
Developer Guide

AWS Cloud Development Kit (AWS CDK) v2

Version 2

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS Cloud Development Kit (AWS CDK) v2: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Table of Contents

What is the AWS CDK? .. 1
Benefits of the AWS CDK ... 2
Example of the AWS CDK ... 5
AWS CDK features .. 10

The AWS CDK GitHub repository ... 10
The AWS CDK API reference ... 10
The Construct Programming Model .. 10
The Construct Hub ... 10

Next steps .. 11
Learn more .. 11

Concepts ... 12
Languages .. 13
Constructs .. 15

The Construct Library .. 16
Defining constructs ... 20
Working with constructs ... 30
Working with third-party constructs .. 35
Learn more ... 45

Apps .. 45
Defining apps ... 45
Working with apps ... 46

Stacks .. 50
Defining stacks .. 50
Working with stacks ... 57

Environments .. 64
Configuring environments .. 64
Bootstrapping environments .. 73

Bootstrapping .. 73
Bootstrapping environments .. 74
How to bootstrap ... 75
Customizing bootstrapping .. 77
Bootstrapping template differences ... 79
Stack synthesizers ... 80
Customizing synthesis .. 82

Version 2 iii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The bootstrapping template contract .. 89
Security Hub Findings .. 94

Resources .. 95
Configuring resources using constructs ... 95
Referencing resources .. 98
Resource physical names .. 106
Passing unique resource identifiers .. 108
Granting permissions between resources .. 111
Resource metrics and alarms ... 113
Network traffic .. 115
Event handling .. 119
Removal policies ... 120

Identifiers ... 124
Construct IDs ... 125
Paths .. 128
Unique IDs .. 129
Logical IDs .. 130

Tokens ... 131
Tokens and token encodings .. 133
String-encoded tokens .. 135
List-encoded tokens ... 136
Number-encoded tokens ... 136
Lazy values ... 136
Converting to JSON ... 139

Parameters ... 140
About parameters ... 140
Defining parameters .. 141
Using parameters ... 143
Deploying with parameters .. 145

Tagging ... 146
Using tags .. 147
Tag priorities .. 148
Optional properties .. 149
Example .. 152
Tagging single constructs ... 155

Assets .. 157

Version 2 iv

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Assets in detail .. 158
Asset types ... 158
Amazon S3 assets ... 159
Docker image assets .. 169
AWS CloudFormation resource metadata ... 177

Permissions .. 178
Principals .. 178
Grants .. 179
Roles .. 181
Resource policies ... 187
Using external IAM objects ... 189

Context ... 189
Sources of context values ... 191
Context methods .. 192
Viewing and managing context ... 193
AWS CDK Toolkit --context flag ... 194
Example .. 194

Feature flags ... 199
Reverting to v1 behavior .. 199

Aspects ... 200
Aspects in detail ... 201
Example .. 202

Getting started .. 206
Prerequisites .. 206
Step 1: Create an AWS account .. 208
Step 2: Configure programmatic access ... 208

Start an AWS access portal session .. 209
Step 3: Install the AWS CDK CLI ... 210
Step 4: Bootstrap your environment ... 211
Optional AWS CDK tools .. 212
Next steps .. 212
Learn more .. 212
Your first AWS CDK app ... 212

About this tutorial .. 213
Step 1: Create the app .. 214
Step 2: Build the app .. 216

Version 2 v

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Step 3: List the stacks in the app ... 217
Step 4: Add an Amazon S3 bucket ... 217
Step 5: Synthesize an AWS CloudFormation template ... 221
Step 6: Deploy your stack .. 222
Step 7: Modify your app ... 223
Step 8: Destroying the app's resources .. 229
Next steps .. 229

Migrating from AWS CDK v1 to AWS CDK v2 .. 231
New prerequisites .. 233
Upgrading from AWS CDK v2 Developer Preview .. 233
Migrating from AWS CDK v1 to CDK v2 ... 234

Updating to a recent v1 .. 234
Updating feature flags .. 235
CDK Toolkit compatibility ... 235
Updating dependencies and imports ... 236

Testing your migrated app before deploying .. 241
Troubleshooting ... 242
Finding v1 stacks ... 243

Migrate to the AWS CDK ... 244
How migration works .. 244
Benefits of CDK Migrate ... 245
Considerations .. 245

General considerations .. 245
Considerations when migrating from an AWS CloudFormation template 247
Considerations when migrating from deployed resources ... 247

Prerequisites .. 247
Get started with CDK Migrate ... 247
Migrate from an AWS CloudFormation stack .. 248
Migrate from an AWS CloudFormation template ... 249

Migrate from an AWS SAM template ... 250
Migrate from deployed resources .. 250

Use filters ... 250
Scanning for resources with IaC generator ... 251
Resolve write-only properties .. 251
The migrate.json file .. 253

Manage and deploy your CDK app .. 254

Version 2 vi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Prepare for deployment .. 254
Deploy your CDK app .. 254

Working with the AWS CDK ... 256
Importing the AWS Construct Library ... 256

The AWS CDK API Reference ... 257
Interfaces compared with construct classes ... 258

Managing dependencies ... 259
Comparing AWS CDK in TypeScript with other languages .. 260

Importing a module ... 260
Instantiating a construct ... 264
Accessing members .. 267
Enum constants .. 268
Object interfaces .. 268

In TypeScript ... 270
Get started with TypeScript ... 270
Creating a project ... 271
Using local tsc and cdk .. 271
Managing AWS Construct Library modules .. 273
Managing dependencies in TypeScript .. 274
AWS CDK idioms in TypeScript .. 277
Building, synthesizing, and deploying .. 278

In JavaScript .. 279
Get started with JavaScript .. 280
Creating a project ... 280
Using local cdk ... 271
Managing AWS Construct Library modules .. 282
Managing dependencies in JavaScript ... 283
AWS CDK idioms in JavaScript .. 287
Synthesizing and deploying ... 288
Using TypeScript examples with JavaScript .. 289
Migrating to TypeScript .. 292

In Python ... 293
Get started with Python ... 294
Creating a project ... 295
Managing AWS Construct Library modules .. 296
Managing dependencies in Python .. 298

Version 2 vii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK idioms in Python .. 300
Synthesizing and deploying ... 303

In Java .. 303
Get started with Java .. 304
Creating a project ... 305
Managing AWS Construct Library modules .. 305
Managing dependencies in Java .. 306
AWS CDK idioms in Java ... 307
Building, synthesizing, and deploying .. 309

In C# ... 310
Get started with C# ... 311
Creating a project ... 311
Managing AWS Construct Library modules .. 311
Managing dependencies in C# ... 312
AWS CDK idioms in C# .. 316
Building, synthesizing, and deploying .. 318

In Go ... 319
Get started with Go ... 319
Creating a project ... 320
Managing AWS Construct Library modules .. 320
Managing dependencies in Go .. 321
AWS CDK idioms in Go .. 321
Building, synthesizing, and deploying .. 324

Developing AWS CDK applications ... 326
Customizing constructs ... 326

Using escape hatches .. 326
Un-escape hatches ... 333
Raw overrides .. 335
Custom resources ... 337

Get environment value ... 338
Get CloudFormation value ... 339
Import an AWS CloudFormation template ... 339

Importing a template .. 340
Accessing imported resources .. 346
Replacing parameters .. 348
Other template elements ... 349

Version 2 viii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Nested stacks ... 350
Get SSM value .. 354

Read Systems Manager values at deployment time ... 354
Read Systems Manager values at synthesis time .. 356
Write values to Systems Manager .. 358

Get Secrets Manager value .. 358
Set CloudWatch alarm .. 361

Using an existing metric ... 361
Creating your own metric ... 362
Creating the alarm ... 363

Get context value .. 366
Specify context variables .. 366
Retrieve context variable values ... 366

Use resources from the CloudFormation Public Registry .. 368
Activating a third-party resource in your account and Region ... 369
Adding a resource from the AWS CloudFormation Public Registry to your CDK app 371

Deploying AWS CDK applications ... 373
Policy validation ... 373

Policy validation .. 373
For application developers ... 374
For plugin authors .. 377

Create CDK Pipelines ... 379
Bootstrap your AWS environments .. 379
Initialize a project ... 382
Define a pipeline .. 383
Application stages .. 390
Testing deployments .. 402
Security notes .. 411
Troubleshooting .. 411

Best practices ... 413
Organization best practices ... 415
Coding best practices .. 416

Start simple and add complexity only when you need it .. 417
Align with the AWS Well-Architected Framework ... 417
Every application starts with a single package in a single repository 417
Move code into repositories based on code lifecycle or team ownership 417

Version 2 ix

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Infrastructure and runtime code live in the same package ... 418
Construct best practices ... 419

Model with constructs, deploy with stacks ... 419
Configure with properties and methods, not environment variables 419
Unit test your infrastructure .. 419
Don't change the logical ID of stateful resources ... 420
Constructs aren't enough for compliance ... 420

Application best practices .. 420
Make decisions at synthesis time .. 420
Use generated resource names, not physical names .. 421
Define removal policies and log retention .. 422
Separate your application into multiple stacks as dictated by deployment requirements .. 422
Commit cdk.context.json to avoid non-deterministic behavior 423
Let the AWS CDK manage roles and security groups ... 424
Model all production stages in code .. 424
Measure everything .. 425

AWS CDK reference ... 426
API reference ... 426
Versioning .. 426

AWS CDK CLI compatibility .. 427
AWS Construct Library versioning .. 428
Language binding stability ... 428

Examples .. 430
Serverless ... 430

Create an AWS CDK app ... 431
Create a Lambda function to list all widgets ... 433
Create a widget service ... 436
Add the service to the app .. 441
Deploy and test the app ... 443
Add the individual widget functions .. 444
Clean up ... 448

ECS .. 449
Creating the directory and initializing the AWS CDK .. 450
Create a Fargate service .. 451
Clean up ... 456

AWS CDK examples ... 456

Version 2 x

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Tutorials ... 457
Create an app with multiple stacks ... 457

Before you begin .. 458
Add optional parameter .. 459
Define the stack class .. 462
Create two stack instances ... 466
Synthesize and deploy the stack ... 469
Clean up ... 470

Tools ... 471
AWS CDK Toolkit .. 471

Toolkit commands .. 471
Specifying options and their values ... 473
Built-in help ... 473
Version reporting .. 474
Authentication with AWS .. 475
Specifying Region and other configuration .. 477
Specifying the app command .. 478
Specifying stacks .. 479
Bootstrapping your AWS environment .. 480
Creating a new app .. 482
Listing stacks ... 483
Synthesizing stacks .. 483
Deploying stacks ... 485
Comparing stacks ... 489
Importing existing resources into a stack ... 491
Configuration (cdk.json) .. 492
cdk migrate command reference .. 495

AWS Toolkit for VS Code ... 498
AWS SAM integration ... 498

Testing constructs .. 499
Getting started ... 499
The example stack ... 502
The Lambda function .. 510
Running tests .. 510
Fine-grained assertions ... 511

Matchers ... 517

Version 2 xi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Capturing .. 524
Snapshot tests .. 527
Tips for tests ... 532

Security .. 534
Identity and access management ... 534

Audience ... 535
Authenticating with identities ... 535

Compliance validation .. 538
Resilience ... 539
Infrastructure security ... 540

Troubleshooting ... 541
OpenPGP keys .. 549

Current keys .. 549
AWS CDK OpenPGP key .. 549
jsii OpenPGP key .. 550

Historical keys ... 551
AWS CDK OpenPGP key (2022-04-07) .. 552
jsii OpenPGP key (2022-04-07) ... 553
AWS CDK OpenPGP key (2018-06-19) .. 554
jsii OpenPGP key (2018-08-06) ... 555

Document history .. 557

Version 2 xii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

What is the AWS CDK?

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework
for defining cloud infrastructure in code and provisioning it through AWS CloudFormation.

The AWS CDK consists of two primary parts:

• AWS CDK Construct Library – A collection of pre-written modular and reusable pieces of code,
called constructs, that you can use, modify, and integrate to develop your infrastructure quickly.
The goal of the AWS CDK Construct Library is to reduce the complexity required to define and
integrate AWS services together when building applications on AWS.

• AWS CDK Toolkit – A command line tool for interacting with CDK apps. Use the AWS CDK Toolkit
to create, manage, and deploy your AWS CDK projects.

The AWS CDK supports TypeScript, JavaScript, Python, Java, C#/.Net, and Go. You can use
any of these supported programming languages to define reusable cloud components known
as constructs. You compose these together into stacks and apps. Then, you deploy your CDK
applications to AWS CloudFormation to provision or update your resources.

Version 2 1

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Topics

• Benefits of the AWS CDK

• Example of the AWS CDK

• AWS CDK features

• Next steps

• Learn more

Benefits of the AWS CDK

Use the AWS CDK to develop reliable, scalable, cost-effective applications in the cloud with the
considerable expressive power of a programming language. This approach yields many benefits,
including:

Benefits of the AWS CDK Version 2 2

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Develop and manage your infrastructure as code (IaC)

Practice infrastructure as code to create, deploy, and maintain infrastructure in a programmatic,
descriptive, and declarative way. With IaC, you treat infrastructure the same way developers
treat code. This results in a scalable and structured approach to managing infrastructure.
To learn more about IaC, see Infrastructure as code in the Introduction to DevOps on AWS
Whitepaper.

With the AWS CDK, you can put your infrastructure, application code, and configuration all in
one place, ensuring that you have a complete, cloud-deployable system at every milestone.
Employ software engineering best practices such as code reviews, unit tests, and source control
to make your infrastructure more robust.

Define your cloud infrastructure using general programming languages

With the AWS CDK, you can use any of the following programming languages to define your
cloud infrastructure: TypeScript, JavaScript, Python, Java, C#/.Net, and Go. Choose your
preferred language and use programming elements like parameters, conditionals, loops,
composition, and inheritance to define the desired outcome of your infrastructure.

Use the same programming language to define your infrastructure and your application logic.

Receive the benefits of developing infrastructure in your preferred IDE (Integrated Development
Environment), such as syntax highlighting and intelligent code completion.

Benefits of the AWS CDK Version 2 3

https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Deploy infrastructure through AWS CloudFormation

AWS CDK integrates with AWS CloudFormation to deploy and provision your infrastructure on
AWS. AWS CloudFormation is a managed AWS service that offers extensive support of resource
and property configurations for provisioning services on AWS. With AWS CloudFormation,
you can perform infrastructure deployments predictably and repeatedly, with rollback on
error. If you are already familiar with AWS CloudFormation, you don’t have to learn a new IaC
management service when getting started with the AWS CDK.

Get started developing your application quickly with constructs

Develop faster by using and sharing reusable components called constructs. Use low-level
constructs to define individual AWS CloudFormation resources and their properties. Use high-
level constructs to quickly define larger components of your application, with sensible, secure
defaults for your AWS resources, defining more infrastructure with less code.

Benefits of the AWS CDK Version 2 4

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Create your own constructs that are customized for your unique use cases and share them
across your organization or even with the public.

Example of the AWS CDK

The following is an example of using the AWS CDK Constructs Library to create an Amazon Elastic
Container Service (Amazon ECS) service with AWS Fargate (Fargate) launch type. For more details
of this example, see the section called “ECS”.

