additionally, using #return(data: Object) from a function mapping template returns from

Pipeline resolvers 895

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

AWS AppSync Developer Guide

the function and continues the execution to either the next function in the pipeline or the resolver
response mapping template.

#return

This is the same as #return(data: Object), but null will be returned instead.

$util.error

The $util.error utility is useful to throw a field error. Using $util.error inside a function
mapping template throws a field error immediately, which prevents subsequent functions from
being executed. For more details and other $util.error signatures, visit the Resolver mapping
template utility reference.

$util.appendError

The $util.appendError is similar to the $util.error(), with the major distinction that it
doesn’t interrupt the evaluation of the mapping template. Instead, it signals there was an error
with the field, but allows the template to be evaluated and consequently return data. Using
$util.appendError inside a function will not disrupt the execution flow of the pipeline. For
more details and other $util.error signatures, visit the Resolver mapping template utility
reference.

Example template

Suppose you have a DynamoDB data source and a Unit resolver on a field named
getPost(id:ID!) that returns a Post type with the following GraphQL query:

getPost(id:1){
 id
 title
 content
}

Your resolver template might look like the following:

 {
 "version" : "2018-05-29",
 "operation" : "GetItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 }

Example template 896

AWS AppSync Developer Guide

}

This would substitute the id input parameter value of 1 for ${ctx.args.id} and generate the
following JSON:

 {
 "version" : "2018-05-29",
 "operation" : "GetItem",
 "key" : {
 "id" : { "S" : "1" }
 }
}

AWS AppSync uses this template to generate instructions for communicating with DynamoDB
and getting data (or performing other operations as appropriate). After the data returns, AWS
AppSync runs it through an optional response mapping template, which you can use to perform
data shaping or logic. For example, when we get the results back from DynamoDB, they might look
like this:

{
 "id" : 1,
 "theTitle" : "AWS AppSync works offline!",
 "theContent-part1" : "It also has realtime functionality",
 "theContent-part2" : "using GraphQL"
}

You could choose to join two of the fields into a single field with the following response mapping
template:

{
 "id" : $util.toJson($context.data.id),
 "title" : $util.toJson($context.data.theTitle),
 "content" : $util.toJson("${context.data.theContent-part1}
 ${context.data.theContent-part2}")
}

Here’s how the data is shaped after the template is applied to the data:

{
 "id" : 1,
 "title" : "AWS AppSync works offline!",

Example template 897

AWS AppSync Developer Guide

 "content" : "It also has realtime functionality using GraphQL"
}

This data is given back as the response to a client as follows:

{
 "data": {
 "getPost": {
 "id" : 1,
 "title" : "AWS AppSync works offline!",
 "content" : "It also has realtime functionality using GraphQL"
 }
 }
}

Note that under most circumstances, response mapping templates are a simple passthrough of
data, differing mostly if you are returning an individual item or a list of items. For an individual
item the passthrough is:

$util.toJson($context.result)

For lists the passthrough is usually:

$util.toJson($context.result.items)

To see more examples of both unit and pipeline resolvers, see Resolver tutorials.

Evaluated mapping template deserialization rules

Mapping templates evaluate to a string. In AWS AppSync, the output string must follow a JSON
structure to be valid.

Additionally, the following deserialization rules are enforced.

Duplicate keys are not allowed in JSON objects

If the evaluated mapping template string represents a JSON object or contains an object that has
duplicate keys, the mapping template returns the following error message:

Duplicate field 'aField' detected on Object. Duplicate JSON keys are not
allowed.

Evaluated mapping template deserialization rules 898

AWS AppSync Developer Guide

Example of a duplicate key in an evaluated request mapping template:

{
 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "postId": "1",
 "field": "getPost" ## key 'field' has been redefined
 }
}

To fix this error, do not redefine keys in JSON objects.

Trailing characters are not allowed in JSON objects

If the evaluated mapping template string represents a JSON object and contains trailing
extraneous characters, the mapping template returns the following error message:

Trailing characters at the end of the JSON string are not allowed.

Example of trailing characters in an evaluated request mapping template:

{
 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "postId": "1",
 }
}extraneouschars

To fix this error, ensure that evaluated templates strictly evaluate to JSON.

Resolver mapping template programming guide

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Resolver mapping template programming guide 899

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

This is a cookbook-style tutorial of programming with the Apache Velocity Template Language
(VTL) in AWS AppSync. If you are familiar with other programming languages such as JavaScript, C,
or Java, it should be fairly straightforward.

AWS AppSync uses VTL to translate GraphQL requests from clients into a request to your data
source. Then it reverses the process to translate the data source response back into a GraphQL
response. VTL is a logical template language that gives you the power to manipulate both the
request and the response in the standard request/response flow of a web application, using
techniques such as:

• Default values for new items

• Input validation and formatting

• Transforming and shaping data

• Iterating over lists, maps, and arrays to pluck out or alter values

• Filter/change responses based on user identity

• Complex authorization checks

For example, you might want to perform a phone number validation in the service on a GraphQL
argument, or convert an input parameter to upper case before storing it in DynamoDB. Or maybe
you want client systems to provide a code, as part of a GraphQL argument, JWT token claim, or
HTTP header, and only respond with data if the code matches a specific string in a list. These are all
logical checks you can perform with VTL in AWS AppSync.

VTL allows you to apply logic using programming techniques that might be familiar. However, it
is bounded to run within the standard request/response flow to ensure that your GraphQL API is
scalable as your user base grows. Because AWS AppSync also supports AWS Lambda as a resolver,
you can write Lambda functions in your programming language of choice (Node.js, Python, Go,
Java, etc.) if you need more flexibility.

Setup

A common technique when learning a language is to print out results (for example,
console.log(variable) in JavaScript) to see what happens. In this tutorial, we demonstrate
this by creating a simple GraphQL schema and passing a map of values to a Lambda function.
The Lambda function prints out the values and then responds with them. This will enable you to
understand the request/response flow and see different programming techniques.

Setup 900

AWS AppSync Developer Guide

Start by creating the following GraphQL schema:

type Query {
 get(id: ID, meta: String): Thing
}

type Thing {
 id: ID!
 title: String!
 meta: String
}

schema {
 query: Query
}

Now create the following AWS Lambda function, using Node.js as the language:

exports.handler = (event, context, callback) => {
 console.log('VTL details: ', event);
 callback(null, event);
};

In the Data Sources pane of the AWS AppSync console, add this Lambda function as a new data
source. Navigate back to the Schema page of the console and click the ATTACH button on the
right, next to the get(...):Thing query. For the request template, choose the existing template
from the Invoke and forward arguments menu. For the response template, choose Return
Lambda result.

Open Amazon CloudWatch Logs for your Lambda function in one location, and from the Queries
tab of the AWS AppSync console, run the following GraphQL query:

query test {
 get(id:123 meta:"testing"){
 id
 meta
 }
}

Setup 901

AWS AppSync Developer Guide

The GraphQL response should contain id:123 and meta:testing, because the Lambda function
is echoing them back. After a few seconds, you should see a record in CloudWatch Logs with these
details as well.

Variables

VTL uses references, which you can use to store or manipulate data. There are three types of
references in VTL: variables, properties, and methods. Variables have a $ sign in front of them and
are created with the #set directive:

#set($var = "a string")

Variables store similar types that you’re familiar with from other languages, such as numbers,
strings, arrays, lists, and maps. You might have noticed a JSON payload being sent in the default
request template for Lambda resolvers:

"payload": $util.toJson($context.arguments)

A couple of things to notice here - first, AWS AppSync provides several convenience functions for
common operations. In this example, $util.toJson converts a variable to JSON. Second, the
variable $context.arguments is automatically populated from a GraphQL request as a map
object. You can create a new map as follows:

#set($myMap = {
 "id": $context.arguments.id,
 "meta": "stuff",
 "upperMeta" : $context.arguments.meta.toUpperCase()
})

You have now created a variable named $myMap, which has keys of id, meta, and upperMeta. This
also demonstrates a few things:

• id is populated with a key from the GraphQL arguments. This is common in VTL to grab
arguments from clients.

• meta is hardcoded with a value, showcasing default values.

• upperMeta is transforming the meta argument using a method .toUpperCase().

Variables 902

https://velocity.apache.org/engine/1.7/user-guide.html#references

AWS AppSync Developer Guide

Put the previous code at the top of your request template and change the payload to use the new
$myMap variable:

"payload": $util.toJson($myMap)

Run your Lambda function, and you can see the response change as well as this data in
CloudWatch logs. As you walk through the rest of this tutorial, we will keep populating $myMap so
you can run similar tests.

You can also set properties_ on your variables. These could be simple strings, arrays, or JSON:

#set($myMap.myProperty = "ABC")
#set($myMap.arrProperty = ["Write", "Some", "GraphQL"])
#set($myMap.jsonProperty = {
 "AppSync" : "Offline and Realtime",
 "Cognito" : "AuthN and AuthZ"
})

Quiet References

Because VTL is a templating language, by default, every reference you give it will do a
.toString(). If the reference is undefined, it prints the actual reference representation, as a
string. For example:

#set($myValue = 5)
##Prints '5'
$myValue

##Prints '$somethingelse'
$somethingelse

To address this, VTL has a quiet reference or silent reference syntax, which tells the template engine
to suppress this behavior. The syntax for this is $!{}. For example, if we changed the previous code
slightly to use $!{somethingelse}, the printing is suppressed:

#set($myValue = 5)
##Prints '5'
$myValue

##Nothing prints out

Variables 903

AWS AppSync Developer Guide

$!{somethingelse}

Calling Methods

In an earlier example, we showed you how to create a variable and simultaneously set values. You
can also do this in two steps by adding data to your map as shown following:

#set ($myMap = {})
#set ($myList = [])

##Nothing prints out
$!{myMap.put("id", "first value")}
##Prints "first value"
$!{myMap.put("id", "another value")}
##Prints true
$!{myList.add("something")}

HOWEVER there is something to know about this behavior. Although the quiet reference notation
$!{} allows you to call methods, as above, it won’t suppress the returned value of the executed
method. This is why we noted ##Prints "first value" and ##Prints true above. This can
cause errors when you’re iterating over maps or lists, such as inserting a value where a key already
exists, because the output adds unexpected strings to the template upon evaluation.

The workaround to this is sometimes to call the methods using a #set directive and ignore the
variable. For example:

#set ($myMap = {})
#set($discard = $myMap.put("id", "first value"))

You might use this technique in your templates, as it prevents the unexpected strings from being
printed in the template. AWS AppSync provides an alternative convenience function that offers
the same behavior in a more succinct notation. This enables you to not have to think about
these implementation specifics. You can access this function under $util.quiet() or its alias
$util.qr(). For example:

#set ($myMap = {})
#set ($myList = [])

##Nothing prints out

Calling Methods 904

AWS AppSync Developer Guide

$util.quiet($myMap.put("id", "first value"))
##Nothing prints out
$util.qr($myList.add("something"))

Strings

As with many programming languages, strings can be difficult to deal with, especially when you
want to build them from variables. There are some common things that come up with VTL.

Suppose you are inserting data as a string to a data source like DynamoDB, but it is populated from
a variable, like a GraphQL argument. A string will have double quotation marks, and to reference
the variable in a string you just need "${}" (so no ! as in quiet reference notation). This is similar
to a template literal in JavaScript: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Template_literals

#set($firstname = "Jeff")
$!{myMap.put("Firstname", "${firstname}")}

You can see this in DynamoDB request templates, like "author": { "S" :
"${context.arguments.author}"} when using arguments from GraphQL clients, or for
automatic ID generation like "id" : { "S" : "$util.autoId()"}. This means that you can
reference a variable or the result of a method inside a string to populate data.

You can also use public methods of the Java String class, such as pulling out a substring:

#set($bigstring = "This is a long string, I want to pull out everything after the
 comma")
#set ($comma = $bigstring.indexOf(','))
#set ($comma = $comma +2)
#set ($substring = $bigstring.substring($comma))

$util.qr($myMap.put("substring", "${substring}"))

String concatenation is also a very common task. You can do this with variable references alone or
with static values:

#set($s1 = "Hello")
#set($s2 = " World")

$util.qr($myMap.put("concat","$s1$s2"))

Strings 905

https://velocity.apache.org/engine/1.7/user-guide.html#quiet-reference-notation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://docs.oracle.com/javase/6/docs/api/java/lang/String.html

AWS AppSync Developer Guide

$util.qr($myMap.put("concat2","Second $s1 World"))

Loops

Now that you have created variables and called methods, you can add some logic to your code.
Unlike other languages, VTL allows only loops, where the number of iterations is predetermined.
There is no do..while in Velocity. This design ensures that the evaluation process always
terminates, and provides bounds for scalability when your GraphQL operations execute.

Loops are created with a #foreach and require you to supply a loop variable and an iterable
object such as an array, list, map, or collection. A classic programming example with a #foreach
loop is to loop over the items in a collection and print them out, so in our case we pluck them out
and add them to the map:

#set($start = 0)
#set($end = 5)
#set($range = [$start..$end])

#foreach($i in $range)
 ##$util.qr($myMap.put($i, "abc"))
 ##$util.qr($myMap.put($i, $i.toString()+"foo")) ##Concat variable with string
 $util.qr($myMap.put($i, "${i}foo")) ##Reference a variable in a string with
 "${varname}"
#end

This example shows a few things. The first is using variables with the range [..] operator to
create an iterable object. Then each item is referenced by a variable $i that you can operate with.
In the previous example, you also see Comments that are denoted with a double pound ##. This
also showcases using the loop variable in both the keys or the values, as well as different methods
of concatenation using strings.

Notice that $i is an integer, so you can call a .toString() method. For GraphQL types of INT,
this can be handy.

You can also use a range operator directly, for example:

#foreach($item in [1..5])
 ...
#end

Loops 906

AWS AppSync Developer Guide

Arrays

You have been manipulating a map up to this point, but arrays are also common in VTL. With
arrays you also have access to some underlying methods such as .isEmpty(), .size(), .set(),
.get(), and .add(), as shown below:

#set($array = [])
#set($idx = 0)

##adding elements
$util.qr($array.add("element in array"))
$util.qr($myMap.put("array", $array[$idx]))

##initialize array vals on create
#set($arr2 = [42, "a string", 21, "test"])

$util.qr($myMap.put("arr2", $arr2[$idx]))
$util.qr($myMap.put("isEmpty", $array.isEmpty())) ##isEmpty == false
$util.qr($myMap.put("size", $array.size()))

##Get and set items in an array
$util.qr($myMap.put("set", $array.set(0, 'changing array value')))
$util.qr($myMap.put("get", $array.get(0)))

The previous example used array index notation to retrieve an element with arr2[$idx]. You can
look up by name from a Map/dictionary in a similar way:

#set($result = {
 "Author" : "Nadia",
 "Topic" : "GraphQL"
})

$util.qr($myMap.put("Author", $result["Author"]))

This is very common when filtering results coming back from data sources in Response Templates
when using conditionals.

Conditional Checks

The earlier section with #foreach showcased some examples of using logic to transform data with
VTL. You can also apply conditional checks to evaluate data at runtime:

Arrays 907

AWS AppSync Developer Guide

#if(!$array.isEmpty())
 $util.qr($myMap.put("ifCheck", "Array not empty"))
#else
 $util.qr($myMap.put("ifCheck", "Your array is empty"))
#end

The above #if() check of a Boolean expression is nice, but you can also use operators and
#elseif() for branching:

#if ($arr2.size() == 0)
 $util.qr($myMap.put("elseIfCheck", "You forgot to put anything into this array!"))
#elseif ($arr2.size() == 1)
 $util.qr($myMap.put("elseIfCheck", "Good start but please add more stuff"))
#else
 $util.qr($myMap.put("elseIfCheck", "Good job!"))
#end

These two examples showed negation(!) and equality (==). We can also use ||, &&, >, <, >=, <=, and !
=.

#set($T = true)
#set($F = false)

#if ($T || $F)
 $util.qr($myMap.put("OR", "TRUE"))
#end

#if ($T && $F)
 $util.qr($myMap.put("AND", "TRUE"))
#end

Note: Only Boolean.FALSE and null are considered false in conditionals. Zero (0) and empty
strings (“”) are not equivalent to false.

Operators

No programming language would be complete without some operators to perform some
mathematical actions. Here are a few examples to get you started:

#set($x = 5)

Operators 908

AWS AppSync Developer Guide

#set($y = 7)
#set($z = $x + $y)
#set($x-y = $x - $y)
#set($xy = $x * $y)
#set($xDIVy = $x / $y)
#set($xMODy = $x % $y)

$util.qr($myMap.put("z", $z))
$util.qr($myMap.put("x-y", $x-y))
$util.qr($myMap.put("x*y", $xy))
$util.qr($myMap.put("x/y", $xDIVy))
$util.qr($myMap.put("x|y", $xMODy))

Loops and Conditionals Together

It is very common when transforming data in VTL, such as before writing or reading from a data
source, to loop over objects and then perform checks before performing an action. Combining
some of the tools from the previous sections gives you a lot of functionality. One handy tool is
knowing that #foreach automatically provides you with a .count on each item:

#foreach ($item in $arr2)
 #set($idx = "item" + $foreach.count)
 $util.qr($myMap.put($idx, $item))
#end

For example, maybe you want to just pluck out values from a map if it is under a certain size. Using
the count along with conditionals and the #break statement allows you to do this:

#set($hashmap = {
 "DynamoDB" : "https://aws.amazon.com/dynamodb/",
 "Amplify" : "https://github.com/aws/aws-amplify",
 "DynamoDB2" : "https://aws.amazon.com/dynamodb/",
 "Amplify2" : "https://github.com/aws/aws-amplify"
})

#foreach ($key in $hashmap.keySet())
 #if($foreach.count > 2)
 #break
 #end
 $util.qr($myMap.put($key, $hashmap.get($key)))
#end

Operators 909

AWS AppSync Developer Guide

The previous #foreach is iterated over with .keySet(), which you can use on maps. This gives
you access to get the $key and reference the value with a .get($key). GraphQL arguments from
clients in AWS AppSync are stored as a map. They can also be iterated through with .entrySet(),
which you can then access both keys and values as a Set, and either populate other variables or
perform complex conditional checks, such as validation or transformation of input:

#foreach($entry in $context.arguments.entrySet())
#if ($entry.key == "XYZ" && $entry.value == "BAD")
 #set($myvar = "...")
 #else
 #break
 #end
#end

Other common examples are automatically populating default information, like the initial object
versions when synchronizing data (very important in conflict resolution) or the default owner of an
object for authorization checks - Mary created this blog post, so:

#set($myMap.owner ="Mary")
#set($myMap.defaultOwners = ["Admins", "Editors"])

Context

Now that you are more familiar with performing logical checks in AWS AppSync resolvers with VTL,
take a look at the context object:

$util.qr($myMap.put("context", $context))

This contains all of the information that you can access in your GraphQL request. For a detailed
explanation, see the context reference.

Filtering

So far in this tutorial all information from your Lambda function has been returned to the GraphQL
query with a very simple JSON transformation:

$util.toJson($context.result)

Context 910

AWS AppSync Developer Guide

The VTL logic is just as powerful when you get responses from a data source, especially when doing
authorization checks on resources. Let’s walk through some examples. First try changing your
response template like so:

#set($data = {
 "id" : "456",
 "meta" : "Valid Response"
})

$util.toJson($data)

No matter what happens with your GraphQL operation, hardcoded values are returned back to
the client. Change this slightly so that the meta field is populated from the Lambda response, set
earlier in the tutorial in the elseIfCheck value when learning about conditionals:

#set($data = {
 "id" : "456"
})

#foreach($item in $context.result.entrySet())
 #if($item.key == "elseIfCheck")
 $util.qr($data.put("meta", $item.value))
 #end
#end

$util.toJson($data)

$context.result is a map, so you can use entrySet() to perform logic on either the keys
or the values returned. Because $context.identity contains information on the user that
performed the GraphQL operation, if you return authorization information from the data source,
then you can decide to return all, partial, or no data to a user based on your logic. Change your
response template to look like the following:

#if($context.result["id"] == 123)
 $util.toJson($context.result)
 #else
 $util.unauthorized()
#end

Filtering 911

AWS AppSync Developer Guide

If you run your GraphQL query, the data will be returned as normal. However, if you change the id
argument to something other than 123 (query test { get(id:456 meta:"badrequest")
{} }), you will get an authorization failure message.

You can find more examples of authorization scenarios in the authorization use cases section.

Appendix - Template Sample

If you followed along with the tutorial, you may have built out this template step by step. In case
you haven’t, we include it below to copy for testing.

Request Template

#set($myMap = {
 "id": $context.arguments.id,
 "meta": "stuff",
 "upperMeta" : "$context.arguments.meta.toUpperCase()"
})

##This is how you would do it in two steps with a "quiet reference" and you can use it
 for invoking methods, such as .put() to add items to a Map
#set ($myMap2 = {})
$util.qr($myMap2.put("id", "first value"))

Properties are created with a dot notation
#set($myMap.myProperty = "ABC")
#set($myMap.arrProperty = ["Write", "Some", "GraphQL"])
#set($myMap.jsonProperty = {
 "AppSync" : "Offline and Realtime",
 "Cognito" : "AuthN and AuthZ"
})

##When you are inside a string and just have ${} without ! it means stuff inside curly
 braces are a reference
#set($firstname = "Jeff")
$util.qr($myMap.put("Firstname", "${firstname}"))

#set($bigstring = "This is a long string, I want to pull out everything after the
 comma")
#set ($comma = $bigstring.indexOf(','))
#set ($comma = $comma +2)
#set ($substring = $bigstring.substring($comma))
$util.qr($myMap.put("substring", "${substring}"))

Filtering 912

AWS AppSync Developer Guide

##Classic for-each loop over N items:
#set($start = 0)
#set($end = 5)
#set($range = [$start..$end])
#foreach($i in $range) ##Can also use range operator directly like
 #foreach($item in [1...5])
 ##$util.qr($myMap.put($i, "abc"))
 ##$util.qr($myMap.put($i, $i.toString()+"foo")) ##Concat variable with string
 $util.qr($myMap.put($i, "${i}foo")) ##Reference a variable in a string with
 "${varname)"
#end

##Operators don't work
#set($x = 5)
#set($y = 7)
#set($z = $x + $y)
#set($x-y = $x - $y)
#set($xy = $x * $y)
#set($xDIVy = $x / $y)
#set($xMODy = $x % $y)
$util.qr($myMap.put("z", $z))
$util.qr($myMap.put("x-y", $x-y))
$util.qr($myMap.put("x*y", $xy))
$util.qr($myMap.put("x/y", $xDIVy))
$util.qr($myMap.put("x|y", $xMODy))

##arrays
#set($array = ["first"])
#set($idx = 0)
$util.qr($myMap.put("array", $array[$idx]))
##initialize array vals on create
#set($arr2 = [42, "a string", 21, "test"])
$util.qr($myMap.put("arr2", $arr2[$idx]))
$util.qr($myMap.put("isEmpty", $array.isEmpty())) ##Returns false
$util.qr($myMap.put("size", $array.size()))
##Get and set items in an array
$util.qr($myMap.put("set", $array.set(0, 'changing array value')))
$util.qr($myMap.put("get", $array.get(0)))

##Lookup by name from a Map/dictionary in a similar way:
#set($result = {
 "Author" : "Nadia",
 "Topic" : "GraphQL"

Filtering 913

AWS AppSync Developer Guide

})
$util.qr($myMap.put("Author", $result["Author"]))

##Conditional examples
#if(!$array.isEmpty())
$util.qr($myMap.put("ifCheck", "Array not empty"))
#else
$util.qr($myMap.put("ifCheck", "Your array is empty"))
#end

#if ($arr2.size() == 0)
$util.qr($myMap.put("elseIfCheck", "You forgot to put anything into this array!"))
#elseif ($arr2.size() == 1)
$util.qr($myMap.put("elseIfCheck", "Good start but please add more stuff"))
#else
$util.qr($myMap.put("elseIfCheck", "Good job!"))
#end

##Above showed negation(!) and equality (==), we can also use OR, AND, >, <, >=, <=,
 and !=
#set($T = true)
#set($F = false)
#if ($T || $F)
 $util.qr($myMap.put("OR", "TRUE"))
#end

#if ($T && $F)
 $util.qr($myMap.put("AND", "TRUE"))
#end

##Using the foreach loop counter - $foreach.count
#foreach ($item in $arr2)
 #set($idx = "item" + $foreach.count)
 $util.qr($myMap.put($idx, $item))
#end

##Using a Map and plucking out keys/vals
#set($hashmap = {
 "DynamoDB" : "https://aws.amazon.com/dynamodb/",
 "Amplify" : "https://github.com/aws/aws-amplify",
 "DynamoDB2" : "https://aws.amazon.com/dynamodb/",
 "Amplify2" : "https://github.com/aws/aws-amplify"
})

Filtering 914

AWS AppSync Developer Guide

#foreach ($key in $hashmap.keySet())
 #if($foreach.count > 2)
 #break
 #end
 $util.qr($myMap.put($key, $hashmap.get($key)))
#end

##concatenate strings
#set($s1 = "Hello")
#set($s2 = " World")
$util.qr($myMap.put("concat","$s1$s2"))
$util.qr($myMap.put("concat2","Second $s1 World"))

$util.qr($myMap.put("context", $context))

{
 "version" : "2017-02-28",
 "operation": "Invoke",
 "payload": $util.toJson($myMap)
}

Response Template

#set($data = {
"id" : "456"
})
#foreach($item in $context.result.entrySet()) ##$context.result is a MAP so we use
 entrySet()
 #if($item.key == "ifCheck")
 $util.qr($data.put("meta", "$item.value"))
 #end
#end

##Uncomment this out if you want to test and remove the below #if check
##$util.toJson($data)

#if($context.result["id"] == 123)
 $util.toJson($context.result)
 #else
 $util.unauthorized()
#end

Filtering 915

AWS AppSync Developer Guide

Resolver mapping template context reference

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync defines a set of variables and functions for working with resolver mapping
templates. This makes logical operations on data easier with GraphQL. This document describes
those functions and provides examples for working with templates.

Accessing the $context

The $context variable is a map that holds all of the contextual information for your resolver
invocation. It has the following structure:

{
 "arguments" : { ... },
 "source" : { ... },
 "result" : { ... },
 "identity" : { ... },
 "request" : { ... },
 "info": { ... }
}

Note

If you're trying to access a dictionary/map entry (such as an entry in context) by its
key to retrieve the value, the Velocity Template Language (VTL) lets you directly use the
notation <dictionary-element>.<key-name>. However, this might not work for all
cases, such as when the key names have special characters (for example, an underscore "_").
We recommend that you always use <dictionary-element>.get("<key-name>")
notation.

Each field in the $context map is defined as follows:

Resolver mapping template context reference 916

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

$context fields

arguments

A map that contains all GraphQL arguments for this field.

identity

An object that contains information about the caller. For more information about the structure
of this field, see Identity.

source

A map that contains the resolution of the parent field.

stash

The stash is a map that is made available inside each resolver and function mapping template.
The same stash instance lives through a single resolver execution. This means that you can use
the stash to pass arbitrary data across request and response mapping templates, and across
functions in a pipeline resolver. The stash exposes the same methods as the Java Map data
structure.

result

A container for the results of this resolver. This field is available only to response mapping
templates.

For example, if you're resolving the author field of the following query:

query {
 getPost(id: 1234) {
 postId
 title
 content
 author {
 id
 name
 }
 }
}

Accessing the $context 917

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

AWS AppSync Developer Guide

Then the full $context variable that is available when processing a response mapping
template might be:

{
 "arguments" : {
 id: "1234"
 },
 "source": {},
 "result" : {
 "postId": "1234",
 "title": "Some title",
 "content": "Some content",
 "author": {
 "id": "5678",
 "name": "Author Name"
 }
 },
 "identity" : {
 "sourceIp" : ["x.x.x.x"],
 "userArn" : "arn:aws:iam::123456789012:user/appsync",
 "accountId" : "666666666666",
 "user" : "AIDAAAAAAAAAAAAAAAAAA"
 }
}

prev.result

The result of whatever previous operation was executed in a pipeline resolver.

If the previous operation was the pipeline resolver's Before mapping template, then
$ctx.prev.result represents the output of the evaluation of the template and is made
available to the first function in the pipeline.

If the previous operation was the first function, then $ctx.prev.result represents the
output of the first function and is made available to the second function in the pipeline.

If the previous operation was the last function, then $ctx.prev.result represents the output
of the last function and is made available to the pipeline resolver's After mapping template.

info

An object that contains information about the GraphQL request. For the structure of this field,
see Info.

Accessing the $context 918

AWS AppSync Developer Guide

Identity

The identity section contains information about the caller. The shape of this section depends on
the authorization type of your AWS AppSync API.

For more information about AWS AppSync security options, see Authorization and authentication.

API_KEY authorization

The identity field isn't populated.

AWS_LAMBDA authorization

The identity contains the resolverContext key, containing the same resolverContext
content returned by the Lambda function authorizing the request.

AWS_IAM authorization

The identity has the following form:

{
 "accountId" : "string",
 "cognitoIdentityPoolId" : "string",
 "cognitoIdentityId" : "string",
 "sourceIp" : ["string"],
 "username" : "string", // IAM user principal
 "userArn" : "string",
 "cognitoIdentityAuthType" : "string", // authenticated/unauthenticated based on
 the identity type
 "cognitoIdentityAuthProvider" : "string" // the auth provider that was used to
 obtain the credentials
}

AMAZON_COGNITO_USER_POOLS authorization

The identity has the following form:

{
 "sub" : "uuid",
 "issuer" : "string",
 "username" : "string"
 "claims" : { ... },
 "sourceIp" : ["x.x.x.x"],

Accessing the $context 919

AWS AppSync Developer Guide

 "defaultAuthStrategy" : "string"
}

Each field is defined as follows:

accountId

The AWS account ID of the caller.

claims

The claims that the user has.

cognitoIdentityAuthType

Either authenticated or unauthenticated based on the identity type.

cognitoIdentityAuthProvider

A comma-separated list of external identity provider information used in obtaining the
credentials used to sign the request.

cognitoIdentityId

The Amazon Cognito identity ID of the caller.

cognitoIdentityPoolId

The Amazon Cognito identity pool ID associated with the caller.

defaultAuthStrategy

The default authorization strategy for this caller (ALLOW or DENY).

issuer

The token issuer.

sourceIp

The source IP address of the caller that AWS AppSync receives. If the request doesn't include
the x-forwarded-for header, the source IP value contains only a single IP address from the
TCP connection. If the request includes a x-forwarded-for header, the source IP is a list of
IP addresses from the x-forwarded-for header, in addition to the IP address from the TCP
connection.

Accessing the $context 920

AWS AppSync Developer Guide

sub

The UUID of the authenticated user.

user

The IAM user.

userArn

The Amazon Resource Name (ARN) of the IAM user.

username

The user name of the authenticated user. In the case of AMAZON_COGNITO_USER_POOLS
authorization, the value of username is the value of attribute cognito:username. In the case of
AWS_IAM authorization, the value of username is the value of the AWS user principal. If you're
using IAM authorization with credentials vended from Amazon Cognito identity pools, we
recommend that you use cognitoIdentityId.

Access request headers

AWS AppSync supports passing custom headers from clients and accessing them in your GraphQL
resolvers by using $context.request.headers. You can then use the header values for actions
such as inserting data into a data source or authorization checks. You can use single or multiple
request headers using $curl with an API key from the command line, as shown in the following
examples:

Single header example

Suppose you set a header of custom with a value of nadia like the following:

curl -XPOST -H "Content-Type:application/graphql" -H "custom:nadia" -H "x-api-key:<API-
KEY-VALUE>" -d '{"query":"mutation { createEvent(name: \"demo\", when: \"Next Friday!
\", where: \"Here!\") {id name when where description}}"}' https://<ENDPOINT>/graphql

This could then be accessed with $context.request.headers.custom. For example, it might
be in the following VTL for DynamoDB:

"custom": $util.dynamodb.toDynamoDBJson($context.request.headers.custom)

Multiple header example

Accessing the $context 921

AWS AppSync Developer Guide

You can also pass multiple headers in a single request and access these in the resolver mapping
template. For example, if the custom header is set with two values:

curl -XPOST -H "Content-Type:application/graphql" -H "custom:bailey" -H "custom:nadia"
 -H "x-api-key:<API-KEY-VALUE>" -d '{"query":"mutation { createEvent(name: \"demo
\", when: \"Next Friday!\", where: \"Here!\") {id name when where description}}"}'
 https://<ENDPOINT>/graphql

You could then access these as an array, such as $context.request.headers.custom[1].

Note

AWS AppSync doesn't expose the cookie header in $context.request.headers.

Access the request custom domain name

AWS AppSync supports configuring a custom domain that you can use to access your GraphQL and
real-time endpoints for your APIs. When making a request with a custom domain name, you can
get the domain name using $context.request.domainName.

When using the default GraphQL endpoint domain name, the value is null.

Info

The info section contains information about the GraphQL request. This section has the following
form:

{
 "fieldName": "string",
 "parentTypeName": "string",
 "variables": { ... },
 "selectionSetList": ["string"],
 "selectionSetGraphQL": "string"
}

Each field is defined as follows:

fieldName

The name of the field that is currently being resolved.

Accessing the $context 922

AWS AppSync Developer Guide

parentTypeName

The name of the parent type for the field that is currently being resolved.

variables

A map which holds all variables that are passed into the GraphQL request.

selectionSetList

A list representation of the fields in the GraphQL selection set. Fields that are aliased are
referenced only by the alias name, not the field name. The following example shows this in
detail.

selectionSetGraphQL

A string representation of the selection set, formatted as GraphQL schema definition language
(SDL). Although fragments aren't merged into the selection set, inline fragments are preserved,
as shown in the following example.

Note

When using $utils.toJson() on context.info, the values that
selectionSetGraphQL and selectionSetList return are not serialized by default.

For example, if you are resolving the getPost field of the following query:

query {
 getPost(id: $postId) {
 postId
 title
 secondTitle: title
 content
 author(id: $authorId) {
 authorId
 name
 }
 secondAuthor(id: "789") {
 authorId
 }
 ... on Post {
 inlineFrag: comments: {

Accessing the $context 923

AWS AppSync Developer Guide

 id
 }
 }
 ... postFrag
 }
}

fragment postFrag on Post {
 postFrag: comments: {
 id
 }
}

Then the full $context.info variable that is available when processing a mapping template
might be:

{
 "fieldName": "getPost",
 "parentTypeName": "Query",
 "variables": {
 "postId": "123",
 "authorId": "456"
 },
 "selectionSetList": [
 "postId",
 "title",
 "secondTitle"
 "content",
 "author",
 "author/authorId",
 "author/name",
 "secondAuthor",
 "secondAuthor/authorId",
 "inlineFragComments",
 "inlineFragComments/id",
 "postFragComments",
 "postFragComments/id"
],
 "selectionSetGraphQL": "{\n getPost(id: $postId) {\n postId\n title\n
 secondTitle: title\n content\n author(id: $authorId) {\n authorId\n
 name\n }\n secondAuthor(id: \"789\") {\n authorId\n }\n ... on Post
 {\n inlineFrag: comments {\n id\n }\n }\n ... postFrag\n }\n}"
}

Accessing the $context 924

AWS AppSync Developer Guide

selectionSetList exposes only fields that belong to the current type. If the current type is an
interface or union, only selected fields that belong to the interface are exposed. For example, given
the following schema:

type Query {
 node(id: ID!): Node
}

interface Node {
 id: ID
}

type Post implements Node {
 id: ID
 title: String
 author: String
}

type Blog implements Node {
 id: ID
 title: String
 category: String
}

And the following query:

query {
 node(id: "post1") {
 id
 ... on Post {
 title
 }

 ... on Blog {
 title
 }
 }
}

When calling $ctx.info.selectionSetList at the Query.node field resolution, only id is
exposed:

Accessing the $context 925

AWS AppSync Developer Guide

"selectionSetList": [
 "id"
]

Sanitizing inputs

Applications must sanitize untrusted inputs to prevent any external party from using
an application outside of its intended use. As the $context contains user inputs in
properties such as $context.arguments, $context.identity, $context.result,
$context.info.variables, and $context.request.headers, care must be taken to sanitize
their values in mapping templates.

Since mapping templates represent JSON, input sanitization takes the form of escaping
JSON reserved characters from strings that represent user inputs. It is best practice to use the
$util.toJson() utility to escape JSON reserved characters from sensitive string values when
placing them into a mapping template.

For example, in the following Lambda request mapping template, because we accessed an unsafe
customer input string ($context.arguments.id), we wrapped it with $util.toJson() to
prevent unescaped JSON characters from breaking the JSON template.

{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "postId": $util.toJson($context.arguments.id)
 }
}

As opposed to the mapping template below, where we directly insert $context.arguments.id
without sanitization. This does not work for strings containing unescaped quotation marks or other
JSON reserved characters, and can leave your template open to failure.

DO NOT DO THIS
{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {

Sanitizing inputs 926

AWS AppSync Developer Guide

 "field": "getPost",
 "postId": "$context.arguments.id" ## Unsafe! Do not insert $context string
 values without escaping JSON characters.
 }
}

Resolver mapping template utility reference

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync defines a set of utilities that you can use within a GraphQL resolver to simplify
interactions with data sources. Some of these utilities are for general use with any data source,
such as generating IDs or timestamps. Others are specific to a type of data source.

Topics

• Utility helpers in $util

• AWS AppSync directives

• Time helpers in $util.time

• List helpers in $util.list

• Map helpers in $util.map

• DynamoDB helpers in $util.dynamodb

• Amazon RDS helpers in $util.rds

• HTTP helpers in $util.http

• XML helpers in $util.xml

• Transformation helpers in $util.transform

• Math helpers in $util.math

• String helpers in $util.str

• Extensions

Resolver mapping template utility reference 927

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

Utility helpers in $util

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The $util variable contains general utility methods to help you work with data. Unless otherwise
specified, all utilities use the UTF-8 character set.

JSON parsing utils

JSON parsing utils list

$util.parseJson(String) : Object

Takes "stringified" JSON and returns an object representation of the result.

$util.toJson(Object) : String

Takes an object and returns a "stringified" JSON representation of that object.

Encoding utils

Encoding utils list

$util.urlEncode(String) : String

Returns the input string as an application/x-www-form-urlencoded encoded string.

$util.urlDecode(String) : String

Decodes an application/x-www-form-urlencoded encoded string back to its non-encoded
form.

$util.base64Encode(byte[]) : String

Encodes the input into a base64-encoded string.

$util.base64Decode(String) : byte[]

Decodes the data from a base64-encoded string.

Utility helpers in $util 928

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

ID generation utils

ID generation utils list

$util.autoId() : String

Returns a 128-bit randomly generated UUID.

$util.autoUlid() : String

Returns a 128-bit randomly generated ULID (Universally Unique Lexicographically Sortable
Identifier).

$util.autoKsuid() : String

Returns a 128-bit randomly generated KSUID (K-Sortable Unique Identifier) base62 encoded as
a String with a length of 27.

Error utils

Error utils list

$util.error(String)

Throws a custom error. Use this in request or response mapping templates to detect an error
with the request or with the invocation result.

$util.error(String, String)

Throws a custom error. Use this in request or response mapping templates to detect an error
with the request or with the invocation result. You can also specify an errorType.

$util.error(String, String, Object)

Throws a custom error. Use this in request or response mapping templates to detect an error
with the request or with the invocation result. You can also specify an errorType and a data
field. The data value will be added to the corresponding error block inside errors in the
GraphQL response.

Note

data will be filtered based on the query selection set.

Utility helpers in $util 929

AWS AppSync Developer Guide

$util.error(String, String, Object, Object)

Throws a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an
errorType field, a data field, and an errorInfo field can be specified. The data value will be
added to the corresponding error block inside errors in the GraphQL response.

Note

data will be filtered based on the query selection set. The errorInfo value will be
added to the corresponding error block inside errors in the GraphQL response.
errorInfo will NOT be filtered based on the query selection set.

$util.appendError(String)

Appends a custom error. This can be used in request or response mapping templates
if the template detects an error with the request or with the invocation result. Unlike
$util.error(String), the template evaluation will not be interrupted, so that data can be
returned to the caller.

$util.appendError(String, String)

Appends a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an
errorType can be specified. Unlike $util.error(String, String), the template
evaluation will not be interrupted, so that data can be returned to the caller.

$util.appendError(String, String, Object)

Appends a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an
errorType and a data field can be specified. Unlike $util.error(String, String,
Object), the template evaluation will not be interrupted, so that data can be returned to the
caller. The data value will be added to the corresponding error block inside errors in the
GraphQL response.

Note

data will be filtered based on the query selection set.

Utility helpers in $util 930

AWS AppSync Developer Guide

$util.appendError(String, String, Object, Object)

Appends a custom error. This can be used in request or response mapping templates if
the template detects an error with the request or with the invocation result. Additionally,
an errorType field, a data field, and an errorInfo field can be specified. Unlike
$util.error(String, String, Object, Object), the template evaluation will not be
interrupted, so that data can be returned to the caller. The data value will be added to the
corresponding error block inside errors in the GraphQL response.

Note

data will be filtered based on the query selection set. The errorInfo value will be
added to the corresponding error block inside errors in the GraphQL response.
errorInfo will NOT be filtered based on the query selection set.

Condition validation utils

Condition validation utils list

$util.validate(Boolean, String) : void

If the condition is false, throw a CustomTemplateException with the specified message.

$util.validate(Boolean, String, String) : void

If the condition is false, throw a CustomTemplateException with the specified message and
error type.

$util.validate(Boolean, String, String, Object) : void

If the condition is false, throw a CustomTemplateException with the specified message and
error type, as well as data to return in the response.

Null behavior utils

Null behavior utils list

$util.isNull(Object) : Boolean

Returns true if the supplied object is null.

Utility helpers in $util 931

AWS AppSync Developer Guide

$util.isNullOrEmpty(String) : Boolean

Returns true if the supplied data is null or an empty string. Otherwise, returns false.

$util.isNullOrBlank(String) : Boolean

Returns true if the supplied data is null or a blank string. Otherwise, returns false.

$util.defaultIfNull(Object, Object) : Object

Returns the first Object if it is not null. Otherwise, returns second object as a "default Object".

$util.defaultIfNullOrEmpty(String, String) : String

Returns the first String if it is not null or empty. Otherwise, returns second String as a "default
String".

$util.defaultIfNullOrBlank(String, String) : String

Returns the first String if it is not null or blank. Otherwise, returns second String as a "default
String".

Pattern matching utils

Type and pattern matching utils list

$util.typeOf(Object) : String

Returns a String describing the type of the Object. Supported type identifications are: "Null",
"Number", "String", "Map", "List", "Boolean". If a type cannot be identified, the return type is
"Object".

$util.matches(String, String) : Boolean

Returns true if the specified pattern in the first argument matches the supplied data in the
second argument. The pattern must be a regular expression such as $util.matches("a*b",
"aaaaab"). The functionality is based on Pattern, which you can reference for further
documentation.

$util.authType() : String

Returns a String describing the multi-auth type being used by a request, returning back either
"IAM Authorization", "User Pool Authorization", "Open ID Connect Authorization", or "API Key
Authorization".

Utility helpers in $util 932

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

AWS AppSync Developer Guide

Object validation utils

Object validation utils list

$util.isString(Object) : Boolean

Returns true if the Object is a String.

$util.isNumber(Object) : Boolean

Returns true if the Object is a Number.

$util.isBoolean(Object) : Boolean

Returns true if the Object is a Boolean.

$util.isList(Object) : Boolean

Returns true if the Object is a List.

$util.isMap(Object) : Boolean

Returns true if the Object is a Map.

CloudWatch logging utils

CloudWatch logging utils list

$util.log.info(Object) : Void

Logs the String representation of the provided Object to the requested log stream when
request-level and field-level CloudWatch logging is enabled with log level ALL on an API.

$util.log.info(String, Object...) : Void

Logs the String representation of the provided Objects to the requested log stream when
request-level and field-level CloudWatch logging is enabled with log level ALL on an API. This
utility will replace all variables indicated by "{}" in the first input format String with the String
representation of the provided Objects in order.

$util.log.error(Object) : Void

Logs the String representation of the provided Object to the requested log stream when field-
level CloudWatch logging is enabled with log level ERROR or log level ALL on an API.

Utility helpers in $util 933

AWS AppSync Developer Guide

$util.log.error(String, Object...) : Void

Logs the String representation of the provided Objects to the requested log stream when field-
level CloudWatch logging is enabled with log level ERROR or log level ALL on an API. This
utility will replace all variables indicated by "{}" in the first input format String with the String
representation of the provided Objects in order.

Return value behavior utils

Return value behavior utils list

$util.qr() and $util.quiet()

Runs a VTL statement while suppressing the returned value. This is useful for running methods
without using temporary placeholders, such as adding items to a map. For example:

#set ($myMap = {})
#set($discard = $myMap.put("id", "first value"))

Becomes:

#set ($myMap = {})
$util.qr($myMap.put("id", "first value"))

$util.escapeJavaScript(String) : String

Returns the input string as a JavaScript escaped string.

$util.urlEncode(String) : String

Returns the input string as an application/x-www-form-urlencoded encoded string.

$util.urlDecode(String) : String

Decodes an application/x-www-form-urlencoded encoded string back to its non-
encoded form.

$util.base64Encode(byte[]) : String

Encodes the input into a base64-encoded string.

$util.base64Decode(String) : byte[]

Decodes the data from a base64-encoded string.

Utility helpers in $util 934

AWS AppSync Developer Guide

$util.parseJson(String) : Object

Takes "stringified" JSON and returns an object representation of the result.

$util.toJson(Object) : String

Takes an object and returns a "stringified" JSON representation of that object.

$util.autoId() : String

Returns a 128-bit randomly generated UUID.

$util.autoUlid() : String

Returns a 128-bit randomly generated ULID (Universally Unique Lexicographically Sortable
Identifier).

$util.autoKsuid() : String

Returns a 128-bit randomly generated KSUID (K-Sortable Unique Identifier) base62 encoded
as a String with a length of 27.

