Developer Guide

AWS AppSync

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AppSync Developer Guide

AWS AppSync: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AppSync Developer Guide

Table of Contents

WHhat iS AWS APPSYNC? ..eeeereeeiiiiieeeiiniensess 1
AWS APPSYNC FEALUIES ...ttt te e ettt e st e st e st e s sasse e e e s e s asae st e saassassessnasesnnensanes 1
Are you a first-time AWS APPSYNC USEI?ecieeeeeeeeeeieeretestestessesses e saessessessessessessessassssssensessesansen 2
RELALEA SEIVICES ..ottt ettt st ettt st e st et s st et e s b e b et sae st et ssassessestesassansenssne 2
Pricing fOr AWS APPSYNC ittt te e testeete s e s e e s et e sae st e stesbassesseesa e e et e s assessessassassessassasseensanes 2

GraphQL and AWS ApPSYNC archit@Ctureeciiiiiiiiiiiinnennennesiiiiiccciinsessssssssssssssssssssssssssssssssssssss 3
WRAL QS @N API? ettt st ettt et s b st s s b et et s b et et e e b e st esessasbenassesansesasansenens 4

CLIENES ettt ettt sttt et s e st ettt e s b et e e b et et e Re et et e st e R et et e aeese b e e eseseneesetan 4
RESOUICES ...ttt ettt e sa st e s et s se e e b e s st e e b e s neeenessneesnnesane 4
WRAL QS REST? ..ttt sttt ettt sttt sae st st st et s st et e e s et et ssesba st esassassentesasantesasensensensnns 4
UNITOM INEEITACE ..ttt sttt sttt et e s e s et s e ssasaenaenas 5
STATELESSNIESS ..ttt ettt et s b et et s e st et s s st e st e e s b et et s sesbe st e sasae st et saeste st esaesentenaes 5
LAYEIEA SYSEEIM ...ttt ettt et et et e st e s e e e e e e et et e st e b et e saassasseesaessesaesaassassassansassessaeneanaans 6
(@ Yol =T o 1) OSSO O RRTSRSRRR 6
What iS @ RESTIUL API? ...ttt ettt et s s e st et s e sa et s e s se st e e s e saesassassassenaesans 6
HOW dO RESTFUL APIS WOIK?cviiiiieieieirenietneresteteeste st e sseste st sessest e e ssessesessessessesessessensesessassessesans 6
Why Use GraphQL OVEF REST? ...ttt tetesteste s e ese s s saesaestesaessessassaesssssesaessessessassassassassssneans 7
Components Of @ GraPRQL AP ...ttt te e ste st e s te s e e e e e e s et e saestestessasse s e e sn e s enaanaan 8
SCREMAS ..ttt ettt sttt a e s b e st et s s b et e s b et e e e se b et e se st et eneenenes 9
DAt SOUICES ...ttt ettt ettt st sttt e e e st st e st e s e et e st e ese st e st e seebessesssesabesstessannns 27
RESOLVELS ...ttt sttt sttt st ettt et s s b et e e s s et e e s e s s estsaesba st aseesasestesessantentssansessesessansenaes 41
Additional properties of GraphQL ...ttt re st s e a e e s st saeaan 51
DECLATALIVE ..ttt ettt st ettt et st et e st e st e s s e b et e ae st et e e se st et e neebe b e e eaenee 51
HIEIAICRICAL .ottt sttt s b st s b et et s b et e e b e be e saessansenees 51
INEFOSPECEIVE .ttt ettt e e e e s s re e s sa e s s e e s ae s s sa e s b e e satasssessaesssaessaasssassssesnsens 53
STFONG TYPING ettt ettt et e st s st e e st e s st e e s st e s aesssaesbaesseesssesssaesssaesseesssessssasssens 54

Getting started: Creating your first GraphQL APluuuuiiiiiiiiiiniineennnnnsiissececeinessssssssssssssssssens 55
Step 1: LAUNCN @ SCREMIA ...ttt st s e et sae st e saesaessesse s e e s et e saaaansans 56
Step 2: Take @ tour Of the CONSOLE ...t 60

1 Yel =T 3 F= e 155 e [LT OO TSRO UUOURRSRR 60
DAt SOUICES ...ttt ettt et a st s et e st et e s bt st e et s s e et e et s eae st e st e saeebesseessesabasntessanans 61
QUETIES ettt ccctteeceeette e e e e rbaeeeeessaeeeeessaseeesssaasesssssasesessssaaeesssssesessssssesesssssseessssaseesssssssessssssesennnn 62
SOEEINGS ettt sttt s e s e st e et e s e e e e e e e e e b e e a e e e e e e e e e b e e aa e e b e e saeeaeesaaasaeene 62

Step 3: Add data with @ GraphQL mUtation ... 63

AWS AppSync Developer Guide

Step 4: Retrieve data with @ GraphQL QUEIY ...ttt saeaesaens 68
SUPPLEMENTAL SECLIONS ...ttt ettt st e e e e e e e et e s ta st e saassasseeseesne e enaansanes 71
INEEGIATION ettt st r e e s e st e s ba e s b e s ae e s b e e s sa e e ae e sa e s aeessaessa e saasaeessaenneas 71
SUPPLEMENLAL FEAAING ..ottt e e e e e e s et et e saa b e sassneseennenaanes 72
Designing GraphQL APISeeiiiiiiiiiiiieeeeemeeiciiiiseeisiass 73
Structuring a GraphQL API (blank or imported APIS) ...ttt sr e sve s 73
Step 1: DesigNing YOUI SCREIMAccciiiiiieiececeeeeeeeete et e sae e s e e s e e e s e saestesaessessassessassaennensannans 74
Step 2: Attaching @ data SOUICEecieieeeeeceeec ettt sa et saesaesae e e s e e aeaeeens 101
Step 3: CONFIGUIING FESOLVELS ...ttt ettt e st este s s e sa e e e e e aesaesaaeas 113
Step 4: Using an APL: CDK @XAMIPLE ...o.eeeeeieieeeeceeeeectete ettt e et saestessesse s e e saesaena s 168
REAL-EIME AT oottt ettt sttt e s b e st e s e s bt s e s ae st e e e be b e e e saeen 187
GraphQL schema subscription dir€CHIVESc.coeeueeieieeeeec et 187
Using SUbSCription @argUMENTSccucieiiieeeeeeectctetertecte et sa et e stesae s e e e e e e e e e s aasaesannas 190
Creating generic pub/sub APIs powered by serverless WebSocketsccccoeeeeeveneeeneennne. 194
Enhanced subscriptions filtEriNg ...ttt 197
UNsubscribing CONNECLIONSovoviieieeeceeeeeetete et sa et e te st e s e sae e e e e e e e s e s e aebasans 207
Building a real-time WebSocket CliENt ..ot 212
MEIGEA APIS ...ttt e e e e et ea et e st e st e st e e s e e e e se e e e b e be st et asseeseessenaentessantestessaesaeseennenaantans 228
Merged APIS and FEAEration ...ttt sa et s aeste s s aennan 230
Merged APl conflict r@SOLULION ..ot sa e 231
CONFIGUIING SCREIMAS ...ttt ettt et s et s e e s et e b e be st e sba e e e e esaesaasnensanean 239
Configuring authorization MOAES ...t 240
CoNfigUIING E@XECULION FOLES ...uveeeeeeeeeeeeee ettt te st e e e e e se et et e st e st e saessassessnennennens 241
Configuring cross-account Merged APIs using AWS RAMccrieieceecieceeeseceeeee e 242
IMEIGING cceeeeiiieieeteeeteese e te st e st e s tess e e s sae e st e s saessstesssassstesssasssaasssasseesssessstesssessssesssessseesssessseessaesssaanns 244
Additional support For Merged APIS ...ttt ste e s se e e s e e saeste e ae s 245
Merged AP LIMITAtioNS ..ottt te et st ae s e s be s b e s se e e e aennennan 246
Creating MEIGEA APIS ...ttt ettt s et e s e e e e e e e e e e et e st et e s s e s sessa e e esaenaesaansansansanes 246
RDS INTrOSPECLION ...cueiiiiiiteeieectee ittt et st e s see s sreessae s s e e s saesssaessaessaeesssesssaesssesssessssassseessaessseesssennns 248
Using the introspection feature (CONSOLE)cuiiiieieieeieeceeeeeee e 249
Using the introspection feature (API) ...ttt 252
Building a client appliCationcciiieeeeeeeciiiiiiiiiiiiinnennennniiiiiieeiinnnseessssssssssssssesssssssssssssssssssssssssans 256
Resolver tutorials (JAVASCHIPL) cccciiiiiiimmeenniiiiiiiiiiiinnneensnencssisseceessnssses 259
Tutorial: DynamoDB JavaScript r@SOLVENS ...ttt sae st e ns 259
Creating your GraphQL APl ... ettt ettt teste s e e e sa et e st e saesbasbessa e e s nnenaeaenes 260
Defining @ DASIC POSE AP ...ttt e sa e st e st e st e s e s se e e e e e e e aeneneans 260

AWS AppSync Developer Guide

Setting up your Amazon DyNnamoDB table ... 261
Setting up an addPost resolver (Amazon DynamoDB Putltem)cccceeeeeveeveeciecieciecieeeee, 262
Setting up the getPost resolver (Amazon DynamoDB Getltem)ccoveeeeereeceeceiceeceecienee. 265
Create an updatePost mutation (Amazon DynamoDB Updateltem)cccceeveeeveneeeenenne. 268
Create vote mutations (Amazon DynamoDB Updateltem)cccoeeeeeeeeceeciecenenereceeeene 272
Setting up a deletePost resolver (Amazon DynamoDB Deleteltem)ccoveeeeevveeveveeennee. 275
Setting up an allPost resolver (Amazon DynamoDB Scan)ccccoeeeeeeeeceeceeciecieceseeeeeeeenean 282
Setting up an allPostsByAuthor resolver(Amazon DynamoDB QUuEery)cccecveeeveeeeeeeennee 286
USING SEES oottt sttt ettt e st e e st e s sae s s st s e b e s seessbesssa s saesssaesstessseesssessssesssessseessaesseessaesssanns 291
CONCLUSION ettt sttt sttt ettt et e e s et et s et e st e e sbe st e e ssesbe st esasbestesassessantesessanseseesensensases 298
Tutorial: Lambda FESOLVELS ...ttt sttt e st e e s et e st s e sse s e e ssesaesaesens 298
Create @ Lambda fUNCLION ..ottt ettt b e e 298
Configure a data source for Lambda ...ttt 300
Create @ GraphQL SCREMIA ...ttt st sa e s ae s e e e s a e e e s 301
CONTFIGUIE FESOLVELS ...ttt et et e saesae st e s e s e s se e s et e s et e bessessassaesaensansensansanes 114
Test Your GrapPhQL AP ... ettt ettt te e s e e te s e e s e e e saeste st e s b e s b e s saeseesaenaesaansansasanes 303
REEUINING ©ITOFS ..ttt ree et st e st s s e e s sre e st e s s ae e st e s sae e st esaessssesssaesssesssessssesssasssaanns 304
Advanced use case: BatChing ...ttt ettt 307
TULONIAl: LOCAL FESOLVELS ...ttt sttt st ettt et s ae s s e st e st et s e ssesesassassesaesans 316
Creating the PUb/SUD QPP .ottt et sa e 317
Send and SUDbSCrIDE t0 MESSAGESooviuieeieeeeceeeeeee ettt s a e et sa b ens 318
Tutorial: Combining GraphQL FESOLVELScoueeuieiieeeeetetetectesese et ete e steste s e s e e e e s e saesaesaeneans 319
EXQMPLE SCREIMIA ...ttt sttt e st e s e s e e se s e e e e s et e ssasbassassnenaanes 319
Altering data throUugh r@SOLVENS ...ttt saesae e sae e e e naens 320
DynamoDB and OpPenSEarch SEIVICEiieieieiecteecese st es e te et saesse e e e s s e saesaesseaas 321
Tutorial: Amazon OpenSearch Service RESOLVELS ...ttt 323
Create a new OpenSearch Service dOMaiNcccceiieieciececesecee e sresaesaeeens 324
Configure a data source for OpenSearch SErViCe ... icecerecereeeeeee et enens 324
CONNECLING @ FESOLVEN ...ttt et e s te s b e s be e e e e e e e et et esaessasassaeseansensansanes 326
MOAITYING YOUE SEAMCRES ...ttt sae st st e e e e e e e et nes 328
Adding data to OpPeNSEArCh SEIVICE ...ttt sa et 329
Retrieving @ Single dOCUMENTooieeeee et e e n e aenes 330
Perform queries and MULAtIONS ..ottt se et ae st saesae s e s e s e e aesnens 331
BEST PraACLICES ..ttt ettt e ssa e et e s s s s e e s s e e st e e e e e st e s ae e st e e aaesnaesraennns 331
Tutorial: DynamoDB TranSaction FESOLVELScc.eceeeeiecieieceeieeeceee et e ste e saesaesre s s e e e s e s e saesesaanes 332
PEIIMISSIONS ...ttt ettt st et a et s st st st et s s se st e s st s be st e st s sbe st esnessesasannis 332

AWS AppSync Developer Guide

DAta SOUICE ...ttt sttt a e st s e st e b e s st e e b e s st s e saesneeenness 333
TrANSACTIONS ettt ettt st ettt et s e st s e s e st s b e et e ae s b e st e st ssesatesseesesasansens 334
Tutorial: DynamoDB batCh r@SOLVENS ...ttt ettt st st rsea s eens 342
SiNGLE tabLle DATCRES ...ttt e e s et et sa e st e st e seennenean 342
MULEI-EADLE DAECR ettt ettt et e a et b e saas 346
ErrOr NANALING oottt ettt et e st et e e s e e e st e st e b e e e se e e e e et eaanbansans 355
TULONIAL: HTTP FESOLVETS ..ttt ettt ettt sb et s sb et e s e s b e st e s b et e e s basaeaesassanes 360
Creating @ REST API ...ttt ettt st s e e sae s sae s st e s ae e st e s saasssaessaeessaassaesnaesssaessnesssananes 361
Creating your GraphQL APl ... ettt ste s teste s e e a e et e st e s aesbasbasse e e e naenneaanes 361
Creating @ GraphQL SCREMA ...ttt st st a e et a et nes 362
Configure your HTTP data SOUICEccueeeieieieieeeceeee ettt teste e s e e e s e s e ssesaesaessessessassnennens 363
CONFIGUIING FESOLVELS ...eveeveietecteceeeetetete et te e e te e e e e e e e st e ae st e ssesse e e e e esaesaesessessessassassesssesssnsenean 146
INVOKING AWS SEIVICESuveuteietieiieeeeetesteste e s e etee e eeesaetestessessessessassasssesessessansassassasssensensensensansans 366
Tutorial: Aurora PostgreSQL With Data APl ...ttt e et sae e 368
CrEALING CLUSTEIS .ttt e st e e e e e e et et e ba st e s sassaeseennenaanes 368
ENGDUING AAta AP ...ttt e e st e st e st e s ae e e e e e s e et e st et e ba s s e besseeseenaenaanean 369
Creating the database and table ...t 369
Creating @ GraphQL SCREMA ...ttt ettt st et sa e b nes 370
RESOLVELS TOr RDS ...ttt sttt st ettt s se st et s e sae st e s s et et e e be st e e ssesenssnasansenaen 372
DELELING YOUE CLUSTEN .ottt ettt et e s te s te e e e e e et e saesbe st e saeseesa e s eaensensansansans 380
RESOLVEE TULOFIALS (VTL) cueeeuereniereecereeereecreecsrencseecsreesrsscssessssssssssssssssssssssssessssosssssssssssssssssssssssane 381
Tutorial: DYNAMODB FESOLVELScuicueieieceeeeeeteteteste e ste e e e e e e e e et e st e sessessesse s e e e essesnessansensansansans 382
Setting up your DyNamoDB tables ...ttt aeaens 382
Creating your GraphQL APl ... ettt ste e ae s e e e e e et e st e saesbesbassa e e e naenaenaanes 361
Defining @ DASIiC POSE APl ...ttt e e e e s st e st e st e s e s se e e e e e e e aenansans 384
Configuring the Data Source for the DynamoDB Tablesccoveeiiciececereeeceeeeeeee e 385
Setting up the addPost resolver (DynamoDB Putltem)cooveveieiiececeeeeeeeeeceee e 386
Setting Up the getPost Resolver (DynamoDB Getltem)ccocoeeeeeeeeieciecieecececeeeeeeeenne 391
Create an updatePost Mutation (DynamoDB Updateltem)ccccovveveecieciecececeneceeeeeeeenes 394
Modifying the updatePost Resolver (DynamoDB Updateltem)coeceeeveeeeeeeecenceeceeceenen, 397
Create upvotePost and downvotePost Mutations (DynamoDB Updateltem) 403
Setting Up the deletePost Resolver (DynamoDB Deleteltem)cccoceeveceeeneceeeeeeeeeeeenen. 407
Setting Up the allPost Resolver (DynamoDB SCan)ccccciceeeneneceeeeeetectecte e ee e e nenens 414
Setting Up the allPostsByAuthor Resolver (DynamoDB QUENY) ...cc.cceeeeeeceeciereeneneereeeeeenens 419
USING SEIS ..ttt sttt e st s e s ae et e s s et e st e s ae s st e s sae e s st e s saessaesssaessaassseesssessseesstesssesnses 291
USING LiStS @NA MAPS cuveiiieieieeceetetetete ettt et et stesaesse st e e s e e s e sae st e sba s s e s seesa e e e s esaansansansanes 432

Vi

AWS AppSync Developer Guide

CONCLUSION ettt sttt sttt ettt et e e s et et s et e st e e sbe st e e ssesbe st esasbestesassessantesessanseseesensensases 435
Tutorial: Lambda FESOLVELS ...ttt sttt sse st s et e st s e sse s e e ssassesaesens 435
Create @ Lambda FUNCLION ..ottt ettt sa et et 436
Configure a data source for Lambda ...ttt 438
Create @ GraphQL SCREMIA ...ttt a e et sa e s e s be e s e e nesa e e s 362
CONTFIGUIE FESOLVENS ...ttt et et e sae st e st e e e e s ae et et et e te st essessaesaesnensansansansanes 146
Test YoUr GrapPhQL AP ... ettt ettt te s te st e e se e et e e e st e st et e s sesseeseeseessenaensensansansanes 442
REEUINING ITOFS ..ttt ettt ree et e st e s sae e st e s sa e e s e e s sae s s s e s saa e st essaessssesssaessaesssessseessseessaanns 443
Advanced use case: BatChing ...ttt sa et st 446
Tutorial: Amazon OpenSearch Service RESOLVELScoieeeeeeeeeeeceeteee et 456
ONE-CLICK SELUP «eeuteteteeeeeetete ettt et et et e s teste s e et esse e e et e st e st e tassessassessaessensansansansansassassessaans 457
Create a New OpenSearch Service DOMAINcocceeieieieciecieesecee ettt sre e a s 457
Configure Data Source for OpenSearch SErvice ...t 457
CONNECLING @ RESOLVET ...ttt ettt stesaeste s e e e e e e st e s aesae st e saeese e e esaesaenaeaansansansas 459
MOAITYING YOUP SEAICRES ...ttt et sa e st e st et e s e sesseesa e e e aenanaans 461
Adding Data to OpenSEArch SEIVICE ...ttt ste e e a e a e ae s 462
Retrieving @ SiNgle DOCUMIENT ..ottt e ettt e s s e e e e e et nee 463
Perform Queries and MULALIONSccueiiiiiiiiicecece ettt e bscsseesseesseeresssesanean 464
BEST PraCliCesS ...ttt ettt st et s ae st et b e s a e st s b st e s s s e s e e sne s 464
TULONIal: LOCAl RESOLVETS ...ttt ettt st et sttt sae st e e s e st et s e sbe st e e ssassesassansans 465
Create the Paging APPLICAtION ...ttt ae st s n e a e es 465
Send and SUDSCIIDE t0 PAGES ...ttt 466
Tutorial: Combining GraphQL RESOLVELSceiieieeceeeeeetetetetese et stesaesae e e s saennens 467
EXQMIPLE SCREMIA .ttt ettt et ae s te st e s e e e e e e e et et et entenaenes 468
Alter Data THroUugh RESOLVELS ...ttt e e s e stesaestessesse s e s e e s e s esaesaesaensans 469
DynamoDB and OpPenSEarch SEIVICEiieieieiecteecese st es e te et saesse e e e s s e saesaesseaas 470
Tutorial: DynamoDB BatCh RESOLVES ...ttt ettt steste e e e sa e s e saassasaens 474
PEIIMISSIONS ...ttt ettt sttt et e st st st st e st s b e st e s st s be st e st s sbe et e st ssesasannis 474
DAtA SOUICE ..ttt ettt ettt sa et st s e st e st e at et e st e s st sse st e st e besbessessesnbanseesasns 475
SINGLE TABLE BATCR ...ttt ettt et e ettt e b e st e b e s e sa e s e e e aenaan 476
MULEI=TABLE BAtCR ettt ettt b et s st a e 479
ErrOr HANALING ettt e ettt e s ae s s e e e e e e e e et e bestasbassnesaenaennenean 487
Tutorial: DynamoDB Transaction RESOLVELSccceieeieieieeeeectetestesee et sae e sre e n e e ns 493
PEIIMISSIONS ...ttt sttt a et e s bt st st e s st s be et e e st s be st e ntebeeabe st ssesanannis 474
DAtA SOUICE ..ttt ettt et et sttt s e at e b e st e s st s se st e e st e besbessessesabansesnsanns 475
TRANSACTIONS .ttt ettt st et s e b e st s s e st s sbe et e st s be st e st sssesntesneessesasannees 495

vii

AWS AppSync Developer Guide

TULONIAl: HTTP RESOLVELS ...ttt ste sttt s e st st sse st e e s e st e s s e sse st e s ssasaesaesassansesassen 505
ONE-CLICK SELUP «eeuteteteeeeeetete ettt et et et e s teste s e et esse e e et e st e st e tassessassessaessensansansansansassassessaans 457
Creating @ REST API ...ttt sttt st s te s sae s st e s s e e st e s saesssa e s saeessaassaessaesssassssesssenanes 361
Creating Your GraphiQL AP ... ettt te et e e e e sa e tesaeste s b e s se s e sss e s et esesaensansans 361
Creating @ GraphQL SCREMIA ...ttt e e sa e st et stesse s e e e e e e e a e aentans 362
Configure YOur HTTP Data SOUICE ...ttt sve e ete e et saesaessessa s e s e s e eaessesaenan 363
CONFIGUIING RESOLVELS ...ttt ste e teste s e e e s e e s et et et e aesaeese e e e s e s esnesaansansans 146
INVOKING AWS SEIVICES ...uveveierieiieeeeetectecte e s e s e e e eeesaetestessessessessaesasssessessestansassessasssensensensensansans 510

TULONIAl: AUFOIQ SEIVEILESSoveieiieieteteerietetreste ettt ste st et et et s e sae st e e sbesae e s e ssessenassassensesasens 512
CrEALE CLUSTET vttt ettt et st sttt s s st et s s b e st et e e s be st esasbe b esasnessestesassansenannn 512
ENQDLE DAt AP ..ottt sttt st sttt ettt e sttt s st et e e s et e e e a et e enan 369
Create database and table ...t 513
GraPhQL SCREMIA .ttt e e e s e et e st e st e st e b e e e s se e e e saennensasansans 514
CONFIGUIING RESOLVELS ...ttt ste e e s e et s e e s et et e st e saesaeese e e esaenaesnensansansans 146
RUN MULATIONS ettt ettt ettt s b st se st e st se s b e st e nesasesnnes 520
RUN QUETIES ..ttt cctteeccettteeceetteeeeeeateeeessseseesessaseesessssesessssaseesssssseesssssssessssssssessasssseessssssseessnnns 521
INPUL SANITIZATION .ottt st s st e s sre e sre e s b e s sra e s b e e ssaessbesssaessnessnaens 522

Tutorial: PIPEliNg RESOLVELS ...ttt ettt re s e e e st e b e st e s s e s s e s e e e e e e aesaesasanes 524
ONE-CLICK SELUP «eeuteteeteeeeeetete ettt ettt e et esteste s e e e e e e e et e st e sbesbassesseesassaessensansansansansassassessaans 457
MANUAL SEEUP ettt ettt st e st e st e e e e e e e s et et e st e st asseesae e et ansensassassassassaessansansans 525
Testing Your GraphiQL AP ... ettt te e e et e st et esae s s e s e e e e e e e e aasaesaannan 442

TULOMIAL: DELEA SYNC ettt te ettt e st et e st et s b e e e e e e e et et et e sae st e sesseesasneensanes 538
ONE-CLICK SELUP oottt sttt e et e e et e st este s e e e e e e e et e st e s ae s bassessassessaesaensansensansansassassessaans 457
SCREMIA .ttt sttt st st a e st et s s b et e b e b e e se st et e e e aeste st enaes 540
IMULRTIONS ettt ettt se st st e s e e b e s e e st s b e s st e e st e besabe s st ssesabanseennanns 542
SYNC QUETIES eeteeeeteeteecteete st es e e st e s saessaeessteesatesssesssaesssessstesssesssaesssassstesssessssesssessssesssessseesssesssaens 542
EXQIMIPLE ettt et st s ae st e e e e e et et et e b e e b e e s e e se e e e te b e bensasseeseesaentensentantans 543

Configuration and SEttiNGS ..cccciiiiiieeeeciiiiiiiiiiiiiniennnniiiiiieeeeittessassssssssssssessssssssssssssssssssssssssssssses 550

Caching aNd COMPIESSIONcviciiieieeeeeceeeeete et e e e e et e e tesae s e s e e e e s e e e saesassessassessesseeneanns 550
INSTANCE TYPOS ettt s et e s s st e s s b e e s ssaesssssessssaessssnesssseessssaesssnesssssasssnsessnns 551
(@ Tal YT a Vo 0 T=1 0 T= 1Y/ o OO OO STRTSRRRR 552
CACNE ENCIYPLION ettt teste s e s e st et e e e e sa et et et e s sesseesaeseenaenaessensansansans 553
CACNE EVICLION .ttt ettt ettt ettt s s b et et s ae st et s e s b et e e sbessensesessassenssans 553
EVICtING @ CACNE ENLIY ettt st e e et et sae b e s ra s e seennenaanes 553
Evicting a cache entry based on identity ... e 555
COMPresSiNG APl FESPONSESeevieeciieitirterteesteertesseessteesstesssessssesssessssasssessssesssessseesssessssesssessseasns 556

viii

AWS AppSync Developer Guide

Configuring custom dOMAIN NAMIEScuccueciieiecereeeceeee et e et e e et estesaesse e e e e e s e s e ssensessansans 557
Registering and configuring @ domMain NAME ...ttt 558
Creating a custom domain Name iN AWS APPSYNC ...uriiiiereneneeeeeeee et cte e e e e sa s sae s 558
Wildcard custom domain names in AWS APPSYNC ..cueiiiicienececereeeeeseeeeseestessessessesseeesaeneas 559

Conflict DeteCtioN @NA SYNC ettt e st st esae s e e e e e e aeaenes 560
VErsioNed Data SOUICESccoeeiiririrerteteenteteestestesteeste st e e s e sse st s e ssestesassessesaesessessessssassessesasensessses 560
Conflict Detection and RESOLULIONc.coiveiiiririeirerctcerctee ettt sa et ettt sa s ses 564
SYNC OPEFATIONS ..ottt srte e st e s saess e e s sae e st esaesssaesssessstasssesssaesssassssesssessssesssessssesssennns 573

MONItOriNG ANA LOGGING ...uoiueiieieeeceeeeeee et ee et e st et esaesaeste s e e e s e e s et et essasassassasseensanean 574
Setup and CONFIGUIALION ..ottt st e e s e a et sa et nes 574
CLOUAWALCN MELIICS ittt sttt ettt et sb e st e e st e st st et e se b e e ssassan 575
CLOUAWAALCN LOGS ..ttt ettt e s te s e e e e e e e st e s aesae st e saesse e e e e e e asaeaesansaneas 582
LOG LYPE FEFEIENCE ..ttt ettt st e e e et e st e st e s rassasseennenaanes 586
Analyzing your logs with CloudWatch Logs INSights ..o, 589
Analyze your logs with OpenSearch SErviCe ... 590
LOg FOrmat MIGration ...ttt st e et aesae st e s seeseesessaennennantans 590

Tracing With AWS X-RaAY ..ottt ettt e te s s e s e e e s e e et e saasae s b e s se e ssnennanes 591
Setup anNd CoONFIQUIALIONc.ooieieeeeeeee ettt a et et e st se b s e e e e e e e e s e saesaanean 574
Tracing Your APl With X-RaAY ..ottt et e saestesaesse e e e e s e assaesaansansans 592

Logging AWS AppSync API calls using AWS CloudTrailc.coeeeeeeeeceecieceeeceeeeeeeeeeeeee e 594
AWS AppSync information in CloudTrailcceeeeieieeeeece e 594
Understanding AWS AppSync log file @Ntries ...ttt 595

UsSiNg AWS APPSYNC PrivAte APIS ...ttt st s vt sssessveeseesssesssnessasessnassanasssesans 598
Creating AWS APPSYNC Private APIS ...ttt cstessreeseessaessaessse e s s e sssesns 600
Creating an interface endpoint for AWS APPSYNC ...ttt nenens 601
AdVANCEA EXAMPLES ..ottt e e e e et et e st e st e s ae s s e e e e e et e s e stastastassessaesaeseensansanes 602
Using IAM policies to limit public APl creationceeececceececesee e saeeeens 606

Configuring GraphQL run complexity, query depth, and introspection with AWS AppSync 607
Using the introSpection fEALUIE ..ottt et aesaasaens 607
Configuring query depth LMItS ...ttt sa e ae e 609
Configuring resolver COUNt LIMILS ...ttt s aenens 610

Using environmental variables in AWS APPSYNC ...ttt cse e saesse e s e e enennas 611
Configuring environmental variables (CONSOLE)coeeuveieieciecieeeeceeee e 612
Configuring environmental variables (AP1) ...ttt nenens 613
Configuring environmental variables (CFN) ..ottt 614
Environmental variables and merged APIS ...ttt 615

AWS AppSync Developer Guide

Retrieving environmental Variables ...ttt 615
Authorization and authenticationeeeeeereeeeeeeennnnennnnnnnnniniissssssssssssssssssssss 617
AULNOMIZATION TYPES ..ottt ettt e s ae st s b e et s e e et et et et e b e s sesseesaeseesaeneansanes 617
PAY ol I G A= 1016 a Lo Y g 4= 4 (o] o ISR 618
AWS_LAMBDA QUENOTIZATION weveeieeieiieeieieeeeteieseeeeesteeeetteeeseeeesaeesessesssssesssssessssssessssssssssessssesssssessssseens 620
Circumventing SigV4 and OIDC token authorization limitationsccceeeeveeieeieeveeceeciecienen, 625
AWS _TAM QUENOTIZATION eeeeiieeeeeeeeeeeeteeet ettt ettt eeetecesstecesaeeessseesssseessssesessseesssseessssesssssesssnsesssssesns 625
OPENID_CONNECT QUENOFIZATION «.vvtieveiiiieeieeeieeeeieeeeeeeeeeeeeeeeseessssesssssesssssessssesssssessssseessssesssssesssnne 628
AMAZON_COGNITO_USER_POOLS authorizationc.ccoeniinenennenenecneniestsesessesesseseeseenens 629
Using additional authorization MOAES ...t saens 630
Fine-grained @CCESS CONTIOLcuiiuieieieeeececeeec ettt e st e e e et et e s te st e s e s s e e e s saenaenenaenean 633
Filtering iNfOrmMation ...ttt e et aesae st e saesse s e e s e e enasnaneans 635
DAta SOUICE QCCESSueieiiiiiieiieteetecte ettt st st et ae s st s st s b st e st et e et e s st sabe s st e sseebe st essesnsesntenseane 636
AULNOTIZATION USE CASES .uveuveiiieieteeetetetsestete ettt ettt s te st et s et e st s e s s et et s e se st esassassessenanns 637
OVEIVIBW ...ttt ettt ettt s e st st st e et s b e et e e st s b e st e st s b e et e e st s be st e st sseesbestessesasestensanans 637
REAAING dAtA ..ottt et e st e st et e s s e e e e e e e et e b et essessesseessensensensansansans 638
WIEING DAL ettt ettt e st et e st e e e e e et et e st e be b essesseeseessensansansansansans 642
PUDBLIC aNd Private FECOIAS ..ottt te e e et saesae s aesae st e s e e e s naesnennan 644
REAL-EIME AT .ottt ettt s a et st et s s b st e b e e nan 645
USING AWS WAF 10 PrOTECTE APIS ...ttt st s e st e s et ssseessae e s e e s saasssaesssaessnassnnanns 648
Integrate an AppSync APl With AWS WAF ... ettt ste e e e nesae s saens 649
Creating rules fOr @ WED ACL ...ttt ettt te st se e e s e e e a et aan 651
SECUNITY ceiiiiiiiieennneiiiieiieniiinensessssssssssssecsssssssssssssssssssssssess 655
DAta PrOTECLION ...ttt e e et e s e s st e s sae e s e e s aesssaesaaessnasssaesssassaesssessseanns 656
ENCryption iN MOTION oottt sttt st e s sae e a e s sae s ssa e s aaessaessaeessnessnaasnnas 656
ComPLiANCe ValiIdAtioN ...ttt e e e et aesae s e e be s b e s e e e e e e aenantans 657
INFrasStrUCTUIE SECUNILY c.uviiieeteeceeee ettt ettt ste st e s e e e e e e e e e e b e sae b e saa s s e s seesaesaeaensesansans 658
RESILIEINCE .ottt ettt ettt s e st e st et s s et et e e b et esesse st e st ssassastesaesanseneens 659
Identity and access MANAGEMENT ..ottt ste st e s e e s e e e e e e s e sbesaaeans 659
AUAIENCE ..ttt sttt sttt s b et st s bt et s s b et e e s s et et s sa b et esassassestesassansesessansensesanns 659
Authenticating With identitieseoeeeeeeeeeeeee et nnens 660
Managing access USING POLICIEScoeceeiecieiececeeeeeeee et steste s e e e e e e e e e e e e stestesae s e sseeaesaennennan 663
How AWS AppSYNc WOIKS WIth TAM ...ttt sae st se e e re s aenanaens 666
Identity-based POLICIESccueuiieeeceeee ettt sae sttt et e s beese s e nnens 673
TrOUBLESNOOTING ..ttt st e e et e e st e st e st e be e e e e e e s e e aeaentaneas 684
Logging AWS AppSync API calls with AWS CloudTrailccoeeeeeeeeeeieeeeececeeeeee e 686

AWS AppSync Developer Guide

AWS AppSync information in CloudTrailcceceeieieeceeece e 687
Understanding AWS AppSync log file @Ntries ...t 688
BOST PrACLICES ettt ettt st e st s ae e s b e s sa e s s b e s sa e s s ae e s e e e b e s s sa e e b e e st e e b e esraeesaenntans 464
Understand authentication Methods ...t 690
USE TLS fOr HTTP FESOLVELS ...ttt stest e s et et s e sse st e e ssasse e ssessassssassesseseen 690
Use roles with the least permissions POSSIbLE ... 691
[AM POLICY DESE PraCliCes ..ottt sa et et esaesbe e e e e annens 691
Resolver reference (JAVaSCriPt) ccciiciiiiiiiiiiieeeenniiiiiiiieiiiiesesssssssssssssscsssssssssssssssssssssssssssssssssses 693
JAVASCIIPt FESOLVEIS OVEIVIEW ..ottt ettt teete st e e s e st et e st e tessessasse e e s saesaaaansanean 693
Supported runtime FEALUIEScvoeeeeeeeeeeeee ettt sa et e st a e e e s e saesaeaan 694
UNIE FESOLVETS .ottt sttt ettt et st et e s s st e e s et et e sa st e e ssasbestesassensensssensessesans 694
Anatomy of a JavaScript Pipeling r@SOLVEN ...ttt resaesaeeens 694
WIEING COAR ettt te st re e e e e e et et e st e b e st e s e e se e e e st e s estantansansessassassaensensanes 699
UBILITIES ettt sttt ettt ettt et st et s et et s s b et et s sasbe st esasbasbenassansenssnnnne 702
Bundling, TypeScript, and SOUICE MAPS ...ccoeeeeeeieiereeerieseeseseeeeeeeesaestessessessessesseesessessessessenes 704
TOSTING ceeieteeeeeecteete ettt s st e st e s st e e st e s s e e st e e sae e s s e e s se e s aa e e bt e s e e e b e e R e e e b e e s e e e s e et e e aeessaeesaeats 711
Migrating from VTL t0 JAVASCIIPL .ottt sttt a e n e a e ae s 713
Choosing between direct data source access and proxying via a Lambda data source 716
Resolver context 0bJECt rEFEIrENCE ...ttt 718
ACCESSING the CONTEXT ottt s e et a et et e be st ra e e e e e aennan 718
JavaScript runtime features for resolvers and fUNCLiONSccooveviecerenerceeeeee e 729
SUupported runtime FEALUIESceiieeeeeee ettt re b e e e e e e e e s e aesaeean 730
BUILE-IN UBILITIES oottt ettt st ettt ettt s sb et et s s st e s sesae e nas 737
BUILE-IN MOAULES ...ttt ettt ettt s s sa e s s b et e e s ae st e e snassesaenans 740
RUNEIME ULILITIES oottt ettt ettt ettt s b st s be st e e sseseen 763
Time helpers iN ULILEIME ...ttt st et sa e e a et e aan 764
DynamoDB helpers in util.dynamodb ... 765
HTTP helpers in ULILREED co ettt sttt sttt sa e 772
Transformation helpers in Util.transform ... 772
StriNG NelPers IN ULILSTE ettt s ae st et s besaesba s e e snennannens 786
EXEENSIONS .ttt ettt s sb st b e st se s b st et et e se s b e s atesne e b e eneesnesn 786
XML helpers i ULILXML oottt re e sa et sttt e b e s se s e e e s e e nenanes 790
JavaScript resolver function reference for DynamoDB ... 792
GEEIERIM ettt st s a e et be s b e et s b e st e s st s b st e s atsbe st eenessbesssannas 792
PULIEEIM <.ttt ettt et s a e st sb e st e s st s ene st e ntessesnesntans 794
UPALEIEEIM .ttt ettt e st e e et sa e st e s b e s e e s e e s e e b e b et e b e sasseesaesaansensansanes 797

Xi

AWS AppSync Developer Guide

DELELEITEIM ..ttt sttt ettt et et e st e st e aa st et et s ae st et e sassetesaenas 801
QUETY ettt ettt et e s te s st e st e e s st e s ae s sa e st e s saeassaesssaesssessstasssessaesssassstesssessssesssessseesssessseessseesseanns 804
SCAN ettt ettt ettt et s b e st a e et e Rt e b s b e Rt e s et e e Rt e ae s b e e st e sa e et e et e ene s be s st ennes 809
SYNIC ettt ettt ettt et e et e e st e et e e s e e e et e st e e b e e st e e b e e e R e e et e e e e e st e e b e e ae e s e e e et e e st e et e es b e e st eesaensaesanans 813
BAtCRGELIEEIM ..ttt et ettt e sa e st s b st et e e s be st e e saasaessennen 816
BAtChDELELEITEIM ...ttt ettt sttt sb e b et s sae st s e s saseesaenas 819
BAtCRPULIEEM .ttt ettt ettt et b ettt et et e e s sa b e e snanes 821
TraNSACTGERLITEIMIS ...ttt ettt e a st st se s b e st e ne s b e s e e s s 824
TraNSACTWIITEITEIMS ...ttt sttt ae st et s b st st ssne s b e st s sneennes 827
Type system (request MAPPING) .occceceeeeeeeeeeeerete et se e e e e e e e e saesaessesaesse e e e e e s esaesaessesansas 833
Type system (reSPoNSe MAPPING) c..cccvecveeeeererereeeeietereeetestesesseseeseesessessessessessassessessassessessessansans 838
FILEEIS oottt ettt ettt a et e e s bt e s a st et s s e b et et e sa b et e sa e s et et eaessestesaeseseneens 842
CONAILION EXPIESSIONS ...ceeeueeieteteciereeee e ete e ste e steste s e see e e s e saestestassassessassaessessesensansassassessasssensanes 843
Transaction coNditioN EXPreSSIONSc.cceceeieieieictetececese s e ae s e saestessessesseesasssesaesansans 855
PrOJECTIONS ..ceiiieiiectecctetecre ettt st s e e e sae e s e e s se e st e s saeessae s saesseesaeassaesssaesssasssaesssessssessaessseessaennns 858
JavaScript resolver function reference for OpenSearch ... 859
REQUEST ...ttt ettt e st e st e s s ae e s e e s s ae e s b e s sae e s sbe e st essbessseesssasssaesssesasaesssessstenssessseesssenn 860
RESPONSE ...ttt ettt te st e st e s sae e st e e sae e s e e s se e st e s aeessae s sa e saassseasssesssaenstessseesssessseessaessseessaennns 860
OPETATION FIBLA ettt st st e e e e e e s et e st et e s besseesae e esaennan 861
PATN FHELA ettt ettt sa e st e s b e s e s e e e e e e a e a e e e aanes 861
PATAMS TIELA .ottt se e et e st e st e s s e e e s e e e et e besaesbessesseesassnanean 862
PASSING VATADLES ..ottt ettt st et s s s e e e et e e e b e st e st e s se s e e e e s et eaassansans 863
JavaScript resolver function reference for Lambda ..ot 864
REQUEST ODJECL ..ttt ettt sae s e s e e st et e b e b e saa s e e e e e enaesaensanean 864
RESPONSE ODJECT ..ttt st e st e st s s e e s et e aesae st e s b e ssesaa e e sanannanaans 867
Lambda function batched r@SPONSE ...ttt a e saesaesaens 868
JavaScript resolver function reference for EventBridge data sourcecccoceeeeeveverceneeveneenne 868
REQUEST ...ttt ettt e et e st e s st s st e s ae e st e s se e s b e s st essbessseesssassssesssessseesssesssesssessnsenssens 860
RESPONSE ...ttt et e et e st e st e s st s s e e s se s st essaessssesasassssassssssssesssssssessssesssessssssssessseesssennns 869
PUTEVENTS fIELA .ottt ettt ettt ettt st s s s e sasse st e se e 870
JavaScript Resolver function reference for None data SOUrcecceeeeciecevecieceeceneseeeeecve e 872
REQUEST ...ttt ettt e st e e st e e e e s st e s e e s s e e s s e s st e s b e ssseesssassneesssesseesssesstesssesassensnens 860
PAYLOAA ...ttt ettt st sttt a et a e s b e s b e s s e e e e e et et e besaesaeeaeeaaeneenaaneans 867
RESPONSE ...ttt ettt et s st e st e s et s st e s se s st e s se e ssae s sa et e s st e ssesasasstassssssssessseesssesssessaennns 869
JavaScript resolver function reference for HTTP ...ttt 873
REQUEST ...ttt e et et e st e s e e st e s e e s s e e s s e s st e s b e ssseesssas st esssesseesssasstesssessssesssans 860

xii

AWS AppSync Developer Guide

MELRNOM ...ttt sttt et s bttt e e bt e b et et e et et e e be b eneene 874
RESOUICEPALN ...ttt sttt ettt s bt e s e b et s e s et e e ssanes 874
PAramS FIELA ...ttt et sttt et ettt s s b et e s a b et e e b et eassanes 875
RESPONSE ...ttt ettt ettt e st e ssae s s st e s ae s s st e s b e s s sa e s b e s sse e s s e s saesssessaaesssassaenssessseessaeesaenares 869
JavaScript resolver function reference for Amazon RDSciiieiiciecccececeeece e 876
SQL tagged tEMPLAtE ..ottt st st a e et nes 877
Creating StAteMIENTS ... et s sr e e a e s sae e s e e s b e st e s ae e ae e s saeesanesanas 878
RELFIEVING AALA .ottt e e st e st e st e s s e s e s e e e e e e s e e e bessesaasbasseennesaensanean 878
ULILIEY FUNCEIONS oottt ettt st et e e e e e e et e b e aessa e e e e e e e naanes 879

L@r= 1Y 1] [« OO OO OO OO OO OO PP SR OU PP PP RUSPRRUPPRURPPRUPPRTRPONt 887
Resolver mapping template reference (VTL)cciiiiiiiiiiiiinenncnnnnciisicccsinssssssssssssssssssssssssssssses 890
Resolver mapping temMpPlate OVEIVIEW ...ttt st st re e ns 890
UNIE FESOLVETS .ttt sttt et sttt et ettt et st et e s a st e e s sasbestesassessensssansensasens 891
PIPELINE FESOLVELS ...ttt st e e e it st e st esbe s b e s e e e e et et e saesbabessasseenaennensanes 164
EXQMPLE tEMIPLALE .ttt sttt ettt st e st ae s e e a et et e s nns 896
Evaluated mapping template deserialization rules ... 898
Resolver mapping template programming QUIAEcoeeveieiecieneceeececeeeeee et nens 899
SOEUP ettt sttt s e e s a e e s a e b s b e e s b e e a e e s b e s b e e e b e e st e e b e e b e et e e st eenseeraennees 900
VATADLES ...ttt ettt ettt st st ettt et et e s et e e e et et e e esanten 902
CAlliNG MELNOMAS ...ttt ettt e st e st e s aesse e e e e e e et et e basbassessnennannans 904
SEFINGS ittt ettt e st e st e s st e s e s s et e s e e s st e st e e st e e b e e e st e st e e st e e aeeea e e et e esse e e aesssaeebaesrtans 905
LOOPS eeteireieteeeteete et s et e st e st e st e e st e s ae s sa e s ae e s sa e st e e sa e e st e s e e et e e e e e et e s e e et e e ae e st e ste e s e e steeseenraannne 906
ATTQYS eeeeeieeeteerteesteestee st essaessseessaeesstesssessseasssesssaassaesssasssessseesstessseesstessseesstessseesseessseesssesssesssaessseessaens 907
CONAItIONAL CRECKS ..ottt ettt et sae st ettt s b et s s be st e e b e s esaene 907
OPEFALONS .eeieeeiteeteecteete ettt e st e e ste s st e s ste e st e e sae s s e e s ssessseesseessaeesse e stassseesssessseesssessseesssessseesssensseenseens 908
CONEEXTE ettt ettt et a e e e e s be st et e b e b e s st s ae st e e st e s e et e e st s sne et e st enannt 910
FILLEIING oottt ettt e st e st e s te st e e e e re e e et et et e besseeseeseesae st et ensentansasseeseeneensensanes 910
Resolver mapping template context refErenNCe ... 916
ACCESSING the FCONTEXT eovirieetcteeeeteteee ettt b et s et es b s s se s s s s nns 916
SANITIZING INPULES oottt ettt st e s st e st e s sse e st e s s st essaesssaesssessseesssesssesssesssaassaasnne 926
Resolver mapping template utility referenCe ... 927
ULility RELPers iN SULIL ..cucveeeeeeeeeeeeeeeeereee ettt se e b e s b s s b anene 928
AWS APPSYNC AIFECLIVES ...ttt e e st e sae st e saesse s e s e s e e s e s essessassessessassasnnans 939
Time helpers iN SULILEIME ..ottt b et ea s ae b es s b sene 940
LisSt NELPEIS IN SULILLIST «..evveeeeeeeeereteeeeteeeeete ettt s s eb e s s b n s s nens 943
Map helpers iN SULILIMAP .ottt b e s s b se e s s enene 944

xiii

AWS AppSync Developer Guide

DynamoDB helpers in $util.dynamodb ...t senenes 944
AmMazon RDS helpers in SULILIAS ...ttt s s be e s s senes 954
HTTP helpers in SULILATED .ottt se s es s s s s nene 957
XML helpers in SULILXIML c..ovouieeeeeeeceeeeeeeeee ettt s e s s s s n s s nne 959
Transformation helpers in $ULILEranSTOrmM ...t enesenas 961
Math helpers in SULILMATN ...ttt s e n s nene 974
SEHNG NELPEIS IN SULILSLE oeeeeeeereeeeeeeceeeeereee ettt s b s s be e s s s nns 975
EXEENSIONS ettt ettt et a e st sb e st sbe st e st et e et e s e s b e s ntesneebeeneenenn 976
Resolver mapping template reference for DynamoDBccoieieiecieceeceecececesee e 989
GOEIEEIM ettt et st s s a e et e s b e st e st s b e et e s st s be st e satebe st e snessnesstannas 990
PULIEEIM ettt sttt st s e s b e st s b e st e s st s ne st e sntessesaesnens 992
(8]0 =1 =] 1 = o ¢ OO USROS 995
DELELEITEIM ..ttt ettt st et e st s b et et e s b et e e sae st et e e ssensesaesanean 1001
QUETY ettt ettt et e s re e st e s st e st e s s ae s s e e e b e e s sa e e sae e saesssa e seesssessseesssessstesssessssesssassseesssesssaensees 1004
SCAN ettt ettt st et s b e et a s b e et s e b e et e st st e et e st et e et e ebe s be st e snesnbannt 1008
SYNIC ittt ettt ettt e st s e e st e st s s re e et e e s a e e et e s b e e e b e e et e e e e e b e e b e e Rt e et e e b e et e e et e e st e e s e eenae e reessaananes 1013
BAtCRGELIEEIM ..ottt et s sa e sttt st et s e st e e s e sse s esnssans 1016
BAtChDELELEITEIM ...ttt sttt b et et b et e s et e e saesaesnesaes 1020
BATCRPULITEM .ttt ettt st et sa et e s et e e s e s b e s e e ssassennenans 1023
TraNSACTGERLITEIMS ...ttt et et ae st st sb e st sae s ae st e st e snene 1027
TraNSACEWIITEITEIMS ...ttt sttt et s sa e st s e s ae st e st esn e s b e sne s 1030
Type system (request MAPPING) ...ccvcceeereeeceeeeeetertetete e e e e e e e e e e ssesaestessessessassaessessessensensans 1038
Type system (reSPoNSe MAPPING) c..cceeeeeereereerierieitereesreeesieeeeseessessessessessessessesseessessessessessessassanes 1043
FILEEIS ettt ettt et b et e b et et e bt et e b et et e ae et et e e e sente e enetan 1047
CONAILION EXPIrESSIONS ...cveeueeeieireteteciesteeeseeeete et et e stestessessessessaesaesaessessessessassassasseesesssensansensansan 1049
Transaction coNdition EXPreSSIONScc.cccceeveeerieieietete et e e a e e stesaestessesae s e e e e e ennenes 1060
PrOJECTIONS .ttt ettt s e st e s e e s sae e st e e sae e ssaessaa e s b esssaessaessaesssessseesssesseennnens 1063
Resolver mapping template reference for RDS ... 1065
Request Mapping teMPLALE ...ttt st sa et 1065
VBISION .ttt ettt ettt e et e st s e st st e et e st et et s st s b e e st e sae e b e st s esesab e st esesabessessasasesntensanns 1067
Statements and VariableMap ...ttt a e aeaens 1067
VariableTYPEHINTMAP ...ttt s a e e st et e s e st e s e e e e a e e enaennan 1067
Resolver Mapping Template Reference for OpenSearch ..., 1068
Request Mapping TEMPLATE ...ttt sa et et e s e s ae s s eaennens 1065
Response Mapping TEMPLAtE ...ttt ettt s ae s e ae e aeaeaens 860
OPETATION FIBLA ettt st et sr e e e e e e s et e st et e s b e sessae e esnennan 861

Xiv

AWS AppSync Developer Guide

PATRN FHELA ettt e et e st st e s b e s e e e e e e sa e a et et e aanes 861
PATAMS TIELA ettt et e st e s e s e e e e et e aesbasbassesseesassnenean 862
PASSING VATADLES ..ottt ettt se e st et sae st e s e s e e s et et e sbe st e bassassasnnennan 863
Resolver mapping template reference for Lambda ... 1073
Request Mapping tEMPLALE ...ttt a e a e 1065
Response Mapping tEMPLAte ...ttt e s aeaens 860
Lambda function batched reSPONSE ... 1077
Direct Lambda RESOLVELS ..ottt et ettt ettt s s st e s et e e s ssesaenas 1078
Resolver mapping template reference for EVENtBridgecoooeeeeevieeeiieeceeeeseceeeeeeeenne 1084
Request Mapping tEMPLALe ...ttt s a et 1065
Response Mapping tEMPLAte ...ttt s s s e aesaens 860
PUTEVENTS FIOLA ettt ettt ettt e sse st e ss et snes 870
Resolver mapping template reference for None data SOUICecoeveeeeveiceecieceneneneceeeeeenne 1088
Request Mapping tEMPLAte ...ttt s a et a e 1065
VBISION .ttt ettt ettt ettt et e b e s s s e s e st e e st e s e be b e ssessesse s st e st s st ebessesessessessesnteseentensan 1067
PAYLOQA ...ttt ettt ettt e a et et a e s a e s e e e et et et e be b e seere e e e e enaenean 1077
Response Mapping tEMPLAte ...ttt st aeaens 860
Resolver Mapping Template Reference for HTTP ...t saesaeseens 1091
Request Mapping TEMPLATE ...ttt sa e st et e saesae s s e s e nns 1065
VBISION .ttt ettt ettt ettt et e b e s s s e s e st e e st e s e be b e ssessesse s st e st s st ebessesessessessesnteseentensan 1067
MEERNOM ...ttt sttt ettt et sa et et s et et b et e e se st e e e sesae st enaesans 1094
RESOUICEPATI ...ttt ettt b et et ss st et s et e ss e b e e sesnen 1094
PAramS FIELA ...ttt ettt b et ettt s s et e st et e s et e e snenes 862
Certificate Authorities (CA) Recognized by AWS AppSync for HTTPS Endpoints 1096
Resolver mapping template changelog ... eens 1162
Datasource Operation Availability Per Version MatriXccccoceevevveeievincienesieneseneneseeeseennes 1163
Changing the Version on a Unit Resolver Mapping Templateccccevevenenenvenceeveecneceenene 1164
Changing the Version on @ FUNCLION ...ttt 1165
20780529 ...ttt ettt sttt ettt be st et a et e s et be st e e e s et et e ae s et e e seaeneenn 1165
207770228 ..ttt tsest et sttt s et et b et et se st et s et e s et et b et e e s et et e ae st et e e senaeneenn 1172
TYPE FEFEIEINCE auuuueiiiiiiiiiiiirneneneniiiissieeeineess 1173
SCALAN TYPES ettt ettt et e st s e et s e st sa et st et e st e s b e e b e et e e e e e et et et et e te b e eseeaeesaeneesaanes 1173
DEFAULL SCALAIS ...ttt ettt et s s ettt st sbe b e saesbeaenens 1173
AWS APPSYNC SCALATS ..evirererierieeeetcitertestestestese s e s e et e s estesaesaessesses e s s esaessessassessessassssssansansenssensanes 1174
SChemMa USAGE EXAMIPLE ...ttt ettt e st e saesae s e s e e s et et e saesaassessessasnans 1175
Interfaces and uNIONS iN GrAPhQL ..ottt saesaesaesbesre s e s e e s e aesaeneas 1178

XV

AWS AppSync Developer Guide

INEEITACE EXAMIPLES ...ttt et e st esae s be s e e e e s e e e e e et e tesaassassasseesnannan 1179
UNION EXAMIPLES ..ottt ettt ettt s te e e et e e et e s ae st e s s e s s e e sa e e e e e sae st astessassesseessansansensensanes 1183

Type resolution iN AWS APPSYNC ...t eecre e ste e s e s eeeesesaessesaessessessesssesssssessensenes 1184

Type reSOlUtioN @XAMPLE ...ttt s te s e e et et sbe st e s ae e e s seeneaanes 1184
Troubleshooting and COmMMON MiStaKesccccuvireeeeneneiiiiiieceiininnneenssnnssssssssecsesssssssssssssssssssssass 1190
Incorrect DynamoDB KeY MapPingccccociiriinniiinieniteneenieeseessseeseessseessessssesssessssssssessssesssesssesssees 1190
MISSING RESOLIVET ...ttt s e et et e st et e s b e s s e et e e e e e e s e b et e besassesseeneeseensansanes 1190
MappPing TEMPLALE EIFTOIS ...ocviiieieeeeeetetectecteeeee ettt et e saestestestesse s e e e e s e saesestessassassassassssssessensansans 1191
INCOITECE RETUIN TYPES ittt ettt ettt e s see e st e s sae s sse e s sre s st esaesssaessaaesssasssesssaasssassssasssessssesssens 1191

XVi

AWS AppSync Developer Guide

What is AWS AppSync?