TypeScript

export class MyEcsConstructStack extends Stack {
 constructor(scope: App, id: string, props?: StackProps) {
 super(scope, id, props);

 const vpc = new ec2.Vpc(this, "MyVpc", {
 maxAzs: 3 // Default is all AZs in region
 });

 const cluster = new ecs.Cluster(this, "MyCluster", {
 vpc: vpc
 });

 // Create a load-balanced Fargate service and make it public
 new ecs_patterns.ApplicationLoadBalancedFargateService(this, "MyFargateService",
 {
 cluster: cluster, // Required
 cpu: 512, // Default is 256
 desiredCount: 6, // Default is 1
 taskImageOptions: { image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-
sample") },
 memoryLimitMiB: 2048, // Default is 512
 publicLoadBalancer: true // Default is false
 });
 }
}

JavaScript

class MyEcsConstructStack extends Stack {
 constructor(scope, id, props) {

Example of the AWS CDK Version 2 5

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 super(scope, id, props);

 const vpc = new ec2.Vpc(this, "MyVpc", {
 maxAzs: 3 // Default is all AZs in region
 });

 const cluster = new ecs.Cluster(this, "MyCluster", {
 vpc: vpc
 });

 // Create a load-balanced Fargate service and make it public
 new ecs_patterns.ApplicationLoadBalancedFargateService(this, "MyFargateService",
 {
 cluster: cluster, // Required
 cpu: 512, // Default is 256
 desiredCount: 6, // Default is 1
 taskImageOptions: { image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-
sample") },
 memoryLimitMiB: 2048, // Default is 512
 publicLoadBalancer: true // Default is false
 });
 }
}

module.exports = { MyEcsConstructStack }

Python

class MyEcsConstructStack(Stack):

 def __init__(self, scope: Construct, id: str, **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 vpc = ec2.Vpc(self, "MyVpc", max_azs=3) # default is all AZs in region

 cluster = ecs.Cluster(self, "MyCluster", vpc=vpc)

 ecs_patterns.ApplicationLoadBalancedFargateService(self, "MyFargateService",
 cluster=cluster, # Required
 cpu=512, # Default is 256
 desired_count=6, # Default is 1
 task_image_options=ecs_patterns.ApplicationLoadBalancedTaskImageOptions(
 image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")),

Example of the AWS CDK Version 2 6

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 memory_limit_mib=2048, # Default is 512
 public_load_balancer=True) # Default is False

Java

public class MyEcsConstructStack extends Stack {

 public MyEcsConstructStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public MyEcsConstructStack(final Construct scope, final String id,
 StackProps props) {
 super(scope, id, props);

 Vpc vpc = Vpc.Builder.create(this, "MyVpc").maxAzs(3).build();

 Cluster cluster = Cluster.Builder.create(this, "MyCluster")
 .vpc(vpc).build();

 ApplicationLoadBalancedFargateService.Builder.create(this,
 "MyFargateService")
 .cluster(cluster)
 .cpu(512)
 .desiredCount(6)
 .taskImageOptions(
 ApplicationLoadBalancedTaskImageOptions.builder()
 .image(ContainerImage
 .fromRegistry("amazon/amazon-ecs-sample"))
 .build()).memoryLimitMiB(2048)
 .publicLoadBalancer(true).build();
 }
}

C#

public class MyEcsConstructStack : Stack
{
 public MyEcsConstructStack(Construct scope, string id, IStackProps props=null) :
 base(scope, id, props)
 {
 var vpc = new Vpc(this, "MyVpc", new VpcProps
 {

Example of the AWS CDK Version 2 7

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 MaxAzs = 3
 });

 var cluster = new Cluster(this, "MyCluster", new ClusterProps
 {
 Vpc = vpc
 });

 new ApplicationLoadBalancedFargateService(this, "MyFargateService",
 new ApplicationLoadBalancedFargateServiceProps
 {
 Cluster = cluster,
 Cpu = 512,
 DesiredCount = 6,
 TaskImageOptions = new ApplicationLoadBalancedTaskImageOptions
 {
 Image = ContainerImage.FromRegistry("amazon/amazon-ecs-sample")
 },
 MemoryLimitMiB = 2048,
 PublicLoadBalancer = true,
 });
 }
}

Go

func NewMyEcsConstructStack(scope constructs.Construct, id string, props
 *MyEcsConstructStackProps) awscdk.Stack {

 var sprops awscdk.StackProps

 if props != nil {
 sprops = props.StackProps
 }

 stack := awscdk.NewStack(scope, &id, &sprops)

 vpc := awsec2.NewVpc(stack, jsii.String("MyVpc"), &awsec2.VpcProps{
 MaxAzs: jsii.Number(3), // Default is all AZs in region
 })

 cluster := awsecs.NewCluster(stack, jsii.String("MyCluster"), &awsecs.ClusterProps{
 Vpc: vpc,

Example of the AWS CDK Version 2 8

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 })

 awsecspatterns.NewApplicationLoadBalancedFargateService(stack,
 jsii.String("MyFargateService"),
 &awsecspatterns.ApplicationLoadBalancedFargateServiceProps{
 Cluster: cluster, // required
 Cpu: jsii.Number(512), // default is 256
 DesiredCount: jsii.Number(5), // default is 1
 MemoryLimitMiB: jsii.Number(2048), // Default is 512
 TaskImageOptions: &awsecspatterns.ApplicationLoadBalancedTaskImageOptions{
 Image: awsecs.ContainerImage_FromRegistry(jsii.String("amazon/amazon-ecs-
sample"), nil),
 },
 PublicLoadBalancer: jsii.Bool(true), // Default is false
 })

 return stack

}

This class produces an AWS CloudFormation template of more than 500 lines. Deploying the AWS
CDK app produces more than 50 resources of the following types.

• AWS::EC2::EIP

• AWS::EC2::InternetGateway

• AWS::EC2::NatGateway

• AWS::EC2::Route

• AWS::EC2::RouteTable

• AWS::EC2::SecurityGroup

• AWS::EC2::Subnet

• AWS::EC2::SubnetRouteTableAssociation

• AWS::EC2::VPCGatewayAttachment

• AWS::EC2::VPC

• AWS::ECS::Cluster

• AWS::ECS::Service

• AWS::ECS::TaskDefinition

Example of the AWS CDK Version 2 9

https://github.com/awsdocs/aws-cdk-guide/blob/main/doc_source/my_ecs_construct-stack.yaml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-eip.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-internetgateway.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-natgateway.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-route.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-routetable.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-subnet.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-subnet-route-table-assoc.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc-gateway-attachment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-service.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-taskdefinition.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• AWS::ElasticLoadBalancingV2::Listener

• AWS::ElasticLoadBalancingV2::LoadBalancer

• AWS::ElasticLoadBalancingV2::TargetGroup

• AWS::IAM::Policy

• AWS::IAM::Role

• AWS::Logs::LogGroup

AWS CDK features

The AWS CDK GitHub repository

For the official AWS CDK GitHub repository, see aws-cdk. Here, you can submit issues, view our
license, track releases, and more.

Because the AWS CDK is open-source, the team encourages you to contribute to make it an even
better tool. For details, see Contributing to the AWS Cloud Development Kit (AWS CDK).

The AWS CDK API reference

The AWS CDK Construct Library provides APIs to define your CDK application and add CDK
constructs to the application. For more information, see the AWS CDK API Reference.

The Construct Programming Model

The Construct Programming Model (CPM) extends the concepts behind the AWS CDK into
additional domains. Other tools using the CPM include:

• CDK for Terraform (CDKtf)

• CDK for Kubernetes (CDK8s)

• Projen, for building project configurations

The Construct Hub

The Construct Hub is an online registry where you can find, publish, and share open-source AWS
CDK libraries.

AWS CDK features Version 2 10

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-logs-loggroup.html
https://github.com/aws/aws-cdk
https://github.com/aws/aws-cdk/issues
https://github.com/aws/aws-cdk/blob/main/LICENSE
https://github.com/aws/aws-cdk/releases
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://www.terraform.io/docs/cdktf/index.html
https://cdk8s.io/
https://github.com/projen/projen
https://constructs.dev/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Next steps

To get started with using the AWS CDK, see Getting started with the AWS CDK.

Learn more

To continue learning about the AWS CDK, see the following:

• AWS CDK concepts – Important concepts and terms for the AWS CDK.

• AWS CDK Workshop – Hands-on workshop to learn and use the AWS CDK.

• AWS CDK Patterns – Open-source collection of AWS serverless architecture patterns, built for
the AWS CDK by AWS experts.

• AWS CDK code examples – GitHub repository of example AWS CDK projects.

• cdk.dev – Community-driven hub for the AWS CDK, including a community Slack workspace.

• Awesome CDK – GitHub repository containing a curated list of AWS CDK open-source projects,
guides, blogs, and other resources.

• AWS Solutions Constructs – Vetted, configuration infrastructure as code (IaC) patterns that can
easily be assembled into production-ready applications.

• AWS Developer Tools Blog – Blog posts filtered for the AWS CDK.

• AWS CDK on Stack Overflow – Questions tagged with aws-cdk on Stack Overflow.

• AWS CDK tutorial for AWS Cloud9 – Tutorial on using the AWS CDK with the AWS Cloud9
development environment.

To learn more about related topics to the AWS CDK, see the following:

• AWS CloudFormation concepts – Since the AWS CDK is built to work with AWS CloudFormation,
we recommend that you learn and understand key AWS CloudFormation concepts.

• AWS Glossary – Definitions of key terms used across AWS.

To learn more about tools related to the AWS CDK that can be used to simplify serverless
application development and deployment, see the following:

• AWS Serverless Application Model – An open-source developer tool that simplifies and
improves the experience of building and running serverless applications on AWS.

• AWS Chalice – A framework for writing serverless apps in Python.

Next steps Version 2 11

https://cdkworkshop.com/
https://cdkpatterns.com/
https://github.com/aws-samples/aws-cdk-examples
https://cdk.dev/
https://github.com/kalaiser/awesome-cdk
https://aws.amazon.com/solutions/constructs/
https://aws.amazon.com/blogs/developer/category/developer-tools/aws-cloud-development-kit/
https://stackoverflow.com/questions/tagged/aws-cdk
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-cdk.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html
https://aws.amazon.com/serverless/sam/
https://github.com/aws/chalice

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK concepts

Learn core concepts behind the AWS Cloud Development Kit (AWS CDK).

An AWS CDK app is an application written in TypeScript, JavaScript, Python, Java, C# or Go
that uses the AWS CDK to define AWS infrastructure. An app defines one or more stacks. Stacks
(equivalent to AWS CloudFormation stacks) contain constructs. Each construct defines one or more
AWS resources, such as Amazon S3 buckets, Lambda functions, or Amazon DynamoDB tables.

Constructs (and also stacks and apps) are represented as classes (types) in your programming
language of choice. You instantiate constructs within a stack to declare them to AWS, and connect
them to each other using well-defined interfaces.

The AWS CDK includes the CDK Toolkit (also called the CLI), a command line tool for working with
your AWS CDK apps and stacks. Among other functions, the Toolkit provides the ability to do the
following:

• Convert one or more AWS CDK stacks to AWS CloudFormation templates and related assets (a
process called synthesis).

• Deploy your stacks to an AWS environment.

Topics

• Supported programming languages

• Constructs

• Apps

• Stacks

• Environments

• Bootstrapping

• Resources

• Identifiers

• Tokens

• Parameters

• Tagging

• Assets

Version 2 12

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Permissions

• Runtime context

• Feature flags

• Aspects

Supported programming languages

The AWS Cloud Development Kit (AWS CDK) has first-class support for the following general
programming languages:

• TypeScript

• JavaScript

• Python

• Java

• C#

• Go

Other JVM and .NET CLR languages may also be used in theory, but we do not offer official support
at this time.

Note

This Guide does not currently include instructions or code examples for Go aside from the
section called “In Go”.

The AWS CDK is developed in one language, TypeScript. To support the other languages, the AWS
CDK utilizes a tool called JSII to generate language bindings.

We attempt to offer each language's usual conventions to make development with the AWS CDK as
natural and intuitive as possible. For example, we distribute AWS Construct Library modules using
your preferred language's standard repository, and you install them using the language's standard
package manager. Methods and properties are also named using your language's recommended
naming patterns.

The following are a few code examples:

Languages Version 2 13

https://github.com/aws/jsii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: 'my-bucket',
 versioned: true,
 websiteRedirect: {hostName: 'aws.amazon.com'}});

JavaScript

const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: 'my-bucket',
 versioned: true,
 websiteRedirect: {hostName: 'aws.amazon.com'}});

Python

bucket = s3.Bucket("MyBucket", bucket_name="my-bucket", versioned=True,
 website_redirect=s3.RedirectTarget(host_name="aws.amazon.com"))

Java

Bucket bucket = Bucket.Builder.create(self, "MyBucket")
 .bucketName("my-bucket")
 .versioned(true)
 .websiteRedirect(new RedirectTarget.Builder()
 .hostName("aws.amazon.com").build())
 .build();

C#

var bucket = new Bucket(this, "MyBucket", new BucketProps {
 BucketName = "my-bucket",
 Versioned = true,
 WebsiteRedirect = new RedirectTarget {
 HostName = "aws.amazon.com"
 }});

Go

bucket := awss3.NewBucket(scope, jsii.String("MyBucket"), &awss3.BucketProps {
 BucketName: jsii.String("my-bucket"),
 Versioned: jsii.Bool(true),

Languages Version 2 14

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 WebsiteRedirect: &awss3.RedirectTarget {
 HostName: jsii.String("aws.amazon.com"),
 },
})

Note

These code snippets are intended for illustration only. They are incomplete and won't run
as they are.

The AWS Construct Library is distributed using each language's standard package management
tools, including NPM, PyPi, Maven, and NuGet. We also provide a version of the AWS CDK API
Reference for each language.

To help you use the AWS CDK in your preferred language, this guide includes the following topics
for supported languages:

• the section called “In TypeScript”

• the section called “In JavaScript”

• the section called “In Python”

• the section called “In Java”

• the section called “In C#”

• the section called “In Go”

TypeScript was the first language supported by the AWS CDK, and much of the AWS CDK example
code is written in TypeScript. This guide includes a topic specifically to show how to adapt
TypeScript AWS CDK code for use with the other supported languages. For more information, see
Comparing AWS CDK in TypeScript with other languages.

Constructs

Constructs are the basic building blocks of AWS Cloud Development Kit (AWS CDK) applications. A
construct is a component within your application that represents one or more AWS CloudFormation
resources and their configuration. You build your application, piece by piece, by importing and
configuring constructs.

Constructs Version 2 15

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Constructs are classes that you import into your CDK apps. Constructs are available from the AWS
Construct Library. You can also create and distribute your own constructs, or use constructs created
by third-party developers.

Constructs are part of the Construct Programming Model (CPM). They are available to use with
other tools such as CDK for Terraform (CDKtf), CDK for Kubernetes (CDK8s), and Projen.

Topics

• AWS Construct Library

• Defining constructs

• Working with constructs

• Working with third-party constructs

• Learn more

AWS Construct Library

The AWS Construct Library contains a collection of constructs that are developed and maintained
by AWS. It is organized into various modules that contain constructs representing all of the
resources available on AWS. For reference information, see the AWS CDK API Reference.

The main CDK package is called aws-cdk-lib, and it contains the majority of the AWS Construct
Library. It also contains base classes such as Stack and App.

The actual package name of the main CDK package varies by language.

TypeScript

Install npm install aws-cdk-lib

Import import * as cdk from 'aws-cdk-
lib';

JavaScript

Install npm install aws-cdk-lib

The Construct Library Version 2 16

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Import const cdk = require('aws-cdk-l
ib');

Python

Install python -m pip install aws-cdk-lib

Import import aws_cdk as cdk

Java

In pom.xml, add Group software.amazon.awscdk ;
artifact aws-cdk-lib

Import import software.amazon.aw
scdk.App;

C#

Install dotnet add package Amazon.CDK.Lib

Import using Amazon.CDK;

Go

Install go get github.com/aws/aws-cdk-go/a
wscdk/v2

Import import (
 "github.com/aws/aws-cdk-go/
awscdk/v2"
)

The Construct Library Version 2 17

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

If you created a CDK project using cdk init, you don't need to manually install aws-cdk-
lib.

The AWS Construct Library also contains the constructs package with the Construct base class.
It's in its own package because it's used by other construct-based tools in addition to the AWS CDK,
including CDK for Terraform and CDK for Kubernetes.

Numerous third parties have also published constructs compatible with the AWS CDK. Visit
Construct Hub to explore the AWS CDK construct partner ecosystem.

Construct levels

Constructs from the AWS Construct Library are categorized into three levels. Each level offers an
increasing level of abstraction. The higher the abstraction, the easier to configure, requiring less
expertise. The lower the abstraction, the more customization available, requiring more expertise.

Level 1 (L1) constructs

L1 constructs, also known as CFN resources, are the lowest-level construct and offer no
abstraction. Each L1 construct maps directly to a single AWS CloudFormation resource. With L1
constructs, you import a construct that represents a specific AWS CloudFormation resource. You
then define the resource’s properties within your construct instance.

L1 constructs are great to use when you are familiar with AWS CloudFormation and need
complete control over defining your AWS resource properties.

In the AWS Construct Library, L1 constructs are named starting with Cfn, followed by an
identifier for the AWS CloudFormation resource that it represents. For example, the CfnBucket
construct is an L1 construct that represents an AWS::S3::Bucket AWS CloudFormation
resource.

L1 constructs are generated from the AWS CloudFormation resource specification. If a resource
exists in AWS CloudFormation, it'll be available in the AWS CDK as an L1 construct. New
resources or properties may take up to a week to become available in the AWS Construct
Library. For more information, see AWS resource and property types reference in the AWS
CloudFormation User Guide.

The Construct Library Version 2 18

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs-readme.html
https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&offset=0
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.CfnBucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Level 2 (L2) constructs

L2 constructs, also known as curated constructs, are thoughtfully developed by the CDK team
and are usually the most widely used construct type. L2 constructs map directly to single AWS
CloudFormation resources, similar to L1 constructs. Compared to L1 constructs, L2 constructs
provide a higher-level abstraction through an intuitive intent-based API. L2 constructs include
sensible default property configurations, best practice security policies, and generate a lot of
the boilerplate code and glue logic for you.

L2 constructs also provide helper methods for most resources that make it simpler and quicker
to define properties, permissions, event-based interactions between resources, and more.

The s3.Bucket class is an example of an L2 construct for an Amazon Simple Storage Service
(Amazon S3) bucket resource.

The AWS Construct Library contains L2 constructs that are designated stable and ready for
production use. For L2 constructs under development, they are designated as experimental and
offered in a separate module.

Level 3 (L3) constructs

L3 constructs, also known as patterns, are the highest-level of abstraction. Each L3 construct
can contain a collection of resources that are configured to work together to accomplish a
specific task or service within your application. L3 constructs are used to create entire AWS
architectures for particular use cases in your application.

To provide complete system designs, or substantial parts of a larger system, L3 constructs
offer opinionated default property configurations. They are built around a particular approach
toward solving a problem and providing a solution. With L3 constructs, you can create and
configure multiple resources quickly, with the fewest amount of input and code.

The ecsPatterns.ApplicationLoadBalancedFargateService class is an example of an
L3 construct that represents an AWS Fargate service running on an Amazon Elastic Container
Service (Amazon ECS) cluster and fronted by an application load balancer.

Similar to L2 constructs, L3 constructs that are ready for production use are included in the AWS
Construct Library. Those under development are offered in separate modules.

The Construct Library Version 2 19

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns.ApplicationLoadBalancedFargateService.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Defining constructs

Composition

Composition is the key pattern for defining higher-level abstractions through constructs. A high-
level construct can be composed from any number of lower-level constructs. From a bottom-up
perspective, you use constructs to organize the individual AWS resources that you want to deploy.
You use whatever abstractions are convenient for your purpose, with as many levels as you need.

With composition, you define reusable components and share them like any other code. For
example, a team can define a construct that implements the company’s best practice for an
Amazon DynamoDB table, including backup, global replication, automatic scaling, and monitoring.
The team can share the construct internally with other teams, or publicly.

Teams can use constructs like any other library package. When the library is updated, developers
get access to the new version’s improvements and bug fixes, similar to any other code library.

Initialization

Constructs are implemented in classes that extend the Construct base class. You define a
construct by instantiating the class. All constructs take three parameters when they are initialized:

• scope – The construct's parent or owner. This can either be a stack or another construct. Scope
determines the construct's place in the construct tree. You should usually pass this (self in
Python), which represents the current object, for the scope.