$util.unauthorized()

Throws Unauthorized for the field being resolved. Use this in request or response mapping
templates to determine whether to allow the caller to resolve the field.

$util.error(String)

Throws a custom error. Use this in request or response mapping templates to detect an error
with the request or with the invocation result.

$util.error(String, String)

Throws a custom error. Use this in request or response mapping templates to detect an error
with the request or with the invocation result. You can also specify an errorType.

$util.error(String, String, Object)

Throws a custom error. Use this in request or response mapping templates to detect an error
with the request or with the invocation result. You can also specify an errorType and a
data field. The data value will be added to the corresponding error block inside errors
in the GraphQL response. Note: data will be filtered based on the query selection set.

$util.error(String, String, Object, Object)

Throws a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an

Utility helpers in $util 935

AWS AppSync Developer Guide

errorType field, a data field, and a errorInfo field can be specified. The data value
will be added to the corresponding error block inside errors in the GraphQL response.
Note: data will be filtered based on the query selection set. The errorInfo value will be
added to the corresponding error block inside errors in the GraphQL response. Note:
errorInfo will NOT be filtered based on the query selection set.

$util.appendError(String)

Appends a custom error. This can be used in request or response mapping templates
if the template detects an error with the request or with the invocation result. Unlike
$util.error(String), the template evaluation will not be interrupted, so that data can
be returned to the caller.

$util.appendError(String, String)

Appends a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an
errorType can be specified. Unlike $util.error(String, String), the template
evaluation will not be interrupted, so that data can be returned to the caller.

$util.appendError(String, String, Object)

Appends a custom error. This can be used in request or response mapping templates if the
template detects an error with the request or with the invocation result. Additionally, an
errorType and a data field can be specified. Unlike $util.error(String, String,
Object), the template evaluation will not be interrupted, so that data can be returned to
the caller. The data value will be added to the corresponding error block inside errors in
the GraphQL response. Note: data will be filtered based on the query selection set.

$util.appendError(String, String, Object, Object)

Appends a custom error. This can be used in request or response mapping templates if
the template detects an error with the request or with the invocation result. Additionally,
an errorType field, a data field, and a errorInfo field can be specified. Unlike
$util.error(String, String, Object, Object), the template evaluation will not
be interrupted, so that data can be returned to the caller. The data value will be added to
the corresponding error block inside errors in the GraphQL response. Note: data will
be filtered based on the query selection set. The errorInfo value will be added to the
corresponding error block inside errors in the GraphQL response. Note: errorInfo will
NOT be filtered based on the query selection set.

Utility helpers in $util 936

AWS AppSync Developer Guide

$util.validate(Boolean, String) : void

If the condition is false, throw a CustomTemplateException with the specified message.

$util.validate(Boolean, String, String) : void

If the condition is false, throw a CustomTemplateException with the specified message and
error type.

$util.validate(Boolean, String, String, Object) : void

If the condition is false, throw a CustomTemplateException with the specified message and
error type, as well as data to return in the response.

$util.isNull(Object) : Boolean

Returns true if the supplied object is null.

$util.isNullOrEmpty(String) : Boolean

Returns true if the supplied data is null or an empty string. Otherwise, returns false.

$util.isNullOrBlank(String) : Boolean

Returns true if the supplied data is null or a blank string. Otherwise, returns false.

$util.defaultIfNull(Object, Object) : Object

Returns the first Object if it is not null. Otherwise, returns second object as a "default
Object".

$util.defaultIfNullOrEmpty(String, String) : String

Returns the first String if it is not null or empty. Otherwise, returns second String as a
"default String".

$util.defaultIfNullOrBlank(String, String) : String

Returns the first String if it is not null or blank. Otherwise, returns second String as a
"default String".

$util.isString(Object) : Boolean

Returns true if Object is a String.

$util.isNumber(Object) : Boolean

Returns true if Object is a Number.

Utility helpers in $util 937

AWS AppSync Developer Guide

$util.isBoolean(Object) : Boolean

Returns true if Object is a Boolean.

$util.isList(Object) : Boolean

Returns true if Object is a List.

$util.isMap(Object) : Boolean

Returns true if Object is a Map.

$util.typeOf(Object) : String

Returns a String describing the type of the Object. Supported type identifications are: "Null",
"Number", "String", "Map", "List", "Boolean". If a type cannot be identified, the return type is
"Object".

$util.matches(String, String) : Boolean

Returns true if the specified pattern in the first argument matches the supplied
data in the second argument. The pattern must be a regular expression such as
$util.matches("a*b", "aaaaab"). The functionality is based on Pattern, which you
can reference for further documentation.

$util.authType() : String

Returns a String describing the multi-auth type being used by a request, returning back
either "IAM Authorization", "User Pool Authorization", "Open ID Connect Authorization", or
"API Key Authorization".

$util.log.info(Object) : Void

Logs the String representation of the provided Object to the requested log stream when
request-level and field-level CloudWatch logging is enabled with log level ALL on an API.

$util.log.info(String, Object...) : Void

Logs the String representation of the provided Objects to the requested log stream when
request-level and field-level CloudWatch logging is enabled with log level ALL on an API.
This utility will replace all variables indicated by "{}" in the first input format String with the
String representation of the provided Objects in order.

$util.log.error(Object) : Void

Logs the String representation of the provided Object to the requested log stream when
field-level CloudWatch logging is enabled with log level ERROR or log level ALL on an API.

Utility helpers in $util 938

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

AWS AppSync Developer Guide

$util.log.error(String, Object...) : Void

Logs the String representation of the provided Objects to the requested log stream when
field-level CloudWatch logging is enabled with log level ERROR or log level ALL on an API.
This utility will replace all variables indicated by "{}" in the first input format String with the
String representation of the provided Objects in order.

$util.escapeJavaScript(String) : String

Returns the input string as a JavaScript escaped string.

Resolver authorization

Resolver authorization list

$util.unauthorized()

Throws Unauthorized for the field being resolved. Use this in request or response mapping
templates to determine whether to allow the caller to resolve the field.

AWS AppSync directives

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync exposes directives to facilitate developer productivity when writing in VTL.

Directive utils

#return(Object)

The #return(Object) allows you to prematurely return from any mapping template.
#return(Object) is analogous to the return keyword in programming languages, as it will
return from the closest scoped block of logic. Using #return(Object) inside of a resolver
mapping template will return from the resolver. Additionally, using #return(Object) from a

AWS AppSync directives 939

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

function mapping template will return from the function and will continue the run to either the
next function in the pipeline or the resolver response mapping template.

#return

The #return directive exhibits the same behaviors as #return(Object), but null will be
returned instead.

Time helpers in $util.time

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The $util.time variable contains datetime methods to help generate timestamps, convert
between datetime formats, and parse datetime strings. The syntax for datetime formats is based
on DateTimeFormatter which you can reference for further documentation. We provide some
examples below, as well as a list of available methods and descriptions.

Time utils

Time utils list

$util.time.nowISO8601() : String

Returns a String representation of UTC in ISO8601 format.

$util.time.nowEpochSeconds() : long

Returns the number of seconds from the epoch of 1970-01-01T00:00:00Z to now.

$util.time.nowEpochMilliSeconds() : long

Returns the number of milliseconds from the epoch of 1970-01-01T00:00:00Z to now.

$util.time.nowFormatted(String) : String

Returns a string of the current timestamp in UTC using the specified format from a String input
type.

Time helpers in $util.time 940

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://en.wikipedia.org/wiki/ISO_8601

AWS AppSync Developer Guide

$util.time.nowFormatted(String, String) : String

Returns a string of the current timestamp for a timezone using the specified format and
timezone from String input types.

$util.time.parseFormattedToEpochMilliSeconds(String, String) : Long

Parses a timestamp passed as a String along with a format, then returns the timestamp as
milliseconds since epoch.

$util.time.parseFormattedToEpochMilliSeconds(String, String, String) : Long

Parses a timestamp passed as a String along with a format and time zone, then returns the
timestamp as milliseconds since epoch.

$util.time.parseISO8601ToEpochMilliSeconds(String) : Long

Parses an ISO8601 timestamp passed as a String, then returns the timestamp as milliseconds
since epoch.

$util.time.epochMilliSecondsToSeconds(long) : long

Converts an epoch milliseconds timestamp to an epoch seconds timestamp.

$util.time.epochMilliSecondsToISO8601(long) : String

Converts an epoch milliseconds timestamp to an ISO8601 timestamp.

$util.time.epochMilliSecondsToFormatted(long, String) : String

Converts an epoch milliseconds timestamp, passed as long, to a timestamp formatted according
to the supplied format in UTC.

$util.time.epochMilliSecondsToFormatted(long, String, String) : String

Converts an epoch milliseconds timestamp, passed as a long, to a timestamp formatted
according to the supplied format in the supplied timezone.

Standalone function examples

$util.time.nowISO8601() :
 2018-02-06T19:01:35.749Z
$util.time.nowEpochSeconds() : 1517943695
$util.time.nowEpochMilliSeconds() : 1517943695750

Time helpers in $util.time 941

AWS AppSync Developer Guide

$util.time.nowFormatted("yyyy-MM-dd HH:mm:ssZ") : 2018-02-06
 19:01:35+0000
$util.time.nowFormatted("yyyy-MM-dd HH:mm:ssZ", "+08:00") : 2018-02-07
 03:01:35+0800
$util.time.nowFormatted("yyyy-MM-dd HH:mm:ssZ", "Australia/Perth") : 2018-02-07
 03:01:35+0800

Conversion examples

#set($nowEpochMillis = 1517943695758)
$util.time.epochMilliSecondsToSeconds($nowEpochMillis)
 : 1517943695
$util.time.epochMilliSecondsToISO8601($nowEpochMillis)
 : 2018-02-06T19:01:35.758Z
$util.time.epochMilliSecondsToFormatted($nowEpochMillis, "yyyy-MM-dd HH:mm:ssZ")
 : 2018-02-06 19:01:35+0000
$util.time.epochMilliSecondsToFormatted($nowEpochMillis, "yyyy-MM-dd HH:mm:ssZ",
 "+08:00") : 2018-02-07 03:01:35+0800

Parsing examples

$util.time.parseISO8601ToEpochMilliSeconds("2018-02-01T17:21:05.180+08:00")
 : 1517476865180
$util.time.parseFormattedToEpochMilliSeconds("2018-02-02 01:19:22+0800", "yyyy-MM-dd
 HH:mm:ssZ") : 1517505562000
$util.time.parseFormattedToEpochMilliSeconds("2018-02-02 01:19:22", "yyyy-MM-dd
 HH:mm:ss", "+08:00") : 1517505562000

Usage with AWS AppSync defined scalars

The following formats are compatible with AWSDate, AWSDateTime, and AWSTime.

$util.time.nowFormatted("yyyy-MM-dd[XXX]", "-07:00:30") :
 2018-07-11-07:00
$util.time.nowFormatted("yyyy-MM-dd'T'HH:mm:ss[XXXXX]", "-07:00:30") :
 2018-07-11T15:14:15-07:00:30

Time helpers in $util.time 942

AWS AppSync Developer Guide

List helpers in $util.list

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.list contains methods to help with common List operations such as removing or retaining
items from a list for filtering use cases.

List utils

$util.list.copyAndRetainAll(List, List) : List

Makes a shallow copy of the supplied list in the first argument while retaining only the items
specified in the second argument, if they are present. All other items will be removed from the
copy.

$util.list.copyAndRemoveAll(List, List) : List

Makes a shallow copy of the supplied list in the first argument while removing any items where
the item is specified in the second argument, if they are present. All other items will be retained
in the copy.

$util.list.sortList(List, Boolean, String) : List

Sorts a list of objects, which is provided in the first argument. If the second argument is true,
the list is sorted in a descending manner; if the second argument is false, the list is sorted in
an ascending manner. The third argument is the string name of the property used to sort a list
of custom objects. If it's a list of just Strings, Integers, Floats, or Doubles, the third argument
can be any random string. If all of the objects are not from the same class, the original list is
returned. Only lists containing a maximum of 1000 objects are supported. The following is an
example of this utility's usage:

 INPUT: $util.list.sortList([{"description":"youngest", "age":5},
{"description":"middle", "age":45}, {"description":"oldest", "age":85}], false,
 "description")
 OUTPUT: [{"description":"middle", "age":45}, {"description":"oldest",
 "age":85}, {"description":"youngest", "age":5}]

List helpers in $util.list 943

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

Map helpers in $util.map

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.map contains methods to help with common Map operations such as removing or retaining
items from a Map for filtering use cases.

Map utils

$util.map.copyAndRetainAllKeys(Map, List) : Map

Makes a shallow copy of the first map while retaining only the keys specified in the list, if they
are present. All other keys will be removed from the copy.

$util.map.copyAndRemoveAllKeys(Map, List) : Map

Makes a shallow copy of the first map while removing any entries where the key is specified in
the list, if they are present. All other keys will be retained in the copy.

DynamoDB helpers in $util.dynamodb

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.dynamodb contains helper methods that make it easier to write and read data to Amazon
DynamoDB, such as automatic type mapping and formatting. These methods are designed to make
mapping primitive types and Lists to the proper DynamoDB input format automatically, which is a
Map of the format { "TYPE" : VALUE }.

For example, previously, a request mapping template to create a new item in DynamoDB might
have looked like this:

Map helpers in $util.map 944

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key": {
 "id" : { "S" : "$util.autoId()" }
 },
 "attributeValues" : {
 "title" : { "S" : $util.toJson($ctx.args.title) },
 "author" : { "S" : $util.toJson($ctx.args.author) },
 "version" : { "N", $util.toJson($ctx.args.version) }
 }
}

If we wanted to add fields to the object we would have to update the GraphQL query in the
schema, as well as the request mapping template. However, we can now restructure our request
mapping template so it automatically picks up new fields added in our schema and adds them to
DynamoDB with the correct types:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key": {
 "id" : $util.dynamodb.toDynamoDBJson($util.autoId())
 },
 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

In the previous example, we are using the $util.dynamodb.toDynamoDBJson(...) helper to
automatically take the generated id and convert it to the DynamoDB representation of a string
attribute. We then take all the arguments and convert them to their DynamoDB representations
and output them to the attributeValues field in the template.

Each helper has two versions: a version that returns an object (for example,
$util.dynamodb.toString(...)), and a version that returns the object as a JSON string (for
example, $util.dynamodb.toStringJson(...)). In the previous example, we used the version
that returns the data as a JSON string. If you want to manipulate the object before it's used in the
template, you can choose to return an object instead, as shown following:

{
 "version" : "2017-02-28",

DynamoDB helpers in $util.dynamodb 945

AWS AppSync Developer Guide

 "operation" : "PutItem",
 "key": {
 "id" : $util.dynamodb.toDynamoDBJson($util.autoId())
 },

 #set($myFoo = $util.dynamodb.toMapValues($ctx.args))
 #set($myFoo.version = $util.dynamodb.toNumber(1))
 #set($myFoo.timestamp = $util.dynamodb.toString($util.time.nowISO8601()))

 "attributeValues" : $util.toJson($myFoo)
}

In the previous example, we are returning the converted arguments as a map instead of a JSON
string, and are then adding the version and timestamp fields before finally outputting them to
the attributeValues field in the template using $util.toJson(...).

The JSON version of each of the helpers is equivalent to wrapping the non-JSON version in
$util.toJson(...). For example, the following statements are exactly the same:

$util.toStringJson("Hello, World!")
$util.toJson($util.toString("Hello, World!"))

toDynamoDB

toDynamoDB utils list

$util.dynamodb.toDynamoDB(Object) : Map

General object conversion tool for DynamoDB that converts input objects to the appropriate
DynamoDB representation. It's opinionated about how it represents some types: e.g., it will use
lists ("L") rather than sets ("SS", "NS", "BS"). This returns an object that describes the DynamoDB
attribute value.

String example

Input: $util.dynamodb.toDynamoDB("foo")
Output: { "S" : "foo" }

Number example

Input: $util.dynamodb.toDynamoDB(12345)

DynamoDB helpers in $util.dynamodb 946

AWS AppSync Developer Guide

Output: { "N" : 12345 }

Boolean example

Input: $util.dynamodb.toDynamoDB(true)
Output: { "BOOL" : true }

List example

Input: $util.dynamodb.toDynamoDB(["foo", 123, { "bar" : "baz" }])
Output: {
 "L" : [
 { "S" : "foo" },
 { "N" : 123 },
 {
 "M" : {
 "bar" : { "S" : "baz" }
 }
 }
]
 }

Map example

Input: $util.dynamodb.toDynamoDB({ "foo": "bar", "baz" : 1234, "beep":
 ["boop"] })
Output: {
 "M" : {
 "foo" : { "S" : "bar" },
 "baz" : { "N" : 1234 },
 "beep" : {
 "L" : [
 { "S" : "boop" }
]
 }
 }
 }

$util.dynamodb.toDynamoDBJson(Object) : String

The same as $util.dynamodb.toDynamoDB(Object) : Map, but returns the DynamoDB
attribute value as a JSON encoded string.

DynamoDB helpers in $util.dynamodb 947

AWS AppSync Developer Guide

toString utils

toString utils list

$util.dynamodb.toString(String) : String

Converts an input string to the DynamoDB string format. This returns an object that describes
the DynamoDB attribute value.

Input: $util.dynamodb.toString("foo")
Output: { "S" : "foo" }

$util.dynamodb.toStringJson(String) : Map

The same as $util.dynamodb.toString(String) : String, but returns the DynamoDB
attribute value as a JSON encoded string.

$util.dynamodb.toStringSet(List<String>) : Map

Converts a list with Strings to the DynamoDB string set format. This returns an object that
describes the DynamoDB attribute value.

Input: $util.dynamodb.toStringSet(["foo", "bar", "baz"])
Output: { "SS" : ["foo", "bar", "baz"] }

$util.dynamodb.toStringSetJson(List<String>) : String

The same as $util.dynamodb.toStringSet(List<String>) : Map, but returns the
DynamoDB attribute value as a JSON encoded string.

toNumber utils

toNumber utils list

$util.dynamodb.toNumber(Number) : Map

Converts a number to the DynamoDB number format. This returns an object that describes the
DynamoDB attribute value.

Input: $util.dynamodb.toNumber(12345)
Output: { "N" : 12345 }

DynamoDB helpers in $util.dynamodb 948

AWS AppSync Developer Guide

$util.dynamodb.toNumberJson(Number) : String

The same as $util.dynamodb.toNumber(Number) : Map, but returns the DynamoDB
attribute value as a JSON encoded string.

$util.dynamodb.toNumberSet(List<Number>) : Map

Converts a list of numbers to the DynamoDB number set format. This returns an object that
describes the DynamoDB attribute value.

Input: $util.dynamodb.toNumberSet([1, 23, 4.56])
Output: { "NS" : [1, 23, 4.56] }

$util.dynamodb.toNumberSetJson(List<Number>) : String

The same as $util.dynamodb.toNumberSet(List<Number>) : Map, but returns the
DynamoDB attribute value as a JSON encoded string.

toBinary utils

toBinary utils list

$util.dynamodb.toBinary(String) : Map

Converts binary data encoded as a base64 string to DynamoDB binary format. This returns an
object that describes the DynamoDB attribute value.

Input: $util.dynamodb.toBinary("foo")
Output: { "B" : "foo" }

$util.dynamodb.toBinaryJson(String) : String

The same as $util.dynamodb.toBinary(String) : Map, but returns the DynamoDB
attribute value as a JSON encoded string.

$util.dynamodb.toBinarySet(List<String>) : Map

Converts a list of binary data encoded as base64 strings to DynamoDB binary set format. This
returns an object that describes the DynamoDB attribute value.

Input: $util.dynamodb.toBinarySet(["foo", "bar", "baz"])

DynamoDB helpers in $util.dynamodb 949

AWS AppSync Developer Guide

Output: { "BS" : ["foo", "bar", "baz"] }

$util.dynamodb.toBinarySetJson(List<String>) : String

The same as $util.dynamodb.toBinarySet(List<String>) : Map, but returns the
DynamoDB attribute value as a JSON encoded string.

toBoolean utils

toBoolean utils list

$util.dynamodb.toBoolean(Boolean) : Map

Converts a Boolean to the appropriate DynamoDB Boolean format. This returns an object that
describes the DynamoDB attribute value.

Input: $util.dynamodb.toBoolean(true)
Output: { "BOOL" : true }

$util.dynamodb.toBooleanJson(Boolean) : String

The same as $util.dynamodb.toBoolean(Boolean) : Map, but returns the DynamoDB
attribute value as a JSON encoded string.

toNull utils

toNull utils list

$util.dynamodb.toNull() : Map

Returns a null in DynamoDB null format. This returns an object that describes the DynamoDB
attribute value.

Input: $util.dynamodb.toNull()
Output: { "NULL" : null }

$util.dynamodb.toNullJson() : String

The same as $util.dynamodb.toNull() : Map, but returns the DynamoDB attribute value
as a JSON encoded string.

DynamoDB helpers in $util.dynamodb 950

AWS AppSync Developer Guide

toList utils

toList utils list

$util.dynamodb.toList(List) : Map

Converts a list of objects to the DynamoDB list format. Each item in the list is also converted to
its appropriate DynamoDB format. It's opinionated about how it represents some of the nested
objects: e.g., it will use lists ("L") rather than sets ("SS", "NS", "BS"). This returns an object that
describes the DynamoDB attribute value.

Input: $util.dynamodb.toList(["foo", 123, { "bar" : "baz" }])
Output: {
 "L" : [
 { "S" : "foo" },
 { "N" : 123 },
 {
 "M" : {
 "bar" : { "S" : "baz" }
 }
 }
]
 }

$util.dynamodb.toListJson(List) : String

The same as $util.dynamodb.toList(List) : Map, but returns the DynamoDB attribute
value as a JSON encoded string.

toMap utils

toMap utils list

$util.dynamodb.toMap(Map) : Map

Converts a map to the DynamoDB map format. Each value in the map is also converted to its
appropriate DynamoDB format. It's opinionated about how it represents some of the nested
objects: e.g., it will use lists ("L") rather than sets ("SS", "NS", "BS"). This returns an object that
describes the DynamoDB attribute value.

Input: $util.dynamodb.toMap({ "foo": "bar", "baz" : 1234, "beep": ["boop"] })

DynamoDB helpers in $util.dynamodb 951

AWS AppSync Developer Guide

Output: {
 "M" : {
 "foo" : { "S" : "bar" },
 "baz" : { "N" : 1234 },
 "beep" : {
 "L" : [
 { "S" : "boop" }
]
 }
 }
 }

$util.dynamodb.toMapJson(Map) : String

The same as $util.dynamodb.toMap(Map) : Map, but returns the DynamoDB attribute
value as a JSON encoded string.

$util.dynamodb.toMapValues(Map) : Map

Creates a copy of the map where each value has been converted to its appropriate DynamoDB
format. It's opinionated about how it represents some of the nested objects: e.g., it will use lists
("L") rather than sets ("SS", "NS", "BS").

Input: $util.dynamodb.toMapValues({ "foo": "bar", "baz" : 1234, "beep":
 ["boop"] })
Output: {
 "foo" : { "S" : "bar" },
 "baz" : { "N" : 1234 },
 "beep" : {
 "L" : [
 { "S" : "boop" }
]
 }
 }

Note

This is slightly different to $util.dynamodb.toMap(Map) : Map as it returns only
the contents of the DynamoDB attribute value, but not the whole attribute value itself.
For example, the following statements are exactly the same:

$util.dynamodb.toMapValues($map)

DynamoDB helpers in $util.dynamodb 952

AWS AppSync Developer Guide

$util.dynamodb.toMap($map).get("M")

$util.dynamodb.toMapValuesJson(Map) : String

The same as $util.dynamodb.toMapValues(Map) : Map, but returns the DynamoDB
attribute value as a JSON encoded string.

S3Object utils

S3Object utils list

$util.dynamodb.toS3Object(String key, String bucket, String region) : Map

Converts the key, bucket and region into the DynamoDB S3 Object representation. This returns
an object that describes the DynamoDB attribute value.

Input: $util.dynamodb.toS3Object("foo", "bar", region = "baz")
Output: { "S" : "{ \"s3\" : { \"key\" : \"foo", \"bucket\" : \"bar", \"region
\" : \"baz" } }" }

$util.dynamodb.toS3ObjectJson(String key, String bucket, String region) :
String

The same as $util.dynamodb.toS3Object(String key, String bucket, String
region) : Map, but returns the DynamoDB attribute value as a JSON encoded string.

$util.dynamodb.toS3Object(String key, String bucket, String region, String
version) : Map

Converts the key, bucket, region and optional version into the DynamoDB S3 Object
representation. This returns an object that describes the DynamoDB attribute value.

Input: $util.dynamodb.toS3Object("foo", "bar", "baz", "beep")
Output: { "S" : "{ \"s3\" : { \"key\" : \"foo\", \"bucket\" : \"bar\", \"region
\" : \"baz\", \"version\" = \"beep\" } }" }

DynamoDB helpers in $util.dynamodb 953

AWS AppSync Developer Guide

$util.dynamodb.toS3ObjectJson(String key, String bucket, String region,
String version) : String

The same as $util.dynamodb.toS3Object(String key, String bucket, String
region, String version) : Map, but returns the DynamoDB attribute value as a JSON
encoded string.

$util.dynamodb.fromS3ObjectJson(String) : Map

Accepts the string value of a DynamoDB S3 Object and returns a map that contains the key,
bucket, region and optional version.

Input: $util.dynamodb.fromS3ObjectJson({ "S" : "{ \"s3\" : { \"key\" : \"foo\",
 \"bucket\" : \"bar\", \"region\" : \"baz\", \"version\" = \"beep\" } }" })
Output: { "key" : "foo", "bucket" : "bar", "region" : "baz", "version" :
 "beep" }

Amazon RDS helpers in $util.rds

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.rds contains helper methods that format Amazon RDS operations by getting rid of
extraneous data in result outputs

$util.rds utils list

$util.rds.toJsonString(String serializedSQLResult): String

Returns a String by transforming the stringified raw Amazon Relational Database Service
(Amazon RDS) Data API operation result format to a more concise string. The returned string
is a serialized list of SQL records of the result set. Every record is represented as a collection of
key-value pairs. The keys are the corresponding column names.

If the corresponding statement in the input was a SQL query that causes a mutation (for
example INSERT, UPDATE, DELETE), then an empty list is returned. For example, the query

Amazon RDS helpers in $util.rds 954

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

select * from Books limit 2 provides the raw result from the Amazon RDS Data
operation:

{
 "sqlStatementResults": [
 {
 "numberOfRecordsUpdated": 0,
 "records": [
 [
 {
 "stringValue": "Mark Twain"
 },
 {
 "stringValue": "Adventures of Huckleberry Finn"
 },
 {
 "stringValue": "978-1948132817"
 }
],
 [
 {
 "stringValue": "Jack London"
 },
 {
 "stringValue": "The Call of the Wild"
 },
 {
 "stringValue": "978-1948132275"
 }
]
],
 "columnMetadata": [
 {
 "isSigned": false,
 "isCurrency": false,
 "label": "author",
 "precision": 200,
 "typeName": "VARCHAR",
 "scale": 0,
 "isAutoIncrement": false,
 "isCaseSensitive": false,
 "schemaName": "",
 "tableName": "Books",

Amazon RDS helpers in $util.rds 955

AWS AppSync Developer Guide

 "type": 12,
 "nullable": 0,
 "arrayBaseColumnType": 0,
 "name": "author"
 },
 {
 "isSigned": false,
 "isCurrency": false,
 "label": "title",
 "precision": 200,
 "typeName": "VARCHAR",
 "scale": 0,
 "isAutoIncrement": false,
 "isCaseSensitive": false,
 "schemaName": "",
 "tableName": "Books",
 "type": 12,
 "nullable": 0,
 "arrayBaseColumnType": 0,
 "name": "title"
 },
 {
 "isSigned": false,
 "isCurrency": false,
 "label": "ISBN-13",
 "precision": 15,
 "typeName": "VARCHAR",
 "scale": 0,
 "isAutoIncrement": false,
 "isCaseSensitive": false,
 "schemaName": "",
 "tableName": "Books",
 "type": 12,
 "nullable": 0,
 "arrayBaseColumnType": 0,
 "name": "ISBN-13"
 }
]
 }
]
}

The util.rds.toJsonString is:

Amazon RDS helpers in $util.rds 956

AWS AppSync Developer Guide

[
 {
 "author": "Mark Twain",
 "title": "Adventures of Huckleberry Finn",
 "ISBN-13": "978-1948132817"
 },
 {
 "author": "Jack London",
 "title": "The Call of the Wild",
 "ISBN-13": "978-1948132275"
 },
]

$util.rds.toJsonObject(String serializedSQLResult): Object

This is the same as util.rds.toJsonString, but with the result being a JSON Object.

HTTP helpers in $util.http

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The $util.http utility provides helper methods that you can use to manage HTTP request
parameters and to add response headers.

$util.http utils list

$util.http.copyHeaders(Map) : Map

Copies the header from the map without the restricted set of HTTP headers. You can use this to
forward request headers to your downstream HTTP endpoint.

{
 ...
 "params": {
 ...
 "headers": $util.http.copyHeaders($ctx.request.headers),

HTTP helpers in $util.http 957

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

 ...
 },
 ...
}

$util.http.addResponseHeader(String, Object)

Adds a single custom header with the name (String) and value (Object) of the response. The
following limitations apply:

• Header names can't match any of the existing or restricted AWS or AWS AppSync headers.

• Header names can't start with restricted prefixes, such as x-amzn- or x-amz-.

• The size of custom response headers can't exceed 4 KB. This includes header names and
values.

• You should define each response header once per GraphQL operation. However, if you define
a custom header with the same name multiple times, the most recent definition appears in
the response. All headers count towards the header size limit regardless of naming.

...
$util.http.addResponseHeader("itemsCount", 7)
$util.http.addResponseHeader("render", $ctx.args.render)
...

$util.http.addResponseHeaders(Map)

Adds multiple response headers to the response from the specified map of names (String) and
values (Object). The same limitations listed for the addResponseHeader(String, Object)
method also apply to this method.

...
#set($headersMap = {})
$util.qr($headersMap.put("headerInt", 12))
$util.qr($headersMap.put("headerString", "stringValue"))
$util.qr($headersMap.put("headerObject", {"field1": 7, "field2": "string"}))
$util.http.addResponseHeaders($headersMap)
...

HTTP helpers in $util.http 958

AWS AppSync Developer Guide

XML helpers in $util.xml

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.xml contains helper methods that can make it easier to translate XML responses to JSON
or a Dictionary.

$util.xml utils list

$util.xml.toMap(String) : Map

Converts an XML string to a Dictionary.

Input:

<?xml version="1.0" encoding="UTF-8"?>
<posts>
<post>
 <id>1</id>
 <title>Getting started with GraphQL</title>
</post>
</posts>

Output (JSON representation):

{
 "posts":{
 "post":{
 "id":1,
 "title":"Getting started with GraphQL"
 }
 }
}

Input:

<?xml version="1.0" encoding="UTF-8"?>

XML helpers in $util.xml 959

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

<posts>
<post>
 <id>1</id>
 <title>Getting started with GraphQL</title>
</post>
<post>
 <id>2</id>
 <title>Getting started with AWS AppSync</title>
</post>
</posts>

Output (JSON representation):

{
 "posts":{
 "post":[
 {
 "id":1,
 "title":"Getting started with GraphQL"
 },
 {
 "id":2,
 "title":"Getting started with AWS AppSync"
 }
]
 }
}

$util.xml.toJsonString(String) : String

Converts an XML string to a JSON string. This is similar to toMap, except that the output is a
string. This is useful if you want to directly convert and return the XML response from an HTTP
object to JSON.

$util.xml.toJsonString(String, Boolean) : String

Converts an XML string to a JSON string with an optional Boolean parameter to determine if
you want to string-encode the JSON.

XML helpers in $util.xml 960

AWS AppSync Developer Guide

Transformation helpers in $util.transform

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.transform contains helper methods that make it easier to perform complex operations
against data sources, such as Amazon DynamoDB filter operations.

Transformation helpers

Transformation helpers utils list

$util.transform.toDynamoDBFilterExpression(Map) : Map

Converts an input string to a filter expression for use with DynamoDB.

Input:

$util.transform.toDynamoDBFilterExpression({
 "title":{
 "contains":"Hello World"
 }
 })

Output:

{
 "expression" : "contains(#title, :title_contains)"
 "expressionNames" : {
 "#title" : "title",
 },
 "expressionValues" : {
 ":title_contains" : { "S" : "Hello World" }
 },
}

Transformation helpers in $util.transform 961

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

$util.transform.toElasticsearchQueryDSL(Map) : Map

Converts the given input into its equivalent OpenSearch Query DSL expression, returning it as a
JSON string.

Input:

$util.transform.toElasticsearchQueryDSL({
 "upvotes":{
 "ne":15,
 "range":[
 10,
 20
]
 },
 "title":{
 "eq":"hihihi",
 "wildcard":"h*i"
 }
 })

Output:
{
 "bool":{
 "must":[
 {
 "bool":{
 "must":[
 {
 "bool":{
 "must_not":{
 "term":{
 "upvotes":15
 }
 }
 }
 },
 {
 "range":{
 "upvotes":{
 "gte":10,
 "lte":20
 }
 }

Transformation helpers in $util.transform 962

AWS AppSync Developer Guide

 }
]
 }
 },
 {
 "bool":{
 "must":[
 {
 "term":{
 "title":"hihihi"
 }
 },
 {
 "wildcard":{
 "title":"h*i"
 }
 }
]
 }
 }
]
 }
}

The default operator is assumed to be AND.

Transformation helpers subscription filters

Transformation helpers subscription filters utils list

$util.transform.toSubscriptionFilter(Map) : Map

Converts a Map input object to a SubscriptionFilter expression object. The
$util.transform.toSubscriptionFilter method is used as an input to the
$extensions.setSubscriptionFilter() extension. For more information, see Extensions.

$util.transform.toSubscriptionFilter(Map, List) : Map

Converts a Map input object to a SubscriptionFilter expression object. The
$util.transform.toSubscriptionFilter method is used as an input to the
$extensions.setSubscriptionFilter() extension. For more information, see Extensions.

Transformation helpers in $util.transform 963

https://docs.aws.amazon.com/appsync/latest/devguide/extensions
https://docs.aws.amazon.com/appsync/latest/devguide/extensions

AWS AppSync Developer Guide

The first argument is the Map input object that's converted to the SubscriptionFilter
expression object. The second argument is a List of field names that are ignored in the first
Map input object while constructing the SubscriptionFilter expression object.

$util.transform.toSubscriptionFilter(Map, List, Map) : Map

Converts a Map input object to a SubscriptionFilter expression object. The
$util.transform.toSubscriptionFilter method is used as an input to the
$extensions.setSubscriptionFilter() extension. For more information, see Extensions.

The first argument is the Map input object that's converted to the SubscriptionFilter
expression object, the second argument is a List of field names that will be ignored in the first
Map input object, and the third argument is a Map input object of strict rules that's included
while constructing the SubscriptionFilter expression object. These strict rules are included
in the SubscriptionFilter expression object in such a way that at least one of the rules will
be satisfied to pass the subscription filter.

Subscription filter arguments

The following table explains the how the arguments of the following utilities are defined:

• $util.transform.toSubscriptionFilter(Map) : Map

• $util.transform.toSubscriptionFilter(Map, List) : Map

• $util.transform.toSubscriptionFilter(Map, List, Map) : Map

Argument 1: Map

Argument 1 is a Map object with the following key values:

• field names

• "and"

• "or"

For field names as keys, the conditions on these fields' entries are in the form of
"operator" : "value".

The following example shows how entries can be added to the Map:

Transformation helpers in $util.transform 964

https://docs.aws.amazon.com/appsync/latest/devguide/extensions

AWS AppSync Developer Guide

"field_name" : {
 "operator1" : value
 }

We can have multiple conditions for the same field_name:

"field_name" : {
 "operator1" : value
 "operator2" : value
 .
 .
 .
 }

When a field has two or more conditions on it, all of these conditions are considered to use the
OR operation.

The input Map can also have "and" and "or" as keys, implying that all entries within these should
be joined using AND or OR logic depending on the key. The key values "and" and "or" expect an
array of conditions.

"and" : [

 {
 "field_name1" : {
 "operator1" : value
 }
 },

 {
 "field_name2" : {
 "operator1" : value
 }
 },
 .
 .
].

Note that you can nest "and" and "or". That is, you can have nested "and"/"or" within another
"and"/"or" block. However, this doesn't work for simple fields.

"and" : [

Transformation helpers in $util.transform 965

AWS AppSync Developer Guide

 {
 "field_name1" : {
 "operator" : value
 }
 },

 {
 "or" : [
 {
 "field_name2" : {
 "operator" : value
 }
 },

 {
 "field_name3" : {
 "operator" : value
 }
 }

].

The following example shows an input of argument 1 using
$util.transform.toSubscriptionFilter(Map) : Map.

Input(s)

Argument 1: Map:

{
 "percentageUp": {
 "lte": 50,
 "gte": 20
 },
 "and": [
 {
 "title": {
 "ne": "Book1"
 }
 },
 {
 "downvotes": {

Transformation helpers in $util.transform 966

AWS AppSync Developer Guide

 "gt": 2000
 }
 }
],
 "or": [
 {
 "author": {
 "eq": "Admin"
 }
 },
 {
 "isPublished": {
 "eq": false
 }
 }
]
}

Output

The result is a Map object:

{
 "filterGroup": [
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "lte",
 "value": 50
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "author",
 "operator": "eq",

Transformation helpers in $util.transform 967

AWS AppSync Developer Guide

 "value": "Admin"
 }
]
 },
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "lte",
 "value": 50
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 }
]
 },
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "gte",
 "value": 20
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000

Transformation helpers in $util.transform 968

AWS AppSync Developer Guide

 },
 {
 "fieldName": "author",
 "operator": "eq",
 "value": "Admin"
 }
]
 },
 {
 "filters": [
 {
 "fieldName": "percentageUp",
 "operator": "gte",
 "value": 20
 },
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 2000
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 }
]
 }
]
}

Argument 2: List

Argument 2 contains a List of field names that shouldn't be considered in the input Map
(argument 1) while constructing the SubscriptionFilter expression object. The List can
also be empty.

The following example shows the inputs of argument 1 and argument 2 using
$util.transform.toSubscriptionFilter(Map, List) : Map.

Transformation helpers in $util.transform 969

AWS AppSync Developer Guide

Input(s)

Argument 1: Map:

{

 "percentageUp": {
 "lte": 50,
 "gte": 20
 },
 "and": [
 {
 "title": {
 "ne": "Book1"
 }
 },
 {
 "downvotes": {
 "gt": 20
 }
 }
],
 "or": [
 {
 "author": {
 "eq": "Admin"
 }
 },
 {
 "isPublished": {
 "eq": false
 }
 }
]
}

Argument 2: List:

["percentageUp", "author"]

Output

The result is a Map object:

Transformation helpers in $util.transform 970

AWS AppSync Developer Guide

{
 "filterGroup": [
 {
 "filters": [
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 20
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 }
]
 }
]
}

Argument 3: Map

Argument 3 is a Map object that has field names as key values (cannot have "and" or "or"). For
field names as keys, the conditions on these fields are entries in the form of "operator" :
"value". Unlike argument 1, argument 3 cannot have multiple conditions in the same key. In
addition, argument 3 doesn't have an "and" or "or" clause, so there's no nesting involved either.

Argument 3 represents a list of strict rules, which are added to the SubscriptionFilter
expression object so that at least one of these conditions is met to pass the filter.

{
 "fieldname1": {
 "operator": value
 },
 "fieldname2": {
 "operator": value
 }
}

Transformation helpers in $util.transform 971

AWS AppSync Developer Guide

.

.

.

The following example shows the inputs of argument 1, argument 2, and argument 3 using
$util.transform.toSubscriptionFilter(Map, List, Map) : Map.

Input(s)

Argument 1: Map:

{
 "percentageUp": {
 "lte": 50,
 "gte": 20
 },
 "and": [
 {
 "title": {
 "ne": "Book1"
 }
 },
 {
 "downvotes": {
 "lt": 20
 }
 }
],
 "or": [
 {
 "author": {
 "eq": "Admin"
 }
 },
 {
 "isPublished": {
 "eq": false
 }
 }
]
}

Argument 2: List:

Transformation helpers in $util.transform 972

AWS AppSync Developer Guide

["percentageUp", "author"]

Argument 3: Map:

{
 "upvotes": {
 "gte": 250
 },
 "author": {
 "eq": "Person1"
 }
}

Output

The result is a Map object:

{
 "filterGroup": [
 {
 "filters": [
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 20
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 },
 {
 "fieldName": "upvotes",
 "operator": "gte",
 "value": 250
 }
]
 },

Transformation helpers in $util.transform 973

AWS AppSync Developer Guide

 {
 "filters": [
 {
 "fieldName": "title",
 "operator": "ne",
 "value": "Book1"
 },
 {
 "fieldName": "downvotes",
 "operator": "gt",
 "value": 20
 },
 {
 "fieldName": "isPublished",
 "operator": "eq",
 "value": false
 },
 {
 "fieldName": "author",
 "operator": "eq",
 "value": "Person1"
 }
]
 }
]
}

Math helpers in $util.math

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.math contains methods to help with common Math operations.

$util.math utils list

$util.math.roundNum(Double) : Integer

Takes a double and rounds it to the nearest integer.

Math helpers in $util.math 974

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

$util.math.minVal(Double, Double) : Double

Takes two doubles and returns the minimum value between the two doubles.

$util.math.maxVal(Double, Double) : Double

Takes two doubles and returns the maximum value between the two doubles.

$util.math.randomDouble() : Double

Returns a random double between 0 and 1.

Important

This function shouldn't be used for anything that needs high entropy randomness (for
example, cryptography).

$util.math.randomWithinRange(Integer, Integer) : Integer

Returns a random integer value within the specified range, with the first argument specifying
the lower value of the range and the second argument specifying the upper value of the range.

Important

This function shouldn't be used for anything that needs high entropy randomness (for
example, cryptography).

String helpers in $util.str

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$util.str contains methods to help with common String operations.

String helpers in $util.str 975

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

$util.str utils list

$util.str.toUpper(String) : String

Takes a string and converts it to be entirely uppercase.

$util.str.toLower(String) : String

Takes a string and converts it to be entirely lowercase.

$util.str.toReplace(String, String, String) : String

Replaces a substring within a string with another string. The first argument specifies the string
on which to perform the replacement operation. The second argument specifies the substring
to replace. The third argument specifies the string to replace the second argument with. The
following is an example of this utility's usage:

 INPUT: $util.str.toReplace("hello world", "hello", "mellow")
 OUTPUT: "mellow world"

$util.str.normalize(String, String) : String

Normalizes a string using one of the four unicode normalization forms: NFC, NFD, NFKC, or
NFKD. The first argument is the string to normalize. The second argument is either "nfc", "nfd",
"nfkc", or "nfkd" specifying the normalization type to use for the normalization process.

Extensions

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

$extensions contains a set of methods to make additional actions within your resolvers.

$extensions.evictFromApiCache(String, String, Object) : Object

Evicts an item from the AWS AppSync server-side cache. The first argument is the type name. The
second argument is the field name. The third argument is an object containing key-value pair items

Extensions 976

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

that specify the caching key value. You must put the items in the object in the same order as the
caching keys in the cached resolver's cachingKey.

Note

This utility works only for mutations, not queries.

$extensions.setSubscriptionFilter(filterJsonObject)

Defines enhanced subscription filters. Each subscription notification event is evaluated against
provided subscription filters and delivers notifications to clients if all filters evaluate to true. The
argument is filterJsonObject as described in the following.

Note

You can use this extension method only in the response mapping templates of a
subscription resolver.

$extensions.setSubscriptionInvalidationFilter(filterJsonObject)

Defines subscription invalidation filters. Subscription filters are evaluated against the invalidation
payload, then invalidate a given subscription if the filters evaluate to true. The argument is
filterJsonObject as described in the following.

Note

You can use this extension method only in the response mapping templates of a
subscription resolver.

Argument: filterJsonObject

The JSON object defines either subscription or invalidation filters. It's an array of filters in a
filterGroup. Each filter is a collection of individual filters.

{
 "filterGroup": [

Extensions 977

AWS AppSync Developer Guide

 {
 "filters" : [
 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 }
]

 },
 {
 "filters" : [
 {
 "fieldName" : "group",
 "operator" : "in",
 "value" : ["Admin", "Developer"]
 }
]

 }
]
}

Each filter has three attributes:

• fieldName – The GraphQL schema field.

• operator – The operator type.

• value – The values to compare to the subscription notification fieldName value.

The following is an example assignment of these attributes:

{
 "fieldName" : "severity",
 "operator" : "le",
 "value" : $context.result.severity
}

Field: fieldName

The string type fieldName refers to a field defined in the GraphQL schema that matches the
fieldName in the subscription notification payload. When a match is found, the value of

Extensions 978

AWS AppSync Developer Guide

the GraphQL schema field is compared to the value of the subscription notification filter. In
the following example, the fieldName filter matches the service field defined in a given
GraphQL type. If the notification payload contains a service field with a value equivalent to AWS
AppSync, the filter evaluates to true:

{
 "fieldName" : "service",
 "operator" : "eq",
 "value" : "AWS AppSync"
}

Field: value

The value can be a different type based on the operator:

• A single number or Boolean

• String examples: "test", "service"

• Number examples: 1, 2, 45.75

• Boolean examples: true, false

• Pairs of numbers or strings

• String pair example: ["test1","test2"], ["start","end"]

• Number pair example: [1,4], [67,89], [12.45, 95.45]

• Arrays of numbers or strings

• String array example: ["test1","test2","test3","test4","test5"]

• Number array example: [1,2,3,4,5], [12.11,46.13,45.09,12.54,13.89]

Field: operator

A case-sensitive string with the following possible values:

Operator Description Possible value types

eq Equal integer, float, string, Boolean

ne Not equal integer, float, string, Boolean

le Less than or equal integer, float, string

Extensions 979

AWS AppSync Developer Guide

lt Less than integer, float, string

ge Greater than or equal integer, float, string

gt Greater than integer, float, string

contains Checks for a subsequence or
value in the set.

integer, float, string

notContains Checks for the absence of a
subsequence or absence of a
value in the set.

integer, float, string

beginsWith Checks for a prefix. string

in Checks for matching elements
that are in the list.