AWS AppSync enables developers to connect their applications and services to data and events
with secure, serverless and high-performing GraphQL and Pub/Sub APIs. You can do the following
with AWS AppSync:

» Access data from one or more data sources from a single GraphQL APl endpoint.

« Combine multiple source GraphQL APIs into a single, merged GraphQL API.

» Publish real-time data updates to your applications.

» Leverage built-in security, monitoring, logging, and tracing, with optional caching for low
latency.

« Only pay for API requests and any real-time messages that are delivered.

Topics

o AWS AppSync features

» Are you a first-time AWS AppSync user?

« Related services

 Pricing for AWS AppSync

AWS AppSync features

» Simplified data access and querying, powered by GraphQL

» Serverless WebSockets for GraphQL subscriptions and pub/sub channels

« Server-side caching to make data available in high speed in-memory caches for low latency
 JavaScript and TypeScript support to write business logic

» Enterprise security with Private APIs to restrict APl access and integration with AWS WAF

o Built in authorization controls, with support for API keys, IAM, Amazon Cognito, OpenID Connect
providers, and Lambda authorization for custom logic.

» Merged APIs to support federated use cases

For more details about each of these capabilities, see AWS AppSync features.

AWS AppSync features 1

https://aws.amazon.com/appsync/product-details

AWS AppSync Developer Guide

Are you a first-time AWS AppSync user?

We recommend that first-time AWS AppSync users begin by reading the following sections:

o If you're unfamiliar with GraphQL, see the Getting started: Creating your first GraphQL API.

« If you're building applications that consume GraphQL APIs, see Building a client application and
the section called “Real-time data”.

« If you're looking for GraphQL resolver information, see the following:

JavaScript/TypeScript

« Resolver tutorials (JavaScript)

» Resolver reference (JavaScript)

VTL
o Resolver tutorials (VTL)

« Resolver mapping template reference (VTL)

« If you're looking for AWS AppSync example projects, updates, and more, see the AppSync blog.

Related services

If you're building a web or mobile app from the ground up, consider using AWS Amplify. Amplify
leverages AWS AppSync and other AWS services to help you build more robust, powerful web and
mobile apps with less work.

Pricing for AWS AppSync

AWS AppSync is priced based on millions of requests and updates. Caching costs an additional fee.
For more information, see AWS AppSync pricing.

The following lists the exceptions to general AWS AppSync pricing:

« API caching in AWS AppSync is not eligible for the AWS Free Tier.

» Requests are not charged for authorization and authentication failures.

« Calls to methods that require API keys are not charged when API keys are missing or invalid.

Are you a first-time AWS AppSync user? 2

https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials.html
https://aws.amazon.com/blogs/mobile/category/mobile-services/aws-appsync/
https://aws.amazon.com/amplify/
https://aws.amazon.com/appsync/pricing/
https://aws.amazon.com/free

AWS AppSync Developer Guide

GraphQL and AWS AppSync architecture

® Note

This guide assumes the user has a working knowledge of the REST architectural style. We
recommend reviewing this and other front-end topics before working with GraphQL and
AWS AppSync.

GraphQL is a query and manipulation language for APIs. GraphQL provides a flexible and intuitive
syntax to describe data requirements and interactions. It enables developers to ask for exactly
what is needed and get back predictable results. It also makes it possible to access many sources
in a single request, reducing the number of network calls and bandwidth requirements, therefore
saving battery life and CPU cycles consumed by applications.

Making updates to data is made simple with mutations, allowing developers to describe how
the data should change. GraphQL also facilitates the quick setup of real-time solutions via
subscriptions. All of these features combined, coupled with powerful developer tools, make
GraphQL essential to managing application data.

GraphQL is an alternative to REST. RESTful architecture is currently one of the more popular
solutions for client-server communication. It's centered on the concept of your resources (data)
being exposed by a URL. These URLs can be used to access and manipulate the data through
CRUD (create, read, update, delete) operations in the form of HTTP methods like GET, POST, and
DELETE. REST's advantage is that it's relatively simple to learn and implement. You can quickly set
up RESTful APIs to call a wide range of services.

However, technology is getting more complicated. As applications, tools, and services begin

to scale for a worldwide audience, the need for fast, scalable architectures is of paramount
importance. REST has many shortcomings when dealing with scalable operations. See this use case
for an example.

In the following sections, we'll review some of the concepts surrounding RESTful APIs. We'll then
introduce GraphQL and how it works.

For more information about GraphQL and the benefits of migrating over to AWS, see the Decision
guide to GraphQL implementations.

Topics

https://aws.amazon.com/blogs/architecture/what-to-consider-when-modernizing-apis-with-graphql-on-aws/
https://aws.amazon.com/graphql/guide/
https://aws.amazon.com/graphql/guide/

AWS AppSync Developer Guide

What is an API?
What is REST?
Why Use GraphQL over REST?

Components of a GraphQL API

Additional properties of GraphQL

What is an API?

An application programming interface (API) defines the rules that you must follow to communicate
with other software systems. Developers expose or create APIs so that other applications can
communicate with their applications programmatically. For example, the timesheet application
exposes an API that asks for an employee's full name and a range of dates. When it receives this
information, it internally processes the employee's timesheet and returns the number of hours
worked in that date range.

You can think of a web API as a gateway between clients and resources on the web.

Clients

Clients are users who want to access information from the web. The client can be a person or

a software system that uses the API. For example, developers can write programs that access
weather data from a weather system. Or you can access the same data from your browser when
you visit the weather website directly.

Resources

Resources are the information that different applications provide to their clients. Resources can
be images, videos, text, numbers, or any type of data. The machine that gives the resource to the
client is also called the server. Organizations use APIs to share resources and provide web services
while maintaining security, control, and authentication. In addition, APIs help them to determine
which clients get access to specific internal resources.

What is REST?

At a high level, representational State Transfer (REST) is a software architecture that imposes
conditions on how an API should work. REST was initially created as a guideline to manage
communication on a complex network like the internet. You can use REST-based architecture to

What is an API? 4

AWS AppSync Developer Guide

support high-performing and reliable communication at scale. You can easily implement and
modify it, bringing visibility and cross-platform portability to any API system.

API developers can design APIs using several different architectures. APIs that follow the REST
architectural style are called REST APIs. Web services that implement REST architecture are called
RESTful web services. The term RESTful API generally refers to RESTful web APIs. However, you can
use the terms REST API and RESTful API interchangeably.

The following are some of the principles of the REST architectural style:

Uniform interface

The uniform interface is fundamental to the design of any RESTful webservice. It indicates

that the server transfers information in a standard format. The formatted resource is called a
representation in REST. This format can be different from the internal representation of the
resource on the server application. For example, the server can store data as text but send it in an
HTML representation format.

Uniform interface imposes four architectural constraints:

1. Requests should identify resources. They do so by using a uniform resource identifier.

2. Clients have enough information in the resource representation to modify or delete the resource
if they want to. The server meets this condition by sending metadata that describes the resource
further.

3. Clients receive information about how to process the representation further. The server achieves
this by sending self-descriptive messages that contain metadata about how the client can best
use them.

4. Clients receive information about all other related resources they need to complete a task. The
server achieves this by sending hyperlinks in the representation so that clients can dynamically
discover more resources.

Statelessness

In REST architecture, statelessness refers to a communication method in which the server
completes every client request independently of all previous requests. Clients can request
resources in any order, and every request is stateless or isolated from other requests. This REST API
design constraint implies that the server can completely understand and fulfill the request every
time.

Uniform interface 5

AWS AppSync Developer Guide

Layered system

In a layered system architecture, the client can connect to other authorized intermediaries between
the client and server, and it will still receive responses from the server. Servers can also pass on
requests to other servers. You can design your RESTful web service to run on several servers with
multiple layers such as security, application, and business logic, working together to fulfill client
requests. These layers remain invisible to the client.

Cacheability

RESTful web services support caching, which is the process of storing some responses on the
client or on an intermediary to improve server response time. For example, suppose that you
visit a website that has common header and footer images on every page. Every time you visit

a new website page, the server must resend the same images. To avoid this, the client caches or
stores these images after the first response and then uses the images directly from the cache.
RESTful web services control caching by using API responses that define themselves as cacheable
or noncacheable.

What is a RESTful API?

RESTful APl is an interface that two computer systems use to exchange information securely over
the internet. Most business applications have to communicate with other internal and third-party
applications to perform various tasks. For example, to generate monthly payslips, your internal
accounts system has to share data with your customer's banking system to automate invoicing
and communicate with an internal timesheet application. RESTful APIs support this information
exchange because they follow secure, reliable, and efficient software communication standards.

How do RESTful APIs work?

The basic function of a RESTful API is the same as browsing the internet. The client contacts the
server by using the APl when it requires a resource. APl developers explain how the client should
use the REST API in the server application APl documentation. These are the general steps for any
REST API call:

1. The client sends a request to the server. The client follows the APl documentation to format the
request in a way that the server understands.

2. The server authenticates the client and confirms that the client has the right to make that
request.

Layered system 6

AWS AppSync Developer Guide

3. The server receives the request and processes it internally.

4. The server returns a response to the client. The response contains information that tells the
client whether the request was successful. The response also includes any information that the
client requested.

The REST API request and response details vary slightly depending on how the API developers
design the API.

Why Use GraphQL over REST?

REST is one of the cornerstone architectural styles of web APIs. However, as the world becomes
more interconnected, the need to develop robust and scalable applications will become a more
pressing issue. While REST is currently the industry standard for building web APIs, there are
several recurring drawbacks to RESTful implementations that have been identified:

1. Data requests: Using RESTful APIs, you would typically request the data you need through
endpoints. The problem arises when you have data that may not be so neatly packaged. The
data you need may be sitting behind multiple layers of abstraction, and the only way to fetch
the data is by using multiple endpoints, which means making multiple requests to extract all of
the data.

2. Overfetching and underfetching: To add to the problems of multiple requests, the data from
each endpoint is strictly defined, meaning you will return whatever data was defined for that
API, even if you didn't technically want it.

This can result in over-fetching, which means our requests return superfluous data. For example,
let's say you're requesting company personnel data and want to know the names of the
employees in a certain department. The endpoint that returns the data will contain the names,
but it might also contain other data like job title or date of birth. Because the APl is fixed, you
can't just request the names alone; the rest of the data comes with it.

The opposite situation in which we don't return enough data is called under-fetching. To get all
of the requested data, you may have to make multiple requests to the service. Depending on
how the data was structured, you could run into inefficient queries resulting in issues like the
dreaded n+1 problem.

3. Slow development iterations: Many developers tailor their RESTful APIs to fit the flow of
their applications. However, as their applications grow, both the front- and backends may
require extensive changes. As a result, the APIs may no longer fit the shape of the data in a way

Why Use GraphQL over REST? 7

AWS AppSync Developer Guide

that's efficient or impactful. This results in slower product iterations due to the need for API
modifications.

4. Performance at scale: Due to these compounding issues, there are many areas where scalability
will be impacted. Performance on the application side may be impacted because your requests
will return too much data or too little (resulting in more requests). Both situations cause
unnecessary strain on the network resulting in poor performance. On the developer side, the
speed of development may be reduced because your APIs are fixed and no longer fit the data
they're requesting.

GraphQL's selling point is to overcome the drawbacks of REST. Here are some of the key solutions
GraphQL offers to developers:

1. Single endpoints: GraphQL uses a single endpoint to query data. There's no need to build
multiple APIs to fit the shape of the data. This results in fewer requests going over the network.

2. Fetching: GraphQL solves the perennial issues of over- and under-fetching by simply defining
the data you need. GraphQL lets you shape the data to fit your needs so you only receive what
you asked for.

3. Abstraction: GraphQL APIs contain a few components and systems that describe the data
using a language-agnostic standard. In other words, the shape and structure of the data are
standardized so both the front- and backends know how it will be sent over the network. This
allows developers on both ends to work with GraphQL's systems and not around them.

4. Rapid iterations: Because of the standardization of data, changes on one end of development
may not be required on the other. For example, frontend presentation changes may not result
in extensive backend changes because GraphQL allows the data specification to be modified
readily. You can simply define or modify the shape of the data to fit the needs of the application
as it grows. This results in less potential development work.

These are only some of the benefits of GraphQL. In the next few sections, you'll learn how
GraphQL is structured and the properties that make it a unique alternative to REST.

Components of a GraphQL API

A standard GraphQL APl is composed of a single schema that handles the shape of the data that
will be queried. Your schema is linked to one or more of your data sources like a database or
Lambda function. In between the two sits one or more resolvers that handle the business logic
for your requests. Each component plays an important role in your GraphQL implementation. The

Components of a GraphQL API 8

AWS AppSync Developer Guide

following sections will introduce these three components and the role they play in the GraphQL
service.

GraphQL API @

AppSync

GraphQL Schema Resolvers

(Data Model) (Business Logic)

Data Sources
(Data)

Topics
e Schemas
o Data sources

« Resolvers

Schemas

The GraphQL schema is the foundation of a GraphQL API. It serves as the blueprint that defines the
shape of your data. It's also a contract between your client and server that defines how your data
will be retrieved and/or modified.

GraphQL schemas are written in the Schema Definition Language (SDL). SDL is composed of types
and fields with an established structure:

» Types: Types are how GraphQL defines the shape and behavior of the data. GraphQL supports
a multitude of types that will be explained later in this section. Each type that's defined in your
schema will contain its own scope. Inside the scope will be one or more fields that can contain a
value or logic that will be used in your GraphQL service. Types fill many different roles, the most
common being objects or scalars (primitive value types).

« Fields: Fields exist within the scope of a type and hold the value that's requested from the
GraphQL service. These are very similar to variables in other programming languages. The shape

Schemas 9

AWS AppSync Developer Guide

of the data you define in your fields will determine how the data is structured in a request/
response operation. This allows developers to predict what will be returned without knowing
how the backend of the service is implemented.

To visualize what a schema would look like, let's review the contents of a simple GraphQL
schema. In production code, your schema will typically be in a file called schema.graphql or
schema. json. Let's assume that we're peering into a project that implements a GraphQL service.
This project is storing company personnel data, and the schema.graphql file is being used to
retrieve personnel data and add new personnel to a database. The code may look like this:

schema.graphql

type Person {

id: ID!
name: String
age: Int

}
type Query {
people: [Person]

}
type Mutation {
addPerson(id: ID!, name: String, age: Int): Person

}

We can see that there are three types defined in the schema: Person, Query, and Mutation.
Looking at Person, we can guess that this is the blueprint for an instance of a company employee,
which would make this type an object. Inside its scope, we see id, name, and age. These are the
fields that define the properties of a Person. This means our data source stores each Person's
name as a String scalar (primitive) type and age as an Int scalar (primitive) type. The id acts as a
special, unique identifier for each Person. It's also a required value as denoted by the ! symbol.

The next two object types behave differently. GraphQL reserves a few keywords for special object
types that define how the data will be populated in the schema. A Query type will retrieve data
from the source. In our example, our query might retrieve Person objects from a database. This
may remind you of GET operations in RESTful terminology. A Mutation will modify data. In our
example, our mutation may add more Person objects to the database. This may remind you

of state-changing operations like PUT or POST. The behaviors of all special object types will be
explained later in this section.

Schemas 10

AWS AppSync Developer Guide

Let's assume the Query in our example will retrieve something from the database. If we look at the
fields of Query, we see one field called people. Its field value is [Person]. This means we want
to retrieve some instance of Person in the database. However, the addition of brackets means that
we want to return a list of all Person instances and not just a specific one.

The Mutation type is responsible for performing state-changing operations like data modification.
A mutation is responsible for performing some state-changing operation on the data source. In our
example, our mutation contains an operation called addPerson that adds a new Person object to
the database. The mutation uses a Person and expects an input for the id, name, and age fields.

At this point, you may be wondering how operations like addPerson work without a code
implementation given that it supposedly performs some behavior and looks a lot like a function
with a function name and parameters. Currently, it won't work because a schema only serves as the
declaration. To implement the behavior of addPerson, we would have to add a resolver to it. A
resolver is a unit of code that is executed whenever its associated field (in this case, the addPerson
operation) is called. If you want to use an operation, you'll have to add the resolver implementation
at some point. In a way, you can think of the schema operation as the function declaration and the
resolver as the definition. Resolvers will be explained in a different section.

This example shows only the simplest ways a schema can manipulate data. You build complex,
robust, and scalable applications by leveraging the features of GraphQL and AWS AppSync. In
the next section, we'll define all of the different types and field behaviors you can utilize in your
schema.

GraphQL types

GraphQL supports many different types. As you saw in the previous section, types define the shape
or behavior of your data. They are the fundamental building blocks of a GraphQL schema.

Types can be categorized into inputs and outputs. Inputs are types that are allowed to be passed
in as the argument for the special object types (Query, Mutation, etc.), whereas output types are
strictly used to store and return data. A list of types and their categorizations are listed below:

» Objects: An object contains fields describing an entity. For instance, an object could
be something like a book with fields describing its characteristics like authorName,
publishingYear, etc. They are strictly output types.

 Scalars: These are primitive types like int, string, etc. They are typically assigned to fields. Using
the authorName field as an example, it could be assigned the String scalar to store a name like
"John Smith". Scalars can be both input and output types.

Schemas 11

AWS AppSync Developer Guide

Inputs: Inputs allow you to pass a group of fields as an argument. They are structured very
similarly to objects, but they can be passed in as arguments to special objects. Inputs allow you
to define scalars, enums, and other inputs in its scope. Inputs can only be input types.

Special objects: Special objects perform state-changing operations and do the bulk of the heavy
lifting of the service. There are three special object types: query, mutation, and subscription.
Queries typically fetch data; mutations manipulate data; subscriptions open and maintain a two-
way connection between clients and servers for constant communication. Special objects are
neither input nor output given their functionality.

Enums: Enums are predefined lists of legal values. If you call an enum, its values can only

be what's defined in its scope. For example, if you had an enum called trafficLights
depicting a list of traffic signals, it could have values like redLight and greenLight but not
purplelLight. A real traffic light will only have so many signals, so you could use the enum
to define them and force them to be the only legal values when referencing trafficLight.
Enums can be both input and output types.

Unions/interfaces: Unions allow you to return one or more things in a request depending on

the data that was requested by the client. For example, if you had a Book type witha title
field and an Author type with a name field, you could create a union between both types. If your
client wanted to query a database for the phrase "Julius Caesar", the union could return Julius
Caesar (the play by William Shakespeare) from the Book title and Julius Caesar (the author of
Commentarii de Bello Gallico) from the Author name. Unions can only be output types.

Interfaces are sets of fields that objects must implement. This is a bit similar to interfaces in
programming languages like Java where you must implement the fields defined in the interface.
For example, let's say you made an interface called Book that contained a title field. Let's

say you later created a type called Novel that implemented Book. Your Novel would have to
include a title field. However, your Novel could also include other fields not in the interface
like pageCount of ISBN. Interfaces can only be output types.

The following sections will explain how each type works in GraphQL.

Objects

GraphQL objects are the main type you will see in production code. In GraphQL, you can think
of an object as a grouping of different fields (similar to variables in other languages), with each
field being defined by a type (typically a scalar or another object) that can hold a value. Objects
represent a unit of data that can be retrieved/manipulated from your service implementation.

Schemas 12

AWS AppSync Developer Guide

Obiject types are declared using the Type keyword. Let's modify our schema example slightly:

type Person {
id: ID!
name: String
age: Int
occupation: Occupation

}

type Occupation {
title: String
}

The object types here are Person and Occupation. Each object has its own fields with its

own types. One feature of GraphQL is the ability to set fields to other types. You can see the
occupation field in Person contains an Occupation object type. We can make this association
because GraphQL is only describing the data and not the implementation of the service.

Scalars

Scalars are essentially primitive types that hold values. In AWS AppSync, there are two types of
scalars: the default GraphQL scalars and AWS AppSync scalars. Scalars are typically used to store
field values within object types. Default GraphQL types include Int, Float, String, Boolean,
and ID. Let's use the previous example again:

type Person {
id: ID!
name: String
age: Int
occupation: Occupation

}

type Occupation {
title: String
}

Singling out the name and title fields, both hold a String scalar. Name could return a string
value like "John Smith" and the title could return something like "firefighter". Some GraphQL
implementations also support custom scalars using the Scalar keyword and implementing the
type's behavior. However, AWS AppSync currently doesn't support custom scalars. For a list of
scalars, see Scalar types in AWS AppSync.

Schemas 13

https://docs.aws.amazon.com/appsync/latest/devguide/scalars.html

AWS AppSync Developer Guide

Inputs

Due to the concept of input and output types, there are certain restrictions in place when passing
in arguments. Types that commonly need to be passed in, especially objects, are restricted. You can
use the input type to bypass this rule. Inputs are types that contain scalars, enums, and other input

types.

Inputs are defined using the input keyword:

type Person {

id: ID!
name: String
age: Int

occupation: Occupation

}

type Occupation {
title: String
}

input personlnput {
id: ID!
name: String
age: Int
occupation: occupationInput

}

input occupationInput {
title: String
}

As you can see, we can have separate inputs that mimic the original type. These inputs will often be
used in your field operations like this:

type Person {

id: ID!
name: String
age: Int

occupation: Occupation

}

type Occupation {

Schemas 14

AWS AppSync Developer Guide

title: String
}

input occupationInput {
title: String
}

type Mutation {
addPerson(id: ID!, name: String, age: Int, occupation: occupationInput): Person

}

Note how we're still passing occupationInput in place of Occupation to create a Person.

This is but one scenario for inputs. They don't necessarily need to copy objects 1:1, and in
production code, you most likely won't be using it like this. It's good practice to take advantage of
GraphQL schemas by defining only what you need to input as arguments.

Also, the same inputs can be used in multiple operations, but we don't recommend doing this.
Each operation should ideally contain its own unique copy of the inputs in case the schema's
requirements change.

Special objects

GraphQL reserves a few keywords for special objects that define some of the business logic for how
your schema will retrieve/manipulate data. At most, there can be one of each of these keywords

in a schema. They act as entry points for all requested data that your clients run against your
GraphQL service.

Special objects are also defined using the type keyword. Though they're used differently from
regular object types, their implementation is very similar.

Queries

Queries are very similar to GET operations in that they perform a read-only fetch to get data
from your source. In GraphQL, the Query defines all of the entry points for clients making
requests against your server. There will always be a Query in your GraphQL implementation.

Here are the Query and modified object types we used in our previous schema example:

type Person {
id: ID!

Schemas 15

AWS AppSync Developer Guide

name: String
age: Int
occupation: Occupation

}

type Occupation {
title: String

}

type Query {
people: [Person]

}

Our Query contains a field called people that returns a list of Person instances from the data
source. Let's say we need to change the behavior of our application, and now we need to return
a list of only the Occupation instances for some separate purpose. We could simply add it to
the query:

type Query {
people: [Person]
occupations: [Occupation]

}

In GraphQL, we can treat our query as the single source of requests. As you can see, this is
potentially much simpler than RESTful implementations that might use different endpoints to
achieve the same thing (. . ./api/1/people and .../api/1/occupations).

Assuming we have a resolver implementation for this query, we can now perform an actual
query. While the Query type exists, we have to explicitly call it for it to run in the application's
code. This can be done using the query keyword:

query getItems {
people {
name

}

occupations {
title

As you can see, this query is called getItems and returns people (a list of Person objects) and
occupations (a list of Occupation objects). In people, we're returning only the name field

Schemas 16

AWS AppSync Developer Guide

of each Person, while we're returning the title field of each Occupation. The response may
look like this:

{
"data": {
"people": [
{
"name": "John Smith"
I
{
"name": "Andrew Miller"
},
1,
"occupations": [
{
"title": "Firefighter"
},
{
"title": "Bookkeeper"
I
]
}
}

The example response shows how the data follows the shape of the query. Each entry retrieved
is listed within the scope of the field. people and occupations are returning things as
separate lists. Though useful, it might be more convenient to modify the query to return a list
of people's names and occupations:

query getItems {
people {
name
occupation {
title

Schemas 17

AWS AppSync Developer Guide

This is a legal modification because our Person type contains an occupation field of type
Occupation. When listed within the scope of people, we're returning each Person's name
along with their associated Occupation by title. The response may look like this:

}
"data": {
"people": [
{
"name": "John Smith",
"occupation": {
"title": "Firefighter"
}
},
{
"name": "Andrew Miller",
"occupation": {
"title": "Bookkeeper"
}
},
]
}
}
Mutations

Mutations are similar to state-changing operations like PUT or POST. They perform a write
operation to modify data in the source, then fetch the response. They define your entry points
for data modification requests. Unlike queries, a mutation may or may not be included in the
schema depending on the project's needs. Here's the mutation from the schema example:

type Mutation {
addPerson(id: ID!, name: String, age: Int): Person

}

The addPerson field represents one entry point that adds a Person to the data source.
addPerson is the field name; id, name, and age are the parameters; and Pexrson is the return
type. Looking back at the Person type:

Schemas 18

AWS AppSync Developer Guide

type Person {
id: ID!
name: String
age: Int
occupation: Occupation

We added the occupation field. However, we cannot set this field to Occupation directly
because objects cannot be passed in as arguments; they are strictly output types. We should
instead pass an input with the same fields as an argument:

input occupationInput {
title: String

We can also easily update our addPerson to include this as a parameter when making new
Person instances:

type Mutation {
addPerson(id: ID!, name: String, age: Int, occupation: occupationInput): Person

Here's the updated schema:

type Person {
id: ID!
name: String
age: Int
occupation: Occupation

type Occupation {
title: String
}

input occupationInput {
title: String
}

type Mutation {
addPerson(id: ID!, name: String, age: Int, occupation: occupationInput): Person

Schemas 19

AWS AppSync Developer Guide

}

Note that occupation will pass in the title field from occupationInput to complete

the creation of the Person instead of the original Occupation object. Assuming we have a
resolver implementation for addPerson, we can now perform an actual mutation. While the
Mutation type exists, we have to explicitly call it for it to run in the application's code. This can
be done using the mutation keyword:

mutation createPerson {
addPerson(id: ID!, name: String, age: Int, occupation: occupationInput) {
name
age
occupation {
title

This mutation is called createPerson, and addPerson is the operation. To create a new
Person, we can enter the arguments for id, name, age, and occupation. In the scope of
addPerson, we can also see other fields like name, age, etc. This is your response; these are the
fields that will be returned after the addPerson operation is complete. Here's the final part of
the example:

mutation createPerson {
addPerson(id: "1", name: "Steve Powers", age: "50", occupation: "Miner") {
id
name
age
occupation {
title

Using this mutation, a result might look like this:

"data": {
"addPerson": {
Ilidll: II1II’

Schemas 20

AWS AppSync Developer Guide

"name": "Steve Powers',

Ilagell: Il50ll’

"occupation": {
"title": "Miner"

As you can see, the response returned the values we requested in the same format that was
defined in our mutation. It's good practice to return all values that were modified to reduce
confusion and the need for more queries in the future. Mutations allow you to include multiple
operations within its scope. They will be run sequentially in the order listed in the mutation.

For example, if we create another operation called addOccupation that adds job titles to the
data source, we can call this in the mutation after addPerson. addPerson will be handled first
followed by addOccupation.

Subscriptions

Subscriptions use WebSockets to open a lasting, two-way connection between the server and
its clients. Typically, a client will subscribe, or listen, to the server. Whenever the server makes
a server-side change or performs an event, the subscribed client will receive the updates.

This type of protocol is useful when multiple clients are subscribed and need to be notified
about changes happening in the server or other clients. For instance, subscriptions can be

used to update social media feeds. There could be two users, User A and User B, who are both
subscribed to automatic notification updates whenever they receive direct messages. User A
on Client A could send a direct message to User B on Client B. User A's client would send the
direct message, which would be processed by the server. The server would then send the direct
message to User B's account while sending an automatic notification to Client B.

Here's an example of a Subscription that we could add to the schema example:

type Subscription {
personAdded: Person

}

The personAdded field will send a message to subscribed clients whenever a new Person is
added to the data source. Assuming we have a resolver implementation for personAdded, we
can now use the subscription. While the Subscription type exists, we have to explicitly call it
for it to run in the application's code. This can be done using the subscription keyword:

Schemas 21

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications

AWS AppSync Developer Guide

subscription personAddedOperation {
personAdded {
id
name

The subscription is called personAddedOperation, and the operation is personAdded.
personAdded will return the id and name fields of new Person instances. Looking at the
mutation example, we added a Person using this operation:

addPerson(id: "1", name: "Steve Powers", age: "50", occupation: "Minex")

If our clients were subscribed to updates to the newly added Person, they might see this after
addPerson runs:

{
"data": {
"personAdded": {
"id": "1",
"name": "Steve Powers"
}
}
}

Below is a summary of what subscriptions offer:

Subscriptions are two-way channels that allow the client and server to receive quick, but steady,
updates. They typically use the WebSocket protocol, which creates standardized and secure
connections.

Subscriptions are nimble in that they reduce connection setup overhead. Once subscribed, a
client can just keep running on that subscription for long periods of time. They generally use
computing resources efficiently by allowing developers to tailor the lifetime of the subscription
and to configure what information will be requested.

In general, subscriptions allow the client to make multiple subscriptions at once. As it pertains
to AWS AppSync, subscriptions are only used for receiving real-time updates from the AWS
AppSync service. They cannot be used to perform queries or mutations.

Schemas 22

AWS AppSync Developer Guide

The main alternative to subscriptions is polling, which sends queries at set intervals to request
data. This process is typically less efficient than subscriptions and puts a lot of strain on both
the client and the backend.

One thing that wasn't mentioned in our schema example was the fact that your special object
types must also be defined in a schema root. So when you export a schema in AWS AppSync, it
might look like this:

schema.graphql

schema {
query: Query
mutation: Mutation
subscription: Subscription

}

type Query {
code goes here

}
type Mutation {
code goes here

}
type Subscription {
code goes here

}

Enumerations

Enumerations, or enums, are special scalars that limit the legal arguments a type or field may
have. This means that whenever an enum is defined in the schema, its associated type or field will
be limited to the values in the enum. Enums are serialized as string scalars. Note that different
programming languages may handle GraphQL enums differently. For example, JavaScript has no
native enum support, so the enum values may be mapped to int values instead.

Enums are defined using the enum keyword. Here's an example:

Schemas 23

AWS AppSync Developer Guide

enum trafficSignals {
solidRed
solidYellow
solidGreen
greenArrowlLeft

When calling the trafficLights enum, the argument(s) can only be solidRed, solidYellow,
solidGreen, etc. It's common to use enums to depict things that have a distinct but limited
number of choices.

Unions/Interfaces

See Interfaces and unions in GraphQL.

GraphQL fields

Fields exist within the scope of a type and hold the value that's requested from the GraphQL
service. These are very similar to variables in other programming languages. For example, here's a
Person object type:

type Person {
name: String
age: Int

The fields in this case are name and age and hold a String and Int value, respectively. Object
fields like the ones shown above can be used as the inputs in the fields (operations) of your queries
and mutations. For example, see the Query below:

type Query {
people: [Person]

}

The people field is requesting all instances of Person from the data source. When you add or
retrieve a Person in your GraphQL server, you can expect the data to follow the format of your
types and fields, that is, the structure of your data in the schema determines how it'll be structured
in your response:

Schemas 24

https://docs.aws.amazon.com/appsync/latest/devguide/interfaces-and-unions.html

AWS AppSync Developer Guide

}
"data": {
"people": [
{
"name": "John Smith",
"age": "50"
.
{
"name": "Andrew Miller",
"age": "60"
.
]
}
}

Fields play an important role in structuring data. There are a couple of additional properties
explained below that can be applied to fields for more customization.

Lists

Lists return all items of a specified type. A list can be added to a field's type using brackets []:

type Person {
name: String
age: Int

}

type Query {
people: [Pexrson]

}

In Query, the brackets surrounding Person indicate that you want to return all instances of
Person from the data source as an array. In the response, the name and age values of each
Person will be returned as a single, delimited list:

}
"data": {
"people": [
{

Schemas 25

AWS AppSync Developer Guide

"name": "John Smith", # Data of Person 1
"age'": "50@"

},

{
"name": "Andrew Miller", # Data of Person 2
"age": "60"

},

Data of Person N

You aren't limited to special object types. You can also use lists in the fields of regular object types.

Non-nulls

Non-nulls indicate a field that cannot be null in the response. You can set a field to non-null by
using the ! symbol:

type Person {
name: String!
age: Int

}

type Query {
people: [Person]

}

The name field cannot be explicitly null. If you were to query the data source and provided a null
input for this field, an error would be thrown.

You can combine lists and non-nulls. Compare these queries:

type Query {
people: [Pexrson!] # Use case 1

}

Schemas 26

AWS AppSync Developer Guide

type Query {
people: [Pexrson]! # Use case 2

}

type Query {
people: [Pexrson!]! # Use case 3

}

In use case 1, the list cannot contain null items. In use case 2, the list itself cannot be set to null.
In use case 3, the list and its items cannot be null. However, in any case, you can still return empty
lists.

As you can see, there are many moving components in GraphQL. In this section, we showed the
structure of a simple schema and the different types and fields a schema supports. In the following
section, you will discover the other components of a GraphQL API and how they work with the
schema.

Data sources

In the previous section, we learned that a schema defines the shape of your data. However, we
never explained where that data came from. In real projects, your schema is like a gateway that
handles all requests made to the server. When a request is made, the schema acts as the single
endpoint that interfaces with the client. The schema will access, process, and relay data from the
data source back to the client. See the infographic below:

Data sources 27

AWS AppSync Developer Guide

GraphQL Schema Resolvers Data Sources
(Data Model) (Business Logic) (Data)

"data": { I gﬂ
"profile": {
"id": "133434as434d",
"name": "Ada Lovelace", Amazon DynamoDB (User profiles)
"username": "adal"

},

L E— Dii{l:l
"upct: "1, </

"name": “Table",

"price": 899 .
() R " . e Amazon APl Gateway (Order service)
inStock": true,
"shippingEstimate": 50
» ‘

API consumers wupcts Mo DI\.I
(Front-end clients L=t i’

“name": "Couch",

or other.backend “price": 1299, AWS Lambda (Inventory service)
services) "inStock": false,
"shippingEstimate": @
+
@ :
}

Single request; Single endpoint
Amazon Aurora (Pricing)

Abstracted backend complexity

AWS AppSync and GraphQL superbly implement Backend For Frontend (BFF) solutions. They work
in tandem to reduce complexity at scale by abstracting the backend. If your service uses different
data sources and/or microservices, you can essentially abstract some of the complexity away by
defining the shape of the data of each source (subgraph) in a single schema (supergraph). This
means your GraphQL API is not limited to using one data source. You can associate any number
of data sources with your GraphQL API and specify in your code how they will interact with the
service.

As you can see in the infographic, the GraphQL schema contains all of the information clients

need to request data. This means everything can be processed in a single request rather than
multiple requests as is the case with REST. These requests go through the schema, which is the sole
endpoint of the service. When requests are processed, a resolver (explained in the next section)
executes its code to process the data from the relevant data source. When the response is returned,
the subgraph tied to the data source will be populated with the data in the schema.

AWS AppSync supports many different data source types. In the table below, we'll describe each
type, list some of the benefits of each, and provide useful links for additional context.

Data sources 28

AWS AppSync

Developer Guide

Data source

Amazon DynamoDB

Description

"Amazon DynamoDB
is a fully managed
NoSQL database
service that provides
fast and predictab

le performance with
seamless scalability.
DynamoDB lets you
offload the administr
ative burdens of
operating and
scaling a distributed
database so that you
don't have to worry
about hardware
provisioning, setup
and configuration,
replication, software
patching, or cluster
scaling. DynamoDB
also offers encryptio
n at rest, which
eliminates the
operational burden
and complexity
involved in protecting
sensitive data."

Benefits

+ Performance at

scale: DynamoDB
is designed

around consisten

t performance at
any scale. This is
possible through
the use of partition
s. DynamoDB will
automatically
partition your
tables into several
allocations that
will be stored in
multiple SSDs
across several
nodes. This will
generally increase
network throughpu
t and reduce
latency.

« Capacity at

scale: DynamoDB
monitors your
traffic and allows
you to automatic
ally scale your
throughput if the
network remains
overloaded for
extended periods
of time.

Supplemental
information

« DynamoDB official

documentation

Partitions

Auto scaling
Fault tolerance
Monitoring

« Security
GraphQL and

DynamoDB
Resolver operations

for DynamoDB

» Pricing model

Data sources

29

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/monitoring.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/security.html
https://aws.amazon.com/graphql/graphql-dynamodb-data-modeling/
https://aws.amazon.com/graphql/graphql-dynamodb-data-modeling/
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html
https://aws.amazon.com/dynamodb/pricing/

AWS AppSync

Developer Guide

Data source

Description

Benefits

« Availability and

fault tolerance

: DynamoDB is
supported by
several physically
isolated Regions,
each containing
several physically
isolated Availability
Zones. DynamoDB
will automatic

ally switch to a
backup zone in the
event of a service
disruption. You can
also back up and
replicate your data
manually for data
assurance.
Logging and
monitoring:
DynamoDB
provides several
analytical tools for
your tables. You
can monitor your
table's performan
ce and create
alarms to notify
you of drastic
changes to the
service.

Supplemental
information

Data sources

30

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

« Security:
DynamoDB follows
strict protocols
to ensure your
data complies with
your organization's
security requireme
nts.

« Integration with
AWS AppSync:
DynamoDB
is seamlessly
integrated with
our service. You
can create new
DynamoDB tables
and automatic
ally generate a
schema from them
to streamline
your developme
nt process. We
also provide an
entire collectio
n of operations
to easily request
data from existing
DynamoDB tables
in your account in
your resolver.

Data sources 31

AWS AppSync

Developer Guide

Data source

AWS Lambda

Description

"AWS Lambda is a
compute service that
lets you run code
without provisioning
or managing servers.

Lambda runs your
code on a high-avai
lability compute
infrastructure and
performs all of

the administration
of the compute
resources, including
server and operating
system maintenan
ce, capacity provision
ing and automatic
scaling, and logging.
With Lambda, all
you need to do is
supply your code in
one of the language
runtimes that
Lambda supports.”

Benefits

» Pay-as-you-use

model: Lambda
only charges you
when you use their
resources. They
also allow you to
scale the amount
of resources used
with your applicati
on needs.

« Automatic scaling:

Sometimes your
application may
require extra
computing power
for a particular
process. Lambda
allows you to
automatically
scale computing
resources to fit
the needs of your
application.

» Faster deploymen
t times: You
can streamline
your developme
nt process via
a deployment
package. Use a
package to upload
your function code
to the Lambda

Supplemental
information

« Official documenta

tion

 Scaling
« deployment

e runtimes

 Lambda resolver

tutorial

e Pricing model

Data sources

32

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-package.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-lambda-resolvers-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-lambda-resolvers-js.html
https://aws.amazon.com/lambda/pricing/

AWS AppSync

Developer Guide

Data source

Description

Benefits

service. You can
then use their
runtime environme
nts to test and
execute your
functions.

Versatility:
Lambda can be
used in a multitude
of use cases. You
can seamlessly
integrate Lambda
with third-par

ty services and
AWS services alike.
Some examples
include CI/CD
pipelines and mass

mailing services.

Integration with
AWS AppSync: You
can easily invoke
your Lambda
functions in your
resolver to handle
requests. Our
service provides

a streamlined
request operation
to perform Lambda
calls. We allow
both single and
batched calls.

Supplemental
information

Data sources

33

https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-action-lambda-example-functions.html
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-action-lambda-example-functions.html

AWS AppSync

Developer Guide

Data source

OpenSearch

Description

"Amazon OpenSearch
Service is a managed
service that makes

it easy to deploy,
operate, and scale
OpenSearch clusters
in the AWS Cloud.
Amazon OpenSearc
h Service supports
OpenSearch and
legacy Elasticsearch
OSS (up to 7.10,

the final open-sour
ce version of the
software). When you
create a cluster, you
have the option of
which search engine
to use.

OpenSearch is a
fully open-source
search and analytics
engine for use cases
such as log analytics
, real-time applicati
on monitoring,

and clickstream
analysis. For more
information, see

the OpenSearch
documentation.

Benefits

 Scaling: You
can easily scale
the service to
fit your service
requirements
through OpenSearc
h Serverless.

- Data ingestion
: You can use
OpenSearch
Ingestion to
import, process,
and analyze data.
There are many
applications for
data ingestion,
which you can find
here.

« Security:
OpenSearch can
manage your AWS
security configura
tion including 1AM,
CloudTrail, VPCs,
authentication, etc.

« Availability:
OpenSearch also
supports different

Regions and
Availability Zones
in its service.

« Integration with
AWS AppSync: In

Supplemental
information

« Official documenta

tion

e Serverless

o Pricing model

Data sources

34

https://opensearch.org/docs/
https://opensearch.org/docs/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/use-cases-overview.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless.html
https://aws.amazon.com/opensearch-service/pricing/

AWS AppSync

Developer Guide

Data source

Description

Amazon OpenSearc
h Service provision
s all the resources
for your OpenSearch
cluster and launches
it. It also automatic
ally detects and
replaces failed
OpenSearch Service
nodes, reducing the
overhead associate
d with self-managed
infrastructures. You
can scale your cluster
with a single API call
or a few clicks in the
console."

Benefits Supplemental
information

AWS AppSync, you
can use GraphQL
APIs to store and
retrieve data from
existing OpenSearc
h Service domains
in your account.

Data sources

35

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information
HTTP endpoints You can use HTTP o Useful for simple « Resolver reference
endpoints as data applications that
sources. AWS aren't as integrate
AppSync can send d with services like
requests to the Lambda.

endpoints with the
relevant informati
on like params and
payload. The HTTP
response will be
exposed to the
resolver, which will
return the final
response after it
finishes its operation

(s).

Data sources 36

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-http-js.html

AWS AppSync

Developer Guide

Data source

Amazon EventBridge

Description

"EventBridge is a
serverless service
that uses events to
connect applicati

on components
together, making

it easier for you to
build scalable event-
driven applicati

ons. Use it to route
events from sources
such as home-
grown applicati

ons, AWS services,
and third-party
software to consumer
applications across
your organizat

ion. EventBridge
provides a simple
and consistent way
to ingest, filter,
transform, and
deliver events so
you can build new
applications quickly."

Benefits

« Event-driven
architecture: You
can take advantage

of event-driven
architecture.

« Scheduling:
You can use
the EventBrid
ge Scheduler
to automate
your tasks and
rules using cron
expressions or set

time intervals as an
alternative to event

patterns.

« Pipes: Using
EventBridge Pipes,
you can replace the
event bus with a
pipe that includes
additional filtering
event patterns
and enrichmen
t through data
transforms before
sending the event
to the target.

« Integration with
AWS AppSync:
AWS AppSync
allows you to send
events to event

Supplemental
information

« Official documenta

tion
 Pipes
e Scheduler

« Resolver reference

» Pricing model

Data sources

37

https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduler.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-eventbridge-js.html
https://aws.amazon.com/eventbridge/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

buses using your
resolver.