• id – An identifier that must be unique within the scope. The identifier serves as a namespace for
everything that’s defined within the construct. It’s used to generate unique identifiers, such as
resource names and AWS CloudFormation logical IDs.

Identifiers need only be unique within a scope. This lets you instantiate and reuse constructs
without concern for the constructs and identifiers they might contain, and enables composing
constructs into higher-level abstractions. In addition, scopes make it possible to refer to groups
of constructs all at once. Examples include for tagging, or specifying where the constructs will be
deployed.

• props – A set of properties or keyword arguments, depending on the language, that define the
construct’s initial configuration. Higher-level constructs provide more defaults, and if all prop
elements are optional, you can omit the props parameter completely.

Defining constructs Version 2 20

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tag.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Configuration

Most constructs accept props as their third argument (or in Python, keyword arguments), a name/
value collection that defines the construct's configuration. The following example defines a bucket
with AWS Key Management Service (AWS KMS) encryption and static website hosting enabled.
Since it does not explicitly specify an encryption key, the Bucket construct defines a new kms.Key
and associates it with the bucket.

TypeScript

new s3.Bucket(this, 'MyEncryptedBucket', {
 encryption: s3.BucketEncryption.KMS,
 websiteIndexDocument: 'index.html'
});

JavaScript

new s3.Bucket(this, 'MyEncryptedBucket', {
 encryption: s3.BucketEncryption.KMS,
 websiteIndexDocument: 'index.html'
});

Python

s3.Bucket(self, "MyEncryptedBucket", encryption=s3.BucketEncryption.KMS,
 website_index_document="index.html")

Java

Bucket.Builder.create(this, "MyEncryptedBucket")
 .encryption(BucketEncryption.KMS_MANAGED)
 .websiteIndexDocument("index.html").build();

C#

new Bucket(this, "MyEncryptedBucket", new BucketProps
{
 Encryption = BucketEncryption.KMS_MANAGED,
 WebsiteIndexDocument = "index.html"
});

Defining constructs Version 2 21

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

 awss3.NewBucket(stack, jsii.String("MyEncryptedBucket"), &awss3.BucketProps{
 Encryption: awss3.BucketEncryption_KMS,
 WebsiteIndexDocument: jsii.String("index.html"),
 })

Interacting with constructs

Constructs are classes that extend the base Construct class. After you instantiate a construct, the
construct object exposes a set of methods and properties that let you interact with the construct
and pass it around as a reference to other parts of the system.

The AWS CDK framework doesn't put any restrictions on the APIs of constructs. Authors can define
any API they want. However, the AWS constructs that are included with the AWS Construct Library,
such as s3.Bucket, follow guidelines and common patterns. This provides a consistent experience
across all AWS resources.

Most AWS constructs have a set of grant methods that you can use to grant AWS Identity and
Access Management (IAM) permissions on that construct to a principal. The following example
grants the IAM group data-science permission to read from the Amazon S3 bucket raw-data.

TypeScript

const rawData = new s3.Bucket(this, 'raw-data');
const dataScience = new iam.Group(this, 'data-science');
rawData.grantRead(dataScience);

JavaScript

const rawData = new s3.Bucket(this, 'raw-data');
const dataScience = new iam.Group(this, 'data-science');
rawData.grantRead(dataScience);

Python

raw_data = s3.Bucket(self, 'raw-data')
data_science = iam.Group(self, 'data-science')
raw_data.grant_read(data_science)

Defining constructs Version 2 22

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

Bucket rawData = new Bucket(this, "raw-data");
Group dataScience = new Group(this, "data-science");
rawData.grantRead(dataScience);

C#

var rawData = new Bucket(this, "raw-data");
var dataScience = new Group(this, "data-science");
rawData.GrantRead(dataScience);

Go

 rawData := awss3.NewBucket(stack, jsii.String("raw-data"), nil)
 dataScience := awsiam.NewGroup(stack, jsii.String("data-science"), nil)
 rawData.GrantRead(dataScience, nil)

Another common pattern is for AWS constructs to set one of the resource's attributes from data
supplied elsewhere. Attributes can include Amazon Resource Names (ARNs), names, or URLs.

The following code defines an AWS Lambda function and associates it with an Amazon Simple
Queue Service (Amazon SQS) queue through the queue's URL in an environment variable.

TypeScript

const jobsQueue = new sqs.Queue(this, 'jobs');
const createJobLambda = new lambda.Function(this, 'create-job', {
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: 'index.handler',
 code: lambda.Code.fromAsset('./create-job-lambda-code'),
 environment: {
 QUEUE_URL: jobsQueue.queueUrl
 }
});

JavaScript

const jobsQueue = new sqs.Queue(this, 'jobs');
const createJobLambda = new lambda.Function(this, 'create-job', {
 runtime: lambda.Runtime.NODEJS_18_X,

Defining constructs Version 2 23

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 handler: 'index.handler',
 code: lambda.Code.fromAsset('./create-job-lambda-code'),
 environment: {
 QUEUE_URL: jobsQueue.queueUrl
 }
});

Python

jobs_queue = sqs.Queue(self, "jobs")
create_job_lambda = lambda_.Function(self, "create-job",
 runtime=lambda_.Runtime.NODEJS_18_X,
 handler="index.handler",
 code=lambda_.Code.from_asset("./create-job-lambda-code"),
 environment=dict(
 QUEUE_URL=jobs_queue.queue_url
)
)

Java

final Queue jobsQueue = new Queue(this, "jobs");
Function createJobLambda = Function.Builder.create(this, "create-job")
 .handler("index.handler")
 .code(Code.fromAsset("./create-job-lambda-code"))
 .environment(java.util.Map.of(// Map.of is Java 9 or later
 "QUEUE_URL", jobsQueue.getQueueUrl())
 .build();

C#

var jobsQueue = new Queue(this, "jobs");
var createJobLambda = new Function(this, "create-job", new FunctionProps
{
 Runtime = Runtime.NODEJS_18_X,
 Handler = "index.handler",
 Code = Code.FromAsset(@".\create-job-lambda-code"),
 Environment = new Dictionary<string, string>
 {
 ["QUEUE_URL"] = jobsQueue.QueueUrl
 }
});

Defining constructs Version 2 24

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

 createJobLambda := awslambda.NewFunction(stack, jsii.String("create-job"),
 &awslambda.FunctionProps{
 Runtime: awslambda.Runtime_NODEJS_18_X(),
 Handler: jsii.String("index.handler"),
 Code: awslambda.Code_FromAsset(jsii.String(".\\create-job-lambda-code"), nil),
 Environment: &map[string]*string{
 "QUEUE_URL": jsii.String(*jobsQueue.QueueUrl()),
 },
 })

For information about the most common API patterns in the AWS Construct Library, see the section
called “Resources”.

The app and stack construct

The App and Stack classes from the AWS Construct Library are unique constructs. Compared
to other constructs, they don't configure AWS resources on their own. Instead, they are used to
provide context for your other constructs. All constructs that represent AWS resources must be
defined, directly or indirectly, within the scope of a Stack construct. Stack constructs are defined
within the scope of an App construct.

To learn more about CDK apps, see Apps. To learn more about CDK stacks, see Stacks.

The following example defines an app with a single stack. Within the stack, an L2 construct is used
to configure an Amazon S3 bucket resource.

TypeScript

import { App, Stack, StackProps } from 'aws-cdk-lib';
import * as s3 from 'aws-cdk-lib/aws-s3';

class HelloCdkStack extends Stack {
 constructor(scope: App, id: string, props?: StackProps) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true
 });
 }

Defining constructs Version 2 25

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

const app = new App();
new HelloCdkStack(app, "HelloCdkStack");

JavaScript

const { App , Stack } = require('aws-cdk-lib');
const s3 = require('aws-cdk-lib/aws-s3');

class HelloCdkStack extends Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true
 });
 }
}

const app = new App();
new HelloCdkStack(app, "HelloCdkStack");

Python

from aws_cdk import App, Stack
import aws_cdk.aws_s3 as s3
from constructs import Construct

class HelloCdkStack(Stack):

 def __init__(self, scope: Construct, id: str, **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 s3.Bucket(self, "MyFirstBucket", versioned=True)

app = App()
HelloCdkStack(app, "HelloCdkStack")

Java

import software.amazon.awscdk.*;

Defining constructs Version 2 26

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.amazon.awscdk.services.s3.*;

public class HelloCdkStack extends Stack {
 public HelloCdkStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloCdkStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 Bucket.Builder.create(this, "MyFirstBucket")
 .versioned(true).build();
 }
}

C#

using Amazon.CDK;
using Amazon.CDK.AWS.S3;

namespace HelloCdkApp
{
 internal static class Program
 {
 public static void Main(string[] args)
 {
 var app = new App();
 new HelloCdkStack(app, "HelloCdkStack");
 app.Synth();
 }
 }

 public class HelloCdkStack : Stack
 {
 public HelloCdkStack(Construct scope, string id, IStackProps props=null) :
 base(scope, id, props)
 {
 new Bucket(this, "MyFirstBucket", new BucketProps { Versioned = true });
 }
 }
}

Defining constructs Version 2 27

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

func NewHelloCdkStack(scope constructs.Construct, id string, props
 *HelloCdkStackProps) awscdk.Stack {
 var sprops awscdk.StackProps
 if props != nil {
 sprops = props.StackProps
 }
 stack := awscdk.NewStack(scope, &id, &sprops)

 awss3.NewBucket(stack, jsii.String("MyFirstBucket"), &awss3.BucketProps{
 Versioned: jsii.Bool(true),
 })

 return stack
}

The construct tree

Constructs are defined inside of other constructs using the scope argument that is passed to
every construct, with the App class as the root. In this way, an AWS CDK app defines a hierarchy of
constructs known as the construct tree.

The root of this tree is your app, which is an object of the App class. Within the app, you instantiate
one or more stacks. Within stacks, you instantiate either AWS CloudFormation resources or higher-
level constructs, which may themselves instantiate resources or other constructs, and so on down
the tree.

Constructs are always explicitly defined within the scope of another construct, so there is no
doubt about the relationships between constructs. Almost always, you should pass this (in
Python, self) as the scope, indicating that the new construct is a child of the current construct.
The intended pattern is that you derive your construct from Construct, then instantiate the
constructs it uses in its constructor.

Passing the scope explicitly allows each construct to add itself to the tree, with this behavior
entirely contained within the Construct base class. It works the same way in every language
supported by the AWS CDK and does not require introspection or other "magic."

Defining constructs Version 2 28

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Important

Technically, it's possible to pass some scope other than this when instantiating a
construct. You can add constructs anywhere in the tree, or even in another stack in the
same app. For example, you could write a mixin-style function that adds constructs to a
scope passed in as an argument. The practical difficulty here is that you can't easily ensure
that the IDs you choose for your constructs are unique within someone else's scope. The
practice also makes your code more difficult to understand, maintain, and reuse. It is almost
always better to find a way to express your intent without resorting to abusing the scope
argument.

The AWS CDK uses the IDs of all constructs in the path from the tree's root to each child construct
to generate the unique IDs required by AWS CloudFormation. This approach means that construct
IDs only need to be unique within their scope, rather than within the entire stack as in native AWS
CloudFormation. However, if you move a construct to a different scope, its generated stack-unique
ID changes, and AWS CloudFormation won't consider it the same resource.

The construct tree is separate from the constructs that you define in your AWS CDK code. However,
it's accessible through any construct's node attribute, which is a reference to the node that
represents that construct in the tree. Each node is a Node instance, the attributes of which provide
access to the tree's root and to the node's parent scopes and children.

• node.children – The direct children of the construct.

• node.id – The identifier of the construct within its scope.

• node.path – The full path of the construct including the IDs of all of its parents.

• node.root – The root of the construct tree (the app).

• node.scope – The scope (parent) of the construct, or undefined if the node is the root.

• node.scopes – All parents of the construct, up to the root.

• node.uniqueId – The unique alphanumeric identifier for this construct within the tree (by
default, generated from node.path and a hash).

The construct tree defines an implicit order in which constructs are synthesized to resources in the
final AWS CloudFormation template. Where one resource must be created before another, AWS
CloudFormation or the AWS Construct Library generally infers the dependency. They then make
sure that the resources are created in the right order.

Defining constructs Version 2 29

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Node.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can also add an explicit dependency between two nodes by using node.addDependency().
For more information, see Dependencies in the AWS CDK API Reference.

The AWS CDK provides a simple way to visit every node in the construct tree and perform an
operation on each one. For more information, see the section called “Aspects”.

Working with constructs

Working with L1 constructs

L1 constructs map directly to individual AWS CloudFormation resources. You must provide the
resource's required configuration.

In this example, we create a bucket object using the CfnBucket L1 construct:

TypeScript

const bucket = new s3.CfnBucket(this, "MyBucket", {
 bucketName: "MyBucket"
});

JavaScript

const bucket = new s3.CfnBucket(this, "MyBucket", {
 bucketName: "MyBucket"
});

Python

bucket = s3.CfnBucket(self, "MyBucket", bucket_name="MyBucket")

Java

CfnBucket bucket = new CfnBucket.Builder().bucketName("MyBucket").build();

C#

var bucket = new CfnBucket(this, "MyBucket", new CfnBucketProps
{

Working with constructs Version 2 30

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html#dependencies

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 BucketName= "MyBucket"
});

Go

 awss3.NewCfnBucket(stack, jsii.String("MyBucket"), &awss3.CfnBucketProps{
 BucketName: jsii.String("MyBucket"),
 })

Construct properties that aren't simple Booleans, strings, numbers, or containers are handled
differently in the supported languages.

TypeScript

const bucket = new s3.CfnBucket(this, "MyBucket", {
 bucketName: "MyBucket",
 corsConfiguration: {
 corsRules: [{
 allowedOrigins: ["*"],
 allowedMethods: ["GET"]
 }]
 }
});

JavaScript

const bucket = new s3.CfnBucket(this, "MyBucket", {
 bucketName: "MyBucket",
 corsConfiguration: {
 corsRules: [{
 allowedOrigins: ["*"],
 allowedMethods: ["GET"]
 }]
 }
});

Python

In Python, these properties are represented by types defined as inner classes of the L1
construct. For example, the optional property cors_configuration of a CfnBucket

Working with constructs Version 2 31

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

requires a wrapper of type CfnBucket.CorsConfigurationProperty. Here we are defining
cors_configuration on a CfnBucket instance.

bucket = CfnBucket(self, "MyBucket", bucket_name="MyBucket",
 cors_configuration=CfnBucket.CorsConfigurationProperty(
 cors_rules=[CfnBucket.CorsRuleProperty(
 allowed_origins=["*"],
 allowed_methods=["GET"]
)]
)
)

Java

In Java, these properties are represented by types defined as inner classes of the L1 construct.
For example, the optional property corsConfiguration of a CfnBucket requires a
wrapper of type CfnBucket.CorsConfigurationProperty. Here we are defining
corsConfiguration on a CfnBucket instance.

CfnBucket bucket = CfnBucket.Builder.create(this, "MyBucket")
 .bucketName("MyBucket")
 .corsConfiguration(new
 CfnBucket.CorsConfigurationProperty.Builder()
 .corsRules(Arrays.asList(new
 CfnBucket.CorsRuleProperty.Builder()
 .allowedOrigins(Arrays.asList("*"))
 .allowedMethods(Arrays.asList("GET"))
 .build()))
 .build())
 .build();

C#

In C#, these properties are represented by types defined as inner classes of the L1 construct.
For example, the optional property CorsConfiguration of a CfnBucket requires a
wrapper of type CfnBucket.CorsConfigurationProperty. Here we are defining
CorsConfiguration on a CfnBucket instance.

var bucket = new CfnBucket(this, "MyBucket", new CfnBucketProps
{
 BucketName = "MyBucket",
 CorsConfiguration = new CfnBucket.CorsConfigurationProperty

Working with constructs Version 2 32

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 {
 CorsRules = new object[] {
 new CfnBucket.CorsRuleProperty
 {
 AllowedOrigins = new string[] { "*" },
 AllowedMethods = new string[] { "GET" },
 }
 }
 }
});

Go

In Go, these types are named using the name of the L1 construct, an underscore, and the
property name. For example, the optional property CorsConfiguration of a CfnBucket
requires a wrapper of type CfnBucket_CorsConfigurationProperty. Here we are defining
CorsConfiguration on a CfnBucket instance.

 awss3.NewCfnBucket(stack, jsii.String("MyBucket"), &awss3.CfnBucketProps{
 BucketName: jsii.String("MyBucket"),
 CorsConfiguration: &awss3.CfnBucket_CorsConfigurationProperty{
 CorsRules: []awss3.CorsRule{
 awss3.CorsRule{
 AllowedOrigins: jsii.Strings("*"),
 AllowedMethods: &[]awss3.HttpMethods{"GET"},
 },
 },
 },
 })

Important

You can't use L2 property types with L1 constructs, or vice versa. When working with L1
constructs, always use the types defined for the L1 construct you're using. Do not use types
from other L1 constructs (some may have the same name, but they are not the same type).
Some of our language-specific API references currently have errors in the paths to L1
property types, or don't document these classes at all. We hope to fix this soon. In the
meantime, remember that such types are always inner classes of the L1 construct they are
used with.