Array of integer, float, or
string

notIn Checks for matching elements
that aren't in the list.

Array of integer, float, or
string

between Between two values integer, float, string

containsAny Contains common elements integer, float, string

The following table describes how each operator is used in the subscription notification.

eq (equal)

The eq operator evaluates to true if the subscription notification field value matches and is
strictly equal to the filter's value. In the following example, the filter evaluates to true if the
subscription notification has a service field with the value equivalent to AWS AppSync.

Possible value types: integer, float, string, Boolean

{
 "fieldName" : "service",
 "operator" : "eq",
 "value" : "AWS AppSync"
}

Extensions 980

AWS AppSync Developer Guide

ne (not equal)

The ne operator evaluates to true if the subscription notification field value is different from
the filter's value. In the following example, the filter evaluates to true if the subscription
notification has a service field with a value different from AWS AppSync.

Possible value types: integer, float, string, Boolean

{
 "fieldName" : "service",
 "operator" : "ne",
 "value" : "AWS AppSync"
}

le (less or equal)

The le operator evaluates to true if the subscription notification field value is less than
or equal to the filter's value. In the following example, the filter evaluates to true if the
subscription notification has a size field with a value less than or equal to 5.

Possible value types: integer, float, string

{
 "fieldName" : "size",
 "operator" : "le",
 "value" : 5
}

lt (less than)

The lt operator evaluates to true if the subscription notification field value is lower than
the filter's value. In the following example, the filter evaluates to true if the subscription
notification has a size field with a value lower than 5.

Possible value types: integer, float, string

{
 "fieldName" : "size",
 "operator" : "lt",
 "value" : 5
}

Extensions 981

AWS AppSync Developer Guide

ge (greater or equal)

The ge operator evaluates to true if the subscription notification field value is greater than
or equal to the filter's value. In the following example, the filter evaluates to true if the
subscription notification has a sizefield with a value greater than or equal to 5.

Possible value types: integer, float, string

{
 "fieldName" : "size",
 "operator" : "ge",
 "value" : 5
}

gt (greater than)

The gt operator evaluates to true if the subscription notification field value is greater than
the filter's value. In the following example, the filter evaluates to true if the subscription
notification has a size field with a value greater than 5.

Possible value types: integer, float, string

{
 "fieldName" : "size",
 "operator" : "gt",
 "value" : 5
}

contains

The contains operator checks for a substring, subsequence, or value in a set or single item.
A filter with the contains operator evaluates to true if the subscription notification field
value contains the filter value. In the following example, the filter evaluates to true if the
subscription notification has a seats field with the array value containing the value 10.

Possible value types: integer, float, string

{
 "fieldName" : "seats",
 "operator" : "contains",
 "value" : 10
}

Extensions 982

AWS AppSync Developer Guide

In another example, the filter evaluates to true if the subscription notification has an event
field with launch as substring.

{
 "fieldName" : "event",
 "operator" : "contains",
 "value" : "launch"
}

notContains

The notContains operator checks for the absence of a substring, subsequence, or value
in a set or single item. The filter with the notContains operator evaluates to true if the
subscription notification field value doesn't contain the filter value. In the following example,
the filter evaluates to true if the subscription notification has a seats field with the array
value not containing the value 10.

Possible value types: integer, float, string

{
 "fieldName" : "seats",
 "operator" : "notContains",
 "value" : 10
}

In another example, filter evaluates to true if the subscription notification has an event field
value without launch as its subsequence.

{
 "fieldName" : "event",
 "operator" : "notContains",
 "value" : "launch"
}

beginsWith

The beginsWith operator checks for a prefix in a string. The filter containing the beginsWith
operator evaluates to true if the subscription notification field value begins with the filter's
value. In the following example, the filter evaluates to true if the subscription notification has
a service field with a value that begins with AWS.

Extensions 983

AWS AppSync Developer Guide

Possible value type: string

{
 "fieldName" : "service",
 "operator" : "beginsWith",
 "value" : "AWS"
}

in

The in operator checks for matching elements in an array. The filter containing the in operator
evaluates to true if the subscription notification field value exists in an array. In the following
example, the filter evaluates to true if the subscription notification has a severity field with
one of the values present in the array: [1,2,3].

Possible value type: Array of integer, float, or string

{
 "fieldName" : "severity",
 "operator" : "in",
 "value" : [1,2,3]
}

notIn

The notIn operator checks for missing elements in an array. The filter containing the notIn
operator evaluates to true if the subscription notification field value doesn't exist in the array.
In the following example, the filter evaluates to true if the subscription notification has a
severity field with one of the values not present in the array: [1,2,3].

Possible value type: Array of integer, float, or string

{
 "fieldName" : "severity",
 "operator" : "notIn",
 "value" : [1,2,3]
}

between

The between operator checks for values between two numbers or strings. The filter containing
the between operator evaluates to true if the subscription notification field value is between

Extensions 984

AWS AppSync Developer Guide

the filter's value pair. In the following example, the filter evaluates to true if the subscription
notification has a severity field with values 2,3,4.

Possible value types: Pair of integer, float, or string

{
 "fieldName" : "severity",
 "operator" : "between",
 "value" : [1,5]
}

containsAny

The containsAny operator checks for common elements in arrays. A filter with the
containsAny operator evaluates to true if the intersection of the subscription notification
field set value and filter set value is non empty. In the following example, the filter evaluates
to true if the subscription notification has a seats field with an array value containing either
10 or 15. This means that filter would evaluate to true if the subscription notification had a
seats field value of [10,11] or [15,20,30].

Possible value types: integer, float, or string

{
 "fieldName" : "seats",
 "operator" : "contains",
 "value" : [10, 15]
}

AND logic

You can combine multiple filters using AND logic by defining multiple entries within the filters
object in the filterGroup array. In the following example, filters evaluate to true if the
subscription notification has a userId field with a value equivalent to 1 AND a group field value
of either Admin or Developer.

{
 "filterGroup": [
 {
 "filters" : [

Extensions 985

AWS AppSync Developer Guide

 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 },
 {
 "fieldName" : "group",
 "operator" : "in",
 "value" : ["Admin", "Developer"]
 }
]

 }
]
}

OR logic

You can combine multiple filters using OR logic by defining multiple filter objects within the
filterGroup array. In the following example, filters evaluate to true if the subscription
notification has a userId field with a value equivalent to 1 OR a group field value of either Admin
or Developer.

{
 "filterGroup": [
 {
 "filters" : [
 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 }
]

 },
 {
 "filters" : [
 {
 "fieldName" : "group",
 "operator" : "in",
 "value" : ["Admin", "Developer"]
 }
]

Extensions 986

AWS AppSync Developer Guide

 }
]
}

Exceptions

Note that there are several restrictions for using filters:

• In the filters object, there can be a maximum of five unique fieldName items per filter. This
means that you can combine a maximum of five individual fieldName objects using AND logic.

• There can be a maximum of twenty values for the containsAny operator.

• There can be a maximum of five values for the in and notIn operators.

• Each string can be a maximum of 256 characters.

• Each string comparison is case sensitive.

• Nested object filtering allows up to five nested levels of filtering.

• Each filterGroup can have a maximum of 10 filters. This means that you can combine a
maximum of 10 filters using OR logic.

• The in operator is a special case of OR logic. In the following example, there are two
filters:

{
 "filterGroup": [
 {
 "filters" : [
 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 },
 {
 "fieldName" : "group",
 "operator" : "in",
 "value" : ["Admin", "Developer"]
 }
]
 }
]
}

Extensions 987

AWS AppSync Developer Guide

The preceding filter group is evaluated as follows and counts towards the maximum filters
limit:

{
 "filterGroup": [
 {
 "filters" : [
 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 },
 {
 "fieldName" : "group",
 "operator" : "eq",
 "value" : "Admin"
 }
]
 },
 {
 "filters" : [
 {
 "fieldName" : "userId",
 "operator" : "eq",
 "value" : 1
 },
 {
 "fieldName" : "group",
 "operator" : "eq",
 "value" : "Developer"
 }
]
 }
]
}

$extensions.invalidateSubscriptions(invalidationJsonObject)

Used to initiate a subscription invalidation from a mutation. The argument is
invalidationJsonObject as described in the following.

Extensions 988

AWS AppSync Developer Guide

Note

This extension can be used only in the response mapping templates of the mutation
resolvers.
You can only use at most five unique $extensions.invalidateSubscriptions()
method calls in any single request. If you exceed this limit, you will receive a GraphQL error.

Argument: invalidationJsonObject

The invalidationJsonObject defines the following:

• subscriptionField – The GraphQL schema subscription to invalidate. A single subscription,
defined as a string in the subscriptionField, is considered for invalidation.

• payload – A key-value pair list that's used as the input for invalidating subscriptions if the
invalidation filter evaluates to true against their values.

The following example invalidates subscribed and connected clients using the onUserDelete
subscription when the invalidation filter defined in the subscription resolver evaluates to true
against the payload value.

$extensions.invalidateSubscriptions({
 "subscriptionField": "onUserDelete",
 "payload": {
 "group": "Developer"
 "type" : "Full-Time"
 }
 })

Resolver mapping template reference for DynamoDB

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Resolver mapping template reference for DynamoDB 989

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

The AWS AppSync DynamoDB resolver enables you to use GraphQL to store and retrieve data in
existing Amazon DynamoDB tables in your account. This resolver works by enabling you to map an
incoming GraphQL request into a DynamoDB call, and then map the DynamoDB response back to
GraphQL. This section describes the mapping templates for supported DynamoDB operations.

GetItem

The GetItem request mapping document lets you tell the AWS AppSync DynamoDB resolver to
make a GetItem request to DynamoDB, and enables you to specify:

• The key of the item in DynamoDB

• Whether to use a consistent read or not

The GetItem mapping document has the following structure:

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "consistentRead" : true,
 "projection" : {
 ...
 }
}

The fields are defined as follows:

GetItem fields

GetItem fields list

version

The template definition version. 2017-02-28 and 2018-05-29 are currently supported. This
value is required.

GetItem 990

https://graphql.org

AWS AppSync Developer Guide

operation

The DynamoDB operation to perform. To perform the GetItem DynamoDB operation, this
must be set to GetItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about how to specify a
“typed value”, see Type system (request mapping). This value is required.

consistentRead

Whether or not to perform a strongly consistent read with DynamoDB. This is optional, and
defaults to false.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The item returned from DynamoDB is automatically converted into GraphQL and JSON primitive
types, and is available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about response mapping templates, see Resolver mapping template
overview.

Example

The following example is a mapping template for a GraphQL query getThing(foo: String!,
bar: String!):

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "foo" : $util.dynamodb.toDynamoDBJson($ctx.args.foo),
 "bar" : $util.dynamodb.toDynamoDBJson($ctx.args.bar)
 },
 "consistentRead" : true
}

GetItem 991

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-projections

AWS AppSync Developer Guide

For more information about the DynamoDB GetItem API, see the DynamoDB API documentation.

PutItem

The PutItem request mapping document lets you tell the AWS AppSync DynamoDB resolver to
make a PutItem request to DynamoDB, and enables you to specify the following:

• The key of the item in DynamoDB

• The full contents of the item (composed of key and attributeValues)

• Conditions for the operation to succeed

The PutItem mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "PutItem",
 "customPartitionKey" : "foo",
 "populateIndexFields" : boolean value,
 "key": {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "attributeValues" : {
 "baz" : ... typed value
 },
 "condition" : {
 ...
 },
 "_version" : 1
}

The fields are defined as follows:

PutItem fields

PutItem fields list

version

The template definition version. 2017-02-28 and 2018-05-29 are currently supported. This
value is required.

PutItem 992

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

AWS AppSync Developer Guide

operation

The DynamoDB operation to perform. To perform the PutItem DynamoDB operation, this
must be set to PutItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about how to specify a
“typed value”, see Type system (request mapping). This value is required.

attributeValues

The rest of the attributes of the item to be put into DynamoDB. For more information about
how to specify a “typed value”, see Type system (request mapping). This field is optional.

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the PutItem request overwrites any existing
entry for that item. For more information about conditions, see Condition expressions. This
value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

The item written to DynamoDB is automatically converted into GraphQL and JSON primitive types
and is available in the mapping context ($context.result).

PutItem 993

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about response mapping templates, see Resolver mapping template
overview.

Example 1

The following example is a mapping template for a GraphQL mutation updateThing(foo:
String!, bar: String!, name: String!, version: Int!).

If no item with the specified key exists, it’s created. If an item already exists with the specified key,
it’s overwritten.

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key": {
 "foo" : $util.dynamodb.toDynamoDBJson($ctx.args.foo),
 "bar" : $util.dynamodb.toDynamoDBJson($ctx.args.bar)
 },
 "attributeValues" : {
 "name" : $util.dynamodb.toDynamoDBJson($ctx.args.name),
 "version" : $util.dynamodb.toDynamoDBJson($ctx.args.version)
 }
}

Example 2

The following example is a mapping template for a GraphQL mutation updateThing(foo:
String!, bar: String!, name: String!, expectedVersion: Int!).

This example checks to be sure the item currently in DynamoDB has the version field set to
expectedVersion.

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key": {
 "foo" : $util.dynamodb.toDynamoDBJson($ctx.args.foo),
 "bar" : $util.dynamodb.toDynamoDBJson($ctx.args.bar)
 },
 "attributeValues" : {
 "name" : $util.dynamodb.toDynamoDBJson($ctx.args.name),

PutItem 994

AWS AppSync Developer Guide

 #set($newVersion = $context.arguments.expectedVersion + 1)
 "version" : $util.dynamodb.toDynamoDBJson($newVersion)
 },
 "condition" : {
 "expression" : "version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" : $util.dynamodb.toDynamoDBJson($expectedVersion)
 }
 }
}

For more information about the DynamoDB PutItem API, see the DynamoDB API documentation.

UpdateItem

The UpdateItem request mapping document enables you to tell the AWS AppSync DynamoDB
resolver to make a UpdateItem request to DynamoDB and allows you to specify the following:

• The key of the item in DynamoDB

• An update expression describing how to update the item in DynamoDB

• Conditions for the operation to succeed

The UpdateItem mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "UpdateItem",
 "customPartitionKey" : "foo",
 "populateIndexFields" : boolean value,
 "key": {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "update" : {
 "expression" : "someExpression",
 "expressionNames" : {
 "#foo" : "foo"
 },
 "expressionValues" : {
 ":bar" : ... typed value
 }

UpdateItem 995

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS AppSync Developer Guide

 },
 "condition" : {
 ...
 },
 "_version" : 1
}

The fields are defined as follows:

UpdateItem fields

UpdateItem fields list

version

The template definition version. 2017-02-28 and 2018-05-29 are currently supported. This
value is required.

operation

The DynamoDB operation to perform. To perform the UpdateItem DynamoDB operation, this
must be set to UpdateItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about specifying a “typed
value”, see Type system (request mapping). This value is required.

update

The update section lets you specify an update expression that describes how to update the
item in DynamoDB. For more information about how to write update expressions, see the
DynamoDB UpdateExpressions documentation. This section is required.

The update section has three components:

expression

The update expression. This value is required.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be

UpdateItem 996

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Developer Guide

a string corresponding to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must
be a typed value. For more information about how to specify a “typed value”, see Type
system (request mapping). This must be specified. This field is optional, and should only
be populated with substitutions for expression attribute value placeholders used in the
expression.

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the UpdateItem request updates the existing
entry regardless of its current state. For more information about conditions, see Condition
expressions. This value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

The item updated in DynamoDB is automatically converted into GraphQL and JSON primitive types
and is available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

UpdateItem 997

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

For more information about response mapping templates, see Resolver mapping template
overview.

Example 1

The following example is a mapping template for the GraphQL mutation upvote(id: ID!).

In this example, an item in DynamoDB has its upvotes and version fields incremented by 1.

{
 "version" : "2017-02-28",
 "operation" : "UpdateItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "update" : {
 "expression" : "ADD #votefield :plusOne, version :plusOne",
 "expressionNames" : {
 "#votefield" : "upvotes"
 },
 "expressionValues" : {
 ":plusOne" : { "N" : 1 }
 }
 }
}

Example 2

The following example is a mapping template for a GraphQL mutation updateItem(id: ID!,
title: String, author: String, expectedVersion: Int!).

This is a complex example that inspects the arguments and dynamically generates the update
expression that only includes the arguments that have been provided by the client. For example,
if title and author are omitted, they are not updated. If an argument is specified but its value
is null, then that field is deleted from the object in DynamoDB. Finally, the operation has a
condition, which verifies whether the item currently in DynamoDB has the version field set to
expectedVersion:

{
 "version" : "2017-02-28",

 "operation" : "UpdateItem",

UpdateItem 998

AWS AppSync Developer Guide

 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },

 ## Set up some space to keep track of things we're updating **
 #set($expNames = {})
 #set($expValues = {})
 #set($expSet = {})
 #set($expAdd = {})
 #set($expRemove = [])

 ## Increment "version" by 1 **
 $!{expAdd.put("version", ":newVersion")}
 $!{expValues.put(":newVersion", { "N" : 1 })}

 ## Iterate through each argument, skipping "id" and "expectedVersion" **
 #foreach($entry in $context.arguments.entrySet())
 #if($entry.key != "id" && $entry.key != "expectedVersion")
 #if((!$entry.value) && ("$!{entry.value}" == ""))
 ## If the argument is set to "null", then remove that attribute from
 the item in DynamoDB **

 #set($discard = ${expRemove.add("#${entry.key}")})
 $!{expNames.put("#${entry.key}", "$entry.key")}
 #else
 ## Otherwise set (or update) the attribute on the item in DynamoDB **

 $!{expSet.put("#${entry.key}", ":${entry.key}")}
 $!{expNames.put("#${entry.key}", "$entry.key")}

 #if($entry.key == "ups" || $entry.key == "downs")
 $!{expValues.put(":${entry.key}", { "N" : $entry.value })}
 #else
 $!{expValues.put(":${entry.key}", { "S" : "${entry.value}" })}
 #end
 #end
 #end
 #end

 ## Start building the update expression, starting with attributes we're going to
 SET **
 #set($expression = "")
 #if(!${expSet.isEmpty()})

UpdateItem 999

AWS AppSync Developer Guide

 #set($expression = "SET")
 #foreach($entry in $expSet.entrySet())
 #set($expression = "${expression} ${entry.key} = ${entry.value}")
 #if ($foreach.hasNext)
 #set($expression = "${expression},")
 #end
 #end
 #end

 ## Continue building the update expression, adding attributes we're going to ADD **
 #if(!${expAdd.isEmpty()})
 #set($expression = "${expression} ADD")
 #foreach($entry in $expAdd.entrySet())
 #set($expression = "${expression} ${entry.key} ${entry.value}")
 #if ($foreach.hasNext)
 #set($expression = "${expression},")
 #end
 #end
 #end

 ## Continue building the update expression, adding attributes we're going to REMOVE
 **
 #if(!${expRemove.isEmpty()})
 #set($expression = "${expression} REMOVE")

 #foreach($entry in $expRemove)
 #set($expression = "${expression} ${entry}")
 #if ($foreach.hasNext)
 #set($expression = "${expression},")
 #end
 #end
 #end

 ## Finally, write the update expression into the document, along with any
 expressionNames and expressionValues **
 "update" : {
 "expression" : "${expression}"
 #if(!${expNames.isEmpty()})
 ,"expressionNames" : $utils.toJson($expNames)
 #end
 #if(!${expValues.isEmpty()})
 ,"expressionValues" : $utils.toJson($expValues)
 #end
 },

UpdateItem 1000

AWS AppSync Developer Guide

 "condition" : {
 "expression" : "version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" :
 $util.dynamodb.toDynamoDBJson($ctx.args.expectedVersion)
 }
 }
}

For more information about the DynamoDB UpdateItem API, see the DynamoDB API
documentation.

DeleteItem

The DeleteItem request mapping document lets you tell the AWS AppSync DynamoDB resolver
to make a DeleteItem request to DynamoDB, and enables you to specify the following:

• The key of the item in DynamoDB

• Conditions for the operation to succeed

The DeleteItem mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "DeleteItem",
 "customPartitionKey" : "foo",
 "populateIndexFields" : boolean value,
 "key": {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "condition" : {
 ...
 },
 "_version" : 1
}

The fields are defined as follows:

DeleteItem 1001

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

AWS AppSync Developer Guide

DeleteItem fields

DeleteItem fields list

version

The template definition version. 2017-02-28 and 2018-05-29 are currently supported. This
value is required.

operation

The DynamoDB operation to perform. To perform the DeleteItem DynamoDB operation, this
must be set to DeleteItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about specifying a “typed
value”, see Type system (request mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the DeleteItem request deletes
an item regardless of its current state. For more information about conditions, see Condition
expressions. This value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk

DeleteItem 1002

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

The item deleted from DynamoDB is automatically converted into GraphQL and JSON primitive
types and is available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about response mapping templates, see Resolver mapping template
overview.

Example 1

The following example is a mapping template for a GraphQL mutation deleteItem(id: ID!). If
an item exists with this ID, it’s deleted.

{
 "version" : "2017-02-28",
 "operation" : "DeleteItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 }
}

Example 2

The following example is a mapping template for a GraphQL mutation deleteItem(id: ID!,
expectedVersion: Int!). If an item exists with this ID, it’s deleted, but only if its version field
set to expectedVersion:

{
 "version" : "2017-02-28",
 "operation" : "DeleteItem",
 "key" : {
 "id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 },
 "condition" : {
 "expression" : "attribute_not_exists(id) OR version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" : $util.dynamodb.toDynamoDBJson($expectedVersion)

DeleteItem 1003

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Developer Guide

 }
 }
}

For more information about the DynamoDB DeleteItem API, see the DynamoDB API
documentation.

Query

The Query request mapping document lets you tell the AWS AppSync DynamoDB resolver to make
a Query request to DynamoDB, and enables you to specify the following:

• Key expression

• Which index to use

• Any additional filter

• How many items to return

• Whether to use consistent reads

• query direction (forward or backward)

• Pagination token

The Query mapping document has the following structure:

{
 "version" : "2017-02-28",
 "operation" : "Query",
 "query" : {
 "expression" : "some expression",
 "expressionNames" : {
 "#foo" : "foo"
 },
 "expressionValues" : {
 ":bar" : ... typed value
 }
 },
 "index" : "fooIndex",
 "nextToken" : "a pagination token",
 "limit" : 10,
 "scanIndexForward" : true,

Query 1004

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

AWS AppSync Developer Guide

 "consistentRead" : false,
 "select" : "ALL_ATTRIBUTES" | "ALL_PROJECTED_ATTRIBUTES" | "SPECIFIC_ATTRIBUTES",
 "filter" : {
 ...
 },
 "projection" : {
 ...
 }
}

The fields are defined as follows:

Query fields

Query fields list

version

The template definition version. 2017-02-28 and 2018-05-29 are currently supported. This
value is required.

operation

The DynamoDB operation to perform. To perform the Query DynamoDB operation, this must
be set to Query. This value is required.

query

The query section lets you specify a key condition expression that describes which items to
retrieve from DynamoDB. For more information about how to write key condition expressions,
see the DynamoDB KeyConditions documentation . This section must be specified.

expression

The query expression. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be
a string corresponding to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

Query 1005

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.KeyConditions.html

AWS AppSync Developer Guide

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must
be a typed value. For more information about how to specify a “typed value”, see Type
system (request mapping). This value is required. This field is optional, and should only
be populated with substitutions for expression attribute value placeholders used in the
expression.

filter

An additional filter that can be used to filter the results from DynamoDB before they are
returned. For more information about filters, see Filters. This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a
hash key. If specified, this tells DynamoDB to query the specified index. If omitted, the primary
key index is queried.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

limit

The maximum number of items to evaluate (not necessarily the number of matching items).
This field is optional.

scanIndexForward

A boolean indicating whether to query forwards or backwards. This field is optional, and
defaults to true.

consistentRead

A boolean indicating whether to use consistent reads when querying DynamoDB. This field is
optional, and defaults to false.

select

By default, the AWS AppSync DynamoDB resolver only returns attributes that are projected
into the index. If more attributes are required, you can set this field. This field is optional. The
supported values are:

Query 1006

AWS AppSync Developer Guide

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of the
data can be obtained from the local secondary index and no fetching is required.

ALL_PROJECTED_ATTRIBUTES

Allowed only when querying an index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL_ATTRIBUTES.

SPECIFIC_ATTRIBUTES

Returns only the attributes listed in the projection's expression. This return value is
equivalent to specifying the projection's expression without specifying any value for
Select.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The results from DynamoDB are automatically converted into GraphQL and JSON primitive types
and are available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about response mapping templates, see Resolver mapping template
overview.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",
 scannedCount = 10
}

The fields are defined as follows:

Query 1007

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-projections

AWS AppSync Developer Guide

items

A list containing the items returned by the DynamoDB query.

nextToken

If there might be more results, nextToken contains a pagination token that you can use
in another request. Note that AWS AppSync encrypts and obfuscates the pagination token
returned from DynamoDB. This prevents your table data from being inadvertently leaked to the
caller. Also note that these pagination tokens cannot be used across different resolvers.

scannedCount

The number of items that matched the query condition expression, before a filter expression (if
present) was applied.

Example

The following example is a mapping template for a GraphQL query getPosts(owner: ID!).

In this example, a global secondary index on a table is queried to return all posts owned by the
specified ID.

{
 "version" : "2017-02-28",
 "operation" : "Query",
 "query" : {
 "expression" : "ownerId = :ownerId",
 "expressionValues" : {
 ":ownerId" : $util.dynamodb.toDynamoDBJson($context.arguments.owner)
 }
 },
 "index" : "owner-index"
}

For more information about the DynamoDB Query API, see the DynamoDB API documentation.

Scan

The Scan request mapping document lets you tell the AWS AppSync DynamoDB resolver to make a
Scan request to DynamoDB, and enables you to specify the following:

Scan 1008

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

AWS AppSync Developer Guide

• A filter to exclude results

• Which index to use

• How many items to return

• Whether to use consistent reads

• Pagination token

• Parallel scans

The Scan mapping document has the following structure:

{
 "version" : "2017-02-28",
 "operation" : "Scan",
 "index" : "fooIndex",
 "limit" : 10,
 "consistentRead" : false,
 "nextToken" : "aPaginationToken",
 "totalSegments" : 10,
 "segment" : 1,
 "filter" : {
 ...
 },
 "projection" : {
 ...
 }
}

The fields are defined as follows:

Scan fields

Scan fields list

version

The template definition version. 2017-02-28 and 2018-05-29 are currently supported. This
value is required.

operation

The DynamoDB operation to perform. To perform the Scan DynamoDB operation, this must be
set to Scan. This value is required.

Scan 1009

AWS AppSync Developer Guide

filter

A filter that can be used to filter the results from DynamoDB before they are returned. For more
information about filters, see Filters. This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a
hash key. If specified, this tells DynamoDB to query the specified index. If omitted, the primary
key index is queried.

limit

The maximum number of items to evaluate at a single time. This field is optional.

consistentRead

A Boolean that indicates whether to use consistent reads when querying DynamoDB. This field
is optional, and defaults to false.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

select

By default, the AWS AppSync DynamoDB resolver only returns whatever attributes are
projected into the index. If more attributes are required, then this field can be set. This field is
optional. The supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of the
data can be obtained from the local secondary index and no fetching is required.

ALL_PROJECTED_ATTRIBUTES

Allowed only when querying an index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL_ATTRIBUTES.

Scan 1010

AWS AppSync Developer Guide

SPECIFIC_ATTRIBUTES

Returns only the attributes listed in the projection's expression. This return value is
equivalent to specifying the projection's expression without specifying any value for
Select.

totalSegments

The number of segments to partition the table by when performing a parallel scan. This field is
optional, but must be specified if segment is specified.

segment

The table segment in this operation when performing a parallel scan. This field is optional, but
must be specified if totalSegments is specified.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The results returned by the DynamoDB scan are automatically converted into GraphQL and JSON
primitive types and is available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about response mapping templates, see Resolver mapping template
overview.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",
 scannedCount = 10
}

The fields are defined as follows:

items

A list containing the items returned by the DynamoDB scan.

Scan 1011

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-projections

AWS AppSync Developer Guide

nextToken

If there might be more results, nextToken contains a pagination token that you can use in
another request. AWS AppSync encrypts and obfuscates the pagination token returned from
DynamoDB. This prevents your table data from being inadvertently leaked to the caller. Also,
these pagination tokens can’t be used across different resolvers.

scannedCount

The number of items that were retrieved by DynamoDB before a filter expression (if present)
was applied.

Example 1

The following example is a mapping template for the GraphQL query: allPosts.

In this example, all entries in the table are returned.

{
 "version" : "2017-02-28",
 "operation" : "Scan"
}

Example 2

The following example is a mapping template for the GraphQL query: postsMatching(title:
String!).

In this example, all entries in the table are returned where the title starts with the title
argument.

{
 "version" : "2017-02-28",
 "operation" : "Scan",
 "filter" : {
 "expression" : "begins_with(title, :title)",
 "expressionValues" : {
 ":title" : $util.dynamodb.toDynamoDBJson($context.arguments.title)
 },
 }

Scan 1012

AWS AppSync Developer Guide

}

For more information about the DynamoDB Scan API, see the DynamoDB API documentation.

Sync

The Sync request mapping document lets you retrieve all the results from a DynamoDB table and
then receive only the data altered since your last query (the delta updates). Sync requests can only
be made to versioned DynamoDB data sources. You can specify the following:

• A filter to exclude results

• How many items to return

• Pagination Token

• When your last Sync operation was started

The Sync mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "Sync",
 "basePartitionKey": "Base Tables PartitionKey",
 "deltaIndexName": "delta-index-name",
 "limit" : 10,
 "nextToken" : "aPaginationToken",
 "lastSync" : 1550000000000,
 "filter" : {
 ...
 }
}

The fields are defined as follows:

Sync fields

Sync fields list

version

The template definition version. Only 2018-05-29 is currently supported. This value is
required.

Sync 1013

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

AWS AppSync Developer Guide

operation

The DynamoDB operation to perform. To perform the Sync operation, this must be set to Sync.
This value is required.

filter

A filter that can be used to filter the results from DynamoDB before they are returned. For more
information about filters, see Filters. This field is optional.

limit

The maximum number of items to evaluate at a single time. This field is optional. If omitted,
the default limit will be set to 100 items. The maximum value for this field is 1000 items.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

lastSync

The moment, in epoch milliseconds, when the last successful Sync operation started. If
specified, only items that have changed after lastSync are returned. This field is optional, and
should only be populated after retrieving all pages from an initial Sync operation. If omitted,
results from the Base table will be returned, otherwise, results from the Delta table will be
returned.

basePartitionKey

The partition key of the Base table used when performing a Sync operation. This field allows
a Sync operation to be performed when the table utilizes a custom partition key. This is an
optional field.

deltaIndexName

The index used for the Sync operation. This index is required to enable a Sync operation on the
whole delta store table when the table uses a custom partition key. The Sync operation will be
performed on the GSI (created on gsi_ds_pk and gsi_ds_sk). This field is optional.

The results returned by the DynamoDB sync are automatically converted into GraphQL and JSON
primitive types and are available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

Sync 1014

AWS AppSync Developer Guide

For more information about response mapping templates, see Resolver mapping template
overview.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",
 scannedCount = 10,
 startedAt = 1550000000000
}

The fields are defined as follows:

items

A list containing the items returned by the sync.

nextToken

If there might be more results, nextToken contains a pagination token that you can use in
another request. AWS AppSync encrypts and obfuscates the pagination token returned from
DynamoDB. This prevents your table data from being inadvertently leaked to the caller. Also,
these pagination tokens can’t be used across different resolvers.

scannedCount

The number of items that were retrieved by DynamoDB before a filter expression (if present)
was applied.

startedAt

The moment, in epoch milliseconds, when the sync operation started that you can store locally
and use in another request as your lastSync argument. If a pagination token was included in
the request, this value will be the same as the one returned by the request for the first page of
results.

Example 1

The following example is a mapping template for the GraphQL query: syncPosts(nextToken:
String, lastSync: AWSTimestamp).

Sync 1015

AWS AppSync Developer Guide

In this example, if lastSync is omitted, all entries in the base table are returned. If lastSync is
supplied, only the entries in the delta sync table that have changed since lastSync are returned.

{
 "version" : "2018-05-29",
 "operation" : "Sync",
 "limit": 100,
 "nextToken": $util.toJson($util.defaultIfNull($ctx.args.nextToken, null)),
 "lastSync": $util.toJson($util.defaultIfNull($ctx.args.lastSync, null))
}

BatchGetItem

The BatchGetItem request mapping document lets you tell the AWS AppSync DynamoDB
resolver to make a BatchGetItem request to DynamoDB to retrieve multiple items, potentially
across multiple tables. For this request template, you must specify the following:

• The table names where to retrieve the items from

• The keys of the items to retrieve from each table

The DynamoDB BatchGetItem limits apply and no condition expression can be provided.

The BatchGetItem mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "BatchGetItem",
 "tables" : {
 "table1": {
 "keys": [
 ## Item to retrieve Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 ## Item2 to retrieve Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 }

BatchGetItem 1016

AWS AppSync Developer Guide

],
 "consistentRead": true|false,
 "projection" : {
 ...
 }
 },
 "table2": {
 "keys": [
 ## Item3 to retrieve Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 ## Item4 to retrieve Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 }
],
 "consistentRead": true|false,
 "projection" : {
 ...
 }
 }
 }
}

The fields are defined as follows:

BatchGetItem fields

BatchGetItem fields list

version

The template definition version. Only 2018-05-29 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the BatchGetItem DynamoDB operation,
this must be set to BatchGetItem. This value is required.

BatchGetItem 1017

AWS AppSync Developer Guide

tables

The DynamoDB tables to retrieve the items from. The value is a map where table names are
specified as the keys of the map. At least one table must be provided. This tables value is
required.

keys

List of DynamoDB keys representing the primary key of the items to retrieve. DynamoDB
items may have a single hash key, or a hash key and sort key, depending on the table
structure. For more information about how to specify a “typed value”, see Type system
(request mapping).

consistentRead

Whether to use a consistent read when executing a GetItem operation. This value is optional
and defaults to false.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation.
For more information about projections, see Projections. This field is optional.

Things to remember:

• If an item has not been retrieved from the table, a null element appears in the data block for
that table.

• Invocation results are sorted per table, based on the order in which they were provided inside the
request mapping template.

• Each Get command inside a BatchGetItem is atomic, however, a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchGetItem is limited to 100 keys.

For the following example request mapping template:

{
 "version": "2018-05-29",
 "operation": "BatchGetItem",
 "tables": {

BatchGetItem 1018

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-projections

AWS AppSync Developer Guide

 "authors": [
 {
 "author_id": {
 "S": "a1"
 }
 },
],
 "posts": [
 {
 "author_id": {
 "S": "a1"
 },
 "post_id": {
 "S": "p2"
 }
 }
],
 }
}

The invocation result available in $ctx.result is as follows:

{
 "data": {
 "authors": [null],
 "posts": [
 # Was retrieved
 {
 "author_id": "a1",
 "post_id": "p2",
 "post_title": "title",
 "post_description": "description",
 }
]
 },
 "unprocessedKeys": {
 "authors": [
 # This item was not processed due to an error
 {
 "author_id": "a1"
 }
],
 "posts": []

BatchGetItem 1019

AWS AppSync Developer Guide

 }
}

The $ctx.error contains details about the error. The keys data, unprocessedKeys, and each
table key that was provided in the request mapping template are guaranteed to be present in the
invocation result. Items that have been deleted appear in the data block. Items that haven’t been
processed are marked as null inside the data block and are placed inside the unprocessedKeys
block.

For a more complete example, follow the DynamoDB Batch tutorial with AppSync here Tutorial:
DynamoDB batch resolvers.

BatchDeleteItem

The BatchDeleteItem request mapping document lets you tell the AWS AppSync DynamoDB
resolver to make a BatchWriteItem request to DynamoDB to delete multiple items, potentially
across multiple tables. For this request template, you must specify the following:

• The table names where to delete the items from

• The keys of the items to delete from each table

The DynamoDB BatchWriteItem limits apply and no condition expression can be provided.

The BatchDeleteItem mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "BatchDeleteItem",
 "tables" : {
 "table1": [
 ## Item to delete Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 ## Item2 to delete Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 }],
 "table2": [

BatchDeleteItem 1020

AWS AppSync Developer Guide

 ## Item3 to delete Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 ## Item4 to delete Key
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 }],
 }
}

The fields are defined as follows:

BatchDeleteItem fields

BatchDeleteItem fields list

version

The template definition version. Only 2018-05-29 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the BatchDeleteItem DynamoDB
operation, this must be set to BatchDeleteItem. This value is required.

tables

The DynamoDB tables to delete the items from. Each table is a list of DynamoDB keys
representing the primary key of the items to delete. DynamoDB items may have a single hash
key, or a hash key and sort key, depending on the table structure. For more information about
how to specify a “typed value”, see Type system (request mapping). At least one table must be
provided. The tables value is required.

Things to remember:

• Contrary to the DeleteItem operation, the fully deleted item isn’t returned in the response.
Only the passed key is returned.

• If an item has not been deleted from the table, a null element appears in the data block for that
table.

BatchDeleteItem 1021

AWS AppSync Developer Guide

• Invocation results are sorted per table, based on the order in which they were provided inside the
request mapping template.

• Each Delete command inside a BatchDeleteItem is atomic. However a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchDeleteItem is limited to 25 keys.

For the following example request mapping template:

{
 "version": "2018-05-29",
 "operation": "BatchDeleteItem",
 "tables": {
 "authors": [
 {
 "author_id": {
 "S": "a1"
 }
 },
],
 "posts": [
 {
 "author_id": {
 "S": "a1"
 },
 "post_id": {
 "S": "p2"
 }
 }
],
 }
}

The invocation result available in $ctx.result is as follows:

{
 "data": {
 "authors": [null],
 "posts": [
 # Was deleted
 {

BatchDeleteItem 1022

AWS AppSync Developer Guide

 "author_id": "a1",
 "post_id": "p2"
 }
]
 },
 "unprocessedKeys": {
 "authors": [
 # This key was not processed due to an error
 {
 "author_id": "a1"
 }
],
 "posts": []
 }
}

The $ctx.error contains details about the error. The keys data, unprocessedKeys, and each
table key that was provided in the request mapping template are guaranteed to be present in
the invocation result. Items that have been deleted are present in the data block. Items that
haven’t been processed are marked as null inside the data block and are placed inside the
unprocessedKeys block.

For a more complete example, follow the DynamoDB Batch tutorial with AppSync here Tutorial:
DynamoDB batch resolvers.

BatchPutItem

The BatchPutItem request mapping document lets you tell the AWS AppSync DynamoDB
resolver to make a BatchWriteItem request to DynamoDB to put multiple items, potentially
across multiple tables. For this request template, you must specify the following:

• The table names where to put the items in

• The full items to put in each table

The DynamoDB BatchWriteItem limits apply and no condition expression can be provided.

The BatchPutItem mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "BatchPutItem",

BatchPutItem 1023

AWS AppSync Developer Guide

 "tables" : {
 "table1": [
 ## Item to put
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 ## Item2 to put
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 }],
 "table2": [
 ## Item3 to put
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 ## Item4 to put
 {
 "foo" : ... typed value,
 "bar" : ... typed value
 }],
 }
}

The fields are defined as follows:

BatchPutItem fields

BatchPutItem fields list

version

The template definition version. Only 2018-05-29 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the BatchPutItem DynamoDB operation,
this must be set to BatchPutItem. This value is required.

tables

The DynamoDB tables to put the items in. Each table entry represents a list of DynamoDB items
to insert for this specific table. At least one table must be provided. This value is required.

BatchPutItem 1024

AWS AppSync Developer Guide

Things to remember:

• The fully inserted items are returned in the response, if successful.

• If an item hasn’t been inserted in the table, a null element is displayed in the data block for that
table.

• The inserted items are sorted per table, based on the order in which they were provided inside
the request mapping template.

• Each Put command inside a BatchPutItem is atomic, however, a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchPutItem is limited to 25 items.

For the following example request mapping template:

{
 "version": "2018-05-29",
 "operation": "BatchPutItem",
 "tables": {
 "authors": [
 {
 "author_id": {
 "S": "a1"
 },
 "author_name": {
 "S": "a1_name"
 }
 },
],
 "posts": [
 {
 "author_id": {
 "S": "a1"
 },
 "post_id": {
 "S": "p2"
 },
 "post_title": {
 "S": "title"
 }
 }

BatchPutItem 1025

AWS AppSync Developer Guide

],
 }
}

The invocation result available in $ctx.result is as follows:

{
 "data": {
 "authors": [
 null
],
 "posts": [
 # Was inserted
 {
 "author_id": "a1",
 "post_id": "p2",
 "post_title": "title"
 }
]
 },
 "unprocessedItems": {
 "authors": [
 # This item was not processed due to an error
 {
 "author_id": "a1",
 "author_name": "a1_name"
 }
],
 "posts": []
 }
}

The $ctx.error contains details about the error. The keys data, unprocessedItems, and each
table key that was provided in the request mapping template are guaranteed to be present in the
invocation result. Items that have been inserted are in the data block. Items that haven’t been
processed are marked as null inside the data block and are placed inside the unprocessedItems
block.

For a more complete example, follow the DynamoDB Batch tutorial with AppSync here Tutorial:
DynamoDB batch resolvers.

BatchPutItem 1026

AWS AppSync Developer Guide

TransactGetItems

The TransactGetItems request mapping document lets you to tell the AWS AppSync DynamoDB
resolver to make a TransactGetItems request to DynamoDB to retrieve multiple items,
potentially across multiple tables. For this request template, you must specify the following:

• The table name of each request item where to retrieve the item from

• The key of each request item to retrieve from each table

The DynamoDB TransactGetItems limits apply and no condition expression can be provided.

The TransactGetItems mapping document has the following structure:

{
 "version": "2018-05-29",
 "operation": "TransactGetItems",
 "transactItems": [
 ## First request item
 {
 "table": "table1",
 "key": {
 "foo": ... typed value,
 "bar": ... typed value
 },
 "projection" : {
 ...
 }
 },
 ## Second request item
 {
 "table": "table2",
 "key": {
 "foo": ... typed value,
 "bar": ... typed value
 },
 "projection" : {
 ...
 }
 }
]
}

TransactGetItems 1027

AWS AppSync Developer Guide

The fields are defined as follows:

TransactGetItems fields

TransactGetItems fields list

version

The template definition version. Only 2018-05-29 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the TransactGetItems DynamoDB
operation, this must be set to TransactGetItems. This value is required.

transactItems

The request items to include. The value is an array of request items. At least one request item
must be provided. This transactItems value is required.

table

The DynamoDB table to retrieve the item from. The value is a string of the table name. This
table value is required.

key

The DynamoDB key representing the primary key of the item to retrieve. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure. For
more information about how to specify a “typed value”, see Type system (request mapping).

projection

A projection that's used to specify the attributes to return from the DynamoDB operation.
For more information about projections, see Projections. This field is optional.

Things to remember:

• If a transaction succeeds, the order of retrieved items in the items block will be the same as the
order of request items.

• Transactions are performed in an all-or-nothing way. If any request item causes an error, the
whole transaction will not be performed and error details will be returned.

• A request item being unable to be retrieved is not an error. Instead, a null element appears in the
items block in the corresponding position.

TransactGetItems 1028

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-dynamodb.html#aws-appsync-resolver-mapping-template-reference-dynamodb-projections

AWS AppSync Developer Guide

• If the error of a transaction is TransactionCanceledException, the cancellationReasons block
will be populated. The order of cancellation reasons in cancellationReasons block will be the
same as the order of request items.

• TransactGetItems is limited to 25 request items.

For the following example request mapping template:

{
 "version": "2018-05-29",
 "operation": "TransactGetItems",
 "transactItems": [
 ## First request item
 {
 "table": "posts",
 "key": {
 "post_id": {
 "S": "p1"
 }
 }
 },
 ## Second request item
 {
 "table": "authors",
 "key": {
 "author_id": {
 "S": a1
 }
 }
 }
]
}

If the transaction succeeds and only the first requested item is retrieved, the invocation result
available in $ctx.result is as follows:

{
 "items": [
 {
 // Attributes of the first requested item
 "post_id": "p1",
 "post_title": "title",

TransactGetItems 1029

AWS AppSync Developer Guide

 "post_description": "description"
 },
 // Could not retrieve the second requested item
 null,
],
 "cancellationReasons": null
}

If the transaction fails due to TransactionCanceledException caused by the first request item, the
invocation result available in $ctx.result is as follows:

{
 "items": null,
 "cancellationReasons": [
 {
 "type":"Sample error type",
 "message":"Sample error message"
 },
 {
 "type":"None",
 "message":"None"
 }
]
}

The $ctx.error contains details about the error. The keys items and cancellationReasons are
guaranteed to be present in $ctx.result.

For a more complete example, follow the DynamoDB Transaction tutorial with AppSync here
Tutorial: DynamoDB transaction resolvers.

TransactWriteItems

The TransactWriteItems request mapping document lets you tell the AWS AppSync DynamoDB
resolver to make a TransactWriteItems request to DynamoDB to write multiple items,
potentially to multiple tables. For this request template, you must specify the following:

• The destination table name of each request item

• The operation of each request item to perform. There are four types of operations that are
supported: PutItem, UpdateItem, DeleteItem, and ConditionCheck

• The key of each request item to write

TransactWriteItems 1030

AWS AppSync Developer Guide

The DynamoDB TransactWriteItems limits apply.