Data sources 38

AWS AppSync

Developer Guide

Data source

Relational databases

Description

"Amazon Relationa

| Database Service
(Amazon RDS) is

a web service that
makes it easier to set
up, operate, and scale
a relational database
in the AWS Cloud.

It provides cost-
efficient, resizable
capacity for an
industry-standard
relational database
and manages
common database
administration tasks."

Benefits

« Managing made
easy: Periodica
lly, RDS performs
maintenance
on its resources.
Maintenance most
often involves
updates to the DB
instance's underlyin
g hardware,
underlying
operating system
(OS), or database
engine version.
Under normal
circumstances, you
can decide when to
perform updates
(exceptions include
security patches).

 Recommend
ations: RDS'
recommendation
feature provides
automated
suggestions for
fixing potential
issues in your
instance.

« Availability: RDS
is available in
different physical
Regions across the

Supplemental
information

« Official documenta

tion
e Features
 Maintenance

e Recommend
ations

« Storage options
« Availability
« Security

e Pricing model

Data sources

39

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDSFeaturesRegionsDBEngines.grids.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/accessing-monitoring.html#USER_Recommendations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/accessing-monitoring.html#USER_Recommendations
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://aws.amazon.com/rds/pricing/

AWS AppSync Developer Guide

Data source Description Benefits Supplemental
information

world. You can
easily distribut

e your database
needs across
different nodes
to provide better
service to your
customers.

« Customisation:
RDS is tailored
to meet the
requirements of
large corporati
ons. RDS provides
various options
for computing,
quick deploymen
t, scalability, and
storage.

« Security: RDS is
integrated with
several tools
and services to
maintain database
security on the
user, database, and
network levels.

« Integration with
AWS AppSync:
If you're looking
for a mature
backend solution,
AWS AppSync

Data sources 40

AWS AppSync

Developer Guide

Data source

None data source

® Tip

Description

If you aren't planning
on using a data
source service, you
can set it to none.

A none data source,
while still explicitly
categorized as a data
source, isn't a storage
medium. Despite
that, it's still useful
in certain instances

for data manipulation

and pass-throughs.

Benefits

allows you to send,
process, store, and
return data using
your instance as
the data source.

 Potentially useful
for things like data
conversion

« Useful when
resolving
something locally

Supplemental
information

e Resolver reference

For more information about how data sources interact with AWS AppSync, see Attaching a

data source.

Resolvers

From the previous sections, you learned about the components of the schema and data source.

Now, we need to address how the schema and data sources interact. It all begins with the resolver.

A resolver is a unit of code that handles how that field's data will be resolved when a request is

made to the service. Resolvers are attached to specific fields within your types in your schema.
They are most commonly used to implement the state-changing operations for your query,

Resolvers

41

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-none-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html

AWS AppSync Developer Guide

mutation, and subscription field operations. The resolver will process a client's request, then return
the result, which can be a group of output types like objects or scalars:

GraphQL Schema Resolvers Data Sources
(Data Model) (Business Logic) (Data)

"data": { I @
"profile": {
"id": "133434as434d",
“name": "Ada Lovelace", Amazon DynamoDB (User profiles)
"username": "adal"

},
L E— Dii{l:l
nupets v, <
"Table",

"price": 899 .
() R " . e Amazon APl Gateway (Order service)
inStock": true,
"shippingEstimate": 50
» ‘

API consumers 7 et 5_\1
(Front-end clients X o

'
or other backend " : . AWS Lambda (Inventory service)
services) "inStock": false,
"shippingEstimate": @
+
ES
}

Single request; Single endpoint
Amazon Aurora (Pricing)

Abstracted backend complexity

Resolver runtime

In AWS AppSync, you must first specify a runtime for your resolver. A resolver runtime indicates
the environment in which a resolver is executed. It also dictates the language your resolvers will
be written in. AWS AppSync currently supports APPSYNC_JS for JavaScript and Velocity Template
Language (VTL). See JavaScript runtime features for resolvers and functions for JavaScript or

Resolver mapping template utility reference for VTL.

Resolver structure

Code-wise, resolvers can be structured in a couple of ways. There are unit and pipeline resolvers.
Unit resolvers

A unit resolver is composed of code that defines a single request and response handler that

are executed against a data source. The request handler takes a context object as an argument
and returns the request payload used to call your data source. The response handler receives a
payload back from the data source with the result of the executed request. The response handler
transforms the payload into a GraphQL response to resolve the GraphQL field.

Resolvers 42

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference.html

AWS AppSync Developer Guide

GraphQL Request

Data Source

response()

GraphQL Response

Pipeline resolvers

When implementing pipeline resolvers, there is a general structure they follow:

« Before step: When a request is made by the client, the resolvers for the schema fields being used
(typically your queries, mutations, subscriptions) are passed the request data. The resolver will
begin processing the request data with a before step handler, which allows some preprocessing
operations to be performed before the data moves through the resolver.

» Function(s): After the before step runs, the request is passed to the functions list. The first
function in the list will execute against the data source. A function is a subset of your resolver's
code containing its own request and response handler. A request hander will take the request

Resolvers 43

AWS AppSync Developer Guide

data and perform operations against the data source. The response handler will process the
data source's response before passing it back to the list. If there is more than one function, the
request data will be sent to the next function in the list to be executed. Functions in the list
will be executed serially in the order defined by the developer. Once all functions have been
executed, the final result is passed to the after step.

« After step: The after step is a handler function that allows you to perform some final operations
on the final function's response before passing it to the GraphQL response.

Resolvers 44

Developer Guide

AWS AppSync

=

Data Source

Data Source

GraphQL Request
request()

response()

0

response

response()

GraphQL Response

AWS AppSync Developer Guide

Resolver handler structure

Handlers are typically functions called Request and Response:

export function request(ctx) {
// Code goes here
}

export function response(ctx) {
// Code goes here
}

In a unit resolver, there will only be one set of these functions. In a pipeline resolver, there will be a
set of these for the before and after step and an additional set per function. To visualize how this
could look, let's review a simple Query type:

type Query {
helloWorld: String!

}

This is a simple query with one field called helloWorld of type String. Let's assume we always
want this field to return the string "Hello World". To implement this behavior, we need to add the
resolver to this field. In a unit resolver, we could add something like this:

export function request(ctx) {
return {}

export function response(ctx) {
return "Hello World"

The request can just be left blank because we're not requesting or processing data. We can also
assume our data source is None, indicating this code doesn't need to perform any invocations. The
response simply returns "Hello World". To test this resolver, we need to make a request using the

query type:

query helloWorldTest {
helloWorld

}

Resolvers 46

AWS AppSync Developer Guide

This is a query called helloWorldTest that returns the helloWorld field. When executed, the
helloWorld field resolver also executes and returns the response:

"data": {
"helloWorld": "Hello World"

Returning constants like this is the simplest thing you could do. In reality, you'll be returning inputs,
lists, and more. Here's a more complicated example:

type Book {
id: ID!
title: String
}

type Query {
getBooks: [Book]
}

Here we're returning a list of Books. Let's assume we're using a DynamoDB table to store book
data. Our handlers may look like this:

/-k-k
* Performs a scan on the dynamodb data source
*/

export function request(ctx) {
return { operation: 'Scan' };

}

/**
* return a list of scanned post items
*/

export function response(ctx) {
return ctx.result.items;

Our request used a built-in scan operation to search for all entries in the table, stored the findings
in the context, then passed it to the response. The response took the result items and returned
them in the response:

Resolvers 47

AWS AppSync Developer Guide

{
"data": {
"getBooks": {
"items": [
{
"id": "abcdefgh-1234-1234-1234-abcdefghijkl",
"title": "bookl"
},
{
"id": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeceecece",
"title": "book2"
},
]
}
}
}

Resolver context

In a resolver, each step in the chain of handlers must be aware of the state of the data from the
previous steps. The result from one handler can be stored and passed to another as an argument.
GraphQL defines four basic resolver arguments:

Resolver base arguments Description

obj, root, parent, etc. The result of the parent.

args The arguments provided to the field in the
GraphQL query.

context A value which is provided to every resolver

and holds important contextual information
like the currently logged in user, or access to a
database.

Resolvers 48

AWS AppSync Developer Guide

Resolver base arguments Description

info A value which holds field-specific informati
on relevant to the current query as well as the
schema details.

In AWS AppSync, the context (ctx) argument can hold all of the data mentioned above. It's an
object that's created per request and contains data like authorization credentials, result data,
errors, request metadata, etc. The context is an easy way for programmers to manipulate data
coming from other parts of the request. Take this snippet again:

/'k'k
* Performs a scan on the dynamodb data source
*/

export function request(ctx) {
return { operation: 'Scan' };

}

/**
* return a list of scanned post items
*/

export function response(ctx) {
return ctx.result.items;

}

The request is given the context (ctx) as the argument; this is the state of the request. It performs
a scan for all items in a table, then stores the result back in the context in result. The context is
then passed to the response argument, which accesses the result and returns its contents.

Requests and Parsing

When you make a query to your GraphQL service, it must run through a parsing and validation
process before being executed. Your request will be parsed and translated into an abstract syntax
tree. The content of the tree is validated by running through several validation algorithms against
your schema. After the validation step, the nodes of the tree are traversed and processed. Resolvers
are invoked, the results are stored in the context, and the response is returned. For example, take
this query:

query {

Resolvers 49

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

Person { //object type
name //scalar
age //scalar
}
}

We're returning Person with a name and age fields. When running this query, the tree will look
something like this:

2, Person

From the tree, it appears that this request will search the root for the Query in the schema. Inside
of the query, the Person field will be resolved. From previous examples, we know that this could
be an input from the user, a list of values, etc. Person is most likely tied to an object type holding
the fields we need (name and age). Once these two child fields are found, they are resolved in the
order given (name followed by age). Once the tree is completely resolved, the request is completed
and will be sent back to the client.

Resolvers 50

AWS AppSync Developer Guide

Additional properties of GraphQL
GraphQL consists of several design principles to maintain simplicity and robustness at scale.

Declarative

GraphQL is declarative, which means the user will describe (shape) the data by only declaring the
fields they want to query. The response will only return the data for these properties. For example,
here's an operation that retrieves a Book object in a DynamoDB table with the ISBN 13 id value of
9780199536061

{
getBook(id: "9780199536061") {
name
year
author

The response will return the fields in the payload (name, year, and authozr) and nothing else:

{
"data": {
"getBook": {
"name": "Anna Karenina",
"year": "1878",
"author": "Leo Tolstoy",
}
}
}

Because of this design principle, GraphQL eliminates the perennial issues of over- and under-
fetching that REST APIs deal with in complex systems. This results in more efficient data gathering
and improved network performance.

Hierarchical

GraphQL is flexible in that the data requested can be shaped by the user to fit the needs of the
application. Requested data always follows the types and syntax of the properties defined in

Additional properties of GraphQL 51

AWS AppSync Developer Guide

your GraphQL API. For instance, the following snippet shows the getBook operation with a new
field scope called quotes that returns all stored quote strings and pages linked to the Book
9780199536061

getBook(id: "9780199536061") {
name
year
author
quotes {
description
page
}

Running this query returns the following result:

{
"data": {
"getBook": {
"name": "Anna Karenina",
"year": "1878",
"author": "Leo Tolstoy",
"quotes": [
{
"description": "The highest Petersburg society is essentially one: in it
everyone knows everyone else, everyone even visits everyone else.",
"page": 135
},
{
"description": "Happy families are all alike; every unhappy family is
unhappy in its own way.",
"page": 1
},
{
"description": "To Konstantin, the peasant was simply the chief partner in
their common labor.",
"page": 251
}

Hierarchical 52

AWS AppSync Developer Guide

}

As you can see, the quotes fields linked to the requested book was returned as an array in the
same format that was described by our query. Although it wasn't shown here, GraphQL has the
added advantage of not being particular about the location of the data it's retrieving. Books and
quotes could be stored separately, but GraphQL will still retrieve the information so long as the
association exists. This means your query can retrieve multitudes of standalone data in a single
request.

Introspective

GraphQL is self-documenting, or introspective. It supports several built-in operations that allow
users to view the underlying types and fields within the schema. For example, here's a Foo type
with a date and description field:

type Foo {
date: String
description: String

}

We could use the _type operation to find the typing metadata underneath the schema:

{
_ _type(name: "Foo") {
name # returns the name of the type
fields { # returns all fields in the type
name # returns the name of each field
type { # returns all types for each field
name # returns the scalar type
}
}
}
}
This will return a response:
{
"__type": {
"name": "Foo", # The type name
"fields": [

Introspective 53

AWS AppSync Developer Guide

{
"name": "date", # The date field
"type": { "name": "String" } # The date's type
1,
{
"name": "description", # The description field
"type": { "name": "String" } # The description's type
1,
]

This feature can be used to find out what types and fields a particular GraphQL schema supports.
GraphQL supports a wide variety of these introspective operations. For more information, see
Introspection.

Strong typing

GraphQL supports strong typing through its types and fields system. When you define something
in your schema, it must have a type that can be validated before runtime. It must also follow
GraphQL's syntax specification. This concept is no different from programming in other languages.
For example, here's the Foo type from earlier:

type Foo {
date: String
description: String

}

We can see that Foo is the object that will be created. Inside an instance of Foo, there will be a
date and description field, both of the String primitive type (scalar). Syntactically, we see that
Foo was declared, and its fields exist inside its scope. This combination of type checking and logical
syntax ensures that your GraphQL API is concise and self-evident. GraphQL's typing and syntax
specification can be found here.

Strong typing 54

https://graphql.org/learn/introspection/
https://spec.graphql.org/

AWS AppSync Developer Guide

Getting started: Creating your first GraphQL API

You can use the AWS AppSync console to configure and launch a GraphQL API. GraphQL APIs
generally require three components:

1.

GraphQL schema - Your GraphQL schema is the blueprint of the API. It defines the types and
fields that you can request when an operation is executed. To populate the schema with data,
you must connect data sources to the GraphQL APIL. In this quickstart guide, we'll be creating a
schema using a predefined model.

. Data sources- These are the resources that contain the data for populating your GraphQL API.

This can be a DynamoDB table, Lambda function, etc. AWS AppSync supports a multitude of
data sources to build robust and scalable GraphQL APIs. Data sources are linked to fields in the
schema. Whenever a request is performed on a field, the data from the source populates the
field. This mechanism is controlled by the resolver. In this quickstart guide, we'll be creating a
data source using a predefined model alongside the schema.

. Resolvers - Resolvers are responsible for linking the schema field to the data source. They

retrieve the data from the source, then return the result based on what was defined by the field.
AWS AppSync supports both JavaScript and VTL for writing resolvers for your GraphQL APIs. In
this quickstart guide, the resolvers will be automatically generated based on the schema and the
data source. We won't be delving into this in this section.

AWS AppSync supports the creation and configuration of all GraphQL components. When you open
the console, you can use the following methods to create your API:

1.

Designing a customized GraphQL API by generating it through a predefined model and setting
up a new DynamoDB table (data source) to support it.

. Designing a GraphQL API with a blank schema and no data sources or resolvers.
. Using a DynamoDB table to import data and generate your schema's types and fields.

. Using AWS AppSync's WebSocket capabilities and Pub/Sub architecture to develop real-time

APIs.

. Using existing GraphQL APIs (source APIs) to link to a Merged API.

55

AWS AppSync Developer Guide

® Note

We recommend reviewing the Designing a schema section before working with more

advanced tools. These guides will explain simpler examples that you can use conceptually
to build more complex applications in AWS AppSync.

AWS AppSync also supports several non-console options to create GraphQL APIs. These include:

1. AWS Amplify

2. AWS SAM

3. AWS CloudFormation
4. The CDK

The following example will show you how to create the basic components of a GraphQL API using
predefined models and DynamoDB.

Topics

o Step 1: Launch a schema

Step 2: Take a tour of the console

Step 3: Add data with a GraphQL mutation

Step 4: Retrieve data with a GraphQL query

Supplemental sections

Step 1: Launch a schema

In this example, you will create a Todo API that allows users to create Todo items for daily chore
reminders like Finish task or Pick up groceries. This APl will demonstrate how to use
GraphQL operations where the state persists in a DynamoDB table.

Conceptually, there are three major steps to creating your first GraphQL API. You must define
the schema (types and fields), attach your data source(s) to your field(s), then write the resolver
that handles the business logic. However, the console experience changes the order of this. We
will begin by defining how we want our data source to interact with our schema, then define the
schema and resolver later.

Step 1: Launch a schema 56

AWS AppSync Developer Guide

To create your GraphQL API

1. Signin to the AWS Management Console and open the AppSync console.

2. Inthe Dashboard, choose Create API.
3. While GraphQL APIs is selected, choose Design from scratch. Then, choose Next.
4

For APl name, change the prepopulated name to Todo API, then choose Next.

(® Note

There are also other options present here, but we won't be using them for this
example.

5. Inthe Specify GraphQL resources section, do the following:

a. Choose Create type backed by a DynamoDB table now.

(@ Note

This means we are going to create a new DynamoDB table to attach as a data
source.

b. Inthe Model Name field, enter Todo.

(@ Note

Our first requirement is to define our schema. This Model Name will be the type
name, so what you're really doing is creating a type called Todo that will exist in
the schema:

type Todo {}

c. Under Fields, do the following:

i. Create a field named id, with the type ID, and required set to Yes.

Step 1: Launch a schema 57

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

® Note

These are the fields that will exist within the scope of your Todo type. Your
field name here will be called id with a type of ID!:

type Todo {
id: ID!
}

AWS AppSync supports multiple scalar values for different use cases.

ii. Using Add new field, create four additional fields with the Name values set to name,
when, where, and description. Their Type values will be String, and the Array
and Required values will both be set to No. It will look like this:

Model information

Model name
A model is a type with preconfigured queries, mutations, and subscriptions.

Todo

The model name must have 1 to 50 characters. Valid characters: A-Z, a-z, 0-9, and _

Fields

Models have fields. Fields have a name and a type.

Mame Type Array Required

| id | | D v ‘ ‘ No v ‘ ‘Yes v ‘ ‘ Remove ‘
name | | String v ‘ ‘ No v ‘ ‘ No v ‘ ‘ Remove ‘

| when | | String v ‘ ‘ No v ‘ ‘ Mo v ‘ ‘ Remove ‘

| where | | String v ‘ ‘ No v ‘ ‘ No v ‘ ‘ Remove ‘

| description | | String v ‘ ‘ No v ‘ ‘ No v ‘ ‘ Remove ‘

| Add new field |

Step 1: Launch a schema 58

AWS AppSync Developer Guide

® Note
The full type and its fields will look like this:

type Todo {

id: ID!

name: String

when: String

where: String
description: String

Because we're creating a schema using this predefined model, it will also
be populated with several boilerplate mutations based on the type such as
create, delete, and update to help you populate your data source easily.

d. Under configure model table, enter a table name, such as TodoAPITable. Set the
Primary Key to id.

(@ Note

We're essentially creating a new DynamoDB table called TodoAPITable that will
be attached to the API as our primary data source. Our primary key is set to the
required id field that we defined before this. Note that this new table is blank and
doesn't contain anything except for the partition key.

e. Choose Next.

6. Review your changes and choose Create API. Wait a moment to let the AWS AppSync service
finish creating your API.

You have successfully created a GraphQL API with its schema and DynamoDB data source. To
summarize the steps above, we chose to create a completely new GraphQL API. We defined the
name of the API, then added our schema definition by adding our first type. We defined the type
and its fields, then chose to attach a data source to one of the fields by creating a new DynamoDB
table with no data in it.

Step 1: Launch a schema 59

AWS AppSync Developer Guide

Step 2: Take a tour of the console

Before we add data to our DynamoDB table, we should review the basic features of the AWS
AppSync console experience. The AWS AppSync console tab on the left-hand side of the page
allows users to easily navigate to any of the major components or configuration options that AWS
AppSync provides:

AWS AppSync X

APls

Todo API
Schema
Data sources
Functions
Queries
Caching
Settings
Monitoring

Custom domain names

Documentation [

Schema designer

Choose Schema to view the schema you just created. If you review the schema's contents, you'll
notice that it has already been loaded with a bunch of helper operations to streamline the
development process. In the Schema editor, if you scroll through the code, you'll eventually reach
the model you defined in the previous section:

type Todo {
id: ID!

name: String
when: String
where: String

Step 2: Take a tour of the console

60

AWS AppSync Developer Guide

description: String

}

Your model became the base type that was used throughout your schema. We'll start adding data
to our data source using mutations that were automatically generated from this type.

Here are some additional tips and facts about the Schema editor:

1. The code editor has linting and error-checking capabilities that you can use when writing your
own apps.

2. The right side of the console shows the GraphQL types that have been created and resolvers on
different top-level types, such as queries.

3. When adding new types to a schema (for example, type User {...3}), you can have AWS
AppSync provision DynamoDB resources for you. These include the proper primary key, sort
key, and index design to best match your GraphQL data access pattern. If you choose Create
Resources at the top and choose one of these user-defined types from the menu, you can
choose different field options in the schema design. We will cover this in the design a schema

section.

Resolver configuration

In the schema designer, the Resolvers section contains all of the types and fields in your schema.
If you scroll through the list of fields, you'll notice that you can attach resolvers to certain fields
by choosing Attach. This will open up a code editor in which you can write your resolver code.
AWS AppSync supports both VTL and JavaScript runtimes, which can be changed at the top of the
page by choosing Actions, then Update Runtime. At the bottom of the page, you can also create
functions that will run several operations in a sequence. However, resolvers are an advanced topic,
and we won't be covering that in this section.

Data sources

Choose Data sources to view your DynamoDB table. By choosing the Resource option (if
available), you can view your data source's configuration. In our example, this leads to the
DynamoDB console. From there, you can edit your data. You can also directly edit some of the
data by choosing the data source, then choosing Edit. If you ever need to delete your data source,
you can choose your data source, then select Delete. Lastly, you can create new data sources by
choosing Create data source, then configuring the name and type. Note that this option is for

Data sources 61

AWS AppSync Developer Guide

linking the AWS AppSync service to an existing resource. You still need to create the resource in
your account using the relevant service before AWS AppSync recognizes it.

Queries

Choose Queries to view your queries and mutations. When we created our GraphQL API using

our model, AWS AppSync automatically generated some helper mutations and queries for testing
purposes. In the query editor, the left-hand side contains the Explorer. This is a list showing all of
your mutations and queries. You can easily enable the operations and fields you want to use here
by clicking on their name values. This will cause the code to appear automatically in the center part
of the editor. Here, you can edit your mutations and queries by modifying values. At the bottom

of the editor, you have the Query Variable editor that allows you to enter the field values for the
input variables of your operations. Choosing Run at the top of the editor will bring up a drop-down
list to select the query/mutation to run. The output for this run will appear on the right-hand side
of the page. Back in the Explorer section at the top, you can choose an operation (Query, Mutation,
Subscription), then choose the + symbol to add a new instance of that particular operation. At the
top of the page, there will be another drop-down list that contains the authorization mode for your
query runs. However, we will not be covering that feature in this section (For more information, see

Security.).
Settings

Choose Settings to view some configuration options for your GraphQL API. Here, you can enable
some options like logging, tracing, and web application firewall functionality. You can also add
new authorization modes to protect your data from unwanted leaks to the public. However, these
options are more advanced and will not be covered in this section.

® Note

The default authorization mode, API_KEY, uses an API key to test the application. This

is the base authorization that's given to all newly created GraphQL APIs. We recommend
that you use a different method for production. For the sake of the example in this section,
we will only use the API key. For more information about the supported authorization
methods, see Security.

Queries 62

AWS AppSync Developer Guide

Step 3: Add data with a GraphQL mutation

Your next step is to add data to your blank DynamoDB table using a GraphQL mutation. Mutations
are one of the fundamental operation types in GraphQL. They are defined in the schema and
allow you to manipulate data in your data source. In terms of REST APIs, these are very similar to
operations like PUT or POST.

To add data to your data source

1. If you haven't already done so, sign in to the AWS Management Console and open the AppSync
console.

2. Choose your API from the table.
3. Inthe tab to the left, choose Queries.
4. Inthe Explorer tab to the left of the table, you might see several mutations and queries

already defined in the query editor:

Explorer 4

Query v

mutation createTodo

(® Note

This mutation is actually sitting in your schema as the Mutation type. It has the code:

type Mutation {
createTodo(input: CreateTodoInput!): Todo
updateTodo(input: UpdateTodoInput!): Todo
deleteTodo(input: DeleteTodoInput!): Todo
}

As you can see, the operations here are similar to what's inside the query editor.

Step 3: Add data with a GraphQL mutation 63

https://console.aws.amazon.com/appsync/
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

AWS AppSync automatically generated these from the model we defined earlier. This example
will use the createTodo mutation to add entries to our TodoAPITable table.

5. Choose the createTodo operation by expanding it under the createTodo mutation:

mutation createTodo

Enable the checkboxes for all of the fields like the picture above.

(@ Note

The attributes you see here are the different modifiable elements of the mutation.
Your input can be thought of as the parameter of createTodo. The various options
with checkboxes are the fields that will be returned in the response once an operation
is performed.

6. In the code editor in the center of the screen, you'll notice that the operation appears
underneath the createTodo mutation:

mutation createTodo($createtodoinput: CreateTodoInput!) {
createTodo(input: $createtodoinput) {
where
when
name
id
description

Step 3: Add data with a GraphQL mutation 64

AWS AppSync

Developer Guide

®

Note

To explain this snippet properly, we must also look at the schema code. The declaration
mutation createTodo($createtodoinput: CreateTodoInput!){} isthe
mutation with one of its operations, createTodo. The full mutation is located in the
schema:

type Mutation {
createTodo(input: CreateTodoInput!): Todo
updateTodo(input: UpdateTodoInput!): Todo
deleteTodo(input: DeleteTodoInput!): Todo

}

Going back to the mutation declaration from the editor, the parameter is an object
called $createtodoinput with a required input type of CreateTodoInput. Note
that CreateTodoInput (and all inputs in the mutation) are also defined in the
schema. For example, here's the boilerplate code for CreateTodoInput:

input CreateTodolInput {
name: String

when: String

where: String
description: String

}

It contains the fields we defined in our model, namely name, when, where, and
description.

Going back to the editor code, in createTodo(input: $createtodoinput) {3},
we declare the input as $createtodoinput, which was also used in the mutation
declaration. We do this because this allows GraphQL to validate our inputs against the
provided types and ensure that they are being used with the correct inputs.

The final part of the editor code shows the fields that will be returned in the response
after an operation is performed:

where
when
name

Step 3: Add data with a GraphQL mutation

65

AWS AppSync Developer Guide

id
description

}

In the Query variables tab below this editor, there will be a generic createtodoinput object
that may have the following data:

{
"createtodoinput": {
"name": "Hello, world!",
"when": "Hello, world!",
"where": "Hello, world!",
"description": "Hello, world!"
}
}
(® Note

This is where we allocate the values for the input mentioned earlier:

input CreateTodoInput {
name: String

when: String

where: String
description: String

}

Change the createtodoinput by adding information we want to put in our DynamoDB
table. In this case, we wanted to create some Todo items as reminders:

"createtodoinput": {
"name": "Shopping List",
"when": "Friday",
"where": "Home",
"description": "I need to buy eggs"

}

Step 3: Add data with a GraphQL mutation 66

AWS AppSync Developer Guide

}

7. Choose Run at the top of the editor. Choose createTodo in the drop-down list. On the right-
hand side of the editor, you should see the response. It may look something like this:

"data": {
"createTodo": {
"where": "Home",
"when": "Friday",
"name": "Shopping List",
"id": "abcdefgh-1234-1234-1234-abcdefghijkl",
"description": "I need to buy eggs"

If you navigate to the DynamoDB service, you'll now see an entry in your data source with this
information:

TodoAPITable

» Scan or query items

Expand to query or scan items.

() Completed. Read capacity units consumed: 2

Items returned (1)

id v description v name v when v where

| need to buy ... Shopping List Friday Home

To summarize the operation, the GraphQL engine parsed the record, and a resolver inserted it
into your Amazon DynamoDB table. Again, you can verify this in the DynamoDB console. Notice
that you don’t need to pass in an id value. An id is generated and returned in the results. This is

Step 3: Add data with a GraphQL mutation 67

AWS AppSync Developer Guide

because the example used an autoId() functionin a GraphQL resolver for the partition key set
on your DynamoDB resources. We will cover how you can build resolvers in a different section. Take
note of the returned id value; you will use it in the next section to retrieve data with a GraphQL

query.

Step 4: Retrieve data with a GraphQL query

Now that a record exists in your database, you'll get results when you run a query. A query is one
of the other fundamental operations of GraphQL. It's used to parse and retrieve information from
your data source. In terms of REST APIs, this is similar to the GET operation. The main advantage
of GraphQL queries is the ability to specify your application's exact data requirements so that you
fetch the relevant data at the right time.

To query your data source

1. If you haven't already done so, sign in to the AWS Management Console and open the AppSync
console.

2. Choose your API from the table.
In the tab to the left, choose Queries.

4. Inthe Explorer tab to the left of the table, under query 1listTodos, expand the getTodo
operation:

guery listTodos

5. In the code editor, you should see the operation code:

query listTodos {
getTodo(id: "") {
description
id
name

Step 4: Retrieve data with a GraphQL query 68

https://console.aws.amazon.com/appsync/
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

when
where

In (id:""), fillin the value that you saved in the result from the mutation operation. In our
example, this would be:

query listTodos {
getTodo(id: "abcdefgh-1234-1234-1234-abcdefghijkl") {
description
id
name
when
where

6. Choose Run, then listTodos. The result will appear to the right of the editor. Our example
looked like this:

{
"data": {
"getTodo": {
"description": "I need to buy eggs",
"id": "abcdefgh-1234-1234-1234-abcdefghijkl",
"name": "Shopping List",
"when": "Friday",
"where": "Home"
}
}
}
(@ Note

Queries only return the fields you specify. You can deselect the fields you don't need by
deleting them from the return field:

description
id

name

when

Step 4: Retrieve data with a GraphQL query

69

AWS AppSync Developer Guide

where

You can also uncheck the box in the Explorer tab next to the field you want to delete.

7. You can also try the 1istTodos operation by repeating the steps to create an entry in your
data source, then repeating the query steps with the 1istTodos operation. Here's an example
where we added a second task:

{
"createtodoinput": {
"name": "Second Task",
"when": "Monday",
"where": "Home",
"description": "I need to mow the lawn"
}
}

By calling the 1istTodos operation, it returned both the old and new entries:

{
"data": {
"listTodos": {
"items": [

{
"id": "abcdefgh-1234-1234-1234-abcdefghijkl",
"name": "Shopping List",
"when": "Friday",
"where": "Home",
"description": "I need to buy eggs"

.

{
"id": "aaaaaaaa-bbbb-cccc-dddd-eeeeceeceeceecee",
"name": "Second Task",
"when": "Monday",
"where": "Home",
"description": "I need to mow the lawn"

}

]
}
}

Step 4: Retrieve data with a GraphQL query 70

AWS AppSync Developer Guide

}

Supplemental sections

These sections are a reference for more advanced AWS AppSync topics. We recommend following
the Supplemental reading section before doing anything else.

Integration
In the console tab, if you choose the name of your API, the Integration page appears:

AWS AppSync

APIls
Schema
Data sources
Functions
Queries
Caching
Settings
Monitoring

Custom domain names

It summarizes the steps for setting up your APl and outlines the next steps for building a client
application. The Integrate with your app section provides details for using the AWS Amplify
toolchain to automate the process of connecting your APl with iOS, Android, and JavaScript
applications through config and code generation. The Amplify toolchain provides full support for
building projects from your local workstation including GraphQL provisioning and workflows for
Cl/CD.

The Client Samples section also lists sample client applications (e.g., JavaScript, iOS, Android)
for testing an end-to-end experience. You can clone and download these samples, and the

Supplemental sections 71

https://aws-amplify.github.io/
https://aws-amplify.github.io/

AWS AppSync Developer Guide

configuration file has the necessary information (such as your endpoint URL) you need to get
started. Follow the instructions on the AWS Amplify toolchain page to run your app.

Supplemental reading

» Designing GraphQL APIs - This is a comprehensive guide for creating your GraphQL using a blank
schema with no data sources or resolvers.

Supplemental reading 72

https://aws-amplify.github.io/

AWS AppSync Developer Guide

Designing GraphQL APIs

AWS AppSync allows you to create GraphQL APIs using the console experience. You caught a
glimpse of this in the Launching a sample schema section. However, that guide didn't show the

entire catalog of options and configurations that you could leverage in AWS AppSync.

When you choose to create a GraphQL API in the console, there are several options to explore. If
you followed our Launching a sample schema guide, we showed you how to create an APl from a

predefined model. In the following sections, we will guide you through the rest of the options and
configurations for creating GraphQL APIs in AWS AppSync.

In this section, you'll review the following concepts:

1. Blank APIs or imports: This guide will run through the entire creation process for creating a

GraphQL API. You'll learn how to create a GraphQL from a blank template with no model,
configure data sources for your schema, and add your first resolver to a field.

2. Real-time data: This guide will show you the potential options for creating an APl using AWS
AppSync's WebSocket engine.

3. Merged APIs: This guide will show you how to create new GraphQL APIs by associating and
merging data from multiple existing GraphQL APlIs.

4. the section called “RDS introspection”: This guide will show you how to integrate your Amazon
RDS tables using a Data API.

Structuring a GraphQL API (blank or imported APIs)

Before you create your GraphQL API from a blank template, it would help to review the concepts
surrounding GraphQL. There are three fundamental components of a GraphQL API:

1. The schema is the file containing the shape and definition of your data. When a request is
made by a client to your GraphQL service, the data returned will follow the specification of the
schema. For more information, see Schemas.

2. The data source is attached to your schema. When a request is made, this is where the data is
retrieved and modified. For more information, see Data sources.

3. The resolver sits between the schema and the data source. When a request is made, the resolver
performs the operation on the data from the source, then returns the result as a response. For
more information, see Resolvers.

Structuring a GraphQL API (blank or imported APIs) 73

https://docs.aws.amazon.com/appsync/latest/devguide/quickstart.html
https://docs.aws.amazon.com/appsync/latest/devguide/quickstart.html

AWS AppSync Developer Guide

GraphQL API @

AppSync

GraphQL Schema Resolvers

(Data Model) (Business Logic) Data Sources

(Data)

AWS AppSync manages your APIs by allowing you to create, edit, and store the code for your
schemas and resolvers. Your data sources will come from external repositories such as databases,
DynamoDB tables, and Lambda functions. If you're using an AWS service to store your data or are
planning on doing so, AWS AppSync provides a near-seamless experience when associating data
from your AWS accounts to your GraphQL APIs.

In the next section, you will learn how to create each of these components using the AWS AppSync
service.

Topics

» Step 1: Designing your schema

» Step 2: Attaching a data source

» Step 3: Configuring resolvers

» Step 4: Using an API: CDK example

Step 1: Designing your schema

The GraphQL schema is the foundation of any GraphQL server implementation. Each GraphQL

APl is defined by a single schema that contains types and fields describing how the data from
requests will be populated. The data flowing through your APl and the operations performed must
be validated against the schema.

In general, the GraphQL type system describes the capabilities of a GraphQL server and is used
to determine if a query is valid. A server's type system is often referred to as that server's schema

Step 1: Designing your schema 74

https://graphql.org/learn/schema/#type-system

AWS AppSync Developer Guide

and can consist of different object types, scalar types, input types, and more. GraphQL is both
declarative and strongly typed, meaning the types will be well-defined at runtime and will only
return what was specified.

AWS AppSync allows you to define and configure GraphQL schemas. The following section
describes how to create GraphQL schemas from scratch using AWS AppSync's services.

Structuring a GraphQL Schema

® Tip

We recommend reviewing the Schemas section before continuing.

GraphQL is a powerful tool for implementing API services. According to GraphQL's website,

GraphQL is the following:

"GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing
data. GraphQL provides a complete and understandable description of the data in your API, gives
clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs
over time, and enables powerful developer tools."

This section covers the very first part of your GraphQL implementation, the schema. Using the
quote above, a schema plays the role of "providing a complete and understandable description

of the data in your API". In other words, a GraphQL schema is a textual representation of your
service's data, operations, and the relations between them. The schema is considered the main
entry point for your GraphQL service implementation. Unsurprisingly, it's often one of the first
things you make in your project. We recommend reviewing the Schemas section before continuing.

To quote the Schemas section, GraphQL schemas are written in the Schema Definition Language
(SDL). SDL is composed of types and fields with an established structure:

» Types: Types are how GraphQL defines the shape and behavior of the data. GraphQL supports
a multitude of types that will be explained later in this section. Each type that's defined in your
schema will contain its own scope. Inside the scope will be one or more fields that can contain a
value or logic that will be used in your GraphQL service. Types fill many different roles, the most
common being objects or scalars (primitive value types).

« Fields: Fields exist within the scope of a type and hold the value that's requested from the
GraphQL service. These are very similar to variables in other programming languages. The shape

Step 1: Designing your schema 75

https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://graphql.org/
https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html

AWS AppSync

Developer Guide

of the data you define in your fields will determine how the data is structured in a request/
response operation. This allows developers to predict what will be returned without knowing
how the backend of the service is implemented.

The simplest schemas will contain three different data categories:

1.

Schema roots: Roots define the entry points of your schema. It points to the fields that will be
performing some operation on the data like adding, deleting, or modifying something.

. Types: These are base types that are used to represent the shape of the data. You can almost
think of these as objects or abstract representations of something with defined characteristics.
For example, you could make a Person object that represents a person in a database. Each
person's characteristics will be defined inside the Person as fields. They can be anything like the
person's name, age, job, address, etc.

. Special object types: These are the types that define the behavior of the operations in your
schema. Each special object type is defined once per schema. They are first placed in the schema
root, then defined in the schema body. Each field in a special object type defines a single
operation to be implemented by your resolver.

To put this into perspective, imagine you're creating a service that stores authors and the books
they've written. Each author has a name and an array of books they've authored. Each book has

a

name and a list of associated authors. We also want the ability to add or retrieve books and

authors. A simple UML representation of this relationship may look like this:

Author Book

+ authorName: String

+ Books: Book[]

+ bookName: String

+ Authors: Authorf]

+ getAuthor(authorName: String): Author

+ addAuthor(authorName: String, Book: Book[]): void

In GraphQL, the entities Author and Book represent two different object types in your schema:

type Author {
}

type Book {

A 4

+ getBook(bookName: String): Book
+ addBook(bookName: String, Author: Author[]): void

Step 1: Designing your schema

76

AWS AppSync Developer Guide

}

Author contains authorName and Books, while Book contains bookName and Authors. These
can be represented as the fields within the scope of your types:

type Author {
authoxrName: String
Books: [Book]

type Book {
bookName: String
Authors: [Authox]

As you can see, the type representations are very close to the diagram. However, the methods are
where it gets a bit trickier. These will be placed in one of a few special object types as a field. Their
special object categorization depends on their behavior. GraphQL contains three fundamental
special object types: queries, mutations, and subscriptions. For more information, see Special

objects.

Because getAuthor and getBook are both requesting data, they will be placed in a Query special
object type:

type Author {
authorName: String
Books: [Book]

type Book {
bookName: String
Authors: [Author]

type Query {
getAuthor(authorName: String): Author
getBook(bookName: String): Book

}

Step 1: Designing your schema 77

https://docs.aws.amazon.com/appsync/latest/devguide/graphql-types.html#special-object-components
https://docs.aws.amazon.com/appsync/latest/devguide/graphql-types.html#special-object-components

AWS AppSync Developer Guide

The operations are linked to the query, which itself is linked to the schema. Adding a schema root
will define the special object type (Query in this case) as one of your entry points. This can be done
using the schema keyword:

schema {
query: Query

}

type Author {
authorName: String
Books: [Book]

type Book {
bookName: String
Authors: [Author]

type Query {
getAuthor(authorName: String): Author
getBook(bookName: String): Book

}

Looking at the final two methods, addAuthor and addBook are adding data to your database,

so they will be defined in a Mutation special object type. However, from the Types page, we also
know that inputs directly referencing Objects aren't allowed because they're strictly output types.
In this case, we can't use Author or Book, so we need to make an input type with the same fields.
In this example, we added AuthorInput and BookInput, both of which accept the same fields of
their respective types. Then, we create our mutation using the inputs as our parameters:

schema {
query: Query
mutation: Mutation

type Author {
authorName: String
Books: [Book]

input AuthorInput {
authorName: String

Step 1: Designing your schema 78

https://docs.aws.amazon.com/appsync/latest/devguide/graphql-types.html#input-components

AWS AppSync Developer Guide

Books: [BookInput]
}

type Book {
bookName: String
Authors: [Author]

input BookInput {
bookName: String
Authors: [AuthorInput]
}

type Query {
getAuthor(authorName: String): Author
getBook(bookName: String): Book

}

type Mutation {
addAuthoxr(input: [BookInput]): Author
addBook(input: [AuthorInput]): Book

}

Let's review what we just did:

1. We created a schema with the Book and Author types to represent our entities.
. We added the fields containing the characteristics of our entities.
. We added a query to retrieve this information from the database.

. We added a mutation to manipulate data in the database.

v A W N

. We added input types to replace our object parameters in the mutation to comply with
GraphQL's rules.

6. We added the query and mutation to our root schema so that the GraphQL implementation
understands the root type location.

As you can see, the process of creating a schema takes a lot of concepts from data modeling
(especially database modeling) in general. You can think of the schema as fitting the shape of the
data from the source. It also serves as the model that the resolver will implement. In the following,
sections, you'll learn how to make a schema using various AWS-backed tools and services.

Step 1: Designing your schema 79

AWS AppSync Developer Guide

® Note

The examples in the following sections are not meant to run in a real application. They are
only there to showcase the commands so you can build your own applications.

Creating schemas

Your schema will be in a file called schema.graphqgl. AWS AppSync allows users to create new
schemas for their GraphQL APIs using various methods. In this example, we'll be creating a blank
API along with a blank schema.

Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe Dashboard, choose Create API.

b. Under API options, choose GraphQL APIs, Design from scratch, then Next.

i. For APl name, change the prepopulated name to what your application needs.

ii. For contact details, you can enter a point of contact to identify a manager for the
API. This is an optional field.

iii. Under Private API configuration, you can enable private API features. A private
API can only be accessed from a configured VPC endpoint (VPCE). For more
information, see Private APIs.

We don't recommend enabling this feature for this example. Choose Next after
reviewing your inputs.

¢. Under Create a GraphQL type, you can choose to create a DynamoDB table to use as a
data source or skip this and do it later.

For this example, choose Create GraphQL resources later. We will be creating a
resource in a separate section.

d. Review your inputs, then choose Create API.

2. You will be in the dashboard of your specific API. You can tell because the API's name will
be at the top of the dashboard. If this isn't the case, you can select APIs in the Sidebar,
then choose your API in the APIs dashboard.

Step 1: Designing your schema 80

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html

AWS AppSync Developer Guide

e Inthe Sidebar underneath your API's name, choose Schema.

3. In the Schema editor, you can configure your schema.graphql file. It may be empty or
filled with types generated from a model. On the right, you have the Resolvers section for
attaching resolvers to your schema fields. We won't be looking at resolvers in this section.

CLI

(® Note

When using the CLI, make sure you have the correct permissions to access and create
resources in the service. You may want to set least-privilege policies for non-admin

users who need to access the service. For more information about AWS AppSync
policies, see Identity and access management for AWS AppSync.
Additionally, we recommend reading the console version first if you haven't done so

already.

1. If you haven't already done so, install the AWS CLI, then add your configuration.

2. Create a GraphQL API object by running the create-graphgl-api command.

You'll need to type in two parameters for this particular command:

1. The name of your API.

2. The authentication-type, or the type of credentials used to access the API (IAM,
OIDC, etc.).

(® Note

Other parameters such as Region must be configured but will usually default to
your CLI configuration values.

An example command may look like this:

aws appsync create-graphql-api --name testAPI123 --authentication-type API_KEY

Step 1: Designing your schema 81

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/appsync/latest/devguide/security-iam.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/reference/appsync/create-graphql-api.html

AWS AppSync Developer Guide

An output will be returned in the CLI. Here's an example:

"graphqlApi": {
"xrayEnabled": false,
"name": "testAPI123",
"authenticationType": "API_KEY",
"tags": {3},
"apiId": "abcdefghijklmnopgrstuvwxyz",
"uris": {
"GRAPHQL": "https://zyxwvutsrqponmlkjihgfedcba.appsync-api.us-
west-2.amazonaws.com/graphql",
"REALTIME": "wss://zyxwvutsrqponmlkjihgfedcba.appsync-realtime-
api.us-west-2.amazonaws.com/graphql"
.
"arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz"

}

(® Note

This is an optional command that takes an existing schema and uploads it to the

AWS AppSync service using a base-64 blob. We will not be using this command for

the sake of this example.

Run the start-schema-creation command.

You'll need to type in two parameters for this particular command:

1. Your api-id from the previous step.

2. The schema definition is a base-64 encoded binary blob.

An example command may look like this:

aws appsync start-schema-creation --api-id abcdefghijklmnopqrstuvwxyz --
definition "aallllaa-123b-2bb2-c321-12hgg76cc33v"

Step 1: Designing your schema

https://docs.aws.amazon.com/cli/latest/reference/appsync/start-schema-creation.html

AWS AppSync

Developer Guide

CDK

An output will be returned:

"status": "PROCESSING"

This command will not return the final output after processing. You must use a separate
command, get-schema-creation-status, to see the result. Note that these two

commands are asynchronous, so you can check the output status even while the schema is
still being created.

® Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.

The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

The starting point for the CDK is a bit different. Ideally, your schema.graphql file should
already be created. You just need to create a new file with the .graphql file extension.
This can be an empty file.

In general, you may have to add the import directive to the service you're using. For
example, it may follow the forms:

import * as x from 'x'; # import wildcard as the 'x' keyword from 'x-service'
import {a, b, ...} from 'c'; # import {specific constructs} from 'c-service'

To add a GraphQL API, your stack file needs to import the AWS AppSync service:

import * as appsync from 'aws-cdk-lib/aws-appsync';

Step 1: Designing your schema

83

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/get-schema-creation-status.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

® Note

This means we're importing the entire service under the appsync keyword.

To use this in your app, your AWS AppSync constructs will use the format
appsync.construct_name. For instance, if we wanted to make a GraphQL API,
we would say new appsync.GraphglApi(args_go_here). The following step
depicts this.

3. The most basic GraphQL API will include a name for the API and the schema path.

const add_api = new appsync.GraphqlApi(this, 'API_ID', {
name: 'name_of_API_in_console',
schema: appsync.SchemaFile.fromAsset(path.join(__dirname,
'schema_name.graphql')),

1)

(@ Note

Let's review what this snippet does. Inside the scope of api, we're creating a new
GraphQL API by calling appsync.GraphqlApi(scope: Construct, id:
string, props: GraphqlApiProps). The scopeis this, which refers to the
current object. The id is API_ID, which will be your GraphQL API's resource name
in AWS CloudFormation when it's created. The GraphqlApiProps contains the
name of your GraphQL APl and the schema. The schema will generate a schema
(SchemaFile.fromAsset) by searching the absolute path (__dirname) for the
.graphql file (schema_name.graphqgl). In a real scenario, your schema file will
probably be inside the CDK app.

To use changes made to your GraphQL API, you'll have to redeploy the app.

Adding types to schemas

Now that you've added your schema, you can start adding both your input and output types. Note
that the types here shouldn't be used in real code; they're just examples to help you understand
the process.

Step 1: Designing your schema 84

AWS AppSync Developer Guide

First, we'll create an object type. In real code, you don't have to start with these types. You can
make any type you want at any time so long as you follow GraphQL's rules and syntax.

® Note

These next few sections will be using the schema editor, so keep this open.

Console

« You can create an object type using the type keyword along with the type's name:

type Type_Name_Goes_Here {}

Inside the type's scope, you can add fields that represent the object's characteristics:

type Type_Name_Goes_Here {
Add fields here

}

Here's an example:

type 0bj_Type_1 {
id: ID!
title: String
date: AWSDateTime

(® Note

In this step, we added a generic object type with a required id field stored as ID,
a title field stored as a String, and a date field stored as an AWSDateTime. To
see a list of types and fields and what they do, see Schemas. To see a list of scalars
and what they do, see the Type reference.

Step 1: Designing your schema 85

https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/type-reference.html

AWS AppSync Developer Guide

CLI

® Note

We recommend reading the console version first if you haven't done so already.

* You can create an object type by running the create-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was:

type 0bj_Type_1 {
id: ID!
title: String
date: AWSDateTime

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "type
Obj_Type_1{id: ID! title: String date: AWSDateTime}" --format SDL

An output will be returned in the CLI. Here's an example:

"type": {
"definition": "type Obj_Type_1{id: ID! title: String date:
AwWSDateTimel",
"name": "Obj_Type_1",
"arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Obj_Type_1",
"format": "SDL"

Step 1: Designing your schema 86

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

® Note

In this step, we added a generic object type with a required id field stored as ID,

a title field stored as a String, and a date field stored as an AWSDateTime. To
see a list of types and fields and what they do, see Schemas. To see a list of scalars
and what they do, see Type reference.

On a further note, you may have realized that entering the definition directly works
for smaller types but is infeasible for adding larger or multiple types. You can opt
to add everything in a .graphql file and then pass it as the input.

CDK

® Tip
Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

To add a type, you need to add it to your .graphql file. For instance, the console example was:

type 0bj_Type_1 {
id: ID!
title: String
date: AWSDateTime

You can add your types directly to the schema like any other file.

(@ Note
To use changes made to your GraphQL API, you'll have to redeploy the app.

Step 1: Designing your schema 87

https://docs.aws.amazon.com/appsync/latest/devguide/schema-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/type-reference.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

The object type has fields that are scalar types such as strings and integers. AWS AppSync also
allows you to use enhanced scalar types like AWSDateTime in addition to the base GraphQL
scalars. Also, any field that ends in an exclamation point is required.