Working with constructs Version 2 33

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with L2 constructs

In the following example, we define an Amazon S3 bucket by creating an object from the Bucket
L2 construct:

TypeScript

import * as s3 from 'aws-cdk-lib/aws-s3';

// "this" is HelloCdkStack
new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true
});

JavaScript

const s3 = require('aws-cdk-lib/aws-s3');

// "this" is HelloCdkStack
new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true
});

Python

import aws_cdk.aws_s3 as s3

"self" is HelloCdkStack
s3.Bucket(self, "MyFirstBucket", versioned=True)

Java

import software.amazon.awscdk.services.s3.*;

public class HelloCdkStack extends Stack {
 public HelloCdkStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloCdkStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

Working with constructs Version 2 34

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Bucket.Builder.create(this, "MyFirstBucket")
 .versioned(true).build();
 }
}

C#

using Amazon.CDK.AWS.S3;

// "this" is HelloCdkStack
new Bucket(this, "MyFirstBucket", new BucketProps
{
 Versioned = true
});

Go

import (
 "github.com/aws/aws-cdk-go/awscdk/v2/awss3"
 "github.com/aws/jsii-runtime-go"
)

// stack is HelloCdkStack
awss3.NewBucket(stack, jsii.String("MyFirstBucket"), &awss3.BucketProps{
 Versioned: jsii.Bool(true),
 })>

MyFirstBucket is not the name of the bucket that AWS CloudFormation creates. It is a logical
identifier given to the new construct within the context of your CDK app. The physicalName value
will be used to name the AWS CloudFormation resource.

Working with third-party constructs

Construct Hub is a resource to help you discover additional constructs from AWS, third parties, and
the open-source CDK community.

Writing your own constructs

In addition to using existing constructs, you can also write your own constructs and let anyone use
them in their apps. All constructs are equal in the AWS CDK. Constructs from the AWS Construct

Working with third-party constructs Version 2 35

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Resource.html#physicalname
https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&sort=downloadsDesc&offset=0

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Library are treated the same as a contstruct from a third-party library published via NPM, Maven,
or PyPI. Constructs published to your company's internal package repository are also treated in the
same way.

To declare a new construct, create a class that extends the Construct base class, in the
constructs package, then follow the pattern for initializer arguments.

The following example shows how to declare a construct that represents an Amazon S3 bucket.
The S3 bucket sends an Amazon Simple Notification Service (Amazon SNS) notification every time
someone uploads a file into it.

TypeScript

export interface NotifyingBucketProps {
 prefix?: string;
}

export class NotifyingBucket extends Construct {
 constructor(scope: Construct, id: string, props: NotifyingBucketProps = {}) {
 super(scope, id);
 const bucket = new s3.Bucket(this, 'bucket');
 const topic = new sns.Topic(this, 'topic');
 bucket.addObjectCreatedNotification(new s3notify.SnsDestination(topic),
 { prefix: props.prefix });
 }
}

JavaScript

class NotifyingBucket extends Construct {
 constructor(scope, id, props = {}) {
 super(scope, id);
 const bucket = new s3.Bucket(this, 'bucket');
 const topic = new sns.Topic(this, 'topic');
 bucket.addObjectCreatedNotification(new s3notify.SnsDestination(topic),
 { prefix: props.prefix });
 }
}

module.exports = { NotifyingBucket }

Working with third-party constructs Version 2 36

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

class NotifyingBucket(Construct):

 def __init__(self, scope: Construct, id: str, *, prefix=None):
 super().__init__(scope, id)
 bucket = s3.Bucket(self, "bucket")
 topic = sns.Topic(self, "topic")
 bucket.add_object_created_notification(s3notify.SnsDestination(topic),
 s3.NotificationKeyFilter(prefix=prefix))

Java

public class NotifyingBucket extends Construct {

 public NotifyingBucket(final Construct scope, final String id) {
 this(scope, id, null, null);
 }

 public NotifyingBucket(final Construct scope, final String id, final BucketProps
 props) {
 this(scope, id, props, null);
 }

 public NotifyingBucket(final Construct scope, final String id, final String
 prefix) {
 this(scope, id, null, prefix);
 }

 public NotifyingBucket(final Construct scope, final String id, final BucketProps
 props, final String prefix) {
 super(scope, id);

 Bucket bucket = new Bucket(this, "bucket");
 Topic topic = new Topic(this, "topic");
 if (prefix != null)
 bucket.addObjectCreatedNotification(new SnsDestination(topic),
 NotificationKeyFilter.builder().prefix(prefix).build());
 }
}

Working with third-party constructs Version 2 37

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

public class NotifyingBucketProps : BucketProps
{
 public string Prefix { get; set; }
}

public class NotifyingBucket : Construct
{
 public NotifyingBucket(Construct scope, string id, NotifyingBucketProps props =
 null) : base(scope, id)
 {
 var bucket = new Bucket(this, "bucket");
 var topic = new Topic(this, "topic");
 bucket.AddObjectCreatedNotification(new SnsDestination(topic), new
 NotificationKeyFilter
 {
 Prefix = props?.Prefix
 });
 }
}

Go

type NotifyingBucketProps struct {
 awss3.BucketProps
 Prefix *string
}

func NewNotifyingBucket(scope constructs.Construct, id *string, props
 *NotifyingBucketProps) awss3.Bucket {
 var bucket awss3.Bucket
 if props == nil {
 bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), nil)
 } else {
 bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), &props.BucketProps)
 }
 topic := awssns.NewTopic(scope, jsii.String(*id+"Topic"), nil)
 if props == nil {
 bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic))
 } else {
 bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic),
 &awss3.NotificationKeyFilter{

Working with third-party constructs Version 2 38

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Prefix: props.Prefix,
 })
 }
 return bucket
}

Note

Our NotifyingBucket construct inherits not from Bucket but rather from Construct.
We are using composition, not inheritance, to bundle an Amazon S3 bucket and an Amazon
SNS topic together. In general, composition is preferred over inheritance when developing
AWS CDK constructs.

The NotifyingBucket constructor has a typical construct signature: scope, id, and props. The
last argument, props, is optional (gets the default value {}) because all props are optional. (The
base Construct class does not take a props argument.) You could define an instance of this
construct in your app without props, for example:

TypeScript

new NotifyingBucket(this, 'MyNotifyingBucket');

JavaScript

new NotifyingBucket(this, 'MyNotifyingBucket');

Python

NotifyingBucket(self, "MyNotifyingBucket")

Java

new NotifyingBucket(this, "MyNotifyingBucket");

C#

new NotifyingBucket(this, "MyNotifyingBucket");

Working with third-party constructs Version 2 39

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

NewNotifyingBucket(stack, jsii.String("MyNotifyingBucket"), nil)

Or you could use props (in Java, an additional parameter) to specify the path prefix to filter on, for
example:

TypeScript

new NotifyingBucket(this, 'MyNotifyingBucket', { prefix: 'images/' });

JavaScript

new NotifyingBucket(this, 'MyNotifyingBucket', { prefix: 'images/' });

Python

NotifyingBucket(self, "MyNotifyingBucket", prefix="images/")

Java

new NotifyingBucket(this, "MyNotifyingBucket", "/images");

C#

new NotifyingBucket(this, "MyNotifyingBucket", new NotifyingBucketProps
{
 Prefix = "/images"
});

Go

NewNotifyingBucket(stack, jsii.String("MyNotifyingBucket"), &NotifyingBucketProps{
 Prefix: jsii.String("images/"),
})

Typically, you would also want to expose some properties or methods on your constructs. It's not
very useful to have a topic hidden behind your construct, because users of your construct aren't

Working with third-party constructs Version 2 40

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

able to subscribe to it. Adding a topic property lets consumers access the inner topic, as shown in
the following example:

TypeScript

export class NotifyingBucket extends Construct {
 public readonly topic: sns.Topic;

 constructor(scope: Construct, id: string, props: NotifyingBucketProps) {
 super(scope, id);
 const bucket = new s3.Bucket(this, 'bucket');
 this.topic = new sns.Topic(this, 'topic');
 bucket.addObjectCreatedNotification(new s3notify.SnsDestination(this.topic),
 { prefix: props.prefix });
 }
}

JavaScript

class NotifyingBucket extends Construct {

 constructor(scope, id, props) {
 super(scope, id);
 const bucket = new s3.Bucket(this, 'bucket');
 this.topic = new sns.Topic(this, 'topic');
 bucket.addObjectCreatedNotification(new s3notify.SnsDestination(this.topic),
 { prefix: props.prefix });
 }
}

module.exports = { NotifyingBucket };

Python

class NotifyingBucket(Construct):

 def __init__(self, scope: Construct, id: str, *, prefix=None, **kwargs):
 super().__init__(scope, id)
 bucket = s3.Bucket(self, "bucket")
 self.topic = sns.Topic(self, "topic")
 bucket.add_object_created_notification(s3notify.SnsDestination(self.topic),
 s3.NotificationKeyFilter(prefix=prefix))

Working with third-party constructs Version 2 41

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

public class NotifyingBucket extends Construct {

 public Topic topic = null;

 public NotifyingBucket(final Construct scope, final String id) {
 this(scope, id, null, null);
 }

 public NotifyingBucket(final Construct scope, final String id, final BucketProps
 props) {
 this(scope, id, props, null);
 }

 public NotifyingBucket(final Construct scope, final String id, final String
 prefix) {
 this(scope, id, null, prefix);
 }

 public NotifyingBucket(final Construct scope, final String id, final BucketProps
 props, final String prefix) {
 super(scope, id);

 Bucket bucket = new Bucket(this, "bucket");
 topic = new Topic(this, "topic");
 if (prefix != null)
 bucket.addObjectCreatedNotification(new SnsDestination(topic),
 NotificationKeyFilter.builder().prefix(prefix).build());
 }
}

C#

public class NotifyingBucket : Construct
{
 public readonly Topic topic;

 public NotifyingBucket(Construct scope, string id, NotifyingBucketProps props =
 null) : base(scope, id)
 {
 var bucket = new Bucket(this, "bucket");
 topic = new Topic(this, "topic");

Working with third-party constructs Version 2 42

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 bucket.AddObjectCreatedNotification(new SnsDestination(topic), new
 NotificationKeyFilter
 {
 Prefix = props?.Prefix
 });
 }
}

Go

To do this in Go, we'll need a little extra plumbing. Our original NewNotifyingBucket
function returned an awss3.Bucket. We'll need to extend Bucket to include a topic member
by creating a NotifyingBucket struct. Our function will then return this type.

type NotifyingBucket struct {
 awss3.Bucket
 topic awssns.Topic
}

func NewNotifyingBucket(scope constructs.Construct, id *string, props
 *NotifyingBucketProps) NotifyingBucket {
 var bucket awss3.Bucket
 if props == nil {
 bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), nil)
 } else {
 bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), &props.BucketProps)
 }
 topic := awssns.NewTopic(scope, jsii.String(*id+"Topic"), nil)
 if props == nil {
 bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic))
 } else {
 bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic),
 &awss3.NotificationKeyFilter{
 Prefix: props.Prefix,
 })
 }
 var nbucket NotifyingBucket
 nbucket.Bucket = bucket
 nbucket.topic = topic
 return nbucket
}

Working with third-party constructs Version 2 43

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Now, consumers can subscribe to the topic, for example:

TypeScript

const queue = new sqs.Queue(this, 'NewImagesQueue');
const images = new NotifyingBucket(this, '/images');
images.topic.addSubscription(new sns_sub.SqsSubscription(queue));

JavaScript

const queue = new sqs.Queue(this, 'NewImagesQueue');
const images = new NotifyingBucket(this, '/images');
images.topic.addSubscription(new sns_sub.SqsSubscription(queue));

Python

queue = sqs.Queue(self, "NewImagesQueue")
images = NotifyingBucket(self, prefix="Images")
images.topic.add_subscription(sns_sub.SqsSubscription(queue))

Java

NotifyingBucket images = new NotifyingBucket(this, "MyNotifyingBucket", "/images");
images.topic.addSubscription(new SqsSubscription(queue));

C#

var queue = new Queue(this, "NewImagesQueue");
var images = new NotifyingBucket(this, "MyNotifyingBucket", new NotifyingBucketProps
{
 Prefix = "/images"
});
images.topic.AddSubscription(new SqsSubscription(queue));

Go

 queue := awssqs.NewQueue(stack, jsii.String("NewImagesQueue"), nil)
 images := NewNotifyingBucket(stack, jsii.String("MyNotifyingBucket"),
 &NotifyingBucketProps{
 Prefix: jsii.String("/images"),
 })

Working with third-party constructs Version 2 44

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 images.topic.AddSubscription(awssnssubscriptions.NewSqsSubscription(queue, nil))

Learn more

The following video provides a comprehensive overview of CDK constructs, and explains how you
can use them in your CDK apps.

CDK Constructs Explained

Apps

The AWS Cloud Development Kit (AWS CDK) application is called an app. A CDK app is a container
for one or more stacks. Therefore, an app serves as each stack's scope.

Topics

• Defining apps

• Working with apps

Defining apps

You create an app by importing and using the App class from the AWS Construct Library. You then
define your stacks within the app and define your constructs within stacks. An app must contain at
least one stack.

With this structure in place, you can synthesize stacks before deployment. Synthesizing stacks
involves creating an AWS CloudFormation template per stack that is then used to deploy to AWS
CloudFormation to provision your AWS resources. To learn more about stacks, see Stacks.

The App construct doesn't require any initialization arguments. It is the only construct that can be
used as a root for the construct tree.

The following is an example of a new AWS CDK app that includes a stack named MyFirstStack.
The stack is then synthesized, producing an AWS CloudFormation template:

TypeScript

const app = new App();

Learn more Version 2 45

https://www.youtube.com/embed/PzU-i0rJPGw
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new MyFirstStack(app, 'hello-cdk');
app.synth();

JavaScript

const app = new App();
new MyFirstStack(app, 'hello-cdk');
app.synth();

Python

app = App()
MyFirstStack(app, "hello-cdk")
app.synth()

Java

App app = new App();
new MyFirstStack(app, "hello-cdk");
app.synth();

C#

var app = new App();
new MyFirstStack(app, "hello-cdk");
app.Synth();

Stacks within a single app can easily refer to each other's resources and properties. The AWS CDK
infers dependencies between stacks so that they can be deployed in the correct order. You can
deploy any or all of the stacks within an app with a single cdk deploy command.

Working with apps

The app lifecycle

The following diagram shows the phases that the AWS CDK goes through when you call cdk
deploy. This command deploys the resources that your app defines.

Working with apps Version 2 46

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

An AWS CDK app goes through the following phases in its lifecycle.

1. Construction (or Initialization)

Your code instantiates all of the defined constructs and then links them together. In this stage,
all of the constructs (app, stacks, and their child constructs) are instantiated and the constructor
chain is executed. Most of your app code is executed in this stage.

2. Preparation

All constructs that have implemented the prepare method participate in a final round of
modifications, to set up their final state. The preparation phase happens automatically. As a
user, you don't see any feedback from this phase. It's rare to need to use the "prepare" hook,
and generally not recommended. Be very careful when mutating the construct tree during this
phase, because the order of operations could impact behavior.

3. Validation

All constructs that have implemented the validate method can validate themselves to ensure
that they're in a state that will correctly deploy. You will get notified of any validation failures
that happen during this phase. Generally, we recommend performing validation as soon as
possible (usually as soon as you get some input) and throwing exceptions as early as possible.
Performing validation early improves diagnosability as stack traces will be more accurate, and
ensures that your code can continue to execute safely.

4. Synthesis

This is the final stage of the execution of your AWS CDK app. It's triggered by a call to
app.synth(), and it traverses the construct tree and invokes the synthesize method
on all constructs. Constructs that implement synthesize can participate in synthesis and
emit deployment artifacts to the resulting cloud assembly. These artifacts include AWS
CloudFormation templates, AWS Lambda application bundles, file and Docker image assets, and

Working with apps Version 2 47

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

other deployment artifacts. the section called “Cloud assemblies” describes the output of this
phase. In most cases, you won't need to implement the synthesize method.

5. Deployment

In this phase, the AWS CDK Toolkit takes the deployment artifacts cloud assembly produced by
the synthesis phase and deploys it to an AWS environment. It uploads assets to Amazon S3 and
Amazon ECR, or wherever they need to go. Then, it starts an AWS CloudFormation deployment
to deploy the application and create the resources.

By the time the AWS CloudFormation deployment phase (step 5) starts, your AWS CDK app has
already finished and exited. This has the following implications:

• The AWS CDK app can't respond to events that happen during deployment, such as a resource
being created or the whole deployment finishing. To run code during the deployment phase,
you must inject it into the AWS CloudFormation template as a custom resource. For more
information about adding a custom resource to your app, see the AWS CloudFormation module,
or the custom-resource example.

• The AWS CDK app might have to work with values that can't be known at the time it runs. For
example, if the AWS CDK app defines an Amazon S3 bucket with an automatically generated
name, and you retrieve the bucket.bucketName (Python: bucket_name) attribute, that value
is not the name of the deployed bucket. Instead, you get a Token value. To determine whether a
particular value is available, call cdk.isUnresolved(value) (Python: is_unresolved). See
the section called “Tokens” for details.

Cloud assemblies

The call to app.synth() is what tells the AWS CDK to synthesize a cloud assembly from an
app. Typically you don't interact directly with cloud assemblies. They are files that include
everything needed to deploy your app to a cloud environment. For example, it includes an AWS
CloudFormation template for each stack in your app. It also includes a copy of any file assets or
Docker images that you reference in your app.

See the cloud assembly specification for details on how cloud assemblies are formatted.

To interact with the cloud assembly that your AWS CDK app creates, you typically use the AWS CDK
Toolkit, a command line tool. But any tool that can read the cloud assembly format can be used to
deploy your app.

Working with apps Version 2 48

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_cloudformation-readme.html
https://github.com/aws-samples/aws-cdk-examples/tree/master/typescript/custom-resource/
https://github.com/aws/aws-cdk/blob/master/design/cloud-assembly.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The CDK Toolkit needs to know how to execute your AWS CDK app. If you created the project from
a template using the cdk init command, your app's cdk.json file includes an app key. This
key specifies the necessary command for the language that the app is written in. If your language
requires compilation, the command line performs this step before running the app, so you can't
forget to do it.