The TransactWriteItems mapping document has the following structure:

{
 "version": "2018-05-29",
 "operation": "TransactWriteItems",
 "transactItems": [
 {
 "table": "table1",
 "operation": "PutItem",
 "key": {
 "foo": ... typed value,
 "bar": ... typed value
 },
 "attributeValues": {
 "baz": ... typed value
 },
 "condition": {
 "expression": "someExpression",
 "expressionNames": {
 "#foo": "foo"
 },
 "expressionValues": {
 ":bar": ... typed value
 },
 "returnValuesOnConditionCheckFailure": true|false
 }
 },
 {
 "table":"table2",
 "operation": "UpdateItem",
 "key": {
 "foo": ... typed value,
 "bar": ... typed value
 },
 "update": {
 "expression": "someExpression",
 "expressionNames": {
 "#foo": "foo"
 },
 "expressionValues": {
 ":bar": ... typed value
 }

TransactWriteItems 1031

AWS AppSync Developer Guide

 },
 "condition": {
 "expression": "someExpression",
 "expressionNames": {
 "#foo":"foo"
 },
 "expressionValues": {
 ":bar": ... typed value
 },
 "returnValuesOnConditionCheckFailure": true|false
 }
 },
 {
 "table": "table3",
 "operation": "DeleteItem",
 "key":{
 "foo": ... typed value,
 "bar": ... typed value
 },
 "condition":{
 "expression": "someExpression",
 "expressionNames": {
 "#foo": "foo"
 },
 "expressionValues": {
 ":bar": ... typed value
 },
 "returnValuesOnConditionCheckFailure": true|false
 }
 },
 {
 "table": "table4",
 "operation": "ConditionCheck",
 "key":{
 "foo": ... typed value,
 "bar": ... typed value
 },
 "condition":{
 "expression": "someExpression",
 "expressionNames": {
 "#foo": "foo"
 },
 "expressionValues": {
 ":bar": ... typed value

TransactWriteItems 1032

AWS AppSync Developer Guide

 },
 "returnValuesOnConditionCheckFailure": true|false
 }
 }
]
}

TransactWriteItems fields

TransactWriteItems fields list

The fields are defined as follows:

version

The template definition version. Only 2018-05-29 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the TransactWriteItems DynamoDB
operation, this must be set to TransactWriteItems. This value is required.

transactItems

The request items to include. The value is an array of request items. At least one request
item must be provided. This transactItems value is required.

For PutItem, the fields are defined as follows:

table

The destination DynamoDB table. The value is a string of the table name. This table
value is required.

operation

The DynamoDB operation to perform. To perform the PutItem DynamoDB operation,
this must be set to PutItem. This value is required.

key

The DynamoDB key representing the primary key of the item to put. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure.
For more information about how to specify a “typed value”, see Type system (request
mapping). This value is required.

TransactWriteItems 1033

AWS AppSync Developer Guide

attributeValues

The rest of the attributes of the item to be put into DynamoDB. For more information
about how to specify a “typed value”, see Type system (request mapping). This field is
optional.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the PutItem request overwrites
any existing entry for that item. You can specify whether to retrieve the existing item
back when condition check fails. For more information about transactional conditions,
see Transaction condition expressions. This value is optional.

For UpdateItem, the fields are defined as follows:

table

The DynamoDB table to update. The value is a string of the table name. This table value
is required.

operation

The DynamoDB operation to perform. To perform the UpdateItem DynamoDB
operation, this must be set to UpdateItem. This value is required.

key

The DynamoDB key representing the primary key of the item to update. DynamoDB
items may have a single hash key, or a hash key and sort key, depending on the table
structure. For more information about how to specify a “typed value”, see Type system
(request mapping). This value is required.

update

The update section lets you specify an update expression that describes how to update
the item in DynamoDB. For more information about how to write update expressions, see
the DynamoDB UpdateExpressions documentation. This section is required.

condition

A condition to determine if the request should succeed or not, based on the state of
the object already in DynamoDB. If no condition is specified, the UpdateItem request
updates the existing entry regardless of its current state. You can specify whether to

TransactWriteItems 1034

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Developer Guide

retrieve the existing item back when condition check fails. For more information about
transactional conditions, see Transaction condition expressions. This value is optional.

For DeleteItem, the fields are defined as follows:

table

The DynamoDB table in which to delete the item. The value is a string of the table name.
This table value is required.

operation

The DynamoDB operation to perform. To perform the DeleteItem DynamoDB
operation, this must be set to DeleteItem. This value is required.

key

The DynamoDB key representing the primary key of the item to delete. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure.
For more information about how to specify a “typed value”, see Type system (request
mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of
the object already in DynamoDB. If no condition is specified, the DeleteItem request
deletes an item regardless of its current state. You can specify whether to retrieve the
existing item back when condition check fails. For more information about transactional
conditions, see Transaction condition expressions. This value is optional.

For ConditionCheck, the fields are defined as follows:

table

The DynamoDB table in which to check the condition. The value is a string of the table
name. This table value is required.

operation

The DynamoDB operation to perform. To perform the ConditionCheck DynamoDB
operation, this must be set to ConditionCheck. This value is required.

key

The DynamoDB key representing the primary key of the item to condition check.
DynamoDB items may have a single hash key, or a hash key and sort key, depending on

TransactWriteItems 1035

AWS AppSync Developer Guide

the table structure. For more information about how to specify a “typed value”, see Type
system (request mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. You can specify whether to retrieve the existing item back
when condition check fails. For more information about transactional conditions, see
Transaction condition expressions. This value is required.

Things to remember:

• Only keys of request items are returned in the response, if successful. The order of keys will be
the same as the order of request items.

• Transactions are performed in an all-or-nothing way. If any request item causes an error, the
whole transaction will not be performed and error details will be returned.

• No two request items can target the same item. Otherwise they will cause
TransactionCanceledException error.

• If the error of a transaction is TransactionCanceledException, the cancellationReasons
block will be populated. If a request item’s condition check fails and you did not specify
returnValuesOnConditionCheckFailure to be false, the item existing in the table will be
retrieved and stored in item at the corresponding position of cancellationReasons block.

• TransactWriteItems is limited to 25 request items.

For the following example request mapping template:

{
 "version": "2018-05-29",
 "operation": "TransactWriteItems",
 "transactItems": [
 {
 "table": "posts",
 "operation": "PutItem",
 "key": {
 "post_id": {
 "S": "p1"
 }
 },
 "attributeValues": {

TransactWriteItems 1036

AWS AppSync Developer Guide

 "post_title": {
 "S": "New title"
 },
 "post_description": {
 "S": "New description"
 }
 },
 "condition": {
 "expression": "post_title = :post_title",
 "expressionValues": {
 ":post_title": {
 "S": "Expected old title"
 }
 }
 }
 },
 {
 "table":"authors",
 "operation": "UpdateItem",
 "key": {
 "author_id": {
 "S": "a1"
 },
 },
 "update": {
 "expression": "SET author_name = :author_name",
 "expressionValues": {
 ":author_name": {
 "S": "New name"
 }
 }
 },
 }
]
}

If the transaction succeeds, the invocation result available in $ctx.result is as follows:

{
 "keys": [
 // Key of the PutItem request
 {
 "post_id": "p1",

TransactWriteItems 1037

AWS AppSync Developer Guide

 },
 // Key of the UpdateItem request
 {
 "author_id": "a1"
 }
],
 "cancellationReasons": null
}

If the transaction fails due to condition check failure of the PutItem request, the invocation result
available in $ctx.result is as follows:

{
 "keys": null,
 "cancellationReasons": [
 {
 "item": {
 "post_id": "p1",
 "post_title": "Actual old title",
 "post_description": "Old description"
 },
 "type": "ConditionCheckFailed",
 "message": "The condition check failed."
 },
 {
 "type": "None",
 "message": "None"
 }
]
}

The $ctx.error contains details about the error. The keys keys and cancellationReasons are
guaranteed to be present in $ctx.result.

For a more complete example, follow the DynamoDB Transaction tutorial with AppSync here
Tutorial: DynamoDB transaction resolvers.

Type system (request mapping)

When using the AWS AppSync DynamoDB resolver to call your DynamoDB tables, AWS AppSync
needs to know the type of each value to use in that call. This is because DynamoDB supports more
type primitives than GraphQL or JSON (such as sets and binary data). AWS AppSync needs some

Type system (request mapping) 1038

AWS AppSync Developer Guide

hints when translating between GraphQL and DynamoDB, otherwise it would have to make some
assumptions on how data is structured in your table.

For more information about DynamoDB data types, see the DynamoDB Data type descriptors and
Data types documentation.

A DynamoDB value is represented by a JSON object containing a single key-value pair. The key
specifies the DynamoDB type, and the value specifies the value itself. In the following example, the
key S denotes that the value is a string, and the value identifier is the string value itself.

{ "S" : "identifier" }

Note that the JSON object cannot have more than one key-value pair. If more than one key-value
pair is specified, the request mapping document isn’t parsed.

A DynamoDB value is used anywhere in a request mapping document where you need to specify
a value. Some places where you need to do this include: key and attributeValue sections, and
the expressionValues section of expression sections. In the following example, the DynamoDB
String value identifier is being assigned to the id field in a key section (perhaps in a GetItem
request mapping document).

"key" : {
 "id" : { "S" : "identifier" }
}

Supported Types

AWS AppSync supports the following DynamoDB scalar, document, and set types:

String type S

A single string value. A DynamoDB String value is denoted by:

{ "S" : "some string" }

An example usage is:

"key" : {
 "id" : { "S" : "some string" }
}

Type system (request mapping) 1039

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes

AWS AppSync Developer Guide

String set type SS

A set of string values. A DynamoDB String Set value is denoted by:

{ "SS" : ["first value", "second value", ...] }

An example usage is:

"attributeValues" : {
 "phoneNumbers" : { "SS" : ["+1 555 123 4567", "+1 555 234 5678"] }
}

Number type N

A single numeric value. A DynamoDB Number value is denoted by:

{ "N" : 1234 }

An example usage is:

"expressionValues" : {
 ":expectedVersion" : { "N" : 1 }
}

Number set type NS

A set of number values. A DynamoDB Number Set value is denoted by:

{ "NS" : [1, 2.3, 4 ...] }

An example usage is:

"attributeValues" : {
 "sensorReadings" : { "NS" : [67.8, 12.2, 70] }
}

Binary type B

A binary value. A DynamoDB Binary value is denoted by:

Type system (request mapping) 1040

AWS AppSync Developer Guide

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

Note that the value is actually a string, where the string is the base64-encoded representation
of the binary data. AWS AppSync decodes this string back into its binary value before sending
it to DynamoDB. AWS AppSync uses the base64 decoding scheme as defined by RFC 2045: any
character that isn’t in the base64 alphabet is ignored.

An example usage is:

"attributeValues" : {
 "binaryMessage" : { "B" : "SGVsbG8sIFdvcmxkIQo=" }
}

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is denoted by:

{ "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...] }

Note that the value is actually a string, where the string is the base64-encoded representation
of the binary data. AWS AppSync decodes this string back into its binary value before sending
it to DynamoDB. AWS AppSync uses the base64 decoding scheme as defined by RFC 2045: any
character that is not in the base64 alphabet is ignored.

An example usage is:

"attributeValues" : {
 "binaryMessages" : { "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg=="] }
}

Boolean type BOOL

A Boolean value. A DynamoDB Boolean value is denoted by:

{ "BOOL" : true }

Note that only true and false are valid values.

An example usage is:

Type system (request mapping) 1041

AWS AppSync Developer Guide

"attributeValues" : {
 "orderComplete" : { "BOOL" : false }
}

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is denoted by:

{ "L" : [...] }

Note that the value is a compound value, where the list can contain zero or more of any
supported DynamoDB value (including other lists). The list can also contain a mix of different
types.

An example usage is:

{ "L" : [
 { "S" : "A string value" },
 { "N" : 1 },
 { "SS" : ["Another string value", "Even more string values!"] }
]
}

Map type M

Representing an unordered collection of key-value pairs of other supported DynamoDB values.
A DynamoDB Map value is denoted by:

{ "M" : { ... } }

Note that a map can contain zero or more key-value pairs. The key must be a string, and the
value can be any supported DynamoDB value (including other maps). The map can also contain
a mix of different types.

An example usage is:

{ "M" : {
 "someString" : { "S" : "A string value" },
 "someNumber" : { "N" : 1 },

Type system (request mapping) 1042

AWS AppSync Developer Guide

 "stringSet" : { "SS" : ["Another string value", "Even more string
 values!"] }
 }
}

Null type NULL

A null value. A DynamoDB Null value is denoted by:

{ "NULL" : null }

An example usage is:

"attributeValues" : {
 "phoneNumbers" : { "NULL" : null }
}

For more information about each type, see the DynamoDB documentation .

Type system (response mapping)

When receiving a response from DynamoDB, AWS AppSync automatically converts it into GraphQL
and JSON primitive types. Each attribute in DynamoDB is decoded and returned in the response
mapping context.

For example, if DynamoDB returns the following:

{
 "id" : { "S" : "1234" },
 "name" : { "S" : "Nadia" },
 "age" : { "N" : 25 }
}

Then the AWS AppSync DynamoDB resolver converts it into GraphQL and JSON types as:

{
 "id" : "1234",
 "name" : "Nadia",
 "age" : 25

Type system (response mapping) 1043

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS AppSync Developer Guide

}

This section explains how AWS AppSync converts the following DynamoDB scalar, document, and
set types:

String type S

A single string value. A DynamoDB String value is returned as a string.

For example, if DynamoDB returned the following DynamoDB String value:

{ "S" : "some string" }

AWS AppSync converts it to a string:

"some string"

String set type SS

A set of string values. A DynamoDB String Set value is returned as a list of strings.

For example, if DynamoDB returned the following DynamoDB String Set value:

{ "SS" : ["first value", "second value", ...] }

AWS AppSync converts it to a list of strings:

["+1 555 123 4567", "+1 555 234 5678"]

Number type N

A single numeric value. A DynamoDB Number value is returned as a number.

For example, if DynamoDB returned the following DynamoDB Number value:

{ "N" : 1234 }

AWS AppSync converts it to a number:

1234

Type system (response mapping) 1044

AWS AppSync Developer Guide

Number set type NS

A set of number values. A DynamoDB Number Set value is returned as a list of numbers.

For example, if DynamoDB returned the following DynamoDB Number Set value:

{ "NS" : [67.8, 12.2, 70] }

AWS AppSync converts it to a list of numbers:

[67.8, 12.2, 70]

Binary type B

A binary value. A DynamoDB Binary value is returned as a string containing the base64
representation of that value.

For example, if DynamoDB returned the following DynamoDB Binary value:

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

AWS AppSync converts it to a string containing the base64 representation of the value:

"SGVsbG8sIFdvcmxkIQo="

Note that the binary data is encoded in the base64 encoding scheme as specified in RFC 4648
and RFC 2045.

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is returned as a list of strings containing
the base64 representation of the values.

For example, if DynamoDB returned the following DynamoDB Binary Set value:

{ "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...] }

AWS AppSync converts it to a list of strings containing the base64 representation of the values:

["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...]

Type system (response mapping) 1045

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045

AWS AppSync Developer Guide

Note that the binary data is encoded in the base64 encoding scheme as specified in RFC 4648
and RFC 2045.

Boolean type BOOL

A Boolean value. A DynamoDB Boolean value is returned as a Boolean.

For example, if DynamoDB returned the following DynamoDB Boolean value:

{ "BOOL" : true }

AWS AppSync converts it to a Boolean:

true

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is returned as a list of
values, where each inner value is also converted.

For example, if DynamoDB returned the following DynamoDB List value:

{ "L" : [
 { "S" : "A string value" },
 { "N" : 1 },
 { "SS" : ["Another string value", "Even more string values!"] }
]
}

AWS AppSync converts it to a list of converted values:

["A string value", 1, ["Another string value", "Even more string values!"]]

Map type M

A key/value collection of any other supported DynamoDB value. A DynamoDB Map value is
returned as a JSON object, where each key/value is also converted.

For example, if DynamoDB returned the following DynamoDB Map value:

{ "M" : {

Type system (response mapping) 1046

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045

AWS AppSync Developer Guide

 "someString" : { "S" : "A string value" },
 "someNumber" : { "N" : 1 },
 "stringSet" : { "SS" : ["Another string value", "Even more string
 values!"] }
 }
}

AWS AppSync converts it to a JSON object:

{
 "someString" : "A string value",
 "someNumber" : 1,
 "stringSet" : ["Another string value", "Even more string values!"]
}

Null type NULL

A null value.

For example, if DynamoDB returned the following DynamoDB Null value:

{ "NULL" : null }

AWS AppSync converts it to a null:

null

Filters

When querying objects in DynamoDB using the Query and Scan operations, you can optionally
specify a filter that evaluates the results and returns only the desired values.

The filter mapping section of a Query or Scan mapping document has the following structure:

"filter" : {
 "expression" : "filter expression"
 "expressionNames" : {
 "#name" : "name",
 },

Filters 1047

AWS AppSync Developer Guide

 "expressionValues" : {
 ":value" : ... typed value
 },
}

The fields are defined as follows:

expression

The query expression. For more information about how to write filter expressions, see the
DynamoDB QueryFilter and DynamoDB ScanFilter documentation. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression. The value must be a
string that corresponds to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must be
a typed value. For more information about how to specify a “typed value”, see Type System
(Request Mapping). This must be specified. This field is optional, and should only be populated
with substitutions for expression attribute value placeholders used in the expression.

Example

The following example is a filter section for a mapping template, where entries retrieved from
DynamoDB are only returned if the title starts with the title argument.

"filter" : {
 "expression" : "begins_with(#title, :title)",
 "expressionNames" : {
 "#title" : "title"
 },
 "expressionValues" : {
 ":title" : $util.dynamodb.toDynamoDBJson($context.arguments.title)
 }

Filters 1048

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.QueryFilter.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.ScanFilter.html

AWS AppSync Developer Guide

}

Condition expressions

When you mutate objects in DynamoDB by using the PutItem, UpdateItem, and DeleteItem
DynamoDB operations, you can optionally specify a condition expression that controls whether the
request should succeed or not, based on the state of the object already in DynamoDB before the
operation is performed.

The AWS AppSync DynamoDB resolver allows a condition expression to be specified in PutItem,
UpdateItem, and DeleteItem request mapping documents, and also a strategy to follow if the
condition fails and the object was not updated.

Example 1

The following PutItem mapping document doesn’t have a condition expression. As a result, it puts
an item in DynamoDB even if an item with the same key already exists, thereby overwriting the
existing item.

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "1" }
 }
}

Example 2

The following PutItem mapping document does have a condition expression that allows the
operation succeed only if an item with the same key does not exist in DynamoDB.

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "1" }
 },
 "condition" : {
 "expression" : "attribute_not_exists(id)"
 }

Condition expressions 1049

AWS AppSync Developer Guide

}

By default, if the condition check fails, the AWS AppSync DynamoDB resolver returns an error for
the mutation and the current value of the object in DynamoDB in a data field in the error section
of the GraphQL response. However, the AWS AppSync DynamoDB resolver offers some additional
features to help developers handle some common edge cases:

• If AWS AppSync DynamoDB resolver can determine that the current value in DynamoDB matches
the desired result, it treats the operation as if it succeeded anyway.

• Instead of returning an error, you can configure the resolver to invoke a custom Lambda function
to decide how the AWS AppSync DynamoDB resolver should handle the failure.

These are described in greater detail in the Handling a Condition Check Failure section.

For more information about DynamoDB conditions expressions, see the DynamoDB
ConditionExpressions documentation .

Specifying a condition

The PutItem, UpdateItem, and DeleteItem request mapping documents all allow an optional
condition section to be specified. If omitted, no condition check is made. If specified, the
condition must be true for the operation to succeed.

A condition section has the following structure:

"condition" : {
 "expression" : "someExpression"
 "expressionNames" : {
 "#foo" : "foo"
 },
 "expressionValues" : {
 ":bar" : ... typed value
 },
 "equalsIgnore" : ["version"],
 "consistentRead" : true,
 "conditionalCheckFailedHandler" : {
 "strategy" : "Custom",
 "lambdaArn" : "arn:..."
 }
}

Condition expressions 1050

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Developer Guide

The following fields specify the condition:

expression

The update expression itself. For more information about how to write condition expressions,
see the DynamoDB ConditionExpressions documentation . This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be a
string corresponding to the attribute name of the item in DynamoDB. This field is optional, and
should only be populated with substitutions for expression attribute name placeholders used in
the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs. The
key corresponds to a value placeholder used in the expression, and the value must be a typed
value. For more information about how to specify a “typed value”, see Type System (Request
Mapping). This must be specified. This field is optional, and should only be populated with
substitutions for expression attribute value placeholders used in the expression.

The remaining fields tell the AWS AppSync DynamoDB resolver how to handle a condition check
failure:

equalsIgnore

When a condition check fails when using the PutItem operation, the AWS AppSync DynamoDB
resolver compares the item currently in DynamoDB against the item it tried to write. If they are
the same, it treats the operation as it if succeeded anyway. You can use the equalsIgnore
field to specify a list of attributes that AWS AppSync should ignore when performing that
comparison. For example, if the only difference was a version attribute, it treats the operation
as if it succeeded. This field is optional.

consistentRead

When a condition check fails, AWS AppSync gets the current value of the item from DynamoDB
using a strongly consistent read. You can use this field to tell the AWS AppSync DynamoDB
resolver to use an eventually consistent read instead. This field is optional, and defaults to
true.

Condition expressions 1051

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Developer Guide

conditionalCheckFailedHandler

This section allows you to specify how the AWS AppSync DynamoDB resolver treats a condition
check failure after it has compared the current value in DynamoDB against the expected result.
This section is optional. If omitted, it defaults to a strategy of Reject.

strategy

The strategy the AWS AppSync DynamoDB resolver takes after it has compared the current
value in DynamoDB against the expected result. This field is required and has the following
possible values:

Reject

The mutation fails, and an error for the mutation and the current value of the object in
DynamoDB in a data field in the error section of the GraphQL response.

Custom

The AWS AppSync DynamoDB resolver invokes a custom Lambda function to decide
how to handle the condition check failure. When the strategy is set to Custom, the
lambdaArn field must contain the ARN of the Lambda function to invoke.

lambdaArn

The ARN of the Lambda function to invoke that determines how the AWS AppSync
DynamoDB resolver should handle the condition check failure. This field must only be
specified when strategy is set to Custom. For more information about how to use this
feature, see Handling a Condition Check Failure.

Handling a condition check failure

By default, when a condition check fails, the AWS AppSync DynamoDB resolver returns an error for
the mutation and the current value of the object in DynamoDB in a data field in the error section
of the GraphQL response. However, the AWS AppSync DynamoDB resolver offers some additional
features to help developers handle some common edge cases:

• If AWS AppSync DynamoDB resolver can determine that the current value in DynamoDB matches
the desired result, it treats the operation as if it succeeded anyway.

• Instead of returning an error, you can configure the resolver to invoke a custom Lambda function
to decide how the AWS AppSync DynamoDB resolver should handle the failure.

Condition expressions 1052

AWS AppSync Developer Guide

The flowchart for this process is:

Checking for the desired result

When the condition check fails, the AWS AppSync DynamoDB resolver performs a GetItem
DynamoDB request to get the current value of the item from DynamoDB. By default, it uses a
strongly consistent read, however this can be configured using the consistentRead field in the
condition block and compare it against the expected result:

• For the PutItem operation, the AWS AppSync DynamoDB resolver compares the current value
against the one it attempted to write, excluding any attributes listed in equalsIgnore from the
comparison. If the items are the same, it treats the operation as successful and returns the item
that was retrieved from DynamoDB. Otherwise, it follows the configured strategy.

For example, if the PutItem request mapping document looked like the following:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "1" }
 },
 "attributeValues" : {
 "name" : { "S" : "Steve" },
 "version" : { "N" : 2 }
 },
 "condition" : {
 "expression" : "version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" : { "N" : 1 }
 },
 "equalsIgnore": ["version"]
 }
}

And the item currently in DynamoDB looked like the following:

{
 "id" : { "S" : "1" },
 "name" : { "S" : "Steve" },
 "version" : { "N" : 8 }

Condition expressions 1053

AWS AppSync Developer Guide

}

The AWS AppSync DynamoDB resolver would compare the item it tried to write against the
current value, see that the only difference was the version field, but because it’s configured
to ignore the version field, it treats the operation as successful and returns the item that was
retrieved from DynamoDB.

• For the DeleteItem operation, the AWS AppSync DynamoDB resolver checks to verify that an
item was returned from DynamoDB. If no item was returned, it treats the operation as successful.
Otherwise, it follows the configured strategy.

• For the UpdateItem operation, the AWS AppSync DynamoDB resolver does not have enough
information to determine if the item currently in DynamoDB matches the expected result, and
therefore follows the configured strategy.

If the current state of the object in DynamoDB is different from the expected result, the AWS
AppSync DynamoDB resolver follows the configured strategy, to either reject the mutation or
invoke a Lambda function to determine what to do next.

Following the “reject” strategy

When following the Reject strategy, the AWS AppSync DynamoDB resolver returns an error for
the mutation, and the current value of the object in DynamoDB is also returned in a data field in
the error section of the GraphQL response. The item returned from DynamoDB is put through the
response mapping template to translate it into a format the client expects, and it is filtered by the
selection set.

For example, given the following mutation request:

mutation {
 updatePerson(id: 1, name: "Steve", expectedVersion: 1) {
 Name
 theVersion
 }
}

If the item returned from DynamoDB looks like the following:

{
 "id" : { "S" : "1" },

Condition expressions 1054

AWS AppSync Developer Guide

 "name" : { "S" : "Steve" },
 "version" : { "N" : 8 }
}

And the response mapping template looks like the following:

{
 "id" : $util.toJson($context.result.id),
 "Name" : $util.toJson($context.result.name),
 "theVersion" : $util.toJson($context.result.version)
}

The GraphQL response looks like the following:

{
 "data": null,
 "errors": [
 {
 "message": "The conditional request failed (Service: AmazonDynamoDBv2;
 Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
 ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ)"
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "data": {
 "Name": "Steve",
 "theVersion": 8
 },
 ...
 }
]
}

Also, if any fields in the returned object are filled by other resolvers and the mutation had
succeeded, they won’t be resolved when the object is returned in the error section.

Following the “custom” strategy

When following the Custom strategy, the AWS AppSync DynamoDB resolver invokes a Lambda
function to decide what to do next. The Lambda function chooses one of the following options:

• reject the mutation. This tells the AWS AppSync DynamoDB resolver to behave as if the
configured strategy was Reject, returning an error for the mutation and the current value of
the object in DynamoDB as described in the previous section.

Condition expressions 1055

AWS AppSync Developer Guide

• discard the mutation. This tells the AWS AppSync DynamoDB resolver to silently ignore the
condition check failure and returns the value in DynamoDB.

• retry the mutation. This tells the AWS AppSync DynamoDB resolver to retry the mutation with
a new request mapping document.

The Lambda invocation request

The AWS AppSync DynamoDB resolver invokes the Lambda function specified in the lambdaArn. It
uses the same service-role-arn configured on the data source. The payload of the invocation
has the following structure:

{
 "arguments": { ... },
 "requestMapping": {... },
 "currentValue": { ... },
 "resolver": { ... },
 "identity": { ... }
}

The fields are defined as follows:

arguments

The arguments from the GraphQL mutation. This is the same as the arguments available to the
request mapping document in $context.arguments.

requestMapping

The request mapping document for this operation.

currentValue

The current value of the object in DynamoDB.

resolver

Information about the AWS AppSync resolver.

identity

Information about the caller. This is the same as the identity information available to the
request mapping document in $context.identity.

Condition expressions 1056

AWS AppSync Developer Guide

A full example of the payload:

{
 "arguments": {
 "id": "1",
 "name": "Steve",
 "expectedVersion": 1
 },
 "requestMapping": {
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id" : { "S" : "1" }
 },
 "attributeValues" : {
 "name" : { "S" : "Steve" },
 "version" : { "N" : 2 }
 },
 "condition" : {
 "expression" : "version = :expectedVersion",
 "expressionValues" : {
 ":expectedVersion" : { "N" : 1 }
 },
 "equalsIgnore": ["version"]
 }
 },
 "currentValue": {
 "id" : { "S" : "1" },
 "name" : { "S" : "Steve" },
 "version" : { "N" : 8 }
 },
 "resolver": {
 "tableName": "People",
 "awsRegion": "us-west-2",
 "parentType": "Mutation",
 "field": "updatePerson",
 "outputType": "Person"
 },
 "identity": {
 "accountId": "123456789012",
 "sourceIp": "x.x.x.x",
 "user": "AIDAAAAAAAAAAAAAAAAAA",
 "userArn": "arn:aws:iam::123456789012:user/appsync"
 }

Condition expressions 1057

AWS AppSync Developer Guide

}

The Lambda Invocation Response

The Lambda function can inspect the invocation payload and apply any business logic to decide
how the AWS AppSync DynamoDB resolver should handle the failure. There are three options for
handling the condition check failure:

• reject the mutation. The response payload for this option must have this structure:

{
 "action": "reject"
}

This tells the AWS AppSync DynamoDB resolver to behave as if the configured strategy was
Reject, returning an error for the mutation and the current value of the object in DynamoDB, as
described in the section above.

• discard the mutation. The response payload for this option must have this structure:

{
 "action": "discard"
}

This tells the AWS AppSync DynamoDB resolver to silently ignore the condition check failure and
returns the value in DynamoDB.

• retry the mutation. The response payload for this option must have this structure:

{
 "action": "retry",
 "retryMapping": { ... }
}

This tells the AWS AppSync DynamoDB resolver to retry the mutation with a new request
mapping document. The structure of the retryMapping section depends on the DynamoDB
operation, and is a subset of the full request mapping document for that operation.

For PutItem, the retryMapping section has the following structure. For a description of the
attributeValues field, see PutItem.

Condition expressions 1058

AWS AppSync Developer Guide

{
 "attributeValues": { ... },
 "condition": {
 "equalsIgnore" = [...],
 "consistentRead" = true
 }
}

For UpdateItem, the retryMapping section has the following structure. For a description of
the update section, see UpdateItem.

{
 "update" : {
 "expression" : "someExpression"
 "expressionNames" : {
 "#foo" : "foo"
 },
 "expressionValues" : {
 ":bar" : ... typed value
 }
 },
 "condition": {
 "consistentRead" = true
 }
}

For DeleteItem, the retryMapping section has the following structure.

{
 "condition": {
 "consistentRead" = true
 }
}

There is no way to specify a different operation or key to work on. The AWS AppSync DynamoDB
resolver only allows retries of the same operation on the same object. Also, the condition
section doesn’t allow a conditionalCheckFailedHandler to be specified. If the retry fails,
the AWS AppSync DynamoDB resolver follows the Reject strategy.

Condition expressions 1059

AWS AppSync Developer Guide

Here is an example Lambda function to deal with a failed PutItem request. The business logic
looks at who made the call. If it was made by jeffTheAdmin, it retries the request, updating the
version and expectedVersion from the item currently in DynamoDB. Otherwise, it rejects the
mutation.

exports.handler = (event, context, callback) => {
 console.log("Event: "+ JSON.stringify(event));

 // Business logic goes here.

 var response;
 if (event.identity.user == "jeffTheAdmin") {
 response = {
 "action" : "retry",
 "retryMapping" : {
 "attributeValues" : event.requestMapping.attributeValues,
 "condition" : {
 "expression" : event.requestMapping.condition.expression,
 "expressionValues" :
 event.requestMapping.condition.expressionValues
 }
 }
 }
 response.retryMapping.attributeValues.version = { "N" :
 event.currentValue.version.N + 1 }
 response.retryMapping.condition.expressionValues[':expectedVersion'] =
 event.currentValue.version

 } else {
 response = { "action" : "reject" }
 }

 console.log("Response: "+ JSON.stringify(response))
 callback(null, response)
};

Transaction condition expressions

Transaction condition expressions are available in request mapping templates of all four types
of operations in TransactWriteItems, namely, PutItem, DeleteItem, UpdateItem, and
ConditionCheck.

Transaction condition expressions 1060

AWS AppSync Developer Guide

For PutItem, DeleteItem, and UpdateItem, the transaction condition expression is optional. For
ConditionCheck, the transaction condition expression is required.

Example 1

The following transactional DeleteItem mapping document does not have a condition
expression. As a result, it deletes the item in DynamoDB.

{
 "version": "2018-05-29",
 "operation": "TransactWriteItems",
 "transactItems": [
 {
 "table": "posts",
 "operation": "DeleteItem",
 "key": {
 "id": { "S" : "1" }
 }
 }
]
}

Example 2

The following transactional DeleteItem mapping document does have a transaction condition
expression that allows the operation succeed only if the author of that post equals a certain name.

{
 "version": "2018-05-29",
 "operation": "TransactWriteItems",
 "transactItems": [
 {
 "table": "posts",
 "operation": "DeleteItem",
 "key": {
 "id": { "S" : "1" }
 }
 "condition": {
 "expression": "author = :author",
 "expressionValues": {
 ":author": { "S" : "Chunyan" }
 }

Transaction condition expressions 1061

AWS AppSync Developer Guide

 }
 }
]
}

If the condition check fails, it will cause TransactionCanceledException and the
error detail will be returned in $ctx.result.cancellationReasons. Note that by
default, the old item in DynamoDB that made condition check fail will be returned in
$ctx.result.cancellationReasons.

Specifying a condition

The PutItem, UpdateItem, and DeleteItem request mapping documents all allow an optional
condition section to be specified. If omitted, no condition check is made. If specified, the
condition must be true for the operation to succeed. The ConditionCheck must have a
condition section to be specified. The condition must be true for the whole transaction to
succeed.

A condition section has the following structure:

"condition": {
 "expression": "someExpression",
 "expressionNames": {
 "#foo": "foo"
 },
 "expressionValues": {
 ":bar": ... typed value
 },
 "returnValuesOnConditionCheckFailure": false
}

The following fields specify the condition:

expression

The update expression itself. For more information about how to write condition expressions,
see the DynamoDB ConditionExpressions documentation . This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be a

Transaction condition expressions 1062

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Developer Guide

string corresponding to the attribute name of the item in DynamoDB. This field is optional, and
should only be populated with substitutions for expression attribute name placeholders used in
the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs. The
key corresponds to a value placeholder used in the expression, and the value must be a typed
value. For more information about how to specify a “typed value”, see Type System (request
mapping). This must be specified. This field is optional, and should only be populated with
substitutions for expression attribute value placeholders used in the expression.

returnValuesOnConditionCheckFailure

Specify whether to retrieve the item in DynamoDB back when a condition check fails. The
retrieved item will be in $ctx.result.cancellationReasons[$index].item, where
$index is the index of the request item that failed the condition check. This value defaults to
true.

Projections

When reading objects in DynamoDB using the GetItem, Scan, Query, BatchGetItem, and
TransactGetItems operations, you can optionally specify a projection that identifies the
attributes that you want. The projection has the following structure, which is similar to filters:

"projection" : {
 "expression" : "projection expression"
 "expressionNames" : {
 "#name" : "name",
 }
}

The fields are defined as follows:

expression

The projection expression, which is a string. To retrieve a single attribute, specify its name. For
multiple attributes, the names must be comma-separated values. For more information on
writing projection expressions, see the DynamoDB projection expressions documentation. This
field is required.

Projections 1063

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ProjectionExpressions.html

AWS AppSync Developer Guide

expressionNames

The substitutions for expression attribute name placeholders in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression. The value must be a
string that corresponds to the attribute name of the item in DynamoDB. This field is optional
and should only be populated with substitutions for expression attribute name placeholders
used in the expression. For more information about expressionNames, see the DynamoDB
documentation.

Example 1

The following example is a projection section for a VTL mapping template in which only the
attributes author and id are returned from DynamoDB:

"projection" : {
 "expression" : "#author, id",
 "expressionNames" : {
 "#author" : "author"
 }
}

Tip

You can access your GraphQL request selection set using $context.info.selectionSetList.
This field allows you to frame your projection expression dynamically according to your
requirements.

Note

While using projection expressions with the Query and Scan operations, the value for
select must be SPECIFIC_ATTRIBUTES. For more information, see the DynamoDB
documentation.

Projections 1064

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference.html#aws-appsync-resolver-context-reference-info
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html#DDB-Query-request-Select
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html#DDB-Query-request-Select

AWS AppSync Developer Guide

Resolver mapping template reference for RDS

The AWS AppSync RDS resolver mapping templates allow developers to send SQL queries to a Data
API for Amazon Aurora Serverless and get back the result of these queries.

Request mapping template

The RDS request mapping template is fairly simple:

{
 "version": "2018-05-29",
 "statements": [],
 "variableMap": {},
 "variableTypeHintMap": {}
}

Here is the JSON schema representation of the RDS request mapping template, once resolved.

{
 "definitions": {},
 "$schema": "https://json-schema.org/draft-07/schema#",
 "$id": "https://example.com/root.json",
 "type": "object",
 "title": "The Root Schema",
 "required": [
 "version",
 "statements",
 "variableMap"
],
 "properties": {
 "version": {
 "$id": "#/properties/version",
 "type": "string",
 "title": "The Version Schema",
 "default": "",
 "examples": [
 "2018-05-29"
],
 "enum": [
 "2018-05-29"
],
 "pattern": "^(.*)$"

Resolver mapping template reference for RDS 1065

AWS AppSync Developer Guide

 },
 "statements": {
 "$id": "#/properties/statements",
 "type": "array",
 "title": "The Statements Schema",
 "items": {
 "$id": "#/properties/statements/items",
 "type": "string",
 "title": "The Items Schema",
 "default": "",
 "examples": [
 "SELECT * from BOOKS"
],
 "pattern": "^(.*)$"
 }
 },
 "variableMap": {
 "$id": "#/properties/variableMap",
 "type": "object",
 "title": "The Variablemap Schema"
 },
 "variableTypeHintMap": {
 "$id": "#/properties/variableTypeHintMap",
 "type": "object",
 "title": "The variableTypeHintMap Schema"
 }
 }
}

The following is an example of the request mapping template with a static query:

{
 "version": "2018-05-29",
 "statements": [
 "select title, isbn13 from BOOKS where author = 'Mark Twain'"
]
}

Request mapping template 1066

AWS AppSync Developer Guide

Version

Common to all request mapping templates, the version field defines the version that the template
uses. The version field is required. The value “2018-05-29” is the only version supported for the
Amazon RDS mapping templates.

"version": "2018-05-29"

Statements and VariableMap

The statements array is a placeholder for the developer-provided queries. Currently, up to two
queries per request mapping template are supported. The variableMap is an optional field that
contains aliases that can be used to make the SQL statements shorter and more readable. For
example, the following is possible:

{
"version": "2018-05-29",
 "statements": [
 "insert into BOOKS VALUES (:AUTHOR, :TITLE, :ISBN13)",
 "select * from BOOKS WHERE isbn13 = :ISBN13"
],
 "variableMap": {
 ":AUTHOR": $util.toJson($ctx.args.newBook.author),
 ":TITLE": $util.toJson($ctx.args.newBook.title),
 ":ISBN13": $util.toJson($ctx.args.newBook.isbn13)
 }
}

AWS AppSync will use the variable map values to construct the SqlParameterized queries that
will be sent to the Amazon Aurora Serverless Data API. The SQL statements are executed with
parameters provided in the variable map, which eliminates the risk of SQL injection.

VariableTypeHintMap

The variableTypeHintMap is an optional field containing aliased types that can be used to send
SQL parameter type hints. These type hints avoid explicit casting in the SQL statements, making
them shorter. For example, the following is possible:

{

Version 1067

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html

AWS AppSync Developer Guide

 "version": "2018-05-29",
 "statements": [
 "insert into LOGINDATA VALUES (:ID, :TIME)",
 "select * from LOGINDATA WHERE id = :ID"
],
 "variableMap": {
 ":ID": $util.toJson($ctx.args.id),
 ":TIME": $util.toJson($ctx.args.time)
 },
 "variableTypeHintMap": {
 ":id": "UUID",
 ":time": "TIME"
 }
}

AWS AppSync will use the variable map value to construct the queries that are sent to the Amazon
Aurora Serverless Data API. It also uses the variableTypeHintMap data and sends the type's
information to RDS. RDS-supported typeHints can be found here.

Resolver Mapping Template Reference for OpenSearch

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The AWS AppSync resolver for Amazon OpenSearch Service enables you to use GraphQL to store
and retrieve data in existing OpenSearch Service domains in your account. This resolver works by
allowing you to map an incoming GraphQL request into an OpenSearch Service request, then map
the OpenSearch Service response back to GraphQL. This section describes the mapping templates
for the supported OpenSearch Service operations.

Request Mapping Template

Most OpenSearch Service request mapping templates have a common structure where just a few
pieces change. The following example runs a search against an OpenSearch Service domain, where
documents are organized under an index called post. The search parameters are defined in the
body section, with many of the common query clauses being defined in the query field. This

Resolver Mapping Template Reference for OpenSearch 1068

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

example will search for documents containing "Nadia", or "Bailey", or both, in the author field
of a document:

{
 "version":"2017-02-28",
 "operation":"GET",
 "path":"/post/_search",
 "params":{
 "headers":{},
 "queryString":{},
 "body":{
 "from":0,
 "size":50,
 "query" : {
 "bool" : {
 "should" : [
 {"match" : { "author" : "Nadia" }},
 {"match" : { "author" : "Bailey" }}
]
 }
 }
 }
 }
}

Response Mapping Template

As with other data sources, OpenSearch Service sends a response to AWS AppSync that needs to be
converted to GraphQL. .

Most GraphQL queries are looking for the _source field from an OpenSearch Service response.
Because you can do searches to return either an individual document or a list of documents, there
are two common response mapping templates used in OpenSearch Service:

List of Results

[
 #foreach($entry in $context.result.hits.hits)
 #if($velocityCount > 1) , #end
 $utils.toJson($entry.get("_source"))
 #end
]

Response Mapping Template 1069

AWS AppSync Developer Guide

Individual Item

$utils.toJson($context.result.get("_source"))

operation field

(REQUEST Mapping Template only)

HTTP method or verb (GET, POST, PUT, HEAD or DELETE) that AWS AppSync sends to the
OpenSearch Service domain. Both the key and the value must be a string.

"operation" : "PUT"

path field

(REQUEST Mapping Template only)

The search path for an OpenSearch Service request from AWS AppSync. This forms a URL for the
operation’s HTTP verb. Both the key and the value must be strings.

"path" : "/<indexname>/_doc/<_id>"
"path" : "/<indexname>/_doc"
"path" : "/<indexname>/_search"
"path" : "/<indexname>/_update/<_id>

When the mapping template is evaluated, this path is sent as part of the HTTP request, including
the OpenSearch Service domain. For example, the previous example might translate to:

GET https://opensearch-domain-name.REGION.es.amazonaws.com/indexname/type/_search

params field

(REQUEST Mapping Template only)

Used to specify what action your search performs, most commonly by setting the query value
inside of the body. However, there are several other capabilities that can be configured, such as the
formatting of responses.

operation field 1070

AWS AppSync Developer Guide

• headers

The header information, as key-value pairs. Both the key and the value must be strings. For
example:

"headers" : {
 "Content-Type" : "application/json"
}

Note

AWS AppSync currently supports only JSON as a Content-Type.

• queryString

Key-value pairs that specify common options, such as code formatting for JSON responses. Both
the key and the value must be a string. For example, if you want to get pretty-formatted JSON,
you would use:

"queryString" : {
 "pretty" : "true"
}

• body

This is the main part of your request, allowing AWS AppSync to craft a well-formed search
request to your OpenSearch Service domain. The key must be a string comprised of an object. A
couple of demonstrations are shown below.

Example 1

Return all documents with a city matching “seattle”:

"body":{
 "from":0,
 "size":50,
 "query" : {
 "match" : {
 "city" : "seattle"
 }

params field 1071

AWS AppSync Developer Guide

 }
}

Example 2

Return all documents matching “washington” as the city or the state:

"body":{
 "from":0,
 "size":50,
 "query" : {
 "multi_match" : {
 "query" : "washington",
 "fields" : ["city", "state"]
 }
 }
}

Passing Variables

(REQUEST Mapping Template only)

You can also pass variables as part of evaluation in the VTL statement. For example, suppose you
had a GraphQL query such as the following:

query {
 searchForState(state: "washington"){
 ...
 }
}

The mapping template could take the state as an argument:

"body":{
 "from":0,
 "size":50,
 "query" : {
 "multi_match" : {
 "query" : "$context.arguments.state",
 "fields" : ["city", "state"]
 }
 }

Passing Variables 1072

AWS AppSync Developer Guide

}

For a list of utilities you can include in the VTL, see Access Request Headers.

Resolver mapping template reference for Lambda

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

You can use the AWS AppSync resolver mapping templates for AWS Lambda to shape requests
from AWS AppSync to Lambda functions located in your account, and responses from your
Lambda functions back to AWS AppSync. You can also use mapping templates to give hints to
AWS AppSync about the nature of the operation to be invoked. This section describes the different
mapping templates for the supported Lambda operations.

Request mapping template

The Lambda request mapping template is fairly simple and allows as much context information as
possible to pass to your Lambda function.

{
 "version": string,
 "operation": Invoke|BatchInvoke,
 "payload": any type
}

Here is the JSON schema representation of the Lambda request mapping template, when resolved.

{
 "definitions": {},
 "$schema": "https://json-schema.org/draft-06/schema#",
 "$id": "https://aws.amazon.com/appsync/request-mapping-template.json",
 "type": "object",
 "properties": {
 "version": {
 "$id": "/properties/version",
 "type": "string",

Resolver mapping template reference for Lambda 1073

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

 "enum": [
 "2018-05-29"
],
 "title": "The Mapping template version.",
 "default": "2018-05-29"
 },
 "operation": {
 "$id": "/properties/operation",
 "type": "string",
 "enum": [
 "Invoke",
 "BatchInvoke"
],
 "title": "The Mapping template operation.",
 "description": "What operation to execute.",
 "default": "Invoke"
 },
 "payload": {}
 },
 "required": [
 "version",
 "operation"
],
 "additionalProperties": false
}

Here is an example where we pass the field value and the GraphQL field arguments from the
context.