The ID scalar type in particular is a unique identifier that can be either String or Int. You can
control these in your resolver code for automatic assignment.

There are similarities between special object types like Query and "regular" object types like the
example above in that they both use the type keyword and are considered objects. However, for
the special object types (Query, Mutation, and Subscription), their behavior is vastly different
because they are exposed as the entry points for your API. They're also more about shaping
operations rather than data. For more information, see The query and mutation types.

On the topic of special object types, the next step could be to add one or more of them to perform
operations on the shaped data. In a real scenario, every GraphQL schema must at least have a root

query type for requesting data. You can think of the query as one of the entry points (or endpoints)
for your GraphQL server. Let's add a query as an example.

Console

« To create a query, you can simply add it to the schema file like any other type. A query
would require a Query type and an entry in the root like this:

schema {
query: Name_of_Query

}

type Name_of_Query {
Add field operation here
}

Note that Name_of_Query in a production environment will simply be called Query in
most cases. We recommend keeping it at this value. Inside the query type, you can add
fields. Each field will perform an operation in the request. As a result, most, if not all, of
these fields will be attached to a resolver. However, we're not concerned with that in this
section. Regarding the format of the field operation, it might look like this:

Name_of_Query(params): Return_Type # version with params
Name_of_Query: Return_Type # version without params

Step 1: Designing your schema 88

https://graphql.org/learn/schema/#object-types-and-fields
https://graphql.org/learn/schema/#scalar-types
https://graphql.org/learn/schema/#the-query-and-mutation-types

AWS AppSync Developer Guide

Here's an example:

schema {
query: Query
}

type Query {
getObj: [0bj_Type_1]
}

type Obj_Type_1 {
id: ID!
title: String
date: AWSDateTime

(® Note

In this step, we added a Query type and defined it in our schema root. Our Query
type defined a getObj field that returns a list of Obj_Type_1 objects. Note that
Obj_Type_1 is the object of the previous step. In production code, your field
operations will normally be working with data shaped by objects like Obj_Type_1.
In addition, fields like getObj will normally have a resolver to perform the business
logic. That will be covered in a different section.

As an additional note, AWS AppSync automatically adds a schema root during
exports, so technically you don't have to add it directly to the schema. Our service
will automatically process duplicate schemas. We're adding it here as a best
practice.

CLI

(® Note

We recommend reading the console version first if you haven't done so already.

1. Create a schema root with a query definition by running the create-type command.

Step 1: Designing your schema

89

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

You'll need to enter a few parameters for this particular command:
1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was:

schema {
query: Query
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "schema

{query: Query}" --format SDL

An output will be returned in the CLI. Here's an example:

{
"type": {
"definition": "schema {query: Query}",
"name": "schema",

"arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/schema",
"format": "SDL"

(@ Note

Note that if you didn't input something correctly in the create-type command,
you can update your schema root (or any type in the schema) by running the
update-type command. In this example, we'll be temporarily changing the

schema root to contain a subscription definition.
You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name of your type. In the console example, this was schema.

Step 1: Designing your schema

90

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-type.html

AWS AppSync Developer Guide

3. The definition, or the content of your type. In the console example, this was:

schema {
query: Query
}

The schema after adding a subscription will look like this:

schema {
query: Query
subscription: Subscription

}

4. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync update-type --api-id abcdefghijklmnopqrstuvwxyz --type-name
schema --definition "schema {query: Query subscription: Subscription}"
--format SDL

An output will be returned in the CLI. Here's an example:

"type": {
"definition": "schema {query: Query subscription: Subscription}",
"arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/schema",
"format": "SDL"

Adding preformatted files will still work in this example.

2. Create a Query type by running the create-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was:

Step 1: Designing your schema 91

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

type Query {
getObj: [0Obj_Type_1]
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "type
Query {getObj: [Obj_Type_1]}" --format SDL

An output will be returned in the CLI. Here's an example:

{
"type": {
"definition": "Query {getObj: [0Obj_Type_11}",
"name": "Query",

"arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Query",
"format": "SDL"

}

}

@ Note
In this step, we added a Query type and defined it in your schema root. Our Query
type defined a getObj field that returned a list of Obj_Type_1 objects.
In the schema root code query: Query, the query: partindicates that a query
was defined in your schema, while the Query part indicates the actual special
object name.

CDK
® Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.

Step 1: Designing your schema 92

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

You'll need to add your query and the schema root to the . graphql file. Our example looked
like the example below, but you'll want to replace it with your actual schema code:

schema {
query: Query
}

type Query {
getObj: [Obj_Type_1]
}

type Obj_Type_1 {
id: ID!
title: String
date: AWSDateTime

You can add your types directly to the schema like any other file.

(@ Note

Updating the schema root is optional. We added it to this example as a best practice.
To use changes made to your GraphQL API, you'll have to redeploy the app.

You've now seen an example of creating both objects and special objects (queries). You've also seen
how these can be interconnected to describe data and operations. You can have schemas with only
the data description and one or more queries. However, we'd like to add another operation to add

data to the data source. We'll add another special object type called Mutation that modifies data.

Console

e A mutation will be called Mutation. Like Query, the field operations inside Mutation will
describe an operation and will be attached to a resolver. Also, note that we need to define
it in the schema root because it's a special object type. Here's an example of a mutation:

Step 1: Designing your schema 93

AWS AppSync Developer Guide

schema {
mutation: Name_of_Mutation

}

type Name_of_Mutation {
Add field operation here
}

A typical mutation will be listed in the root like a query. The mutation is defined using the
type keyword along with the name. Name_of_Mutation will usually be called Mutation,
so we recommend keeping it that way. Each field will also perform an operation. Regarding
the format of the field operation, it might look like this:

Name_of_Mutation(params): Return_Type # version with params
Name_of_Mutation: Return_Type # version without params

Here's an example:

schema {
query: Query
mutation: Mutation

type Obj_Type_1 {
id: ID!
title: String
date: AWSDateTime

type Query {
getObj: [0Obj_Type_1]
}

type Mutation {
addobj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1
}

Step 1: Designing your schema 94

AWS AppSync

Developer Guide

CLI

® Note

In this step, we added a Mutation type with an addObj field. Let's summarize
what this field does:

addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1

addObj is using the Obj_Type_1 object to perform an operation. This is apparent
due to the fields, but the syntax proves this in the : Obj_Type_1 return type.
Inside addObj, it's accepting the id, title, and date fields from the Obj_Type_1
object as parameters. As you may see, it looks a lot like a method declaration.
However, we haven't described the behavior of our method yet. As stated earlier,
the schema is only there to define what the data and operations will be and not
how they operate. Implementing the actual business logic will come later when we
create our first resolvers.

Once you're done with your schema, there's an option to export it as a
schema.graphql file. In the Schema editor, you can choose Export schema to
download the file in a supported format.

As an additional note, AWS AppSync automatically adds a schema root during
exports, so technically you don't have to add it directly to the schema. Our service
will automatically process duplicate schemas. We're adding it here as a best
practice.

(® Note

We recommend reading the console version first if you haven't done so already.

1. Update your root schema by running the update-type command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name of your type. In the console example, this was schema.

Step 1: Designing your schema

95

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-type.html

AWS AppSync Developer Guide

3. The definition, or the content of your type. In the console example, this was:

schema {
query: Query
mutation: Mutation

4. The format of your input. In this example, we're using SDL.

An example command may look like this:

aws appsync update-type --api-id abcdefghijklmnopqrstuvwxyz --type-name schema
--definition "schema {query: Query mutation: Mutation}" --format SDL

An output will be returned in the CLI. Here's an example:

"type": {
"definition": "schema {query: Query mutation: Mutation}",
"arn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/schema",
"format": "SDL"

2. Create a Mutation type by running the create-type command.

You'll need to enter a few parameters for this particular command:
1. The api-id of your API.

2. The definition, or the content of your type. In the console example, this was

type Mutation {
addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1
}

3. The format of your input. In this example, we're using SDL.

An example command may look like this:

Step 1: Designing your schema 96

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-type.html

AWS AppSync Developer Guide

aws appsync create-type --api-id abcdefghijklmnopqrstuvwxyz --definition "type
Mutation {addObj(id: ID! title: String date: AWSDateTime): Obj_Type_13}" --
format SDL

An output will be returned in the CLI. Here's an example:

Iltypell : {
"definition": "type Mutation {addObj(id: ID! title: String date:

AwWSDateTime): Obj_Type_13}",
"name": "Mutation",
"arn": "arn:aws:appsync:us-west-2:107289374856:apis/

abcdefghijklmnopqrstuvwxyz/types/Mutation",
"format": "SDL"

CDK

® Tip
Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.

We also assume you already have a working app.

You'll need to add your query and the schema root to the .graphql file. Our example looked
like the example below, but you'll want to replace it with your actual schema code:

schema {
query: Query
mutation: Mutation

type Obj_Type_1 {
id: ID!
title: String

Step 1: Designing your schema 97

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

date: AWSDateTime

type Query {
getObj: [0Obj_Type_1]
}

type Mutation {
addObj(id: ID!, title: String, date: AWSDateTime): Obj_Type_1
}

(® Note

Updating the schema root is optional. We added it to this example as a best practice.
To use changes made to your GraphQL API, you'll have to redeploy the app.

Optional considerations - Using enums as statuses

At this point, you know how to make a basic schema. However, there are many things you could
add to increase the schema's functionality. One common thing found in applications is the use of
enums as statuses. You can use an enum to force a specific value from a set of values to be chosen
when called. This is good for things that you know will not change drastically over long periods of
time. Hypothetically speaking, we could add an enum that returns the status code or String in the
response.

As an example, let's assume we're making a social media app that's storing a user's post data in the
backend. Our schema contains a Post type that represents an individual post's data:

type Post {
id: ID!
title: String
date: AWSDateTime
poststatus: PostStatus

Our Post will contain a unique id, post title, date of posting, and an enum called PostStatus
that represents the post's state as it's processed by the app. For our operations, we'll have a query
that returns all post data:

Step 1: Designing your schema 98

AWS AppSync Developer Guide

type Query {
getPosts: [Post]
}

We'll also have a mutation that adds posts to the data source:

type Mutation {
addPost(id: ID!, title: String, date: AWSDateTime, poststatus: PostStatus): Post

Looking at our schema, the PostStatus enum could have several statuses. We might want the
three basic states called success (post successfully processed), pending (post being processed),
and error (post unable to be processed). To add the enum, we could do this:

enum PostStatus {
success
pending
error

The full schema might look like this:

schema {
query: Query
mutation: Mutation

type Post {
id: ID!
title: String
date: AWSDateTime
poststatus: PostStatus

type Mutation {
addPost(id: ID!, title: String, date: AWSDateTime, poststatus: PostStatus): Post

type Query {
getPosts: [Post]
}

Step 1: Designing your schema 99

AWS AppSync Developer Guide

enum PostStatus {
success
pending
error

If a user adds a Post in the application, the addPost operation will be called to process that

data. As the resolver attached to addPost processes the data, it will continually update the
poststatus with the status of the operation. When queried, the Post will contain the final status
of the data. Keep in mind, we're only describing how we want the data to work in the schema.
We're assuming a lot about the implementation of our resolver(s), which will implement the actual
business logic for handling the data to fulfill the request.

Optional considerations - Subscriptions

Subscriptions in AWS AppSync are invoked as a response to a mutation. You configure this with a
Subscription type and eaws_subscribe() directive in the schema to denote which mutations
invoke one or more subscriptions. For more information about configuring subscriptions, see Real-
time data.

Optional considerations - Relations and pagination

Suppose you had a million Posts stored in a DynamoDB table, and you wanted to return some
of that data. However, the example query given above only returns all posts. You wouldn’t want
to fetch all of these every time you made a request. Instead, you would want to paginate through
them. Make the following changes to your schema:

» In the getPosts field, add two input arguments: nextToken (iterator) and 1imit (iteration
limit).

« Add anew PostIterator type containing Posts (retrieves the list of Post objects) and
nextToken (iterator) fields.

« Change getPosts so that it returns PostIterator and not a list of Post objects.

schema {
query: Query
mutation: Mutation

Step 1: Designing your schema 100

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://graphql.org/learn/pagination/

AWS AppSync Developer Guide

type Post {
id: ID!
title: String
date: AWSDateTime
poststatus: PostStatus

type Mutation {
addPost(id: ID!, title: String, date: AWSDateTime, poststatus: PostStatus): Post
}

type Query {
getPosts(limit: Int, nextToken: String): PostIterator
}

enum PostStatus {
success
pending
error

type PostIterator {
posts: [Post]
nextToken: String

}

The PostIterator type allows you to return a portion of the list of Post objects and a
nextToken for getting the next portion. Inside PostIterator, thereis a list of Post items
([Post]) that is returned with a pagination token (nextToken). In AWS AppSync, this would be
connected to Amazon DynamoDB through a resolver and automatically generated as an encrypted
token. This converts the value of the 1imit argument to the maxResults parameter and the
nextToken argument to the exclusiveStartKey parameter. For examples and the built-in
template samples in the AWS AppSync console, see Resolver reference (JavaScript).

Step 2: Attaching a data source

Data sources are resources in your AWS account that GraphQL APIs can interact with. AWS AppSync
supports a multitude of data sources like AWS Lambda, Amazon DynamoDB, relational databases
(Amazon Aurora Serverless), Amazon OpenSearch Service, and HTTP endpoints. An AWS AppSync
API can be configured to interact with multiple data sources, enabling you to aggregate data in

Step 2: Attaching a data source 101

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

a single location. AWS AppSync can use existing AWS resources from your account or provision
DynamoDB tables on your behalf from a schema definition.

The following section will show you how to attach a data source to your GraphQL API.
Types of data sources

Now that you have created a schema in the AWS AppSync console, you can attach a data source
to it. When you initially create an API, there's an option to provision an Amazon DynamoDB table
during the creation of the predefined schema. However, we won't be covering that option in this
section. You can see an example of this in the Launching a schema section.

Instead, we'll be looking at all of the data sources AWS AppSync supports. There are many factors
that go into picking the right solution for your application. The sections below will provide some
additional context for each data source. For general information about data sources, see Data

sources.

Amazon DynamoDB

Amazon DynamoDB is one of AWS' main storage solutions for scalable applications. The core
component of DynamoDB is the table, which is simply a collection of data. You will typically create
tables based on entities like Book or Authozr. Table entry information is stored as items, which are
groups of fields that are unique to each entry. A full item represents a row/record in the database.
For example, an item for a Book entry might include title and author along with their values.
The individual fields like the title and author are called attributes, which are akin to column
values in relational databases.

As you can guess, tables will be used to store data from your application. AWS AppSync allows

you to hook up your DynamoDB tables to your GraphQL API to manipulate data. Take this use

case from the Front-end web and mobile blog. This application lets users sign up for a social media
app. Users can join groups and upload posts that are broadcasted to other users subscribed to the
group. Their application stores user, post, and user group information in DynamoDB. The GraphQL
APl (managed by AWS AppSync) interfaces with the DynamoDB table. When a user makes a change
in the system that will be reflected on the front-end, the GraphQL API retrieves these changes and
broadcasts them to other users in real time.

AWS Lambda

Lambda is an event-driven service that automatically builds the necessary resources to run code as
a response to an event. Lambda uses functions, which are group statements containing the code,

Step 2: Attaching a data source 102

https://docs.aws.amazon.com/appsync/latest/devguide/schema-launch-start.html
https://docs.aws.amazon.com/appsync/latest/devguide/data-source-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/data-source-components.html
https://aws.amazon.com/blogs/mobile/new-real-time-multi-group-app-with-aws-amplify-graphql-build-a-twitter-community-clone/
https://aws.amazon.com/blogs/mobile/new-real-time-multi-group-app-with-aws-amplify-graphql-build-a-twitter-community-clone/

AWS AppSync Developer Guide

dependencies, and configurations for executing a resource. Functions automatically execute when
they detect a trigger, a group of activities that invoke your function. A trigger could be anything
like an application making an API call, an AWS service in your account spinning up a resource, etc.
When triggered, functions will process events, which are JSON documents containing the data to
modify.

Lambda is good for running code without having to provision the resources to run it. Take

this use case from the Front-end web and mobile blog. This use case is a bit similar to the one
showcased in the DynamoDB section. In this application, the GraphQL APl is responsible for
defining the operations for things like adding posts (mutations) and fetching that data (queries).
To implement the functionality of their operations (e.g., getPost (id: String !) : Post,
getPostsByAuthor (author: String !) : [Post]), they use Lambda functions to
process inbound requests. Under Option 2: AWS AppSync with Lambda resolver, they use the AWS
AppSync service to maintain their schema and link a Lambda data source to one of the operations.
When the operation is called, Lambda interfaces with the Amazon RDS proxy to perform the
business logic on the database.

Amazon RDS

Amazon RDS lets you quickly build and configure relational databases. In Amazon RDS, you'll
create a generic database instance that will serve as the isolated database environment in the
cloud. In this instance, you'll use a DB engine, which is the actual RDBMS software (PostgreSQL,
MySQL, etc.). The service offloads much of the backend work by providing scalability using AWS'
infrastructure, security services such as patching and encryption, and lowered administrative costs
for deployments.

Take the same use case from the Lambda section. Under Option 3: AWS AppSync with Amazon RDS
resolver, another option presented is linking the GraphQL APl in AWS AppSync to Amazon RDS
directly. Using a data API, they associate the database with the GraphQL API. A resolver is attached
to a field (usually a query, mutation, or subscription) and implements the SQL statements needed
to access the database. When a request calling the field is made by the client, the resolver executes
the statements and returns the response.

Amazon EventBridge

In EventBridge, you'll create event buses, which are pipelines that receive events from services or
applications you attach (the event source) and process them based on a set of rules. An event is
some state change in an execution environment, while a rule is a set of filters for events. A rule
follows an event pattern, or metadata of an event's state change (id, Region, account number,

Step 2: Attaching a data source 103

https://aws.amazon.com/blogs/mobile/building-a-graphql-api-with-java-and-aws-lambda/
https://aws.amazon.com/blogs/mobile/building-a-graphql-api-with-java-and-aws-lambda/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html

AWS AppSync Developer Guide

ARN(s), etc.). When an event matches the event pattern, EventBridge will send the event across the
pipeline to the destination service (target) and trigger the action specified in the rule.

EventBridge is good for routing state-changing operations to some other service. Take this use
case from the Front-end web and mobile blog. The example depicts an e-commerce solution that
has several teams maintaining different services. One of these services provides order updates to
the customer at each step of the delivery (order placed, in progress, shipped, delivered, etc.) on
the front-end. However, the front-end team managing this service doesn't have direct access to
the ordering system data as that's maintained by a separate backend team. The backend team's
ordering system is also described as a black box, so it's hard to glean information about the way
they're structuring their data. However, the backend team did set up a system that published
order data through an event bus managed by EventBridge. To access the data coming from the
event bus and route it to the front-end, the front-end team created a new target pointing to their
GraphQL API sitting in AWS AppSync. They also created a rule to only send data relevant to the
order update. When an update is made, the data from the event bus is sent to the GraphQL API.
The schema in the API processes the data, then passes it to the front-end.

None data sources

If you aren't planning on using a data source, you can set it to none. A none data source, while still
explicitly categorized as a data source, isn't a storage medium. Typically, a resolver will invoke one
or more data sources at some point to process the request. However, there are situations where you
may not need to manipulate a data source. Setting the data source to none will run the request,
skip the data invocation step, then run the response.

Take the same use case from the EventBridge section. In the schema, the mutation processes the
status update, then sends it out to subscribers. Recalling how resolvers work, there's usually at
least one data source invocation. However, the data in this scenario was already sent automatically
by the event bus. This means there's no need for the mutation to perform a data source invocation;
the order status can simply be handled locally. The mutation is set to none, which acts as a pass-
through value with no data source invocation. The schema is then populated with the data, which
is sent out to subscribers.

OpenSearch

Amazon OpenSearch Service is a suite of tools to implement full-text searching, data visualization,
and logging. You can use this service to query the structured data you've uploaded.

In this service, you'll create instances of OpenSearch. These are called nodes. In a node, you'll
be adding at least one index. Indices conceptually are a bit like tables in relational databases.

Step 2: Attaching a data source 104

https://aws.amazon.com/blogs/mobile/appsync-eventbridge/
https://aws.amazon.com/blogs/mobile/appsync-eventbridge/
https://aws.amazon.com/blogs/mobile/appsync-eventbridge/

AWS AppSync Developer Guide

(However, OpenSearch isn't ACID compliant, so it shouldn't be used that way). You'll populate your
index with data that you upload to the OpenSearch service. When your data is uploaded, it will be
indexed in one or more shards that exist in the index. A shard is like a partition of your index that
contains some of your data and can be queried separately from other shards. Once uploaded, your
data will be structured as JSON files called documents. You can then query the node for data in
the document.

HTTP endpoints

You can use HTTP endpoints as data sources. AWS AppSync can send requests to the endpoints
with the relevant information like params and payload. The HTTP response will be exposed to the
resolver, which will return the final response after it finishes its operation(s).

Adding a data source

If you created a data source, you can link it to the AWS AppSync service and, more specifically, the
API.

Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Choose your API in the Dashboard.
b. In the Sidebar, choose Data Sources.

2. Choose Create data source.

a. Give your data source a name. You can also give it a description, but that's optional.
b. Choose your Data source type.

¢. For DynamoDB, you'll have to choose your Region, then the table in the Region. You
can dictate interaction rules with your table by choosing to make a new generic table
role or importing an existing role for the table. You can enable versioning, which can
automatically create versions of data for each request when multiple clients are trying
to update data at the same time. Versioning is used to keep and maintain multiple
variants of data for conflict detection and resolution purposes. You can also enable
automatic schema generation, which takes your data source and generates some of the
CRUD, List, and Query operations needed to access it in your schema.

Step 2: Attaching a data source 105

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync

Developer Guide

For OpenSearch, you'll have to choose your Region, then the domain (cluster) in the
Region. You can dictate interaction rules with your domain by choosing to make a new
generic table role or importing an existing role for the table.

For Lambda, you'll have to choose your Region, then the ARN of the Lambda function
in the Region. You can dictate interaction rules with your Lambda function by choosing
to make a new generic table role or importing an existing role for the table.

For HTTP, you'll have to enter your HTTP endpoint.

For EventBridge, you'll have to choose your Region, then the event bus in the Region.
You can dictate interaction rules with your event bus by choosing to make a new
generic table role or importing an existing role for the table.

For RDS, you'll have to choose your Region, then the secret store (username and
password), database name, and schema.

For none, you will add a data source with no actual data source. This is for handling
resolvers locally rather than through an actual data source.

(® Note

If you're importing existing roles, they need a trust policy. For more
information, see the IAM trust policy.

3. Choose Create.

CLI

(@ Note

Alternatively, if you're creating a DynamoDB data source, you can go to the Schema
page in the console, choose Create Resources at the top of the page, then fill out a
predefined model to convert into a table. In this option, you will fill out or import
the base type, configure the basic table data including the partition key, and review
the schema changes.

« Create your data source by running the create-data-source command.

Step 2: Attaching a data source 106

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-data-source.html

AWS AppSync Developer Guide

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.
2. The name of your table.

3. The type of data source. Depending on the data source type you choose, you may need
to enter a service-role-arnanda -config tag.

An example command may look like this:

aws appsync create-data-source --api-id abcdefghijklmnopqrstuvwxyz
--name data_source_name --type data_source_type --service-role-arn
arn:aws:iam::107289374856:r0le/role_name --[data_source_type]-config {params}

CDK

® Tip

Before you use the CDK, we recommend reviewing the CDK's official documentation

along with AWS AppSync's CDK reference.

The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

To add your particular data source, you'll need to add the construct to your stack file. A list of
data source types can be found here:

« DynamoDbDataSource

« EventBridgeDataSource

» HttpDataSource

« LambdaDataSource

« NoneDataSource

« OpenSearchDataSource

+ RdsDataSource

Step 2: Attaching a data source 107

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.DynamoDbDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.EventBridgeDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.HttpDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.LambdaDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.NoneDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.OpenSearchDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.RdsDataSource.html

AWS AppSync Developer Guide

1. In general, you may have to add the import directive to the service you're using. For
example, it may follow the forms:

import * as x from 'x'; # import wildcard as the 'x' keyword from 'x-service'
import {a, b, ...} from 'c'; # import {specific constructs} from 'c-service'

For example, here's how you could import the AWS AppSync and DynamoDB services:

import * as appsync from 'aws-cdk-lib/aws-appsync';
import * as dynamodb from 'aws-cdk-lib/aws-dynamodb';

2. Some services like RDS require some additional setup in the stack file before creating the
data source (e.g., VPC creation, roles, and access credentials). Consult the examples in the
relevant CDK pages for more information.

3. For most data sources, especially AWS services, you'll be creating a new instance of the data
source in your stack file. Typically, this will look like the following:

const add_data_source_func = new service_scope.resource_name(scope: Construct,
id: string, props: data_source_props);

For example, here's an example Amazon DynamoDB table:

const add_ddb_table = new dynamodb.Table(this, 'Table_ID', {
partitionKey: {
name: 'id',
type: dynamodb.AttributeType.STRING,

3,
sortKey: {
name: 'id',
type: dynamodb.AttributeType.STRING,

iy
tableClass: dynamodb.TableClass.STANDARD,

1});

(® Note

Most data sources will have at least one required prop (will be denoted without a ?
symbol). Consult the CDK documentation to see which props are needed.

Step 2: Attaching a data source 108

AWS AppSync Developer Guide

4. Next, you need to link the data source to the GraphQL API. The recommended method is to
add it when you make a function for your pipeline resolver. For instance, the snippet below
is a function that scans all elements in a DynamoDB table:

const add_func = new appsync.AppsyncFunction(this, 'func_ID', {
name: 'func_name_in_console',
add_api,
dataSource: add_api.addDynamoDbDataSource('data_source_name_in_console',
add_ddb_table),
code: appsync.Code.fromInline("

export function request(ctx) {
return { operation: 'Scan' };

}

export function response(ctx) {
return ctx.result.items;
}
),
runtime: appsync.FunctionRuntime.JS_1_0_0,

1)

In the dataSource props, you can call the GraphQL API (add_api) and use one of its
built-in methods (addDynamoDbDataSource) to make the association between the table
and the GraphQL API. The arguments are the name of this link that will exist in the AWS
AppSync console (data_source_name_in_console in this example) and the table
method (add_ddb_table). More on this topic will be revealed in the next section when
you start making resolvers.

There are alternative methods for linking a data source. You could technically add api to
the props list in the table function. For example, here's the snippet from step 3 but with an
api props containing a GraphQL API:

const add_api = new appsync.GraphqlApi(this, 'API_ID', {

1)

const add_ddb_table = new dynamodb.Table(this, 'Table_ID', {

api: add_api

Step 2: Attaching a data source 109

AWS AppSync Developer Guide

1)

Alternatively, you can call the GraphglApi construct separately:

const add_api = new appsync.GraphqlApi(this, 'API_ID', {
)8

const add_ddb_table = new dynamodb.Table(this, 'Table_ID', {

1)

const link_data_source =
add_api.addDynamoDbDataSource('data_source_name_in_console', add_ddb_table);

We recommend only creating the association in the function's props. Otherwise, you'll
either have to link your resolver function to the data source manually in the AWS AppSync
console (if you want to keep using the console value data_source_name_in_console)
or create a separate association in the function under another name like
data_source_name_in_console_2. This is due to limitations in how the props process
information.

® Note

You'll have to redeploy the app to see your changes.

IAM trust policy

If you're using an existing IAM role for your data source, you need to grant that role the
appropriate permissions to perform operations on your AWS resource, such as PutItemon an
Amazon DynamoDB table. You also need to modify the trust policy on that role to allow AWS
AppSync to use it for resource access as shown in the following example policy:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {

Step 2: Attaching a data source 110

AWS AppSync Developer Guide

"Service": "appsync.amazonaws.com"

iy

"Action": "sts:AssumeRole"

}

You can also add conditions to your trust policy to limit access to the data source as desired.
Currently, SourceArn and SourceAccount keys can be used in these conditions. For example, the
following policy limits access to your data source to the account 123456789012:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "appsync.amazonaws.com"
.
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"aws:SourceAccount": "123456789012"

Alternatively, you can limit access to a data source to a specific API, such as abcdefghijklmnopgq,
using the following policy:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "appsync.amazonaws.com"

},
"Action": "sts:AssumeRole",
"Condition": {

Step 2: Attaching a data source 111

AWS AppSync Developer Guide

"ArnEquals": {
"aws:SourceArn": "arn:aws:appsync:us-west-2:123456789012:apis/
abcdefghijklmnopqg"

You can limit access to all AWS AppSync APIs from a specific region, such as us-east-1, using the
following policy:

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Principal": {
"Service": "appsync.amazonaws.com"
},
"Action": "sts:AssumeRole",
"Condition": {
"ArnEquals": {
"aws:SourceArn": "arn:aws:appsync:us-east-1:123456789012:apis/*"

In the next section (Configuring Resolvers), we'll add our resolver business logic and attach it to the
fields in our schema to process the data in our data source.

For more information regarding role policy configuration, see Modifying a role in the /AM User
Guide.

For more information regarding cross-account access of AWS Lambda resolvers for AWS AppSync,
see Building cross-account AWS Lambda resolvers for AWS AppSync.

Step 2: Attaching a data source 112

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-config-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://aws.amazon.com/blogs/mobile/appsync-lambda-cross-account/

AWS AppSync Developer Guide

Step 3: Configuring resolvers

In the previous sections, you learned how to create your GraphQL schema and data source, then
linked them together in the AWS AppSync service. In your schema, you may have established one
or more fields (operations) in your query and mutation. While the schema described the kinds

of data the operations would request from the data source, it never implemented how those
operations would behave around the data.

An operation's behavior is always implemented in the resolver, which will be linked to the field
performing the operation. For more information about how resolvers work in general, see the
Resolvers page.

In AWS AppSync, your resolver is tied to a runtime, which is the environment in which your resolver
executes. Runtimes dictate the language that your resolver will be written in. There are currently
two supported runtimes: APPSYNC_JS (JavaScript) and Apache Velocity Template Language (VTL).

When implementing resolvers, there is a general structure they follow:

» Before step: When a request is made by the client, the resolvers for the schema fields being used
(typically your queries, mutations, subscriptions) are passed the request data. The resolver will
begin processing the request data with a before step handler, which allows some preprocessing
operations to be performed before the data moves through the resolver.

« Function(s): After the before step runs, the request is passed to the functions list. The first
function in the list will execute against the data source. A function is a subset of your resolver's
code containing its own request and response handler. A request handler will take the request
data and perform operations against the data source. The response handler will process the
data source's response before passing it back to the list. If there is more than one function, the
request data will be sent to the next function in the list to be executed. Functions in the list
will be executed serially in the order defined by the developer. Once all functions have been
executed, the final result is passed to the after step.res

» After step: The after step is a handler function that allows you to perform some final operations
on the final function's response before passing it to the GraphQL response.

This flow is an example of a pipeline resolver. Pipeline resolvers are supported in both runtimes.
However, this is a simplified explanation of what pipeline resolvers can do. Also, we're describing
only one possible resolver configuration. For more information about supported resolver
configurations, see the JavaScript resolvers overview for APPSYNC_JS or the Resolver mapping
template overview for VTL.

Step 3: Configuring resolvers 113

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html

AWS AppSync Developer Guide

As you can see, resolvers are modular. In order for the components of the resolver to work properly,
they must be able to peer into the state of the execution from other components. From the
Resolvers section, you know that each component in the resolver can be passed vital information
about the state of the execution as a set of arguments (args, context, etc.). In AWS AppSync,

this is handled strictly by the context. It's a container for the information about the field being
resolved. This can include everything from arguments being passed, results, authorization

data, header data, etc. For more information about the context, see the Resolver context object

reference for APPSYNC_JS or the Resolver mapping template context reference for VTL.

The context isn't the only tool you can use to implement your resolver. AWS AppSync supports a
wide range of utilities for value generation, error handling, parsing, conversion, etc. You can see a
list of utilities here for APPSYNC_JS or here for VTL.

In the following sections, you will learn how to configure resolvers in your GraphQL API.

Topics

» Configuring resolvers (JavaScript)

» Configuring resolvers (VTL)

Configuring resolvers (JavaScript)

GraphQL resolvers connect the fields in a type's schema to a data source. Resolvers are the
mechanism by which requests are fulfilled.

Resolvers in AWS AppSync use JavaScript to convert a GraphQL expression into a format the data
source can use. Alternatively, mapping templates can be written in Apache Velocity Template

Language (VTL) to convert a GraphQL expression into a format the data source can use.

This section describes how to configure resolvers using JavaScript. The Resolver tutorials

(JavaScript) section provides in-depth tutorials on how to implement resolvers using JavaScript.
The Resolver reference (JavaScript) section provides an explanation of utility operations that can be
used with JavaScript resolvers.

We recommend following this guide before attempting to use any of the aforementioned tutorials.

In this section, we will walk through how to create and configure resolvers for queries and
mutations.

Step 3: Configuring resolvers 114

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html

AWS AppSync Developer Guide

® Note

This guide assumes you have created your schema and have at least one query or mutation.
If you're looking for subscriptions (real-time data), then see this guide.

In this section, we'll provide some general steps for configuring resolvers along with an example
that uses the schema below:

// schema.graphqgl file

input CreatePostInput {
title: String
date: AwWSDateTime

type Post {
id: ID!
title: String
date: AWSDateTime

type Mutation {

createPost(input: CreatePostInput!): Post
}
type Query {

getPost: [Post]
}

Creating basic query resolvers
This section will show you how to make a basic query resolver.
Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

Step 3: Configuring resolvers 115

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

2.

Enter the details of your schema and data source. See the Designing your schema and

Attaching a data source sections for more information.

Next to the Schema editor, There's a window called Resolvers. This box contains a list of
the types and fields as defined in your Schema window. You can attach resolvers to fields.
You will most likely be attaching resolvers to your field operations. In this section, we'll look
at simple query configurations. Under the Query type, choose Attach next to your query's
field.

On the Attach resolver page, under Resolver type, you can choose between pipeline or
unit resolvers. For more information about these types, see Resolvers. This guide will make
use of pipeline resolvers.

® Tip
When creating pipeline resolvers, your data source(s) will be attached to the
pipeline function(s). Functions are created after you create the pipeline resolver
itself, which is why there's no option to set it in this page. If you're using a unit
resolver, the data source is tied directly to the resolver, so you would set it in this

page.

For Resolver runtime, choose APPSYNC_JS to enable the JavaScript runtime.

You can enable caching for this API. We recommend turning this feature off for now.
Choose Create.

On the Edit resolver page, there's a code editor called Resolver code that allows you to
implement the logic for the resolver handler and response (before and after steps). For
more information, see the JavaScript resolvers overview.

(@ Note

In our example, we're just going to leave the request blank and the response set to
return the last data source result from the context:

import {util} from 'e@aws-appsync/utils’';

export function request(ctx) {
return {};

}

Step 3: Configuring resolvers 116

https://docs.aws.amazon.com/appsync/latest/devguide/designing-your-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

export function response(ctx) {
return ctx.prev.result;

Below this section, there's a table called Functions. Functions allow you to implement code
that can be reused across multiple resolvers. Instead of constantly rewriting or copying
code, you can store the source code as a function to be added to a resolver whenever you
need it.

Functions make up the bulk of a pipeline's operation list. When using multiple functions in
a resolver, you set the order of the functions, and they will be run in that order sequentially.
They are executed after the request function runs and before the response function begins.

To add a new function, under Functions, choose Add function, then Create new function.
Alternatively, you may see a Create function button to choose instead.

a. Choose a data source. This will be the data source on which the resolver acts.

(® Note

In our example, we're attaching a resolver for getPost, which retrieves a
Post object by id. Let's assume we already set up a DynamoDB table for this
schema. Its partition key is set to the id and is empty.

b. Entera Function name.

c. Under Function code, you'll need to implement the function's behavior. This might be
confusing, but each function will have its own local request and response handler. The
request runs, then the data source invocation is made to handle the request, then the
data source response is processed by the response handler. The result is stored in the
context object. Afterward, the next function in the list will run or will be passed to the
after step response handler if it's the last one.

® Note

In our example, we're attaching a resolver to getPost, which gets a list of
Post objects from the data source. Our request function will request the

Step 3: Configuring resolvers 117

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync

Developer Guide

data from our table, the table will pass its response to the context (ctx), then
the response will return the result in the context. AWS AppSync's strength
lies in its interconnectedness with other AWS services. Because we're using
DynamoDB, we have a suite of operations to simplify things like this. We have
some boilerplate examples for other data source types as well.

Our code will look like this:

import { util } from '@aws-appsync/utils’';

/**
* Performs a scan on the dynamodb data source
*/

export function request(ctx) {
return { operation: 'Scan' };

}

/**
* return a list of scanned post items
*/

export function response(ctx) {
return ctx.result.items;

}

In this step, we added two functions:

« request: The request handler performs the retrieval operation against

the data source. The argument contains the context object (ctx), or some
data that is available to all resolvers performing a particular operation.

For example, it might contain authorization data, the field names being
resolved, etc. The return statement performs a Scan operation (see here
for examples). Because we're working with DynamoDB, we're allowed to use
some of the operations from that service. The scan performs a basic fetch
of all items in our table. The result of this operation is stored in the context
object as a result container before being passed to the response handler.
The request is run before the response in the pipeline.

response: The response handler that returns the output of the request.
The argument is the updated context object, and the return statement is
ctx.prev.result. At this point in the guide, you may not be familiar with
this value. ctx refers to the context object. prev refers to the previous

Step 3: Configuring resolvers

118

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-scan
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html

AWS AppSync Developer Guide

operation in the pipeline, which was our request. The result contains
the result(s) of the resolver as it moves through the pipeline. If you put it all
together, ctx.prev.result is returning the result of the last operation
performed, which was the request handler.

d. Choose Create after you're done.

7. Back on the resolver screen, under Functions, choose the Add function drop-down and add
your function to your functions list.

8. Choose Save to update the resolver.
CLI

To add your function

e Create a function for your pipeline resolver using the create-function command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.
2. The name of the function in the AWS AppSync console.

3. The data-source-name, or the name of the data source the function will use. It must
already be created and linked to your GraphQL API in the AWS AppSync service.

4. The runtime, or environment and language of the function. For JavaScript, the name
must be APPSYNC_JS, and the runtime, 1.0.0.

5. The code, or request and response handlers of your function. While you can type it in
manually, it's far easier to add it to a .txt file (or a similar format) and then pass it in as
the argument.

® Note

Our query code will be in a file passed in as the argument:

import { util } from 'e@aws-appsync/utils’';

/**
* Performs a scan on the dynamodb data source
*/

export function request(ctx) {

Step 3: Configuring resolvers 119

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-function.html

AWS AppSync

Developer Guide

return { operation: 'Scan' };

/**
* return a list of scanned post items
*/

export function response(ctx) {
return ctx.result.items;

An example command may look like this:

aws appsync create-function \

--api-id abcdefghijklmnopgrstuvwxyz \

--name get_posts_func_1 \

--data-source-name table-for-posts \

--runtime name=APPSYNC_JS, runtimeVersion=1.0.0 \
--code file://~/path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

"functionConfiguration": {
"functionId": "ejglgvmcabdn71x75ref4qeig4",
"functionArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/functions/ejglgvmcabdn71x75ref4qeigs",
"name": "get_posts_func_1",
"dataSourceName": "table-for-posts",
"maxBatchSize": 0,
"runtime": {
"name": "APPSYNC_J]S",
"runtimeVersion": "1.0.0"
1,

"code": "Code output goes here"

Step 3: Configuring resolvers

120

AWS AppSync Developer Guide

® Note

Make sure you record the functionId somewhere as this will be used to attach
the function to the resolver.

To create your resolver

« Create a pipeline function for Query by running the create-resolver command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name, or the special object type in your schema (Query, Mutation,
Subscription).

3. The field-name, or the field operation inside the special object type you want to
attach the resolver to.

4. The kind, which specifies a unit or pipeline resolver. Set this to PIPELINE to enable
pipeline functions.

5. The pipeline-config, or the function(s) to attach to the resolver. Make sure you know
the functionId values of your functions. Order of listing matters.

6. The runtime, which was APPSYNC_JS (JavaScript). The runtimeVersion currently is
1.0.0.

7. The code, which contains the before and after step handlers.

(® Note

Our query code will be in a file passed in as the argument:

import { util } from '@aws-appsync/utils’';

/**
* Sends a request to ‘put’ an item in the DynamoDB data source
*/
export function request(ctx) {
const { id, ...values } = ctx.args;
return {

Step 3: Configuring resolvers 121

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html

AWS AppSync Developer Guide

operation: 'PutItem’,

key: util.dynamodb.toMapValues({ id 1}),

attributeValues: util.dynamodb.toMapValues(values),
13

/**
* returns the result of the “put’ operation
*/

export function response(ctx) {
return ctx.result;

An example command may look like this:

aws appsync create-resolver \

--api-id abcdefghijklmnopqgrstuvwxyz \

--type-name Query \

--field-name getPost \

--kind PIPELINE \

--pipeline-config functions=ejglgvmcabdn71x75ref4qeig4 \
--runtime name=APPSYNC_JS, runtimeVersion=1.0.0 \

--code file:///path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

"resolver": {

"typeName": "Mutation",

"fieldName": "getPost",

"resolverArn": "arn:aws:appsync:us-west-2:107289374856:apis/

abcdefghijklmnopqrstuvwxyz/types/Mutation/resolvers/getPost",

"kind": "PIPELINE",

"pipelineConfig": {

"functions": [
"ejglgvmcabdn71x75ref4qeigs"

i
"maxBatchSize": 0,
"runtime": {

"name": "APPSYNC_J]S",

Step 3: Configuring resolvers 122

AWS AppSync Developer Guide

"runtimeVersion": "1.0.0"

iy

"code": "Code output goes here"

CDK

® Tip
Before you use the CDK, we recommend reviewing the CDK's official documentation
along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.
We also assume you already have a working app.

A basic app will need the following things:

1. Service import directives
2. Schema code

3. Data source generator
4. Function code

5. Resolver code

From the Designing your schema and Attaching a data source sections, we know that the stack
file will include the import directives of the form:

import * as x from
import {a, b, ...} from 'c'; # import {specific constructs} from 'c-service'

x'; # import wildcard as the 'x' keyword from 'x-service'

(® Note

In previous sections, we only stated how to import AWS AppSync constructs. In real
code, you'll have to import more services just to run the app. In our example, if we were
to create a very simple CDK app, we would at least import the AWS AppSync service

Step 3: Configuring resolvers 123

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/appsync/latest/devguide/designing-your-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html

AWS AppSync Developer Guide

along with our data source, which was a DynamoDB table. We would also need to
import some additional constructs to deploy the app:

import * as cdk from 'aws-cdk-1lib';

import * as appsync from 'aws-cdk-lib/aws-appsync';
import * as dynamodb from 'aws-cdk-1lib/aws-dynamodb';
import { Construct } from 'constructs';

To summarize each of these:

import * as cdk from 'aws-cdk-1lib';: This allows you to define your CDK
app and constructs such as the stack. It also contains some useful utility functions
for our application like manipulating metadata. If you're familiar with this import
directive, but are wondering why the cdk core library is not being used here, see the
Migration page.

« import * as appsync from 'aws-cdk-lib/aws-appsync';: Thisimports the
AWS AppSync service.

e import * as dynamodb from 'aws-cdk-lib/aws-dynamodb';: Thisimports
the DynamoDB service.

o import { Construct } from 'constructs';:We need this to define the root
construct.

The type of import depends on the services you're calling. We recommend looking at the CDK
documentation for examples. The schema at the top of the page will be a separate file in your
CDK app as a .graphql file. In the stack file, we can associate it with a new GraphQL using the
form:

const add_api = new appsync.GraphqlApi(this, 'graphQL-example', {
name: 'my-first-api',
schema: appsync.SchemaFile.fromAsset(path.join(__dirname, 'schema.graphqgl')),

1)

(@ Note

In the scope add_api, we're adding a new GraphQL API using the new keyword
followed by appsync.GraphqlApi(scope: Construct, id: string , props:
GraphqlApiProps). Our scope is this, the CFN id is graphQL-example, and our

Step 3: Configuring resolvers 124

https://docs.aws.amazon.com/cdk/v2/guide/migrating-v2.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_dynamodb-readme.html
https://docs.aws.amazon.com/cdk/v2/guide/constructs.html

AWS AppSync Developer Guide

props are my-first-api (name of the APl in the console) and schema.graphql (the
absolute path to the schema file).

To add a data source, you'll first have to add your data source to the stack. Then, you need to
associate it with the GraphQL API using the source-specific method. The association will happen
when you make your resolver function. In the meantime, let's use an example by creating the
DynamoDB table using dynamodb. Table:

const add_ddb_table = new dynamodb.Table(this, 'posts-table', {
partitionKey: {
name: 'id',
type: dynamodb.AttributeType.STRING,
},
18

(@ Note

If we were to use this in our example, we'd be adding a new DynamoDB table with the
CFN id of posts-table and a partition key of id (S).

Next, we need to implement our resolver in the stack file. Here's an example of a simple query
that scans for all items in a DynamoDB table:

const add_func = new appsync.AppsyncFunction(this, 'func-get-posts', {
name: 'get_posts_func_1"',
add_api,
dataSource: add_api.addDynamoDbDataSource('table-for-posts', add_ddb_table),
code: appsync.Code.fromInline("
export function request(ctx) {
return { operation: 'Scan' };

}

export function response(ctx) {
return ctx.result.items;

),
runtime: appsync.FunctionRuntime.JS_1_0_0,

1);

Step 3: Configuring resolvers 125

AWS AppSync Developer Guide

new appsync.Resolver(this, 'pipeline-resolver-get-posts', {
add_api,
typeName: 'Query',
fieldName: 'getPost',
code: appsync.Code.fromInline("
export function request(ctx) {
return {};

}

export function response(ctx) {
return ctx.prev.result;
}
),
runtime: appsync.FunctionRuntime.JS_1_0_0,
pipelineConfig: [add_func],
1)

(® Note

First, we created a function called add_func. This order of creation may seem a bit
counterintuitive, but you have to create the functions in your pipeline resolver before
you make the resolver itself. A function follows the form:

AppsyncFunction(scope: Construct, id: string, props: AppsyncFunctionProps)

Our scope was this, our CFN id was func-get-posts, and our props contained the
actual function details. Inside props, we included:

« The name of the function that will be present in the AWS AppSync console
(get_posts_func_1).

» The GraphQL API we created earlier (add_api).

» The data source; this is the point where we link the data source to the GraphQL API
value, then attach it to the function. We take the table we created (add_ddb_table)
and attach it to the GraphQL API (add_api) using one of the GraphqlApi methods
(addDynamoDbDataSource). The id value (table-for-posts) is the name of the
data source in the AWS AppSync console. For a list of source-specific methods, see the
following pages:

« DynamoDbDataSource

» EventBridgeDataSource

Step 3: Configuring resolvers 126

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.GraphqlApi.html#addwbrdynamowbrdbwbrdatawbrsourceid-table-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.DynamoDbDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.EventBridgeDataSource.html

AWS AppSync Developer Guide

« HttpDataSource

« LambdaDataSource

« NoneDataSource

» OpenSearchDataSource

« RdsDataSource

» The code contains our function's request and response handlers, which is a simple
scan and return.

» The runtime specifies that we want to use the APPSYNC_JS runtime version 1.0.0.
Note that this is currently the only version available for APPSYNC_JS.

Next, we need to attach the function to the pipeline resolver. We created our resolver
using the form:

Resolver(scope: Construct, id: string, props: ResolverProps)

Our scope was this, our CFN id was pipeline-resolver-get-posts, and our props
contained the actual function details. Inside the props, we included:

» The GraphQL API we created earlier (add_api).

» The special object type name; this is a query operation, so we simply added the value
Query.

» The field name (getPost) is the name of the field in the schema under the Query
type.

» The code contains your before and after handlers. Our example just returns whatever
results were in the context after the function performed its operation.

» The runtime specifies that we want to use the APPSYNC_JS runtime version 1.0.0.
Note that this is currently the only version available for APPSYNC_JS.

« The pipeline config contains the reference to the function we created (add_func).

To summarize what happened in this example, you saw an AWS AppSync function that

implemented a request and response handler. The function was responsible for interacting with
your data source. The request handler sent a Scan operation to AWS AppSync, instructing it on
what operation to perform against your DynamoDB data source. The response handler returned

Step 3: Configuring resolvers 127

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.HttpDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.LambdaDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.NoneDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.OpenSearchDataSource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync.RdsDataSource.html

AWS AppSync Developer Guide

the list of items (ctx.result.items). The list of items was then mapped to the Post GraphQL
type automatically.

Creating basic mutation resolvers

This section will show you how to make a basic mutation resolver.
Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.
b. In the Sidebar, choose Schema.

2. Under the Resolvers section and the Mutation type, choose Attach next to your field.

(@ Note

In our example, we're attaching a resolver for createPost, which adds a Post
object to our table. Let's assume we're using the same DynamoDB table from the
last section. Its partition key is set to the id and is empty.

3. On the Attach resolver page, under Resolver type, choose pipeline resolvers. As
a reminder, you can find more information about resolvers here. For Resolver runtime,
choose APPSYNC_JS to enable the JavaScript runtime.

4. You can enable caching for this API. We recommend turning this feature off for now.
Choose Create.

5. Choose Add function, then choose Create new function. Alternatively, you may see a
Create function button to choose instead.
a. Choose your data source. This should be the source whose data you will manipulate
with the mutation.
b. Entera Function name.

c. Under Function code, you'll need to implement the function's behavior. This is a
mutation, so the request will ideally perform some state-changing operation on the
invoked data source. The result will be processed by the response function.