TypeScript

{
 "app": "npx ts-node --prefer-ts-exts bin/my-app.ts"
}

JavaScript

{
 "app": "node bin/my-app.js"
}

Python

{
 "app": "python app.py"
}

Java

{
 "app": "mvn -e -q compile exec:java"
}

C#

{
 "app": "dotnet run -p src/MyApp/MyApp.csproj"
}

If you didn't create your project using the CDK Toolkit, or if you want to override the command line
given in cdk.json, you can use the --app option when issuing the cdk command.

Working with apps Version 2 49

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

$ cdk --app 'executable' cdk-command ...

The executable part of the command indicates the command that should be run to execute your
CDK application. Use quotation marks as shown, since such commands contain spaces. The cdk-
command is a subcommand like synth or deploy that tells the CDK Toolkit what you want to do
with your app. Follow this with any additional options needed for that subcommand.

The CLI can also interact directly with an already-synthesized cloud assembly. To do that, pass the
directory in which the cloud assembly is stored in --app. The following example lists the stacks
defined in the cloud assembly stored under ./my-cloud-assembly.

$ cdk --app ./my-cloud-assembly ls

Stacks

A unit of deployment in the AWS Cloud Development Kit (AWS CDK) is called a stack. Constructs
that represent AWS resources are defined within the context of a stack. Stacks are defined within
the context of an app. When deploying, constructs within a stack are provisioned as a single
unit called an AWS CloudFormation stack. To learn more about AWS CloudFormation stacks, see
Working with stacks in the AWS CloudFormation User Guide.

Since CDK stacks are implemented through AWS CloudFormation stacks, AWS CloudFormation
quotas and limitations apply. To learn more, see AWS CloudFormation quotas.

Topics

• Defining stacks

• Working with stacks

Defining stacks

Stacks are defined within the context of an app. You define a stack using the Stack class from the
AWS Construct Library. Stacks can be defined in any of the following ways:

• Directly within the scope of the app.

• Indirectly by any construct within the tree.

The following example defines a CDK app that contains two stacks:

Stacks Version 2 50

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

const app = new App();

new MyFirstStack(app, 'stack1');
new MySecondStack(app, 'stack2');

app.synth();

JavaScript

const app = new App();

new MyFirstStack(app, 'stack1');
new MySecondStack(app, 'stack2');

app.synth();

Python

app = App()

MyFirstStack(app, 'stack1')
MySecondStack(app, 'stack2')

app.synth()

Java

App app = new App();

new MyFirstStack(app, "stack1");
new MySecondStack(app, "stack2");

app.synth();

C#

var app = new App();

new MyFirstStack(app, "stack1");
new MySecondStack(app, "stack2");

Defining stacks Version 2 51

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

app.Synth();

The following example is a common pattern for creating a stack within your CDK app. Here, we
extend or inherit the Stack class and define a constructor that accepts scope, id, and props.
Then, we invoke the base Stack class constructor using super with the received scope, id, and
props.

TypeScript

class HelloCdkStack extends Stack {
 constructor(scope: App, id: string, props?: StackProps) {
 super(scope, id, props);

 //...
 }
}

JavaScript

class HelloCdkStack extends Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 //...
 }
}

Python

class HelloCdkStack(Stack):

 def __init__(self, scope: Construct, id: str, **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 # ...

Java

public class HelloCdkStack extends Stack {
 public HelloCdkStack(final Construct scope, final String id) {

Defining stacks Version 2 52

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 this(scope, id, null);
 }

 public HelloCdkStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 // ...
 }
}

C#

public class HelloCdkStack : Stack
{
 public HelloCdkStack(Construct scope, string id, IStackProps props=null) :
 base(scope, id, props)
 {
 //...
 }
}

The following example declares a stack class named MyFirstStack that includes a single Amazon
S3 bucket.

TypeScript

class MyFirstStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyFirstBucket');
 }
}

JavaScript

class MyFirstStack extends Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

Defining stacks Version 2 53

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 new s3.Bucket(this, 'MyFirstBucket');
 }
}

Python

class MyFirstStack(Stack):

 def __init__(self, scope: Construct, id: str, **kwargs):
 super().__init__(scope, id, **kwargs)

 s3.Bucket(self, "MyFirstBucket")

Java

public class MyFirstStack extends Stack {
 public MyFirstStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public MyFirstStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 new Bucket(this, "MyFirstBucket");
 }
}

C#

public class MyFirstStack : Stack
{
 public MyFirstStack(Stack scope, string id, StackProps props = null) :
 base(scope, id, props)
 {
 new Bucket(this, "MyFirstBucket");
 }
}

Defining stacks Version 2 54

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

However, this code has only declared a stack. For the stack to actually be synthesized into an AWS
CloudFormation template and deployed, it must be instantiated. And, like all CDK constructs, it
must be instantiated in some context. The App is that context.

Tip

If you're using the standard AWS CDK development template, your stacks are instantiated
in the same file where you instantiate the App object.

TypeScript

The file named after your project (for example, hello-cdk.ts) in your project's bin
folder.

JavaScript

The file named after your project (for example, hello-cdk.js) in your project's bin
folder.

Python

The file app.py in your project's main directory.

Java

The file named ProjectNameApp.java, for example HelloCdkApp.java, nested
deep under the src/main directory.

C#

The file named Program.cs under src\ProjectName, for example src\HelloCdk
\Program.cs.

The stack API

The Stack object provides a rich API, including the following:

• Stack.of(construct) – A static method that returns the Stack in which a construct is
defined. This is useful if you need to interact with a stack from within a reusable construct. The
call fails if a stack cannot be found in scope.

Defining stacks Version 2 55

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• stack.stackName (Python: stack_name) – Returns the physical name of the stack. As
mentioned previously, all AWS CDK stacks have a physical name that the AWS CDK can resolve
during synthesis.

• stack.region and stack.account – Return the AWS Region and account, respectively, into
which this stack will be deployed. These properties return one of the following:

• The account or Region explicitly specified when the stack was defined

• A string-encoded token that resolves to the AWS CloudFormation pseudo parameters for
account and Region to indicate that this stack is environment agnostic

For information about how environments are determined for stacks, see the section called
“Environments”.

• stack.addDependency(stack) (Python: stack.add_dependency(stack) – Can be used
to explicitly define dependency order between two stacks. This order is respected by the cdk
deploy command when deploying multiple stacks at once.

• stack.tags – Returns a TagManager that you can use to add or remove stack-level tags. This
tag manager tags all resources within the stack, and also tags the stack itself when it's created
through AWS CloudFormation.

• stack.partition, stack.urlSuffix (Python: url_suffix), stack.stackId (Python:
stack_id), and stack.notificationArn (Python: notification_arn) – Return tokens
that resolve to the respective AWS CloudFormation pseudo parameters, such as { "Ref":
"AWS::Partition" }. These tokens are associated with the specific stack object so that the
AWS CDK framework can identify cross-stack references.

• stack.availabilityZones (Python: availability_zones) – Returns the set of Availability
Zones available in the environment in which this stack is deployed. For environment-agnostic
stacks, this always returns an array with two Availability Zones. For environment-specific stacks,
the AWS CDK queries the environment and returns the exact set of Availability Zones available in
the Region that you specified.

• stack.parseArn(arn) and stack.formatArn(comps) (Python: parse_arn, format_arn)
– Can be used to work with Amazon Resource Names (ARNs).

• stack.toJsonString(obj) (Python: to_json_string) – Can be used to format an arbitrary
object as a JSON string that can be embedded in an AWS CloudFormation template. The object
can include tokens, attributes, and references, which are only resolved during deployment.

• stack.templateOptions (Python: template_options) – Use to specify AWS
CloudFormation template options, such as Transform, Description, and Metadata, for your stack.

Defining stacks Version 2 56

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.TagManager.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with stacks

To list all stacks in a CDK app, use the cdk ls command. The previous example would output the
following:

stack1
stack2

Stacks are deployed as part of an AWS CloudFormation stack into an AWS environment. The
environment covers a specific AWS account and AWS Region.

When you run the cdk synth command for an app with multiple stacks, the cloud assembly
includes a separate template for each stack instance. Even if the two stacks are instances of the
same class, the AWS CDK emits them as two individual templates.

You can synthesize each template by specifying the stack name in the cdk synth command. The
following example synthesizes the template for stack1.

$ cdk synth stack1

This approach is conceptually different from how AWS CloudFormation templates are normally
used, where a template can be deployed multiple times and parameterized through AWS
CloudFormation parameters. Although AWS CloudFormation parameters can be defined in the AWS
CDK, they are generally discouraged because AWS CloudFormation parameters are resolved only
during deployment. This means that you cannot determine their value in your code.

For example, to conditionally include a resource in your app based on a parameter value, you must
set up an AWS CloudFormation condition and tag the resource with it. The AWS CDK takes an
approach where concrete templates are resolved at synthesis time. Therefore, you can use an if
statement to check the value to determine whether a resource should be defined or some behavior
should be applied.

Note

The AWS CDK provides as much resolution as possible during synthesis time to enable
idiomatic and natural usage of your programming language.

Working with stacks Version 2 57

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Like any other construct, stacks can be composed together into groups. The following code shows
an example of a service that consists of three stacks: a control plane, a data plane, and monitoring
stacks. The service construct is defined twice: once for the beta environment and once for the
production environment.

TypeScript

import { App, Stack } from 'aws-cdk-lib';
import { Construct } from 'constructs';

interface EnvProps {
 prod: boolean;
}

// imagine these stacks declare a bunch of related resources
class ControlPlane extends Stack {}
class DataPlane extends Stack {}
class Monitoring extends Stack {}

class MyService extends Construct {

 constructor(scope: Construct, id: string, props?: EnvProps) {

 super(scope, id);

 // we might use the prod argument to change how the service is configured
 new ControlPlane(this, "cp");
 new DataPlane(this, "data");
 new Monitoring(this, "mon"); }
}

const app = new App();
new MyService(app, "beta");
new MyService(app, "prod", { prod: true });

app.synth();

JavaScript

const { App, Stack } = require('aws-cdk-lib');
const { Construct } = require('constructs');

// imagine these stacks declare a bunch of related resources

Working with stacks Version 2 58

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class ControlPlane extends Stack {}
class DataPlane extends Stack {}
class Monitoring extends Stack {}

class MyService extends Construct {

 constructor(scope, id, props) {

 super(scope, id);

 // we might use the prod argument to change how the service is configured
 new ControlPlane(this, "cp");
 new DataPlane(this, "data");
 new Monitoring(this, "mon");
 }
}

const app = new App();
new MyService(app, "beta");
new MyService(app, "prod", { prod: true });

app.synth();

Python

from aws_cdk import App, Stack
from constructs import Construct

imagine these stacks declare a bunch of related resources
class ControlPlane(Stack): pass
class DataPlane(Stack): pass
class Monitoring(Stack): pass

class MyService(Construct):

 def __init__(self, scope: Construct, id: str, *, prod=False):

 super().__init__(scope, id)

 # we might use the prod argument to change how the service is configured
 ControlPlane(self, "cp")
 DataPlane(self, "data")
 Monitoring(self, "mon")

Working with stacks Version 2 59

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

app = App();
MyService(app, "beta")
MyService(app, "prod", prod=True)

app.synth()

Java

package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.Stack;
import software.constructs.Construct;

public class MyApp {

 // imagine these stacks declare a bunch of related resources
 static class ControlPlane extends Stack {
 ControlPlane(Construct scope, String id) {
 super(scope, id);
 }
 }

 static class DataPlane extends Stack {
 DataPlane(Construct scope, String id) {
 super(scope, id);
 }
 }

 static class Monitoring extends Stack {
 Monitoring(Construct scope, String id) {
 super(scope, id);
 }
 }

 static class MyService extends Construct {
 MyService(Construct scope, String id) {
 this(scope, id, false);
 }

 MyService(Construct scope, String id, boolean prod) {
 super(scope, id);

Working with stacks Version 2 60

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // we might use the prod argument to change how the service is
 configured
 new ControlPlane(this, "cp");
 new DataPlane(this, "data");
 new Monitoring(this, "mon");
 }
 }

 public static void main(final String argv[]) {
 App app = new App();

 new MyService(app, "beta");
 new MyService(app, "prod", true);

 app.synth();
 }
}

C#

using Amazon.CDK;
using Constructs;

// imagine these stacks declare a bunch of related resources
public class ControlPlane : Stack {
 public ControlPlane(Construct scope, string id=null) : base(scope, id) { }
}

public class DataPlane : Stack {
 public DataPlane(Construct scope, string id=null) : base(scope, id) { }
}

public class Monitoring : Stack
{
 public Monitoring(Construct scope, string id=null) : base(scope, id) { }
}

public class MyService : Construct
{
 public MyService(Construct scope, string id, Boolean prod=false) : base(scope,
 id)
 {

Working with stacks Version 2 61

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // we might use the prod argument to change how the service is configured
 new ControlPlane(this, "cp");
 new DataPlane(this, "data");
 new Monitoring(this, "mon");
 }
}

class Program
{
 static void Main(string[] args)
 {

 var app = new App();
 new MyService(app, "beta");
 new MyService(app, "prod", prod: true);
 app.Synth();
 }
}

This AWS CDK app eventually consists of six stacks, three for each environment:

$ cdk ls

betacpDA8372D3
betadataE23DB2BA
betamon632BD457
prodcp187264CE
proddataF7378CE5
prodmon631A1083

The physical names of the AWS CloudFormation stacks are automatically determined by the AWS
CDK based on the stack's construct path in the tree. By default, a stack's name is derived from
the construct ID of the Stack object. However, you can specify an explicit name by using the
stackName prop (in Python, stack_name), as follows.

TypeScript

new MyStack(this, 'not:a:stack:name', { stackName: 'this-is-stack-name' });

Working with stacks Version 2 62

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

new MyStack(this, 'not:a:stack:name', { stackName: 'this-is-stack-name' });

Python

MyStack(self, "not:a:stack:name", stack_name="this-is-stack-name")

Java

new MyStack(this, "not:a:stack:name", StackProps.builder()
 .StackName("this-is-stack-name").build());

C#

new MyStack(this, "not:a:stack:name", new StackProps
{
 StackName = "this-is-stack-name"
});

Nested stacks

The NestedStack construct offers a way around the AWS CloudFormation 500-resource limit for
stacks. A nested stack counts as only one resource in the stack that contains it. However, it can
contain up to 500 resources, including additional nested stacks.

The scope of a nested stack must be a Stack or NestedStack construct. The nested stack doesn't
need to be declared lexically inside its parent stack. It is necessary only to pass the parent stack
as the first parameter (scope) when instantiating the nested stack. Aside from this restriction,
defining constructs in a nested stack works exactly the same as in an ordinary stack.

At synthesis time, the nested stack is synthesized to its own AWS CloudFormation template, which
is uploaded to the AWS CDK staging bucket at deployment. Nested stacks are bound to their parent
stack and are not treated as independent deployment artifacts. They aren't listed by cdk list,
and they can't be deployed by cdk deploy.

References between parent stacks and nested stacks are automatically translated to stack
parameters and outputs in the generated AWS CloudFormation templates, as with any cross-stack
reference.

Working with stacks Version 2 63

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.NestedStack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Warning

Changes in security posture are not displayed before deployment for nested stacks. This
information is displayed only for top-level stacks.

Environments

An environment is the target AWS account and AWS Region that stacks are deployed to. All stacks
in your CDK app are explicitly or implicitly associated with an environment (env).

Topics

• Configuring environments

• Bootstrapping environments

Configuring environments

For production stacks, we recommend that you explicitly specify the environment for each stack
in your app using the env property. The following example specifies different environments for its
two different stacks.

TypeScript

const envEU = { account: '2383838383', region: 'eu-west-1' };
const envUSA = { account: '8373873873', region: 'us-west-2' };

new MyFirstStack(app, 'first-stack-us', { env: envUSA });
new MyFirstStack(app, 'first-stack-eu', { env: envEU });

JavaScript

const envEU = { account: '2383838383', region: 'eu-west-1' };
const envUSA = { account: '8373873873', region: 'us-west-2' };

new MyFirstStack(app, 'first-stack-us', { env: envUSA });
new MyFirstStack(app, 'first-stack-eu', { env: envEU });

Environments Version 2 64

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

env_EU = cdk.Environment(account="8373873873", region="eu-west-1")
env_USA = cdk.Environment(account="2383838383", region="us-west-2")

MyFirstStack(app, "first-stack-us", env=env_USA)
MyFirstStack(app, "first-stack-eu", env=env_EU)

Java

public class MyApp {

 // Helper method to build an environment
 static Environment makeEnv(String account, String region) {
 return Environment.builder()
 .account(account)
 .region(region)
 .build();
 }

 public static void main(final String argv[]) {
 App app = new App();

 Environment envEU = makeEnv("8373873873", "eu-west-1");
 Environment envUSA = makeEnv("2383838383", "us-west-2");

 new MyFirstStack(app, "first-stack-us", StackProps.builder()
 .env(envUSA).build());
 new MyFirstStack(app, "first-stack-eu", StackProps.builder()
 .env(envEU).build());

 app.synth();
 }
}

C#

Amazon.CDK.Environment makeEnv(string account, string region)
{
 return new Amazon.CDK.Environment
 {
 Account = account,
 Region = region

Configuring environments Version 2 65

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 };
}

var envEU = makeEnv(account: "8373873873", region: "eu-west-1");
var envUSA = makeEnv(account: "2383838383", region: "us-west-2");

new MyFirstStack(app, "first-stack-us", new StackProps { Env=envUSA });
new MyFirstStack(app, "first-stack-eu", new StackProps { Env=envEU });

When you hard-code the target account and Region as shown in the preceding example, the
stack is always deployed to that specific account and Region. To make the stack deployable to a
different target, but to determine the target at synthesis time, your stack can use two environment
variables provided by the AWS CDK CLI: CDK_DEFAULT_ACCOUNT and CDK_DEFAULT_REGION.
These variables are set based on the AWS profile specified using the --profile option, or the default
AWS profile if you don't specify one.