{
 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "arguments": $util.toJson($context.arguments)
 }
}

The entire mapping document is passed as input to your Lambda function, so that the previous
example would now look like the following:

{

Request mapping template 1074

AWS AppSync Developer Guide

 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "arguments": {
 "id": "postId1"
 }
 }
}

Version

Common to all request mapping templates, version defines the version that the template uses.
version is required.

"version": "2018-05-29"

Operation

The Lambda data source lets you define two operations: Invoke and BatchInvoke. The Invoke
operation lets AWS AppSync know to call your Lambda function for every GraphQL field resolver.
BatchInvoke instructs AWS AppSync to batch requests for the current GraphQL field.

operation is required.

For Invoke, the resolved request mapping template exactly matches the input payload of the
Lambda function. So the following example template:

{
 "version": "2018-05-29",
 "operation": "Invoke",
 "payload": {
 "arguments": $util.toJson($context.arguments)
 }
}

is resolved and passed to the Lambda function, as follows:

{
 "version": "2018-05-29",

Request mapping template 1075

AWS AppSync Developer Guide

 "operation": "Invoke",
 "payload": {
 "arguments": {
 "id": "postId1"
 }
 }
}

For BatchInvoke, the mapping template is applied for every field resolver in the batch. For
conciseness, AWS AppSync merges all the resolved mapping template payload values into a list
under a single object matching the mapping template.

The following example template shows the merge:

{
 "version": "2018-05-29",
 "operation": "BatchInvoke",
 "payload": $util.toJson($context)
}

This template is resolved into the following mapping document:

{
 "version": "2018-05-29",
 "operation": "BatchInvoke",
 "payload": [
 {...}, // context for batch item 1
 {...}, // context for batch item 2
 {...} // context for batch item 3
]
}

where each element of the payload list corresponds to a single batch item. The Lambda function
is also expected to return a list-shaped response, matching the order of the items sent in the
request, as follows:

[
 { "data": {...}, "errorMessage": null, "errorType": null }, // result for batch
 item 1
 { "data": {...}, "errorMessage": null, "errorType": null }, // result for batch
 item 2

Request mapping template 1076

AWS AppSync Developer Guide

 { "data": {...}, "errorMessage": null, "errorType": null } // result for batch
 item 3
]

operation is required.

Payload

The payload field is a container that you can use to pass any well-formed JSON to the Lambda
function.

If the operation field is set to BatchInvoke, AWS AppSync wraps the existing payload values
into a list.

payload is optional.

Response mapping template

As with other data sources, your Lambda function sends a response to AWS AppSync that must be
converted to a GraphQL type.

The result of the Lambda function is set on the context object that is available via the Velocity
Template Language (VTL) $context.result property.

If the shape of your Lambda function response exactly matches the shape of the GraphQL type,
you can forward the response using the following response mapping template:

$util.toJson($context.result)

There are no required fields or shape restrictions that apply to the response mapping template.
However, because GraphQL is strongly typed, the resolved mapping template must match the
expected GraphQL type.

Lambda function batched response

If the operation field is set to BatchInvoke, AWS AppSync expects a list of items back from the
Lambda function. In order for AWS AppSync to map each result back to the original request item,
the response list must match in size and order. It is OK to have null items in the response list;
$ctx.result is set to null accordingly.

Response mapping template 1077

AWS AppSync Developer Guide

Direct Lambda Resolvers

If you wish to circumvent the use of mapping templates entirely, AWS AppSync can provide a
default payload to your Lambda function and a default of a Lambda function's response to a
GraphQL type. You can choose to provide a request template, a response template, or neither, and
AWS AppSync handles it accordingly.

Direct Lambda request mapping template

When the request mapping template is not provided, AWS AppSync will send the Context
object directly to your Lambda function as an Invoke operation. For more information about the
structure of the Context object, see Resolver mapping template context reference.

Direct Lambda response mapping template

When the response mapping template is not provided, AWS AppSync does one of two things upon
receiving your Lambda function's response. If you did not provide a request mapping template, or if
you provided a request mapping template with the version "2018-05-29", then the response logic
functions equivalent to the following response mapping template:

#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type, $ctx.result)
 #end
 $util.toJson($ctx.result)

If you provided a template with the version "2017-02-28", the response logic functions
equivalently to the following response mapping template:

$util.toJson($ctx.result)

Superficially, the mapping template bypass operates similarly to using certain mapping templates,
as shown in the preceding examples. However, behind the scenes, the evaluation of the mapping
templates is circumvented entirely. Because the template evaluation step is bypassed, in some
scenarios applications might experience less overhead and latency during the response when
compared to a Lambda function with a response mapping template that needs to be evaluated.

Direct Lambda Resolvers 1078

AWS AppSync Developer Guide

Custom error handling in Direct Lambda Resolver responses

You can customize error responses from Lambda functions that Direct Lambda Resolvers invoke by
raising a custom exception. The following example demonstrates how to create a custom exception
using JavaScript:

class CustomException extends Error {
 constructor(message) {
 super(message);
 this.name = "CustomException";
 }
}

throw new CustomException("Custom message");

When exceptions are raised, the errorType and errorMessage are the name and message,
respectively, of the custom error that is thrown.

If errorType is UnauthorizedException, AWS AppSync returns the default message ("You
are not authorized to make this call.") instead of a custom message.

The following is an example GraphQL response that demonstrates a custom errorType.

{
 "data": {
 "query": null
 },
 "errors": [
 {
 "path": [
 "query"
],
 "data": null,
 "errorType": "CustomException",
 "errorInfo": null,
 "locations": [
 {
 "line": 5,
 "column": 10,
 "sourceName": null
 }
],
 "message": "Custom Message"

Direct Lambda Resolvers 1079

AWS AppSync Developer Guide

 }
]
}

Direct Lambda Resolvers: Batching enabled

You can enable batching for your Direct Lambda Resolver by configuring the maxBatchSize on
your resolver. When maxBatchSize is set to a value greater than 0 for a Direct Lambda resolver,
AWS AppSync sends requests in batches to your Lambda function in sizes up to maxBatchSize.

Setting maxBatchSize to 0 on a Direct Lambda resolver turns off batching.

For more information on how batching with Lambda resolvers works, see Advanced use case:
Batching.

Request mapping template

When batching is enabled and the request mapping template is not provided, AWS AppSync sends
a list of Context objects as a BatchInvoke operation directly to your Lambda function.

Response mapping template

When batching is enabled and the response mapping template is not provided, the response logic
is equivalent to the following response mapping template:

#if($context.result && $context.result.errorMessage)
 $utils.error($context.result.errorMessage, $context.result.errorType,
 $context.result.data)
#else
 $utils.toJson($context.result.data)
#end

The Lambda function must return a list of results in the same order as the list of Context objects
that were sent. You can return individual errors by providing an errorMessage and errorType
for a specific result. Each result in the list has the following format:

{
 "data" : { ... }, // your data
 "errorMessage" : { ... }, // optional, if included an error entry is added to the
 "errors" object in the AppSync response
 "errorType" : { ... } // optional, the error type
}

Direct Lambda Resolvers 1080

AWS AppSync Developer Guide

Note

Other fields in the result object are currently ignored.

Handling errors from Lambda

You can return an error for all results by throwing an exception or an error in your Lambda
function. If the payload request or response size for your batch request is too large, Lambda
returns an error. In that case, you should consider reducing your maxBatchSize or reducing the
size of the response payload.

For information on handling individual errors, see Returning individual errors.

Sample Lambda functions

Using the schema below, you can create a Direct Lambda Resolver for the Post.relatedPosts
field resolver and enable batching by setting maxBatchSize to greater than 0:

schema {
 query: Query
 mutation: Mutation
}

type Query {
 getPost(id:ID!): Post
 allPosts: [Post]
}

type Mutation {
 addPost(id: ID!, author: String!, title: String, content: String, url: String):
 Post!
}

type Post {
 id: ID!
 author: String!
 title: String
 content: String
 url: String
 ups: Int
 downs: Int
 relatedPosts: [Post]

Direct Lambda Resolvers 1081

AWS AppSync Developer Guide

}

In the following query, the Lambda function will be called with batches of requests to resolve
relatedPosts:

query getAllPosts {
 allPosts {
 id
 relatedPosts {
 id
 }
 }
}

A simple implementation of a Lambda function is provided below:

const posts = {
 1: {
 id: '1',
 title: 'First book',
 author: 'Author1',
 url: 'https://amazon.com/',
 content:
 'SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT
 AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1',
 ups: '100',
 downs: '10',
 },
 2: {
 id: '2',
 title: 'Second book',
 author: 'Author2',
 url: 'https://amazon.com',
 content: 'SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT',
 ups: '100',
 downs: '10',
 },
 3: { id: '3', title: 'Third book', author: 'Author3', url: null, content: null, ups:
 null, downs: null },
 4: {
 id: '4',
 title: 'Fourth book',
 author: 'Author4',

Direct Lambda Resolvers 1082

AWS AppSync Developer Guide

 url: 'https://www.amazon.com/',
 content:
 'SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT
 AUTHOR 4',
 ups: '1000',
 downs: '0',
 },
 5: {
 id: '5',
 title: 'Fifth book',
 author: 'Author5',
 url: 'https://www.amazon.com/',
 content: 'SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE
 TEXT AUTHOR 5 SAMPLE TEXT',
 ups: '50',
 downs: '0',
 },
}

const relatedPosts = {
 1: [posts['4']],
 2: [posts['3'], posts['5']],
 3: [posts['2'], posts['1']],
 4: [posts['2'], posts['1']],
 5: [],
}
exports.handler = async (event) => {
 console.log('event ->', event)
 // retrieve the ID of each post
 const ids = event.map((context) => context.source.id)
 // fetch the related posts for each post id
 const related = ids.map((id) => relatedPosts[id])

 // return the related posts; or an error if none were found
 return related.map((r) => {
 if (r.length > 0) {
 return { data: r }
 } else {
 return { data: null, errorMessage: 'Not found', errorType: 'ERROR' }
 }
 })
}

Direct Lambda Resolvers 1083

AWS AppSync Developer Guide

Resolver mapping template reference for EventBridge

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The AWS AppSync resolver mapping template used with the EventBridge data source allows you to
send custom events to the Amazon EventBridge bus.

Request mapping template

The PutEvents request mapping template allows you to send multiple custom events to an
EventBridge event bus. The mapping document has the following structure:

{
 "version" : "2018-05-29",
 "operation" : "PutEvents",
 "events" : [{}]
}

The following is an example of a request mapping template for EventBridge:

{
 "version": "2018-05-29",
 "operation": "PutEvents",
 "events": [{
 "source": "com.mycompany.myapp",
 "detail": {
 "key1" : "value1",
 "key2" : "value2"
 },
 "detailType": "myDetailType1"
 },
 {
 "source": "com.mycompany.myapp",
 "detail": {
 "key3" : "value3",
 "key4" : "value4"

Resolver mapping template reference for EventBridge 1084

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

 },
 "detailType": "myDetailType2",
 "resources" : ["Resource1", "Resource2"],
 "time" : "2023-01-01T00:30:00.000Z"
 }

]
}

Response mapping template

If the PutEvents operation is successful, the response from EventBridge is included in the
$ctx.result:

#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type, $ctx.result)
#end
 $util.toJson($ctx.result)

Errors that occur while performing PutEvents operations such as InternalExceptions
or Timeouts will appear in $ctx.error. For a list of EventBridge's common errors, see the
EventBridge common error reference.

The result will be in the following format:

{
 "Entries" [
 {
 "ErrorCode" : String,
 "ErrorMessage" : String,
 "EventId" : String
 }
],
 "FailedEntry" : number
}

• Entries

The ingested event results, both successful and unsuccessful. If the ingestion was successful,
the entry has the EventID in it. Otherwise, you can use the ErrorCode and ErrorMessage to
identify the problem with the entry.

Response mapping template 1085

https://docs.aws.amazon.com/eventbridge/latest/APIReference/CommonErrors.html

AWS AppSync Developer Guide

For each record, the index of the response element is the same as the index in the request array.

• FailedEntryCount

The number of failed entries. This value is represented as an integer.

For more information about the response of PutEvents, see PutEvents.

Example sample response 1

The following example is a PutEvents operation with two successful events:

{
 "Entries" : [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 }
],
 "FailedEntryCount" : 0
}

Example sample response 2

The following example is a PutEvents operation with three events, two successes and one fail:

{
 "Entries" : [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 },
 {
 "ErrorCode" : "SampleErrorCode",
 "ErrorMessage" : "Sample Error Message"
 }
],
 "FailedEntryCount" : 1

Response mapping template 1086

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html#API_PutEvents_ResponseElements

AWS AppSync Developer Guide

}

PutEvents field

• Version

Common to all request mapping templates, the version field defines the version that the
template uses. This field is required. The value 2018-05-29 is the only version supported for the
EventBridge mapping templates.

• Operation

The only supported operation is PutEvents. This operation allows you to add custom events to
your event bus.

• Events

An array of events that will be added to the event bus. This array should have an allocation of 1 -
10 items.

The Event object is a valid JSON object that has the following fields:

• "source": A string that defines the source of the event.

• "detail": A JSON object that you can use to attach information about the event. This field
can be an empty map ({ }).

• "detailType: A string that identifies the type of event.

• "resources": A JSON array of strings that identifies resources involved in the event. This
field can be an empty array.

• "time": The event timestamp provided as a string. This should follow the RFC3339 timestamp
format.

The snippets below are some examples of valid Event objects:

Example 1

{
 "source" : "source1",
 "detail" : {
 "key1" : [1,2,3,4],
 "key2" : "strval"
 },

PutEvents field 1087

https://www.rfc-editor.org/rfc/rfc3339.txt

AWS AppSync Developer Guide

 "detailType" : "sampleDetailType",
 "resources" : ["Resouce1", "Resource2"],
 "time" : "2022-01-10T05:00:10Z"
}

Example 2

{
 "source" : "source1",
 "detail" : {},
 "detailType" : "sampleDetailType"
}

Example 3

{
 "source" : "source1",
 "detail" : {
 "key1" : 1200
 },
 "detailType" : "sampleDetailType",
 "resources" : []
}

Resolver mapping template reference for None data source

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The AWS AppSync resolver mapping template used with the data source of type None, enables you
to shape requests for AWS AppSync local operations.

Request mapping template

The mapping template is simple and enables you to pass as much context information as possible
via the payload field.

Resolver mapping template reference for None data source 1088

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

{
 "version": string,
 "payload": any type
}

Here is the JSON schema representation of the request mapping template, once resolved:

{
 "definitions": {},
 "$schema": "https://json-schema.org/draft-06/schema#",
 "$id": "https://aws.amazon.com/appsync/request-mapping-template.json",
 "type": "object",
 "properties": {
 "version": {
 "$id": "/properties/version",
 "type": "string",
 "enum": [
 "2018-05-29"
],
 "title": "The Mapping template version.",
 "default": "2018-05-29"
 },
 "payload": {}
 },
 "required": [
 "version"
],
 "additionalProperties": false
}

Here is an example where the field arguments are passed via the VTL context property
$context.arguments:

{
 "version": "2018-05-29",
 "payload": $util.toJson($context.arguments)
}

The value of the payload field will be forwarded to the response mapping template and available
on the VTL context property ($context.result).

This is an example representing the interpolated value of the payload field:

Request mapping template 1089

AWS AppSync Developer Guide

{
 "id": "postId1"
}

Version

Common to all request mapping templates, the version field defines the version used by the
template.

The version field is required.

Example:

"version": "2018-05-29"

Payload

The payload field is a container that can be used to pass any well-formed JSON to the response
mapping template.

The payload field is optional.

Response mapping template

Because there is no data source, the value of the payload field will be forwarded to the response
mapping template and set on the context object that is available via the VTL $context.result
property.

If the shape of the payload field value exactly matches the shape of the GraphQL type, you can
forward the response using the following response mapping template:

$util.toJson($context.result)

There are no required fields or shape restrictions that apply to the response mapping template.
However, because GraphQL is strongly typed, the resolved mapping template must match the
expected GraphQL type.

Version 1090

AWS AppSync Developer Guide

Resolver Mapping Template Reference for HTTP

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

The AWS AppSync HTTP resolver mapping templates enable you to send requests from AWS
AppSync to any HTTP endpoint, and responses from your HTTP endpoint back to AWS AppSync.
By using mapping templates, you can provide hints to AWS AppSync about the nature of the
operation to be invoked. This section describes the different mapping templates for the supported
HTTP resolver.

Request Mapping Template

{
 "version": "2018-05-29",
 "method": "PUT|POST|GET|DELETE|PATCH",
 "params": {
 "query": Map,
 "headers": Map,
 "body": string
 },
 "resourcePath": string
}

After the HTTP request mapping template is resolved, the JSON schema representation of the
request mapping template looks like the following:

{
 "$id": "https://aws.amazon.com/appsync/request-mapping-template.json",
 "type": "object",
 "properties": {
 "version": {
 "$id": "/properties/version",
 "type": "string",
 "title": "The Version Schema ",
 "default": "",
 "examples": [

Resolver Mapping Template Reference for HTTP 1091

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

 "2018-05-29"
],
 "enum": [
 "2018-05-29"
]
 },
 "method": {
 "$id": "/properties/method",
 "type": "string",
 "title": "The Method Schema ",
 "default": "",
 "examples": [
 "PUT|POST|GET|DELETE|PATCH"
],
 "enum": [
 "PUT",
 "PATCH",
 "POST",
 "DELETE",
 "GET"
]
 },
 "params": {
 "$id": "/properties/params",
 "type": "object",
 "properties": {
 "query": {
 "$id": "/properties/params/properties/query",
 "type": "object"
 },
 "headers": {
 "$id": "/properties/params/properties/headers",
 "type": "object"
 },
 "body": {
 "$id": "/properties/params/properties/body",
 "type": "string",
 "title": "The Body Schema ",
 "default": "",
 "examples": [
 ""
]
 }
 }

Request Mapping Template 1092

AWS AppSync Developer Guide

 },
 "resourcePath": {
 "$id": "/properties/resourcePath",
 "type": "string",
 "title": "The Resourcepath Schema ",
 "default": "",
 "examples": [
 ""
]
 }
 },
 "required": [
 "version",
 "method",
 "resourcePath"
]
}

Following is an example of an HTTP POST request, with a text/plain body:

{
 "version": "2018-05-29",
 "method": "POST",
 "params": {
 "headers":{
 "Content-Type":"text/plain"
 },
 "body":"this is an example of text body"
 },
 "resourcePath": "/"
}

Version

Request mapping template only

Defines the version that the template uses. version is common to all request mapping templates
and is required.

"version": "2018-05-29"

Version 1093

AWS AppSync Developer Guide

Method

Request mapping template only

HTTP method or verb (GET, POST, PUT, PATCH, or DELETE) that AWS AppSync sends to the HTTP
endpoint.

"method": "PUT"

ResourcePath

Request mapping template only

The resource path that you want to access. Along with the endpoint in the HTTP data source, the
resource path forms the URL that the AWS AppSync service makes a request to.

"resourcePath": "/v1/users"

When the mapping template is evaluated, this path is sent as part of the HTTP request, including
the HTTP endpoint. For example, the previous example might translate to the following:

PUT <endpoint>/v1/users

Params Field

Request mapping template only

Used to specify what action your search performs, most commonly by setting the query value
inside the body. However, there are several other capabilities that can be configured, such as the
formatting of responses.

headers

The header information, as key-value pairs. Both the key and the value must be strings.

For example:

"headers" : {

Method 1094

AWS AppSync Developer Guide

 "Content-Type" : "application/json"
}

Currently supported Content-Type headers are:

text/*
application/xml
application/json
application/soap+xml
application/x-amz-json-1.0
application/x-amz-json-1.1
application/vnd.api+json
application/x-ndjson

Note: You can’t set the following HTTP headers:

HOST
CONNECTION
USER-AGENT
EXPECTATION
TRANSFER_ENCODING
CONTENT_LENGTH

query

Key-value pairs that specify common options, such as code formatting for JSON responses.
Both the key and the value must be a string. The following example shows how you can send a
query string as ?type=json:

"query" : {
 "type" : "json"
}

body

The body contains the HTTP request body that you choose to set. The request body is always a
UTF-8 encoded string unless the content type specifies the charset.

"body":"body string"

Params Field 1095

AWS AppSync Developer Guide

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS
Endpoints

Note

Let's Encrypt is accepted via the identrust and isrgrootx1 certificates. No action on your part
is required if you use Let's Encrypt.

At this time, self-signed certificates are not supported by HTTP resolvers when using HTTPS. AWS
AppSync recognizes the following Certificate Authorities when resolving SSL/TLS certificates for
HTTPS:

Known root certificates in AWS AppSync

Name Date SHA1 Fingerprint

digicertassuredidr
ootca

Apr 21,
2018

05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:
4B:DF:B5:A8:99:B2:4D:43

trustcenterclass2c
aii

Apr 21,
2018

AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:
FE:68:5D:79:42:21:15:6E

thawtepremiumserve
rca

Apr 21,
2018

E0:AB:05:94:20:72:54:93:05:60:62:02:
36:70:F7:CD:2E:FC:66:66

cia-crt-g3-02-ca Nov 23,
2016

96:4A:BB:A7:BD:DA:FC:97:34:C0:0A:2D:
F0:05:98:F7:E6:C6:6F:09

swisssignplatinumg
2ca

Apr 21,
2018

56:E0:FA:C0:3B:8F:18:23:55:18:E5:D3:
11:CA:E8:C2:43:31:AB:66

swisssignsilverg2c
a

Apr 21,
2018

9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:
93:DF:A7:F0:40:D1:1D:CB

thawteserverca Apr 21,
2018

9F:AD:91:A6:CE:6A:C6:C5:00:47:C4:4E:
C9:D4:A5:0D:92:D8:49:79

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1096

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

equifaxsecureebusi
nessca1

Apr 21,
2018

AE:E6:3D:70:E3:76:FB:C7:3A:EB:B0:A1:
C1:D4:C4:7A:A7:40:B3:F4

securetrustca Apr 21,
2018

87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:
59:3E:7D:44:D9:34:FF:11

utnuserfirstclient
authemailca

Apr 21,
2018

B1:72:B1:A5:6D:95:F9:1F:E5:02:87:E1:
4D:37:EA:6A:44:63:76:8A

thawtepersonalfree
mailca

Apr 21,
2018

E6:18:83:AE:84:CA:C1:C1:CD:52:AD:E8:
E9:25:2B:45:A6:4F:B7:E2

affirmtrustnetwork
ingca

Apr 21,
2018

29:36:21:02:8B:20:ED:02:F5:66:C5:32:
D1:D6:ED:90:9F:45:00:2F

entrustevca Apr 21,
2018

B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:
D4:4D:F5:D4:67:49:52:F9

utnuserfirsthardwa
reca

Apr 21,
2018

04:83:ED:33:99:AC:36:08:05:87:22:ED:
BC:5E:46:00:E3:BE:F9:D7

certumca Apr 21,
2018

62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:
34:8E:06:42:51:B1:81:18

addtrustclass1ca Apr 21,
2018

CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:
9F:CD:12:EB:24:E3:94:9D

entrustrootcag2 Apr 21,
2018

8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:
1E:57:EF:BB:93:22:72:D4

equifaxsecureca Apr 21,
2018

D2:32:09:AD:23:D3:14:23:21:74:E4:0D:
7F:9D:62:13:97:86:63:3A

quovadisrootca3 Apr 21,
2018

1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:
BE:FD:3A:2D:82:75:51:85

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1097

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

quovadisrootca2 Apr 21,
2018

CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:
88:80:48:39:19:93:7C:F7

digicertglobalroot
g2

Apr 21,
2018

DF:3C:24:F9:BF:D6:66:76:1B:26:80:73:
FE:06:D1:CC:8D:4F:82:A4

digicerthighassura
nceevrootca

Apr 21,
2018

5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:
E6:D3:8F:1A:61:C7:DC:25

secomvalicertclass
1ca

Apr 21,
2018

E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:
8C:E8:6A:81:10:9F:E4:8E

equifaxsecuregloba
lebusinessca1

Apr 21,
2018

3A:74:CB:7A:47:DB:70:DE:89:1F:24:35:
98:64:B8:2D:82:BD:1A:36

geotrustuniversalc
a

Apr 21,
2018

E6:21:F3:35:43:79:05:9A:4B:68:30:9D:
8A:2F:74:22:15:87:EC:79

deprecateditsecca Jan 27,
2012

12:12:0B:03:0E:15:14:54:F4:DD:B3:F5:
DE:13:6E:83:5A:29:72:9D

verisignclass3ca Apr 21,
2018

A1:DB:63:93:91:6F:17:E4:18:55:09:40:
04:15:C7:02:40:B0:AE:6B

thawteprimaryrootc
ag3

Apr 21,
2018

F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:
5B:17:15:89:CA:F3:6B:F2

thawteprimaryrootc
ag2

Apr 21,
2018

AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:
DD:F4:1D:DB:08:9E:F0:12

deutschetelekomroo
tca2

Apr 21,
2018

85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:
D6:13:30:FD:8C:DE:37:BF

buypassclass3ca Apr 21,
2018

DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:
C7:C2:81:A5:BC:A9:64:57

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1098

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

utnuserfirstobject
ca

Apr 21,
2018

E1:2D:FB:4B:41:D7:D9:C3:2B:30:51:4B:
AC:1D:81:D8:38:5E:2D:46

geotrustprimaryca Apr 21,
2018

32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:
10:0D:D6:02:90:37:F0:96

buypassclass2ca Apr 21,
2018

49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:
C7:6B:EB:C6:0B:12:40:99

baltimorecodesigni
ngca

Apr 21,
2018

30:46:D8:C8:88:FF:69:30:C3:4A:FC:CD:
49:27:08:7C:60:56:7B:0D

verisignclass1ca Apr 21,
2018

CE:6A:64:A3:09:E4:2F:BB:D9:85:1C:45:
3E:64:09:EA:E8:7D:60:F1

baltimorecybertrus
tca

Apr 21,
2018

D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:
2C:78:DB:28:52:CA:E4:74

starfieldclass2ca Apr 21,
2018

AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:
14:C3:D0:E3:37:0E:B5:8A

camerfirmachambers
commerceca

Apr 21,
2018

6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:
DB:72:2E:31:30:61:F0:B1

ttelesecglobalroot
class3ca

Apr 21,
2018

55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:
19:9D:2A:BE:11:E3:81:D1

verisignclass3g5ca Apr 21,
2018

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

ttelesecglobalroot
class2ca

Apr 21,
2018

59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:
32:17:65:CF:17:D8:94:E9

trustcenterunivers
alcai

Apr 21,
2018

6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:
CE:BB:9D:D9:4F:4E:39:F3

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1099

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

verisignclass3g4ca Apr 21,
2018

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

verisignclass3g3ca Apr 21,
2018

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

xrampglobalca Apr 21,
2018

B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:
54:F3:4C:52:B7:E5:58:C6

amzninternalrootca Dec 12,
2008

A7:B7:F6:15:8A:FF:1E:C8:85:13:38:BC:
93:EB:A2:AB:A4:09:EF:06

certplusclass3ppri
maryca

Apr 21,
2018

21:6B:2A:29:E6:2A:00:CE:82:01:46:D8:
24:41:41:B9:25:11:B2:79

certumtrustednetwo
rkca

Apr 21,
2018

07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:
A2:59:3A:19:A7:0F:06:9E

verisignclass3g2ca Apr 21,
2018

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:
1B:DE:3A:09:E8:F8:77:0F

globalsignr3ca Apr 21,
2018

D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:
09:26:DF:5B:85:69:76:AD

utndatacorpsgcca Apr 21,
2018

58:11:9F:0E:12:82:87:EA:50:FD:D9:87:
45:6F:4F:78:DC:FA:D6:D4

secomscrootca2 Apr 21,
2018

5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:
19:19:C3:73:34:B9:C7:74

gtecybertrustgloba
lca

Apr 21,
2018

97:81:79:50:D8:1C:96:70:CC:34:D8:09:
CF:79:44:31:36:7E:F4:74

secomscrootca1 Apr 21,
2018

36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:
0F:C6:56:8F:5D:AC:B2:F7

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1100

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

affirmtrustcommerc
ialca

Apr 21,
2018

F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:
DC:E9:6E:2C:C7:B2:78:B7

trustcenterclass4c
aii

Apr 21,
2018

A6:9A:91:FD:05:7F:13:6A:42:63:0B:B1:
76:0D:2D:51:12:0C:16:50

verisignuniversalr
ootca

Apr 21,
2018

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

globalsignr2ca Apr 21,
2018

75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:
DD:DE:38:E4:B7:24:2E:FE

certplusclass2prim
aryca

Apr 21,
2018

74:20:74:41:72:9C:DD:92:EC:79:31:D8:
23:10:8D:C2:81:92:E2:BB

digicertglobalroot
ca

Apr 21,
2018

A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:
40:C6:DD:2F:B1:9C:54:36

globalsignca Apr 21,
2018

B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:
F2:15:01:52:A4:1D:82:9C

thawteprimaryrootc
a

Apr 21,
2018

91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:
99:29:5C:75:6C:81:7B:81

starfieldrootg2ca Apr 21,
2018

B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:
92:F4:FE:39:D4:E7:0F:0E

geotrustglobalca Apr 21,
2018

DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:
A3:49:A7:F9:96:2A:82:12

soneraclass2ca Apr 21,
2018

37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:
B7:41:10:B4:F2:E4:9A:27

verisigntsaca Apr 21,
2018

20:CE:B1:F0:F5:1C:0E:19:A9:F3:8D:B1:
AA:8E:03:8C:AA:7A:C7:01

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1101

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

soneraclass1ca Apr 21,
2018

07:47:22:01:99:CE:74:B9:7C:B0:3D:79:
B2:64:A2:C8:55:E9:33:FF

quovadisrootca Apr 21,
2018

DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:
BC:07:62:01:00:89:76:C9

affirmtrustpremium
eccca

Apr 21,
2018

B8:23:6B:00:2F:1D:16:86:53:01:55:6C:
11:A4:37:CA:EB:FF:C3:BB

starfieldservicesr
ootg2ca

Apr 21,
2018

92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:
FF:22:D8:63:E8:25:6F:3F

valicertclass2ca Apr 21,
2018

31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:
4B:57:E8:B7:D8:F1:FC:A6

comodoaaaca Apr 21,
2018

D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:
F1:F1:60:17:64:D8:E3:49

aolrootca2 Apr 21,
2018

85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:
22:00:46:13:DB:17:92:84

keynectisrootca Apr 21,
2018

9C:61:5C:4D:4D:85:10:3A:53:26:C2:4D:
BA:EA:E4:A2:D2:D5:CC:97

addtrustqualifiedc
a

Apr 21,
2018

4D:23:78:EC:91:95:39:B5:00:7F:75:8F:
03:3B:21:1E:C5:4D:8B:CF

aolrootca1 Apr 21,
2018

39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:
F0:7D:21:D8:05:0B:56:6A

verisignclass2g3ca Apr 21,
2018

61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:
C3:59:12:AF:9F:EB:63:11

addtrustexternalca Apr 21,
2018

02:FA:F3:E2:91:43:54:68:60:78:57:69:
4D:F5:E4:5B:68:85:18:68

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1102

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

verisignclass2g2ca Apr 21,
2018

B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:
B6:CC:A0:08:1B:67:EC:9D

geotrustprimarycag
3

Apr 21,
2018

03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:
20:D2:D9:32:3A:4C:2A:FD

geotrustprimarycag
2

Apr 21,
2018

8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:
8B:51:9A:99:E6:10:D7:B0

swisssigngoldg2ca Apr 21,
2018

D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:
45:25:3A:6F:9F:1A:27:61

entrust2048ca Apr 21,
2018

50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:
E7:92:7D:7D:65:2D:34:31

chunghwaepkirootca Apr 21,
2018

67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:
56:4B:CF:E2:3D:69:C6:F0

camerfirmachambers
ignca

Apr 21,
2018

4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:
A1:2C:5B:29:F6:D6:AA:0C

camerfirmachambers
ca

Apr 21,
2018

78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:
BA:9E:A8:7E:FE:9A:CE:3C

godaddyclass2ca Apr 21,
2018

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

affirmtrustpremium
ca

Apr 21,
2018

D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:
7D:6A:06:65:26:32:28:27

verisignclass1g3ca Apr 21,
2018

20:42:85:DC:F7:EB:76:41:95:57:8E:13:
6B:D4:B7:D1:E9:8E:46:A5

secomevrootca1 Apr 21,
2018

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:
90:8F:FD:28:86:65:64:7D

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1103

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

verisignclass1g2ca Apr 21,
2018

27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:
56:16:7F:62:F5:32:E5:47

amzninternalinfose
ccag3

Feb 27,
2015

B9:B1:CA:38:F7:BF:9C:D2:D4:95:E7:B6:
5E:75:32:9B:A8:78:2E:F6

cia-crt-g3-01-ca Nov 23,
2016

2B:EE:2C:BA:A3:1D:B5:FE:60:40:41:95:
08:ED:46:82:39:4D:ED:E2

godaddyrootg2ca Apr 21,
2018

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

digicertassuredidr
ootca

Apr 21,
2018

05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:
4B:DF:B5:A8:99:B2:4D:43

microseceszignoroo
tca2009

Apr 21,
2018

89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:
7D:54:DA:91:E1:01:31:8E

affirmtrustcommerc
ial

Apr 21,
2018

F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:
DC:E9:6E:2C:C7:B2:78:B7

comodoecccertifica
tionauthority

Apr 21,
2018

9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:
B6:56:3B:8E:2D:93:C3:11

cadisigrootr2 Apr 21,
2018

B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:
A5:57:47:C2:34:C7:D9:71

swisssignsilvercag
2

Apr 21,
2018

9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:
93:DF:A7:F0:40:D1:1D:CB

securetrustca Apr 21,
2018

87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:
59:3E:7D:44:D9:34:FF:11

cadisigrootr1 Apr 21,
2018

8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:
EC:2B:47:56:51:1A:52:C6

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1104

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

accvraiz1 Apr 21,
2018

93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:
16:52:28:78:BC:53:64:17

entrustrootcertifi
cationauthority

Apr 21,
2018

B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:
D4:4D:F5:D4:67:49:52:F9

camerfirmaglobalch
ambersignroot

Apr 21,
2018

33:9B:6B:14:50:24:9B:55:7A:01:87:72:
84:D9:E0:2F:C3:D2:D8:E9

dstacescax6 Apr 21,
2018

40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:
CD:DB:79:D1:53:FB:90:1D

identrustpublicsec
torrootca1

Apr 21,
2018

BA:29:41:60:77:98:3F:F4:F3:EF:F2:31:
05:3B:2E:EA:6D:4D:45:FD

starfieldrootcerti
ficateauthorityg2

Apr 21,
2018

B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:
92:F4:FE:39:D4:E7:0F:0E

secureglobalca Apr 21,
2018

3A:44:73:5A:E5:81:90:1F:24:86:61:46:
1E:3B:9C:C4:5F:F5:3A:1B

eecertificationcen
trerootca

Apr 21,
2018

C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:
25:EB:AF:C3:7B:27:CC:D7

opentrustrootcag3 Apr 21,
2018

6E:26:64:F3:56:BF:34:55:BF:D1:93:3F:
7C:01:DE:D8:13:DA:8A:A6

teliasonerarootcav
1

Apr 21,
2018

43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:
F6:CF:F6:34:69:87:82:37

autoridaddecertifi
cacionfir
maprofesi
onalcifa62634068

Apr 21,
2018

AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:
5A:9A:E8:00:B7:F7:B6:FA

opentrustrootcag2 Apr 21,
2018

79:5F:88:60:C5:AB:7C:3D:92:E6:CB:F4:
8D:E1:45:CD:11:EF:60:0B

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1105

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

opentrustrootcag1 Apr 21,
2018

79:91:E8:34:F7:E2:EE:DD:08:95:01:52:
E9:55:2D:14:E9:58:D5:7E

globalsigneccrootc
ar5

Apr 21,
2018

1F:24:C6:30:CD:A4:18:EF:20:69:FF:AD:
4F:DD:5F:46:3A:1B:69:AA

globalsigneccrootc
ar4

Apr 21,
2018

69:69:56:2E:40:80:F4:24:A1:E7:19:9F:
14:BA:F3:EE:58:AB:6A:BB

izenpecom Apr 21,
2018

2F:78:3D:25:52:18:A7:4A:65:39:71:B5:
2C:A2:9C:45:15:6F:E9:19

turktrustelektroni
ksertifik
ahizmetsa
glayicisih5

Apr 21,
2018

C4:18:F6:4D:46:D1:DF:00:3D:27:30:13:
72:43:A9:12:11:C6:75:FB

gdcatrustauthr5roo
t

Apr 21,
2018

0F:36:38:5B:81:1A:25:C3:9B:31:4E:83:
CA:E9:34:66:70:CC:74:B4

dtrustrootclass3ca
22009

Apr 21,
2018

58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:
6D:29:D3:FF:8D:5F:00:F0

quovadisrootca3 Apr 21,
2018

1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:
BE:FD:3A:2D:82:75:51:85

quovadisrootca2 Apr 21,
2018

CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:
88:80:48:39:19:93:7C:F7

geotrustprimarycer
tificatio
nauthorityg3

Apr 21,
2018

03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:
20:D2:D9:32:3A:4C:2A:FD

geotrustprimarycer
tificatio
nauthorityg2

Apr 21,
2018

8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:
8B:51:9A:99:E6:10:D7:B0

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1106

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

oistewisekeyglobal
rootgbca

Apr 21,
2018

0F:F9:40:76:18:D3:D7:6A:4B:98:F0:A8:
35:9E:0C:FD:27:AC:CC:ED

addtrustexternalro
ot

Apr 21,
2018

02:FA:F3:E2:91:43:54:68:60:78:57:69:
4D:F5:E4:5B:68:85:18:68

chambersofcommerce
root2008

Apr 21,
2018

78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:
BA:9E:A8:7E:FE:9A:CE:3C

digicertglobalroot
g3

Apr 21,
2018

7E:04:DE:89:6A:3E:66:6D:00:E6:87:D3:
3F:FA:D9:3B:E8:3D:34:9E

comodoaaaservicesr
oot

Apr 21,
2018

D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:
F1:F1:60:17:64:D8:E3:49

digicertglobalroot
g2

Apr 21,
2018

DF:3C:24:F9:BF:D6:66:76:1B:26:80:73:
FE:06:D1:CC:8D:4F:82:A4

certinomisrootca Apr 21,
2018

9D:70:BB:01:A5:A4:A0:18:11:2E:F7:1C:
01:B9:32:C5:34:E7:88:A8

oistewisekeyglobal
rootgaca

Apr 21,
2018

59:22:A1:E1:5A:EA:16:35:21:F8:98:39:
6A:46:46:B0:44:1B:0F:A9

dstrootcax3 Apr 21,
2018

DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:
73:26:38:CA:6A:D7:7C:13

certigna Apr 21,
2018

B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:
37:58:2D:C4:AC:FD:94:97

digicerthighassura
nceevrootca

Apr 21,
2018

5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:
E6:D3:8F:1A:61:C7:DC:25

soneraclass2rootca Apr 21,
2018

37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:
B7:41:10:B4:F2:E4:9A:27

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1107

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

trustcorrootcertca
2

Apr 21,
2018

B8:BE:6D:CB:56:F1:55:B9:63:D4:12:CA:
4E:06:34:C7:94:B2:1C:C0

usertrustrsacertif
icationauthority

Apr 21,
2018

2B:8F:1B:57:33:0D:BB:A2:D0:7A:6C:51:
F7:0E:E9:0D:DA:B9:AD:8E

trustcorrootcertca
1

Apr 21,
2018

FF:BD:CD:E7:82:C8:43:5E:3C:6F:26:86:
5C:CA:A8:3A:45:5B:C3:0A

geotrustuniversalc
a

Apr 21,
2018

E6:21:F3:35:43:79:05:9A:4B:68:30:9D:
8A:2F:74:22:15:87:EC:79

certsignrootca Apr 21,
2018

FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:
BF:03:FD:E8:7C:4B:2F:9B

amazonrootca4 Apr 21,
2018

F6:10:84:07:D6:F8:BB:67:98:0C:C2:E2:
44:C2:EB:AE:1C:EF:63:BE

amazonrootca3 Apr 21,
2018

0D:44:DD:8C:3C:8C:1A:1A:58:75:64:81:
E9:0F:2E:2A:FF:B3:D2:6E

amazonrootca2 Apr 21,
2018

5A:8C:EF:45:D7:A6:98:59:76:7A:8C:8B:
44:96:B5:78:CF:47:4B:1A

verisignuniversalr
ootcertif
icationauthority

Apr 21,
2018

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

amazonrootca1 Apr 21,
2018

8D:A7:F9:65:EC:5E:FC:37:91:0F:1C:6E:
59:FD:C1:CC:6A:6E:DE:16

networksolutionsce
rtificate
authority

Apr 21,
2018

74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:
3C:21:64:60:20:E5:DF:CE

thawteprimaryrootc
ag3

Apr 21,
2018

F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:
5B:17:15:89:CA:F3:6B:F2

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1108

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

affirmtrustnetwork
ing

Apr 21,
2018

29:36:21:02:8B:20:ED:02:F5:66:C5:32:
D1:D6:ED:90:9F:45:00:2F

thawteprimaryrootc
ag2

Apr 21,
2018

AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:
DD:F4:1D:DB:08:9E:F0:12

trustcoreca1 Apr 21,
2018

58:D1:DF:95:95:67:6B:63:C0:F0:5B:1C:
17:4D:8B:84:0B:C8:78:BD

deutschetelekomroo
tca2

Apr 21,
2018

85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:
D6:13:30:FD:8C:DE:37:BF

godaddyrootcertifi
cateauthorityg2

Apr 21,
2018

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

entrustrootcertifi
cationaut
horityec1

Apr 21,
2018

20:D8:06:40:DF:9B:25:F5:12:25:3A:11:
EA:F7:59:8A:EB:14:B5:47

szafirrootca2 Apr 21,
2018

E2:52:FA:95:3F:ED:DB:24:60:BD:6E:28:
F3:9C:CC:CF:5E:B3:3F:DE

tubitakkamusmsslko
ksertifik
asisurum1

Apr 21,
2018

31:43:64:9B:EC:CE:27:EC:ED:3A:3F:0B:
8F:0D:E4:E8:91:DD:EE:CA

buypassclass3rootc
a

Apr 21,
2018

DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:
C7:C2:81:A5:BC:A9:64:57

comodorsacertifica
tionauthority

Apr 21,
2018

AF:E5:D2:44:A8:D1:19:42:30:FF:47:9F:
E2:F8:97:BB:CD:7A:8C:B4

netlockaranyclassg
oldfotanusitvany

Apr 21,
2018

06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:
A9:03:D0:06:B7:97:09:91

securitycommunicat
ionrootca2

Apr 21,
2018

5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:
19:19:C3:73:34:B9:C7:74

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1109

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

dtrustrootclass3ca
2ev2009

Apr 21,
2018

96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:
22:79:FE:60:FA:B9:16:83

starfieldclass2ca Apr 21,
2018

AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:
14:C3:D0:E3:37:0E:B5:8A

pscprocert Apr 21,
2018

70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:
D7:01:9F:99:B0:3D:50:74

actalisauthenticat
ionrootca

Apr 21,
2018

F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:
CE:19:2B:DD:C7:8E:9C:AC

staatdernederlande
nrootcag3

Apr 21,
2018

D8:EB:6B:41:51:92:59:E0:F3:E7:85:00:
C0:3D:B6:88:97:C9:EE:FC

cfcaevroot Apr 21,
2018

E2:B8:29:4B:55:84:AB:6B:58:C2:90:46:
6C:AC:3F:B8:39:8F:84:83

digicerttrustedroo
tg4

Apr 21,
2018

DD:FB:16:CD:49:31:C9:73:A2:03:7D:3F:
C8:3A:4D:7D:77:5D:05:E4

staatdernederlande
nrootcag2

Apr 21,
2018

59:AF:82:79:91:86:C7:B4:75:07:CB:CF:
03:57:46:EB:04:DD:B7:16

securitycommunicat
ionevrootca1

Apr 21,
2018

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:
90:8F:FD:28:86:65:64:7D

globalsignrootcar3 Apr 21,
2018

D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:
09:26:DF:5B:85:69:76:AD

globalsignrootcar2 Apr 21,
2018

75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:
DD:DE:38:E4:B7:24:2E:FE

certumtrustednetwo
rkca2

Apr 21,
2018

D3:DD:48:3E:2B:BF:4C:05:E8:AF:10:F5:
FA:76:26:CF:D3:DC:30:92

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1110

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

acraizfnmtrcm Apr 21,
2018

EC:50:35:07:B2:15:C4:95:62:19:E2:A8:
9A:5B:42:99:2C:4C:2C:20

hellenicacademican
dresearch
instituti
onseccrootca2015

Apr 21,
2018

9F:F1:71:8D:92:D5:9A:F3:7D:74:97:B4:
BC:6F:84:68:0B:BA:B6:66

certplusrootcag2 Apr 21,
2018

4F:65:8E:1F:E9:06:D8:28:02:E9:54:47:
41:C9:54:25:5D:69:CC:1A

twcarootcertificat
ionauthority

Apr 21,
2018

CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:
A3:7A:A0:76:A9:06:23:48

twcaglobalrootca Apr 21,
2018

9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:
52:55:60:13:F5:AD:AF:65

certplusrootcag1 Apr 21,
2018

22:FD:D0:B7:FD:A2:4E:0D:AC:49:2C:A0:
AC:A6:7B:6A:1F:E3:F7:66

geotrustuniversalc
a2

Apr 21,
2018

37:9A:19:7B:41:85:45:35:0C:A6:03:69:
F3:3C:2E:AF:47:4F:20:79

baltimorecybertrus
troot

Apr 21,
2018

D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:
2C:78:DB:28:52:CA:E4:74

buypassclass2rootc
a

Apr 21,
2018

49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:
C7:6B:EB:C6:0B:12:40:99

certumtrustednetwo
rkca

Apr 21,
2018

07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:
A2:59:3A:19:A7:0F:06:9E

digicertassuredidr
ootg3

Apr 21,
2018

F5:17:A2:4F:9A:48:C6:C9:F8:A2:00:26:
9F:DC:0F:48:2C:AB:30:89

digicertassuredidr
ootg2

Apr 21,
2018

A1:4B:48:D9:43:EE:0A:0E:40:90:4F:3C:
E0:A4:C0:91:93:51:5D:3F

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1111

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

isrgrootx1 Apr 21,
2018

CA:BD:2A:79:A1:07:6A:31:F2:1D:25:36:
35:CB:03:9D:43:29:A5:E8

entrustnetpremium2
048secureserverca

Apr 21,
2018

50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:
E7:92:7D:7D:65:2D:34:31

certplusclass2prim
aryca

Apr 21,
2018

74:20:74:41:72:9C:DD:92:EC:79:31:D8:
23:10:8D:C2:81:92:E2:BB

digicertglobalroot
ca

Apr 21,
2018

A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:
40:C6:DD:2F:B1:9C:54:36

entrustrootcertifi
cationauthorityg2

Apr 21,
2018

8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:
1E:57:EF:BB:93:22:72:D4

starfieldservicesr
ootcertif
icateauthorityg2

Apr 21,
2018

92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:
FF:22:D8:63:E8:25:6F:3F

thawteprimaryrootc
a

Apr 21,
2018

91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:
99:29:5C:75:6C:81:7B:81

atostrustedroot201
1

Apr 21,
2018

2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:
6A:46:4B:55:06:02:AC:21

geotrustglobalca Apr 21,
2018

DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:
A3:49:A7:F9:96:2A:82:12

luxtrustglobalroot
2

Apr 21,
2018

1E:0E:56:19:0A:D1:8B:25:98:B2:04:44:
FF:66:8A:04:17:99:5F:3F

etugracertificatio
nauthority

Apr 21,
2018

51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:
0D:6D:A3:62:8F:C3:52:39

visaecommerceroot Apr 21,
2018

70:17:9B:86:8C:00:A4:FA:60:91:52:22:
3F:9F:3E:32:BD:E0:05:62

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1112

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

quovadisrootca Apr 21,
2018

DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:
BC:07:62:01:00:89:76:C9

identrustcommercia
lrootca1

Apr 21,
2018

DF:71:7E:AA:4A:D9:4E:C9:55:84:99:60:
2D:48:DE:5F:BC:F0:3A:25

staatdernederlande
nevrootca

Apr 21,
2018

76:E2:7E:C1:4F:DB:82:C1:C0:A6:75:B5:
05:BE:3D:29:B4:ED:DB:BB

ttelesecglobalroot
class3

Apr 21,
2018

55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:
19:9D:2A:BE:11:E3:81:D1

ttelesecglobalroot
class2

Apr 21,
2018

59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:
32:17:65:CF:17:D8:94:E9

comodocertificatio
nauthority

Apr 21,
2018

66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:
BA:6A:BE:D1:F7:BD:EF:7B

securitycommunicat
ionrootca

Apr 21,
2018

36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:
0F:C6:56:8F:5D:AC:B2:F7

quovadisrootca3g3 Apr 21,
2018

48:12:BD:92:3C:A8:C4:39:06:E7:30:6D:
27:96:E6:A4:CF:22:2E:7D

xrampglobalcaroot Apr 21,
2018

B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:
54:F3:4C:52:B7:E5:58:C6

securesignrootca11 Apr 21,
2018

3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:
5B:B1:C3:65:C7:D8:11:B3

affirmtrustpremium Apr 21,
2018

D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:
7D:6A:06:65:26:32:28:27

globalsignrootca Apr 21,
2018

B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:
F2:15:01:52:A4:1D:82:9C

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1113

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

swisssigngoldcag2 Apr 21,
2018

D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:
45:25:3A:6F:9F:1A:27:61

quovadisrootca2g3 Apr 21,
2018

09:3C:61:F3:8B:8B:DC:7D:55:DF:75:38:
02:05:00:E1:25:F5:C8:36

affirmtrustpremium
ecc

Apr 21,
2018

B8:23:6B:00:2F:1D:16:86:53:01:55:6C:
11:A4:37:CA:EB:FF:C3:BB

geotrustprimarycer
tificatio
nauthority

Apr 21,
2018

32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:
10:0D:D6:02:90:37:F0:96

quovadisrootca1g3 Apr 21,
2018

1B:8E:EA:57:96:29:1A:C9:39:EA:B8:0A:
81:1A:73:73:C0:93:79:67

hongkongpostrootca
1

Apr 21,
2018

D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:
CB:34:6E:B2:58:B2:8A:58

usertrustecccertif
icationauthority

Apr 21,
2018

D1:CB:CA:5D:B2:D5:2A:7F:69:3B:67:4D:
E5:F0:5A:1D:0C:95:7D:F0

cybertrustglobalro
ot

Apr 21,
2018

5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:
4A:9A:C6:22:2B:CC:34:C6

godaddyclass2ca Apr 21,
2018

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

hellenicacademican
dresearch
instituti
onsrootca2015

Apr 21,
2018

01:0C:06:95:A6:98:19:14:FF:BF:5F:C6:
B0:B6:95:EA:29:E9:12:A6

ecacc Apr 21,
2018

28:90:3A:63:5B:52:80:FA:E6:77:4C:0B:
6D:A7:D6:BA:A6:4A:F2:E8

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1114

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

hellenicacademican
dresearch
instituti
onsrootca2011

Apr 21,
2018

FE:45:65:9B:79:03:5B:98:A1:61:B5:51:
2E:AC:DA:58:09:48:22:4D

verisignclass3publ
icprimary
certifica
tionauthorityg5

Apr 21,
2018

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

verisignclass3publ
icprimary
certifica
tionauthorityg4

Apr 21,
2018

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

verisignclass3publ
icprimary
certifica
tionauthorityg3

Apr 21,
2018

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

trustisfpsrootca Apr 21,
2018

3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:
93:D9:DF:F5:4B:81:C0:04

epkirootcertificat
ionauthority

Apr 21,
2018

67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:
56:4B:CF:E2:3D:69:C6:F0

globalchambersignr
oot2008

Apr 21,
2018

4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:
A1:2C:5B:29:F6:D6:AA:0C

camerfirmachambers
ofcommerceroot

Apr 21,
2018

6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:
DB:72:2E:31:30:61:F0:B1

mozillacert81.pem Mar 13,
2014

07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:
A2:59:3A:19:A7:0F:06:9E

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1115

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert99.pem Mar 13,
2014

F1:7F:6F:B6:31:DC:99:E3:A3:C8:7F:FE:
1C:F1:81:10:88:D9:60:33

mozillacert145.pem Mar 13,
2014

10:1D:FA:3F:D5:0B:CB:BB:9B:B5:60:0C:
19:55:A4:1A:F4:73:3A:04

mozillacert37.pem Mar 13,
2014

B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:
37:58:2D:C4:AC:FD:94:97

mozillacert4.pem Mar 13,
2014

E3:92:51:2F:0A:CF:F5:05:DF:F6:DE:06:
7F:75:37:E1:65:EA:57:4B

mozillacert70.pem Mar 13,
2014

78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:
BA:9E:A8:7E:FE:9A:CE:3C

mozillacert88.pem Mar 13,
2014

FE:45:65:9B:79:03:5B:98:A1:61:B5:51:
2E:AC:DA:58:09:48:22:4D

mozillacert134.pem Mar 13,
2014

70:17:9B:86:8C:00:A4:FA:60:91:52:22:
3F:9F:3E:32:BD:E0:05:62

mozillacert26.pem Mar 13,
2014

87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:
59:3E:7D:44:D9:34:FF:11

mozillacert77.pem Mar 13,
2014

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

mozillacert123.pem Mar 13,
2014

2A:B6:28:48:5E:78:FB:F3:AD:9E:79:10:
DD:6B:DF:99:72:2C:96:E5

mozillacert15.pem Mar 13,
2014

74:20:74:41:72:9C:DD:92:EC:79:31:D8:
23:10:8D:C2:81:92:E2:BB

mozillacert66.pem Mar 13,
2014

DD:E1:D2:A9:01:80:2E:1D:87:5E:84:B3:
80:7E:4B:B1:FD:99:41:34

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1116

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert112.pem Mar 13,
2014

43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:
F6:CF:F6:34:69:87:82:37

mozillacert55.pem Mar 13,
2014

AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:
DD:F4:1D:DB:08:9E:F0:12

mozillacert101.pem Mar 13,
2014

99:A6:9B:E6:1A:FE:88:6B:4D:2B:82:00:
7C:B8:54:FC:31:7E:15:39

mozillacert119.pem Mar 13,
2014

75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:
DD:DE:38:E4:B7:24:2E:FE

mozillacert44.pem Mar 13,
2014

5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:
4A:9A:C6:22:2B:CC:34:C6

mozillacert108.pem Mar 13,
2014

B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:
F2:15:01:52:A4:1D:82:9C

mozillacert95.pem Mar 13,
2014

DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:
C7:C2:81:A5:BC:A9:64:57

mozillacert141.pem Mar 13,
2014

31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:
4B:57:E8:B7:D8:F1:FC:A6

mozillacert33.pem Mar 13,
2014

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:
90:8F:FD:28:86:65:64:7D

mozillacert0.pem Mar 13,
2014

97:81:79:50:D8:1C:96:70:CC:34:D8:09:
CF:79:44:31:36:7E:F4:74

mozillacert84.pem Mar 13,
2014

D3:C0:63:F2:19:ED:07:3E:34:AD:5D:75:
0B:32:76:29:FF:D5:9A:F2

mozillacert130.pem Mar 13,
2014

E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:
8C:E8:6A:81:10:9F:E4:8E

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1117

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert148.pem Mar 13,
2014

04:83:ED:33:99:AC:36:08:05:87:22:ED:
BC:5E:46:00:E3:BE:F9:D7

mozillacert22.pem Mar 13,
2014

32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:
10:0D:D6:02:90:37:F0:96

mozillacert7.pem Mar 13,
2014

AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:
14:C3:D0:E3:37:0E:B5:8A

mozillacert73.pem Mar 13,
2014

B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:
92:F4:FE:39:D4:E7:0F:0E

mozillacert137.pem Mar 13,
2014

4A:65:D5:F4:1D:EF:39:B8:B8:90:4A:4A:
D3:64:81:33:CF:C7:A1:D1

mozillacert11.pem Mar 13,
2014

05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:
4B:DF:B5:A8:99:B2:4D:43

mozillacert29.pem Mar 13,
2014

74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:
3C:21:64:60:20:E5:DF:CE

mozillacert62.pem Mar 13,
2014

A1:DB:63:93:91:6F:17:E4:18:55:09:40:
04:15:C7:02:40:B0:AE:6B

mozillacert126.pem Mar 13,
2014

25:01:90:19:CF:FB:D9:99:1C:B7:68:25:
74:8D:94:5F:30:93:95:42

mozillacert18.pem Mar 13,
2014

79:98:A3:08:E1:4D:65:85:E6:C2:1E:15:
3A:71:9F:BA:5A:D3:4A:D9

mozillacert51.pem Mar 13,
2014

FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:
BF:03:FD:E8:7C:4B:2F:9B

mozillacert69.pem Mar 13,
2014

2F:78:3D:25:52:18:A7:4A:65:39:71:B5:
2C:A2:9C:45:15:6F:E9:19

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1118

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert115.pem Mar 13,
2014

59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:
32:17:65:CF:17:D8:94:E9

mozillacert40.pem Mar 13,
2014

80:25:EF:F4:6E:70:C8:D4:72:24:65:84:
FE:40:3B:8A:8D:6A:DB:F5

mozillacert58.pem Mar 13,
2014

8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:
8B:51:9A:99:E6:10:D7:B0

mozillacert104.pem Mar 13,
2014

4F:99:AA:93:FB:2B:D1:37:26:A1:99:4A:
CE:7F:F0:05:F2:93:5D:1E

mozillacert91.pem Mar 13,
2014

3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:
93:D9:DF:F5:4B:81:C0:04

mozillacert47.pem Mar 13,
2014

1B:4B:39:61:26:27:6B:64:91:A2:68:6D:
D7:02:43:21:2D:1F:1D:96

mozillacert80.pem Mar 13,
2014

B8:23:6B:00:2F:1D:16:86:53:01:55:6C:
11:A4:37:CA:EB:FF:C3:BB

mozillacert98.pem Mar 13,
2014

C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:
25:EB:AF:C3:7B:27:CC:D7

mozillacert144.pem Mar 13,
2014

37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:
B7:41:10:B4:F2:E4:9A:27

mozillacert36.pem Mar 13,
2014

23:88:C9:D3:71:CC:9E:96:3D:FF:7D:3C:
A7:CE:FC:D6:25:EC:19:0D

mozillacert3.pem Mar 13,
2014

87:9F:4B:EE:05:DF:98:58:3B:E3:60:D6:
33:E7:0D:3F:FE:98:71:AF

mozillacert87.pem Mar 13,
2014

5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:
19:19:C3:73:34:B9:C7:74

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1119

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert133.pem Mar 13,
2014

85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:
22:00:46:13:DB:17:92:84

mozillacert25.pem Mar 13,
2014

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

mozillacert76.pem Mar 13,
2014

F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:
DC:E9:6E:2C:C7:B2:78:B7

mozillacert122.pem Mar 13,
2014

02:FA:F3:E2:91:43:54:68:60:78:57:69:
4D:F5:E4:5B:68:85:18:68

mozillacert14.pem Mar 13,
2014

5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:
E6:D3:8F:1A:61:C7:DC:25

mozillacert65.pem Mar 13,
2014

69:BD:8C:F4:9C:D3:00:FB:59:2E:17:93:
CA:55:6A:F3:EC:AA:35:FB

mozillacert111.pem Mar 13,
2014

9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:
52:55:60:13:F5:AD:AF:65

mozillacert129.pem Mar 13,
2014

E6:21:F3:35:43:79:05:9A:4B:68:30:9D:
8A:2F:74:22:15:87:EC:79

mozillacert54.pem Mar 13,
2014

03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:
20:D2:D9:32:3A:4C:2A:FD

mozillacert100.pem Mar 13,
2014

58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:
6D:29:D3:FF:8D:5F:00:F0

mozillacert118.pem Mar 13,
2014

7E:78:4A:10:1C:82:65:CC:2D:E1:F1:6D:
47:B4:40:CA:D9:0A:19:45

mozillacert151.pem Mar 13,
2014

AC:ED:5F:65:53:FD:25:CE:01:5F:1F:7A:
48:3B:6A:74:9F:61:78:C6

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1120

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert43.pem Mar 13,
2014

F9:CD:0E:2C:DA:76:24:C1:8F:BD:F0:F0:
AB:B6:45:B8:F7:FE:D5:7A

mozillacert107.pem Mar 13,
2014

8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:
EC:2B:47:56:51:1A:52:C6

mozillacert94.pem Mar 13,
2014

49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:
C7:6B:EB:C6:0B:12:40:99

mozillacert140.pem Mar 13,
2014

CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:
88:80:48:39:19:93:7C:F7

mozillacert32.pem Mar 13,
2014

60:D6:89:74:B5:C2:65:9E:8A:0F:C1:88:
7C:88:D2:46:69:1B:18:2C

mozillacert83.pem Mar 13,
2014

A0:73:E5:C5:BD:43:61:0D:86:4C:21:13:
0A:85:58:57:CC:9C:EA:46

mozillacert147.pem Mar 13,
2014

58:11:9F:0E:12:82:87:EA:50:FD:D9:87:
45:6F:4F:78:DC:FA:D6:D4

mozillacert21.pem Mar 13,
2014

9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:
93:DF:A7:F0:40:D1:1D:CB

mozillacert39.pem Mar 13,
2014

AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:
FE:68:5D:79:42:21:15:6E

mozillacert6.pem Mar 13,
2014

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

mozillacert72.pem Mar 13,
2014

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

mozillacert136.pem Mar 13,
2014

D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:
F1:F1:60:17:64:D8:E3:49

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1121

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert10.pem Mar 13,
2014

5F:3A:FC:0A:8B:64:F6:86:67:34:74:DF:
7E:A9:A2:FE:F9:FA:7A:51

mozillacert28.pem Mar 13,
2014

66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:
BA:6A:BE:D1:F7:BD:EF:7B

mozillacert61.pem Mar 13,
2014

E0:B4:32:2E:B2:F6:A5:68:B6:54:53:84:
48:18:4A:50:36:87:43:84

mozillacert79.pem Mar 13,
2014

D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:
7D:6A:06:65:26:32:28:27

mozillacert125.pem Mar 13,
2014

B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:
D4:4D:F5:D4:67:49:52:F9

mozillacert17.pem Mar 13,
2014

40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:
CD:DB:79:D1:53:FB:90:1D

mozillacert50.pem Mar 13,
2014

8C:96:BA:EB:DD:2B:07:07:48:EE:30:32:
66:A0:F3:98:6E:7C:AE:58

mozillacert68.pem Mar 13,
2014

AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:
5A:9A:E8:00:B7:F7:B6:FA

mozillacert114.pem Mar 13,
2014

51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:
0D:6D:A3:62:8F:C3:52:39

mozillacert57.pem Mar 13,
2014

D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:
CB:34:6E:B2:58:B2:8A:58

mozillacert103.pem Mar 13,
2014

70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:
D7:01:9F:99:B0:3D:50:74

mozillacert90.pem Mar 13,
2014

F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:
CE:19:2B:DD:C7:8E:9C:AC

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1122

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert46.pem Mar 13,
2014

40:9D:4B:D9:17:B5:5C:27:B6:9B:64:CB:
98:22:44:0D:CD:09:B8:89

mozillacert97.pem Mar 13,
2014

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:
1B:DE:3A:09:E8:F8:77:0F

mozillacert143.pem Mar 13,
2014

36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:
0F:C6:56:8F:5D:AC:B2:F7

mozillacert35.pem Mar 13,
2014

2A:C8:D5:8B:57:CE:BF:2F:49:AF:F2:FC:
76:8F:51:14:62:90:7A:41

mozillacert2.pem Mar 13,
2014

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

mozillacert86.pem Mar 13,
2014

74:2C:31:92:E6:07:E4:24:EB:45:49:54:
2B:E1:BB:C5:3E:61:74:E2

mozillacert132.pem Mar 13,
2014

39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:
F0:7D:21:D8:05:0B:56:6A

mozillacert24.pem Mar 13,
2014

59:AF:82:79:91:86:C7:B4:75:07:CB:CF:
03:57:46:EB:04:DD:B7:16

mozillacert9.pem Mar 13,
2014

F4:8B:11:BF:DE:AB:BE:94:54:20:71:E6:
41:DE:6B:BE:88:2B:40:B9

mozillacert75.pem Mar 13,
2014

D2:32:09:AD:23:D3:14:23:21:74:E4:0D:
7F:9D:62:13:97:86:63:3A

mozillacert121.pem Mar 13,
2014

CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:
9F:CD:12:EB:24:E3:94:9D

mozillacert139.pem Mar 13,
2014

DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:
BC:07:62:01:00:89:76:C9

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1123

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert13.pem Mar 13,
2014

06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:
A9:03:D0:06:B7:97:09:91

mozillacert64.pem Mar 13,
2014

62:7F:8D:78:27:65:63:99:D2:7D:7F:90:
44:C9:FE:B3:F3:3E:FA:9A

mozillacert110.pem Mar 13,
2014

93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:
16:52:28:78:BC:53:64:17

mozillacert128.pem Mar 13,
2014

A9:E9:78:08:14:37:58:88:F2:05:19:B0:
6D:2B:0D:2B:60:16:90:7D

mozillacert53.pem Mar 13,
2014

7F:8A:B0:CF:D0:51:87:6A:66:F3:36:0F:
47:C8:8D:8C:D3:35:FC:74

mozillacert117.pem Mar 13,
2014

D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:
2C:78:DB:28:52:CA:E4:74

mozillacert150.pem Mar 13,
2014

33:9B:6B:14:50:24:9B:55:7A:01:87:72:
84:D9:E0:2F:C3:D2:D8:E9

mozillacert42.pem Mar 13,
2014

85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:
D6:13:30:FD:8C:DE:37:BF

mozillacert106.pem Mar 13,
2014

E7:A1:90:29:D3:D5:52:DC:0D:0F:C6:92:
D3:EA:88:0D:15:2E:1A:6B

mozillacert93.pem Mar 13,
2014

31:F1:FD:68:22:63:20:EE:C6:3B:3F:9D:
EA:4A:3E:53:7C:7C:39:17

mozillacert31.pem Mar 13,
2014

9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:
B6:56:3B:8E:2D:93:C3:11

mozillacert49.pem Mar 13,
2014

61:57:3A:11:DF:0E:D8:7E:D5:92:65:22:
EA:D0:56:D7:44:B3:23:71

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1124

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert82.pem Mar 13,
2014

2E:14:DA:EC:28:F0:FA:1E:8E:38:9A:4E:
AB:EB:26:C0:0A:D3:83:C3

mozillacert146.pem Mar 13,
2014

21:FC:BD:8E:7F:6C:AF:05:1B:D1:B3:43:
EC:A8:E7:61:47:F2:0F:8A

mozillacert20.pem Mar 13,
2014

D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:
45:25:3A:6F:9F:1A:27:61

mozillacert38.pem Mar 13,
2014

CB:A1:C5:F8:B0:E3:5E:B8:B9:45:12:D3:
F9:34:A2:E9:06:10:D3:36

mozillacert5.pem Mar 13,
2014

B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:
54:F3:4C:52:B7:E5:58:C6

mozillacert71.pem Mar 13,
2014

4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:
A1:2C:5B:29:F6:D6:AA:0C

mozillacert89.pem Mar 13,
2014

C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:
7E:57:67:F3:14:95:73:9D

mozillacert135.pem Mar 13,
2014

62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:
34:8E:06:42:51:B1:81:18

mozillacert27.pem Mar 13,
2014

3A:44:73:5A:E5:81:90:1F:24:86:61:46:
1E:3B:9C:C4:5F:F5:3A:1B

mozillacert60.pem Mar 13,
2014

3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:
5B:B1:C3:65:C7:D8:11:B3

mozillacert78.pem Mar 13,
2014

29:36:21:02:8B:20:ED:02:F5:66:C5:32:
D1:D6:ED:90:9F:45:00:2F

mozillacert124.pem Mar 13,
2014

4D:23:78:EC:91:95:39:B5:00:7F:75:8F:
03:3B:21:1E:C5:4D:8B:CF

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1125

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert16.pem Mar 13,
2014

DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:
73:26:38:CA:6A:D7:7C:13

mozillacert67.pem Mar 13,
2014

D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:
09:26:DF:5B:85:69:76:AD

mozillacert113.pem Mar 13,
2014

50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:
E7:92:7D:7D:65:2D:34:31

mozillacert56.pem Mar 13,
2014

F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:
5B:17:15:89:CA:F3:6B:F2

mozillacert102.pem Mar 13,
2014

96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:
22:79:FE:60:FA:B9:16:83

mozillacert45.pem Mar 13,
2014

67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:
56:4B:CF:E2:3D:69:C6:F0

mozillacert109.pem Mar 13,
2014

B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:
A5:57:47:C2:34:C7:D9:71

mozillacert96.pem Mar 13,
2014

55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:
19:9D:2A:BE:11:E3:81:D1

mozillacert142.pem Mar 13,
2014

1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:
BE:FD:3A:2D:82:75:51:85

mozillacert34.pem Mar 13,
2014

59:22:A1:E1:5A:EA:16:35:21:F8:98:39:
6A:46:46:B0:44:1B:0F:A9

mozillacert1.pem Mar 13,
2014

23:E5:94:94:51:95:F2:41:48:03:B4:D5:
64:D2:A3:A3:F5:D8:8B:8C

mozillacert85.pem Mar 13,
2014

CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:
A3:7A:A0:76:A9:06:23:48

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1126

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert131.pem Mar 13,
2014

37:9A:19:7B:41:85:45:35:0C:A6:03:69:
F3:3C:2E:AF:47:4F:20:79

mozillacert149.pem Mar 13,
2014

6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:
DB:72:2E:31:30:61:F0:B1

mozillacert23.pem Mar 13,
2014

91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:
99:29:5C:75:6C:81:7B:81

mozillacert8.pem Mar 13,
2014

3E:2B:F7:F2:03:1B:96:F3:8C:E6:C4:D8:
A8:5D:3E:2D:58:47:6A:0F

mozillacert74.pem Mar 13,
2014

92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:
FF:22:D8:63:E8:25:6F:3F

mozillacert120.pem Mar 13,
2014

DA:40:18:8B:91:89:A3:ED:EE:AE:DA:97:
FE:2F:9D:F5:B7:D1:8A:41

mozillacert138.pem Mar 13,
2014

E1:9F:E3:0E:8B:84:60:9E:80:9B:17:0D:
72:A8:C5:BA:6E:14:09:BD

mozillacert12.pem Mar 13,
2014

A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:
40:C6:DD:2F:B1:9C:54:36

mozillacert63.pem Mar 13,
2014

89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:
7D:54:DA:91:E1:01:31:8E

mozillacert127.pem Mar 13,
2014

DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:
A3:49:A7:F9:96:2A:82:12

mozillacert19.pem Mar 13,
2014

B4:35:D4:E1:11:9D:1C:66:90:A7:49:EB:
B3:94:BD:63:7B:A7:82:B7

mozillacert52.pem Mar 13,
2014

8B:AF:4C:9B:1D:F0:2A:92:F7:DA:12:8E:
B9:1B:AC:F4:98:60:4B:6F

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1127

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert116.pem Mar 13,
2014

2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:
6A:46:4B:55:06:02:AC:21

mozillacert41.pem Mar 13,
2014

6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:
CE:BB:9D:D9:4F:4E:39:F3

mozillacert59.pem Mar 13,
2014

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

mozillacert105.pem Mar 13,
2014

77:47:4F:C6:30:E4:0F:4C:47:64:3F:84:
BA:B8:C6:95:4A:8A:41:EC

mozillacert92.pem Mar 13,
2014

A3:F1:33:3F:E2:42:BF:CF:C5:D1:4E:8F:
39:42:98:40:68:10:D1:A0

mozillacert30.pem Mar 13,
2014

E7:B4:F6:9D:61:EC:90:69:DB:7E:90:A7:
40:1A:3C:F4:7D:4F:E8:EE

mozillacert48.pem Mar 13,
2014

A0:A1:AB:90:C9:FC:84:7B:3B:12:61:E8:
97:7D:5F:D3:22:61:D3:CC

verisignc4g2.pem Mar 20,
2014

0B:77:BE:BB:CB:7A:A2:47:05:DE:CC:0F:
BD:6A:02:FC:7A:BD:9B:52

verisignc2g3.pem Mar 20,
2014

61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:
C3:59:12:AF:9F:EB:63:11

verisignc1g6.pem Dec 31,
2014

51:7F:61:1E:29:91:6B:53:82:FB:72:E7:
44:D9:8D:C3:CC:53:6D:64

verisignc2g2.pem Mar 20,
2014

B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:
B6:CC:A0:08:1B:67:EC:9D

verisignroot.pem Mar 20,
2014

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1128

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

verisignc2g1.pem Mar 20,
2014

67:82:AA:E0:ED:EE:E2:1A:58:39:D3:C0:
CD:14:68:0A:4F:60:14:2A

verisignc3g5.pem Mar 20,
2014

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

verisignc1g3.pem Mar 20,
2014

20:42:85:DC:F7:EB:76:41:95:57:8E:13:
6B:D4:B7:D1:E9:8E:46:A5

verisignc3g4.pem Mar 20,
2014

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

verisignc1g2.pem Mar 20,
2014

27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:
56:16:7F:62:F5:32:E5:47

verisignc3g3.pem Mar 20,
2014

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

verisignc1g1.pem Mar 20,
2014

90:AE:A2:69:85:FF:14:80:4C:43:49:52:
EC:E9:60:84:77:AF:55:6F

verisignc3g2.pem Mar 20,
2014

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:
1B:DE:3A:09:E8:F8:77:0F

verisignc3g1.pem Mar 20,
2014

A1:DB:63:93:91:6F:17:E4:18:55:09:40:
04:15:C7:02:40:B0:AE:6B

verisignc2g6.pem Dec 31,
2014

40:B3:31:A0:E9:BF:E8:55:BC:39:93:CA:
70:4F:4E:C2:51:D4:1D:8F

verisignc4g3.pem Mar 20,
2014

C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:
7E:57:67:F3:14:95:73:9D

gdroot-g2.pem Dec 31,
2014

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1129

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

gd-class2-root.pem Dec 31,
2014

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

gd_bundle-g2.pem Dec 31,
2014

27:AC:93:69:FA:F2:52:07:BB:26:27:CE:
FA:CC:BE:4E:F9:C3:19:B8

dstacescax6 Jun 18,
2018

40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:
CD:DB:79:D1:53:FB:90:1D

gd_bundle-g2.pem Jun 18,
2018

27:AC:93:69:FA:F2:52:07:BB:26:27:CE:
FA:CC:BE:4E:F9:C3:19:B8

verisignc4g3.pem Jun 18,
2018

C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:
7E:57:67:F3:14:95:73:9D

swisssignplatinumg
2ca

Apr 21,
2018

56:E0:FA:C0:3B:8F:18:23:55:18:E5:D3:
11:CA:E8:C2:43:31:AB:66

geotrustprimarycer
tificatio
nauthorityg3

Jun 18,
2018

03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:
20:D2:D9:32:3A:4C:2A:FD

geotrustprimarycer
tificatio
nauthorityg2

Jun 18,
2018

8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:
8B:51:9A:99:E6:10:D7:B0

buypassclass2rootc
a

Jun 18,
2018

49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:
C7:6B:EB:C6:0B:12:40:99

camerfirmachambers
ofcommerceroot

Jun 18,
2018

6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:
DB:72:2E:31:30:61:F0:B1

mozillacert20.pem Jun 18,
2018

D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:
45:25:3A:6F:9F:1A:27:61

mozillacert12.pem Jun 18,
2018

A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:
40:C6:DD:2F:B1:9C:54:36

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1130

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert90.pem Jun 18,
2018

F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:
CE:19:2B:DD:C7:8E:9C:AC

mozillacert82.pem Jun 18,
2018

2E:14:DA:EC:28:F0:FA:1E:8E:38:9A:4E:
AB:EB:26:C0:0A:D3:83:C3

mozillacert140.pem Jun 18,
2018

CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:
88:80:48:39:19:93:7C:F7

mozillacert74.pem Jun 18,
2018

92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:
FF:22:D8:63:E8:25:6F:3F

mozillacert132.pem Jun 18,
2018

39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:
F0:7D:21:D8:05:0B:56:6A

mozillacert66.pem Jun 18,
2018

DD:E1:D2:A9:01:80:2E:1D:87:5E:84:B3:
80:7E:4B:B1:FD:99:41:34

mozillacert124.pem Jun 18,
2018

4D:23:78:EC:91:95:39:B5:00:7F:75:8F:
03:3B:21:1E:C5:4D:8B:CF

mozillacert58.pem Jun 18,
2018

8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:
8B:51:9A:99:E6:10:D7:B0

securitycommunicat
ionrootca2

Jun 18,
2018

5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:
19:19:C3:73:34:B9:C7:74

mozillacert116.pem Jun 18,
2018

2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:
6A:46:4B:55:06:02:AC:21

mozillacert108.pem Jun 18,
2018

B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:
F2:15:01:52:A4:1D:82:9C

certigna Jun 18,
2018

B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:
37:58:2D:C4:AC:FD:94:97

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1131

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert3.pem Jun 18,
2018

87:9F:4B:EE:05:DF:98:58:3B:E3:60:D6:
33:E7:0D:3F:FE:98:71:AF

verisignc1g1.pem Jun 18,
2018

90:AE:A2:69:85:FF:14:80:4C:43:49:52:
EC:E9:60:84:77:AF:55:6F

verisignc4g2.pem Jun 18,
2018

0B:77:BE:BB:CB:7A:A2:47:05:DE:CC:0F:
BD:6A:02:FC:7A:BD:9B:52

deutschetelekomroo
tca2

Jun 18,
2018

85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:
D6:13:30:FD:8C:DE:37:BF

starfieldrootg2ca Apr 21,
2018

B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:
92:F4:FE:39:D4:E7:0F:0E

comodoecccertifica
tionauthority

Jun 18,
2018

9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:
B6:56:3B:8E:2D:93:C3:11

digicertglobalroot
g3

Jun 18,
2018

7E:04:DE:89:6A:3E:66:6D:00:E6:87:D3:
3F:FA:D9:3B:E8:3D:34:9E

digicertglobalroot
g2

Jun 18,
2018

DF:3C:24:F9:BF:D6:66:76:1B:26:80:73:
FE:06:D1:CC:8D:4F:82:A4

mozillacert11.pem Jun 18,
2018

05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:
4B:DF:B5:A8:99:B2:4D:43

mozillacert81.pem Jun 18,
2018

07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:
A2:59:3A:19:A7:0F:06:9E

mozillacert73.pem Jun 18,
2018

B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:
92:F4:FE:39:D4:E7:0F:0E

szafirrootca2 Jun 18,
2018

E2:52:FA:95:3F:ED:DB:24:60:BD:6E:28:
F3:9C:CC:CF:5E:B3:3F:DE

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1132

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert131.pem Jun 18,
2018

37:9A:19:7B:41:85:45:35:0C:A6:03:69:
F3:3C:2E:AF:47:4F:20:79

ecacc Jun 18,
2018

28:90:3A:63:5B:52:80:FA:E6:77:4C:0B:
6D:A7:D6:BA:A6:4A:F2:E8

mozillacert65.pem Jun 18,
2018

69:BD:8C:F4:9C:D3:00:FB:59:2E:17:93:
CA:55:6A:F3:EC:AA:35:FB

turktrustelektroni
ksertifik
ahizmetsa
glayicisih5

Jun 18,
2018

C4:18:F6:4D:46:D1:DF:00:3D:27:30:13:
72:43:A9:12:11:C6:75:FB

mozillacert123.pem Jun 18,
2018

2A:B6:28:48:5E:78:FB:F3:AD:9E:79:10:
DD:6B:DF:99:72:2C:96:E5

mozillacert57.pem Jun 18,
2018