Step 3: Configuring resolvers 128

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-components.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html

AWS AppSync Developer Guide

® Note

createPost is adding, or "putting”, a new Post in the table with our
parameters as the data. We could add something like this:

import { util } from 'e@aws-appsync/utils’';

/**
* Sends a request to ‘put’ an item in the DynamoDB data source
*/

export function request(ctx) {
return {

operation: 'PutItem’,
key: util.dynamodb.toMapValues({id: util.autoId()}),
attributeValues: util.dynamodb.toMapValues(ctx.args.input),

Y
}

/**
* returns the result of the ‘put’ operation
*/

export function response(ctx) {
return ctx.result;

}

In this step, we also added request and response functions:

» request: The request handler accepts the context as the argument. The
request handler return statement performs a Put Item command, which
is a built-in DynamoDB operation (see here or here for examples). The
PutItem command adds a Post object to our DynamoDB table by taking
the partition key value (automatically generated by util.autoid())
and attributes from the context argument input (these are the values
we will pass in our request). The key is the id and attributes are the
date and title field arguments. They're both preformatted through the
util.dynamodb.toMapValues helper to work with the DynamoDB table.

« response: The response accepts the updated context and returns the result
of the request handler.

Step 3: Configuring resolvers 129

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-putitem
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData
https://docs.aws.amazon.com/appsync/latest/devguide/dynamodb-helpers-in-util-dynamodb-js.html#utility-helpers-in-toMap-js

AWS AppSync Developer Guide

d. Choose Create after you're done.

6. Back on the resolver screen, under Functions, choose the Add function drop-down and add
your function to your functions list.

7. Choose Save to update the resolver.

CLI

To add your function

« Create a function for your pipeline resolver using the create-function command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.
2. The name of the function in the AWS AppSync console.

3. The data-source-name, or the name of the data source the function will use. It must
already be created and linked to your GraphQL API in the AWS AppSync service.

4. The runtime, or environment and language of the function. For JavaScript, the name
must be APPSYNC_JS, and the runtime, 1.0.0.

5. The code, or request and response handlers of your function. While you can type it in
manually, it's far easier to add it to a .txt file (or a similar format) then pass it in as the
argument.

(® Note

Our query code will be in a file passed in as the argument:

import { util } from 'e@aws-appsync/utils’';

/**
* Sends a request to “put’ an item in the DynamoDB data source
*
/
export function request(ctx) {
return {

operation: 'PutItem’,

key: util.dynamodb.toMapValues({id: util.autoId()}),

attributeValues: util.dynamodb.toMapValues(ctx.args.input),
i

Step 3: Configuring resolvers 130

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-function.html

AWS AppSync

Developer Guide

/**
* returns the result of the “put’ operation
*/

export function response(ctx) {
return ctx.result;

An example command may look like this:

aws appsync create-function \

--api-id abcdefghijklmnopgrstuvwxyz \

--name add_posts_func_1 \

--data-source-name table-for-posts \

--runtime name=APPSYNC_JS, runtimeVersion=1.0.0 \
--code file:///path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

"functionConfiguration": {
"functionId": "vulcmbfcxffiram63psb4dduoa”,
"functionArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/functions/vulcmbfcxffiram63psb4dduoa”,
"name": "add_posts_func_1",
"dataSourceName": "table-for-posts",
"maxBatchSize": 0,
"runtime": {
"name": "APPSYNC_JS",
"runtimeVersion": "1.0.0"
3,

"code": "Code output foes here"

Step 3: Configuring resolvers

131

AWS AppSync Developer Guide

® Note

Make sure you record the functionId somewhere as this will be used to attach
the function to the resolver.

To create your resolver

« Create a pipeline function for Mutation by running the create-resolver command.

You'll need to enter a few parameters for this particular command:

1. The api-id of your API.

2. The type-name, or the special object type in your schema (Query, Mutation,
Subscription).

3. The field-name, or the field operation inside the special object type you want to
attach the resolver to.

4. The kind, which specifies a unit or pipeline resolver. Set this to PIPELINE to enable
pipeline functions.

5. The pipeline-config, or the function(s) to attach to the resolver. Make sure you know
the functionId values of your functions. Order of listing matters.

6. The runtime, which was APPSYNC_JS (JavaScript). The runtimeVersion currently is
1.0.0.

7. The code, which contains the before and after step.

(® Note

Our query code will be in a file passed in as the argument:

import { util } from '@aws-appsync/utils’';

/**
* Sends a request to ‘put’ an item in the DynamoDB data source
*/
export function request(ctx) {
const { id, ...values } = ctx.args;
return {

Step 3: Configuring resolvers 132

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html

AWS AppSync

Developer Guide

operation: 'PutItem’,

key: util.dynamodb.toMapValues({ id 1}),

attributeValues: util.dynamodb.toMapValues(values),
13

/**
* returns the result of the “put’ operation
*/

export function response(ctx) {
return ctx.result;

An example command may look like this:

aws appsync create-resolver \

--api-id abcdefghijklmnopqgrstuvwxyz \

--type-name Mutation \

--field-name createPost \

--kind PIPELINE \

--pipeline-config functions=vulcmbfcxffiram63psb4dduoa \
--runtime name=APPSYNC_JS, runtimeVersion=1.0.0 \

--code file:///path/to/file/{filename}.{fileType}

An output will be returned in the CLI. Here's an example:

"resolver": {
"typeName": "Mutation",
"fieldName": "createPost",

"resolverArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Mutation/resolvers/createPost",

"kind": "PIPELINE",
"pipelineConfig": {
"functions": [
"vulcmbfcxffiram63psb4dduoa”

i
"maxBatchSize": 0,
"runtime": {

"name": "APPSYNC_J]S",

Step 3: Configuring resolvers

133

AWS AppSync Developer Guide

"runtimeVersion": "1.0.0"

iy

"code": "Code output goes here"

CDK

® Tip
Before you use the CDK, we recommend reviewing the CDK's official documentation

along with AWS AppSync's CDK reference.
The steps listed below will only show a general example of the snippet used to add a
particular resource. This is not meant to be a working solution in your production code.

We also assume you already have a working app.

« To make a mutation, assuming you're in the same project, you can add it to the stack file
like the query. Here's a modified function and resolver for a mutation that adds a new Post

to the table:

const add_func_2 = new appsync.AppsyncFunction(this, 'func-add-post', {
name: 'add_posts_func_1",
add_api,
dataSource: add_api.addDynamoDbDataSource('table-for-posts-2', add_ddb_table),
code: appsync.Code.fromInline("
export function request(ctx) {
return {
operation: 'PutItem’,
key: util.dynamodb.toMapValues({id: util.autoId()}),
attributeValues: util.dynamodb.toMapValues(ctx.args.input),

Iy

export function response(ctx) {
return ctx.result;

),
runtime: appsync.FunctionRuntime.JS_1_0_0,

1)

Step 3: Configuring resolvers 134

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html

AWS AppSync Developer Guide

new appsync.Resolver(this, 'pipeline-resolver-create-posts', {
add_api,
typeName: 'Mutation',
fieldName: 'createPost',
code: appsync.Code.fromInline("
export function request(ctx) {
return {};

}

export function response(ctx) {
return ctx.prev.result;

}
iy
runtime: appsync.FunctionRuntime.JS_1_0_0,
pipelineConfig: [add_func_2],
1);

(@ Note

Since this mutation and the query are similarly structured, we'll just explain the
changes we made to make the mutation.

In the function, we changed the CFN id to func-add-post and name to
add_posts_func_1 to reflect the fact that we're adding Posts to the table. In the
data source, we made a new association to our table (add_ddb_table) in the AWS
AppSync console as table-for-posts-2 because the addDynamoDbDataSource
method requires it. Keep in mind, this new association is still using the same table
we created earlier, but we now have two connections to it in the AWS AppSync
console: one for the query as table-for-posts and one for the mutation as
table-for-posts-2. The code was changed to add a Post by generating its id
value automatically and accepting a client's input for the rest of the fields.

In the resolver, we changed the id value to pipeline-resolver-create-

posts to reflect the fact that we're adding Posts to the table. To reflect the
mutation in the schema, the type name was changed to Mutation, and the

name, createPost. The pipeline config was set to our new mutation function
add_func_2.

Step 3: Configuring resolvers 135

AWS AppSync Developer Guide

To summarize what's happening in this example, AWS AppSync automatically converts arguments
defined in the createPost field from your GraphQL schema into DynamoDB operations.

The example stores records in DynamoDB using a key of id, which is automatically created

using our util.autoId() helper. All of the other fields you pass to the context arguments
(ctx.args.input) from requests made in the AWS AppSync console or otherwise will be stored
as the table's attributes. Both the key and the attributes are automatically mapped to a compatible
DynamoDB format using the util.dynamodb.toMapValues(values) helper.

AWS AppSync also supports test and debug workflows for editing resolvers. You can use a mock
context object to see the transformed value of the template before invoking it. Optionally,
you can view the full request to a data source interactively when you run a query. For more
information, see Test and debug resolvers (JavaScript) and Monitoring and logging.

Advanced resolvers

If you are following the optional pagination section in Designing your schema, you still need to
add your resolver to your request to make use of pagination. Our example used a query pagination
called getPosts to return only a portion of the things requested at a time. Our resolver's code on
that field may look like this:

/'k'k
* Performs a scan on the dynamodb data source
*/

export function request(ctx) {
const { limit = 20, nextToken } = ctx.args;
return { operation: 'Scan', limit, nextToken };

}

/'k'k
* @returns the result of the ‘put’ operation
*/
export function response(ctx) {
const { items: posts = [], nextToken } = ctx.result;
return { posts, nextToken };

}

In the request, we pass in the context of the request. Our 1imit is 20, meaning we return up to 20
Posts in the first query. Our nextToken cursor is fixed to the first Post entry in the data source.
These are passed to the args. The request then performs a scan from the first Post up to the scan
limit number. The data source stores the result in the context, which is passed to the response. The

Step 3: Configuring resolvers 136

https://docs.aws.amazon.com/appsync/latest/devguide/test-debug-resolvers-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html#aws-appsync-monitoring

AWS AppSync Developer Guide

response returns the Posts it retrieved, then sets the nextToken is set to the Post entry right
after the limit. The next request is sent out to do the exact same thing but starting at the offset
right after the first query. Keep in mind that these sorts of requests are done sequentially and not
in parallel.

Test and debug resolvers (JavaScript)

AWS AppSync executes resolvers on a GraphQL field against a data source. When working with
pipeline resolvers, functions interact with your data sources. As described in the JavaScript
resolvers overview, functions communicate with data sources by using request and response
handlers written in JavaScript and running on the APPSYNC_JS runtime. This enables you to
provide custom logic and conditions before and after communicating with the data source.

To help developers write, test, and debug these resolvers, the AWS AppSync console also provides
tools to create a GraphQL request and response with mock data down to the individual field
resolver. Additionally, you can perform queries, mutations, and subscriptions in the AWS AppSync
console and see a detailed log stream of the entire request from Amazon CloudWatch. This
includes results from the data source.

Testing with mock data

When a GraphQL resolver is invoked, it contains a context object that has relevant information
about the request. This includes arguments from a client, identity information, and data from

the parent GraphQL field. It also stores the results from the data source, which can be used in the
response handler. For more information about this structure and the available helper utilities to use
when programming, see the Resolver context object reference.

When writing or editing a resolver function, you can pass a mock or test context object into the
console editor. This enables you to see how both the request and the response handlers evaluate
without actually running against a data source. For example, you can pass a test firstname:
Shaggy argument and see how it evaluates when using ctx.args.firstname in your template
code. You could also test the evaluation of any utility helpers such as util.autoId() or
util.time.nowIS08601().

Testing resolvers

This example will use the AWS AppSync console to test resolvers.

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.

Step 3: Configuring resolvers 137

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

b. In the Sidebar, choose Functions.
2. Choose an existing function.

3. At the top of the Update function page, choose Select test context, then choose Create new
context.

4. Select a sample context object or populate the JSON manually in the Configure test context
window below.

5. Enter a Text context name.
6. Choose the Save button.

7. To evaluate your resolver using this mocked context object, choose Run Test.

For a more practical example, suppose you have an app storing a GraphQL type of Dog that uses
automatic ID generation for objects and stores them in Amazon DynamoDB. You also want to write
some values from the arguments of a GraphQL mutation and allow only specific users to see a
response. The following snippet shows what the schema might look like:

type Dog {
breed: String
color: String

}

type Mutation {
addDog(firstname: String, age: Int): Dog
}

You can write an AWS AppSync function and add it to your addDog resolver to handle the
mutation. To test your AWS AppSync function, you can populate a context object like the following
example. The following has arguments from the client of name and age, and a username
populated in the identity object:

"arguments" : {
"firstname": "Shaggy",
"age": 4
.
"source" : {3},
"result" : {
"breed" : "Miniature Schnauzer",

Step 3: Configuring resolvers 138

AWS AppSync Developer Guide

"color" : "black_grey"
.
"identity": {
"sub" : "uuid",
"issuer" : " https://cognito-idp.{region}.amazonaws.com/{userPoolId}",
"username" : "Nadia",
"claims" : { 1},
"sourceIp" :["x.x.x.x"],
"defaultAuthStrategy" : "ALLOW"
}

You can test your AWS AppSync function using the following code:

import { util } from 'e@aws-appsync/utils’';

export function request(ctx) {
return {
operation: 'PutItem’,
key: util.dynamodb.toMapValues({ id: util.autoId() }),
attributeValues: util.dynamodb.toMapValues(ctx.args),
};

export function response(ctx) {
if (ctx.identity.username === 'Nadia') {
console.log("This request is allowed")
return ctx.result;

}

util.unauthorized();

The evaluated request and response handler has the data from your test context object and the
generated value from util.autoId(). Additionally, if you were to change the username to a
value other than Nadia, the results won't be returned because the authorization check would fail.
For more information about fine-grained access control, see Authorization use cases.

Testing request and response handlers with AWS AppSync's APIs

You can use the EvaluateCode APl command to remotely test your code with mocked data. To
get started with the command, make sure you have added the appsync:evaluateMappingCode
permission to your policy. For example:

Step 3: Configuring resolvers 139

AWS AppSync Developer Guide

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "appsync:evaluateCode",
"Resource": "arn:aws:appsync:<region>:<account>:*"
}
]
}

You can leverage the command by using the AWS CLI or AWS SDKs. For example, take the Dog
schema and its AWS AppSync function request and response handlers from the previous section.
Using the CLI on your local station, save the code to a file named code. js, then save the context
object to a file named context. json. From your shell, run the following command:

$ aws appsync evaluate-code \
--code file://code.js \
--function response \
--context file://context.json \
--runtime name=APPSYNC_J]S, runtimeVersion=1.0.0

The response contains an evaluationResult containing the payload returned by your handler. It
also contains a 1ogs object, that holds the list of logs that were generated by your handler during
the evaluation. This makes it easy to debug your code execution and see information about your
evaluation to help troubleshoot. For example:

{
"evaluationResult": "{\"breed\":\"Miniature Schnauzer\",\"color\":\"black_grey\"}",
"logs": [
"INFO - code.js:13:5: \"This request is allowed\""
]
}

The evaluationResult can be parsed as JSON, which gives:

"breed": "Miniature Schnauzer",
"color": "black_grey"

}

Step 3: Configuring resolvers 140

https://aws.amazon.com/cli/
https://aws.amazon.com/tools/

AWS AppSync Developer Guide

Using the SDK, you can easily incorporate tests from your favorite test suite to validate your
handlers' behavior. We recommend creating tests using the Jest Testing Framework, but any testi

suite works. The following snippet shows a hypothetical validation run. Note that we expect the
evaluation response to be valid JSON, so we use JSON. parse to retrieve JSON from the string
response:

const AWS = require('aws-sdk')

const fs = require('fs')

const client = new AWS.AppSync({ region: 'us-east-2' })
const runtime = {name:'APPSYNC_JS',6 runtimeVersion:'1.0.0')

test('request correctly calls DynamoDB', async () => {
const code = fs.readFileSync('./code.js', 'utf8')
const context = fs.readFileSync('./context.json', 'utf8')
const contextJSON = JSON.parse(context)

const response = await client.evaluateCode({ code, context, runtime, function:
'request’' }).promise()
const result = JSON.parse(response.evaluationResult)

expect(result.key.id.S).toBeDefined()
expect(result.attributeValues.firstname.S).toEqual(contextJSON.arguments.firstname)

1)

This yields the following result:

Ran all test suites.
> jest

PASS ./index.test.js

request correctly calls DynamoDB (543 ms)
Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0@ totalTime: 1.511 s, estimated 2 s

Debugging a live query

There's no substitute for an end-to-end test and logging to debug a production application. AWS
AppSync lets you log errors and full request details using Amazon CloudWatch. Additionally, you
can use the AWS AppSync console to test GraphQL queries, mutations, and subscriptions and live

ng

Step 3: Configuring resolvers

141

https://jestjs.io/

AWS AppSync Developer Guide

stream log data for each request back into the query editor to debug in real time. For subscriptions,
the logs display connection-time information.

To perform this, you need to have Amazon CloudWatch logs enabled in advance, as described in
Monitoring and logging. Next, in the AWS AppSync console, choose the Queries tab and then enter
a valid GraphQL query. In the lower-right section, click and drag the Logs window to open the

logs view. At the top of the page, choose the play arrow icon to run your GraphQL query. In a few
moments, your full request and response logs for the operation are streamed to this section and

you can view them in the console.
Pipeline resolvers (JavaScript)

AWS AppSync executes resolvers on a GraphQL field. In some cases, applications require executing
multiple operations to resolve a single GraphQL field. With pipeline resolvers, developers can now
compose operations called Functions and execute them in sequence. Pipeline resolvers are useful
for applications that, for instance, require performing an authorization check before fetching data
for a field.

For more information about the architecture of a JavaScript pipeline resolver, see the JavaScript
resolvers overview.

Create a pipeline resolver
In the AWS AppSync console, go to the Schema page.

Save the following schema:

schema {
query: Query
mutation: Mutation

type Mutation {
signUp(input: Signup): User
}

type Query {
getUser(id: ID!): User

}

input Signup {
username: String!

Step 3: Configuring resolvers 142

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html#anatomy-of-a-pipeline-resolver-js
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html#anatomy-of-a-pipeline-resolver-js

AWS AppSync Developer Guide

email: String!

}

type User {
id: ID!
username: String
email: AWSEmail

}

We are going to wire a pipeline resolver to the signUp field on the Mutation type. In the Mutation
type on the right side, choose Attach next to the signUp mutation field. Set the resolver to
pipeline resolver and the APPSYNC_JS runtime, then create the resolver.

Our pipeline resolver signs up a user by first validating the email address input and then saving
the user in the system. We are going to encapsulate the email validation inside a validateEmail
function and the saving of the user inside a saveUser function. The validateEmail function
executes first, and if the email is valid, then the saveUser function executes.

The execution flow will be as follows:

1. Mutation.signUp resolver request handler
2. validateEmail function
3. saveUser function

4. Mutation.signUp resolver response handler

Because we will probably reuse the validateEmail function in other resolvers on our API, we want
to avoid accessing ctx.args because these will change from one GraphQL field to another.
Instead, we can use the ctx.stash to store the email attribute from the signUp(input:
Signup) input field argument.

Update your resolver code by replacing your request and response functions:

export function request(ctx) {
ctx.stash.email = ctx.args.input.email
return {};

export function response(ctx) {
return ctx.prev.result;

}

Step 3: Configuring resolvers 143

AWS AppSync Developer Guide

Choose Create or Save to update the resolver.
Create a function

From the pipeline resolver page, in the Functions section, click on Add function, then Create new
function. It is also possible to create functions without going through the resolver page; to do this,
in the AWS AppSync console, go to the Functions page. Choose the Create function button. Let's
create a function that checks if an email is valid and comes from a specific domain. If the email is
not valid, the function raises an error. Otherwise, it forwards whatever input it was given.

Make sure you have created a data source of the NONE type. Choose this data source in the Data
source name list. For the function name, enter in validateEmail. In the function code area,
overwrite everything with this snippet:

import { util } from 'e@aws-appsync/utils’';

export function request(ctx) {

const { email } = ctx.stash;

const valid = util.matches(
'""a-zA-Z0-9_.+-]+e(?:(?:[a-zA-Z0-9-]+\.)?[a-zA-Z]+\.)?(myvaliddomain)\.com',
email

);

if (!valid) {
util.error("${email}" is not a valid email.‘);

}

return { payload: { email } };

export function response(ctx) {
return ctx.result;

}

Review your inputs, then choose Create. We just created our validateEmail function. Repeat these
steps to create the saveUser function with the following code (For the sake of simplicity, we use a
NONE data source and pretend the user has been saved in the system after the function executes.):

import { util } from 'e@aws-appsync/utils’';

export function request(ctx) {
return ctx.prev.result;

}

Step 3: Configuring resolvers 144

AWS AppSync Developer Guide

export function response(ctx) {
ctx.result.id = util.autoId();
return ctx.result;

}

We just created our saveUser function.
Adding a function to a pipeline resolver

Our functions should have been added automatically to the pipeline resolver we just created. If
this wasn't the case, or you created the functions through the Functions page, you can click on
Add function back on the signUp resolver page to attach them. Add both the validateEmail
and saveUser functions to the resolver. The validateEmail function should be placed before the
saveUser function. As you add more functions, you can use the move up and move down options
to reorganize the order of execution of your functions. Review your changes, then choose Save.

Running a query

In the AWS AppSync console, go to the Queries page. In the explorer, ensure that you're using your
mutation. If you aren't, choose Mutation in the drop-down list, then choose +. Enter the following

query:

mutation {
signUp(input: {email: "nadiae@myvaliddomain.com", username: '"nadia"}) {
id
username

This should return something like:

{
"data": {
"signUp": {
"id": "256b6cc2-4694-46f4-a55e-8cbl4cc5d7fc”,
"username": "nadia"
}
}
}

We have successfully signed up our user and validated the input email using a pipeline resolver.

Step 3: Configuring resolvers 145

AWS AppSync Developer Guide

Configuring resolvers (VTL)

(@ Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

GraphQL resolvers connect the fields in a type’'s schema to a data source. Resolvers are the
mechanism by which requests are fulfilled. AWS AppSync can automatically create and connect
resolvers from a schema or create a schema and connect resolvers from an existing table without
you needing to write any code.

Resolvers in AWS AppSync use JavaScript to convert a GraphQL expression into a format the data
source can use. Alternatively, mapping templates can be written in Apache Velocity Template

Language (VTL) to convert a GraphQL expression into a format the data source can use.

This section will show you how to configure resolvers using VTL. An introductory tutorial-style
programming guide for writing resolvers can be found in Resolver mapping template programming

guide, and helper utilities available to use when programming can be found in Resolver mapping
template context reference. AWS AppSync also has built-in test and debug flows that you can use
when you're editing or authoring from scratch. For more information, see Test and debug resolvers.

We recommend following this guide before attempting to to use any of the aforementioned
tutorials.

In this section, we will walk through how to create a resolver, add a resolver for mutations, and use
advanced configurations.

Create your first resolver

Following the examples from the previous sections, the first step is to create a resolver for your
Query type.

Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

Step 3: Configuring resolvers 146

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

2. On the right-hand side of the page, there's a window called Resolvers. This box contains a
list of the types and fields as defined in your Schema window on the left-hand side of the
page. You're able to attach resolvers to fields. For example, under the Query type, choose
Attach next to the getTodos field.

3. On the Create Resolver page, choose the data source you created in the Attaching a data
source guide. In the Configure mapping templates window, you can choose both the
generic request and response mapping templates using the drop-down list to the right or

write your own.

(® Note

The pairing of a request mapping template to a response mapping template is
called a unit resolver. Unit resolvers are typically meant to perform rote operations;
we recommend using them only for singular operations with a small number of
data sources. For more complex operations, we recommend using pipeline resolvers,
which can execute multiple operations with multiple data sources sequentially.

For more information about the difference between request and response mapping
templates, see Unit resolvers.

For more information about using pipeline resolvers, see Pipeline resolvers.

4. For common use cases, the AWS AppSync console has built-in templates that you can
use for getting items from data sources (e.g., all item queries, individual lookups, etc.).
For example, on the simple version of the schema from Designing your schema where
getTodos didn't have pagination, the request mapping template for listing items is as

follows:
{
"version" : "2017-02-28",
"operation" : "Scan"
}

5. You always need a response mapping template to accompany the request. The console
provides a default with the following passthrough value for lists:

$util.toJson($ctx.result.items)

In this example, the context object (aliased as $ctx) for lists of items has the form
$context.result.items. If your GraphQL operation returns a single item, it would be

Step 3: Configuring resolvers 147

https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-mapping-template-reference-overview.html#unit-resolvers

AWS AppSync Developer Guide

$context.result. AWS AppSync provides helper functions for common operations, such
as the $util.toJson function listed previously, to format responses properly. For a full
list of functions, see Resolver mapping template utility reference.

6. Choose Save Resolver.

API

1. Create a resolver object by calling the CreateResolver API.

2. You can modify your resolver's fields by calling the UpdateResolver API.

CLI

1. Create a resolver by running the create-resolver command.

You'll need to type in 6 parameters for this particular command:

1. The api-id of your API.

2. The type-name of the type that you want to modify in your schema. In the console
example, this was Query.

3. The field-name of the field that you want to modify in your type. In the console
example, this was getTodos.

4. The data-source-name of the data source you created in the Attaching a data source
guide.

5. The request-mapping-template, which is the body of the request. In the console
example, this was:

"version" : "2017-02-28",
"operation" : "Scan"

}

6. The response-mapping-template, which is the body of the response. In the console
example, this was:

$util.toJson($ctx.result.items)

Step 3: Configuring resolvers 148

https://docs.aws.amazon.com/appsync/latest/APIReference/API_CreateResolver.html
https://docs.aws.amazon.com/appsync/latest/APIReference/API_UpdateResolver.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html

AWS AppSync Developer Guide

An example command may look like this:

aws appsync create-resolver --api-id abcdefghijklmnopgrstuvwxyz --type-name
Query --field-name getTodos --data-source-name TodoTable --request-mapping-
template "{ "version" : "2017-02-28", "operation" : "Scan", }" --response-
mapping-template ""$"util.toJson("$"ctx.result.items)"

An output will be returned in the CLI. Here's an example:

"resolver": {

"kind": "UNIT",

"dataSourceName": "TodoTable",

"requestMappingTemplate": "{ version : 2017-02-28, operation : Scan, }",

"resolverArn": "arn:aws:appsync:us-west-2:107289374856:apis/
abcdefghijklmnopqrstuvwxyz/types/Query/resolvers/getTodos",

"typeName": "Query",

"fieldName": "getTodos",

"responseMappingTemplate": "$util.toJson($ctx.result.items)"

2. To modify a resolver's fields and/or mapping templates, run the update-resolver
command.

With the exception of the api-id parameter, the parameters used in the create-
resolver command will be overwritten by the new values from the update-resolver
command.

Adding a resolver for mutations
The next step is to create a resolver for your Mutation type.
Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.

Step 3: Configuring resolvers 149

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-resolver.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

2.
3.

API

Under the Mutation type, choose Attach next to the addTodo field.

On the Create Resolver page, choose the data source you created in the Attaching a data
source guide.

In the Configure mapping templates window, you'll need to modify the request template
because this is a mutation where you're adding a new item to DynamoDB. Use the
following request mapping template:

{

"version" : "2017-02-28",

"operation" : "PutItem",

"key" : {

"id" : $util.dynamodb.toDynamoDBJson($ctx.args.id)

},

"attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

AWS AppSync automatically converts arguments defined in the addTodo field from your
GraphQL schema into DynamoDB operations. The previous example stores records in
DynamoDB using a key of id, which is passed through from the mutation argument as
$ctx.args.id. All of the other fields you pass through are automatically mapped to
DynamoDB attributes with $util.dynamodb.toMapValuesJson($ctx.args).

For this resolver, use the following response mapping template:

$util.toJson($ctx.result)

AWS AppSync also supports test and debug workflows for editing resolvers. You can use
a mock context object to see the transformed value of the template before invoking.
Optionally, you can view the full request execution to a data source interactively when
you run a query. For more information, see Test and debug resolvers and Monitoring and
logging.

Choose Save Resolver.

You can also do this with APIs by utilizing the commands in the Create your first resolver section
and the parameter details from this section.

Step 3: Configuring resolvers 150

https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver

AWS AppSync Developer Guide

CLI

You can also do this in the CLI by utilizing the commands in the Create your first resolver
section and the parameter details from this section.

At this point, if you're not using the advanced resolvers you can begin using your GraphQL API as
outlined in Using your API.

Advanced resolvers

If you are following the Advanced section and you're building a sample schema in Designing your
schema to do a paginated scan, use the following request template for the getTodos field instead:

{

"version" : "2017-02-28",

"operation" : "Scan",

"limit": $util.defaultIfNull(${ctx.args.limit}, 20),

"nextToken": $util.toJson($util.defaultIfNullOrBlank($ctx.args.nextToken, null))
}

For this pagination use case, the response mapping is more than just a passthrough because it
must contain both the cursor (so that the client knows what page to start at next) and the result
set. The mapping template is as follows:

"todos": $util.toJson($context.result.items),
"nextToken": $util.toJson($context.result.nextToken)

The fields in the preceding response mapping template should match the fields defined in your
TodoConnection type.

For the case of relations where you have a Comments table and you're resolving the comments
field on the Todo type (which returns a type of [Comment]), you can use a mapping template that
runs a query against the second table. To do this, you must have already created a data source for
the Comments table as outlined in Attaching a data source.

Step 3: Configuring resolvers 151

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver

AWS AppSync Developer Guide

® Note

We're using a query operation against a second table for illustrative purposes only. You
could use another operation against DynamoDB instead. In addition, you could pull the
data from another data source, such as AWS Lambda or Amazon OpenSearch Service,
because the relation is controlled by your GraphQL schema.

Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.
b. In the Sidebar, choose Schema.
2. Under the Todo type, choose Attach next to the comments field.

3. On the Create Resolver page, choose your Comments table data source. The default name
for the Comments table from the quickstart guides is AppSyncCommentTable, but it may
vary depending on what name you gave it.

4. Add the following snippet to your request mapping template:

{
"version": "2017-02-28",
"operation": "Query",
"index": "todoid-index",
"query": {
"expression": "todoid = :todoid",
"expressionValues": {
":todoid": {
"S": $util.toJson($context.source.id)
}
}
}
}

5. The context.source references the parent object of the current field that's being
resolved. In this example, source. id refers to the individual Todo object, which is then
used for the query expression.

You can use the passthrough response mapping template as follows:

Step 3: Configuring resolvers 152

https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

$util.toJson($ctx.result.items)

6. Choose Save Resolver.

7. Finally, back on the Schema page in the console, attach a resolver to the addComment
field, and specify the data source for the Comments table. The request mapping template
in this case is a simple PutItem with the specific todoid that is commented on as an
argument, but you use the $utils.autoId() utility to create a unique sort key for the
comment as follows:

{
"version": "2017-02-28",
"operation": "PutItem",
"key": {
"todoid": { "S": $util.toJson($context.arguments.todoid) 3},
"commentid": { "S": "$util.autoId()" }
1,
"attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)
}

Use a passthrough response template as follows:

$util.toJson($ctx.result)

API

You can also do this with APIs by utilizing the commands in the Create your first resolver section
and the parameter details from this section.

CLI

You can also do this in the CLI by utilizing the commands in the Create your first resolver
section and the parameter details from this section.

Step 3: Configuring resolvers 153

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html#create-your-first-resolver

AWS AppSync Developer Guide

Direct Lambda resolvers (VTL)

® Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

With direct Lambda resolvers, you can circumvent the use of VTL mapping templates when using
AWS Lambda data sources. AWS AppSync can provide a default payload to your Lambda function
as well as a default translation from a Lambda function's response to a GraphQL type. You can
choose to provide a request template, a response template, or neither and AWS AppSync will
handle it accordingly.

To learn more about the default request payload and response translation that AWS AppSync
provides, see the Direct Lambda resolver reference. For more information on setting up an AWS
Lambda data source and setting up an IAM Trust Policy, see Attaching a data source.

Configure direct Lambda resolvers

The following sections will show you how to attach Lambda data sources and add Lambda
resolvers to your fields.

Add a Lambda data source

Before you can activate direct Lambda resolvers, you must add a Lambda data source.
Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.
b. In the Sidebar, choose Data sources.

2. Choose Create data source.

a. For Data source name, enter a name for your data source, such as myFunction.
b. For Data source type, choose AWS Lambda function.

c. For Region, choose the appropriate region.

Step 3: Configuring resolvers 154

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

d. For Function ARN, choose the Lambda function from the dropdown list. You can
search for the function name or manually enter the ARN of the function you want to
use.

e. Create a new IAM role (recommended) or choose an existing role that has the
lambda:invokeFunction IAM permission. Existing roles need a trust policy, as
explained in the Attaching a data source section.

The following is an example IAM policy that has the required permissions to perform
operations on the resource:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": ["lambda:invokeFunction"],
"Resource": [
"arn:aws:lambda:us-
west-2:123456789012: function:myFunction",
"arn:aws:lambda:us-
west-2:123456789012: function:myFunction:*"
]

3. Choose the Create button.

CLI

1. Create a data source object by running the create-data-source command.

You'll need to type in 4 parameters for this particular command:

1. The api-id of your API.
2. The name of your data source. In the console example, this is the Data source name.
3. The type of data source. In the console example, this is AWS Lambda function.

4. The lambda-config, which is the Function ARN in the console example.

Step 3: Configuring resolvers 155

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-data-source.html

AWS AppSync Developer Guide

® Note

There are other parameters such as Region that must be configured but will
usually default to your CLI configuration values.

An example command may look like this:

aws appsync create-data-source --api-id abcdefghijklmnopqrstuvwxyz

--name myFunction --type AWS_LAMBDA --lambda-config
lambdaFunctionArn=arn:aws:lambda:us-west-2:102847592837:function:appsync-
lambda-example

An output will be returned in the CLI. Here's an example:

"dataSource": {
"dataSourceArn": "arn:aws:appsync:us-west-2:102847592837:apis/
abcdefghijklmnopqrstuvwxyz/datasources/myFunction",
"type": "AWS_LAMBDA",

"name": "myFunction",
"lambdaConfig": {
"lambdaFunctionArn": "arn:aws:lambda:us-
west-2:102847592837:function:appsync-lambda-example"

}

2. To modify a data source's attributes, run the update-data-source command.

With the exception of the api-id parameter, the parameters used in the create-data-
source command will be overwritten by the new values from the update-data-source
command.

Activate direct Lambda resolvers

After creating a Lambda data source and setting up the appropriate IAM role to allow AWS
AppSync to invoke the function, you can link it to a resolver or pipeline function.

Step 3: Configuring resolvers 156

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/update-data-source.html

AWS AppSync Developer Guide

Console

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.

b. In the Sidebar, choose Schema.
2. In the Resolvers window, choose a field or operation and then select the Attach button.
3. Inthe Create new resolver page, choose the Lambda function from the dropdown list.

4. In order to leverage direct Lambda resolvers, confirm that request and response mapping
templates are disabled in the Configure mapping templates section.

5. Choose the Save Resolver button.

CLI

« Create a resolver by running the create-resolver command.

You'll need to type in 6 parameters for this particular command:

1. The api-id of your API.
. The type-name of the type in your schema.
. The field-name of the field in your schema.

. The data-source-name, or your Lambda function's name.

o A NN

. The request-mapping-template, which is the body of the request. In the console
example, this was disabled:

6. The response-mapping-template, which is the body of the response. In the console
example, this was also disabled:

An example command may look like this:

Step 3: Configuring resolvers 157

https://console.aws.amazon.com/appsync/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appsync/create-resolver.html

AWS AppSync Developer Guide

aws appsync create-resolver --api-id abcdefghijklmnopgrstuvwxyz --type-name
Subscription --field-name onCreateTodo --data-source-name LambdaTest --request-
mapping-template " " --response-mapping-template " "

An output will be returned in the CLI. Here's an example:

"resolver": {
"resolverArn": "arn:aws:appsync:us-west-2:102847592837:apis/
abcdefghijklmnopqrstuvwxyz/types/Subscription/resolvers/onCreateTodo",
"typeName": "Subscription",
"kind": "UNIT",
"fieldName": "onCreateTodo",
"dataSourceName": "LambdaTest"

When you disable your mapping templates, there are several additional behaviors that will occur in
AWS AppSync:

« By disabling a mapping template, you are signalling to AWS AppSync that you accept the default
data translations specified in the Direct Lambda resolver reference.

« By disabling the request mapping template, your Lambda data source will receive a payload
consisting of the entire Context object.

» By disabling the response mapping template, the result of your Lambda invocation will be
translated depending on the version of the request mapping template or if the request mapping
template is also disabled.

Test and debug resolvers (VTL)

® Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

Step 3: Configuring resolvers 158

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html

AWS AppSync Developer Guide

AWS AppSync executes resolvers on a GraphQL field against a data source. As described in Resolver
mapping template overview, resolvers communicate with data sources by using a templating

language. This enables you to customize the behavior and apply logic and conditions before and
after communicating with the data source. For an introductory tutorial-style programming guide
for writing resolvers, see the Resolver mapping template programming guide.

To help developers write, test, and debug these resolvers, the AWS AppSync console also provides
tools to create a GraphQL request and response with mock data down to the individual field
resolver. Additionally, you can perform queries, mutations, and subscriptions in the AWS AppSync
console and see a detailed log stream from Amazon CloudWatch of the entire request. This
includes results from a data source.

Testing with mock data

When a GraphQL resolver is invoked, it contains a context object that contains information about
the request. This includes arguments from a client, identity information, and data from the parent
GraphQL field. It also contains the results from the data source, which can be used in the response
template. For more information about this structure and the available helper utilities to use when
programming, see the Resolver Mapping Template Context Reference.

When writing or editing a resolver, you can pass a mock or test context object into the console
editor. This enables you to see how both the request and the response templates evaluate without
actually running against a data source. For example, you can pass a test firstname: Shaggy
argument and see how it evaluates when using $ctx.args.firstname in your template

code. You could also test the evaluation of any utility helpers such as $util.autoId() or
util.time.nowIS08601().

Testing resolvers

This example will use the AWS AppSync console to test resolvers.

1. Signin to the AWS Management Console and open the AppSync console.

a. Inthe APIs dashboard, choose your GraphQL API.
b. In the Sidebar, choose Schema.

2. If you haven't done so already, under the type and next to the field, choose Attach to add your
resolver.

For more information on how to build a conplete resolver, see Configuring resolvers.

Step 3: Configuring resolvers 159

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers.html

AWS AppSync Developer Guide

Otherwise, select the resolver that's already in the field.
At the top of the Edit resolver page, choose Select test context, choose Create new context.

4. Select a sample context object or populate the JSON manually in the Execution context
window below.

5. Enter in a Text context name.
6. Choose the Save button.
7. At the top of the Edit Resolver page, choose Run test.

For a more practical example, suppose you have an app storing a GraphQL type of Dog that uses
automatic ID generation for objects and stores them in Amazon DynamoDB. You also want to write
some values from the arguments of a GraphQL mutation, and allow only specific users to see a
response. The following shows what the schema might look like:

type Dog {
breed: String
color: String

}

type Mutation {
addDog(firstname: String, age: Int): Dog
}

When you add a resolver for the addDog mutation, you can populate a context object like
the following example. The following has arguments from the client of name and age, and a
username populated in the identity object:

"arguments" : {
"firstname": "Shaggy",
"age": 4

.

"source" : {},

"result" : {
"breed" : "Miniature Schnauzer",
"color" : "black_grey"

},

"identity": {
"sub" : "uuid",

Step 3: Configuring resolvers 160

AWS AppSync Developer Guide

"issuer" : " https://cognito-idp.{region}.amazonaws.com/{userPoolId}",
"username" : "Nadia",

"claims" : { 1},

"sourceIp" :["x.x.x.x"],

"defaultAuthStrategy" : "ALLOW"

You can test this using the following request and response mapping templates:

Request Template
{
"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {
"id" ¢ { "S" : "$util.autoId()" }
.

"attributeValues" : $util.dynamodb.toMapValuesJson($ctx.args)

Response Template

#if ($context.identity.username == "Nadia")
$util.toJson($ctx.result)

#else
$util.unauthorized()

#end

The evaluated template has the data from your test context object and the generated value from
$util.autoId(). Additionally, if you were to change the username to a value other than Nadia,
the results won't be returned because the authorization check would fail. For more information
about fine grained access control, see Authorization use cases.

Testing mapping templates with AWS AppSync's APIs

You can use the EvaluateMappingTemplate APl command to remotely test your mapping
templates with mocked data. To get started with the command, make sure you have added the
appsync:evaluateMappingTemplate permission to your policy. For example:

Step 3: Configuring resolvers 161

AWS AppSync Developer Guide

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "appsync:evaluateMappingTemplate",
"Resource": "arn:aws:appsync:<region>:<account>:*"
}

You can leverage the command by using the AWS CLI or AWS SDKs. For example, take the Dog
schema and its request/response mapping templates from the previous section. Using the CLI
on your local station, save the request template to a file named request.vtl, then save the
context object to a file named context. json. From your shell, run the following command:

aws appsync evaluate-mapping-template --template file://request.vtl --context file://
context.json

The command returns the following response:

"evaluationResult": "{\n \"version\" : \"2017-02-28\",\n
\"operation\" : \"PutItem\",\n \"key\" : {\n \"id\" : { \"S\" :
\"afcb4c85-49f8-40de-8f2b-248949176456\" }\n },\n \"attributeValues\" :
{\"firstname\": {\"S\":\"Shaggy\"},\"age\" : {\"N\":4}}\n}\n"
}

The evaluationResult contains the results of testing your provided template with the provided
context. You can also test your templates using the AWS SDKs. Here's an example using the AWS
SDK for JavaScript V2:

const AWS = require('aws-sdk')
const client = new AWS.AppSync({ region: 'us-east-2' })

const template = fs.readFileSync('./request.vtl', 'utf8')
const context = fs.readFileSync('./context.json', 'utf8')

client
.evaluateMappingTemplate({ template, context })
.promise()
.then((data) => console.log(data))

Step 3: Configuring resolvers 162

https://aws.amazon.com/cli/
https://aws.amazon.com/tools/

AWS AppSync Developer Guide

Using the SDK, you can easily incorporate tests from your favorite test suite to validate your
template's behavior. We recommend creating tests using the Jest Testing Framework, but any

testing suite works. The following snippet shows a hypothetical validation run. Note that we expect
the evaluation response to be valid JSON, so we use JSON. parse to retrieve JSON from the string
response:

const AWS = require('aws-sdk')
const fs = require('fs')
const client = new AWS.AppSync({ region: 'us-east-2' })

test('request correctly calls DynamoDB', async () => {
const template = fs.readFileSync('./request.vtl', 'utf8')
const context = fs.readFileSync('./context.json', 'utf8')
const context]JSON = JSON.parse(context)

const response = await client.evaluateMappingTemplate({ template,
context }).promise()
const result = JSON.parse(response.evaluationResult)

expect(result.key.id.S).toBeDefined()
expect(result.attributeValues.firstname.S).toEqual(contextJSON.arguments.firstname)

1)

This yields the following result:

Ran all test suites.
> jest

PASS ./index.test.js
request correctly calls DynamoDB (543 ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total

Time: 1.511 s, estimated 2 s

Debugging a live query

There's no substitute for an end-to-end test and logging to debug a production application. AWS
AppSync lets you log errors and full request details using Amazon CloudWatch. Additionally, you
can use the AWS AppSync console to test GraphQL queries, mutations, and subscriptions and live

Step 3: Configuring resolvers 163

https://jestjs.io/

AWS AppSync Developer Guide

stream log data for each request back into the query editor to debug in real time. For subscriptions,
the logs display connection-time information.

To perform this, you need to have Amazon CloudWatch logs enabled in advance, as described in
Monitoring and logging. Next, in the AWS AppSync console, choose the Queries tab and then enter
a valid GraphQL query. In the lower-right section, click and drag the Logs window to open the

logs view. At the top of the page, choose the play arrow icon to run your GraphQL query. In a few
moments, your full request and response logs for the operation are streamed to this section and
you can view then in the console.

Pipeline resolvers (VTL)

(@ Note

We now primarily support the APPSYNC_JS runtime and its documentation. Please consider
using the APPSYNC_JS runtime and its guides here.

AWS AppSync executes resolvers on a GraphQL field. In some cases, applications require executing
multiple operations to resolve a single GraphQL field. With pipeline resolvers, developers can now
compose operations called Functions and execute them in sequence. Pipeline resolvers are useful
for applications that, for instance, require performing an authorization check before fetching data
for a field.

A pipeline resolver is composed of a Before mapping template, an After mapping template, and

a list of Functions. Each Function has a request and response mapping template that it executes
against a data source. As a pipeline resolver delegates execution to a list of functions, it is therefore
not linked to any data source. Unit resolvers and functions are primitives that execute operations
against data sources. See the Resolver mapping template overview for more information.

Create A Pipeline Resolver
In the AWS AppSync console, go to the Schema page.

Save the following schema:

schema {
query: Query
mutation: Mutation

Step 3: Configuring resolvers 164

https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html

AWS AppSync Developer Guide

type Mutation {
signUp(input: Signup): User
}

type Query {
getUser(id: ID!): User
}

input Signup {
username: String!
email: String!

}

type User {
id: ID!
username: String
email: AWSEmail

}

We are going to wire a pipeline resolver to the signUp field on the Mutation type. In the Mutation
type on the right side, choose Attach next to the signUp mutation field. On the create resolver
page, click on Actions, then Update runtime. Choose Pipeline Resolver, then choose VTL,
then choose Update. The page should now show three sections: a Before mapping template text
area, a Functions section, and an After mapping template text area.

Our pipeline resolver signs up a user by first validating the email address input and then saving
the user in the system. We are going to encapsulate the email validation inside a validateEmail
function, and the saving of the user inside a saveUser function. The validateEmail function
executes first, and if the email is valid, then the saveUser function executes.

The execution flow will be as follow:

1. Mutation.signUp resolver request mapping template
2. validateEmail function
3. saveUser function

4. Mutation.signUp resolver response mapping template

Because we will probably reuse the validateEmail function in other resolvers on our API, we want
to avoid accessing $ctx.args because these will change from one GraphQL field to another.

Step 3: Configuring resolvers 165

AWS AppSync Developer Guide

Instead, we can use the $ctx.stash to store the email attribute from the signUp(input:
Signup) input field argument.

BEFORE mapping template:

store email input field into a generic email key
$util.qr($ctx.stash.put("email"”, $ctx.args.input.email))
{}

The console provides a default passthrough AFTER mapping template that will we use:

$util.toJson($ctx.result)

Choose Create or Save to update the resolver.
Create A Function

From the pipeline resolver page, in the Functions section, click on Add function, then Create new
function. It is also possible to create functions without going through the resolver page; to do this,
in the AWS AppSync console, go to the Functions page. Choose the Create function button. Let's
create a function that checks if an email is valid and comes from a specific domain. If the email is
not valid, the function raises an error. Otherwise, it forwards whatever input it was given.

On the new function page, choose Actions, then Update runtime. Choose VTL, then Update. Make
sure you have created a data source of the NONE type. Choose this data source in the Data source
name list. For function name, enter in validateEmail. In the function code area, overwrite
everything with this snippet:

#set($valid = $util.matches("~[a-zA-Z0-9_.+-]1+@(?:(?:[a-zA-Z0-9-]+\.)?[a-zA-Z]+\.)?
(myvaliddomain)\.com", $ctx.stash.email))
#if (!$valid)
$util.error("$ctx.stash.email is not a valid email.")
#end

{
"payload": { "email": $util.toJson(${ctx.stash.emaill}) }

Paste this into the response mapping template:

$util.toJson($ctx.result)

Step 3: Configuring resolvers 166

AWS AppSync Developer Guide

Review your changes, then choose Create. We just created our validateEmail function. Repeat
these steps to create the saveUser function with the following request and response mapping
templates (For the sake of simplicity, we use a NONE data source and pretend the user has been
saved in the system after the function executes.):

Request mapping template:

$ctx.prev.result contains the signup input values. We could have also
used $ctx.args.input.

{
"payload": $util.toJson($ctx.prev.result)

Response mapping template:

an id is required so let's add a unique random identifier to the output
$util.gr($ctx.result.put("id", $util.autoId()))
$util.toJson($ctx.result)

We just created our saveUser function.
Adding a Function to a Pipeline Resolver

Our functions should have been added automatically to the pipeline resolver we just created. If this
wasn't the case, or you created the functions through the Functions page, you can click on Add
function on the resolver page to attach them. Add both the validateEmail and saveUser functions
to the resolver. The validateEmail function should be placed before the saveUser function. As you
add more functions, you can use the move up and move down options to reorganize the order of
execution of your functions. Review your changes, then choose Save.

Executing a Query

In the AWS AppSync console, go to the Queries page. In the explorer, ensure that you're using your
mutation. If you aren't, choose Mutation in the drop-down list, then choose +. Enter the following

query:

mutation {
signUp(input: {
email: "nadiae@myvaliddomain.com"

Step 3: Configuring resolvers 167

AWS AppSync Developer Guide

username: '"nadia"

H{
id
email

This should return something like:

{
"data": {
"signUp": {
"id": "256b6cc2-4694-46f4-a55e-8cbl4cc5d7fc”,
"email": "nadia@myvaliddomain.com"
}
}
}

We have successfully signed up our user and validated the input email using a pipeline resolver.
To follow a more complete tutorial focusing on pipeline resolvers, you can go to Tutorial: Pipeline

Resolvers

Step 4: Using an API: CDK example

® Tip
Before you use the CDK, we recommend reviewing the CDK's official documentation along
with AWS AppSync's CDK reference.
We also recommend ensuring that your AWS CLI and NPM installations are working on your
system.