The following code fragment shows how to access the account and Region passed from the AWS
CDK CLI in your stack.

TypeScript

Access environment variables via Node's process object.

Note

You need the DefinitelyTyped module to use process in TypeScript. cdk init
installs this module for you. However, you should install this module manually if you are
working with a project created before it was added, or if you didn't set up your project
using cdk init.

npm install @types/node

new MyDevStack(app, 'dev', {
 env: {
 account: process.env.CDK_DEFAULT_ACCOUNT,
 region: process.env.CDK_DEFAULT_REGION
}});

Configuring environments Version 2 66

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

Access environment variables via Node's process object.

new MyDevStack(app, 'dev', {
 env: {
 account: process.env.CDK_DEFAULT_ACCOUNT,
 region: process.env.CDK_DEFAULT_REGION
}});

Python

Use the os module's environ dictionary to access environment variables.

import os
MyDevStack(app, "dev", env=cdk.Environment(
 account=os.environ["CDK_DEFAULT_ACCOUNT"],
 region=os.environ["CDK_DEFAULT_REGION"]))

Java

Use System.getenv() to get the value of an environment variable.

public class MyApp {

 // Helper method to build an environment
 static Environment makeEnv(String account, String region) {
 account = (account == null) ? System.getenv("CDK_DEFAULT_ACCOUNT") :
 account;
 region = (region == null) ? System.getenv("CDK_DEFAULT_REGION") : region;

 return Environment.builder()
 .account(account)
 .region(region)
 .build();
 }

 public static void main(final String argv[]) {
 App app = new App();

 Environment envEU = makeEnv(null, null);
 Environment envUSA = makeEnv(null, null);

Configuring environments Version 2 67

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 new MyDevStack(app, "first-stack-us", StackProps.builder()
 .env(envUSA).build());
 new MyDevStack(app, "first-stack-eu", StackProps.builder()
 .env(envEU).build());

 app.synth();
 }
}

C#

Use System.Environment.GetEnvironmentVariable() to get the value of an
environment variable.

Amazon.CDK.Environment makeEnv(string account=null, string region=null)
{
 return new Amazon.CDK.Environment
 {
 Account = account ??
 System.Environment.GetEnvironmentVariable("CDK_DEFAULT_ACCOUNT"),
 Region = region ??
 System.Environment.GetEnvironmentVariable("CDK_DEFAULT_REGION")
 };
}

new MyDevStack(app, "dev", new StackProps { Env = makeEnv() });

Specify the AWS Region using a Region code. For a list, see Regional endpoints.

The AWS CDK distinguishes between not specifying the env property at all and specifying it
using CDK_DEFAULT_ACCOUNT and CDK_DEFAULT_REGION. The former implies that the stack
should synthesize an environment-agnostic template. Constructs that are defined in such a stack
cannot use any information about their environment. For example, you can't write code like if
(stack.region === 'us-east-1') or use framework facilities like Vpc.fromLookup (Python:
from_lookup), which need to query your AWS account. These features don't work at all until you
specify an explicit environment; to use them, you must specify env.

When you pass in your environment using CDK_DEFAULT_ACCOUNT and CDK_DEFAULT_REGION,
the stack will be deployed in the account and Region determined by the AWS CDK CLI at the time

Configuring environments Version 2 68

https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.Vpc.html#static-fromwbrlookupscope-id-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

of synthesis. This lets environment-dependent code work, but it also means that the synthesized
template could be different based on the machine, user, or session that it's synthesized under. This
behavior is often acceptable or even desirable during development, but it would probably be an
anti-pattern for production use.

You can set env however you like, using any valid expression. For example, you might write your
stack to support two additional environment variables to let you override the account and Region
at synthesis time. We'll call these CDK_DEPLOY_ACCOUNT and CDK_DEPLOY_REGION here, but you
could name them anything you like, as they are not set by the AWS CDK. In the following stack's
environment, alternative environment variables are used if they're set. If they're not set, they fall
back to the default environment provided by the AWS CDK.

TypeScript

new MyDevStack(app, 'dev', {
 env: {
 account: process.env.CDK_DEPLOY_ACCOUNT || process.env.CDK_DEFAULT_ACCOUNT,
 region: process.env.CDK_DEPLOY_REGION || process.env.CDK_DEFAULT_REGION
}});

JavaScript

new MyDevStack(app, 'dev', {
 env: {
 account: process.env.CDK_DEPLOY_ACCOUNT || process.env.CDK_DEFAULT_ACCOUNT,
 region: process.env.CDK_DEPLOY_REGION || process.env.CDK_DEFAULT_REGION
}});

Python

MyDevStack(app, "dev", env=cdk.Environment(
 account=os.environ.get("CDK_DEPLOY_ACCOUNT", os.environ["CDK_DEFAULT_ACCOUNT"]),
 region=os.environ.get("CDK_DEPLOY_REGION", os.environ["CDK_DEFAULT_REGION"])

Java

public class MyApp {

 // Helper method to build an environment
 static Environment makeEnv(String account, String region) {

Configuring environments Version 2 69

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 account = (account == null) ? System.getenv("CDK_DEPLOY_ACCOUNT") : account;
 region = (region == null) ? System.getenv("CDK_DEPLOY_REGION") : region;
 account = (account == null) ? System.getenv("CDK_DEFAULT_ACCOUNT") :
 account;
 region = (region == null) ? System.getenv("CDK_DEFAULT_REGION") : region;

 return Environment.builder()
 .account(account)
 .region(region)
 .build();
 }

 public static void main(final String argv[]) {
 App app = new App();

 Environment envEU = makeEnv(null, null);
 Environment envUSA = makeEnv(null, null);

 new MyDevStack(app, "first-stack-us", StackProps.builder()
 .env(envUSA).build());
 new MyDevStack(app, "first-stack-eu", StackProps.builder()
 .env(envEU).build());

 app.synth();
 }
}

C#

Amazon.CDK.Environment makeEnv(string account=null, string region=null)
{
 return new Amazon.CDK.Environment
 {
 Account = account ??
 System.Environment.GetEnvironmentVariable("CDK_DEPLOY_ACCOUNT") ??
 System.Environment.GetEnvironmentVariable("CDK_DEFAULT_ACCOUNT"),
 Region = region ??
 System.Environment.GetEnvironmentVariable("CDK_DEPLOY_REGION") ??
 System.Environment.GetEnvironmentVariable("CDK_DEFAULT_REGION")
 };
}

new MyDevStack(app, "dev", new StackProps { Env = makeEnv() });

Configuring environments Version 2 70

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

With your stack's environment declared this way, you can write a short script or batch file like
the following to set the variables from command line arguments, then call cdk deploy. Any
arguments beyond the first two are passed through to cdk deploy and can be used to specify
command line options or stacks.

macOS/Linux

#!/usr/bin/env bash
if [[$# -ge 2]]; then
 export CDK_DEPLOY_ACCOUNT=$1
 export CDK_DEPLOY_REGION=$2
 shift; shift
 npx cdk deploy "$@"
 exit $?
else
 echo 1>&2 "Provide account and region as first two args."
 echo 1>&2 "Additional args are passed through to cdk deploy."
 exit 1
fi

Save the script as cdk-deploy-to.sh, then execute chmod +x cdk-deploy-to.sh to make
it executable.

Windows

@findstr /B /V @ %~dpnx0 > %~dpn0.ps1 && powershell -ExecutionPolicy Bypass
 %~dpn0.ps1 %*
@exit /B %ERRORLEVEL%
if ($args.length -ge 2) {
 $env:CDK_DEPLOY_ACCOUNT, $args = $args
 $env:CDK_DEPLOY_REGION, $args = $args
 npx cdk deploy $args
 exit $lastExitCode
} else {
 [console]::error.writeline("Provide account and region as first two args.")
 [console]::error.writeline("Additional args are passed through to cdk deploy.")
 exit 1
}

The Windows version of the script uses PowerShell to provide the same functionality as the
macOS/Linux version. It also contains instructions to allow it to be run as a batch file so it can

Configuring environments Version 2 71

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

be easily invoked from a command line. It should be saved as cdk-deploy-to.bat. The file
cdk-deploy-to.ps1 will be created when the batch file is invoked.

Then you can write additional scripts that call the "deploy-to" script to deploy to specific
environments (even multiple environments per script):

macOS/Linux

#!/usr/bin/env bash
cdk-deploy-to-test.sh
./cdk-deploy-to.sh 123457689 us-east-1 "$@"

Windows

@echo off
rem cdk-deploy-to-test.bat
cdk-deploy-to 135792469 us-east-1 %*

When deploying to multiple environments, consider whether you want to continue deploying
to other environments after a deployment fails. The following example avoids deploying to the
second production environment if the first doesn't succeed.

macOS/Linux

#!/usr/bin/env bash
cdk-deploy-to-prod.sh
./cdk-deploy-to.sh 135792468 us-west-1 "$@" || exit
./cdk-deploy-to.sh 246813579 eu-west-1 "$@"

Windows

@echo off
rem cdk-deploy-to-prod.bat
cdk-deploy-to 135792469 us-west-1 %* || exit /B
cdk-deploy-to 245813579 eu-west-1 %*

Developers could still use the normal cdk deploy command to deploy to their own AWS
environments for development.

Configuring environments Version 2 72

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you don't specify an environment when you instantiate a stack, the stack is said to be
environment-agnostic. AWS CloudFormation templates synthesized from such a stack will try
to use deploy-time resolution on environment-related attributes such as stack.account,
stack.region, and stack.availabilityZones (Python: availability_zones).

When using cdk deploy to deploy environment-agnostic stacks, the AWS CDK CLI will use the
specified AWS CLI profile to determine where to deploy. If no profile is specified, the default profile
is used. The AWS CDK CLI follows a protocol similar to the AWS CLI to determine which AWS
credentials to use when performing operations in your AWS account. See the section called “AWS
CDK Toolkit” for details.

In an environment-agnostic stack, any constructs that use Availability Zones will see two
Availability Zones, allowing the stack to be deployed to any Region.

Bootstrapping environments

You must bootstrap each environment that you will deploy CDK stacks into. Bootstrapping
prepares the environment for deployment. To learn more, see Bootstrapping.

Bootstrapping

Bootstrapping is the process of preparing an environment for deployment. Bootstrapping is a one-
time action that you must perform for every environment that you deploy resources into.

Topics

• Bootstrapping environments

• How to bootstrap

• Customizing bootstrapping

• Bootstrapping template differences

• Stack synthesizers

• Customizing synthesis

• The bootstrapping template contract

• Security Hub Findings

Bootstrapping environments Version 2 73

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Bootstrapping environments

Important

You may incur AWS charges for data stored in the bootstrapped resources.

Bootstrapping provisions resources in your environment such as an Amazon Simple Storage Service
(Amazon S3) bucket for storing files and AWS Identity and Access Management (IAM) roles that
grant permissions needed to perform deployments. These resources get provisioned in an AWS
CloudFormation stack, called the bootstrap stack. It is usually named CDKToolkit. Like any AWS
CloudFormation stack, it will appear in the AWS CloudFormation console of your environment once
it has been deployed.

Note

CDK v2 uses a modern bootstrap template. The legacy template from CDK v1 is not
supported in v2.

Environments are independent. If you want to deploy to multiple environments, each environment
must be bootstrapped separately.

If you attempt to deploy a CDK app into an environment that hasn't been bootstrapped, you will
receive an error message reminding you to bootstrap the environment.

Bootstrapping with CDK Pipelines

If you are using CDK Pipelines to deploy into another account's environment, and you receive a
message like the following:

Policy contains a statement with one or more invalid principals

This error message means that the appropriate IAM roles do not exist in the other environment.
The most likely cause is that the environment has not been bootstrapped. Bootstrap the
environment and try again.

Bootstrapping environments Version 2 74

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

If the environment is bootstrapped, do not delete and recreate the environment's bootstrap
stack. Deleting the bootstrap stack will delete the AWS resources that were originally
provisioned in the environment to support CDK deployments. This will cause the pipeline
to stop working. Instead, try to update the bootstrap stack to a new version by running the
CDK CLI cdk bootstrap command again.

How to bootstrap

When you bootstrap an environment, an AWS CloudFormation template is deployed to the specific
environment. This template provisions resources in your account to prepare your environment for
deployment.

The bootstrapping template accepts parameters that customize some aspects of the bootstrapped
resources. For more information, see the section called “Customizing bootstrapping”.

You can bootstrap in any of the following ways:

• Use the AWS CDK CLI cdk bootstrap command. This is the simplest method and works well if you
have only a few environments to bootstrap.

• Deploy the template provided by the AWS CDK CLI using another AWS CloudFormation
deployment tool. This lets you use AWS CloudFormation StackSets or AWS Control Tower and
also the AWS CloudFormation console or the AWS CLI. You can make small modifications to
the template before deployment. This approach is more flexible and is suitable for large-scale
deployments.

It's not an error to bootstrap an environment more than once. If an environment you bootstrap has
already been bootstrapped, its bootstrap stack will be upgraded if necessary. Otherwise, nothing
will happen.

Bootstrapping with the AWS CDK CLI

Use the cdk bootstrap command to bootstrap one or more AWS environments.

The following example bootstraps two environments:

How to bootstrap Version 2 75

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

$ cdk bootstrap aws://ACCOUNT-NUMBER-1/REGION-1 aws://ACCOUNT-NUMBER-2/REGION-2 ...

The following examples show multiple ways of bootstrapping environments. As shown in the
second example, the aws:// prefix is optional when specifying an environment.

$ cdk bootstrap aws://123456789012/us-east-1
$ cdk bootstrap 123456789012/us-east-1 123456789012/us-west-1

When you run cdk bootstrap, the CDK CLI always synthesizes the CDK app in the current directory.
If you do not specify at least one environment, the CDK CLI will bootstrap all environments
referenced in the app.

For environment-agnostic stacks, the CDK CLI will attempt to determine an environment
from default sources. This could be an environment specified using the --profile option, from
environment variables, or default AWS CLI sources. If found, the environment is then bootstrapped.

For example, the following command synthesizes the current AWS CDK app using the prod AWS
profile, then bootstraps its environments.

$ cdk bootstrap --profile prod

Bootstrapping from the AWS CloudFormation template

You can bootstrap an environment by obtaining and deploying the bootstrap AWS CloudFormation
template.

To get a copy of this template in the file bootstrap-template.yaml, run the following
command:

macOS/Linux

$ cdk bootstrap --show-template > bootstrap-template.yaml

Windows

On Windows, PowerShell must be used to preserve the encoding of the template.

powershell "cdk bootstrap --show-template | Out-File -encoding utf8 bootstrap-
template.yaml"

How to bootstrap Version 2 76

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The template is also available in the AWS CDK GitHub repository.

Deploy this template using the CDK CLI or your preferred deployment mechanism for AWS
CloudFormation templates. To deploy using the CDK CLI, run cdk bootstrap --template
TEMPLATE_FILENAME. You can also deploy it using the AWS CLI by running the command below,
or deploy to one or more accounts at once using AWS CloudFormation Stack Sets.

macOS/Linux

aws cloudformation create-stack \
 --stack-name CDKToolkit \
 --template-body file://bootstrap-template.yaml

Windows

aws cloudformation create-stack ^
 --stack-name CDKToolkit ^
 --template-body file://bootstrap-template.yaml

Customizing bootstrapping

There are two ways to customize the bootstrapping of resources in your environment:

• Use command line parameters with the cdk bootstrap command. This lets you modify a few
aspects of the template.

• Modify the default bootstrap template and deploy it yourself. This gives you more complete
control over the bootstrap resources.

The following command line options, when used with CDK CLI cdk bootstrap, provide commonly
used adjustments to the bootstrapping template:

• --bootstrap-bucket-name overrides the name of the Amazon S3 bucket. May require changes to
your CDK app (see the section called “Stack synthesizers”).

• --bootstrap-kms-key-id overrides the AWS KMS key used to encrypt the S3 bucket.

• --cloudformation-execution-policies specifies the ARNs of managed policies that should
be attached to the deployment role assumed by AWS CloudFormation during deployment
of your stacks. By default, stacks are deployed with full administrator permissions using the
AdministratorAccess policy.

Customizing bootstrapping Version 2 77

https://github.com/aws/aws-cdk/blob/main/packages/aws-cdk/lib/api/bootstrap/bootstrap-template.yaml
https://aws.amazon.com/blogs/mt/bootstrapping-multiple-aws-accounts-for-aws-cdk-using-cloudformation-stacksets/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The policy ARNs must be passed as a single string argument, with the individual ARNs separated
by commas. For example:

--cloudformation-execution-policies "arn:aws:iam::aws:policy/
AWSLambda_FullAccess,arn:aws:iam::aws:policy/AWSCodeDeployFullAccess".

Important

To avoid deployment failures, be sure the policies that you specify are sufficient for any
deployments you will perform in the environment being bootstrapped.

• --qualifier is a string that is added to the names of all resources in the bootstrap stack. A
qualifier lets you avoid resource name clashes when you provision multiple bootstrap stacks in
the same environment. The default is hnb659fds (this value has no significance).

Changing the qualifier also requires that your CDK app pass the changed value to the stack
synthesizer. For more information, see the section called “Stack synthesizers”.

• --tags adds one or more AWS CloudFormation tags to the bootstrap stack.

• --trust lists the AWS accounts that may deploy into the environment being bootstrapped.

Use this flag when bootstrapping an environment that a CDK Pipeline in another environment
will deploy into. The account doing the bootstrapping is always trusted.

• --trust-for-lookup lists the AWS accounts that may look up context information from the
environment being bootstrapped.

Use this flag to give accounts permission to synthesize stacks that will be deployed into the
environment, without actually giving them permission to deploy those stacks directly.