D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:
CB:34:6E:B2:58:B2:8A:58

mozillacert115.pem Jun 18,
2018

59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:
32:17:65:CF:17:D8:94:E9

mozillacert49.pem Jun 18,
2018

61:57:3A:11:DF:0E:D8:7E:D5:92:65:22:
EA:D0:56:D7:44:B3:23:71

mozillacert107.pem Jun 18,
2018

8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:
EC:2B:47:56:51:1A:52:C6

verisignclass3g4ca Apr 21,
2018

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

securetrustca Jun 18,
2018

87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:
59:3E:7D:44:D9:34:FF:11

mozillacert2.pem Jun 18,
2018

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1133

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

buypassclass2ca Apr 21,
2018

49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:
C7:6B:EB:C6:0B:12:40:99

secomscrootca2 Apr 21,
2018

5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:
19:19:C3:73:34:B9:C7:74

secomscrootca1 Apr 21,
2018

36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:
0F:C6:56:8F:5D:AC:B2:F7

trustisfpsrootca Jun 18,
2018

3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:
93:D9:DF:F5:4B:81:C0:04

hongkongpostrootca
1

Jun 18,
2018

D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:
CB:34:6E:B2:58:B2:8A:58

certsignrootca Jun 18,
2018

FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:
BF:03:FD:E8:7C:4B:2F:9B

geotrustprimaryca Apr 21,
2018

32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:
10:0D:D6:02:90:37:F0:96

twcaglobalrootca Jun 18,
2018

9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:
52:55:60:13:F5:AD:AF:65

camerfirmachambers
ca

Apr 21,
2018

78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:
BA:9E:A8:7E:FE:9A:CE:3C

mozillacert10.pem Jun 18,
2018

5F:3A:FC:0A:8B:64:F6:86:67:34:74:DF:
7E:A9:A2:FE:F9:FA:7A:51

mozillacert80.pem Jun 18,
2018

B8:23:6B:00:2F:1D:16:86:53:01:55:6C:
11:A4:37:CA:EB:FF:C3:BB

mozillacert72.pem Jun 18,
2018

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1134

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

comodoaaaca Apr 21,
2018

D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:
F1:F1:60:17:64:D8:E3:49

mozillacert130.pem Jun 18,
2018

E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:
8C:E8:6A:81:10:9F:E4:8E

mozillacert64.pem Jun 18,
2018

62:7F:8D:78:27:65:63:99:D2:7D:7F:90:
44:C9:FE:B3:F3:3E:FA:9A

mozillacert122.pem Jun 18,
2018

02:FA:F3:E2:91:43:54:68:60:78:57:69:
4D:F5:E4:5B:68:85:18:68

mozillacert56.pem Jun 18,
2018

F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:
5B:17:15:89:CA:F3:6B:F2

equifaxsecureebusi
nessca1

Apr 21,
2018

AE:E6:3D:70:E3:76:FB:C7:3A:EB:B0:A1:
C1:D4:C4:7A:A7:40:B3:F4

camerfirmachambers
ignca

Apr 21,
2018

4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:
A1:2C:5B:29:F6:D6:AA:0C

mozillacert114.pem Jun 18,
2018

51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:
0D:6D:A3:62:8F:C3:52:39

mozillacert48.pem Jun 18,
2018

A0:A1:AB:90:C9:FC:84:7B:3B:12:61:E8:
97:7D:5F:D3:22:61:D3:CC

pscprocert Jun 18,
2018

70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:
D7:01:9F:99:B0:3D:50:74

mozillacert106.pem Jun 18,
2018

E7:A1:90:29:D3:D5:52:DC:0D:0F:C6:92:
D3:EA:88:0D:15:2E:1A:6B

mozillacert1.pem Jun 18,
2018

23:E5:94:94:51:95:F2:41:48:03:B4:D5:
64:D2:A3:A3:F5:D8:8B:8C

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1135

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

eecertificationcen
trerootca

Jun 18,
2018

C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:
25:EB:AF:C3:7B:27:CC:D7

digicertglobalroot
ca

Jun 18,
2018

A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:
40:C6:DD:2F:B1:9C:54:36

thawteprimaryrootc
ag3

Jun 18,
2018

F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:
5B:17:15:89:CA:F3:6B:F2

thawteprimaryrootc
ag2

Jun 18,
2018

AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:
DD:F4:1D:DB:08:9E:F0:12

entrustrootcertifi
cationaut
horityec1

Jun 18,
2018

20:D8:06:40:DF:9B:25:F5:12:25:3A:11:
EA:F7:59:8A:EB:14:B5:47

valicertclass2ca Apr 21,
2018

31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:
4B:57:E8:B7:D8:F1:FC:A6

globalchambersignr
oot2008

Jun 18,
2018

4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:
A1:2C:5B:29:F6:D6:AA:0C

amazonrootca4 Jun 18,
2018

F6:10:84:07:D6:F8:BB:67:98:0C:C2:E2:
44:C2:EB:AE:1C:EF:63:BE

gd-class2-root.pem Jun 18,
2018

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

amazonrootca3 Jun 18,
2018

0D:44:DD:8C:3C:8C:1A:1A:58:75:64:81:
E9:0F:2E:2A:FF:B3:D2:6E

amazonrootca2 Jun 18,
2018

5A:8C:EF:45:D7:A6:98:59:76:7A:8C:8B:
44:96:B5:78:CF:47:4B:1A

securitycommunicat
ionrootca

Jun 18,
2018

36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:
0F:C6:56:8F:5D:AC:B2:F7

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1136

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

amazonrootca1 Jun 18,
2018

8D:A7:F9:65:EC:5E:FC:37:91:0F:1C:6E:
59:FD:C1:CC:6A:6E:DE:16

acraizfnmtrcm Jun 18,
2018

EC:50:35:07:B2:15:C4:95:62:19:E2:A8:
9A:5B:42:99:2C:4C:2C:20

quovadisrootca3g3 Jun 18,
2018

48:12:BD:92:3C:A8:C4:39:06:E7:30:6D:
27:96:E6:A4:CF:22:2E:7D

certplusrootcag2 Jun 18,
2018

4F:65:8E:1F:E9:06:D8:28:02:E9:54:47:
41:C9:54:25:5D:69:CC:1A

certplusrootcag1 Jun 18,
2018

22:FD:D0:B7:FD:A2:4E:0D:AC:49:2C:A0:
AC:A6:7B:6A:1F:E3:F7:66

mozillacert71.pem Jun 18,
2018

4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:
A1:2C:5B:29:F6:D6:AA:0C

mozillacert63.pem Jun 18,
2018

89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:
7D:54:DA:91:E1:01:31:8E

mozillacert121.pem Jun 18,
2018

CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:
9F:CD:12:EB:24:E3:94:9D

ttelesecglobalroot
class3ca

Apr 21,
2018

55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:
19:9D:2A:BE:11:E3:81:D1

mozillacert55.pem Jun 18,
2018

AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:
DD:F4:1D:DB:08:9E:F0:12

mozillacert113.pem Jun 18,
2018

50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:
E7:92:7D:7D:65:2D:34:31

baltimorecybertrus
tca

Apr 21,
2018

D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:
2C:78:DB:28:52:CA:E4:74

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1137

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert47.pem Jun 18,
2018

1B:4B:39:61:26:27:6B:64:91:A2:68:6D:
D7:02:43:21:2D:1F:1D:96

mozillacert105.pem Jun 18,
2018

77:47:4F:C6:30:E4:0F:4C:47:64:3F:84:
BA:B8:C6:95:4A:8A:41:EC

mozillacert39.pem Jun 18,
2018

AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:
FE:68:5D:79:42:21:15:6E

usertrustecccertif
icationauthority

Jun 18,
2018

D1:CB:CA:5D:B2:D5:2A:7F:69:3B:67:4D:
E5:F0:5A:1D:0C:95:7D:F0

mozillacert0.pem Jun 18,
2018

97:81:79:50:D8:1C:96:70:CC:34:D8:09:
CF:79:44:31:36:7E:F4:74

securitycommunicat
ionevrootca1

Jun 18,
2018

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:
90:8F:FD:28:86:65:64:7D

verisignc3g5.pem Jun 18,
2018

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

globalsignr3ca Apr 21,
2018

D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:
09:26:DF:5B:85:69:76:AD

trustcoreca1 Jun 18,
2018

58:D1:DF:95:95:67:6B:63:C0:F0:5B:1C:
17:4D:8B:84:0B:C8:78:BD

equifaxsecuregloba
lebusinessca1

Apr 21,
2018

3A:74:CB:7A:47:DB:70:DE:89:1F:24:35:
98:64:B8:2D:82:BD:1A:36

geotrustuniversalc
a

Jun 18,
2018

E6:21:F3:35:43:79:05:9A:4B:68:30:9D:
8A:2F:74:22:15:87:EC:79

affirmtrustpremium
ca

Apr 21,
2018

D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:
7D:6A:06:65:26:32:28:27

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1138

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

staatdernederlande
nrootcag3

Jun 18,
2018

D8:EB:6B:41:51:92:59:E0:F3:E7:85:00:
C0:3D:B6:88:97:C9:EE:FC

staatdernederlande
nrootcag2

Jun 18,
2018

59:AF:82:79:91:86:C7:B4:75:07:CB:CF:
03:57:46:EB:04:DD:B7:16

mozillacert70.pem Jun 18,
2018

78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:
BA:9E:A8:7E:FE:9A:CE:3C

secomevrootca1 Apr 21,
2018

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:
90:8F:FD:28:86:65:64:7D

geotrustglobalca Jun 18,
2018

DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:
A3:49:A7:F9:96:2A:82:12

mozillacert62.pem Jun 18,
2018

A1:DB:63:93:91:6F:17:E4:18:55:09:40:
04:15:C7:02:40:B0:AE:6B

mozillacert120.pem Jun 18,
2018

DA:40:18:8B:91:89:A3:ED:EE:AE:DA:97:
FE:2F:9D:F5:B7:D1:8A:41

mozillacert54.pem Jun 18,
2018

03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:
20:D2:D9:32:3A:4C:2A:FD

mozillacert112.pem Jun 18,
2018

43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:
F6:CF:F6:34:69:87:82:37

mozillacert46.pem Jun 18,
2018

40:9D:4B:D9:17:B5:5C:27:B6:9B:64:CB:
98:22:44:0D:CD:09:B8:89

swisssigngoldcag2 Jun 18,
2018

D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:
45:25:3A:6F:9F:1A:27:61

mozillacert104.pem Jun 18,
2018

4F:99:AA:93:FB:2B:D1:37:26:A1:99:4A:
CE:7F:F0:05:F2:93:5D:1E

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1139

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert38.pem Jun 18,
2018

CB:A1:C5:F8:B0:E3:5E:B8:B9:45:12:D3:
F9:34:A2:E9:06:10:D3:36

certplusclass3ppri
maryca

Apr 21,
2018

21:6B:2A:29:E6:2A:00:CE:82:01:46:D8:
24:41:41:B9:25:11:B2:79

entrustrootcertifi
cationauthorityg2

Jun 18,
2018

8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:
1E:57:EF:BB:93:22:72:D4

godaddyrootg2ca Apr 21,
2018

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

cfcaevroot Jun 18,
2018

E2:B8:29:4B:55:84:AB:6B:58:C2:90:46:
6C:AC:3F:B8:39:8F:84:83

verisignc3g4.pem Jun 18,
2018

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

geotrustuniversalc
a2

Jun 18,
2018

37:9A:19:7B:41:85:45:35:0C:A6:03:69:
F3:3C:2E:AF:47:4F:20:79

starfieldservicesr
ootg2ca

Apr 21,
2018

92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:
FF:22:D8:63:E8:25:6F:3F

digicerthighassura
nceevrootca

Jun 18,
2018

5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:
E6:D3:8F:1A:61:C7:DC:25

entrustnetpremium2
048secureserverca

Jun 18,
2018

50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:
E7:92:7D:7D:65:2D:34:31

camerfirmaglobalch
ambersignroot

Jun 18,
2018

33:9B:6B:14:50:24:9B:55:7A:01:87:72:
84:D9:E0:2F:C3:D2:D8:E9

verisignclass3g3ca Apr 21,
2018

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1140

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

godaddyclass2ca Jun 18,
2018

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

mozillacert61.pem Jun 18,
2018

E0:B4:32:2E:B2:F6:A5:68:B6:54:53:84:
48:18:4A:50:36:87:43:84

mozillacert53.pem Jun 18,
2018

7F:8A:B0:CF:D0:51:87:6A:66:F3:36:0F:
47:C8:8D:8C:D3:35:FC:74

atostrustedroot201
1

Jun 18,
2018

2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:
6A:46:4B:55:06:02:AC:21

mozillacert111.pem Jun 18,
2018

9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:
52:55:60:13:F5:AD:AF:65

staatdernederlande
nevrootca

Jun 18,
2018

76:E2:7E:C1:4F:DB:82:C1:C0:A6:75:B5:
05:BE:3D:29:B4:ED:DB:BB

mozillacert45.pem Jun 18,
2018

67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:
56:4B:CF:E2:3D:69:C6:F0

mozillacert103.pem Jun 18,
2018

70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:
D7:01:9F:99:B0:3D:50:74

mozillacert37.pem Jun 18,
2018

B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:
37:58:2D:C4:AC:FD:94:97

mozillacert29.pem Jun 18,
2018

74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:
3C:21:64:60:20:E5:DF:CE

izenpecom Jun 18,
2018

2F:78:3D:25:52:18:A7:4A:65:39:71:B5:
2C:A2:9C:45:15:6F:E9:19

comodorsacertifica
tionauthority

Jun 18,
2018

AF:E5:D2:44:A8:D1:19:42:30:FF:47:9F:
E2:F8:97:BB:CD:7A:8C:B4

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1141

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert99.pem Jun 18,
2018

F1:7F:6F:B6:31:DC:99:E3:A3:C8:7F:FE:
1C:F1:81:10:88:D9:60:33

mozillacert149.pem Jun 18,
2018

6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:
DB:72:2E:31:30:61:F0:B1

utnuserfirstobject
ca

Apr 21,
2018

E1:2D:FB:4B:41:D7:D9:C3:2B:30:51:4B:
AC:1D:81:D8:38:5E:2D:46

verisignc3g3.pem Jun 18,
2018

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

dstrootcax3 Jun 18,
2018

DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:
73:26:38:CA:6A:D7:7C:13

addtrustexternalro
ot

Jun 18,
2018

02:FA:F3:E2:91:43:54:68:60:78:57:69:
4D:F5:E4:5B:68:85:18:68

certumtrustednetwo
rkca

Jun 18,
2018

07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:
A2:59:3A:19:A7:0F:06:9E

affirmtrustpremium
ecc

Jun 18,
2018

B8:23:6B:00:2F:1D:16:86:53:01:55:6C:
11:A4:37:CA:EB:FF:C3:BB

starfieldclass2ca Jun 18,
2018

AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:
14:C3:D0:E3:37:0E:B5:8A

actalisauthenticat
ionrootca

Jun 18,
2018

F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:
CE:19:2B:DD:C7:8E:9C:AC

verisignclass2g3ca Apr 21,
2018

61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:
C3:59:12:AF:9F:EB:63:11

isrgrootx1 Jun 18,
2018

CA:BD:2A:79:A1:07:6A:31:F2:1D:25:36:
35:CB:03:9D:43:29:A5:E8

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1142

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

godaddyrootcertifi
cateauthorityg2

Jun 18,
2018

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

mozillacert60.pem Jun 18,
2018

3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:
5B:B1:C3:65:C7:D8:11:B3

chunghwaepkirootca Apr 21,
2018

67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:
56:4B:CF:E2:3D:69:C6:F0

mozillacert52.pem Jun 18,
2018

8B:AF:4C:9B:1D:F0:2A:92:F7:DA:12:8E:
B9:1B:AC:F4:98:60:4B:6F

microseceszignoroo
tca2009

Jun 18,
2018

89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:
7D:54:DA:91:E1:01:31:8E

securesignrootca11 Jun 18,
2018

3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:
5B:B1:C3:65:C7:D8:11:B3

mozillacert110.pem Jun 18,
2018

93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:
16:52:28:78:BC:53:64:17

mozillacert44.pem Jun 18,
2018

5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:
4A:9A:C6:22:2B:CC:34:C6

mozillacert102.pem Jun 18,
2018

96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:
22:79:FE:60:FA:B9:16:83

mozillacert36.pem Jun 18,
2018

23:88:C9:D3:71:CC:9E:96:3D:FF:7D:3C:
A7:CE:FC:D6:25:EC:19:0D

mozillacert28.pem Jun 18,
2018

66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:
BA:6A:BE:D1:F7:BD:EF:7B

baltimorecybertrus
troot

Jun 18,
2018

D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:
2C:78:DB:28:52:CA:E4:74

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1143

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

amzninternalrootca Dec 12,
2008

A7:B7:F6:15:8A:FF:1E:C8:85:13:38:BC:
93:EB:A2:AB:A4:09:EF:06

mozillacert98.pem Jun 18,
2018

C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:
25:EB:AF:C3:7B:27:CC:D7

mozillacert148.pem Jun 18,
2018

04:83:ED:33:99:AC:36:08:05:87:22:ED:
BC:5E:46:00:E3:BE:F9:D7

verisignc3g2.pem Jun 18,
2018

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:
1B:DE:3A:09:E8:F8:77:0F

quovadisrootca2g3 Jun 18,
2018

09:3C:61:F3:8B:8B:DC:7D:55:DF:75:38:
02:05:00:E1:25:F5:C8:36

geotrustprimarycer
tificatio
nauthority

Jun 18,
2018

32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:
10:0D:D6:02:90:37:F0:96

opentrustrootcag3 Jun 18,
2018

6E:26:64:F3:56:BF:34:55:BF:D1:93:3F:
7C:01:DE:D8:13:DA:8A:A6

opentrustrootcag2 Jun 18,
2018

79:5F:88:60:C5:AB:7C:3D:92:E6:CB:F4:
8D:E1:45:CD:11:EF:60:0B

opentrustrootcag1 Jun 18,
2018

79:91:E8:34:F7:E2:EE:DD:08:95:01:52:
E9:55:2D:14:E9:58:D5:7E

verisignclass3ca Apr 21,
2018

A1:DB:63:93:91:6F:17:E4:18:55:09:40:
04:15:C7:02:40:B0:AE:6B

globalsignca Apr 21,
2018

B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:
F2:15:01:52:A4:1D:82:9C

ttelesecglobalroot
class2ca

Apr 21,
2018

59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:
32:17:65:CF:17:D8:94:E9

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1144

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

verisignclass1g3ca Apr 21,
2018

20:42:85:DC:F7:EB:76:41:95:57:8E:13:
6B:D4:B7:D1:E9:8E:46:A5

verisignuniversalr
ootca

Apr 21,
2018

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

soneraclass2ca Apr 21,
2018

37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:
B7:41:10:B4:F2:E4:9A:27

starfieldservicesr
ootcertif
icateauthorityg2

Jun 18,
2018

92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:
FF:22:D8:63:E8:25:6F:3F

mozillacert51.pem Jun 18,
2018

FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:
BF:03:FD:E8:7C:4B:2F:9B

mozillacert43.pem Jun 18,
2018

F9:CD:0E:2C:DA:76:24:C1:8F:BD:F0:F0:
AB:B6:45:B8:F7:FE:D5:7A

mozillacert101.pem Jun 18,
2018

99:A6:9B:E6:1A:FE:88:6B:4D:2B:82:00:
7C:B8:54:FC:31:7E:15:39

mozillacert35.pem Jun 18,
2018

2A:C8:D5:8B:57:CE:BF:2F:49:AF:F2:FC:
76:8F:51:14:62:90:7A:41

globalsignr2ca Apr 21,
2018

75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:
DD:DE:38:E4:B7:24:2E:FE

mozillacert27.pem Jun 18,
2018

3A:44:73:5A:E5:81:90:1F:24:86:61:46:
1E:3B:9C:C4:5F:F5:3A:1B

affirmtrustpremium Jun 18,
2018

D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:
7D:6A:06:65:26:32:28:27

mozillacert19.pem Jun 18,
2018

B4:35:D4:E1:11:9D:1C:66:90:A7:49:EB:
B3:94:BD:63:7B:A7:82:B7

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1145

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert97.pem Jun 18,
2018

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:
1B:DE:3A:09:E8:F8:77:0F

netlockaranyclassg
oldfotanusitvany

Jun 18,
2018

06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:
A9:03:D0:06:B7:97:09:91

mozillacert89.pem Jun 18,
2018

C8:EC:8C:87:92:69:CB:4B:AB:39:E9:8D:
7E:57:67:F3:14:95:73:9D

verisignroot.pem Jun 18,
2018

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

mozillacert147.pem Jun 18,
2018

58:11:9F:0E:12:82:87:EA:50:FD:D9:87:
45:6F:4F:78:DC:FA:D6:D4

aolrootca2 Apr 21,
2018

85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:
22:00:46:13:DB:17:92:84

cia-crt-g3-01-ca Nov 23,
2016

2B:EE:2C:BA:A3:1D:B5:FE:60:40:41:95:
08:ED:46:82:39:4D:ED:E2

aolrootca1 Apr 21,
2018

39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:
F0:7D:21:D8:05:0B:56:6A

verisignc3g1.pem Jun 18,
2018

A1:DB:63:93:91:6F:17:E4:18:55:09:40:
04:15:C7:02:40:B0:AE:6B

mozillacert139.pem Jun 18,
2018

DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:
BC:07:62:01:00:89:76:C9

soneraclass2rootca Jun 18,
2018

37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:
B7:41:10:B4:F2:E4:9A:27

swisssignsilverg2c
a

Apr 21,
2018

9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:
93:DF:A7:F0:40:D1:1D:CB

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1146

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

thawteprimaryrootc
a

Jun 18,
2018

91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:
99:29:5C:75:6C:81:7B:81

gdcatrustauthr5roo
t

Jun 18,
2018

0F:36:38:5B:81:1A:25:C3:9B:31:4E:83:
CA:E9:34:66:70:CC:74:B4

trustcenterclass4c
aii

Apr 21,
2018

A6:9A:91:FD:05:7F:13:6A:42:63:0B:B1:
76:0D:2D:51:12:0C:16:50

usertrustrsacertif
icationauthority

Jun 18,
2018

2B:8F:1B:57:33:0D:BB:A2:D0:7A:6C:51:
F7:0E:E9:0D:DA:B9:AD:8E

digicertassuredidr
ootg3

Jun 18,
2018

F5:17:A2:4F:9A:48:C6:C9:F8:A2:00:26:
9F:DC:0F:48:2C:AB:30:89

digicertassuredidr
ootg2

Jun 18,
2018

A1:4B:48:D9:43:EE:0A:0E:40:90:4F:3C:
E0:A4:C0:91:93:51:5D:3F

mozillacert50.pem Jun 18,
2018

8C:96:BA:EB:DD:2B:07:07:48:EE:30:32:
66:A0:F3:98:6E:7C:AE:58

mozillacert42.pem Jun 18,
2018

85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:
D6:13:30:FD:8C:DE:37:BF

mozillacert100.pem Jun 18,
2018

58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:
6D:29:D3:FF:8D:5F:00:F0

mozillacert34.pem Jun 18,
2018

59:22:A1:E1:5A:EA:16:35:21:F8:98:39:
6A:46:46:B0:44:1B:0F:A9

affirmtrustcommerc
ialca

Apr 21,
2018

F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:
DC:E9:6E:2C:C7:B2:78:B7

mozillacert26.pem Jun 18,
2018

87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:
59:3E:7D:44:D9:34:FF:11

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1147

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

globalsigneccrootc
ar5

Jun 18,
2018

1F:24:C6:30:CD:A4:18:EF:20:69:FF:AD:
4F:DD:5F:46:3A:1B:69:AA

globalsigneccrootc
ar4

Jun 18,
2018

69:69:56:2E:40:80:F4:24:A1:E7:19:9F:
14:BA:F3:EE:58:AB:6A:BB

buypassclass3rootc
a

Jun 18,
2018

DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:
C7:C2:81:A5:BC:A9:64:57

mozillacert18.pem Jun 18,
2018

79:98:A3:08:E1:4D:65:85:E6:C2:1E:15:
3A:71:9F:BA:5A:D3:4A:D9

mozillacert96.pem Jun 18,
2018

55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:
19:9D:2A:BE:11:E3:81:D1

verisignc2g6.pem Jun 18,
2018

40:B3:31:A0:E9:BF:E8:55:BC:39:93:CA:
70:4F:4E:C2:51:D4:1D:8F

secomvalicertclass
1ca

Apr 21,
2018

E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:
8C:E8:6A:81:10:9F:E4:8E

mozillacert88.pem Jun 18,
2018

FE:45:65:9B:79:03:5B:98:A1:61:B5:51:
2E:AC:DA:58:09:48:22:4D

accvraiz1 Jun 18,
2018

93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:
16:52:28:78:BC:53:64:17

mozillacert146.pem Jun 18,
2018

21:FC:BD:8E:7F:6C:AF:05:1B:D1:B3:43:
EC:A8:E7:61:47:F2:0F:8A

mozillacert138.pem Jun 18,
2018

E1:9F:E3:0E:8B:84:60:9E:80:9B:17:0D:
72:A8:C5:BA:6E:14:09:BD

verisignclass3g2ca Apr 21,
2018

85:37:1C:A6:E5:50:14:3D:CE:28:03:47:
1B:DE:3A:09:E8:F8:77:0F

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1148

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

dtrustrootclass3ca
2ev2009

Jun 18,
2018

96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:
22:79:FE:60:FA:B9:16:83

xrampglobalca Apr 21,
2018

B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:
54:F3:4C:52:B7:E5:58:C6

mozillacert9.pem Jun 18,
2018

F4:8B:11:BF:DE:AB:BE:94:54:20:71:E6:
41:DE:6B:BE:88:2B:40:B9

verisignuniversalr
ootcertif
icationauthority

Jun 18,
2018

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

tubitakkamusmsslko
ksertifik
asisurum1

Jun 18,
2018

31:43:64:9B:EC:CE:27:EC:ED:3A:3F:0B:
8F:0D:E4:E8:91:DD:EE:CA

mozillacert41.pem Jun 18,
2018

6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:
CE:BB:9D:D9:4F:4E:39:F3

mozillacert33.pem Jun 18,
2018

FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:
90:8F:FD:28:86:65:64:7D

mozillacert25.pem Jun 18,
2018

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

mozillacert17.pem Jun 18,
2018

40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:
CD:DB:79:D1:53:FB:90:1D

mozillacert95.pem Jun 18,
2018

DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:
C7:C2:81:A5:BC:A9:64:57

affirmtrustpremium
eccca

Apr 21,
2018

B8:23:6B:00:2F:1D:16:86:53:01:55:6C:
11:A4:37:CA:EB:FF:C3:BB

mozillacert87.pem Jun 18,
2018

5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:
19:19:C3:73:34:B9:C7:74

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1149

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert145.pem Jun 18,
2018

10:1D:FA:3F:D5:0B:CB:BB:9B:B5:60:0C:
19:55:A4:1A:F4:73:3A:04

mozillacert79.pem Jun 18,
2018

D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:
7D:6A:06:65:26:32:28:27

mozillacert137.pem Jun 18,
2018

4A:65:D5:F4:1D:EF:39:B8:B8:90:4A:4A:
D3:64:81:33:CF:C7:A1:D1

digicertassuredidr
ootca

Jun 18,
2018

05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:
4B:DF:B5:A8:99:B2:4D:43

addtrustqualifiedc
a

Apr 21,
2018

4D:23:78:EC:91:95:39:B5:00:7F:75:8F:
03:3B:21:1E:C5:4D:8B:CF

mozillacert129.pem Jun 18,
2018

E6:21:F3:35:43:79:05:9A:4B:68:30:9D:
8A:2F:74:22:15:87:EC:79

verisignclass2g2ca Apr 21,
2018

B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:
B6:CC:A0:08:1B:67:EC:9D

baltimorecodesigni
ngca

Apr 21,
2018

30:46:D8:C8:88:FF:69:30:C3:4A:FC:CD:
49:27:08:7C:60:56:7B:0D

luxtrustglobalroot
2

Jun 18,
2018

1E:0E:56:19:0A:D1:8B:25:98:B2:04:44:
FF:66:8A:04:17:99:5F:3F

visaecommerceroot Jun 18,
2018

70:17:9B:86:8C:00:A4:FA:60:91:52:22:
3F:9F:3E:32:BD:E0:05:62

oistewisekeyglobal
rootgbca

Jun 18,
2018

0F:F9:40:76:18:D3:D7:6A:4B:98:F0:A8:
35:9E:0C:FD:27:AC:CC:ED

mozillacert8.pem Jun 18,
2018

3E:2B:F7:F2:03:1B:96:F3:8C:E6:C4:D8:
A8:5D:3E:2D:58:47:6A:0F

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1150

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

comodocertificatio
nauthority

Jun 18,
2018

66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:
BA:6A:BE:D1:F7:BD:EF:7B

cia-crt-g3-02-ca Nov 23,
2016

96:4A:BB:A7:BD:DA:FC:97:34:C0:0A:2D:
F0:05:98:F7:E6:C6:6F:09

verisignc1g6.pem Jun 18,
2018

51:7F:61:1E:29:91:6B:53:82:FB:72:E7:
44:D9:8D:C3:CC:53:6D:64

trustcenterclass2c
aii

Apr 21,
2018

AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:
FE:68:5D:79:42:21:15:6E

quovadisrootca1g3 Jun 18,
2018

1B:8E:EA:57:96:29:1A:C9:39:EA:B8:0A:
81:1A:73:73:C0:93:79:67

mozillacert40.pem Jun 18,
2018

80:25:EF:F4:6E:70:C8:D4:72:24:65:84:
FE:40:3B:8A:8D:6A:DB:F5

cadisigrootr2 Jun 18,
2018

B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:
A5:57:47:C2:34:C7:D9:71

cadisigrootr1 Jun 18,
2018

8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:
EC:2B:47:56:51:1A:52:C6

mozillacert32.pem Jun 18,
2018

60:D6:89:74:B5:C2:65:9E:8A:0F:C1:88:
7C:88:D2:46:69:1B:18:2C

utndatacorpsgcca Apr 21,
2018

58:11:9F:0E:12:82:87:EA:50:FD:D9:87:
45:6F:4F:78:DC:FA:D6:D4

mozillacert24.pem Jun 18,
2018

59:AF:82:79:91:86:C7:B4:75:07:CB:CF:
03:57:46:EB:04:DD:B7:16

addtrustclass1ca Apr 21,
2018

CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:
9F:CD:12:EB:24:E3:94:9D

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1151

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert16.pem Jun 18,
2018

DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:
73:26:38:CA:6A:D7:7C:13

affirmtrustnetwork
ingca

Apr 21,
2018

29:36:21:02:8B:20:ED:02:F5:66:C5:32:
D1:D6:ED:90:9F:45:00:2F

mozillacert94.pem Jun 18,
2018

49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:
C7:6B:EB:C6:0B:12:40:99

mozillacert86.pem Jun 18,
2018

74:2C:31:92:E6:07:E4:24:EB:45:49:54:
2B:E1:BB:C5:3E:61:74:E2

mozillacert144.pem Jun 18,
2018

37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:
B7:41:10:B4:F2:E4:9A:27

mozillacert78.pem Jun 18,
2018

29:36:21:02:8B:20:ED:02:F5:66:C5:32:
D1:D6:ED:90:9F:45:00:2F

mozillacert136.pem Jun 18,
2018

D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:
F1:F1:60:17:64:D8:E3:49

mozillacert128.pem Jun 18,
2018

A9:E9:78:08:14:37:58:88:F2:05:19:B0:
6D:2B:0D:2B:60:16:90:7D

verisignclass1g2ca Apr 21,
2018

27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:
56:16:7F:62:F5:32:E5:47

hellenicacademican
dresearch
instituti
onsrootca2015

Jun 18,
2018

01:0C:06:95:A6:98:19:14:FF:BF:5F:C6:
B0:B6:95:EA:29:E9:12:A6

soneraclass1ca Apr 21,
2018

07:47:22:01:99:CE:74:B9:7C:B0:3D:79:
B2:64:A2:C8:55:E9:33:FF

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1152

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

hellenicacademican
dresearch
instituti
onsrootca2011

Jun 18,
2018

FE:45:65:9B:79:03:5B:98:A1:61:B5:51:
2E:AC:DA:58:09:48:22:4D

certumtrustednetwo
rkca2

Jun 18,
2018

D3:DD:48:3E:2B:BF:4C:05:E8:AF:10:F5:
FA:76:26:CF:D3:DC:30:92

equifaxsecureca Apr 21,
2018

D2:32:09:AD:23:D3:14:23:21:74:E4:0D:
7F:9D:62:13:97:86:63:3A

thawteserverca Apr 21,
2018

9F:AD:91:A6:CE:6A:C6:C5:00:47:C4:4E:
C9:D4:A5:0D:92:D8:49:79

mozillacert7.pem Jun 18,
2018

AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:
14:C3:D0:E3:37:0E:B5:8A

affirmtrustnetwork
ing

Jun 18,
2018

29:36:21:02:8B:20:ED:02:F5:66:C5:32:
D1:D6:ED:90:9F:45:00:2F

deprecateditsecca Jan 27,
2012

12:12:0B:03:0E:15:14:54:F4:DD:B3:F5:
DE:13:6E:83:5A:29:72:9D

globalsignrootcar3 Jun 18,
2018

D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:
09:26:DF:5B:85:69:76:AD

globalsignrootcar2 Jun 18,
2018

75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:
DD:DE:38:E4:B7:24:2E:FE

quovadisrootca Jun 18,
2018

DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:
BC:07:62:01:00:89:76:C9

mozillacert31.pem Jun 18,
2018

9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:
B6:56:3B:8E:2D:93:C3:11

entrustrootcertifi
cationauthority

Jun 18,
2018

B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:
D4:4D:F5:D4:67:49:52:F9

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1153

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert23.pem Jun 18,
2018

91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:
99:29:5C:75:6C:81:7B:81

mozillacert15.pem Jun 18,
2018

74:20:74:41:72:9C:DD:92:EC:79:31:D8:
23:10:8D:C2:81:92:E2:BB

verisignc2g3.pem Jun 18,
2018

61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:
C3:59:12:AF:9F:EB:63:11

mozillacert93.pem Jun 18,
2018

31:F1:FD:68:22:63:20:EE:C6:3B:3F:9D:
EA:4A:3E:53:7C:7C:39:17

mozillacert151.pem Jun 18,
2018

AC:ED:5F:65:53:FD:25:CE:01:5F:1F:7A:
48:3B:6A:74:9F:61:78:C6

mozillacert85.pem Jun 18,
2018

CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:
A3:7A:A0:76:A9:06:23:48

certplusclass2prim
aryca

Jun 18,
2018

74:20:74:41:72:9C:DD:92:EC:79:31:D8:
23:10:8D:C2:81:92:E2:BB

mozillacert143.pem Jun 18,
2018

36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:
0F:C6:56:8F:5D:AC:B2:F7

mozillacert77.pem Jun 18,
2018

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

mozillacert135.pem Jun 18,
2018

62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:
34:8E:06:42:51:B1:81:18

mozillacert69.pem Jun 18,
2018

2F:78:3D:25:52:18:A7:4A:65:39:71:B5:
2C:A2:9C:45:15:6F:E9:19

mozillacert127.pem Jun 18,
2018

DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:
A3:49:A7:F9:96:2A:82:12

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1154

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert119.pem Jun 18,
2018

75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:
DD:DE:38:E4:B7:24:2E:FE

geotrustprimarycag
3

Apr 21,
2018

03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:
20:D2:D9:32:3A:4C:2A:FD

identrustpublicsec
torrootca1

Jun 18,
2018

BA:29:41:60:77:98:3F:F4:F3:EF:F2:31:
05:3B:2E:EA:6D:4D:45:FD

geotrustprimarycag
2

Apr 21,
2018

8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:
8B:51:9A:99:E6:10:D7:B0

trustcorrootcertca
2

Jun 18,
2018

B8:BE:6D:CB:56:F1:55:B9:63:D4:12:CA:
4E:06:34:C7:94:B2:1C:C0

mozillacert6.pem Jun 18,
2018

27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:
D7:77:70:02:8F:20:EE:E4

trustcorrootcertca
1

Jun 18,
2018

FF:BD:CD:E7:82:C8:43:5E:3C:6F:26:86:
5C:CA:A8:3A:45:5B:C3:0A

networksolutionsce
rtificate
authority

Jun 18,
2018

74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:
3C:21:64:60:20:E5:DF:CE

twcarootcertificat
ionauthority

Jun 18,
2018

CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:
A3:7A:A0:76:A9:06:23:48

addtrustexternalca Apr 21,
2018

02:FA:F3:E2:91:43:54:68:60:78:57:69:
4D:F5:E4:5B:68:85:18:68

verisignclass3g5ca Apr 21,
2018

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1155

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

autoridaddecertifi
cacionfir
maprofesi
onalcifa62634068

Jun 18,
2018

AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:
5A:9A:E8:00:B7:F7:B6:FA

hellenicacademican
dresearch
instituti
onseccrootca2015

Jun 18,
2018

9F:F1:71:8D:92:D5:9A:F3:7D:74:97:B4:
BC:6F:84:68:0B:BA:B6:66

verisigntsaca Apr 21,
2018

20:CE:B1:F0:F5:1C:0E:19:A9:F3:8D:B1:
AA:8E:03:8C:AA:7A:C7:01

utnuserfirsthardwa
reca

Apr 21,
2018

04:83:ED:33:99:AC:36:08:05:87:22:ED:
BC:5E:46:00:E3:BE:F9:D7

identrustcommercia
lrootca1

Jun 18,
2018

DF:71:7E:AA:4A:D9:4E:C9:55:84:99:60:
2D:48:DE:5F:BC:F0:3A:25

dtrustrootclass3ca
22009

Jun 18,
2018

58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:
6D:29:D3:FF:8D:5F:00:F0

epkirootcertificat
ionauthority

Jun 18,
2018

67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:
56:4B:CF:E2:3D:69:C6:F0

mozillacert30.pem Jun 18,
2018

E7:B4:F6:9D:61:EC:90:69:DB:7E:90:A7:
40:1A:3C:F4:7D:4F:E8:EE

teliasonerarootcav
1

Jun 18,
2018

43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:
F6:CF:F6:34:69:87:82:37

buypassclass3ca Apr 21,
2018

DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:
C7:C2:81:A5:BC:A9:64:57

mozillacert22.pem Jun 18,
2018

32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:
10:0D:D6:02:90:37:F0:96

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1156

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert14.pem Jun 18,
2018

5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:
E6:D3:8F:1A:61:C7:DC:25

verisignc2g2.pem Jun 18,
2018

B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:
B6:CC:A0:08:1B:67:EC:9D

certumca Apr 21,
2018

62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:
34:8E:06:42:51:B1:81:18

mozillacert92.pem Jun 18,
2018

A3:F1:33:3F:E2:42:BF:CF:C5:D1:4E:8F:
39:42:98:40:68:10:D1:A0

mozillacert150.pem Jun 18,
2018

33:9B:6B:14:50:24:9B:55:7A:01:87:72:
84:D9:E0:2F:C3:D2:D8:E9

mozillacert84.pem Jun 18,
2018

D3:C0:63:F2:19:ED:07:3E:34:AD:5D:75:
0B:32:76:29:FF:D5:9A:F2

ttelesecglobalroot
class3

Jun 18,
2018

55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:
19:9D:2A:BE:11:E3:81:D1

globalsignrootca Jun 18,
2018

B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:
F2:15:01:52:A4:1D:82:9C

ttelesecglobalroot
class2

Jun 18,
2018

59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:
32:17:65:CF:17:D8:94:E9

mozillacert142.pem Jun 18,
2018

1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:
BE:FD:3A:2D:82:75:51:85

mozillacert76.pem Jun 18,
2018

F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:
DC:E9:6E:2C:C7:B2:78:B7

mozillacert134.pem Jun 18,
2018

70:17:9B:86:8C:00:A4:FA:60:91:52:22:
3F:9F:3E:32:BD:E0:05:62

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1157

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert68.pem Jun 18,
2018

AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:
5A:9A:E8:00:B7:F7:B6:FA

etugracertificatio
nauthority

Jun 18,
2018

51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:
0D:6D:A3:62:8F:C3:52:39

mozillacert126.pem Jun 18,
2018

25:01:90:19:CF:FB:D9:99:1C:B7:68:25:
74:8D:94:5F:30:93:95:42

keynectisrootca Apr 21,
2018

9C:61:5C:4D:4D:85:10:3A:53:26:C2:4D:
BA:EA:E4:A2:D2:D5:CC:97

mozillacert118.pem Jun 18,
2018

7E:78:4A:10:1C:82:65:CC:2D:E1:F1:6D:
47:B4:40:CA:D9:0A:19:45

quovadisrootca3 Jun 18,
2018

1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:
BE:FD:3A:2D:82:75:51:85

quovadisrootca2 Jun 18,
2018

CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:
88:80:48:39:19:93:7C:F7

mozillacert5.pem Jun 18,
2018

B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:
54:F3:4C:52:B7:E5:58:C6

verisignc1g3.pem Jun 18,
2018

20:42:85:DC:F7:EB:76:41:95:57:8E:13:
6B:D4:B7:D1:E9:8E:46:A5

cybertrustglobalro
ot

Jun 18,
2018

5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:
4A:9A:C6:22:2B:CC:34:C6

amzninternalinfose
ccag3

Feb 27,
2015

B9:B1:CA:38:F7:BF:9C:D2:D4:95:E7:B6:
5E:75:32:9B:A8:78:2E:F6

starfieldrootcerti
ficateauthorityg2

Jun 18,
2018

B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:
92:F4:FE:39:D4:E7:0F:0E

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1158

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

entrust2048ca Apr 21,
2018

50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:
E7:92:7D:7D:65:2D:34:31

swisssignsilvercag
2

Jun 18,
2018

9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:
93:DF:A7:F0:40:D1:1D:CB

affirmtrustcommerc
ial

Jun 18,
2018

F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:
DC:E9:6E:2C:C7:B2:78:B7

certinomisrootca Jun 18,
2018

9D:70:BB:01:A5:A4:A0:18:11:2E:F7:1C:
01:B9:32:C5:34:E7:88:A8

xrampglobalcaroot Jun 18,
2018

B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:
54:F3:4C:52:B7:E5:58:C6

secureglobalca Jun 18,
2018

3A:44:73:5A:E5:81:90:1F:24:86:61:46:
1E:3B:9C:C4:5F:F5:3A:1B

swisssigngoldg2ca Apr 21,
2018

D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:
45:25:3A:6F:9F:1A:27:61

mozillacert21.pem Jun 18,
2018

9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:
93:DF:A7:F0:40:D1:1D:CB

mozillacert13.pem Jun 18,
2018

06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:
A9:03:D0:06:B7:97:09:91

verisignc2g1.pem Jun 18,
2018

67:82:AA:E0:ED:EE:E2:1A:58:39:D3:C0:
CD:14:68:0A:4F:60:14:2A

mozillacert91.pem Jun 18,
2018

3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:
93:D9:DF:F5:4B:81:C0:04

oistewisekeyglobal
rootgaca

Jun 18,
2018

59:22:A1:E1:5A:EA:16:35:21:F8:98:39:
6A:46:46:B0:44:1B:0F:A9

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1159

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert83.pem Jun 18,
2018

A0:73:E5:C5:BD:43:61:0D:86:4C:21:13:
0A:85:58:57:CC:9C:EA:46

entrustevca Apr 21,
2018

B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:
D4:4D:F5:D4:67:49:52:F9

mozillacert141.pem Jun 18,
2018

31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:
4B:57:E8:B7:D8:F1:FC:A6

mozillacert75.pem Jun 18,
2018

D2:32:09:AD:23:D3:14:23:21:74:E4:0D:
7F:9D:62:13:97:86:63:3A

mozillacert133.pem Jun 18,
2018

85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:
22:00:46:13:DB:17:92:84

mozillacert67.pem Jun 18,
2018

D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:
09:26:DF:5B:85:69:76:AD

mozillacert125.pem Jun 18,
2018

B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:
D4:4D:F5:D4:67:49:52:F9

mozillacert59.pem Jun 18,
2018

36:79:CA:35:66:87:72:30:4D:30:A5:FB:
87:3B:0F:A7:7B:B7:0D:54

thawtepremiumserve
rca

Apr 21,
2018

E0:AB:05:94:20:72:54:93:05:60:62:02:
36:70:F7:CD:2E:FC:66:66

mozillacert117.pem Jun 18,
2018

D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:
2C:78:DB:28:52:CA:E4:74

utnuserfirstclient
authemailca

Apr 21,
2018

B1:72:B1:A5:6D:95:F9:1F:E5:02:87:E1:
4D:37:EA:6A:44:63:76:8A

entrustrootcag2 Apr 21,
2018

8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:
1E:57:EF:BB:93:22:72:D4

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1160

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

mozillacert109.pem Jun 18,
2018

B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:
A5:57:47:C2:34:C7:D9:71

digicerttrustedroo
tg4

Jun 18,
2018

DD:FB:16:CD:49:31:C9:73:A2:03:7D:3F:
C8:3A:4D:7D:77:5D:05:E4

gdroot-g2.pem Jun 18,
2018

47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:
A7:9F:45:C2:54:FD:E6:8B

comodoaaaservicesr
oot

Jun 18,
2018

D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:
F1:F1:60:17:64:D8:E3:49

mozillacert4.pem Jun 18,
2018

E3:92:51:2F:0A:CF:F5:05:DF:F6:DE:06:
7F:75:37:E1:65:EA:57:4B

verisignclass3publ
icprimary
certifica
tionauthorityg5

Jun 18,
2018

4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:
56:BE:3D:9B:67:44:A5:E5

chambersofcommerce
root2008

Jun 18,
2018

78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:
BA:9E:A8:7E:FE:9A:CE:3C

verisignclass3publ
icprimary
certifica
tionauthorityg4

Jun 18,
2018

22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:
CF:8A:2D:64:C9:3F:6C:3A

verisignclass3publ
icprimary
certifica
tionauthorityg3

Jun 18,
2018

13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:
39:E2:55:76:60:9B:5C:C6

thawtepersonalfree
mailca

Apr 21,
2018

E6:18:83:AE:84:CA:C1:C1:CD:52:AD:E8:
E9:25:2B:45:A6:4F:B7:E2

Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1161

AWS AppSync Developer Guide

Name Date SHA1 Fingerprint

verisignc1g2.pem Jun 18,
2018

27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:
56:16:7F:62:F5:32:E5:47

gtecybertrustgloba
lca

Apr 21,
2018

97:81:79:50:D8:1C:96:70:CC:34:D8:09:
CF:79:44:31:36:7E:F4:74

trustcenterunivers
alcai

Apr 21,
2018

6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:
CE:BB:9D:D9:4F:4E:39:F3

camerfirmachambers
commerceca

Apr 21,
2018

6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:
DB:72:2E:31:30:61:F0:B1

verisignclass1ca Apr 21,
2018

CE:6A:64:A3:09:E4:2F:BB:D9:85:1C:45:
3E:64:09:EA:E8:7D:60:F1

Resolver mapping template changelog

Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Resolver and function mapping templates are versioned. The mapping template version, such
as 2018-05-29) dictates the following: * The expected shape of the data source request
configuration provided by the request template * The execution behavior of the request mapping
template and the response mapping template

Versions are represented using the YYYY-MM-DD format, a later date corresponds to a more recent
version. This page lists the differences between the mapping template versions currently supported
in AWS AppSync.

Topics

• Datasource Operation Availability Per Version Matrix

• Changing the Version on a Unit Resolver Mapping Template

Resolver mapping template changelog 1162

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

• Changing the Version on a Function

• 2018-05-29

• 2017-02-28

Datasource Operation Availability Per Version Matrix

Operation/Version
Supported

2017-02-28 2018-05-29

AWS Lambda Invoke Yes Yes

AWS Lambda BatchInvoke Yes Yes

None Datasource Yes Yes

Amazon OpenSearch GET Yes Yes

Amazon OpenSearch POST Yes Yes

Amazon OpenSearch PUT Yes Yes

Amazon OpenSearch DELETE Yes Yes

Amazon OpenSearch GET Yes Yes

DynamoDB GetItem Yes Yes

DynamoDB Scan Yes Yes

DynamoDB Query Yes Yes

DynamoDB DeleteItem Yes Yes

DynamoDB PutItem Yes Yes

DynamoDB BatchGetItem No Yes

DynamoDB BatchPutItem No Yes

DynamoDB BatchDeleteItem No Yes

Datasource Operation Availability Per Version Matrix 1163

AWS AppSync Developer Guide

Operation/Version
Supported

2017-02-28 2018-05-29

HTTP No Yes

Amazon RDS No Yes

Note: Only 2018-05-29 version is currently supported in functions.

Changing the Version on a Unit Resolver Mapping Template

For Unit resolvers, the version is specified as part of the body of the request mapping template. To
update the version, simply update the version field to the new version.

For example, to update the version on the AWS Lambda template:

{
 "version": "2017-02-28",
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "arguments": $utils.toJson($context.arguments)
 }
}

You need to update the version field from 2017-02-28 to 2018-05-29 as follows:

{
 "version": "2018-05-29", ## Note the version
 "operation": "Invoke",
 "payload": {
 "field": "getPost",
 "arguments": $utils.toJson($context.arguments)
 }
}

Changing the Version on a Unit Resolver Mapping Template 1164

AWS AppSync Developer Guide

Changing the Version on a Function

For functions, the version is specified as the functionVersion field on the function object. To
update the version, simply update the functionVersion. Note: Currently, only 2018-05-29 is
supported for function.

The following is an example of a CLI command to update an existing function version:

aws appsync update-function \
--api-id REPLACE_WITH_API_ID \
--function-id REPLACE_WITH_FUNCTION_ID \
--data-source-name "PostTable" \
--function-version "2018-05-29" \
--request-mapping-template "{...}" \
--response-mapping-template "\$util.toJson(\$ctx.result)"

Note: It is recommended to omit the version field from the function request mapping template as
it will not be honored. If you do specify a version inside a function request mapping template, the
version value will be overridden by the value of the functionVersion field.

2018-05-29

Behavior Change

• If the datasource invocation result is null, the response mapping template is executed.

• If the datasource invocation yields an error, it is now up to you to handle the error, the response
mapping template evaluated result will always be placed inside the GraphQL response data
block.

Reasoning

• A null invocation result has meaning, and in some application use cases we might want to
handle null results in a custom way. For example, an application might check if a record exists
in an Amazon DynamoDB table to perform some authorization check. In this case, a null
invocation result would mean the user might not be authorized. Executing the response mapping
template now provides the ability to raise an unauthorized error. This behavior provides greater
control to the API designer.

Changing the Version on a Function 1165

AWS AppSync Developer Guide

Given the following response mapping template:

$util.toJson($ctx.result)

Previously with 2017-02-28, if $ctx.result came back null, the response mapping template
was not executed. With 2018-05-29, we can now handle this scenario. For example, we can
choose to raise an authorization error as follows:

throw an unauthorized error if the result is null
#if ($util.isNull($ctx.result))
 $util.unauthorized()
#end
$util.toJson($ctx.result)

Note: Errors coming back from a data source are sometimes not fatal or even expected, that is why
the response mapping template should be given the flexibility to handle the invocation error and
decide whether to ignore it, re-raise it, or throw a different error.

Given the following response mapping template:

$util.toJson($ctx.result)

Previously, with 2017-02-28, in case of an invocation error, the response mapping template was
evaluated and the result was placed automatically in the errors block of the GraphQL response.
With 2018-05-29, we can now choose what to do with the error, re-raise it, raise a different error,
or append the error while return data.

Re-raise an Invocation Error

In the following response template, we raise the same error that came back from the data source.

#if ($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type)
#end
$util.toJson($ctx.result)

In case of an invocation error (for example, $ctx.error is present) the response looks like the
following:

2018-05-29 1166

AWS AppSync Developer Guide

{
 "data": {
 "getPost": null
 },
 "errors": [
 {
 "path": [
 "getPost"
],
 "errorType": "DynamoDB:ConditionalCheckFailedException",
 "message": "Conditional check failed exception...",
 "locations": [
 {
 "line": 5,
 "column": 5
 }
]
 }
]
}

Raise a Different Error

In the following response template, we raise our own custom error after processing the error that
came back from the data source.

#if ($ctx.error)
 #if ($ctx.error.type.equals("ConditionalCheckFailedException"))
 ## we choose here to change the type and message of the error for
 ConditionalCheckFailedExceptions
 $util.error("Error while updating the post, try again. Error:
 $ctx.error.message", "UpdateError")
 #else
 $util.error($ctx.error.message, $ctx.error.type)
 #end
#end
$util.toJson($ctx.result)

In case of an invocation error (for example, $ctx.error is present) the response looks like the
following:

{

2018-05-29 1167

AWS AppSync Developer Guide

 "data": {
 "getPost": null
 },
 "errors": [
 {
 "path": [
 "getPost"
],
 "errorType": "UpdateError",
 "message": "Error while updating the post, try again. Error: Conditional
 check failed exception...",
 "locations": [
 {
 "line": 5,
 "column": 5
 }
]
 }
]
}

Append an Error to Return Data

In the following response template, we append the same error that came back from the data
source while returning data back inside the response. This is also known as a partial response.

#if ($ctx.error)
 $util.appendError($ctx.error.message, $ctx.error.type)
 #set($defaultPost = {id: "1", title: 'default post'})
 $util.toJson($defaultPost)
#else
 $util.toJson($ctx.result)
#end

In case of an invocation error (for example, $ctx.error is present) the response looks like the
following:

{
 "data": {
 "getPost": {
 "id": "1",
 "title: "A post"

2018-05-29 1168

AWS AppSync Developer Guide

 }
 },
 "errors": [
 {
 "path": [
 "getPost"
],
 "errorType": "ConditionalCheckFailedException",
 "message": "Conditional check failed exception...",
 "locations": [
 {
 "line": 5,
 "column": 5
 }
]
 }
]
}

Migrating from 2017-02-28 to 2018-05-29

Migrating from 2017-02-28 to 2018-05-29 is straightforward. Change the version field on
the resolver request mapping template or on the function version object. However, note that
2018-05-29 execution behaves differently from 2017-02-28, changes are outlined here.

Preserving the same execution behavior from 2017-02-28 to 2018-05-29

In some cases, it is possible to retain the same execution behavior as the 2017-02-28 version while
executing a 2018-05-29 versioned template.

Example: DynamoDB PutItem

Given the following 2017-02-28 DynamoDB PutItem request template:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key": {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "attributeValues" : {
 "baz" : ... typed value

2018-05-29 1169

AWS AppSync Developer Guide

 },
 "condition" : {
 ...
 }
}

And the following response template:

$util.toJson($ctx.result)

Migrating to 2018-05-29 changes these templates as follows:

{
 "version" : "2018-05-29", ## Note the new 2018-05-29 version
 "operation" : "PutItem",
 "key": {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "attributeValues" : {
 "baz" : ... typed value
 },
 "condition" : {
 ...
 }
}

And changes the response template as follows:

If there is a datasource invocation error, we choose to raise the same error
the field data will be set to null.
#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type, $ctx.result)
#end

If the data source invocation is null, we return null.
#if($util.isNull($ctx.result))
 #return
#end

$util.toJson($ctx.result)

2018-05-29 1170

AWS AppSync Developer Guide

Now that it is your responsibility to handle errors, we chose to raise the same error using
$util.error() that was returned from DynamoDB. You can adapt this snippet to convert your
mapping template to 2018-05-29, note that if your response template is different you will have to
take account of the execution behavior changes.

Example: DynamoDB GetItem

Given the following 2017-02-28 DynamoDB GetItem request template:

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "consistentRead" : true
}

And the following response template:

map table attribute postId to field Post.id
$util.qr($ctx.result.put("id", $ctx.result.get("postId")))

$util.toJson($ctx.result)

Migrating to 2018-05-29 changes these templates as follows:

{
 "version" : "2018-05-29", ## Note the new 2018-05-29 version
 "operation" : "GetItem",
 "key" : {
 "foo" : ... typed value,
 "bar" : ... typed value
 },
 "consistentRead" : true
}

And changes the response template as follows:

If there is a datasource invocation error, we choose to raise the same error

2018-05-29 1171

AWS AppSync Developer Guide

#if($ctx.error)
 $util.error($ctx.error.message, $ctx.error.type)
#end

If the data source invocation is null, we return null.
#if($util.isNull($ctx.result))
 #return
#end

map table attribute postId to field Post.id
$util.qr($ctx.result.put("id", $ctx.result.get("postId")))

$util.toJson($ctx.result)

In the 2017-02-28 version, if the datasource invocation was null, meaning there is no item in
the DynamoDB table that matches our key, the response mapping template would not execute.
It might be fine for most of the cases, but if you expected the $ctx.result to not be null, you
now have to handle that scenario.

2017-02-28

Characteristics

• If the datasource invocation result is null, the response mapping template is not executed.

• If the datasource invocation yields an error, the response mapping template is executed and the
evaluated result is placed inside the GraphQL response errors.data block.

2017-02-28 1172

AWS AppSync Developer Guide

Type reference

This section is used as a reference for schema types.