In this section, we're going to create a simple CDK app that can add and fetch items from a
DynamoDB table. This is meant to be a quickstart example using some of the code from the
Designing your schema, Attaching a data source, and Configuring resolvers (JavaScript) sections.

Step 4: Using an API: CDK example 168

https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_appsync-readme.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.npmjs.com/
https://docs.aws.amazon.com/appsync/latest/devguide/designing-your-schema.html
https://docs.aws.amazon.com/appsync/latest/devguide/attaching-a-data-source.html
https://docs.aws.amazon.com/appsync/latest/devguide/configuring-resolvers-js.html

AWS AppSync Developer Guide

Setting up a CDK project

/A Warning

These steps may not be completely accurate depending on your environment. We're
assuming your system has the necessary utilities installed, a way to interface with AWS
services, and proper configurations in place.

The first step is installing the AWS CDK. In your CLI, you can enter the following command:

npm install -g aws-cdk

Next, you need to create a project directory, then navigate to it. An example set of commands to
create and navigate to a directory is:

mkdir example-cdk-app
cd example-cdk-app

Next, you need to create an app. Our service primarily uses TypeScript. In your project directory,
enter the following command:

cdk init app --language typescript

When you do this, a CDK app along with its initialization files will be installed:

Initializing a new git repository...
: Using "master' as the name he initial branch. This default branch name
: 15 subject to change. To configure the initial branch name to use in all

: of your new repositories, which will suppress this warning, call:
git config --global init.defavltBranch <name=

: Names commonly chosen instead of 'master' are 'main', 'trunk' and

: 'development'. The just-created branch can be renamed via this command:

git branch -m <name>

>uting npm install...

#ALL done!

Your project structure may look like this:

Step 4: Using an API: CDK example 169

AWS AppSync Developer Guide

You'll notice we have several important directories:

« bin: The initial bin file will create the app. We won't touch this in this guide.

« 1lib: The lib directory contains your stack files. You can think of stack files as individual units
of execution. Constructs will be inside our stack files. Basically, these are resources for a service
that will be spun up in AWS CloudFormation when the app is deployed. This is where most of our
coding will happen.

« node_modules: This directory is created by NPM and contains all package dependencies you
installed using the npm command.

Our initial stack file may contain something like this:

import * as cdk from 'aws-cdk-1lib';
import { Construct } from 'constructs';
// import * as sqs from 'aws-cdk-lib/aws-sqgs';

export class ExampleCdkAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// The code that defines your stack goes here

// example resource

// const queue = new sgs.Queue(this, 'ExampleCdkAppQueue', {
// visibilityTimeout: cdk.Duration.seconds(300)

/7 });

Step 4: Using an API: CDK example 170

AWS AppSync Developer Guide

This is the boilerplate code to create a stack in our app. Most of our code in this example will go
inside the scope of this class.

To verify that your stack file is in the app, in your app's directory, run the following command in the
terminal:

cdk 1s

A list of your stacks should appear. If it doesn't, then you may need to run through the steps again
or check the official documentation for help.

If you want to build your code changes before deploying, you can always run the following
command in the terminal:

npm run build

And, to see the changes before deploying:

cdk diff

Before we add our code to the stack file, we're going to perform a bootstrap. Bootstrapping allows
us to provision resources for the CDK before the app deploys. More information about this process
can be found here. To create a bootstrap, the command is:

cdk bootstrap aws://ACCOUNT-NUMBER/REGION

® Tip
This step requires several IAM permissions in your account. Your bootstrap will be denied if

you don't have them. If this happens, you may have to delete incomplete resources caused
by the bootstrap such as the S3 bucket it generates.

Bootstrap will spin up several resources. The final message will look like this:

Step 4: Using an API: CDK example 171

https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html

AWS AppSync Developer Guide

¥ Environment

This is done once per account per Region, so you won't have to do this often. The main resources of
the bootstrap are the AWS CloudFormation stack and the Amazon S3 bucket.

The Amazon S3 bucket is used to store files and IAM roles that grant permissions needed to
perform deployments. The required resources are defined in an AWS CloudFormation stack, called
the bootstrap stack, which is usually named CDKToolkit. Like any AWS CloudFormation stack, it
appears in the AWS CloudFormation console once it has been deployed:

Stacks (10)

Filter status

Q Filter by stack name ‘ | Active v | @D view nested

Stack name | Status Created time | Description

CDKToolkit (2) CREATE_COMPLETE 2023-07-30 21:20:19 UTC-0700 This stack includes resources needed to deploy AWS CDK apps into this environment

The same can be said for the bucket:

Name 4 | AWS Region v | Ac v | Creation date

cdk-1 i-assets-/ -us-west-2. US West (Oregon) us-west-2 Bucket and objects not public July 30, 2023, 21:20:29 (UTC-07:00)

To import the services we need in our stack file, we can use the following command:
npm install aws-cdk-1ib # V2 command
® Tip
If you're having trouble with V2, you could install the individual libraries using V1
commands:

npm install @aws-cdk/aws-appsync @aws-cdk/aws-dynamodb

We don't recommend this because V1 has been deprecated.

Step 4: Using an API: CDK example 172

AWS AppSync Developer Guide

Implementing a CDK project - Schema

We can now start implementing our code. First, we must create our schema. You can simply create
a .graphql file in your app:

mkdir schema
touch schema.graphql

In our example, we included a top-level directory called schema containing our schema.graphql:

Inside our schema, let's include a simple example:

input CreatePostInput {
title: String
content: String

}
type Post {
id: ID!
title: String
content: String
}

type Mutation {
createPost(input: CreatePostInput!): Post

type Query {
getPost: [Post]

Back in our stack file, we need to make sure the following import directives are defined:

import * as cdk from 'aws-cdk-1lib';
import * as appsync from 'aws-cdk-lib/aws-appsync';
import * as dynamodb from 'aws-cdk-1lib/aws-dynamodb';

Step 4: Using an API: CDK example 173

AWS AppSync Developer Guide

import { Construct } from 'constructs';

Inside the class, we'll add code to make our GraphQL API and connect it to our schema.graphql
file:

export class ExampleCdkAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// makes a GraphQL API
const api = new appsync.GraphqlApi(this, 'post-apis', {
name: 'api-to-process-posts’',
schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),

});

We'll also add some code to print out the GraphQL URL, API key, and Region:

export class ExampleCdkAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Makes a GraphQL API construct
const api = new appsync.GraphqlApi(this, 'post-apis', {
name: 'api-to-process-posts’,
schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),

1)

// Prints out URL

new cdk.CfnOutput(this, "GraphQLAPIURL", {
value: api.graphqlurl

});

// Prints out the AppSync GraphQL API key to the terminal
new cdk.CfnOutput(this, "GraphQLAPIKey", {
value: api.apiKey || "'

1)

// Pxints out the stack region to the terminal
new cdk.CfnOutput(this, "Stack Region", {
value: this.region

1)

Step 4: Using an API: CDK example 174

AWS AppSync Developer Guide

}

At this point, we'll use deploy our app again:
cdk deploy

This is the result:

ExampleCdkAppStack: deplo
ExampleCdkAppStack: cr

¥ ExampleCd

4 Deployment time: 16

yudformation

4 Total time

It appears our example was successful, but let's check the AWS AppSync console just to confirm:

api-to-process-posts GraphQL API_KEY

It appears our APl was created. Now, we'll check the schema attached to the API:

Schema

input CreatePostInp
title:

date: AWSDateTir

Step 4: Using an API: CDK example 175

AWS AppSync Developer Guide

This appears to match up with our schema code, so it was successful. Another way to confirm this
from a metadata viewpoint is to look at the AWS CloudFormation stack:

ExampleCdkAppStack @ UPDATE_COMPLETE 2023-07-30 22:13:31 UTC-0700

CDKToolkit (@ CREATE_COMPLETE 2023-07-30 21:20:19 UTC-0700 This stack includes resources needed to deploy AWS CDK apps into this environment

When we deploy our CDK app, it goes through AWS CloudFormation to spin up resources like the
bootstrap. Each stack within our app maps 1:1 with an AWS CloudFormation stack. If you go back
to the stack code, the stack name was grabbed from the class name ExampleCdkAppStack. You
can see the resources it created, which also match our naming conventions in our GraphQL API
construct:

[E] post-apis
[schema

[#] DefaultApiKey
postapis4FBGE287

[E] cDKMetadata

CDKMetadata

Implementing a CDK project - Data source

Next, we need to add our data source. Our example will use a DynamoDB table. Inside the stack
class, we'll add some code to create a new table:

export class ExampleCdkAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Makes a GraphQL API construct
const api = new appsync.GraphqlApi(this, 'post-apis', {
name: 'api-to-process-posts’,
schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),

1)

//creates a DDB table
const add_ddb_table = new dynamodb.Table(this, 'posts-table', {
partitionKey: {
name: 'id’',
type: dynamodb.AttributeType.STRING,
}I
});

Step 4: Using an API: CDK example 176

AWS AppSync Developer Guide

// Prints out URL

new cdk.CfnOutput(this, "GraphQLAPIURL", {
value: api.graphglUrl

});

// Prints out the AppSync GraphQL API key to the terminal
new cdk.CfnOutput(this, "GraphQLAPIKey", {
value: api.apiKey || "'

1)

// Prints out the stack region to the terminal
new cdk.CfnOutput(this, "Stack Region", {
value: this.region

1)

At this point, let's deploy again:
cdk deploy

We should check the DynamoDB console for our new table:

O ExampleCdkAppStack-poststable: @ Active id (S) - o Qoff Provisione d (5) Provisioned) 0bytes Standars d

Our stack name is correct, and the table name matches our code. If we check our AWS
CloudFormation stack again, we'll now see the new table:

Logical ID
[#] post-apis

[E] posts-table
poststable6CB5A2EG

[#] cDKMetadata

Implementing a CDK project - Resolver

This example will use two resolvers: one to query the table and one to add to it. Since we're using
pipeline resolvers, we'll need to declare two pipeline resolvers with one function in each. In the
query, we'll add the following code:

Step 4: Using an API: CDK example 177

AWS AppSync Developer Guide

export class ExampleCdkAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Makes a GraphQL API construct
const api = new appsync.GraphqlApi(this, 'post-apis', {
name: 'api-to-process-posts’,
schema: appsync.SchemaFile.fromAsset('schema/schema.graphql'),

1)

//creates a DDB table
const add_ddb_table = new dynamodb.Table(this, 'posts-table', {
partitionKey: {
name: 'id',
type: dynamodb.AttributeType.STRING,
},
)8

// Creates a function for query
const add_func = new appsync.AppsyncFunction(this, 'func-get-post', {
name: 'get_posts_func_1',
api,
dataSource: api.addDynamoDbDataSource('table-for-posts', add_ddb_table),
code: appsync.Code.fromInline("
export function request(ctx) {
return { operation: 'Scan' };

}

export function response(ctx) {
return ctx.result.items;
}
),
runtime: appsync.FunctionRuntime.JS_1_0_0,

1)

// Creates a function for mutation
const add_func_2 = new appsync.AppsyncFunction(this, 'func-add-post', {
name: 'add_posts_func_1"',
api,
dataSource: api.addDynamoDbDataSource('table-for-posts-2', add_ddb_table),
code: appsync.Code.fromInline("
export function request(ctx) {
return {

Step 4: Using an API: CDK example 178

AWS AppSync Developer Guide

operation: 'Putltem’',

key: util.dynamodb.toMapValues({id: util.autoId()}),
attributeValues: util.dynamodb.toMapValues(ctx.args.input),
};

export function response(ctx) {
return ctx.result;

),
runtime: appsync.FunctionRuntime.JS_1_0_0,

3 -

// Adds a pipeline resolver with the get function
new appsync.Resolver(this, 'pipeline-resolver-get-posts', {
api,
typeName: 'Query',
fieldName: 'getPost',
code: appsync.Code.fromInline("
export function request(ctx) {
return {};

}

export function response(ctx) {
return ctx.prev.result;

}
),
runtime: appsync.FunctionRuntime.JS_1_0_0,
pipelineConfig: [add_func],
1

// Adds a pipeline resolver with the create function
new appsync.Resolver(this, 'pipeline-resolver-create-posts', {
api,
typeName: 'Mutation’',
fieldName: 'createPost’',
code: appsync.Code.fromInline("
export function request(ctx) {
return {};

}

export function response(ctx) {
return ctx.prev.result;

}

Step 4: Using an API: CDK example 179

AWS AppSync Developer Guide

),

runtime: appsync.FunctionRuntime.JS_1_0_0,
pipelineConfig: [add_func_2],
};

// Prints out URL

new cdk.CfnOutput(this, "GraphQLAPIURL", {
value: api.graphglUrl

});

// Prints out the AppSync GraphQL API key to the terminal
new cdk.CfnOutput(this, "GraphQLAPIKey", {

value: api.apiKey ||

1)

// Prints out the stack region to the terminal
new cdk.CfnOutput(this, "Stack Region", {
value: this.region

1)

In this snippet, we added a pipeline resolver called pipeline-resolver-create-posts with a
function called func-add-post attached to it. This is the code that will add Posts to the table.

The other pipeline resolver was called pipeline-resolver-get-posts with a function called

func-get-post that retrieves Posts added to the table.

We'll deploy this to add it to the AWS AppSync service:

cdk deploy

Let's check the AWS AppSync console to see if they were attached to our GraphQL API:

Step 4: Using an API: CDK example 180

AWS AppSync Developer Guide

Mutation

Field Resolver
createPost(...): Post — Pipeline
Query

Field Resolver
getPost: [Post] —_— Pipeline

It appears to be correct. In the code, both of these resolvers were attached to the GraphQL API
we made (denoted by the api props value present in both the resolvers and functions). In the
GraphQL API, the fields we attached our resolvers to were also specified in the props (defined by
the typename and fieldname props in each resolver).

Let's see if the content of the resolvers is correct starting with the pipeline-resolver-get-
posts:

Step 4: Using an API: CDK example 181

AWS AppSync Developer Guide

¥ Resolver code

2w export function request(ctx) {
3 return {};

4 ¥

H

6w export function response(ctx) {
7 return ctx.prev.result;

8 J

9

APPSYNC_JS Ln1,Col1 @ Errors:0 /A Warnings: 0

Functions

Each function is executed in sequence and can execute a single operation against a data source.

Q, Find by function name

add_posts_func_1 edit -

Description

P Function code read-anly

The before and after handlers match our code props value. We can also see that a function called
add_posts_func_1, which matches the name of the function we attached in the resolver.

Let's look at the code content of that function:

Step 4: Using an API: CDK example 182

AWS AppSync Developer Guide

add_posts_func_1 edit

Description

¥ Function code read-only

export function request(ctx) {

return {
4 operation: ‘PutItem’,
5 key: wutil.dynamodb.toMapValues({id: wtil.autoId()}),

attributeValues: util.dynamodb.toMapValues(ctx.args.input),
7 i
B i

export function response(ctx) {
return ctx.result;

12 }

This matches up with the code props of the add_posts_func_1 function. Our query was
successfully uploaded, so let's check on the query:

Step 4: Using an API: CDK example 183

AWS AppSync Developer Guide

v Resolver code

I

4

export function request(ctx) {
return {};

¥

4

export function response(ctx) {
return ctx.prev.result;

Iy

W s 3w W

APPSYNC_JS Ln1,Col1 (®Errors:0 A Warnings: 0

Functions

Each function is executed in sequence and can execute a single operation against a data source.

Q, Find by function name

get_posts_func_1edit g

Description

» Function code read-only

These also match the code. If we look at get_posts_func_1:

Step 4: Using an API: CDK example 184

AWS AppSync Developer Guide

get_posts_func_1 edit

Description

¥ Function code read-only

export function request(ctx) {

3 return { operation: *Scan® };
4 ¥
export function response(ctx) {

return ctx.result.items;

¥

Everything appears to be in place. To confirm this from a metadata perspective, we can check our
stack in AWS CloudFormation again:

Logical ID

[post-apis

[posts-table

[#] func-get-post

[func-add-post

[#] pipeline-resolver-get-posts

[#] pipeline-resolver-create-posts

[] cDKMetadata

Now, we need to test this code by performing some requests.
Implementing a CDK project - Requests

To test our app in the AWS AppSync console, we made one query and one mutation:

Step 4: Using an API: CDK example 185

AWS AppSync Developer Guide

1~ query MyQuery {

2+ getPost {

3 id

4 date

5 title

6 }

7 0%

a8

9+ mutation MyMutation {
18 createPost(input: {date: "1970-81-81T12:38:06.888Z", title: "first post"}) {
11 date

12 id

13 title

14 1

15 1

16

MyMutation contains a createPost operation with the arguments
1970-01-01T12:30:00.000Z and first post. It returns the date and title that we passed
in as well as the automatically generated id value. Running the mutation yields the result:

{
"data": {
"createPost": {
"date": "1970-01-01T12:30:00.000Z",
"id": "4dclc2dd-0aa3-4055-9eca-7cl40062ada2",
"title": "first post"
}
}
}

If we check the DynamoDB table quickly, we can see our entry in the table when we scan it:
O id (String) v | date v | title

O 9f62c4dd-49d5-48d5-b835-143284c72fe0 1970-01-01712:30:00.000Z first post

Back in the AWS AppSync console, if we run the query to retrieve this Post, we get the following
result:

"data": {
"getPost": [
{
"id": "9f62c4dd-49d5-48d5-b835-143284c72fe",
"date": "1970-01-01T12:30:00.000Z",
"title": "first post"

Step 4: Using an API: CDK example 186

AWS AppSync Developer Guide

}
]
}
}

Real-time data

AWS AppSync allows you to utilize subscriptions to implement live application updates, push
notifications, etc. When clients invoke the GraphQL subscription operations, a secure WebSocket
connection is automatically established and maintained by AWS AppSync. Applications can then
distribute data in real-time from a data source to subscribers while AWS AppSync continually
manages the application's connection and scaling requirements. The following sections will show
you how subscriptions in AWS AppSync work.

GraphQL schema subscription directives

Subscriptions in AWS AppSync are invoked as a response to a mutation. This means that you can
make any data source in AWS AppSync real time by specifying a GraphQL schema directive on a
mutation.

The AWS Amplify client libraries automatically handle subscription connection management. The
libraries use pure WebSockets as the network protocol between the client and service.

(® Note

To control authorization at connection time to a subscription, you can use AWS ldentity
and Access Management (IAM), AWS Lambda, Amazon Cognito identity pools, or Amazon
Cognito user pools for field-level authorization. For fine-grained access controls on
subscriptions, you can attach resolvers to your subscription fields and perform logic
using the identity of the caller and AWS AppSync data sources. For more information, see
Authorization and authentication.

Subscriptions are triggered from mutations and the mutation selection set is sent to subscribers.

The following example shows how to work with GraphQL subscriptions. It doesn't specify a data
source because the data source could be Lambda, Amazon DynamoDB, or Amazon OpenSearch
Service.

Real-time data 187

AWS AppSync Developer Guide

To get started with subscriptions, you must add a subscription entry point to your schema as
follows:

schema {
query: Query
mutation: Mutation
subscription: Subscription

Suppose you have a blog post site, and you want to subscribe to new blogs and changes to existing
blogs. To do this, add the following Subscription definition to your schema:

type Subscription {
addedPost: Post
updatedPost: Post
deletedPost: Post

Suppose further that you have the following mutations:

type Mutation {
addPost(id: ID! author: String! title: String content: String url: String): Post!
updatePost(id: ID! author: String! title: String content: String url: String ups:
Int! downs: Int! expectedVersion: Int!): Post!
deletePost(id: ID!): Post!

You can make these fields real time by adding an @aws_subscribe(mutations:
["mutation_field_1", "mutation_field_2"]) directive for each of the subscriptions you
want to receive notifications for, as follows:

type Subscription {
addedPost: Post
@aws_subscribe(mutations: ["addPost"])
updatedPost: Post
@aws_subscribe(mutations: ["updatePost"])
deletedPost: Post
@aws_subscribe(mutations: ["deletePost"])

GraphQL schema subscription directives 188

AWS AppSync Developer Guide

Because the @aws_subscribe(mutations: ["",..,""]) takes an array of mutation inputs,
you can specify multiple mutations, which initiate a subscription. If you're subscribing from a client,
your GraphQL query might look like the following:

subscription NewPostSub {

addedPost {
__typename
version
title
content
author
url

This subscription query is needed for client connections and tooling.

With the pure WebSockets client, selection set filtering is done per client, as each client can define
its own selection set. In this case, the subscription selection set must be a subset of the mutation
selection set. For example, a subscription addedPost{author title} linked to the mutation
addPost(...){id author title url version} receives only the author and title of the
post. It does not receive the other fields. However, if the mutation lacked the author in its selection
set, the subscriber would get a null value for the author field (or an error in case the author field
is defined as required/not-null in the schema).

The subscription selection set is essential when using pure WebSockets. If a field is not explicitly
defined in the subscription, then AWS AppSync doesn't return the field.

In the previous example, the subscriptions didn't have arguments. Suppose that your schema looks
like the following:

type Subscription {
updatedPost(id:ID! author:String): Post
@aws_subscribe(mutations: ["updatePost"])

In this case, your client defines a subscription as follows:

subscription UpdatedPostSub {
updatedPost(id:"XYZ", author:"ABC") {

GraphQL schema subscription directives 189

AWS AppSync Developer Guide

title
content

The return type of a subscription field in your schema must match the return type of the
corresponding mutation field. In the previous example, this was shown as both addPost and
addedPost returned as a type of Post.

To set up subscriptions on the client, see Building a client application.

Using subscription arguments

An important part of using GraphQL subscriptions is understanding when and how to use
arguments. You can make subtle changes to modify how and when to notify clients about
mutations that have occurred. To do this, see the sample schema from the quickstart chapter,
which creates "Todos". For this sample schema, the following mutations are defined:

type Mutation {
createTodo(input: CreateTodoInput!): Todo
updateTodo(input: UpdateTodoInput!): Todo
deleteTodo(input: DeleteTodoInput!): Todo

In the default sample, clients can subscribe to updates to any Todo by using the onUpdateTodo
subscription with no arguments:

subscription OnUpdateTodo {
onUpdateTodo {
description
id
name
when

You can filter your subscription by using its arguments. For example, to only trigger a
subscription when a todo with a specific ID is updated, specify the ID value:

subscription OnUpdateTodo {

Using subscription arguments 190

AWS AppSync Developer Guide

onUpdateTodo(id: "a-todo-id") {
description
id
name
when

You can also pass multiple arguments. For example, the following subscription demonstrates
how to get notified of any Todo updates at a specific place and time:

subscription todosAtHome {
onUpdateTodo(when: "tomorrow", where: "at home") {
description
id
name
when
where

Note that all of the arguments are optional. If you don't specify any arguments in your
subscription, you will be subscribed to all Todo updates that occur in your application.
However, you could update your subscription's field definition to require the ID argument. This
would force the response of a specific todo instead of all todos:

onUpdateTodo(
id: ID!,
name: String,
when: String,
where: String,
description: String
): Todo

Argument null value has meaning

When making a subscription query in AWS AppSync, a null argument value will filter the results
differently than omitting the argument entirely.

Let's go back to the todos APl sample where we could create todos. See the sample schema from
the quickstart chapter.

Using subscription arguments 191

AWS AppSync Developer Guide

Let's modify our schema to include a new owner field, on the Todo type, that describes who the
owner is. The owner field is not required and can only be set on UpdateTodoInput. See the
following simplified version of the schema:

type Todo {
id: ID!
name: String!
when: String!
where: String!
description: String!
owner: String

input CreateTodoInput {
name: String!
when: String!
where: String!
description: String!

}

input UpdateTodoInput {
id: ID!
name: String
when: String
where: String
description: String
owner: String

}
type Subscription {
onUpdateTodo(
id: 1ID,

name: String,
when: String,
where: String,
description: String
): Todo @aws_subscribe(mutations: ["updateTodo"])

The following subscription returns all Todoupdates:

subscription MySubscription {
onUpdateTodo {

Using subscription arguments 192

AWS AppSync Developer Guide

description
id

name

when

where

If you modify the preceding subscription to add the field argument owner: null, you are now
asking a different question. This subscription now registers the client to get notified of all the Todo
updates that have not provided an owner.

subscription MySubscription {
onUpdateTodo(owner: null) {
description
id
name
when
where

(@ Note

As of January 1, 2022, MQTT over WebSockets is no longer available as a protocol for
GraphQL subscriptions in AWS AppSync APIs. Pure WebSockets is the only protocol
supported in AWS AppSync.

Clients based on the AWS AppSync SDK or the Amplify libraries, released after November
2019, automatically use pure WebSockets by default. Upgrading the clients to the latest
version allows them to use AWS AppSync's pure WebSockets engine.

Pure WebSockets come with a larger payload size (240 KB), a wider variety of client options,
and improved CloudWatch metrics. For more information on using pure WebSocket clients,
see Building a real-time WebSocket client.

Using subscription arguments 193

AWS AppSync Developer Guide

Creating generic pub/sub APIs powered by serverless WebSockets

Some applications only require simple WebSocket APIs where clients listen to a specific channel or
topic. Generic JSON data with no specific shape or strongly typed requirements can be pushed to
clients listening to one of these channels in a pure and simple publish-subscribe (pub/sub) pattern.

Use AWS AppSync to implement simple pub/sub WebSocket APIs with little to no GraphQL
knowledge in minutes by automatically generating GraphQL code on both the API backend and the
client sides.

Create and configure pub-sub APIs

To get started, do the following:

1. Signin to the AWS Management Console and open the AppSync console.

e Inthe Dashboard, choose Create API.
On the next screen, choose Create a real-time API, then choose Next.
Enter a friendly name for your pub/sub API.

You can enable private API features, but we recommend keeping this off for now. Choose Next.

ik W

You can choose to automatically generate a working pub/sub APl using WebSockets. We
recommend keeping this feature off for now as well. Choose Next.

6. Choose Create API and then wait for a couple of minutes. A new pre-configured AWS AppSync
pub/sub API will be created in your AWS account.

The API uses AWS AppSync's built-in local resolvers (for more information about using local
resolvers, see Tutorial: Local Resolvers in the AWS AppSync Developer Guide) to manage multiple

temporary pub/sub channels and WebSocket connections, which automatically delivers and filters
data to subscribed clients based only on the channel name. API calls are authorized with an API
key.

After the APl is deployed, you are presented with a couple of extra steps to generate client code
and integrate it with your client application. For an example on how to quickly integrate a client,
this guide will use a simple React web application.

1. Start by creating a boilerplate React app using NPM on your local machine:

$ npx create-react-app mypubsub-app

Creating generic pub/sub APIs powered by serverless WebSockets 194

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-local-resolvers-js.html
https://www.npmjs.com/get-npm

AWS AppSync Developer Guide

$ cd mypubsub-app

® Note

This example uses the Amplify libraries to connect clients to the backend API. However
there's no need to create an Amplify CLI project locally. While React is the client

of choice in this example, Amplify libraries also support iOS, Android, and Flutter
clients, providing the same capabilities in these different runtimes. The supported
Amplify clients provide simple abstractions to interact with AWS AppSync GraphQL
API backends with few lines of code including built-in WebSocket capabilities fully
compatible with the AWS AppSync real-time WebSocket protocol:

$ npm install eaws-amplify/api

2. Inthe AWS AppSync console, select JavaScript, then Download to download a single file with
the API configuration details and generated GraphQL operations code.

3. Copy the downloaded file to the /src folder in your React project.

4. Next, replace the content of the existing boilerplate src/App. js file with the sample client
code available in the console.

5. Use the following command to start the application locally:

$ npm start

6. To test sending and receiving real-time data, open two browser windows and access
Localhost:3000. The sample application is configured to send generic JSON data to a hard-
coded channel named robots.

7. Inone of the browser windows, enter the following JSON blob in the text box then click
Submit:

{
"robot":"r2d2",
"planet": "tatooine"

}

Both browser instances are subscribed to the robots channel and receive the published data in
real time, displayed at the bottom of the web application:

Creating generic pub/sub APIs powered by serverless WebSockets 195

https://docs.amplify.aws/lib/
https://docs.aws.amazon.com/appsync/latest/devguide/real-time-websocket-client.html

AWS AppSync

Developer Guide

% React App

@ localhost

Send/Push JSON to channel "robots"...

{
"robot":"r2dz",
"planet": "tatcoine"

}

Subscribed/Listening to channel "robots"...

{
"robot": "r2d2",

"planet": "tatooine"

}

% React App

@ localhost

Send/Push JSON to channel "robots"...

Enter valid JSON here... (use gquotes for keys and values)

Subscribed/Listening to channel "robots"...

{
"robot": "r2d2",

"planet": "tatooine"

}

All necessary GraphQL API code, including the schema, resolvers, and operations are automatically
generated to enable a generic pub/sub use case. On the backend, data is published to AWS
AppSync's real-time endpoint with a GraphQL mutation such as the following:

mutation PublishData {

publish(data: "{\"msg\": \"hello world!\"}", name: "channel") {

data
name

Subscribers access the published data sent to the specific temporary channel with a related

GraphQL subscription:

subscription SubscribeToData {
subscribe(name:'"channel") {
name
data

Creating generic pub/sub APIs powered by serverless WebSockets

196

AWS AppSync Developer Guide

Implementing pub-sub APIs into existing applications

In case you just need to implement a real-time feature in an existing application, this generic pub/
sub API configuration can be easily integrated into any application or API technology. While there
are advantages in using a single APl endpoint to securely access, manipulate, and combine data
from one or more data sources in a single network call with GraphQL, there’s no need to convert
or rebuild an existing REST-based application from scratch in order to take advantage of AWS
AppSync's real-time capabilities. For instance, you could have an existing CRUD workload in a
separate APl endpoint with clients sending and receiving messages or events from the existing
application to the generic pub/sub API for real-time and pub/sub purposes only.

Enhanced subscription filtering

In AWS AppSync, you can define and enable business logic for data filtering on the backend
directly in the GraphQL API subscription resolvers by using filters that support additional logical
operators. You can configure these filters, unlike the subscription arguments that are defined on
the subscription query in the client. For more information about using subscription arguments,
see Using subscription arguments. For a list of operators, see Resolver mapping template utility

reference.
For the purpose of this document, we divide real-time data filtering into the following categories:

« Basic filtering - Filtering based on client-defined arguments in the subscription query.

« Enhanced filtering - Filtering based on logic defined centrally in the AWS AppSync service
backend.

The following sections explain how to configure enhanced subscription filters and show their
practical use.

Defining subscriptions in your GraphQL schema

To use enhanced subscription filters, you define the subscription in the GraphQL schema then
define the enhanced filter using a filtering extension. To illustrate how enhanced subscription
filtering works in AWS AppSync, use the following GraphQL schema, which defines a ticket
management system API, as an example:

type Ticket {
id: ID
createdAt: AWSDateTime

Enhanced subscriptions filtering 197

AWS AppSync Developer Guide

content: String
severity: Int
priority: Priority
category: String
group: String
status: String

type Mutation {
createTicket(input: TicketInput): Ticket

}

type Query {
getTicket(id: ID!): Ticket

}

type Subscription {

onSpecialTicketCreated: Ticket @aws_subscribe(mutations: ["createTicket"])
onGroupTicketCreated(group: String!): Ticket @aws_subscribe(mutations:
["createTicket"])
}

enum Priority {
none

lowest

low

medium

high

highest

input TicketInput {
content: String
severity: Int
priority: Priority
category: String
group: String

Enhanced subscriptions filtering 198

AWS AppSync Developer Guide

Suppose you create a NONE data source for your API, then attach a resolver to the createTicket
mutation using this data source. Your handlers may look like this:

import { util } from 'e@aws-appsync/utils’';

export function request(ctx) {
return {
payload: {
id: util.autoId(),
createdAt: util.time.nowIS08601(),
status: 'pending',
...ctx.args.input,
.
};
}

export function response(ctx) {
return ctx.result;

}

(@ Note

Enhanced filters are enabled in the GraphQL resolver's handler in a given subscription. For
more information, see Resolver reference.

To implement the behavior of the enhanced filter, you must use the
extensions.setSubscriptionFiltex () function to define a filter expression evaluated
against published data from a GraphQL mutation that the subscribed clients might be interested
in. For more information about the filtering extensions, see Extensions.

The following section explains how to use filtering extensions to implement enhanced filters.
Creating enhanced subscription filters using filtering extensions

Enhanced filters are written in JSON in the response handler of the subscription's resolvers. Filters
can be grouped together in a list called a filterGroup. Filters are defined using at least one rule,
each with fields, operators, and values. Let's define a new resolver for onSpecialTicketCreated
that sets up an enhanced filter. You can configure multiple rules in a filter that are evaluated using
AND logic, while multiple filters in a filter group are evaluated using OR logic:

Enhanced subscriptions filtering 199

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-js-version.html
https://docs.aws.amazon.com/appsync/latest/devguide/extensions-js.html

AWS AppSync Developer Guide

import { util, extensions } from 'eaws-appsync/utils’;

export function request(ctx) {

// simplfy return null for the payload
return { payload: null };

}

export function response(ctx) {
const filter = {
or: [
{ severity: { ge: 7 }, priority: { in: ['high', ‘'medium'] } 3},
{ category: { eq: 'security' }, group: { in: ['admin', 'operators'] } },
1,
};

extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));
// important: return null in the response

return null;

}

Based on the filters defined in the preceding example, important tickets are automatically pushed
to subscribed API clients if a ticket is created with:

e priority level high or medium

AND

« severity level greater than or equal to 7 (ge)

OR

e classification ticket set to Security

AND

« group assignment set to admin or operators

Enhanced subscriptions filtering 200

AWS AppSync Developer Guide

Severity greater than 7

High or medium priority

Classification is security

Member of the group admin or operators

Filters defined in the subscription resolver (enhanced filtering) take precedence over filtering based
only on subscription arguments (basic filtering). For more information about using subscription
arguments, see Using subscription arguments).

If an argument is defined and required in the GraphQL schema of the subscription, filtering based
on the given argument takes place only if the argument is defined as a rule in the resolver's
extensions.setSubscriptionFilter() method. However, if there are no extensions
filtering methods in the subscription resolver, arguments defined in the client are used only for
basic filtering. You can't use basic filtering and enhanced filtering concurrently.

You can use the context variable in the subscription's filter extension logic to access contextual
information about the request. For example, when using Amazon Cognito User Pools, OIDC, or
Lambda custom authorizers for authorization, you can retrieve information about your users

in context.identity when the subscription is established. You can use that information to
establish filters based on your users' identity.

Enhanced subscriptions filtering 201

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html#using-subscription-arguments
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

Now assume that you want to implement the enhanced filter behavior for
onGroupTicketCreated. The onGroupTicketCreated subscription requires a mandatory
group name as an argument. When created, tickets are automatically assigned a pending

status. You can set up a subscription filter to only receive newly created tickets that belong to the
provided group:

import { util, extensions } from 'eaws-appsync/utils’;

export function request(ctx) {

// simplfy return null for the payload
return { payload: null };

}

export function response(ctx) {
const filter = { group: { eq: ctx.args.group }, status: { eq: 'pending' } };
extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));

return null;

}

When data is published using a mutation like in the following example:

mutation CreateTicket {
createTicket(input: {priority: medium, severity: 2, group: "aws"}) {

id

priority

severity

status

group

createdAt

Subscribed clients listen for the data to be automatically pushed via WebSockets as soon as a ticket
is created with the createTicket mutation:

subscription OnGroup {
onGroupTicketCreated(group: "aws") {
category
status
severity

Enhanced subscriptions filtering 202

AWS AppSync Developer Guide

priority
id

group
createdAt
content

Clients can be subscribed without arguments because the filtering logic is implemented in the AWS
AppSync service with enhanced filtering, which simplifies the client code. Clients receive data only
if the defined filter criteria is met.

Defining enhanced filters for nested schema fields

You can use enhanced subscription filtering to filter nested schema fields. Suppose we modified
the schema from the previous section to include location and address types:

type Ticket {

id: ID

createdAt: AWSDateTime
content: String

severity: Int

priority: Priority
category: String

group: String

status: String

location: ProblemLocation

type Mutation {
createTicket(input: TicketInput): Ticket
}

type Query {
getTicket(id: ID!): Ticket
}

type Subscription {

onSpecialTicketCreated: Ticket @aws_subscribe(mutations: ["createTicket"])
onGroupTicketCreated(group: String!): Ticket @aws_subscribe(mutations:
["createTicket"])
}

Enhanced subscriptions filtering 203

AWS AppSync Developer Guide

type ProblemlLocation {
address: Address

}

type Address {
country: String

}

enum Priority {
none

lowest

low

medium

high

highest

input TicketInput {
content: String
severity: Int
priority: Priority
category: String
group: String
location: AWSJSON

With this schema, you can use a . separator to represent nesting. The following example adds a
filter rule for a nested schema field under location.address.country. The subscription will be
triggered if the ticket's address is set to USA:

import { util, extensions } from 'eaws-appsync/utils’;
export const request = (ctx) => ({ payload: null });

export function response(ctx) {
const filter = {
or: [
{ severity: { ge: 7 }, priority: { in: ['high', 'medium'] } },
{ category: { eq: 'security' 3}, group: { in: ['admin', 'operators'] } },
{ 'location.address.country': { eq: 'USA' } },
1,
};
extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));
return null;

Enhanced subscriptions filtering 204

AWS AppSync Developer Guide

}

In the example above, location represents nesting level one, address represents nesting level
two, and countzry represents nesting level three, all of which are separated by the . separator.

You can test this subscription by using the createTicket mutation:

mutation CreateTicketInUSA {
createTicket(input: {location: "{\"address\":{\"country\":\"USA\"}}"}) {

category
content
createdAt
group
id
location {

address {

country

}
}
priority
severity
status

Defining enhanced filters from the client

You can use basic filtering in GraphQL with subscriptions arguments. The client that makes the call
in the subscription query defines the arguments' values. When enhanced filters are enabled in an
AWS AppSync subscription resolver with the extensions filtering, backend filters defined in the
resolver take precedence and priority.

Configure dynamic, client-defined enhanced filters using a filter argument in the subscription.
When you configure these filters, you must update the GraphQL schema to reflect the new
argument:

type Subscription {
onSpecialTicketCreated(filter: String): Ticket
@aws_subscribe(mutations: ["createTicket"])

Enhanced subscriptions filtering 205

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html#using-subscription-arguments

AWS AppSync Developer Guide

The client can then send a subscription query like in the following example:

subscription onSpecialTicketCreated($filter: String) {
onSpecialTicketCreated(filter: $filter) {
id
group
description
priority
severity

You can configure the query variable like the following example:

{"filter" : "{\"severity\":{\"le\":2}}"}

Theutil.transform.toSubscriptionFiltex () resolver utility can be implemented in the
subscription response mapping template to apply the filter defined in the subscription argument
for each client:

import { util, extensions } from 'eaws-appsync/utils’;

export function request(ctx) {

// simplfy return null for the payload
return { payload: null };

}

export function response(ctx) {
const filter = ctx.args.filter;
extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));
return null;

}

With this strategy, clients can define their own filters that use enhanced filtering logic and
additional operators. Filters are assigned when a given client invokes the subscription query in
a secure WebSocket connection. For more information about the transform utility for enhanced
filtering, including the format of the filter query variable payload, see JavaScript resolvers
overview.

Enhanced subscriptions filtering 206

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

Additional enhanced filtering restrictions

Below are several use cases where additional restrictions are placed on enhanced filters:

» Enhanced filters don't support filtering for top-level object lists. In this use case, published data
from the mutation will be ignored for enhanced subscriptions.

« AWS AppSync supports up to five levels of nesting. Filters on schema fields past nesting
level five will be ignored. Take the GraphQL response below. The continent field in
venue.address.country.metadata.continent is allowed because it's a level five nest.
However, financial in venue.address.country.metadata.capital.financialisa
level six nest, so the filter won't work:

"data": {
"onCreateFilterEvent": {
"venue": {
"address": {
"country": {
"metadata": {
"capital": {
"financial": "New York"

}I

"continent” : "North America”

},
"state": "WA"

},
"builtYear": 2023

iy

"private": false,

Unsubscribing WebSocket connections using filters

In AWS AppSync, you can forcibly unsubscribe and close (invalidate) a WebSocket connection from
a connected client based on specific filtering logic. This is useful in authorization-related scenarios
such as when you remove a user from a group.

Unsubscribing connections 207

AWS AppSync Developer Guide

Subscription invalidation occurs in response to a payload defined in a mutation. We recommend
that you treat mutations used to invalidate subscription connections as administrative
operations in your APl and scope permissions accordingly by limiting their use to an admin

user, group, or backend service. For example, using schema authorization directives such as
@aws_auth(cognito_groups: ["Administrators"]) or @aws_iam. For more information,
see Using additional authorization modes.

Invalidation filters use the same syntax and logic as enhanced subscription filters. Define these
filters using the following utilities:

« extensions.invalidateSubscriptions() - Defined in the GraphQL resolver's response
handler for a mutation.

« extensions.setSubscriptionInvalidationFilter () - Defined in the GraphQL resolver's
response handler of the subscriptions linked to the mutation.

For more information about invalidation filtering extensions, see JavaScript resolvers overview.

Using subscription invalidation

To see how subscription invalidation works in AWS AppSync, use the following GraphQL schema:

type User {
userId: ID!
groupId: ID!
}

type Group {
groupId: ID!
name: String!
members: [ID!]!

type GroupMessage {
userId: ID!
groupId: ID!
message: String!

}

type Mutation {
createGroupMessage(userId: ID!, groupId : ID!, message: String!): GroupMessage
removeUserFromGroup(userId: ID!, groupId : ID!) : User @aws_iam

Unsubscribing connections 208

https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html#using-additional-authorization-modes
https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-enhanced-filtering.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-overview-js.html

AWS AppSync Developer Guide

}

type Subscription {
onGroupMessageCreated(userId: ID!, groupId : ID!): GroupMessage
@aws_subscribe(mutations: ["createGroupMessage"])

type Query {
none: String

}

Define an invalidation filter in the removeUserFromGroup mutation resolver code:

import { extensions } from 'e@aws-appsync/utils’';

export function request(ctx) {
return { payload: null };
}

export function response(ctx) {
const { userId, groupIld } = ctx.args;
extensions.invalidateSubscriptions({
subscriptionField: 'onGroupMessageCreated',
payload: { userId, groupId },
1)

return { userId, groupId };

}

When the mutation is invoked, the data defined in the payload object is used to unsubscribe
the subscription defined in subscriptionField. An invalidation filter is also defined in the
onGroupMessageCreated subscription's response mapping template.

If the extensions.invalidateSubscriptions() payload contains an ID that matches the IDs
from the subscribed client as defined in the filter, the corresponding subscription is unsubscribed.
In addition, the WebSocket connection is closed. Define the subscription resolver code for the
onGroupMessageCreated subscription:

import { util, extensions } from 'eaws-appsync/utils’;

export function request(ctx) {
// simplfy return null for the payload
return { payload: null };

Unsubscribing connections 209

AWS AppSync Developer Guide

}

export function response(ctx) {
const filter = { groupId: { eq: ctx.args.groupIld } };
extensions.setSubscriptionFilter(util.transform.toSubscriptionFilter(filter));

const invalidation = { groupId: { eq: ctx.args.groupld }, userId: { eq:
ctx.args.userld } };
extensions.setSubscriptionInvalidationFilter(util.transform.toSubscriptionFilter(invalidation)

return null;

}

Note that the subscription response handler can have both subscription filters and invalidation
filters defined at the same time.

For example, assume that client A subscribes a new user with the ID user-1 to the group with the
ID group-1 using the following subscription request:

onGroupMessageCreated(userId : "user-1", groupIld: :"group-1"){...}

AWS AppSync runs the subscription resolver, which generates subscription and invalidation filters
as defined in the preceding onGroupMessageCreated response mapping template. For client
A, the subscription filters allow data to be sent only to group-1, and the invalidation filters are
defined for both user-1 and group-1.

Now assume that client B subscribes a user with the ID user-2 to a group with the ID group-2
using the following subscription request:

onGroupMessageCreated(userId : "user-2", groupIld: :"group-2"){...}

AWS AppSync runs the subscription resolver, which generates subscription and invalidation filters.
For client B, the subscription filters allow data to be sent only to group-2, and the invalidation
filters are defined for both user-2 and group-2.

Next, assume that a new group message with the ID message-1 is created using a mutation
request like in the following example:

createGroupMessage(id: "message-1", groupld :

Unsubscribing connections 210

AWS AppSync Developer Guide

"group-1", message: "test message"){...}

Subscribed clients matching the defined filters automatically receive the following data payload via
WebSockets:

{
"data": {
"onGroupMessageCreated": {
"id": "message-1",
"groupId": "group-1",
"message": "test message",
}
}
}

Client A receives the message because the filtering criteria match the defined subscription filter.
However, client B doesn't receive the message, as the user is not part of group-1. Also, the request
doesn't match the subscription filter defined in the subscription resolver.

Finally, assume that user-1 is removed from group-1 using the following mutation request:

removeUserFromGroup(userId: "user-1", groupId : "group-1"){...}

The mutation initiates a subscription invalidation as defined in its
extensions.invalidateSubscriptions() resolver response handler code. AWS AppSync
then unsubscribes client A and closes its WebSocket connection. Client B is unaffected, as the
invalidation payload defined in the mutation doesn't match its user or group.

When AWS AppSync invalidates a connection, the client receives a message confirming that they
are unsubscribed:

"message": "Subscription complete."

}

Using context variables in subscription invalidation filters

As with enhanced subscription filters, you can use the context variable in the subscription

invalidation filter extension to access certain data.

Unsubscribing connections 211

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html

AWS AppSync Developer Guide

For example, it's possible to configure an email address as the invalidation payload in the
mutation, then match it against the email attribute or claim from a subscribed user authorized
with Amazon Cognito user pools or OpenlD Connect. The invalidation filter defined in the
extensions.setSubscriptionInvalidationFiltexr () subscription invalidator checks
if the email address set by the mutation's extensions.invalidateSubscriptions()
payload matches the email address retrieved from the user's JWT token in
context.identity.claims.email, initiating the invalidation.

Building a real-time WebSocket client
The following sections will show you the architecture behind AWS AppSync's real-time capabilities.
Real-time WebSocket client implementation for GraphQL subscriptions

The following sequence diagram and steps show the real-time subscriptions workflow between the
WebSocket client, HTTP client, and AWS AppSync.

Building a real-time WebSocket client 212

AWS AppSync Developer Guide
AppSync AppSync
wepoooket Real-time GraphQL HTTP Client
Endpoint Endpoint
= | | s
i i i
]]]
]]]
]]]
]]]
i i i
WebSocket handshake L ! !
i L i i
]]]
i{ WebSocket Connection successful J i i
! ! i i
! "Connection init" message 1 ! !
i i i
]]]
! "Connection init ack" message ! !
TS TR e : ; ;
i{ Keep-alive msg "ka", repeats every minute ! ! !
"""""""""""""""""""""""""" T [[
]]]]
i "Start subscription” message 1 N : i i
] Ll]]
i i i
i "Start subscription ack™ message 1 i i
:{E __ T H H
i i i i
! "Start subscription” message 2 L ' '
i L i i
]]]
H "Start subscription ack” message 2 H H
Mmoo s 7 i i
i i i i
| i i . Send mutation (triggers subs 2) |
i i Subscription 2 event message i
H Result set from mutation 2 |
I{ Subscription 2 event massage T TTTTTITITIIIII I g
——— i i
i i i i
i i i ,Send mutation (triggers subs 1) i
i | Subscripion 1 event message [~ :
i h Result set from mutation 1 H
:r{ Subscription 1 event message ToTTTTTTTTTTTTTTmTmT AT :3':
! ! : :
]]]]
]]]]
i i i i
i i i i
H "Stop subscription” 2 message o H H
r Ll]]
]]]
: Subscription 2 stops successfully J i i
i.@: .. . | |
]]]]
| "Stop subscription” 1 message i i i
]]]
]]]
i Subscription 1 stops successfully i i
I : :
']]
i i

WebSocket disconnected

1. The client establishes a WebSocket connection with the AWS AppSync real-time endpoint.

If there is a network error, the client should do a jittered exponential backoff. For more

information, see Exponential backoff and jitter on the AWS Architecture Blog.

2. After successfully establishing the WebSocket connection, the client sends a connection_init

message.

3. The client waits for a connection_ack message from AWS AppSync. This message includes a

connectionTimeoutMs parameter, which is the maximum wait time in milliseconds for a "ka"

(keep-alive) message.

Building a real-time WebSocket client

213

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS AppSync Developer Guide

4. AWS AppSync sends "ka" messages periodically. The client keeps track of the time
that it received each "ka" message. If the client doesn't receive a "ka" message within
connectionTimeoutMs milliseconds, the client should close the connection.

5. The client registers the subscription by sending a start subscription message. A single
WebSocket connection supports multiple subscriptions, even if they are in different
authorization modes.

6. The client waits for AWS AppSync to send start_ack messages to confirm successful
subscriptions. If there is an error, AWS AppSync returns a "type": "error" message.

7. The client listens for subscription events, which are sent after a corresponding mutation is
called. Queries and mutations are usually sent through https:// to the AWS AppSync GraphQL
endpoint. Subscriptions flow through the AWS AppSync real-time endpoint using the secure
WebSocket (wss: //).

8. The client unregisters the subscription by sending a stop subscription message.

9. After unregistering all subscriptions and checking that there are no messages transferring
through the WebSocket, the client can disconnect from the WebSocket connection.

Handshake details to establish the WebSocket connection

To connect and initiate a successful handshake with AWS AppSync, a WebSocket client needs the
following:

« The AWS AppSync real-time endpoint
« A query string that contains header and payload parameters:

« header: Contains information relevant to the AWS AppSync endpoint and authorization. This
is a base64-encoded string from a stringified JSON object. The JSON object content varies
depending on the authorization mode.