• --termination-protection prevents the bootstrap stack from being deleted. For more
information, see Protecting a stack from being deleted in the AWS CloudFormation User Guide.

Important

The modern bootstrap template effectively grants the permissions implied by the --
cloudformation-execution-policies to any AWS account in the --trust list. By
default, this extends permissions to read and write to any resource in the bootstrapped

Customizing bootstrapping Version 2 78

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-protect-stacks.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

account. Make sure to configure the bootstrapping stack with policies and trusted accounts
that you are comfortable with.

Customizing the template

When you need more customization than the CDK CLI can provide, you can modify the bootstrap
template to suit your needs. First, you obtain the template using the --show-template option. The
following is an example:

$ cdk bootstrap --show-template

Any modifications you make must adhere to the bootstrapping template contract. To ensure that
your customizations are not accidentally overwritten later by someone running cdk bootstrap
using the default template, change the default value of the BootstrapVariant template
parameter. The CDK CLI will only allow overwriting the bootstrap stack with templates that have
the same BootstrapVariant and a equal or higher version than the template that is currently
deployed.

You can then deploy your modified template as described in the section called “Bootstrapping from
the AWS CloudFormation template”, or using cdk bootstrap --template.

$ cdk bootstrap --template bootstrap-template.yaml

Bootstrapping template differences

As previously mentioned, AWS CDK v1 supported two bootstrapping templates, legacy and
modern. CDK v2 supports only the modern template. For reference, here are the high-level
differences between these two templates.

Feature Legacy (v1 only) Modern (v1 and v2)

Cross-account deployments Not allowed Allowed

AWS CloudFormation
Permissions

Deploys using current user's
permissions (determined by
AWS profile, environment
variables, etc.)

Deploys using the permissions
specified when the bootstrap
stack was provisioned (for
example, by using --trust)

Bootstrapping template differences Version 2 79

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Feature Legacy (v1 only) Modern (v1 and v2)

Versioning Only one version of bootstrap
stack is available

Bootstrap stack is versioned;
new resources can be added
in future versions, and AWS
CDK apps can require a
minimum version

Amazon S3 bucket

AWS KMS key

IAM roles

Amazon ECR repository

Resources* Amazon S3 bucket

SSM parameter for versioning

Resource naming Automatically generated Deterministic

Bucket encryption Default key Customer managed key

* We will add additional resources to the bootstrap template as needed.

An environment that was bootstrapped using the legacy template must be upgraded to use the
modern template for CDK v2 by re-bootstrapping. Re-deploy all AWS CDK applications in the
environment at least once before deleting the legacy bucket.

Stack synthesizers

Your AWS CDK app needs to know about the bootstrapping resources available to it in order to
successfully synthesize a stack that can be deployed. The stack synthesizer is an AWS CDK class that
controls how the stack's template is synthesized. This includes how it uses bootstrapping resources
(for example, how it refers to assets stored in the bootstrap bucket).

The AWS CDK's built-in stack synthesizers is called DefaultStackSynthesizer. It includes
capabilities for cross-account deployments and CDK Pipelines deployments.

You can pass a stack synthesizer to a stack when you instantiate it using the synthesizer
property.

Stack synthesizers Version 2 80

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

new MyStack(this, 'MyStack', {
 // stack properties
 synthesizer: new DefaultStackSynthesizer({
 // synthesizer properties
 }),
});

JavaScript

new MyStack(this, 'MyStack', {
 // stack properties
 synthesizer: new DefaultStackSynthesizer({
 // synthesizer properties
 }),
});

Python

MyStack(self, "MyStack",
 # stack properties
 synthesizer=DefaultStackSynthesizer(
 # synthesizer properties
))

Java

new MyStack(app, "MyStack", StackProps.builder()
 // stack properties
 .synthesizer(DefaultStackSynthesizer.Builder.create()
 // synthesizer properties
 .build())
 .build();

C#

new MyStack(app, "MyStack", new StackProps
// stack properties
{

Stack synthesizers Version 2 81

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Synthesizer = new DefaultStackSynthesizer(new DefaultStackSynthesizerProps
 {
 // synthesizer properties
 })
});

If you don't provide the synthesizer property, DefaultStackSynthesizer is used.

Customizing synthesis

Depending on the changes you made to the bootstrap template, you may also need to customize
synthesis. The DefaultStackSynthesizer can be customized using the properties described as
follows.

If none of these properties provide the customizations you require, you can write your
synthesizer as a class that implements IStackSynthesizer (perhaps deriving from
DefaultStackSynthesizer).

Changing the qualifier

The qualifier is added to the name of bootstrap resources to distinguish the resources in separate
bootstrap stacks. To deploy two different versions of the bootstrap stack in the same environment
(AWS account and Region), the stacks must have different qualifiers.

This feature is intended for name isolation between automated tests of the CDK itself. Unless you
can very precisely scope down the IAM permissions given to the AWS CloudFormation execution
role, there are no permission isolation benefits to having two different bootstrap stacks in a single
account. Therefore, there's usually no need to change this value.

To change the qualifier, configure the DefaultStackSynthesizer either by instantiating the
synthesizer with the property:

TypeScript

new MyStack(this, 'MyStack', {
 synthesizer: new DefaultStackSynthesizer({
 qualifier: 'MYQUALIFIER',
 }),
});

Customizing synthesis Version 2 82

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

new MyStack(this, 'MyStack', {
 synthesizer: new DefaultStackSynthesizer({
 qualifier: 'MYQUALIFIER',
 }),
})

Python

MyStack(self, "MyStack",
 synthesizer=DefaultStackSynthesizer(
 qualifier="MYQUALIFIER"
))

Java

new MyStack(app, "MyStack", StackProps.builder()
 .synthesizer(DefaultStackSynthesizer.Builder.create()
 .qualifier("MYQUALIFIER")
 .build())
 .build();

C#

new MyStack(app, "MyStack", new StackProps
{
 Synthesizer = new DefaultStackSynthesizer(new DefaultStackSynthesizerProps
 {
 Qualifier = "MYQUALIFIER"
 })
});

Or by configuring the qualifier as a context key in cdk.json.

{
 "app": "...",
 "context": {
 "@aws-cdk/core:bootstrapQualifier": "MYQUALIFIER"
 }

Customizing synthesis Version 2 83

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

Changing the resource names

All the other DefaultStackSynthesizer properties relate to the names of the resources in
the bootstrapping template. You only need to provide any of these properties if you modified the
bootstrap template and changed the resource names or naming scheme.

All properties accept the special placeholders ${Qualifier}, ${AWS::Partition},
${AWS::AccountId}, and ${AWS::Region}. These placeholders are replaced with the values
of the qualifier parameter and the AWS partition, account ID, and Region values for the stack's
environment, respectively.

The following example shows the most commonly used properties for
DefaultStackSynthesizer along with their default values, as if you were instantiating the
synthesizer. For a complete list, see DefaultStackSynthesizerProps.

TypeScript

new DefaultStackSynthesizer({
 // Name of the S3 bucket for file assets
 fileAssetsBucketName: 'cdk-${Qualifier}-assets-${AWS::AccountId}-${AWS::Region}',
 bucketPrefix: '',

 // Name of the ECR repository for Docker image assets
 imageAssetsRepositoryName: 'cdk-${Qualifier}-container-assets-${AWS::AccountId}-
${AWS::Region}',

 // ARN of the role assumed by the CLI and Pipeline to deploy here
 deployRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-deploy-role-${AWS::AccountId}-${AWS::Region}',
 deployRoleExternalId: '',

 // ARN of the role used for file asset publishing (assumed from the CLI role)
 fileAssetPublishingRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-file-publishing-role-${AWS::AccountId}-${AWS::Region}',
 fileAssetPublishingExternalId: '',

 // ARN of the role used for Docker asset publishing (assumed from the CLI role)
 imageAssetPublishingRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-image-publishing-role-${AWS::AccountId}-${AWS::Region}',
 imageAssetPublishingExternalId: '',

Customizing synthesis Version 2 84

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.DefaultStackSynthesizerProps.html#properties

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // ARN of the role passed to CloudFormation to execute the deployments
 cloudFormationExecutionRole: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-cfn-exec-role-${AWS::AccountId}-${AWS::Region}',

 // ARN of the role used to look up context information in an environment
 lookupRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-lookup-role-${AWS::AccountId}-${AWS::Region}',
 lookupRoleExternalId: '',

 // Name of the SSM parameter which describes the bootstrap stack version number
 bootstrapStackVersionSsmParameter: '/cdk-bootstrap/${Qualifier}/version',

 // Add a rule to every template which verifies the required bootstrap stack
 version
 generateBootstrapVersionRule: true,

})

JavaScript

new DefaultStackSynthesizer({
 // Name of the S3 bucket for file assets
 fileAssetsBucketName: 'cdk-${Qualifier}-assets-${AWS::AccountId}-${AWS::Region}',
 bucketPrefix: '',

 // Name of the ECR repository for Docker image assets
 imageAssetsRepositoryName: 'cdk-${Qualifier}-container-assets-${AWS::AccountId}-
${AWS::Region}',

 // ARN of the role assumed by the CLI and Pipeline to deploy here
 deployRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-deploy-role-${AWS::AccountId}-${AWS::Region}',
 deployRoleExternalId: '',

 // ARN of the role used for file asset publishing (assumed from the CLI role)
 fileAssetPublishingRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-file-publishing-role-${AWS::AccountId}-${AWS::Region}',
 fileAssetPublishingExternalId: '',

 // ARN of the role used for Docker asset publishing (assumed from the CLI role)
 imageAssetPublishingRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-image-publishing-role-${AWS::AccountId}-${AWS::Region}',

Customizing synthesis Version 2 85

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 imageAssetPublishingExternalId: '',

 // ARN of the role passed to CloudFormation to execute the deployments
 cloudFormationExecutionRole: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-cfn-exec-role-${AWS::AccountId}-${AWS::Region}',

 // ARN of the role used to look up context information in an environment
 lookupRoleArn: 'arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-lookup-role-${AWS::AccountId}-${AWS::Region}',
 lookupRoleExternalId: '',

 // Name of the SSM parameter which describes the bootstrap stack version number
 bootstrapStackVersionSsmParameter: '/cdk-bootstrap/${Qualifier}/version',

 // Add a rule to every template which verifies the required bootstrap stack
 version
 generateBootstrapVersionRule: true,
})

Python

DefaultStackSynthesizer(
 # Name of the S3 bucket for file assets
 file_assets_bucket_name="cdk-${Qualifier}-assets-${AWS::AccountId}-
${AWS::Region}",
 bucket_prefix="",

 # Name of the ECR repository for Docker image assets
 image_assets_repository_name="cdk-${Qualifier}-container-assets-${AWS::AccountId}-
${AWS::Region}",

 # ARN of the role assumed by the CLI and Pipeline to deploy here
 deploy_role_arn="arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-deploy-role-${AWS::AccountId}-${AWS::Region}",
 deploy_role_external_id="",

 # ARN of the role used for file asset publishing (assumed from the CLI role)
 file_asset_publishing_role_arn="arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-file-publishing-role-${AWS::AccountId}-${AWS::Region}",
 file_asset_publishing_external_id="",

 # ARN of the role used for Docker asset publishing (assumed from the CLI role)

Customizing synthesis Version 2 86

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 image_asset_publishing_role_arn="arn:${AWS::Partition}:iam::
${AWS::AccountId}:role/cdk-${Qualifier}-image-publishing-role-${AWS::AccountId}-
${AWS::Region}",
 image_asset_publishing_external_id="",

 # ARN of the role passed to CloudFormation to execute the deployments
 cloud_formation_execution_role="arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-cfn-exec-role-${AWS::AccountId}-${AWS::Region}",

 # ARN of the role used to look up context information in an environment
 lookup_role_arn="arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-lookup-role-${AWS::AccountId}-${AWS::Region}",
 lookup_role_external_id="",

 # Name of the SSM parameter which describes the bootstrap stack version number
 bootstrap_stack_version_ssm_parameter="/cdk-bootstrap/${Qualifier}/version",

 # Add a rule to every template which verifies the required bootstrap stack version
 generate_bootstrap_version_rule=True,
)

Java

DefaultStackSynthesizer.Builder.create()
 // Name of the S3 bucket for file assets
 .fileAssetsBucketName("cdk-${Qualifier}-assets-${AWS::AccountId}-
${AWS::Region}")
 .bucketPrefix('')

 // Name of the ECR repository for Docker image assets
 .imageAssetsRepositoryName("cdk-${Qualifier}-container-assets-${AWS::AccountId}-
${AWS::Region}")

 // ARN of the role assumed by the CLI and Pipeline to deploy here
 .deployRoleArn("arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-deploy-role-${AWS::AccountId}-${AWS::Region}")
 .deployRoleExternalId("")

 // ARN of the role used for file asset publishing (assumed from the CLI role)
 .fileAssetPublishingRoleArn("arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-file-publishing-role-${AWS::AccountId}-${AWS::Region}")
 .fileAssetPublishingExternalId("")

Customizing synthesis Version 2 87

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // ARN of the role used for Docker asset publishing (assumed from the CLI role)
 .imageAssetPublishingRoleArn("arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-image-publishing-role-${AWS::AccountId}-${AWS::Region}")
 .imageAssetPublishingExternalId("")

 // ARN of the role passed to CloudFormation to execute the deployments
 .cloudFormationExecutionRole("arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-cfn-exec-role-${AWS::AccountId}-${AWS::Region}")

 .lookupRoleArn("arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-lookup-role-${AWS::AccountId}-${AWS::Region}")
 .lookupRoleExternalId("")

 // Name of the SSM parameter which describes the bootstrap stack version number
 .bootstrapStackVersionSsmParameter("/cdk-bootstrap/${Qualifier}/version")

 // Add a rule to every template which verifies the required bootstrap stack
 version
 .generateBootstrapVersionRule(true)
.build()

C#

new DefaultStackSynthesizer(new DefaultStackSynthesizerProps
{
 // Name of the S3 bucket for file assets
 FileAssetsBucketName = "cdk-${Qualifier}-assets-${AWS::AccountId}-
${AWS::Region}",
 BucketPrefix = "",

 // Name of the ECR repository for Docker image assets
 ImageAssetsRepositoryName = "cdk-${Qualifier}-container-assets-
${AWS::AccountId}-${AWS::Region}",

 // ARN of the role assumed by the CLI and Pipeline to deploy here
 DeployRoleArn = "arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-deploy-role-${AWS::AccountId}-${AWS::Region}",
 DeployRoleExternalId = "",

 // ARN of the role used for file asset publishing (assumed from the CLI role)
 FileAssetPublishingRoleArn = "arn:${AWS::Partition}:iam::${AWS::AccountId}:role/
cdk-${Qualifier}-file-publishing-role-${AWS::AccountId}-${AWS::Region}",
 FileAssetPublishingExternalId = "",

Customizing synthesis Version 2 88

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // ARN of the role used for Docker asset publishing (assumed from the CLI role)
 ImageAssetPublishingRoleArn = "arn:${AWS::Partition}:iam::
${AWS::AccountId}:role/cdk-${Qualifier}-image-publishing-role-${AWS::AccountId}-
${AWS::Region}",
 ImageAssetPublishingExternalId = "",

 // ARN of the role passed to CloudFormation to execute the deployments
 CloudFormationExecutionRole = "arn:${AWS::Partition}:iam::
${AWS::AccountId}:role/cdk-${Qualifier}-cfn-exec-role-${AWS::AccountId}-
${AWS::Region}",

 LookupRoleArn = "arn:${AWS::Partition}:iam::${AWS::AccountId}:role/cdk-
${Qualifier}-lookup-role-${AWS::AccountId}-${AWS::Region}",
 LookupRoleExternalId = "",

 // Name of the SSM parameter which describes the bootstrap stack version number
 BootstrapStackVersionSsmParameter = "/cdk-bootstrap/${Qualifier}/version",

 // Add a rule to every template which verifies the required bootstrap stack
 version
 GenerateBootstrapVersionRule = true,
})

The bootstrapping template contract

The requirements of the bootstrapping stack depend on the stack synthesizer in use. If you write
your own stack synthesizer, you have complete control of the bootstrap resources that your
synthesizer requires and how the synthesizer finds them.

This section describes the expectations that the DefaultStackSynthesizer has of the
bootstrapping template.

Versioning

The template should contain a resource to create an SSM parameter with a well-known name and
an output to reflect the template's version.

Resources:
 CdkBootstrapVersion:
 Type: AWS::SSM::Parameter

The bootstrapping template contract Version 2 89

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Properties:
 Type: String
 Name:
 Fn::Sub: '/cdk-bootstrap/${Qualifier}/version'
 Value: 4
Outputs:
 BootstrapVersion:
 Value:
 Fn::GetAtt: [CdkBootstrapVersion, Value]

Roles

The DefaultStackSynthesizer requires five IAM roles for five different purposes. If you are not
using the default roles, you must tell the synthesizer the ARNs for the roles you want to use.

The roles are as follows:

• The deployment role is assumed by the AWS CDK Toolkit and by AWS CodePipeline to deploy into
an environment. Its AssumeRolePolicy controls who can deploy into the environment. In the
template, you can see the permissions that this role needs.

• The lookup role is assumed by the AWS CDK Toolkit to perform context lookups in an
environment. Its AssumeRolePolicy controls who can deploy into the environment. The
permissions this role needs can be seen in the template.

• The file publishing role and the image publishing role are assumed by the AWS CDK Toolkit and by
AWS CodeBuild projects to publish assets into an environment. They're used to write to the S3
bucket and the ECR repository, respectively. These roles require write access to these resources.

• The AWS CloudFormation execution role is passed to AWS CloudFormation to perform the actual
deployment. Its permissions are the permissions that the deployment will execute under. The
permissions are passed to the stack as a parameter that lists managed policy ARNs.

Outputs

The AWS CDK Toolkit requires that the following CloudFormation outputs exist on the bootstrap
stack.