Scalar types in AWS AppSync

A GraphQL object type has a name and fields, and those fields can have sub-fields. Ultimately, an
object type's fields must resolve to scalar types, which represent the leaves of the query. For more
information about object types and scalars, see Schemas and types on the GraphQL website.

In addition to the default set of GraphQL scalars, AWS AppSync also lets you use the service-
defined scalars that start with the AWS prefix. AWS AppSync doesn't support the creation of user-
defined (custom) scalars. You must use either the default or AWS scalars.

You cannot use AWS as a prefix for custom object types.

The following section is a reference for schema typing.

Default scalars

GraphQL defines the following default scalars:

Default scalars list

ID

A unique identifier for an object. This scalar is serialized like a String but isn't meant to be
human-readable.

String

A UTF-8 character sequence.

Int

An integer value between -(231) and 231-1.

Float

An IEEE 754 floating point value.

Boolean

A Boolean value, either true or false.

Scalar types 1173

https://graphql.org/learn/schema/

AWS AppSync Developer Guide

AWS AppSync scalars

AWS AppSync defines the following scalars:

AWS AppSync scalars list

AWSDate

An extended ISO 8601 date string in the format YYYY-MM-DD.

AWSTime

An extended ISO 8601 time string in the format hh:mm:ss.sss.

AWSDateTime

An extended ISO 8601 date and time string in the format YYYY-MM-DDThh:mm:ss.sssZ.

Note

The AWSDate, AWSTime, and AWSDateTime scalars can optionally include a time
zone offset. For example, the values 1970-01-01Z, 1970-01-01-07:00, and
1970-01-01+05:30 are all valid for AWSDate. The time zone offset must be either Z (UTC)
or an offset in hours and minutes (and, optionally, seconds). For example, ±hh:mm:ss. The
seconds field in the time zone offset is considered valid even though it's not part of the ISO
8601 standard.

AWSTimestamp

An integer value representing the number of seconds before or after 1970-01-01-T00:00Z.

AWSEmail

An email address in the format local-part@domain-part as defined by RFC 822.

AWSJSON

A JSON string. Any valid JSON construct is automatically parsed and loaded in the resolver
code as maps, lists, or scalar values rather than as the literal input strings. Unquoted strings or
otherwise invalid JSON result in a GraphQL validation error.

AWS AppSync scalars 1174

https://en.wikipedia.org/wiki/ISO_8601#Calendar_dates
https://en.wikipedia.org/wiki/ISO_8601#Times
https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://en.wikipedia.org/wiki/ISO_8601#Time_zone_designators
https://en.wikipedia.org/wiki/ISO_8601#Time_zone_designators
https://tools.ietf.org/html/rfc822

AWS AppSync Developer Guide

AWSPhone

A phone number. This value is stored as a string. Phone numbers can contain either spaces or
hyphens to separate digit groups. Phone numbers without a country code are assumed to be
US/North American numbers adhering to the North American Numbering Plan (NANP).

AWSURL

A URL as defined by RFC 1738. For example, https://www.amazon.com/dp/B000NZW3KC/
or mailto:example@example.com. URLs must contain a schema (http, mailto) and can't
contain two forward slashes (//) in the path part.

AWSIPAddress

A valid IPv4 or IPv6 address. IPv4 addresses are expected in quad-dotted notation
(123.12.34.56). IPv6 addresses are expected in non-bracketed, colon-separated format
(1a2b:3c4b::1234:4567). You can include an optional CIDR suffix (123.45.67.89/16) to
indicate subnet mask.

Schema usage example

The following example GraphQL schema uses all of the custom scalars as an "object" and shows the
resolver request and response templates for basic put, get, and list operations. Finally, the example
shows how you can use this when running queries and mutations.

type Mutation {
 putObject(
 email: AWSEmail,
 json: AWSJSON,
 date: AWSDate,
 time: AWSTime,
 datetime: AWSDateTime,
 timestamp: AWSTimestamp,
 url: AWSURL,
 phoneno: AWSPhone,
 ip: AWSIPAddress
): Object
}

type Object {
 id: ID!

Schema usage example 1175

https://en.wikipedia.org/wiki/North_American_Numbering_Plan
https://tools.ietf.org/html/rfc1738

AWS AppSync Developer Guide

 email: AWSEmail
 json: AWSJSON
 date: AWSDate
 time: AWSTime
 datetime: AWSDateTime
 timestamp: AWSTimestamp
 url: AWSURL
 phoneno: AWSPhone
 ip: AWSIPAddress
}

type Query {
 getObject(id: ID!): Object
 listObjects: [Object]
}

schema {
 query: Query
 mutation: Mutation
}

Here's what a request template for putObject might look like. A putObject uses a PutItem
operation to create or update an item in your Amazon DynamoDB table. Note that this code
snippet doesn't have a configured Amazon DynamoDB table as a data source. This is being used as
an example only:

{
 "version" : "2017-02-28",
 "operation" : "PutItem",
 "key" : {
 "id": $util.dynamodb.toDynamoDBJson($util.autoId()),
 },
 "attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

The response template for putObject returns the results:

$util.toJson($ctx.result)

Here's what a request template for getObject might look like. A getObject uses a GetItem
operation to return a set of attributes for the item given the primary key. Note that this code

Schema usage example 1176

AWS AppSync Developer Guide

snippet doesn't have a configured Amazon DynamoDB table as a data source. This is being used as
an example only:

{
 "version": "2017-02-28",
 "operation": "GetItem",
 "key": {
 "id": $util.dynamodb.toDynamoDBJson($ctx.args.id),
 }
}

The response template for getObject returns the results:

$util.toJson($ctx.result)

Here's what a request template for listObjects might look like. A listObjects uses a Scan
operation to return one or more items and attributes. Note that this code snippet doesn't have a
configured Amazon DynamoDB table as a data source. This is being used as an example only:

{
 "version" : "2017-02-28",
 "operation" : "Scan",
}

The response template for listObjects returns the results:

$util.toJson($ctx.result.items)

The following are some examples of using this schema with GraphQL queries:

mutation CreateObject {
 putObject(email: "example@example.com"
 json: "{\"a\":1, \"b\":3, \"string\": 234}"
 date: "1970-01-01Z"
 time: "12:00:34."
 datetime: "1930-01-01T16:00:00-07:00"
 timestamp: -123123
 url:"https://amazon.com"
 phoneno: "+1 555 764 4377"
 ip: "127.0.0.1/8"
) {

Schema usage example 1177

AWS AppSync Developer Guide

 id
 email
 json
 date
 time
 datetime
 url
 timestamp
 phoneno
 ip
 }
}

query getObject {
 getObject(id:"0d97daf0-48e6-4ffc-8d48-0537e8a843d2"){
 email
 url
 timestamp
 phoneno
 ip
 }
}

query listObjects {
 listObjects {
 json
 date
 time
 datetime
 }
}

Interfaces and unions in GraphQL

The GraphQL type system supports Interfaces. An interface exposes a certain set of fields that a
type must include to implement the interface.

The GraphQL type system also supports Unions. Unions are identical to interfaces, except that
they don’t define a common set of fields. Unions are generally preferred over interfaces when the
possible types do not share a logical hierarchy.

The following section is a reference for schema typing.

Interfaces and unions in GraphQL 1178

https://graphql.org/learn/schema/#interfaces
https://graphql.org/learn/schema/#union-types

AWS AppSync Developer Guide

Interface examples

We could represent an Event interface that represents any kind of activity or gathering of people.
Some possible event types are Concert, Conference, and Festival. These types all share
common characteristics, including a name, a venue where the event is taking place, and a start and
end date. These types also have differences; a Conference offers a list of speakers and workshops,
while a Concert features a performing band.

In Schema Definition Language (SDL), the Event interface is defined as follows:

interface Event {
 id: ID!
 name : String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
}

And each of the types implements the Event interface as follows:

type Concert implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 performingBand: String
}

type Festival implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 performers: [String]
}

type Conference implements Event {

Interface examples 1179

AWS AppSync Developer Guide

 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 speakers: [String]
 workshops: [String]
}

Interfaces are useful to represent elements that might be of several types. For example, we could
search for all events happening at a specific venue. Let’s add a findEventsByVenue field to the
schema as follows:

schema {
 query: Query
}

type Query {
 # Retrieve Events at a specific Venue
 findEventsAtVenue(venueId: ID!): [Event]
}

type Venue {
 id: ID!
 name: String
 address: String
 maxOccupancy: Int
}

type Concert implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 performingBand: String
}

interface Event {
 id: ID!
 name: String!

Interface examples 1180

AWS AppSync Developer Guide

 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
}

type Festival implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 performers: [String]
}

type Conference implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 speakers: [String]
 workshops: [String]
}

The findEventsByVenue returns a list of Event. Because GraphQL interface fields are common
to all the implementing types, it’s possible to select any fields on the Event interface (id, name,
startsAt, endsAt, venue, and minAgeRestriction). Additionally, you can access the fields on
any implementing type using GraphQL fragments, as long as you specify the type.

Let’s examine an example of a GraphQL query that uses the interface.

query {
 findEventsAtVenue(venueId: "Madison Square Garden") {
 id
 name
 minAgeRestriction
 startsAt

 ... on Festival {
 performers

Interface examples 1181

https://graphql.org/learn/queries/#fragments

AWS AppSync Developer Guide

 }

 ... on Concert {
 performingBand
 }

 ... on Conference {
 speakers
 workshops
 }
 }
}

The previous query yields a single list of results, and the server could sort the events by start date
by default.

{
 "data": {
 "findEventsAtVenue": [
 {
 "id": "Festival-2",
 "name": "Festival 2",
 "minAgeRestriction": 21,
 "startsAt": "2018-10-05T14:48:00.000Z",
 "performers": [
 "The Singers",
 "The Screamers"
]
 },
 {
 "id": "Concert-3",
 "name": "Concert 3",
 "minAgeRestriction": 18,
 "startsAt": "2018-10-07T14:48:00.000Z",
 "performingBand": "The Jumpers"
 },
 {
 "id": "Conference-4",
 "name": "Conference 4",
 "minAgeRestriction": null,
 "startsAt": "2018-10-09T14:48:00.000Z",
 "speakers": [
 "The Storytellers"

Interface examples 1182

AWS AppSync Developer Guide

],
 "workshops": [
 "Writing",
 "Reading"
]
 }
]
 }
}

Since results are returned as a single collection of events, using interfaces to represent common
characteristics is very helpful for sorting results.

Union examples

As stated earlier, unions don't define common sets of fields. A search result might represent many
different types. Using the Event schema, you can define a SearchResult union as follows:

type Query {
 # Retrieve Events at a specific Venue
 findEventsAtVenue(venueId: ID!): [Event]
 # Search across all content
 search(query: String!): [SearchResult]
}

union SearchResult = Conference | Festival | Concert | Venue

In this case, to query any field on our SearchResult union, you must use fragments:

query {
 search(query: "Madison") {
 ... on Venue {
 id
 name
 address
 }

 ... on Festival {
 id
 name
 performers
 }

Union examples 1183

AWS AppSync Developer Guide

 ... on Concert {
 id
 name
 performingBand
 }

 ... on Conference {
 speakers
 workshops
 }
 }
}

Type resolution in AWS AppSync

Type resolution is the mechanism by which the GraphQL engine identifies a resolved value as a
specific object type.

Going back to the union search example, provided our query yielded results, each item in the
results list must present itself as one of the possible types that the SearchResult union defined
(that is, Conference, Festival, Concert, or Venue).

Because the logic to identify a Festival from a Venue or a Conference is dependent on the
application requirements, the GraphQL engine must be given a hint to identify our possible types
from the raw results.

With AWS AppSync, this hint is represented by a meta field named __typename, whose value
corresponds to the identified object type name. __typename is required for return types that are
interfaces or unions.

Type resolution example

Let’s reuse the previous schema. You can follow along by navigating to the console and adding the
following under the Schema page:

schema {
 query: Query
}

type Query {
 # Retrieve Events at a specific Venue

Type resolution in AWS AppSync 1184

AWS AppSync Developer Guide

 findEventsAtVenue(venueId: ID!): [Event]
 # Search across all content
 search(query: String!): [SearchResult]
}

union SearchResult = Conference | Festival | Concert | Venue

type Venue {
 id: ID!
 name: String!
 address: String
 maxOccupancy: Int
}

interface Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
}

type Festival implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 performers: [String]
}

type Conference implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 speakers: [String]
 workshops: [String]
}

Type resolution example 1185

AWS AppSync Developer Guide

type Concert implements Event {
 id: ID!
 name: String!
 startsAt: String
 endsAt: String
 venue: Venue
 minAgeRestriction: Int
 performingBand: String
}

Let’s attach a resolver to the Query.search field. In the Resolvers section, choose Attach,
create a new Data Source of type NONE, and then name it StubDataSource. For the sake of this
example, we’ll pretend we fetched results from an external source, and hard code the fetched
results in the request mapping template.

In the request mapping template pane, enter the following:

{
 "version" : "2018-05-29",
 "payload":
 ## We are effectively mocking our search results for this example
 [
 {
 "id": "Venue-1",
 "name": "Venue 1",
 "address": "2121 7th Ave, Seattle, WA 98121",
 "maxOccupancy": 1000
 },
 {
 "id": "Festival-2",
 "name": "Festival 2",
 "performers": ["The Singers", "The Screamers"]
 },
 {
 "id": "Concert-3",
 "name": "Concert 3",
 "performingBand": "The Jumpers"
 },
 {
 "id": "Conference-4",
 "name": "Conference 4",
 "speakers": ["The Storytellers"],
 "workshops": ["Writing", "Reading"]

Type resolution example 1186

AWS AppSync Developer Guide

 }
]
}

If the application returns the type name as part of the id field, the type resolution logic must
parse the id field to extract the type name and then add the __typename field to each of the
results. You can perform that logic in the response mapping template as follows:

Note

You can also perform this task as part of your Lambda function, if you are using the
Lambda data source.

#foreach ($result in $context.result)
 ## Extract type name from the id field.
 #set($typeName = $result.id.split("-")[0])
 #set($ignore = $result.put("__typename", $typeName))
#end
$util.toJson($context.result)

Run the following query:

query {
 search(query: "Madison") {
 ... on Venue {
 id
 name
 address
 }

 ... on Festival {
 id
 name
 performers
 }

 ... on Concert {
 id
 name
 performingBand

Type resolution example 1187

AWS AppSync Developer Guide

 }

 ... on Conference {
 speakers
 workshops
 }
 }
}

The query yields the following results:

{
 "data": {
 "search": [
 {
 "id": "Venue-1",
 "name": "Venue 1",
 "address": "2121 7th Ave, Seattle, WA 98121"
 },
 {
 "id": "Festival-2",
 "name": "Festival 2",
 "performers": [
 "The Singers",
 "The Screamers"
]
 },
 {
 "id": "Concert-3",
 "name": "Concert 3",
 "performingBand": "The Jumpers"
 },
 {
 "speakers": [
 "The Storytellers"
],
 "workshops": [
 "Writing",
 "Reading"
]
 }
]
 }

Type resolution example 1188

AWS AppSync Developer Guide

}

The type resolution logic varies depending on the application. For example, you could have a
different identifying logic that checks for the existence of certain fields or even a combination of
fields. That is, you could detect the presence of the performers field to identify a Festival
or the combination of the speakers and the workshops fields to identify a Conference.
Ultimately, it is up to you to define the logic you want to use.

Type resolution example 1189

AWS AppSync Developer Guide

Troubleshooting and Common Mistakes

This section discusses some common errors and how to troubleshoot them.

Incorrect DynamoDB Key Mapping

If your GraphQL operation returns the following error message, it may be because your request
mapping template structure doesn’t match the Amazon DynamoDB key structure:

The provided key element does not match the schema (Service: AmazonDynamoDBv2; Status
 Code: 400; Error Code

For example, if your DynamoDB table has a hash key called "id" and your template says
"PostID", as in the following example, this results in the preceding error, because "id" doesn’t
match "PostID".

{
 "version" : "2017-02-28",
 "operation" : "GetItem",
 "key" : {
 "PostID" : $util.dynamodb.toDynamoDBJson($ctx.args.id)
 }
}

Missing Resolver

If you execute a GraphQL operation, such as a query, and get a null response, this may be because
you don’t have a resolver configured.

For example, if you import a schema that defines a getCustomer(userId: ID!): field,
and you haven’t configured a resolver for this field, then when you execute a query such as
getCustomer(userId:"ID123"){...}, you’ll get a response such as the following:

{
 "data": {
 "getCustomer": null
 }

Incorrect DynamoDB Key Mapping 1190

AWS AppSync Developer Guide

}

Mapping Template Errors

If your mapping template isn’t properly configured, you’ll receive a GraphQL response whose
errorType is MappingTemplate. The message field should indicate where the problem is in your
mapping template.

For example, if you don’t have an operation field in your request mapping template, or if the
operation field name is incorrect, you’ll get a response like the following:

{
 "data": {
 "searchPosts": null
 },
 "errors": [
 {
 "path": [
 "searchPosts"
],
 "errorType": "MappingTemplate",
 "locations": [
 {
 "line": 2,
 "column": 3
 }
],
 "message": "Value for field '$[operation]' not found."
 }
]
}

Incorrect Return Types

The return type from your data source must match the defined type of an object in your schema,
otherwise you may see a GraphQL error like:

"errors": [
 {
 "path": [

Mapping Template Errors 1191

AWS AppSync Developer Guide

 "posts"
],
 "locations": null,
 "message": "Can't resolve value (/posts) : type mismatch error, expected type LIST,
 got OBJECT"
 }
]

For example this could occur with the following query definition:

type Query {
 posts: [Post]
}

Which expects a LIST of [Posts] objects. For example if you had a Lambda function in Node.JS
with something like the following:

const result = { data: data.Items.map(item => { return item ; }) };
callback(err, result);

This would throw an error as result is an object. You would need to either change the callback to
result.data or alter your schema to not return a LIST.

Incorrect Return Types 1192

	AWS AppSync
	Table of Contents
	What is AWS AppSync?
	AWS AppSync features
	Are you a first-time AWS AppSync user?
	Related services
	Pricing for AWS AppSync

	GraphQL and AWS AppSync architecture
	What is an API?
	Clients
	Resources

	What is REST?
	Uniform interface
	Statelessness
	Layered system
	Cacheability
	What is a RESTful API?
	How do RESTful APIs work?

	Why Use GraphQL over REST?
	Components of a GraphQL API
	Schemas
	GraphQL types
	Objects
	Scalars
	Inputs
	Special objects
	Enumerations
	Unions/Interfaces

	GraphQL fields
	Lists
	Non-nulls

	Data sources
	Resolvers
	Resolver runtime
	Resolver structure
	Unit resolvers
	Pipeline resolvers

	Resolver handler structure
	Resolver context
	Requests and Parsing

	Additional properties of GraphQL
	Declarative
	Hierarchical
	Introspective
	Strong typing

	Getting started: Creating your first GraphQL API
	Step 1: Launch a schema
	Step 2: Take a tour of the console
	Schema designer
	Resolver configuration

	Data sources
	Queries
	Settings

	Step 3: Add data with a GraphQL mutation
	Step 4: Retrieve data with a GraphQL query
	Supplemental sections
	Integration
	Supplemental reading

	Designing GraphQL APIs
	Structuring a GraphQL API (blank or imported APIs)
	Step 1: Designing your schema
	Structuring a GraphQL Schema
	Creating schemas
	Adding types to schemas
	Optional considerations - Using enums as statuses
	Optional considerations - Subscriptions
	Optional considerations - Relations and pagination

	Step 2: Attaching a data source
	Types of data sources
	Amazon DynamoDB
	AWS Lambda
	Amazon RDS
	Amazon EventBridge
	None data sources
	OpenSearch
	HTTP endpoints

	Adding a data source
	IAM trust policy

	Step 3: Configuring resolvers
	Configuring resolvers (JavaScript)
	Creating basic query resolvers
	Creating basic mutation resolvers
	Advanced resolvers
	Test and debug resolvers (JavaScript)
	Testing with mock data
	Testing resolvers
	Testing request and response handlers with AWS AppSync's APIs

	Debugging a live query

	Pipeline resolvers (JavaScript)
	Create a pipeline resolver
	Create a function
	Adding a function to a pipeline resolver
	Running a query

	Configuring resolvers (VTL)
	Create your first resolver
	Adding a resolver for mutations
	Advanced resolvers
	Direct Lambda resolvers (VTL)
	Configure direct Lambda resolvers
	Add a Lambda data source
	Activate direct Lambda resolvers

	Test and debug resolvers (VTL)
	Testing with mock data
	Testing resolvers
	Testing mapping templates with AWS AppSync's APIs

	Debugging a live query

	Pipeline resolvers (VTL)
	Create A Pipeline Resolver
	Create A Function
	Adding a Function to a Pipeline Resolver
	Executing a Query

	Step 4: Using an API: CDK example
	Setting up a CDK project
	Implementing a CDK project - Schema
	Implementing a CDK project - Data source
	Implementing a CDK project - Resolver
	Implementing a CDK project - Requests

	Real-time data
	GraphQL schema subscription directives
	Using subscription arguments
	Argument null value has meaning

	Creating generic pub/sub APIs powered by serverless WebSockets
	Create and configure pub-sub APIs
	Implementing pub-sub APIs into existing applications

	Enhanced subscription filtering
	Defining subscriptions in your GraphQL schema
	Creating enhanced subscription filters using filtering extensions
	Defining enhanced filters for nested schema fields
	Defining enhanced filters from the client
	Additional enhanced filtering restrictions

	Unsubscribing WebSocket connections using filters
	Using subscription invalidation
	Using context variables in subscription invalidation filters

	Building a real-time WebSocket client
	Real-time WebSocket client implementation for GraphQL subscriptions
	Handshake details to establish the WebSocket connection
	Discovering the real-time endpoint from the GraphQL endpoint

	Header parameter format based on AWS AppSync API authorization mode
	API key
	API key header

	Amazon Cognito user pools and OpenID Connect (OIDC)
	Amazon Cognito and OIDCheader

	IAM
	IAM header

	Lambda authorization
	Lambda authorization header

	Real-time WebSocket operation
	Sequence of events

	Connection init message
	Connection acknowledge message
	Keep-alive message
	Subscription registration message
	Authorization object for subscription registration

	Subscription acknowledgment message
	Error message
	Processing data messages
	Subscription unregistration message
	Disconnecting the WebSocket

	Merged APIs
	Merged APIs and Federation
	Merged API conflict resolution
	Merged API schema directives
	Managing resolvers on shared types
	Managing resolver conflicts on shared types

	Configuring schemas
	Configuring authorization modes
	Configuring execution roles
	Configuring cross-account Merged APIs using AWS RAM
	Merging
	Managing merges
	Auto-merges
	Manual merges

	Additional support for Merged APIs
	Configuring subscriptions
	Configuring observability
	Configuring custom domains
	Configuring caching
	Configuring private APIs
	Configuring firewall rules
	Configuring audit logs

	Merged API limitations
	Creating Merged APIs

	RDS introspection
	Using the introspection feature (console)
	Using the introspection feature (API)

	Building a client application
	Resolver tutorials (JavaScript)
	Tutorial: DynamoDB JavaScript resolvers
	Creating your GraphQL API
	Defining a basic post API
	Setting up your Amazon DynamoDB table
	Setting up an addPost resolver (Amazon DynamoDB PutItem)
	Call the API to add a post

	Setting up the getPost resolver (Amazon DynamoDB GetItem)
	Call the API to get a post

	Create an updatePost mutation (Amazon DynamoDB UpdateItem)
	Call the API to update a post

	Create vote mutations (Amazon DynamoDB UpdateItem)
	Call the API to upvote or downvote a post

	Setting up a deletePost resolver (Amazon DynamoDB DeleteItem)
	Call the API to delete a post

	Setting up an allPost resolver (Amazon DynamoDB Scan)
	Call the API to scan all posts

	Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query)
	Call the API to query all posts by author

	Using sets
	Call the API to work with tags

	Conclusion

	Tutorial: Lambda resolvers
	Create a Lambda function
	Configure a data source for Lambda
	Create a GraphQL schema
	Configure resolvers
	Test your GraphQL API
	addPost Mutation
	getPost Query
	allPosts Query

	Returning errors
	From the resolver response handler
	From the Lambda function

	Advanced use case: Batching
	Returning individual errors
	Configuring the maximum batching size

	Tutorial: Local resolvers
	Creating the pub/sub app
	Send and subscribe to messages

	Tutorial: Combining GraphQL resolvers
	Example schema
	Altering data through resolvers
	DynamoDB and OpenSearch Service

	Tutorial: Amazon OpenSearch Service Resolvers
	Create a new OpenSearch Service domain
	Configure a data source for OpenSearch Service
	Connecting a resolver
	Modifying your searches
	Adding data to OpenSearch Service
	Retrieving a single document
	Perform queries and mutations
	Best practices

	Tutorial: DynamoDB Transaction resolvers
	Permissions
	Data source
	Transactions
	TransactWriteItems - Populate accounts
	TransactWriteItems - Transfer money
	TransactGetItems - Retrieve accounts

	Tutorial: DynamoDB batch resolvers
	Single table batches
	Multi-table batch
	BatchPutItem - Recording sensor readings
	BatchDeleteItem - Deleting sensor readings
	BatchGetItem - Retrieve readings

	Error handling
	DynamoDB Batch operations
	1. Swallowing the invocation error
	2. Raising an error to abort the response handler execution
	3. Appending an error to return both data and errors

	Tutorial: HTTP resolvers
	Creating a REST API
	Creating your GraphQL API
	Creating a GraphQL schema
	Configure your HTTP data source
	Configuring resolvers
	Invoking AWS Services

	Tutorial: Aurora PostgreSQL with Data API
	Creating clusters
	Enabling data API
	Creating the database and table
	Creating a GraphQL schema
	Resolvers for RDS
	Mutation.createTodo
	Query.listTodos
	Mutation.updateTodo
	Mutation.deleteTodo
	Writing custom queries

	Deleting your cluster

	Resolver tutorials (VTL)
	Tutorial: DynamoDB resolvers
	Setting up your DynamoDB tables
	Creating your GraphQL API
	Defining a basic post API
	Configuring the Data Source for the DynamoDB Tables
	Setting up the addPost resolver (DynamoDB PutItem)
	Call the API to Add a Post

	Setting Up the getPost Resolver (DynamoDB GetItem)
	Call the API to Get a Post

	Create an updatePost Mutation (DynamoDB UpdateItem)
	Call the API to Update a Post

	Modifying the updatePost Resolver (DynamoDB UpdateItem)
	Call the API to Update a Post

	Create upvotePost and downvotePost Mutations (DynamoDB UpdateItem)
	Call the API to upvote and downvote a Post

	Setting Up the deletePost Resolver (DynamoDB DeleteItem)
	Call the API to Delete a Post

	Setting Up the allPost Resolver (DynamoDB Scan)
	Call the API to Scan All Posts

	Setting Up the allPostsByAuthor Resolver (DynamoDB Query)
	Call the API to Query All Posts by an Author

	Using Sets
	Call the API to Work with Tags

	Using Lists and Maps
	Call the API to Add a Comment

	Conclusion

	Tutorial: Lambda resolvers
	Create a Lambda function
	Configure a data source for Lambda
	Create a GraphQL schema
	Configure resolvers
	Test your GraphQL API
	addPost Mutation
	getPost Query
	allPosts Query

	Returning errors
	From the mapping template
	From the Lambda function

	Advanced use case: Batching
	Returning individual errors
	Configuring the maximum batching size
	Maximum batching size configuration with VTL templates

	Tutorial: Amazon OpenSearch Service Resolvers
	One-Click Setup
	Create a New OpenSearch Service Domain
	Configure Data Source for OpenSearch Service
	Connecting a Resolver
	Modifying Your Searches
	Adding Data to OpenSearch Service
	Retrieving a Single Document
	Perform Queries and Mutations
	Best Practices

	Tutorial: Local Resolvers
	Create the Paging Application
	Send and subscribe to pages

	Tutorial: Combining GraphQL Resolvers
	Example Schema
	Alter Data Through Resolvers
	DynamoDB and OpenSearch Service

	Tutorial: DynamoDB Batch Resolvers
	Permissions
	Data Source
	Single Table Batch
	Multi-Table Batch
	BatchPutItem - Recording Sensor Readings
	BatchDeleteItem - Deleting Sensor Readings
	BatchGetItem - Retrieve Readings

	Error Handling
	DynamoDB Batch operations
	1. Swallowing the invocation error
	2. Raising an error to abort the template execution
	3. Appending an error to return both data and errors

	Tutorial: DynamoDB Transaction Resolvers
	Permissions
	Data Source
	Transactions
	TransactWriteItems - Populate Accounts
	TransactWriteItems - Transfer Money
	TransactGetItems - Retrieve Accounts

	Tutorial: HTTP Resolvers
	One-Click Setup
	Creating a REST API
	Creating Your GraphQL API
	Creating a GraphQL Schema
	Configure Your HTTP Data Source
	Configuring Resolvers
	Invoking AWS Services

	Tutorial: Aurora Serverless
	Create cluster
	Enable Data API
	Create database and table
	GraphQL schema
	Configuring Resolvers
	Mutation.createPet
	Mutation.updatePet
	Mutation.deletePet
	Query.getPet
	Query.listPets
	Query.listPetsByPriceRange

	Run mutations
	Run Queries
	Input Sanitization
	Escaping strings

	Tutorial: Pipeline Resolvers
	One-Click Setup
	Manual Setup
	Setting Up Your Non AWS AppSync Resources
	Creating Your GraphQL API
	Configuring The GraphQL API
	Configuring Data Sources for the DynamoDB Tables
	Creating the GraphQL Schema
	Configuring Resolvers
	Mutation.createPicture
	Mutation.createFriendship
	Query.getPicturesByOwner
	isFriend Function
	getPicturesByOwner function

	Testing Your GraphQL API
	createPicture Mutation
	createFriendship Mutation
	getPicturesByOwner Query

	Tutorial: Delta Sync
	One-Click Setup
	Schema
	Mutations
	Sync Queries
	Example

	Configuration and settings
	Caching and compression
	Instance types
	Caching behavior
	Cache encryption
	Cache eviction
	Evicting a cache entry
	Evicting a cache entry based on identity
	Compressing API responses

	Configuring custom domain names
	Registering and configuring a domain name
	Creating a custom domain name in AWS AppSync
	Wildcard custom domain names in AWS AppSync

	Conflict Detection and Sync
	Versioned Data Sources
	Versioned Data Source Configuration
	Delta Sync Table
	Versioned Data Source Metadata

	Conflict Detection and Resolution
	Optimistic Concurrency
	Automerge
	Lambda
	Errors
	CloudWatch Logs

	Sync Operations

	Monitoring and logging
	Setup and configuration
	Manual IAM role configuration

	CloudWatch metrics
	Metrics list
	Real-time subscriptions
	Metrics list
	Comparing inbound and outbound messages

	CloudWatch logs
	Request-level logs
	Field-level logs
	Benefits of monitoring
	Conflict detection and sync logging
	Metrics list

	Using token counts to optimize your requests

	Log type reference
	RequestSummary
	ExecutionSummary
	Tracing

	Analyzing your logs with CloudWatch Logs Insights
	Analyze your logs with OpenSearch Service
	Log format migration

	Tracing with AWS X-Ray
	Setup and Configuration
	Tracing Your API with X-Ray
	Sampling
	Understanding Traces

	Logging AWS AppSync API calls using AWS CloudTrail
	AWS AppSync information in CloudTrail
	Understanding AWS AppSync log file entries

	Using AWS AppSync Private APIs
	Creating AWS AppSync Private APIs
	Creating an interface endpoint for AWS AppSync
	Advanced examples
	Using IAM policies to limit public API creation

	Configuring GraphQL run complexity, query depth, and introspection with AWS AppSync
	Using the introspection feature
	Configuring query depth limits
	Configuring resolver count limits

	Using environmental variables in AWS AppSync
	Configuring environmental variables (console)
	Configuring environmental variables (API)
	Configuring environmental variables (CFN)
	Environmental variables and merged APIs
	Retrieving environmental variables

	Authorization and authentication
	Authorization types
	API_KEY authorization
	AWS_LAMBDA authorization
	Functions list
	Circumventing SigV4 and OIDC token authorization limitations

	AWS_IAM authorization
	OPENID_CONNECT authorization
	AMAZON_COGNITO_USER_POOLS authorization
	Using additional authorization modes
	Fine-grained access control
	Filtering information
	Data source access
	Authorization use cases
	Overview
	Reading data
	Use case: owner can read
	Use case: hardcode specific access
	Use case: filtering a list of results
	Use case: multiple people can read
	Use case: group can read

	Writing data
	Use case: multiple owners
	Use case: group can create new record
	Use case: group can update existing record

	Public and private records
	Real-time data
	Use case: user can subscribe to specific conversations only

	Using AWS WAF to protect your APIs
	Integrate an AppSync API with AWS WAF
	Creating rules for a web ACL

	Security in AWS AppSync
	Data protection in AWS AppSync
	Encryption in motion

	Compliance validation for AWS AppSync
	Infrastructure security in AWS AppSync
	Resilience in AWS AppSync
	Identity and access management for AWS AppSync
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS AppSync works with IAM
	Identity-based policies for AWS AppSync
	Identity-based policy examples for AWS AppSync

	Resource-based policies within AWS AppSync
	Policy actions for AWS AppSync
	Policy resources for AWS AppSync
	Policy condition keys for AWS AppSync
	Access control lists (ACLs) in AWS AppSync
	Attribute-based access control (ABAC) with AWS AppSync
	Using temporary credentials with AWS AppSync
	Forward access sessions for AWS AppSync
	Service roles for AWS AppSync
	Service-linked roles for AWS AppSync

	Identity-based policies for AWS AppSync
	Using the AWS AppSync console
	Allow users to view their own permissions
	Accessing one Amazon S3 bucket
	Viewing AWS AppSync widgets based on tags
	AWS managed policies for AWS AppSync
	AWS managed policy: AWSAppSyncInvokeFullAccess
	Permissions details

	AWS managed policy: AWSAppSyncSchemaAuthor
	Permissions details

	AWS managed policy: AWSAppSyncPushToCloudWatchLogs
	Permissions details

	AWS managed policy: AWSAppSyncAdministrator
	Permissions details

	AWS managed policy: AWSAppSyncServiceRolePolicy
	Permissions details

	AWS AppSync updates to AWS managed policies

	Troubleshooting AWS AppSync identity and access
	I am not authorized to perform an action in AWS AppSync
	I am not authorized to perform iam:PassRole
	I want to view my access keys
	I'm an administrator and want to allow others to access AWS AppSync
	I want to allow people outside of my AWS account to access my AWS AppSync resources

	Logging AWS AppSync API calls with AWS CloudTrail
	AWS AppSync information in CloudTrail
	Understanding AWS AppSync log file entries

	Security best practices for AWS AppSync
	Understand authentication methods
	Use TLS for HTTP resolvers
	Use roles with the least permissions possible
	IAM policy best practices

	Resolver reference (JavaScript)
	JavaScript resolvers overview
	Supported runtime features
	Unit resolvers
	Anatomy of a JavaScript pipeline resolver
	Pipeline resolver request handler
	Functions list
	Pipeline resolver response handler
	Execution flow
	Useful APPSYNC_JS runtime built-in utilities
	ctx.stash
	ctx.prev.result
	util.error
	util.appendError
	runtime.earlyReturn

	Writing pipeline resolvers
	Writing AWS AppSync functions

	Writing code
	Working with errors

	Utilities
	Configuring the eslint plugin

	Bundling, TypeScript, and source maps
	Leveraging libraries and bundling your code
	Building your code and working with TypeScript
	Using Amplify codegen
	Using generics in TypeScript

	Linting your bundles
	Using source maps

	Testing
	Migrating from VTL to JavaScript
	Choosing between direct data source access and proxying via a Lambda data source

	Resolver context object reference
	Accessing the context
	context fields
	Identity
	Access request headers
	Access the request custom domain name
	Info

	JavaScript runtime features for resolvers and functions
	Supported runtime features
	Core features
	Primitive objects
	Built-in objects and functions
	Globals
	Error types

	Built-in utilities
	Encoding utils
	Encoding utils list

	ID generation utils
	ID generation utils list

	Error utils
	Error utils list

	Type and pattern matching utils
	Type and pattern matching utils list

	Return value behavior utils
	Return value behavior utils list

	Resolver authorization utils
	Resolver authorization utils list

	Built-in modules
	DynamoDB module functions
	Functions
	Functions list

	Operations
	Operations list

	Inputs
	Inputs list

	Amazon RDS module functions
	Functions
	Select
	Insert
	Update
	Remove

	Casting

	Runtime utilities
	Runtime utils list

	Time helpers in util.time
	Time utils
	Time utils list

	DynamoDB helpers in util.dynamodb
	toDynamoDB
	toDynamoDB utils list

	toString utils
	toString utils list

	toNumber utils
	toNumber utils list

	toBinary utils
	toBinary utils list

	toBoolean utils
	toBoolean utils list

	toNull utils
	toNull utils list

	toList utils
	toList utils list

	toMap utils
	toMap utils list

	S3Object utils
	S3Object utils list

	HTTP helpers in util.http
	util.http utils list

	Transformation helpers in util.transform
	Transformation helpers utils list
	Subscription filter arguments

	String helpers in util.str
	util.str utils list

	Extensions
	Caching extensions
	Subscription extensions
	Argument: filterJsonObject
	Argument: invalidationJsonObject

	XML helpers in util.xml
	util.xml utils list

	JavaScript resolver function reference for DynamoDB
	GetItem
	GetItem fields
	GetItem fields list

	Example

	PutItem
	PutItem fields
	PutItem fields list
	Example 1
	Example 2

	UpdateItem
	UpdateItem fields
	UpdateItem fields list

	Example 1
	Example 2

	DeleteItem
	DeleteItem fields
	DeleteItem fields list

	Example 1
	Example 2

	Query
	Query fields
	Query fields list

	Example

	Scan
	Scan fields
	Scan fields list

	Example 1
	Example 2

	Sync
	Sync fields
	Sync fields list

	Example 1

	BatchGetItem
	BatchGetItem fields
	BatchGetItem fields list

	BatchDeleteItem
	BatchDeleteItem fields
	BatchDeleteItem fields list

	BatchPutItem
	BatchPutItem fields
	BatchPutItem fields list

	TransactGetItems
	TransactGetItems fields
	TransactGetItems fields list

	TransactWriteItems
	TransactWriteItems fields
	TransactWriteItems fields list

	Type system (request mapping)
	Type system (response mapping)
	Filters
	Example

	Condition expressions
	Example 1
	Example 2
	Specifying a condition
	Handling a condition check failure
	Checking for the desired result
	Following the “reject” strategy
	Following the “custom” strategy

	Transaction condition expressions
	Example 1
	Example 2
	Specifying a condition

	Projections
	Example 1

	JavaScript resolver function reference for OpenSearch
	Request
	Response
	operation field
	path field
	params field
	Passing variables

	JavaScript resolver function reference for Lambda
	Request object
	Operation
	Payload

	Response object
	Lambda function batched response

	JavaScript resolver function reference for EventBridge data source
	Request
	Response
	PutEvents field

	JavaScript Resolver function reference for None data source
	Request
	Payload
	Response

	JavaScript resolver function reference for HTTP
	Request
	Method
	ResourcePath
	Params Field
	Response

	JavaScript resolver function reference for Amazon RDS
	SQL tagged template
	Creating statements
	Retrieving data
	Utility functions
	SQL Select
	SQL Insert
	SQL Update
	SQL Delete

	Casting

	Resolver mapping template reference (VTL)
	Resolver mapping template overview
	Unit resolvers
	Pipeline resolvers
	Anatomy of a pipeline resolver
	Before mapping template
	Functions list
	After mapping template
	Execution flow
	Useful Apache Velocity Template Language (VTL) utilities
	$ctx.stash
	$ctx.prev.result
	#return(data: Object)
	#return
	$util.error
	$util.appendError

	Example template
	Evaluated mapping template deserialization rules
	Duplicate keys are not allowed in JSON objects
	Trailing characters are not allowed in JSON objects

	Resolver mapping template programming guide
	Setup
	Variables
	Quiet References

	Calling Methods
	Strings
	Loops
	Arrays
	Conditional Checks
	Operators
	Loops and Conditionals Together

	Context
	Filtering
	Appendix - Template Sample

	Resolver mapping template context reference
	Accessing the $context
	$context fields
	Identity
	Access request headers
	Access the request custom domain name
	Info

	Sanitizing inputs

	Resolver mapping template utility reference
	Utility helpers in $util
	JSON parsing utils
	JSON parsing utils list

	Encoding utils
	Encoding utils list

	ID generation utils
	ID generation utils list

	Error utils
	Error utils list

	Condition validation utils
	Condition validation utils list

	Null behavior utils
	Null behavior utils list

	Pattern matching utils
	Type and pattern matching utils list

	Object validation utils
	Object validation utils list

	CloudWatch logging utils
	CloudWatch logging utils list

	Return value behavior utils
	Return value behavior utils list

	Resolver authorization
	Resolver authorization list

	AWS AppSync directives
	Directive utils

	Time helpers in $util.time
	Time utils
	Time utils list

	Standalone function examples
	Conversion examples
	Parsing examples
	Usage with AWS AppSync defined scalars

	List helpers in $util.list
	List utils

	Map helpers in $util.map
	Map utils

	DynamoDB helpers in $util.dynamodb
	toDynamoDB
	toDynamoDB utils list

	toString utils
	toString utils list

	toNumber utils
	toNumber utils list

	toBinary utils
	toBinary utils list

	toBoolean utils
	toBoolean utils list

	toNull utils
	toNull utils list

	toList utils
	toList utils list

	toMap utils
	toMap utils list

	S3Object utils
	S3Object utils list

	Amazon RDS helpers in $util.rds
	$util.rds utils list

	HTTP helpers in $util.http
	$util.http utils list

	XML helpers in $util.xml
	$util.xml utils list

	Transformation helpers in $util.transform
	Transformation helpers
	Transformation helpers utils list

	Transformation helpers subscription filters
	Transformation helpers subscription filters utils list

	Subscription filter arguments

	Math helpers in $util.math
	$util.math utils list

	String helpers in $util.str
	$util.str utils list

	Extensions
	$extensions.evictFromApiCache(String, String, Object) : Object
	$extensions.setSubscriptionFilter(filterJsonObject)
	$extensions.setSubscriptionInvalidationFilter(filterJsonObject)
	Argument: filterJsonObject
	Field: fieldName
	Field: value
	Field: operator
	AND logic
	OR logic
	Exceptions

	$extensions.invalidateSubscriptions(invalidationJsonObject)
	Argument: invalidationJsonObject

	Resolver mapping template reference for DynamoDB
	GetItem
	GetItem fields
	GetItem fields list

	Example

	PutItem
	PutItem fields
	PutItem fields list
	Example 1
	Example 2

	UpdateItem
	UpdateItem fields
	UpdateItem fields list

	Example 1
	Example 2

	DeleteItem
	DeleteItem fields
	DeleteItem fields list

	Example 1
	Example 2

	Query
	Query fields
	Query fields list

	Example

	Scan
	Scan fields
	Scan fields list

	Example 1
	Example 2

	Sync
	Sync fields
	Sync fields list

	Example 1

	BatchGetItem
	BatchGetItem fields
	BatchGetItem fields list

	BatchDeleteItem
	BatchDeleteItem fields
	BatchDeleteItem fields list

	BatchPutItem
	BatchPutItem fields
	BatchPutItem fields list

	TransactGetItems
	TransactGetItems fields
	TransactGetItems fields list

	TransactWriteItems
	TransactWriteItems fields
	TransactWriteItems fields list

	Type system (request mapping)
	Type system (response mapping)
	Filters
	Example

	Condition expressions
	Example 1
	Example 2
	Specifying a condition
	Handling a condition check failure
	Checking for the desired result
	Following the “reject” strategy
	Following the “custom” strategy

	Transaction condition expressions
	Example 1
	Example 2
	Specifying a condition

	Projections
	Example 1

	Resolver mapping template reference for RDS
	Request mapping template
	Version
	Statements and VariableMap
	VariableTypeHintMap

	Resolver Mapping Template Reference for OpenSearch
	Request Mapping Template
	Response Mapping Template
	operation field
	path field
	params field
	Passing Variables

	Resolver mapping template reference for Lambda
	Request mapping template
	Version
	Operation
	Payload

	Response mapping template
	Lambda function batched response
	Direct Lambda Resolvers
	Direct Lambda request mapping template
	Direct Lambda response mapping template
	Custom error handling in Direct Lambda Resolver responses
	Direct Lambda Resolvers: Batching enabled
	Request mapping template
	Response mapping template
	Handling errors from Lambda
	Sample Lambda functions

	Resolver mapping template reference for EventBridge
	Request mapping template
	Response mapping template
	PutEvents field

	Resolver mapping template reference for None data source
	Request mapping template
	Version
	Payload
	Response mapping template

	Resolver Mapping Template Reference for HTTP
	Request Mapping Template
	Version
	Method
	ResourcePath
	Params Field
	Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints

	Resolver mapping template changelog
	Datasource Operation Availability Per Version Matrix
	Changing the Version on a Unit Resolver Mapping Template
	Changing the Version on a Function
	2018-05-29
	Behavior Change
	Reasoning
	Re-raise an Invocation Error
	Raise a Different Error
	Append an Error to Return Data
	Migrating from 2017-02-28 to 2018-05-29
	Preserving the same execution behavior from 2017-02-28 to 2018-05-29

	Example: DynamoDB PutItem
	Example: DynamoDB GetItem

	2017-02-28
	Characteristics

	Type reference
	Scalar types in AWS AppSync
	Default scalars
	Default scalars list

	AWS AppSync scalars
	AWS AppSync scalars list

	Schema usage example

	Interfaces and unions in GraphQL
	Interface examples
	Union examples
	Type resolution in AWS AppSync
	Type resolution example

	Troubleshooting and Common Mistakes
	Incorrect DynamoDB Key Mapping
	Missing Resolver
	Mapping Template Errors
	Incorrect Return Types