« payload: Base64-encoded string of payload.

With these requirements, a WebSocket client can connect to the URL, which contains the real-time
endpoint with the query string, using graphqgl -ws as the WebSocket protocol.

Discovering the real-time endpoint from the GraphQL endpoint

The AWS AppSync GraphQL endpoint and the AWS AppSync real-time endpoint are slightly
different in protocol and domain. You can retrieve the GraphQL endpoint using the AWS Command
Line Interface (AWS CLI) command aws appsync get-graphqgl-api.

Building a real-time WebSocket client 214

AWS AppSync Developer Guide

AWS AppSync GraphQL endpoint:

https://examplel234567890000.appsync-api.us-east-1.amazonaws.com/graphql
AWS AppSync real-time endpoint:

wss://examplel234567890000.appsync-realtime-api.us-east-1.amazonaws.com/

graphql

Applications can connect to the AWS AppSync GraphQL endpoint (https://) using any HTTP
client for queries and mutations. Applications can connect to the AWS AppSync real-time endpoint
(wss://) using any WebSocket client for subscriptions.

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example. com as your custom domain, you can interact with your
GraphQL and real-time endpoints using these URLs:

AWS AppSync custom domain GraphQL endpoint:

https://api.example.com/graphql

AWS AppSync custom domain real-time endpoint:

wss://api.example.com/graphgl/realtime

Header parameter format based on AWS AppSync API authorization mode

The format of the header object used in the connection query string varies depending on the AWS
AppSync API authorization mode. The host field in the object refers to the AWS AppSync GraphQL
endpoint, which is used to validate the connection even if the wss:// call is made against the real-
time endpoint. To initiate the handshake and establish the authorized connection, the payload
should be an empty JSON object.

API key
API key header
Header contents

e "host": <string>: The host for the AWS AppSync GraphQL endpoint or your custom domain
name.

Building a real-time WebSocket client 215

AWS AppSync Developer Guide

o "x-api-key": <string>: The API key configured for the AWS AppSync API.

Example

"host":"examplel234567890000.appsync-api.us-east-1.amazonaws.com",
"x-api-key":"da2-12345678901234567890123456"

Payload content

{3

Request URL

wss://examplel234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyJob3N@IjoiZXhhbXBsZTEyMzQ1Njc40TAwWMDAUYXBwc31luYylhcGkudXMtZWFzdCOxLmFtYXpvbmF3cy5jb20i

Amazon Cognito user pools and OpenlID Connect (OIDC)
Amazon Cognito and OIDCheader
Header contents:

o "Authorization": <string>: A JWT ID token. The header can use a Bearer scheme.

e "host": <string>: The host for the AWS AppSync GraphQL endpoint or your custom domain
name.

Example:

"Authorization":"eyEXAMPLEiJjbG5xb3A5eW5MK@9QYXIMTIHWEFLSXBieUSWNHhsQjEXAMPLENM2W1dvPSIsImFsZ
zEE2DJH7sH012zxYi7f-SmEGoh2AD8emxQRYajByz-rE4Jh0Q0ymN2Ys-ZIkMpVBTPgu-
TMWDYOHhDUmUj20P82yeZ3wlZAtr_gM4LzjXUXmI_K2yGjuXfXTaalmvQEBGOMQTVd7SfwXB-
jcv4RYVi6j25qgow9EwS52ufurPgakK-3WAKG32KpV8J4-Wejq8tdc-
yA7sb8EnNB551b7TU93uKRiVVK3E55Nk5ADPoam_WYE4513s5qVAP_-InW75NU00CGTsS8YWMfb6ecHYJ-15-
bzA27zaT9VjctXn9byNFZmEXAMPLExw",

"host":"examplel234567890000.appsync-api.us-east-1.amazonaws.com"

Building a real-time WebSocket client 216

https://datatracker.ietf.org/doc/html/rfc6750#section-2.1

AWS AppSync Developer Guide

}

Payload content:

{3

Request URL:

wss://examplel234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyJBdXRob3JpemF@aW9uIjoiZX1KcmFXUW1PaUpqYkcleGIzQTV1VzVNSzASUVIYSXINVEpIVOVGTFNYQmL11VTVX

1AM
IAM header

Header content

« "accept": "application/json, text/javascript":A constant <string> parameter.

« "content-encoding": "amz-1.0": A constant <string> parameter.

« "content-type": "application/json; charset=UTF-8": A constant <string>
parameter.

e "host": <string>: This is the host for the AWS AppSync GraphQL endpoint.

e "x-amz-date": <string>: The timestamp must be in UTC and in the following ISO 8601
format: YYYYMMDD'T'HHMMSS'Z'. For example, 20150830T123600Z is a valid timestamp.
Do not include milliseconds in the timestamp. For more information, see Handling dates in
Signature Version 4 in the AWS General Reference.

o "X-Amz-Security-Token": <string>: The AWS session token, which is required when
using temporary security credentials. For more information, see Using temporary credentials
with AWS resources in the IAM User Guide.

o "Authorization": <string>: Signature Version 4 (SigV4) signing information for the AWS
AppSync endpoint. For more information on the signing process, see Task 4: Add the signature
to the HTTP request in the AWS General Reference.

The SigV4 signing HTTP request includes a canonical URL, which is the AWS AppSync GraphQL
endpoint with /connect appended. The service endpoint AWS Region is same Region where you're
using the AWS AppSync API, and the service name is 'appsync'. The HTTP request to sign is the
following:

Building a real-time WebSocket client 217

https://docs.aws.amazon.com/general/latest/gr/sigv4-date-handling.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-date-handling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html

AWS AppSync Developer Guide

url: "https://examplel234567890000.appsync-api.us-east-1.amazonaws.com/graphql/
connect",
data: "{}",
method: "POST",
headers: {
"accept": "application/json, text/javascript",
"content-encoding": "amz-1.0",
"content-type": "application/json; charset=UTF-8",

Example

"accept": "application/json, text/javascript",

"content-encoding": "amz-1.0",

"content-type": "application/json; charset=UTF-8",

"host": "examplel234567890000.appsync-api.us-east-1.amazonaws.com",

"x-amz-date": "20200401T001010Z",

"X-Amz-Security-Token":

"AgEXAMPLEZ21uX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97C1jq7wOPL8KsxP3YtDuyc/9hAj8PhI7Fvf38SgoC
+
+pEagWCveZUjKEn@zyUhBEXAMPLEjj//////////8BEXAMPLEx0Dk2NDgyNzg1NSIMolmWnpESWUoYw4BkKGEFSTm3DXUuLE
+ZbVc4IKjDP4VvUCKNRELeSCI9pZp9PsWONoFy3vLBUJAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse@7wN2gG2tHOeKMEXAMPLEQX+sMbytQo8iepP9PZ0z1ZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQnNRiFLEY83aKvG/tqLWNnG1SNVx7SMcfovkFDgQamm
+88y10wwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1FOQNW64SONV]
+BwDg3ht2CrNvpwjVY1jou3nmxEQUG5ne83LL5hhgMpm25kmL7enVgw2kQzmU2id4IKu@C/
WaoDRuO2F5zE63vIbxN8AYs7338+4B4HBb6BZ60Ugg96Q15RA41/
gIgxaVPxyTpDfTU5GTSLxocdYeniqqpFMtZG2n9dOu7GsQNcFkNcG3qDZm4tDo8tZbuym@a2VcF2E5hFEgXBa
+XLJCfXi/770qAEjPOx7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom80QVFUIXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr@al96Kq87w5KNMCkcCGFnwBNFLmfnbpNgT6rUBXxXxs3X5nt
a0x@QFtHX21eF6qIGT8jlz+120pU+ggwlgkhUUgCH2TfgBj+MLMVVvpgqIsPKt582caFKArIFIvO
+9QupxLNEH2hz@4TMTfnU6bQC6Zz1buVe7h
+t0Lnh1YPFsLQ88anib/7TTC8k9DsBTq@ASe8R2GbSEsm09qbbMwgEaYUhOKtGeyQsSIdhSk6XxXThrWLOEnwBCXDkICMqcC
+WgtPtKOOweD1CaRs3R2gXcbNgVhleMk4IWnF8D1695AenUlLwHjOJLkCjxgNFiWAFEPH9aEXAMPLEXA==",

"Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host; x-amz-date; x-amz-security-token,

Signature=83EXAMPLEbcclfe3ee69f75cd5ebbf4cb4f150e4f99cec869f149c5EXAMPLEdC"

Building a real-time WebSocket client 218

AWS AppSync Developer Guide

}

Payload content
{3

Request URL

wss://examplel234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyEXAMPLEHQi0iJhcHBsaWNhdGlvbi9qc29uLCB@ZXh@OL2phdmFEXAMPLEQiLCJjb250ZW50LWVuY29kaW5nIjoE

To sign the request using a custom domain:

url: "https://api.example.com/graphql/connect”,
data: "{}",
method: "POST",
headers: {
"accept": "application/json, text/javascript",
"content-encoding": "amz-1.0",
"content-type": "application/json; charset=UTF-8",

Example

"accept": "application/json, text/javascript",

"content-encoding": "amz-1.0",

"content-type": "application/json; charset=UTF-8",

"host": "api.example.com",

"x-amz-date": "20200401T001010Z",

"X-Amz-Security-Token":

"AgEXAMPLEZ21uX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97C1jq7wOPL8KsxP3YtDuyc/9hAj8PhI7Fvf38SgoC
+
+pEagWCveZUjKEn@zyUhBEXAMPLEjj//////////8BEXAMPLEXODk2NDgyNzgINSIMolmWnpESWUoYw4BkKgEFSTm3DXuLE
+ZbVc4IKjDP4vUCKNR6LeSC9pZp9PsWONoFy3vLBUJAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse@7wN2gG2tHOeKMEXAMPLEQX+sMbytQo8iepP9PZ0z1ZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQNNRiFLEY83aKvG/tgqLWNnG1SNVx7SMcfovkFDgQamm
+88y10wwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WXEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1FOQNW64SONV
+BwDg3ht2CrNvpwjVY1jou3nmxEQUG5ne83LL5hhgMpm25kmL7enVgw2kQzmU2id4IKu@C/

Building a real-time WebSocket client 219

AWS AppSync Developer Guide

WaoDRuO2F5zE63vIbxN8AYs7338+4B4HBb6BZ60Ugg96Q15RA41/
gIgxaVPxyTpDfTU5GTSLxocdYeniqqpFMtZG2n9d@u7GsQNcFkNcG3qDZm4tDo8tZbuym@a2VcF2E5hFEgXBa
+XLJCfXi/770qAEjPOx7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom8QVFUIXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQO9Welr@al96Kq87w5KNMCkcCGFnwBNFLmfnbpNgT6rUBXxXxs3X5nt
a0x@QFtHX21eF6qIGT8jlz+120pU+ggwlgkhUUgCH2TfgBj+MLMVVvpgqlsPKt582caFKArIFIvO
+9QupxLNEH2hz@4TMTfnU6bQC6Zz1buVe7h
+t0OLnh1YPFsLQ88anib/7TTC8k9DsBTq@ASe8R2GbSEsm09qbbMwgEaYUhOKtGeyQsSIdhSk6XxXThrWLOEnwBCXDkICMqcC
+WgtPtKOOweD1CaRs3R2gXcbNgVhleMk4IWnF8D1695AenUlLwHjOJLkCjxgNFiWAFEPH9aEXAMPLEXA==",
"Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host; x-amz-date; x-amz-security-token,
Signature=83EXAMPLEbcclfe3ee69f75cd5ebbf4cb4f150e4f99cec869f149c5EXAMPLEdC"
}

Payload content
{3

Request URL

wss://api.example.com/graphql?
header=eyEXAMPLEHQi0iJhcHBsaWNhdGlvbi9qc29uLCB@ZXh@L2phdmFEXAMPLEQiLCJjb250ZW50LWVuY29kaW5nIjoE

(@ Note

One WebSocket connection can have multiple subscriptions (even with different
authentication modes). One way to implement this is to create a WebSocket connection for
the first subscription and then close it when the last subscription is unregistered. You can
optimize this by waiting a few seconds before closing the WebSocket connection, in case
the app is subscribed immediately after the last subscription is unregistered. For a mobile
app example, when changing from one screen to another, on unmounting event it stops a
subscription, and on mounting event it starts a different subscription.

Lambda authorization
Lambda authorization header

Header content

Building a real-time WebSocket client 220

AWS AppSync Developer Guide

o "Authorization": <string>: The value thatis passed as authorizationToken.

e "host": <string>: The host for the AWS AppSync GraphQL endpoint or your custom domain
name.

Example

"Authorization":"MOUzQzM1MkQtMkIONi@@OTZCLUI1INkQtMUMOMTQOQ]jVBRTczCkI1REEZRTIXLTKk5NZzItNDIENi1BC
"host":"examplel234567890000.appsync-api.us-east-1.amazonaws.com"

Payload content
{3

Request URL

wss://examplel234567890000.appsync-realtime-api.us-east-1.amazonaws.com/graphql?
header=eyJBdXRob3JpemF@aW9uIjoiZX1KcmFXUW1PaUpqYkcleGIzQTV1VzVNSzASUVIYSXINVEpIVOVGTFNYQm11VTVX

Real-time WebSocket operation

After initiating a successful WebSocket handshake with AWS AppSync, the client must send a
subsequent message to connect to AWS AppSync for different operations. These messages require
the following data:

« type: The type of the operation.
« id: A unique identifier for the subscription. We recommend using a UUID for this purpose.

« payload: The associated payload, depending on the operation type.

The type field is the only required field; the id and payload fields are optional.
Sequence of events

To successfully initiate, establish, register, and process the subscription request, the client must
step through the following sequence:

Building a real-time WebSocket client 221

AWS AppSync Developer Guide

Initialize connection (connection_init)
Connection acknowledgment (connection_ack)
Subscription registration (start)

Subscription acknowledgment (start_ack)

Processing subscription (data)

AN A o

Subscription unregistration (stop)

Connection init message

After a successful handshake, the client must send the connection_init message to start
communicating with the AWS AppSync real-time endpoint. Without this step, all other messages
are ignored. The message is a string obtained by stringifying the following JSON object as follows:

{ "type": "connection_init" }

Connection acknowledge message

After sending the connection_init message, the client must wait for the connection_ack
message. All messages sent before receiving connection_ack are ignored. The message should
read as follows:

"type": "connection_ack",
"payload": {
// Time in milliseconds waiting for ka message before the client should terminate
the WebSocket connection
"connectionTimeoutMs": 300000

Keep-alive message

In addition to the connection acknowledgment message, the client periodically receives keep-alive
messages. If the client doesn't receive a keep-alive message within the connection timeout period,
the client should close the connection. AWS AppSync keeps sending these messages and servicing
the registered subscriptions until it shuts down the connection automatically (after 24 hours).
Keep-alive messages are heartbeats and do not need the client to acknowledge them.

Building a real-time WebSocket client 222

AWS AppSync Developer Guide

{ "type": nkan }

Subscription registration message

After the client receives a connection_ack message, the client can send subscription registration
messages to AWS AppSync. This type of message is a stringified JSON object that contains the
following fields:

o "id": <string>:The ID of the subscription. This ID must be unique for each subscription,
otherwise the server returns an error indicating that the subscription ID is duplicated.

o "type": "start":A constant <string> parameter.
« "payload": <Object>: An object that contains the information relevant to the subscription.
o "data": <string>: A stringified JSON object that contains a GraphQL query and variables.
« "query": <string>: A GraphQL operation.
« "variables": <Object>: An object that contains the variables for the query.
« "extensions": <Object>: An object that contains an authorization object.

« "authorization": <Object>: An object that contains the fields required for authorization.

Authorization object for subscription registration

The same rules in the Header parameter format based on AWS AppSync APl authorization mode

section apply for the authorization object. The only exception is for IAM, where the SigV4 signature
information is slightly different. For more details, see the IAM example.

Example using Amazon Cognito user pools:

"id": "ee849ef@-cf23-4cb8-9fcb-152ae4fdle69",
"payload": {
"data": "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n
__typename\\n message\\n }\\n }\",\"variables\":{}}",
"extensions": {
"authorization": {
"Authorization":
"eyEXAMPLEiJjbG5xb3A5eW5MK@9QYXIMTIEXAMPLEBieUSWNHhsQjhPVWOYMNM2W1dvPSIsImFsZyI6I1EXAMPLENQ. €
qTCtrYeboUJ41uRSTPXaNewNeEXAMPLE14C6sfg@5t00fOMpilUwj9k19gtNCCMqoSsjtQoUweFnH4JYa5EXAMPLEVxOyQEC
RWvW7yQU3sNQRLEXAMPLEcd@yufBiCYs3dfQxTTdvR1B6Wz6CD781fNeKgfzzUn2beMoup2h6EXAMPLE40w8cUPUPVGODZzR
"host": "examplel234567890000.appsync-api.us-east-1.amazonaws.com"

Building a real-time WebSocket client 223

AWS AppSync Developer Guide

I
"type": "start"

Example using IAM:

"id": "eEXAMPLE-cf23-1234-5678-152EXAMPLEG9",
"payload": {
"data": "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n
__typename\\n message\\n }\\n }\",\"variables\":{}}",
"extensions": {
"authorization": {

"accept": "application/json, text/javascript",

"content-type": "application/json; charset=UTF-8",

"X-Amz-Security-Token":
"AgEXAMPLEZ21uX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97C1ljq7wOPL8KsxP3YtDuyc/9hAj8PhI7Fvf38SgoC
+
+pEagWCveZUjKEn@zyUhBEXAMPLEj3//////////8BEXAMPLEx0ODk2NDgyNzg1NSIMolmWnpESWUoYw4BkKqEFSTM3DXULS
+ZbVc4IKjDP4VvUCKNRELeSC9pZp9PsWONoFy3vLBUJAXEXAMPLEOVG8feXfiEEA+1khgFK/
WEtwR+9zF7NaMMMse@7wN2gG2tHOeKMEXAMPLEQX+sMbytQo8iepP9PZ0z1ZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVASEtQnNRiFLEY83aKvG/tqLWNnG1SNVx7SMcfovkFDgQamm
+88y10wwAEYK7qcoceX6Z7GGcaYuIlfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1FOQNW64SONvV j
+BwDg3ht2CrNvpwjVY1joU3nmxEQUG5ne83LL5hhgMpm25kmL7enVgw2kQzmU2id4IKu@C/
WaoDRuO2F5zE63vIbxN8AYs7338+4B4HBb6BZ60Ugg96Q15RA41/
gIgxaVPxyTpDfTU5GTSLxocdYeniqqpFMtZG2n9d@u7GsQNcFkNcG3gDZm4tDo8tZbuym@a2VcF2E5hFEgXBa
+XLJICfXi/770qAEjPOx7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2xrN70/
tT13yrmPd5QYEfwzexjKrV4AmWIURg8NTHYSZJUaeyCwTom80QVFUIXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr@al96Kq87w5KNMCkcCGFnwBNFLmfnbpNgT6rUBxxs3X5nt
a0XxQFtHX21eF6qIGT8j1z+120pU+ggwlgkhUUgCH2TfqBj+MLMVVvpgqlsPKt582caFKATIFIVO
+9QupxLNEH2hz@4TMTfnU6bQC6Zz1buVe7h
+t0Lnh1YPFsLQ88anib/7TTC8k9DsBTqO@ASe8R2GbSEsm09gbbMwgEaYUhOKtGeyQsSIdhSk6XxXThrWLOEnwBCXDkICMqc
+WgtPtKOOweD1CaRs3R2qXcbNgVhleMk4IWnF8D1695AenUlLwHj0ILkCjxgNFiWAFEPH9aEXAMPLEXA==",

"Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host; x-amz-date; x-amz-security-token,
Signature=b90131a6la7c4318elc35ead5dbfdeb46339a7585bbdbeceeaff51f4022ebl1fd",

"content-encoding": "amz-1.0",

"host": "examplel234567890000.appsync-api.us-east-1.amazonaws.com",

"x-amz-date": "20200401T001010Z"

Building a real-time WebSocket client 224

AWS AppSync Developer Guide

}
}
},
"type": "start"

Example using a custom domain name:

{
"id": "key-cf23-4cb8-9fcb-152ae4fdle69",
"payload": {
"data": "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n
__typename\\n message\\n }\\n }\",\"variables\":{}}",
"extensions": {
"authorization": {
"x-api-key": "da2-12345678901234567890123456",
"host": "api.example.com"
}
}
1,
"type": "start"
}

The SigV4 signature does not need /connect to be appended to the URL, and the JSON stringified
GraphQL operation replaces data. The following is an example of a SigV4 signature request:

url: "https://examplel234567890000.appsync-api.us-east-1.amazonaws.com/graphql",
data: "{\"query\":\"subscription onCreateMessage {\\n onCreateMessage {\\n __typename
\\n message\\n J\\n }\",\"variables\":{}}",
method: "POST",
headers: {
"accept": "application/json, text/javascript",
"content-encoding": "amz-1.0",
"content-type": "application/json; charset=UTF-8",

Subscription acknowledgment message

After sending the subscription start message, the client should wait for AWS AppSync to send the
start_ack message. The start_ack message indicates that the subscription is successful.

Building a real-time WebSocket client 225

AWS AppSync Developer Guide

Subscription acknowledgment example:

"type": "start_ack",
"id": "eEXAMPLE-cf23-1234-5678-152EXAMPLE6G9"

Error message

If connection init or subscription registration fails, or if a subscription is ended from the server, the
server sends an error message to the client:

o "type": "error'": A constant <string> parameter.
« "id": <string>:The ID of the corresponding registered subscription, if relevant.

« "payload" <O0Object>: An object that contains the corresponding error information.

Example:
{
"type": "error",
"payload": {
"errors": [
{
"errorType": "LimitExceededError",
"message": "Rate limit exceeded"
}
]
}
}

Processing data messages

When a client submits a mutation, AWS AppSync identifies all of the subscribers interested in it
and sends a "type":"data" message to each using the corresponding subscription id from the
"start" subscription operation. The client is expected to keep track of the subscription id that
it sends so that when it receives a data message, the client can match it with the corresponding
subscription.

o "type": "data": A constant <string> parameter.

Building a real-time WebSocket client 226

AWS AppSync Developer Guide

e "id": <string>: The ID of the corresponding registered subscription.

« "payload" <Object>: An object that contains the subscription information.

Example:

"type": "data",
"id": "ee849ef@-cf23-4cb8-9fcb-152ae4fdleb9",
"payload": {

"data": {

"onCreateMessage": {
"__typename": "Message",
"message": "test"

}

}
}
}

Subscription unregistration message

When the app wants to stop listening to the subscription events, the client should send a message
with the following stringified JSON object:

o "type": "stop": A constant <string> parameter.

o "id": <string>: The ID of the subscription to unregister.

Example:

"type":"stop",
"id":"ee849ef0-cf23-4cb8-9fch-152ae4fdle69"

AWS AppSync sends back a confirmation message with the following stringified JSON object:

o "type": "complete": A constant <string> parameter.

« "id": <string>:The ID of the unregistered subscription.

Building a real-time WebSocket client 227

AWS AppSync Developer Guide

After the client receives the confirmation message, it receives no more messages for this particular
subscription.

Example:

"type":"complete",
"id":"eEXAMPLE-cf23-1234-5678-152EXAMPLEGS"

Disconnecting the WebSocket

Before disconnecting, to avoid data loss, the client should have the necessary logic to check that
no operation is currently in place through the WebSocket connection. All subscriptions should be
unregistered before disconnecting from the WebSocket.

Merged APlIs

As the use of GraphQL expands within an organization, trade-offs between APl ease-of-use
and API development velocity can arise. One the one hand, organizations adopt AWS AppSync
and GraphQL to simplify application development by giving developers a flexible API they can
use to securely access, manipulate, and combine data from one or more data domains with a
single network call. On the other hand, teams within an organization that are responsible for
the different data domains combined into a single GraphQL API endpoint may want the ability
to create, manage, and deploy API updates independent of each other in order to increase their
development velocities.

To resolve this tension, the AWS AppSync Merged APIs feature allows teams from different data
domains to independently create and deploy AWS AppSync APIs (e.g., GraphQL schemas, resolvers,
data sources, and functions), that can then be combined into a single, merged API. This gives
organizations the ability to maintain a simple to use, cross domain API, and a way for the different
teams that contribute to that API the ability to quickly and independently make API updates.

Merged APIs 228

AWS AppSync Developer Guide

AWS Account 1

Shared AWS
Team 1 Account
pipeline Source API

o

Merged APl | o) non-hidden schema resources
(types, datasources, functions, and
resolvers)are imported in the merge

process.
In the Merged API, these resources are
read-only.

« Merged API has its own configuration
for authentication, logging, WAF, and

X-Ray tracing.
Team 2 » The Merged APl is a separate
APl endpoint.

Team 2
Source API

= B

.

AWS Account 2

Using Merged APIs, organizations can import the resources of multiple, independent source AWS
AppSync APIs into a single AWS AppSyncMerged API endpoint. To do this, AWS AppSync allows you
to create a list of source AWS AppSync source APIs, and then merge all of the metadata associated
with the source APIs including schema, types, datasources, resolvers, and functions, into a new
AWS AppSync merged API.

During merges, there's the possibility that a merge conflict will occur due to inconsistencies in

the source API data content such as type naming conflicts when combining multiple schemas. For
simple use cases where no definitions in the source APIs conflict, there's no need to modify the
source APl schemas. The resulting Merged API simply imports all types, resolvers, data sources and
functions from the original source AWS AppSync APIs. For complex use cases where conflicts arise,
the users/teams will have to resolve the conflicts through various means. AWS AppSync provides
users with several tools and examples that can reduce merge conflicts.

Subsequent merges that are configured in AWS AppSync will propagate changes made in the
source APIs to the associated Merged API.

Merged APIs 229

AWS AppSync

Developer Guide

Merged APIs and Federation

There are many solutions and patterns in the GraphQL community for combining GraphQL

schemas and enabling team collaboration through a shared graph. AWS AppSync Merged APlIs

adopt a build time approach to schema composition, where source APIs are combined into a

separate, Merged API. An alternative approach is to layer a run time router across multiple source

APIs or sub-graphs. In this approach, the router receives a request, references a combined schema

that it maintains as metadata, constructs a request plan, and then distributes request elements

across its underlying sub-graphs/servers.The following table compares the AWS AppSync Merged

API build-time approach with router-based, run-time approaches to GraphQL schema composition:

Feature

Sub-graphs managed
independently

Sub-graphs addressable
independently

Automated schema compositi
on

Automated conflict detection

Conflict resolution via schema
directives

Supported sub-graph servers

Network complexity

Observability support

AppSync Merged API

Yes

Yes

Yes

Yes

Yes

AWS AppSync*

Single, merged APl means no
extra network hops.

Built-in monitoring, logging,
and tracing. A single, Merged

Router-based solutions

Yes

Yes

Yes

Yes

Yes

Varies

Multi-layer architecture
requires query planning and
delegation, sub-query parsing
and serialization/deserializati
on, and reference resolvers in
sub-graphs to perform joins.

Build-your-own observability
across router and all associate
d sub-graph servers. Complex

Merged APIs and Federation

230

AWS AppSync

Developer Guide

API server means simplified
debugging.

Authorization support Built in support for multiple
authorization modes.

Cross account security Built-in support for cross-
AWS cloud account associati
ons.

Subscriptions support Yes

debugging across distributed
system.

Build-your-own authorization
rules.

Build-your-own security
model.

No

* AWS AppSync Merged APIs can only be associated with AWS AppSync source APIs. If you need
support for schema composition across AWS AppSync and non-AWS AppSync sub-graphs, you can
connect one or more AWS AppSync GraphQL and/or Merged APIs into a router-based solution. For
example, see the reference blog for adding AWS AppSync APlIs as a sub-graph using a router-based
architecture with Apollo Federation v2: Apollo GraphQL Federation with AWS AppSync.

Topics

Merged API conflict resolution

Configuring schemas

Configuring authorization modes

Configuring execution roles

Configuring cross-account Merged APIls using AWS RAM

Merging
Additional support for Merged APlIs

Merged API limitations

Creating Merged APIs

Merged API conflict resolution

In the event of a merge conflict, AWS AppSync provides users with several tools and examples to
help troubleshoot the issue(s).

Merged API conflict resolution

231

https://aws.amazon.com/blogs/mobile/federation-appsync-subgraph/

AWS AppSync Developer Guide

Merged API schema directives

AWS AppSync has introduced several GraphQL directives that can be used to- reduce or resolve
conflicts across source APIs:

» @canonical: This directive sets the precedence of types/fields with similar names and data. If
two or more source APIs have the same GraphQL type or field, one of the APIs can annotate their
type or field as canonical, which will be prioritized during the merge. Conflicting types/fields that
aren't annotated with this directive in other source APIs are ignored when merged.

» @hidden: This directive encapsulates certain types/fields to remove it from the merging process.
Teams may want to remove or hide specific types or operations in the source API so only internal
clients can access specific typed data. With this directive attached, types or fields are not merged
into the Merged API.

» @renamed: This directive changes the names of types/fields to reduce naming conflicts. There
are situations where different APIs have the same type or field name. However, they all need
to be available in the merged schema. A simple way to include them all in the Merged APl is to
rename the field to something similar but different.

To show the utility schema directives provide, consider the following example:

In this example, let's assume that we want to merge two source APIs. We're given two schemas that
create and retrieve posts (e.g., comment section or social media posts). Assuming that the types
and fields are very similar, there's a high chance for conflict during a merge operation. The snippets
below show the types and fields of each schema.

The first file, called Sourcel.graphql, is a GraphQL schema that allows a user to create Posts using
the putPost mutation. Each Post contains a title and an ID. The ID is used to reference the User,
or poster's information (email and address), and the Message, or the payload (content). The User
type is annotated with the @canonical tag.

This snippet represents a file called Sourcel.graphql

type Mutation {
putPost(id: ID!, title: String!): Post
}

type Post {
id: ID!
title: String!

Merged API conflict resolution 232

AWS AppSync Developer Guide

}

type Message {
id: ID!
content: String

type User @canonical {
id: ID!
email: String!
address: String!

type Query {
singlePost(id: ID!): Post
getMessage(id: ID!): Message

The second file, called Source2.graphql, is a GraphQL schema that does very similar things as
Sourcel.graphgl. However, notice that the fields of each type are different. When merging these
two schemas, there will be merge conflicts because of these differences.

Also note how Source2.graphql also contains several directives to reduce these conflicts. The Post
type is annotated with a @hidden tag to obfuscate itself during the merge operation. The Message
type is annotated with the @renamed tag to modify the type name to ChatMessage in the event
of a naming conflict with another Message type.

This snippet represents a file called Source2.graphql

type Post @hidden {
id: ID!
title: String!
internalSecret: String!

}
type Message @renamed(to: "ChatMessage") {
id: ID!
chatId: ID!
from: User!
to: User!

Merged API conflict resolution 233

AWS AppSync

Developer Guide

Stub user so that we can link the canonical definition from Sourcel
type User {
id: ID!

type Query {
getPost(id: ID!): Post
getMessage(id: ID!): Message @renamed(to: "getChatMessage")

When the merge occurs, the result will produce the MergedSchema.graphql file:

This snippet represents a file called MergedSchema.graphqgl

type Mutation {
putPost(id: ID!, title: String!): Post

Post from Source2 was hidden so only uses the Sourcel definition.
type Post {

id: ID!

title: String!

Renamed from Message to resolve the conflict
type ChatMessage {

id: ID!

chatId: ID!

from: User!

to: User!

type Message {
id: ID!
content: String

Canonical definition from Sourcel
type User {

id: ID!

email: String!

address: String!

Merged API conflict resolution

234

AWS AppSync Developer Guide

type Query {
singlePost(id: ID!): Post
getMessage(id: ID!): Message

Renamed from getMessage
getChatMessage(id: ID!): ChatMessage

Several things occurred in the merge:

» The User type from Sourcel.graphqgl was prioritized over the User from Source2.graphql due to
the @canonical annotation.

« The Message type from Sourcel.graphqgl was included in the merge. However, the Message from
Source2.graphql had a naming conflict. Due to its @renamed annotation, it was also included in
the merge but with the alternative name ChatMessage.

« The Post type from Sourcel.graphql was included, but the Post type from Source2.graphql
wasn't. Normally, there would be a conflict on this type, but because the Post type from
Source2.graphgl had a @hidden annotation, its data was obfuscated and not included in the
merge. This resulted in no conflicts.

« The Query type was updated to include the contents from both files. However, one GetMessage
query was renamed to GetChatMessage due to the directive. This resolved the naming conflict
between the two queries with the same name.

There's also the case of no directives being added to a conflicting type. Here, the merged type will
include the union of all fields from all source definitions of that type. For instance, consider the
following example:

This schema, called Source.graphql, allows for creating and retrieving Posts. The configuration is
similar to the previous example, but with less information.

This snippet represents a file called Sourcel.graphql

type Mutation {
putPost(id: ID!, title: String!): Post
}

type Post {
id: ID!

Merged API conflict resolution 235

AWS AppSync Developer Guide

title: String!

type Query {
getPost(id: ID!): Post

This schema, called Source2.graphqgl, allows for creating and retrieving Reviews (e.g., movie rating
or restaurant reviews). Reviews are associated with the Post of the same ID value. Together, they
contain the title, post ID, and payload message of the full review post.

When merging, there will be a conflict between the two Post types. Because there are no
annotations to resolve this issue, the default behavior is to perform a union operation on the
conflicting types.

This snippet represents a file called Source2.graphql

type Mutation {
putReview(id: ID!, postId: ID!, comment: String!): Review

type Post {
id: ID!
reviews: [Review]

}

type Review {
id: ID!
postId: ID!

comment: String!

type Query {
getReview(id: ID!): Review

When the merge occurs, the result will produce the MergedSchema.graphql file:

This snippet represents a file called MergedSchema.graphql

type Mutation {
putReview(id: ID!, postId: ID!, comment: String!): Review

Merged API conflict resolution 236

AWS AppSync Developer Guide

putPost(id: ID!, title: String!): Post

}
type Post {
id: ID!
title: String!
reviews: [Review]
}
type Review {
id: ID!
postId: ID!

comment: String!

type Query {
getPost(id: ID!): Post
getReview(id: ID!): Review

Several things occurred in the merge:

The Mutation type faced no conflicts and was merged.

The Post type fields were combined via union operation. Notice how the union between the two
produced a single id, a title, and a single reviews.

The Review type faced no conflicts and was merged.

The Query type faced no conflicts and was merged.

Managing resolvers on shared types

In the above example, consider the case where Sourcel1.graphql has configured a unit resolver on
Query.getPost, which uses a DynamoDB data source named PostDatasource. This resolver
will return the id and title of a Post type. Now, consider Source2.graphql has configured a
pipeline resolver on Post . reviews, which runs two functions. Functionl has a None data source
attached to perform custom authorization checks. Function2 has a DynamoDB data source
attached to query the reviews table.

query GetPostQuery {
getPost(id: "1") {
id,

Merged API conflict resolution 237

AWS AppSync Developer Guide

title,
reviews

When the query above is run by a client to the Merged API endpoint, the AWS AppSync service
first runs the unit resolver for Query.getPost from Sourcel, which calls the PostDatasource
and returns the data from DynamoDB. Then, it runs the Post.reviews pipeline resolver in which
Functionl performs custom authorization logic and Function2 returns the reviews given the id
found in $context.source. The service processes the request as a single GraphQL run, and this
simple request will only require a single request token.

Managing resolver conflicts on shared types

Consider the following case where we also implement a resolver on Query.getPost in order to
provide multiple fields at a time beyond the field resolver in Source?2. Sourcel.graphqgl may look
like this:

This snippet represents a file called Sourcel.graphql

type Post {
id: ID!
title: String!
date: AwWSDateTime!

type Query {
getPost(id: ID!): Post

Source2.graphgl may look like this:

This snippet represents a file called Source2.graphql

type Post {
id: ID!
content: String!
contentHash: String!
author: String!

type Query {

Merged API conflict resolution 238

AWS AppSync Developer Guide

getPost(id: ID!): Post

Attempting to merge these two schemas will generate a merge error because AWS AppSync
Merged APIs don't allow multiple source resolvers to be attached to the same field. In order to
resolve this conflict, you can implement a field resolver pattern that would require Source2.graphql
to add a separate type that will define the fields that it owns from the Post type. In the following
example, we add a type called PostInfo, which contains the content and author fields that

will be resolved by Source2.graphql. Source1.graphql will implement the resolver attached to
Query.getPost, while Source2.graphql will now attach a resolver to Post.postInfoto ensure
that all data can be successfully retrieved:

type Post {

id: ID!

postInfo: PostInfo
}

type PostInfo {
content: String!
contentHash: String!
author: String!

type Query {
getPost(id: ID!): Post

}

While resolving such a conflict requires source APl schemas to be rewritten and, potentially, clients
to change their queries, the advantage of this approach is that ownership of merged resolvers
remains clear across source teams.

Configuring schemas

Two parties are responsible for configuring the schemas to create a Merged API:
« Merged API owners - Merged APl owners must configure the Merged API's authorization logic
and advanced settings like logging, tracing, caching, and WAF support.

» Associated source APl owners - Associated APl owners must configure the schemas, resolvers,
and datasources that make up the Merged API.

Configuring schemas 239

AWS AppSync Developer Guide

Because your Merged API's schema is created from the schemas of your associated source APIs, it's
read only. This means changes to the schema must be initiated in your source APlIs. In the AWS
AppSync console, you can toggle between your Merged schema and the individual schemas of the
source APIs included in your Merged API using the drop-down list above the Schema window.

Configuring authorization modes

Multiple authorization modes are available to protect your Merged API. To learn more about
authorization modes in AWS AppSync, see Authorization and authentication.

The following authorization modes are available to use with Merged APIs:

« API key: The simplest authorization strategy. All requests must include an API key under the x-
api-key request header. Expired API keys are kept for 60 days after the expiration date.

o AWS Identity and Access Management (IAM): The AWS IAM authorization strategy authorizes all
requests that are sigv4 signed.

« Amazon Cognito User Pools: Authorize your users via Amazon Cognito User Pools to achieve
more fine-grained control.

o AWS Lambda Authorizers: A serverless function that allows you to authenticate and authorize
access to your AWS AppSync API using custom logic.

« OpenlD Connect: This authorization type enforces OpenID connect (OIDC) tokens provided by an
OIDC-compliant service. Your application can leverage users and privileges defined by your OIDC
provider for controlling access.

The authorization modes of a Merged API are configured by the Merged API owner. At the time of
a merge operation, the Merged API must include the primary authorization mode configured on

a source API either as its own primary authorization mode or as a secondary authorization mode.
Otherwise, it will be incompatible, and the merge operation will fail with a conflict. When using
multi-auth directives in the source APIs, the merging process is able to automatically merge these
directives into the unified endpoint. In the case where the primary authorization mode of the
source API doesn't match the primary authorization mode of the Merged API, it will automatically
add these auth directives to ensure that the authorization mode for the types in the source APl is
consistent.

Configuring authorization modes 240

https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html

AWS AppSync Developer Guide

Configuring execution roles

When you create a Merged API, you need to define a service role. An AWS service role is an AWS

Identity and Access Management (IAM) role that is used by AWS services to perform tasks on your

behalf.

In this context, it's necessary for your Merged API to run resolvers that access data from
the data sources configured in your source APIs. The required service role for this is the
mergedApiExecutionRole, and it must have explicit access to run requests on source APIs

included in your merged API via the appsync:SourceGraphQL IAM permission. During the run of

a GraphQL request, the AWS AppSync service will assume this service role and authorize the role to

perform the appsync:SourceGraphQL action.

AWS AppSync supports allowing or denying this permission on specific top-level fields within the
request like how the IAM authorization mode works for IAM APIs. For non-top-level fields, AWS
AppSync requires you to define the permission on the source API ARN itself. In order to restrict
access to specific non-top-level fields in the Merged API, we recommend implementing custom
logic within your Lambda or hiding the source API fields from the Merged API using the @hidden

directive. If you want to allow the role to perform all data operations within a source API, you can

add the policy below. Note that the first resource entry allows access to all top-level fields and the

second entry covers child resolvers that authorize on the source API resource itself:

{
"Version": "2012-10-17",
"Statement": [{

"Effect": "Allow",

"Action": ["appsync:SourceGraphQL"],

"Resource": [
"arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApild/*",
"arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId"]

1]
}

If you want to limit the access to only a specific top-level field, you can use a policy like this:

"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": ["appsync:SourceGraphQL"],

Configuring execution roles

241

AWS AppSync Developer Guide

"Resource": [
"arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId/types/
Query/fields/<Field-1>",
"arn:aws:appsync:us-west-2:123456789012:apis/YourSourceGraphQLApiId"]
1]

You can also use the AWS AppSync console API creation wizard to generate a service role to allow
your Merged API to access resources configured in source APIs that are in the same account as your
merged API. In the case where your source APIs are not in the same account as your merged API,
you must first share your resources using AWS Resource Access Manager (AWS RAM).

Configuring cross-account Merged APIs using AWS RAM

When you create a Merged API, you can optionally associate source APIs from other accounts that
have been shared via AWS Resource Access Manager (AWS RAM). AWS RAM helps you share your
resources securely across AWS accounts, within your organization or organizational units (OUs), and
with IAM roles and users.

AWS AppSync integrates with AWS RAM in order to support configuring and accessing source APIs
across multiple accounts from a single Merged API. AWS RAM allows you to create a resource share,
or a container of resources and the permission sets that will be shared for each of them. You can
add AWS AppSync APIs to a resource share in AWS RAM. Within a resource share, AWS AppSync
provides three different permission sets that can be associated with an AWS AppSync APl in RAM:

1. AWSRAMPermissionAppSyncSourceApiOperationAccess: The default permission set that's
added when sharing an AWS AppSync APl in AWS RAM if no other permission is specified. This
permission set is used for sharing a source AWS AppSync APl with a Merged APl owner. This
permission set includes the permission for appsync:AssociateMergedGraphqlApi on the
source APl as well as the appsync:SourceGraphQL permission required to access the source
API resources at runtime.

2. AWSRAMPermissionAppSyncMergedApiOperationAccess: This permission set should be
configured when sharing a Merged API with a source APl owner. This permission set will give the
source API the ability to configure the Merged API including the ability to associate any source
APIs owned by the target principal to the Merged APl and to read and update the source API
associations of the Merged API.

3. AWSRAMPermissionAppSyncAllowSourceGraphQLAccess: This permission set allows the
appsync:SourceGraphQL permission to be used with an AWS AppSync APL. It is intended to

Configuring cross-account Merged APIs using AWS RAM 242

AWS AppSync Developer Guide

be used for sharing a source API with a Merged API owner. In contrast to the default permission
set for source API operation access, this permission set only includes the runtime permission
appsync:SourceGraphQL. If a user opts to share the Merged API operation access to a source
API owner, they will also need to share this permission from the source API to the Merged API
owner in order to have runtime access through the Merged API endpoint.

AWS AppSync also supports customer-managed permissions. When one of the provided AWS-
managed permissions doesn't work, you can create your own customer-managed permission.
Customer-managed permissions are managed permissions that you author and maintain by
precisely specifying which actions can be performed under which conditions with resources shared
using AWS RAM. AWS AppSync allows you to choose from the following actions when creating your
own permission:

1. appsync:AssociateSourceGraphqglApi

appsync:AssociateMergedGraphqlApi

appsync:GetSourceApiAssociation

appsync:UpdateSourceApiAssociation

appsync:StartSchemaMerge

appsync:ListTypesByAssociation

N o v A W DN

appsync:SourceGraphQL

Once you have properly shared a source APl or Merged API in AWS RAM and, if necessary, the
resource share invitation has been accepted, it will be visible in the AWS AppSync console

when you create or update the source API associations on your Merged API. You can also list all
AWS AppSync APIs that have been shared using AWS RAM with your account regardless of the
permission set by calling the ListGraphqlApis operation provided by AWS AppSync and using
the OTHER_ACCOUNTS owner filter.

® Note

Sharing via AWS RAM requires the caller in AWS RAM to have permission to perform the
appsync:PutResourcePolicy action on any API that is being shared.

Configuring cross-account Merged APIs using AWS RAM 243

AWS AppSync Developer Guide

Merging
Managing merges

Merged APIs are meant to support team collaboration on a unified AWS AppSync endpoint. Teams
can independently evolve their own isolated source GraphQL APIs in the backend while the AWS
AppSync service manages the integration of the resources into the single Merged APl endpoint in
order to reduce friction in collaboration and decrease development lead times.

Auto-merges

Source APIs associated with your AWS AppSync Merged API can be configured to automatically
merge (auto-merge) into the Merged API after any changes are made to the source API. This
ensures that the changes from the source API are always propagated to the Merged API endpoint
in the background. Any change in the source API schema will be updated in the Merged API

so long as it does not introduce a merge conflict with an existing definition in the Merged API.

If the update in the source APl is updating a resolver, data source, or function, the imported
resource will also be updated.When a new conflict is introduced that cannot be automatically
resolved (auto-resolved), the Merged APl schema update is rejected due to an unsupported conflict
during the merge operation. The error message is available in the console for each source API
association that has a status of MERGE_FAILED. You can also inspect the error message by calling
the GetSourceApiAssociation operation for a given source API association using the AWS SDK
or using the AWS CLI like so:

aws appsync get-source-api-association --merged-api-identifier <Merged API ARN> --
association-id <SourceApiAssociation id>

This will produce a result in the following format:

{
"sourceApiAssociation": {
"associationId": "<association id>",
"associationArn": "<association arn>",
"sourceApiId": "<source api id>",
"sourceApiArn": "<source api arn>",
"mergedApiArn": "<merged api arn>",

"mergedApiId": "<merged api id>",
"sourceApiAssociationConfig": {
"mergeType": "MANUAL_MERGE"

Merging 244

AWS AppSync Developer Guide

1,

"sourceApiAssociationStatus": "MERGE_FAILED",

"sourceApiAssociationStatusDetail": "Unable to resolve conflict on object with
name title: Merging is not supported for fields with different types."

}

Manual merges

The default setting for a source API is a manual merge. To merge any changes that have occurred in
the source APIs since the Merged API was last updated, the source APl owner can invoke a manual
merge from the AWS AppSync console or via the StartSchemaMerge operation available in the
AWS SDK and AWS CLI.

Additional support for Merged APIs

Configuring subscriptions

Unlike router-based approaches to GraphQL schema composition, AWS AppSync Merged APIs
provide built-in support for GraphQL subscriptions. All subscription operations defined in
your associated source APIs will automatically merge and function in your Merged API without
modification. To learn more about how AWS AppSync supports subscriptions via serverless
WebSockets connection, see Real-time data.

Configuring observability

AWS AppSync Merged APIs provide built-in logging, monitoring and metrics via Amazon
CloudWatch. AWS AppSync also provides built-in support for tracing via AWS X-Ray.

Configuring custom domains

AWS AppSync Merged APIs provide built-in support for using custom domains with your Merged
API's GraphQL and Real-time endpoints.

Configuring caching

AWS AppSync Merged APIs provide built-in support for optionally caching request-level and/
or resolver-level responses as well as response compression. To learn more, see Caching and

compression.

Additional support for Merged APIs 245

https://docs.aws.amazon.com/appsync/latest/devguide/aws-appsync-real-time-data.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html
https://docs.aws.amazon.com/appsync/latest/devguide/monitoring.html
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html
https://docs.aws.amazon.com/appsync/latest/devguide/custom-domain-name.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html

AWS AppSync Developer Guide

Configuring private APIs

AWS AppSync Merged APIs provide built-in support for Private APIs that limit access to your
Merged API's GraphQL and Real-time endpoints to traffic originating from VPC endpoints that you
can configure.

Configuring firewall rules

AWS AppSync Merged APIs provide built-in support for AWS WAF, which enables you to protect
your APIs by defining web application firewall rules.

Configuring audit logs

AWS AppSync Merged APlIs provide built-in support for AWS CloudTrail, which enables you to
configure and manage audit logs.

Merged API limitations

When developing Merged APIs, take note of the following rules:

1. A Merged API cannot be a source API for another Merged API.
2. A source API cannot be associated with more than one Merged API.
3. The default size limit for a Merged APl schema document is 10 MB.

4. The default number of source APIs that can be associated with a Merged APl is 10. However, you
can request a limit increase if you need more than 10 source APIs in your Merged API.

Creating Merged APIs

To create a Merged API in the console

1. Signin to the AWS Management Console and open the AWS AppSync console.

e Inthe Dashboard, choose Create API.
2. Choose Merged API, then choose Next.

3. Inthe Specify API details page, enter in the following information:

a. Under API Details, enter in the following information:

Merged API limitations 246

https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/WAF-Integration.html
https://docs.aws.amazon.com/appsync/latest/devguide/cloudtrail-logging.html
https://console.aws.amazon.com/appsync/

AWS AppSync Developer Guide

i. Specify your merged API's APl name. This field is a way to label your GraphQL API to
conveniently distinguish it from other GraphQL APIs.

ii. Specify the Contact details. This field is optional and attaches a name or group to the
GraphQL API. It's not linked to or generated by other resources and works much like
the API name field.

Under Service role, you must attach an IAM execution role to your merged API so that
AWS AppSync can securely import and use your resources at runtime. You can choose

to Create and use a new service role, which will allow you to specify the policies and
resources that AWS AppSync will use. You can also import an existing IAM role by choosing
Use an existing service role, then selecting the role from the drop-down list.

Under Private API configuration, you can choose to enable private API features. Note that
this choice cannot be changed after creating the merged API. For more information about
private APIs, see Using AWS AppSync Private APIs.

Choose Next after you're done.

4. Next, you must add the GraphQL APIs that will be used as the foundation for your merged API.
In the Select source APIs page, enter in the following information:

a.

In the APIs from your AWS account table, choose Add Source APIs. In the list of GraphQL
APIs, each entry will contain the following data:

i. Name: The GraphQL API's API name field.

ii. APIID: The GraphQL API's unique ID value.

iii. Primary auth mode: The default authorization mode for the GraphQL API. For more
information about authorization modes in AWS AppSync, see Authorization and
authentication.

iv. Additonal auth mode: The secondary authorization modes that were configured in
the GraphQL API.

v. Choose the APIs that you will use in the merged API by selecting the checkbox next
to the API's Name field. Afterwards, choose Add Source APIs. The selected GraphQL
APIs will appear in the APIs from your AWS accounts table.

In the APIs from other AWS accounts table, choose Add Source APIs. The GraphQL APIs
in this list come from other accounts that are sharing their resources to yours through
AWS Resource Access Manager (AWS RAM). The process for selecting GraphQL APlIs in

Creating Merged APIs 247

https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html

AWS AppSync Developer Guide

this table is the same as the process in the previous section. For more information about
sharing resources through AWS RAM, see What is AWS Resource Access Manager?.

Choose Next after you're done.

¢. Add your primary auth mode. See Authorization and authentication for more information.
Choose Next.

d. Review your inputs, then choose Create API.

RDS introspection

AWS AppSync makes building APIs from existing relational databases easy. Its introspection utility
can discover models from database tables and propose GraphQL types. The AWS AppSync console's
Create API wizard can instantly generate an API from an Aurora MySQL or PostgreSQL database. It
automatically creates types and JavaScript resolvers to read and write data.

AWS AppSync provides direct integration with Amazon Aurora databases through the Amazon RDS
Data API. Rather than requiring a persistent database connection, the Amazon RDS Data API offers
a secure HTTP endpoint that AWS AppSync connects to for running SQL statements. You can use
this to create a relational database API for your MySQL and PostgreSQL workloads on Aurora.

Building an API for your relational database with AWS AppSync has several advantages:

» Your database is not directly exposed to clients, decoupling the access point from the database
itself.

» You can build purpose-built APIs tailored to the needs of different applications, removing the
need for custom business logic in frontends. This aligns with the Backend-For-Frontend (BFF)
pattern.

« Authorization and access control can be implemented at the AWS AppSync layer using various
authorization modes to control access. No additional compute resources are required to connect
to the database, such as hosting a web server or proxying connections.

» Real-time capabilities can be added via subscriptions, with data mutations made through
AppSync automatically pushed to connected clients.

 Clients can connect to the API over HTTPS using common ports like 443.

AWS AppSync makes building APIs from existing relational databases easy. Its introspection utility
can discover models from database tables and propose GraphQL types. The AWS AppSync console's

RDS introspection 248

https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/appsync/latest/devguide/security-authz.html

AWS AppSync Developer Guide

Create API wizard can instantly generate an API from an Aurora MySQL or PostgreSQL database. It
automatically creates types and JavaScript resolvers to read and write data.

AWS AppSync provides integrated JavaScript utilities to simplify writing SQL statements in
resolvers. You can use AWS AppSync's sql tag templates for static statements with dynamic
values, or the rds module utilities to build statements programmatically. See the resolver function

reference for RDS data sources and built-in modules for more.

Using the introspection feature (console)

For a detailed tutorial and getting started guide, see Tutorial: Aurora PostgreSQL Serverless with
Data API.

The AWS AppSync console allows you to create an AWS AppSync GraphQL API from your existing
Aurora database configured with the Data APl in just a few minutes. This quickly generates an
operational schema based on your database configuration. You can use the API as-is or build on it
to add features.

1. Signin to the AWS Management Console and open the AppSync console.

e Inthe Dashboard, choose Create API.

2. Under API options, choose GraphQL APIs, Start with an Amazon Aurora cluster, then Next.

a. Enter an API name. This will be used as an identifier for the API in the console.

b. For contact details, you can enter a point of contact to identify a manager for the API.
This is an optional field.

c. Under Private API configuration, you can enable private API features. A private API can
only be accessed from a configured VPC endpoint (VPCE). For more information, see
Private APIs.

We don't recommend enabling this feature for this example. Choose Next after reviewing
your inputs.

3. In the Database page, choose Select database.
a. You need to choose your database from your cluster. The first step is to choose the Region
in which your cluster exists.

b. Choose the Aurora cluster from the drop-down list. Note that you must have created and
enabled a corresponding data API before using the resource.

Using the introspection feature (console) 249

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-rds-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-reference-rds-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/built-in-modules-js.html#built-in-rds-modules
https://docs.aws.amazon.com/appsync/latest/devguide/aurora-serverless-tutorial-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/aurora-serverless-tutorial-js.html
https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/using-private-apis.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.enabling

AWS AppSync Developer Guide

c. Next, you must add the credentials for your database to the service. This is primarily done
using AWS Secrets Manager. Choose the Region in which your secret exists. For more
information on how to retrieve secret information, see Find secrets or Retrieve secrets.

d. Add your secret from the drop-down list. Note that the user must have read permissions
for your database.

4. Choose Import.

AWS AppSync will start introspecting your database, discovering tables, columns, primary keys,
and indexes. It checks that the discovered tables can be supported in a GraphQL API. Note that
to support creating new rows, tables need a primary key, which can use multiple columns. AWS
AppSync maps table columns to type fields as follows:

Data type Field type
VARCHAR String
CHAR String
BINARY String
VARBINARY String
TINYBLOB String
TINYTEXT String
TEXT String
BLOB String
MEDIUMTEXT String
MEDIUMBLOB String
LONGTEXT String
LONGBLOB String
BOOL Boolean

Using the introspection feature (console) 250

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console

AWS AppSync Developer Guide

BOOLEAN Boolean
BIT Int
TINYINT Int
SMALLINT Int
MEDIUMINT Int

INT Int
INTEGER Int
BIGINT Int

YEAR Int
FLOAT Float
DOUBLE Float
DECIMAL Float
DEC Float
NUMERIC Float
DATE AWSDate
TIMESTAMP String
DATETIME String
TIME AWSTime
JSON AWSJson
ENUM ENUM

5. Once table discovery is complete, the Database section will be populated with your
information. In the new Database tables section, the data from the table may already be
populated and converted to a type for your schema. If you don't see some of the required data,

Using the introspection feature (console) 251

AWS AppSync Developer Guide

you can check for it by choosing Add tables, clicking on the checkboxes for those types in the
modal that appears, then choosing Add.

To remove a type from the Database tables section, click on the checkbox next to the type
you want to remove, then choose Remove. The removed types will be placed in the Add tables
modal if you want to add them again later.

Note that AWS AppSync uses the table names as type names, but you can rename them - for
example, changing a plural table name like movies to the type name Movie. To rename a type
in the Database tables section, click on the checkbox of the type you want to rename, then
click on the pencil icon in the Type name column.

To preview the content of the schema based on your selections, choose Preview schema. Note
that this schema cannot be empty, so you'll have to have at least one table converted to a
type. Also, this schema cannot exceed 1 MB in size.

« Under Service role, choose whether to create a new service role specifically for this import
or use an existing role.

6. Choose Next.

7. Next, choose whether to create a read-only API (queries only) or an API for reading and writing
data (with queries and mutations). The latter also supports real-time subscriptions triggered
by mutations.

8. Choose Next.

9. Review your choices and then choose Create API. AWS AppSync will create the APl and attach
resolvers to queries and mutations. The generated API is fully operational and can be extended
as needed.

Using the introspection feature (API)

You can use the StartDataSourceIntrospection introspection API to discover models
in your database programmatically. For more details on the command, see using the
StartDataSourceIntrospection APl

To use StartDataSourceIntrospection, provide your Aurora cluster Amazon Resource
Name (ARN), database name, and AWS Secrets Manager secret ARN. The command starts the
introspection process. You can retrieve the results with the GetDataSourceIntrospection
command. You can specify whether the command should return the Storage Definition Language

Using the introspection feature (API) 252

https://docs.aws.amazon.com/appsync/latest/APIReference/API_StartDataSourceIntrospection.html

AWS AppSync Developer Guide

(SDL) string for the discovered models. This is useful for generating an SDL schema definition
directly from the discovered models.

For example, if you have the following Data definition language (DDL) statement for a simple
Todos table:

create table if not exists public.todos

(

id serial constraint todos_pk primary key,
description text,

due timestamp,

"createdAt" timestamp default now()

);
You start the introspection with the following.

aws appsync start-data-source-introspection \
--rds-data-api-config resourceArn=<cluster-arn>,secretArn=<secret-
arn>,databaseName=database

Next, use the GetDataSourceIntrospection command to retrieve the result.

aws appsync get-data-source-introspection \
--introspection-id al234567-8910-abcd-efgh-identifier \
--include-models-sdl

This returns the following result.

"introspectionId": "al234567-8910-abcd-efgh-identifier",
"introspectionStatus": "SUCCESS",
"introspectionStatusDetail": null,
"introspectionResult": {

"models": [

{
"name": "todos",
"fields": [
{
"name": "description",
"type": {
"kind": "Scalar",
"name": "String",

Using the introspection feature (API) 253

AWS AppSync Developer Guide

"type": null,
"values": null

},
"length": 0
},
{
"name": "due",
"type": {
"kind": "Scalar",
"name": "AWSDateTime",
"type": null,
"values": null
},
"length": 0
},
{
"name": "id",
"type": {
"kind": "NonNull",
"name": null,
"type": {
"kind": "Scalar",
"name": "Int",
"type": null,
"values": null
I
"values": null
I
"length": 0
I
{
"name": "createdAt",
"type": {
"kind": "Scalar",
"name": "AWSDateTime",
"type": null,
"values": null
I
"length": 0
}

iF

"primaryKey": {
"name": "PRIMARY_KEY",
"fields": [

Using the introspection feature (API) 254

AWS AppSync

Developer Guide

Ilidll

}I

"indexes": [],

"sdl": "type todos\n{\ndescription:

Int!\n\ncreatedAt: AW
SDateTime\n}\n"
}
1,

"nextToken": null

String\n\ndue: AWSDateTime\n\nid:

Using the introspection feature (API)

255

AWS AppSync Developer Guide

Building a client application

You can connect to your AWS AppSync GraphQL API using any GraphQL client, but we highly
recommend the Amplify client. Amplify not only autogenerates strongly-typed client SDKs

for your GraphQL API but also offers support for real-time data and enhanced GraphQL query
capabilities in client applications. For web applications, Amplify can produce a JavaScript client.
For those targeting cross-platform or mobile environments, Amplify caters to Android, iOS, and
React Native. To delve deeper into client code generation for these platforms, consult the Amplify
documentation. Here's a guide to kickstart your journey with a JavaScript React application:

(@ Note
You need to install and configure both npm and the Amazon CLI before getting started.

To get started:

1. On your local machine, navigate to your project's directory. Install the Amplify library using the
command below:

npm install aws-amplify
2. Next, add your Amplify configuration.

Open your code's index.js file. Import the Amplify library:

import { Amplify } from 'aws-amplify'

Add your configurations by replacing the placeholder values with your API's values:

Amplify.configure({
aws_appsync_graphqglEndpoint: '<YOUR API URL>',
aws_appsync_region: '<YOUR API REGION>',
aws_appsync_authenticationType: 'API_KEY',
aws_appsync_apiKey: '<YOUR API KEY>'

)

You can find these values in your API's settings page. The code will follow the format below:

256

https://docs.amplify.aws/cli/graphql/client-code-generation/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://aws.amazon.com/cli/

AWS AppSync Developer Guide

import { Amplify } from 'aws-amplify'

Amplify.configure({
aws_appsync_graphglEndpoint: '<YOUR API URL>',
aws_appsync_region: '<YOUR API REGION>',
aws_appsync_authenticationType: 'API_KEY',
aws_appsync_apiKey: '<YOUR API KEY>'

)

3. Using the Amplify toolchain, you have the option to autogenerate operations based on your
schema, which saves you the effort of manual scripting. If your GraphQL schema is already
present in the project's directory, run the following command:

npx @aws-amplify/cli codegen add

Alternatively, you can directly reference your AWS AppSync API by its ID:

npx @aws-amplify/cli codegen add --apild 123456789@abcdefghijklmnop --region us-
east-2

The command will prompt you for project specifics and where to save the codegen files. Choose
src/graphql/ as the destination.

4. Lastly, update your App. js file to leverage your freshly minted APl and codegen's features
together:

import './App.css';

import { useState } from 'react';

import { API } from "aws-amplify";

import { listThings } from './graphqgl/queries’;

function App() {
const [things, setThings] = useState([]);
async function fetchThings() {
const response = await API.graphql({
query: listThings,
variables: {
// <your variables, optional>
.
1)

setThings(response.data.listThings.items);

257

Developer Guide

AWS AppSync
}
fetchThings()
return (
<div>
<div>
<hl>Articles</hl>
{things.map((thing) => (
<div key={thing.id}>
<h2>{thing.title}</h2>
<p>{thing.content}</p>
</div>
))}
</div>
</div>
I
}

258

AWS AppSync Developer Guide

Resolver tutorials (JavaScript)

Data sources and resolvers are how AWS AppSync translates GraphQL requests and fetches
information from your AWS resources. AWS AppSync has support for automatic provisioning

and connections with certain data source types. AWS AppSync supports AWS Lambda, Amazon
DynamoDB, relational databases (Amazon Aurora Serverless), Amazon OpenSearch Service, and
HTTP endpoints as data sources. You can use a GraphQL API with your existing AWS resources or
build data sources and resolvers. This section takes you through this process in a series of tutorials
for better understanding how the details work and tuning options.

Topics

 Tutorial: DynamoDB JavaScript resolvers

« Tutorial: Lambda resolvers

o Tutorial: Local resolvers

« Tutorial: Combining GraphQL resolvers

« Tutorial: Amazon OpenSearch Service Resolvers

o Tutorial: DynamoDB Transaction resolvers

» Tutorial: DynamoDB batch resolvers

o Tutorial: HTTP resolvers

o Tutorial: Aurora PostgreSQL with Data API

Tutorial: DynamoDB JavaScript resolvers

In this tutorial, you will import your Amazon DynamoDB tables to AWS AppSync and connect them
to build a fully-functional GraphQL API using JavaScript pipeline resolvers that you can leverage in
your own application.

You will use the AWS AppSync console to provision your Amazon DynamoDB resources, create your
resolvers, and connect them to your data sources. You will also be able to read and write to your
Amazon DynamoDB database through GraphQL statements and subscribe to real-time data.

There are specific steps that must be completed in order for GraphQL statements to be translated
to Amazon DynamoDB operations and for responses to be translated back into GraphQL. This

Tutorial: DynamoDB JavaScript resolvers 259

AWS AppSync Developer Guide

tutorial outlines the configuration process through several real-world scenarios and data access
patterns.

Creating your GraphQL API
To create a GraphQL API in AWS AppSync

1. Open the AppSync console and choose Create API.
2. Select Design from scratch and choose Next.

3. Name your APl PostTutorialAPI, then choose Next. Skip to the review page while keeping
the rest of the options set to their default values and choose Create.

The AWS AppSync console creates a new GraphQL API for you. By detault, it's using the API key
authentication mode. You can use the console to set up the rest of the GraphQL API and run
queries against it for the rest of this tutorial.

Defining a basic post API

Now that you have your GraphQL API, you can set up a basic schema that allows the basic creation,
retrieval, and deletion of post data.

To add data to your schema

1. In your API, choose the Schema tab.

2. We will create a schema that defines a Post type and an operation addPost to add and get
Post objects. In the Schema pane, replace the contents with the following code:

schema {
query: Query
mutation: Mutation

}

type Query {
getPost(id: ID): Post

}
type Mutation {
addPost(
id: ID!

author: String!

Creating your GraphQL API 260

AWS AppSync

Developer Guide

title: String!
content: String!

url: String!

): Post!

}

type Post {
id: ID!
author: String
title: String
content: String
url: String
ups: Int!
downs: Int!
version: Int!

}

3. Choose Save Schema.

Setting up your Amazon DynamoDB table

The AWS AppSync console can help provision the AWS resources needed to store your own
resources in an Amazon DynamoDB table. In this step, you'll create an Amazon DynamoDB table to

store your posts. You'll also set up a secondary index that we'll use later.

To create your Amazon DynamoDB table

1. On the Schema page, choose Create Resources.

N o ouopa wN

. Choose Use existing type, then choose the Post type.
. In the Additional Indexes section, choose Add Index.
. Name the index author-index.

Set the Primary key to author and the Sort key to None.

Choose Create.

Disable Automatically generate GraphQL. In this example, we'll create the resolver ourselves.

You now have a new data source called PostTable, which you can see by visiting Data sources

in the side tab. You will use this data source to link your queries and mutations to your Amazon
DynamoDB table.

Setting up your Amazon DynamoDB table

261

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

AWS AppSync Developer Guide

Setting up an addPost resolver (Amazon DynamoDB Putitem)

Now that AWS AppSync is aware of the Amazon DynamoDB table, you can link it to individual
queries and mutations by defining resolvers. The first resolver you create is the addPost pipeline
resolver using JavaScript, which enables you to create a post in your Amazon DynamoDB table. A
pipeline resolver has the following components:

» The location in the GraphQL schema to attach the resolver. In this case, you are setting up a
resolver on the createPost field on the Mutation type. This resolver will be invoked when the
caller calls mutation { addPost(...){...} }.

« The data source to use for this resolver. In this case, you want to use the DynamoDB data source
you defined earlier, so you can add entries into the post-table-for-tutorial DynamoDB
table.

» The request handler. The request handler is a function that handles the incoming request from
the caller and translates it into instructions for AWS AppSync to perform against DynamoDB.

» The response handler. The job of the response handler is to handle the response from
DynamoDB and translate it back into something that GraphQL expects. This is useful if the shape
of the data in DynamoDB is different to the Post type in GraphQL, but in this case they have the
same shape, so you just pass the data through.

To set up your resolver

1. In your API, choose the Schema tab.
2. In the Resolvers pane, find the addPost field under the Mutation type, then choose Attach.
3. Choose your data source, then choose Create.

4. In your code editor, replace the code with this snippet:

import { util } from 'e@aws-appsync/utils'
import * as ddb from 'e@aws-appsync/utils/dynamodb'

export function request(ctx) {

const item = { ...ctx.arguments, ups: 1, downs: @, version: 1 }
const key = { id: ctx.args.id ?? util.autoId() }

return ddb.put({ key, item })

}

export function response(ctx) {

Setting up an addPost resolver (Amazon DynamoDB Putltem) 262

AWS AppSync Developer Guide

return ctx.result

}

5. Choose Save.

(® Note

In this code, you use the DynamoDB module utils that allow you to easily create DynamoDB
requests.

AWS AppSync comes with a utility for automatic ID generation called util.autoId(), whichis
used to generate an ID for your new post. If you do not specify an ID, the utility will automatically
generate it for you.

const key = { id: ctx.args.id ?? util.autoId() 3}

For more information about the utilities available for JavaScript, see JavaScript runtime features

for resolvers and functions.

Call the API to add a post

Now that the resolver has been configured, AWS AppSync can translate an incoming addPost
mutation to an Amazon DynamoDB PutItem operation. You can now run a mutation to put
something in the table.

To run the operation

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation:

mutation addPost {
addPost/(
id: 123,
author: "AUTHORNAME"
title: "OQur first post!"
content: "This is our first post."
url: "https://aws.amazon.com/appsync/"
) {
id

Setting up an addPost resolver (Amazon DynamoDB Putltem) 263

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html
https://docs.aws.amazon.com/appsync/latest/devguide/resolver-util-reference-js.html

AWS AppSync

Developer Guide

author
title
content
url

ups
downs
version

3. Choose Run (the orange play button), then choose addPost. The results of the newly created
post should appear in the Results pane to the right of the Queries pane. It should look similar to

the following:

{
"data": {
"addPost": {
"id": "123",
"author": "AUTHORNAME",
"title": "Our first post!",
"content": "This is our first post.",
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": 0O,
"version": 1
}
}
}

The following explanation shows what occurred:

1. AWS AppSync received an addPost mutation request.

2. AWS AppSync executes the request handler of the resolver. The ddb. put function creates a

PutItem request that looks like this:

{

operation: 'PutItem’,
key: { id: { S: '123' } },
attributeValues: {

downs: { N: @ },

author: { S: 'AUTHORNAME' 1},

Setting up an addPost resolver (Amazon DynamoDB Putltem)

264

AWS AppSync Developer Guide

ups: { N: 1 3},
title: { S: 'Our first post!' 3},
version: { N: 1 },
content: { S: 'This is our first post.' 3},
url: { S: 'https://aws.amazon.com/appsync/' }
}
}

3. AWS AppSync uses this value to generate and execute a Amazon DynamoDB PutItem request.

4. AWS AppSync took the results of the PutItem request and converted them back to GraphQL
types.

{
"id" . "123",
"author": "AUTHORNAME",
"title": "Our first post!",
"content": "This is our first post.",
"url": "https://aws.amazon.com/appsync/",
"ups" : 1,
"downs" : O,
"version" : 1
}

5. The response handler returns the result immediately (return ctx.result).

6. The final result is visible in the GraphQL response.

Setting up the getPost resolver (Amazon DynamoDB Getltem)

Now that you're able to add data to the Amazon DynamoDB table, you need to set up the getPost
query so it can retrieve that data from the table. To do this, you set up another resolver.

To add your resolver

1. In your API, choose the Schema tab.

2. In the Resolvers pane on the right, find the getPost field on the Query type and then choose
Attach.

3. Choose your data source, then choose Create.

4. In the code editor, replace the code with this snippet:

import * as ddb from 'e@aws-appsync/utils/dynamodb'’

Setting up the getPost resolver (Amazon DynamoDB Getltem) 265

AWS AppSync Developer Guide

export function request(ctx) {
return ddb.get({ key: { id: ctx.args.id } })
}

export const response = (ctx) => ctx.result

5. Save your resolver.

(® Note

In this resolver, we use an arrow function expression for the response handler.

Call the API to get a post

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming
getPost query to an Amazon DynamoDB GetItem operation. You can now run a query to retrieve
the post you created earlier.

To run your query

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following code, and use the id that you copied after creating your
post:

query getPost {
getPost(id: "123") {
id
author
title
content
url
ups
downs
version

}

3. Choose Run (the orange play button), then choose getPost. The results of the newly created
post should appear in the Results pane to the right of the Queries pane.

Setting up the getPost resolver (Amazon DynamoDB Getltem) 266

AWS AppSync Developer Guide

4. The post retrieved from Amazon DynamoDB should appear in the Results pane to the right of
the Queries pane. It should look similar to the following:

{
"data": {
"getPost": {
"id". "123",
"author": "AUTHORNAME",
"title": "Our first post!",
"content": "This is our first post.",
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": 0O,
"version": 1
}
}
}

Alternatively, take the following example:

query getPost {
getPost(id: "123") {
id
author
title

If your getPost query only needs the id, author, and title, you can change your request
function to use projection expressions to specify only the attributes that you want from your
DynamoDB table to avoid unnecessary data transfer from DynamoDB to AWS AppSync. For
example, the request function may look like the snippet below:

import * as ddb from 'e@aws-appsync/utils/dynamodb’

export function request(ctx) {
return ddb.get({
key: { id: ctx.args.id },
projection: ['author', 'id',6 'title'],
1)
}

Setting up the getPost resolver (Amazon DynamoDB Getltem) 267

AWS AppSync Developer Guide

export const response = (ctx) => ctx.result

You can also use a selectionSetList with getPost to represent the expression:

import * as ddb from 'eaws-appsync/utils/dynamodb'

export function request(ctx) {
const projection = ctx.info.selectionSetList.map((field) => field.replace('/', '.'))
return ddb.get({ key: { id: ctx.args.id }, projection })

}

export const response = (ctx) => ctx.result

Create an updatePost mutation (Amazon DynamoDB Updateltem)

So far, you can create and retrieve Post objects in Amazon DynamoDB. Next, you'll set up a new
mutation to update an object. Compared to the addPost mutation that requires all fields to

be specified, this mutation allows you to only specify the fields that you want to change. It also
introduced a new expectedVersion argument that allows you to specify the version that you
want to modify. You'll set up a condition that makes sure that you are modifying the latest version
of the object. You'll do this using the UpdateItem Amazon DynamoDB operation.sc

To update your resolver

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Mutation type to add a new updatePost mutation as follows:

type Mutation {
updatePost(

id: ID!,
author: String,
title: String,
content: String,
url: String,
expectedVersion: Int!

): Post
addPost(
id: ID

Create an updatePost mutation (Amazon DynamoDB Updateltem) 268

https://docs.aws.amazon.com/appsync/latest/devguide/resolver-context-reference-js.html#aws-appsync-resolver-context-reference-info-js

AWS AppSync Developer Guide

author: String!
title: String!
content: String!
url: String!

): Post!

3. Choose Save Schema.

4. In the Resolvers pane on the right, find the newly created updatePost field on the Mutation
type, then choose Attach. Create your new resolver using the snippet below:

import { util } from '@aws-appsync/utils’';
import * as ddb from 'e@aws-appsync/utils/dynamodb’;

export function request(ctx) {
const { id, expectedVersion, ...rest } = ctx.args;
const values = Object.entries(rest).reduce((obj, [key, value]) => {
obj[key] = value ?? ddb.operations.remove();
return obj;

Y, {3
return ddb.update({

key: { id 3},

condition: { version: { eq: expectedVersion } },

update: { ...values, version: ddb.operations.increment(1l) },
1);

export function response(ctx) {
const { error, result } = ctx;
if (error) {
util.appendError(error.message, error.type);

}

return result;

5. Save any changes you made.

This resolver uses ddb.update to create an Amazon DynamoDB UpdateItem request. Instead of
writing the entire item, you're just asking Amazon DynamoDB to update certain attributes. This is
done using Amazon DynamoDB update expressions.

Create an updatePost mutation (Amazon DynamoDB Updateltem) 269

AWS AppSync Developer Guide

The ddb.update function takes a key and an update object as arguments. Then, you check the
values of the incoming arguments. When a value is set to null, use the DynamoDB remove
operation to signal that the value should be removed from the DynamoDB item.

There is also a new condition section. A condition expression allows you tell AWS AppSync

and Amazon DynamoDB whether or not the request should succeed based on the state of the
object already in Amazon DynamoDB before the operation is performed. In this case, you only
want the UpdateItem request to succeed if the version field of the item currently in Amazon
DynamoDB matches the expectedVersion argument exactly. When the item is updated, we want
to increment the value of the version. This is easy to do with the operation function increment.

For more information about condition expressions, see the Condition expressions documentation.

For more info about the UpdateItem request, see the Updateltem documentation and the
DynamoDB module documentation.

For more information about how to write update expressions, see the DynamoDB
UpdateExpressions documentation.

Call the API to update a post
Let's try updating the Post object with the new resolver.
To update your object

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation. You'll also need to update the id argument to
the value you noted down earlier:

mutation updatePost {
updatePost(
id:123
title: "An empty story"
content: null
expectedVersion: 1
) {
id
author
title
content
url

Create an updatePost mutation (Amazon DynamoDB Updateltem) 270

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-condition-expressions
https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-updateitem
https://docs.aws.amazon.com/appsync/latest/devguide/built-in-modules-js.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Developer Guide

ups
downs
version

}
}

3. Choose Run (the orange play button), then choose updatePost.

4. The updated post in Amazon DynamoDB should appear in the Results pane to the right of the
Queries pane. It should look similar to the following:

{
"data": {
"updatePost": {
"id": "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": 0,
"version": 2
}
}
}

In this request, you asked AWS AppSync and Amazon DynamoDB to update the title and
content fields only. All of the other fields were left alone (other than incrementing the version
field). You set the title attribute to a new value and removed the content attribute from the
post. The author, url, ups, and downs fields were left untouched. Try executing the mutation
request again while leaving the request exactly as is. You should see a response similar to the

following:
{
"data": {
"updatePost": null
.
"errors": [
{
"path": [
"updatePost"
1,

Create an updatePost mutation (Amazon DynamoDB Updateltem) 271

AWS AppSync Developer Guide

"data": null,

"errorType": "DynamoDB:ConditionalCheckFailedException",
"errorInfo": null,

"locations": [

{
"line": 2,
"column": 3,
"sourceName": null
}
1,
"message": "The conditional request failed (Service: DynamoDb, Status Code: 400,
Request ID: 1RR3QN5F35CS8IV5VR40Q09NNBVV4AKQNSOS5AEMVIF66Q9ASUAAIG)"
}

The request fails because the condition expression evaluates to false:

1. The first time you ran the request, the value of the version field of the post in Amazon
DynamoDB was 1, which matched the expectedVersion argument. The request succeeded,
which meant the version field was incremented in Amazon DynamoDB to 2.

2. The second time you ran the request, the value of the version field of the post in Amazon
DynamoDB was 2, which did not match the expectedVersion argument.

This pattern is typically called optimistic locking.

Create vote mutations (Amazon DynamoDB Updateltem)

The Post type contains ups and downs fields to enable the recording of upvotes and downvotes.
However, at this moment, the APl doesn't let us do anything with them. Let’'s add a mutation to let
us upvote and downvote the posts.

To add your mutation

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Mutation type and add the DIRECTION enum to add new vote
mutations:

type Mutation {
vote(id: ID!, direction: DIRECTION!): Post

Create vote mutations (Amazon DynamoDB Updateltem) 272

AWS AppSync Developer Guide

updatePost(
id: ID!,
author: String,
title: String,
content: String,
url: String,
expectedVersion: Int!

): Post
addPost/(
id: ID,

author: String!,
title: String!,
content: String!,

url: String!
): Post!
}
enum DIRECTION {
upP
DOWN

3. Choose Save Schema.

4. In the Resolvers pane on the right, find the newly created vote field on the Mutation type,
and then choose Attach. Create a new resolver by creating and replacing the code with the
following snippet:

import * as ddb from 'e@aws-appsync/utils/dynamodb’;

export function request(ctx) {
const field = ctx.args.direction === 'UP' ? 'ups' : 'downs';
return ddb.update({
key: { id: ctx.args.id },
update: {
[field]: ddb.operations.increment(1),
version: ddb.operations.increment(1),
.
1)

export const response = (ctx) => ctx.result;

5. Save any changes you made.

Create vote mutations (Amazon DynamoDB Updateltem) 273

AWS AppSync Developer Guide

Call the API to upvote or downvote a post

Now that the new resolvers have been set up, AWS AppSync knows how to translate an incoming
upvotePost or downvote mutation to an Amazon DynamoDB UpdateItem operation. You can
now run mutations to upvote or downvote the post you created earlier.

To run your mutation

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation. You'll also need to update the id argument to
the value you noted down earlier:

mutation votePost {
vote(id:123, direction: UP) {
id
author
title
content
url
ups
downs
version
}
}

3. Choose Run (the orange play button), then choose votePost.

4. The updated post in Amazon DynamoDB should appear in the Results pane to the right of the
Queries pane. It should look similar to the following:

{
"data": {
"vote": {
"id". "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 6,
"downs": 0,
"version": 4
}
}

Create vote mutations (Amazon DynamoDB Updateltem) 274

AWS AppSync Developer Guide

}

5. Choose Run a few more times. You should see the ups and version fields incrementing by 1
each time you execute the query.

6. Change the query to call it with a different DIRECTION.

mutation votePost {
vote(id:123, direction: DOWN) {
id
author
title
content
url
ups
downs
version
}
}

7. Choose Run (the orange play button), then choose votePost.

This time, you should see the downs and version fields incrementing by 1 each time you run
the query.

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem)

Next, you'll want to create a mutation to delete a post. You'll do this using the DeleteItem
Amazon DynamoDB operation.

To add your mutation

1. In your schema, choose the Schema tab.

2. In the Schema pane, modify the Mutation type to add a new deletePost mutation:

type Mutation {
deletePost(id: ID!, expectedVersion: Int): Post
vote(id: ID!, direction: DIRECTION!): Post
updatePost(
id: ID!,
author: String,
title: String,

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem) 275

AWS AppSync

Developer Guide

content: String,
url: String,
expectedVersion: Int!

): Post
addPost/(
id: ID

author: String!,
title: String!,
content: String!,
url: String!

): Post!

3. This time, you made the expectedVersion field optional. Next, choose Save Schema.

4. In the Resolvers pane on the right, find the newly created delete field in the Mutation type,

then choose Attach. Create a new resolver using the following code:

import { util } from 'e@aws-appsync/utils'’

import { util } from '@aws-appsync/utils’';
import * as ddb from 'e@aws-appsync/utils/dynamodb’;

export function request(ctx) {
let condition = null;
if (ctx.args.expectedVersion) {
condition = {
or: [
{ id: { attributeExists: false } },
{ version: { eq: ctx.args.expectedVersion } },
1,
};
}
return ddb.remove({ key: { id: ctx.args.id }, condition });

}

export function response(ctx) {
const { error, result } = ctx;
if (error) {
util.appendError(error.message, error.type);

}

return result;

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem)

276

AWS AppSync Developer Guide

® Note

The expectedVersion argument is an optional argument. If the caller set an
expectedVersion argument in the request, the request handler adds a condition

that only allows the DeleteItem request to succeed if the item is already deleted

or if the version attribute of the post in Amazon DynamoDB exactly matches the
expectedVersion. If left out, no condition expression is specified on the DeleteItem
request. It succeeds regardless of the value of version or whether or not the item exists
in Amazon DynamoDB.

Even though you're deleting an item, you can return the item that was deleted, if it was
not already deleted.

For more info about the DeleteItem request, see the Deleteltem documentation.
Call the API to delete a post

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming delete
mutation to an Amazon DynamoDB DeleteItem operation. You can now run a mutation to delete
something in the table.

To run your mutation

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation. You'll also need to update the id argument to
the value you noted down earlier:

mutation deletePost {
deletePost(id:123) {
id
author
title
content
url
ups
downs
version

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem) 277

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-deleteitem

AWS AppSync Developer Guide

3. Choose Run (the orange play button), then choose deletePost.

4. The post is deleted from Amazon DynamoDB. Note that AWS AppSync returns the value of the
item that was deleted from Amazon DynamoDB, which should appear in the Results pane to the
right of the Queries pane. It should look similar to the following:

{
"data": {
"deletePost": {
"id": "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 6,
"downs": 4,
"version": 12
}
}
}

5. The value is only returned if this call to deletePost is the one that actually deletes it from
Amazon DynamoDB. Choose Run again.

6. The call still succeeds, but no value is returned:

"data": {
"deletePost": null
}
}

7. Now, let's try deleting a post, but this time specifying an expectedValue. First, you'll need to
create a new post because you've just deleted the one you've been working with so far.

8. In the Queries pane, add the following mutation:

mutation addPost {
addPost(
id:123
author: "AUTHORNAME"
title: "Our second post!"
content: "A new post."
url: "https://aws.amazon.com/appsync/"

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem) 278

AWS AppSync

Developer Guide

) {

id
author
title
content
url

ups
downs
version

9. Choose Run (the orange play button), then choose addPost.

10The results of the newly created post should appear in the Results pane to the right of the
Queries pane. Record the id of the newly created object because you'll need it in just a moment.

It should look similar to the following:

{
"data": {
"addPost": {
"id". "123",
"author": "AUTHORNAME",
"title": "Our second post!",
"content": "A new post.",
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": 0O,
"version": 1
}
}
}

T1Now, let's try to delete that post with an illegal value for expectedVersion. In the Queries pane,
add the following mutation. You'll also need to update the id argument to the value you noted

down earlier:

mutation deletePost {
deletePost(
id:123
expectedVersion: 9999
) {
id

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem)

279

AWS AppSync Developer Guide

author
title
content
url

ups
downs
version

12Choose Run (the orange play button), then choose deletePost. The following result is
returned:

{
"data": {
"deletePost": null
b
"errors": [
{
"path": [
"deletePost"
1,
"data": null,
"errorType": "DynamoDB:ConditionalCheckFailedException",
"errorInfo": null,
"locations": [
{
"line": 2,
"column": 3,
"sourceName": null
}
1,
"message": "The conditional request failed (Service: DynamoDb, Status Code:
400, Request ID: 70830037M1FTFRKO38A4CI9H43VV4KQNSOS5AEMVIF66Q9ASUAAIG)™"
}
]
}

13The request failed because the condition expression evaluates to false. The value for version
of the post in Amazon DynamoDB doesn't match the expectedValue specified in the
arguments. The current value of the object is returned in the data field in the errors section of
the GraphQL response. Retry the request, but correct the expectedVersion:

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem) 280

AWS AppSync Developer Guide

mutation deletePost {

deletePost/(

id:123

expectedVersion: 1
) {

id

author

title

content

url

ups

downs

version

T14Choose Run (the orange play button), then choose deletePost.

This time the request succeeds, and the value that was deleted from Amazon DynamoDB is

returned:
{
"data": {
"deletePost": {
"id": "123",
"author": "AUTHORNAME",
"title": "Our second post!",
"content": "A new post.",
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": 0,
"version": 1
}
}
}

15Choose Run again. The call still succeeds, but this time no value is returned because the post was
already deleted in Amazon DynamoDB.

{ "data": { "deletePost": null } }

Setting up a deletePost resolver (Amazon DynamoDB Deleteltem) 281

AWS AppSync Developer Guide

Setting up an allPost resolver (Amazon DynamoDB Scan)

So far, the APl is only useful if you know the id of each post you want to look at. Let's add a new
resolver that returns all the posts in the table.

To add your mutation

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Query type to add a new allPost query as follows:

type Query {
allPost(limit: Int, nextToken: String): PaginatedPosts!
getPost(id: ID): Post

3. Add a new PaginationPosts type:

type PaginatedPosts {
posts: [Post!]!
nextToken: String

4. Choose Save Schema.

5. In the Resolvers pane on the right, find the newly created allPost field in the Query type,
then choose Attach. Create a new resolver with the following code:

import * as ddb from '@aws-appsync/utils/dynamodb’;

export function request(ctx) {
const { limit = 20, nextToken } = ctx.arguments;
return ddb.scan({ limit, nextToken });

}

export function response(ctx) {
const { items: posts = [], nextToken } = ctx.result;
return { posts, nextToken };

}

This resolver's request handler expects two optional arguments:

e limit - Specifies the maximum number of items to return in a single call.

Setting up an allPost resolver (Amazon DynamoDB Scan) 282

AWS AppSync

Developer Guide

« nextToken - Used to retrieve the next set of results (we'll show where the value for

nextToken comes from later).

6. Save any changes made to your resolver.

For more information about Scan request, see the Scan reference documentation.

Call the API to scan all posts

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming

allPost query to an Amazon DynamoDB Scan operation. You can now scan the table to retrieve

all the posts. Before you can try it out though, you need to populate the table with some data

because you've deleted everything you've worked with so far.

To add and query data

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation:

mutation
postl:

content:

post2:

content:

post3:

content:

posté:

content:

post5:

content:

post6:

content:

post7:

content:

post8:

content:

post9:

content:

}

addPost {

addPost(id:1 author:

"Some content"

"Some content"

"Some content"

"Some content"

"Some content"

"Some content"

"Some content"

"Some content"

"Some content"

url:
addPost(id:2 author:
url:
addPost(id:3 author:
url:
addPost(id:4 author:
url:
addPost(id:5 author:
url:
addPost(id:6 author:
url:
addPost(id:7 author:
url:
addPost(id:8 author:
url:
addPost(id:9 author:
url:

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

"AUTHORNAME"

"https://aws.

3. Choose Run (the orange play button).

title:

amazon.

title:

amazon.

title:

amazon.

title:

amazon.

title:

amazon.

title:

amazon.

title:

amazon.

title:

amazon.

title:

amazon.

"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }
"A series of posts, Volume
com/appsync/") { title }

1Il

2Il

3"

4"

5Il

6Il

7Il

8Il

9Il

Setting up an allPost resolver (Amazon DynamoDB Scan)

283

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-scan

AWS AppSync

Developer Guide

4. Now, let's scan the table, returning five results at a time. In the Queries pane, add the following

query:

query allPost {
allPost(limit: 5) {
posts {
id
title
}

nextToken

5. Choose Run (the orange play button), then choose allPost.

The first five posts should appear in the Results pane to the right of the Queries pane. It should

look similar to the following:

{
"data": {
"allPost": {
"posts": [

{
"id": "5",
"title": "A series

},

{
"id". 1",
"title": "A series

},

{
"id": "e6",
"title": "A series

},

{
"id": "9",
"title": "A series

},

{
"id". 7",
"title": "A series

}

1,

of posts,

of posts,

of posts,

of posts,

of posts,

Volume

Volume

Volume

Volume

Volume

5"

1||

6"

9"

7||

Setting up an allPost resolver (Amazon DynamoDB Scan)

284

AWS AppSync Developer Guide

"nextToken": "<token>"

6. You received five results and a nextToken that you can use to get the next set of results.
Update the allPost query to include the nextToken from the previous set of results:

query allPost {
allPost(
limit: 5
nextToken: "<token>"

) {
posts {
id
author

}

nextToken

7. Choose Run (the orange play button), then choose allPost.

The remaining four posts should appear in the Results pane to the right of the Queries pane.
There is no nextToken in this set of results because you've paged through all nine posts with
none remaining. It should look similar to the following:

{
"data": {
"allPost": {
"posts": [
{
"id": "2",
"title": "A series of posts, Volume 2"
},
{
"id": "3",
"title": "A series of posts, Volume 3"
},
{
"id": "4",
"title": "A series of posts, Volume 4"
},

Setting up an allPost resolver (Amazon DynamoDB Scan) 285

AWS AppSync Developer Guide

{
"id". "8",
"title": "A series of posts, Volume 8"
}
1,

"nextToken": null

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query)

In addition to scanning Amazon DynamoDB for all posts, you can also query Amazon DynamoDB
to retrieve posts created by a specific author. The Amazon DynamoDB table you created earlier
already has a GlobalSecondaryIndex called author-index that you can use with an Amazon
DynamoDB Query operation to retrieve all posts created by a specific author.

To add your query

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Query type to add a new allPostsByAuthor query as
follows:

type Query {
allPostsByAuthor(author: String!, limit: Int, nextToken: String): PaginatedPosts!
allPost(limit: Int, nextToken: String): PaginatedPosts!
getPost(id: ID): Post

Note that this uses the same PaginatedPosts type that you used with the allPost query.
3. Choose Save Schema.

4. In the Resolvers pane on the right, find the newly created allPostsByAuthor field on the
Query type, and then choose Attach. Create a resolver using the snippet below:

import * as ddb from 'eaws-appsync/utils/dynamodb’;

export function request(ctx) {
const { limit = 20, nextToken, author } = ctx.arguments;
return ddb.query({

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 286

AWS AppSync Developer Guide

index: 'author-index',

query: { author: { eq: author } },
limit,

nextToken,

1)

export function response(ctx) {
const { items: posts = [], nextToken } = ctx.result;
return { posts, nextToken };

}

Like the allPost resolver, this resolver has two optional arguments:
« limit - Specifies the maximum number of items to return in a single call.

« nextToken - Retrieves the next set of results (the value for nextToken can be obtained from
a previous call).

5. Save any changes made to your resolver.

For more information about the Query request, see the Query reference documentation.
Call the API to query all posts by author

Now that the resolver has been set up, AWS AppSync knows how to translate an incoming
allPostsByAuthor mutation to a DynamoDB Query operation against the author-index
index. You can now query the table to retrieve all the posts by a specific author.

Before this, however, let's populate the table with some more posts, because every post so far has
the same author.

To add data and query

1. In your API, choose the Queries tab.

2. In the Queries pane, add the following mutation:

mutation addPost {
postl: addPost(id:1@ author: "Nadia" title: "The cutest dog in the world" content:
"So cute. So very, very cute." url: "https://aws.amazon.com/appsync/") { author,
title }
post2: addPost(id:11 author: "Nadia" title: "Did you know...?" content: "AppSync
works offline?" url: "https://aws.amazon.com/appsync/") { author, title }

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 287

https://docs.aws.amazon.com/appsync/latest/devguide/js-resolver-reference-dynamodb.html#js-aws-appsync-resolver-reference-dynamodb-query

AWS AppSync Developer Guide

post3: addPost(id:12 author: "Steve" title: "I like GraphQL" content: "It's great"
url: "https://aws.amazon.com/appsync/") { author, title }
}

3. Choose Run (the orange play button), then choose addPost.

4. Now, let's query the table, returning all posts authored by Nadia. In the Queries pane, add the
following query:

query allPostsByAuthor {
allPostsByAuthor(author: "Nadia") {
posts {
id
title
}

nextToken

5. Choose Run (the orange play button), then choose allPostsByAuthor. All posts authored by
Nadia should appear in the Results pane to the right of the Queries pane. It should look similar
to the following:

{
"data": {
"allPostsByAuthor": {
"posts": [
{
"id": "10",
"title": "The cutest dog in the world"
},
{
"id": "11",
"title": "Did you know...?"
}
1,
"nextToken": null
}
}
}

6. Pagination works for Query just the same as it does for Scan. For example, let's look for all
posts by AUTHORNAME, getting five at a time.

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query) 288

AWS AppSync

Developer Guide

7. In the Queries pane, add the following query:

query allPostsByAuthor {
allPostsByAuthor(
author: "AUTHORNAME"
limit: 5
) {
posts {
id
title
}

nextToken

8. Choose Run (the orange play button), then choose allPostsByAuthozr. All posts authored by
AUTHORNAME should appear in the Results pane to the right of the Queries pane. It should look

similar to the following:

{
"data": {
"allPostsByAuthor": {
"posts": [
{
"id": "e",
"title": "A series of posts, Volume
.
{
"id": "4",
"title": "A series of posts, Volume
.
{
"id". "2",
"title": "A series of posts, Volume
.
{
"id". "7",
"title": "A series of posts, Volume
.
{
"id": "1",
"title": "A series of posts, Volume
}

6Il

4"

2Il

7Il

1Il

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query)

289

AWS AppSync

Developer Guide

]I

"nextToken": "<token>"

9. Update the nextToken argument with the value returned from the previous query as follows:

query allPostsByAuthor {
allPostsByAuthox(
author: "AUTHORNAME"
limit: 5
nextToken: "<token>"
) {
posts {
id
title
}

nextToken

10Choose Run (the orange play button), then choose allPostsByAuthor. The remaining posts

authored by AUTHORNAME should appear in the Results pane to the right of the Queries pane. It

should look similar to the following:

{
"data": {
"allPostsByAuthor": {
"posts": [
{
"id": "8",
"title": "A series of posts,
},
{
"id": "5",
"title": "A series of posts,
},
{
"id". "3",
"title": "A series of posts,
},
{

Volume 8"

Volume 5"

Volume 3"

Setting up an allPostsByAuthor resolver(Amazon DynamoDB Query)

290

AWS AppSync Developer Guide

"id": "9",
"title": "A series of posts, Volume 9"
}
1,
"nextToken": null
}
}

Using sets

Up to this point, the Post type has been a flat key/value object. You can also model complex
objects with your resolver, such as sets, lists, and maps. Let's update the Post type to include tags.
A post can have zero or more tags, which are stored in DynamoDB as a String Set. You'll also set up
some mutations to add and remove tags, and a new query to scan for posts with a specific tag.

To set up your data

1. In your API, choose the Schema tab.

2. In the Schema pane, modify the Post type to add a new tags field as follows:

type Post {
id: ID!
author: String
title: String
content: String
url: String
ups: Int!
downs: Int!
version: Int!
tags: [String!]

3. In the Schema pane, modify the Query type to add a new allPostsByTag query as follows:

type Query {
allPostsByTag(tag: String!, limit: Int, nextToken: String): PaginatedPosts!
allPostsByAuthor(author: String!, limit: Int, nextToken: String): PaginatedPosts!
allPost(limit: Int, nextToken: String): PaginatedPosts!
getPost(id: ID): Post

Using sets 291

AWS AppSync Developer Guide

}

4. In the Schema pane, modify the Mutation type to add new addTag and removeTag mutations
as follows:

type Mutation {

addTag(id: ID!, tag: String!): Post
removeTag(id: ID!, tag: String!): Post
deletePost(id: ID!, expectedVersion: Int): Post
upvotePost(id: ID!): Post
downvotePost(id: ID!): Post
updatePost(

id: ID!,

author: String,

title: String,

content: String,

url: String,

expectedVersion: Int!
): Post
addPost(

author: String!,

title: String!,

content: String!,

url: String!
): Post!

5. Choose Save Schema.

6. In the Resolvers pane on the right, find the newly created allPostsByTag field on the Query
type, and then choose Attach. Create your resolver using the snippet below:

import * as ddb from '@aws-appsync/utils/dynamodb’;

export function request(ctx) {
const { limit = 20, nextToken, tag } = ctx.arguments;
return ddb.scan({ limit, nextToken, filter: { tags: { contains: tag } } });

export function response(ctx) {
const { items: posts = [], nextToken } = ctx.result;
return { posts, nextToken };

Using sets 292

AWS AppSync Developer Guide

7. Save any changes you've made to your resolver.

8. Now, do the same for the Mutation field addTag using the snippet below:

(® Note

Though the DynamoDB utils currently don't support set operations, you can still interact
with sets by building the request yourself.

import { util } from 'e@aws-appsync/utils'

export function request(ctx) {

const { id, tag } = ctx.arguments

const expressionValues = util.dynamodb.toMapValues({ ':plusOne': 1 })
expressionValues[':tags'] = util.dynamodb.toStringSet([tag])

return {
operation: 'UpdateItem',
key: util.dynamodb.toMapValues({ id }),
update: {
expression: 'ADD tags :tags, version :plusOne’,
expressionValues,
},
}
}

export const response = (ctx) => ctx.result

9. Save any changes made to your resolver.

T10Repeat this one more time for the Mutation field removeTag using the snippet below:

import { util } from 'e@aws-appsyn