• BucketName: the name of the file asset bucket

• BucketDomainName: the file asset bucket in domain name format

• BootstrapVersion: the current version of the bootstrap stack

The bootstrapping template contract Version 2 90

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Template history

The bootstrap template is versioned and evolves over time with the AWS CDK itself. If you provide
your own bootstrap template, keep it up to date with the canonical default template. You want to
make sure that your template continues to work with all CDK features.

Note

Earlier versions of the bootstrap template created an AWS KMS key in each bootstrapped
environment by default. To avoid charges for the KMS key, re-bootstrap these
environments using --no-bootstrap-customer-key. The current default is no KMS key,
which helps avoid these charges.

This section contains a list of the changes made in each version.

Template version AWS CDK version Changes

1 1.40.0 Initial version of template
with Bucket, Key, Repository,
and Roles.

2 1.45.0 Split asset publishing role
into separate file and image
publishing roles.

3 1.46.0 Add FileAssetKeyArn
export to be able to add
decrypt permissions to asset
consumers.

4 1.61.0 AWS KMS permissions are
now implicit via Amazon
S3 and no longer require
FileAsetKeyArn . Add
CdkBootstrapVersio
n SSM parameter so the
bootstrap stack version can

The bootstrapping template contract Version 2 91

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Template version AWS CDK version Changes

be verified without knowing
the stack name.

5 1.87.0 Deployment role can read
SSM parameter.

6 1.108.0 Add lookup role separate
from deployment role.

6 1.109.0 Attach aws-cdk:b
ootstrap-role tag to
deployment, file publishing,
and image publishing roles.

7 1.110.0 Deployment role can no
longer read Buckets in the
target account directly.
(However, this role is effective
ly an administrator, and
could always use its AWS
CloudFormation permissions
to make the bucket readable
anyway).

8 1.114.0 The lookup role has full read-
only permissions to the target
environment, and has a aws-
cdk:bootstrap-role
tag as well.

9 2.1.0 Fixes Amazon S3 asset
uploads from being rejected
by commonly referenced
encryption SCP.

10 2.4.0 Amazon ECR ScanOnPush is
now enabled by default.

The bootstrapping template contract Version 2 92

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Template version AWS CDK version Changes

11 2.18.0 Adds policy allowing Lambda
to pull from Amazon ECR
repos so it survives re-bootst
rapping.

12 2.20.0 Adds support for experimen
tal cdk import.

13 2.25.0 Makes container images in
bootstrap-created Amazon
ECR repositories immutable.

14 2.34.0 Turns off Amazon ECR image
scanning at the repositor
y level by default to allow
bootstrapping Regions
that do not support image
scanning.

15 2.60.0 KMS keys cannot be tagged.

16 2.69.0 Addresses Security Hub
finding KMS.2.

17 2.72.0 Addresses Security Hub
finding ECR.3.

18 2.80.0 Reverted changes made for
version 16 as they don't work
in all partitions and are are
not recommended.

19 2.106.1 Reverted changes made to
version 18 where AccessCon
trol property was removed
from the template. (#27964)

The bootstrapping template contract Version 2 93

https://docs.aws.amazon.com/securityhub/latest/userguide/kms-controls.html#kms-2
https://docs.aws.amazon.com/securityhub/latest/userguide/ecr-controls.html#ecr-3
https://github.com/aws/aws-cdk/issues/27964

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Security Hub Findings

If you are using AWS Security Hub, you may see findings reported on some of the resources
created by the AWS CDK Bootstrapping process. Security Hub findings help you find resource
configurations you should double-check for accuracy and safety. We have reviewed these specific
resource configurations with AWS Security and are confident they do not constitute a security
problem.

[KMS.2] IAM principals should not have IAM inline policies that allow decryption
actions on all KMS keys

The Deploy Role (default name cdk-hnb659fds-deploy-role-ACCOUNT-REGION) has
permissions to read encrypted data stored in Amazon S3. The policy does not give permission to
any data by itself: only data read from Amazon S3 can be decrypted, and only from buckets that
explicitly allow the Deploy Role to read from them via their Bucket Policy, and keys that explicitly
allow the Deploy Role to decrypt using them using their Key Policy. This statement is used to allow
AWS CDK Pipelines to perform cross-account deployments.

Why does Security Hub flag this? The policy contains a Resource: * combined with a
Condition clause; Security Hub is flagging the *. The * is necessary because at the time the
account is bootstrapped, the AWS KMS key created by AWS CDK Pipelines for the CodePipeline
Artifact Bucket does not exist yet so we can't reference its ARN. In addition, Security Hub does not
include the Condition clause in the policy statement in its reasoning.

What if I want to fix this finding? As long as the resource policies on your AWS KMS keys are not
unnecessarily permissive, the current Role policy does not allow the Deploy Role to access any
more data than it should. If you still want to get rid of the finding, you can do so by customizing
the bootstrap stack (using the process outlined above) in one of these 2 ways:

• If you are not using AWS CDK Pipelines for cross-account deployments: remove the statement
with Sid: PipelineCrossAccountArtifactsBucket from the deploy role; or

• If you are using AWS CDK Pipelines for cross-account deployments: after deploying your AWS
CDK Pipeline, look up the AWS KMS Key ARN of the Artifact Bucket and replace the Resource:
* of the Sid: PipelineCrossAccountArtifactsBucket statement with the actual Key
ARN.

Security Hub Findings Version 2 94

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Resources

Resources are what you configure to use AWS services in your applications. Resources are a feature
of AWS CloudFormation. By configuring resources and their properties in a AWS CloudFormation
template, you can deploy to AWS CloudFormation to provision your resources. With the AWS Cloud
Development Kit (AWS CDK), you can configure resources through constructs. You then deploy
your CDK app, which involves synthesizing a AWS CloudFormation template and deploying to AWS
CloudFormation to provision your resources.

Topics

• Configuring resources using constructs

• Referencing resources

• Resource physical names

• Passing unique resource identifiers

• Granting permissions between resources

• Resource metrics and alarms

• Network traffic

• Event handling

• Removal policies

Configuring resources using constructs

As described in the section called “Constructs”, the AWS CDK provides a rich class library of
constructs, called AWS constructs, that represent all AWS resources.

To create an instance of a resource using its corresponding construct, pass in the scope as the
first argument, the logical ID of the construct, and a set of configuration properties (props).
For example, here's how to create an Amazon SQS queue with AWS KMS encryption using the
sqs.Queue construct from the AWS Construct Library.

TypeScript

import * as sqs from '@aws-cdk/aws-sqs';

new sqs.Queue(this, 'MyQueue', {
 encryption: sqs.QueueEncryption.KMS_MANAGED

Resources Version 2 95

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_sqs.Queue.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

JavaScript

const sqs = require('@aws-cdk/aws-sqs');

new sqs.Queue(this, 'MyQueue', {
 encryption: sqs.QueueEncryption.KMS_MANAGED
});

Python

import aws_cdk.aws_sqs as sqs

sqs.Queue(self, "MyQueue", encryption=sqs.QueueEncryption.KMS_MANAGED)

Java

import software.amazon.awscdk.services.sqs.*;

Queue.Builder.create(this, "MyQueue").encryption(
 QueueEncryption.KMS_MANAGED).build();

C#

using Amazon.CDK.AWS.SQS;

new Queue(this, "MyQueue", new QueueProps
{
 Encryption = QueueEncryption.KMS_MANAGED
});

Some configuration props are optional, and in many cases have default values. In some cases, all
props are optional, and the last argument can be omitted entirely.

Resource attributes

Most resources in the AWS Construct Library expose attributes, which are resolved at deployment
time by AWS CloudFormation. Attributes are exposed in the form of properties on the resource

Configuring resources using constructs Version 2 96

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

classes with the type name as a prefix. The following example shows how to get the URL of an
Amazon SQS queue using the queueUrl (Python: queue_url) property.

TypeScript

import * as sqs from '@aws-cdk/aws-sqs';

const queue = new sqs.Queue(this, 'MyQueue');
const url = queue.queueUrl; // => A string representing a deploy-time value

JavaScript

const sqs = require('@aws-cdk/aws-sqs');

const queue = new sqs.Queue(this, 'MyQueue');
const url = queue.queueUrl; // => A string representing a deploy-time value

Python

import aws_cdk.aws_sqs as sqs

queue = sqs.Queue(self, "MyQueue")
url = queue.queue_url # => A string representing a deploy-time value

Java

Queue queue = new Queue(this, "MyQueue");
String url = queue.getQueueUrl(); // => A string representing a deploy-time value

C#

var queue = new Queue(this, "MyQueue");
var url = queue.QueueUrl; // => A string representing a deploy-time value

See the section called “Tokens” for information about how the AWS CDK encodes deploy-time
attributes as strings.

Configuring resources using constructs Version 2 97

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Referencing resources

When configuring resources, you will often have to reference properties of another resource. The
following are examples:

• An Amazon Elastic Container Service (Amazon ECS) resource requires a reference to the cluster
on which it runs.

• An Amazon CloudFront distribution requires a reference to the Amazon Simple Storage Service
(Amazon S3) bucket containing the source code.

You can reference resources in any of the following ways:

• By passing a resource defined in your CDK app, either in the same stack or in a different one

• By passing a proxy object referencing a resource defined in your AWS account, created from a
unique identifier of the resource (such as an ARN)

If the property of a construct represents a construct for another resource, its type is that of the
interface type of the construct. For example, the Amazon ECS construct takes a property cluster
of type ecs.ICluster. Another example, is the CloudFront distribution construct that takes a
property sourceBucket (Python: source_bucket) of type s3.IBucket.

You can directly pass any resource object of the proper type defined in the same AWS CDK app.
The following example defines an Amazon ECS cluster and then uses it to define an Amazon ECS
service.

TypeScript

const cluster = new ecs.Cluster(this, 'Cluster', { /*...*/ });

const service = new ecs.Ec2Service(this, 'Service', { cluster: cluster });

JavaScript

const cluster = new ecs.Cluster(this, 'Cluster', { /*...*/ });

const service = new ecs.Ec2Service(this, 'Service', { cluster: cluster });

Referencing resources Version 2 98

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

cluster = ecs.Cluster(self, "Cluster")

service = ecs.Ec2Service(self, "Service", cluster=cluster)

Java

Cluster cluster = new Cluster(this, "Cluster");
Ec2Service service = new Ec2Service(this, "Service",
 new Ec2ServiceProps.Builder().cluster(cluster).build());

C#

var cluster = new Cluster(this, "Cluster");
var service = new Ec2Service(this, "Service", new Ec2ServiceProps { Cluster =
 cluster });

Referencing resources in a different stack

You can refer to resources in a different stack as long as they are defined in the same app and are
in the same AWS environment. The following pattern is generally used:

• Store a reference to the construct as an attribute of the stack that produces the resource. (To get
a reference to the current construct's stack, use Stack.of(this).)

• Pass this reference to the constructor of the stack that consumes the resource as a parameter or
a property. The consuming stack then passes it as a property to any construct that needs it.

The following example defines a stack stack1. This stack defines an Amazon S3 bucket and stores
a reference to the bucket construct as an attribute of the stack. Then the app defines a second
stack, stack2, which accepts a bucket at instantiation. stack2 might, for example, define an AWS
Glue Table that uses the bucket for data storage.

TypeScript

const prod = { account: '123456789012', region: 'us-east-1' };

const stack1 = new StackThatProvidesABucket(app, 'Stack1', { env: prod });

Referencing resources Version 2 99

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// stack2 will take a property { bucket: IBucket }
const stack2 = new StackThatExpectsABucket(app, 'Stack2', {
 bucket: stack1.bucket,
 env: prod
});

JavaScript

const prod = { account: '123456789012', region: 'us-east-1' };

const stack1 = new StackThatProvidesABucket(app, 'Stack1', { env: prod });

// stack2 will take a property { bucket: IBucket }
const stack2 = new StackThatExpectsABucket(app, 'Stack2', {
 bucket: stack1.bucket,
 env: prod
});

Python

prod = core.Environment(account="123456789012", region="us-east-1")

stack1 = StackThatProvidesABucket(app, "Stack1", env=prod)

stack2 will take a property "bucket"
stack2 = StackThatExpectsABucket(app, "Stack2", bucket=stack1.bucket, env=prod)

Java

// Helper method to build an environment
static Environment makeEnv(String account, String region) {
 return Environment.builder().account(account).region(region)
 .build();
}

App app = new App();

Environment prod = makeEnv("123456789012", "us-east-1");

StackThatProvidesABucket stack1 = new StackThatProvidesABucket(app, "Stack1",
 StackProps.builder().env(prod).build());

Referencing resources Version 2 100

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// stack2 will take an argument "bucket"
StackThatExpectsABucket stack2 = new StackThatExpectsABucket(app, "Stack,",
 StackProps.builder().env(prod).build(), stack1.bucket);

C#

Amazon.CDK.Environment makeEnv(string account, string region)
{
 return new Amazon.CDK.Environment { Account = account, Region = region };
}

var prod = makeEnv(account: "123456789012", region: "us-east-1");

var stack1 = new StackThatProvidesABucket(app, "Stack1", new StackProps { Env =
 prod });

// stack2 will take a property "bucket"
var stack2 = new StackThatExpectsABucket(app, "Stack2", new StackProps { Env = prod,
 bucket = stack1.Bucket});

If the AWS CDK determines that the resource is in the same environment, but in a different
stack, it automatically synthesizes AWS CloudFormation exports in the producing stack and an
Fn::ImportValue in the consuming stack to transfer that information from one stack to the other.

Resolving dependency deadlocks

Referencing a resource from one stack in a different stack creates a dependency between the two
stacks. This makes sure that they're deployed in the right order. After the stacks are deployed, this
dependency is concrete. After that, removing the use of the shared resource from the consuming
stack can cause an unexpected deployment failure. This happens if there is another dependency
between the two stacks that force them to be deployed in the same order. It can also happen
without a dependency if the producing stack is simply chosen by the CDK Toolkit to be deployed
first. The AWS CloudFormation export is removed from the producing stack because it's no longer
needed, but the exported resource is still being used in the consuming stack because its update is
not yet deployed. Therefore, deploying the producer stack fails.

To break this deadlock, remove the use of the shared resource from the consuming stack. (This
removes the automatic export from the producing stack.) Next, manually add the same export
to the producing stack using exactly the same logical ID as the automatically generated export.
Remove the use of the shared resource in the consuming stack and deploy both stacks. Then,

Referencing resources Version 2 101

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-exports.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

remove the manual export (and the shared resource if it's no longer needed) and deploy both
stacks again. The stack's exportValue() method is a convenient way to create the manual export
for this purpose. (See the example in the linked method reference.)

Referencing resources in your AWS account

Suppose you want to use a resource already available in your AWS account in your AWS CDK app.
This might be a resource that was defined through the console, an AWS SDK, directly with AWS
CloudFormation, or in a different AWS CDK application. You can turn the resource's ARN (or another
identifying attribute, or group of attributes) into a proxy object. The proxy object serves as a
reference to the resource by calling a static factory method on the resource's class.

When you create such a proxy, the external resource does not become a part of your AWS CDK
app. Therefore, changes you make to the proxy in your AWS CDK app do not affect the deployed
resource. The proxy can, however, be passed to any AWS CDK method that requires a resource of
that type.

The following example shows how to reference a bucket based on an existing bucket with the ARN
arn:aws:s3:::my-bucket-name, and an Amazon Virtual Private Cloud based on an existing VPC
having a specific ID.

TypeScript

// Construct a proxy for a bucket by its name (must be same account)
s3.Bucket.fromBucketName(this, 'MyBucket', 'my-bucket-name');

// Construct a proxy for a bucket by its full ARN (can be another account)
s3.Bucket.fromBucketArn(this, 'MyBucket', 'arn:aws:s3:::my-bucket-name');

// Construct a proxy for an existing VPC from its attribute(s)
ec2.Vpc.fromVpcAttributes(this, 'MyVpc', {
 vpcId: 'vpc-1234567890abcde',
});

JavaScript

// Construct a proxy for a bucket by its name (must be same account)
s3.Bucket.fromBucketName(this, 'MyBucket', 'my-bucket-name');

// Construct a proxy for a bucket by its full ARN (can be another account)
s3.Bucket.fromBucketArn(this, 'MyBucket', 'arn:aws:s3:::my-bucket-name');

Referencing resources Version 2 102

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#exportwbrvalueexportedvalue-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Construct a proxy for an existing VPC from its attribute(s)
ec2.Vpc.fromVpcAttributes(this, 'MyVpc', {
 vpcId: 'vpc-1234567890abcde'
});

Python

Construct a proxy for a bucket by its name (must be same account)
s3.Bucket.from_bucket_name(self, "MyBucket", "my-bucket-name")

Construct a proxy for a bucket by its full ARN (can be another account)
s3.Bucket.from_bucket_arn(self, "MyBucket", "arn:aws:s3:::my-bucket-name")

Construct a proxy for an existing VPC from its attribute(s)
ec2.Vpc.from_vpc_attributes(self, "MyVpc", vpc_id="vpc-1234567890abcdef")

Java

// Construct a proxy for a bucket by its name (must be same account)
Bucket.fromBucketName(this, "MyBucket", "my-bucket-name");

// Construct a proxy for a bucket by its full ARN (can be another account)
Bucket.fromBucketArn(this, "MyBucket",
 "arn:aws:s3:::my-bucket-name");

// Construct a proxy for an existing VPC from its attribute(s)
Vpc.fromVpcAttributes(this, "MyVpc", VpcAttributes.builder()
 .vpcId("vpc-1234567890abcdef").build());

C#

// Construct a proxy for a bucket by its name (must be same account)
Bucket.FromBucketName(this, "MyBucket", "my-bucket-name");

// Construct a proxy for a bucket by its full ARN (can be another account)
Bucket.FromBucketArn(this, "MyBucket", "arn:aws:s3:::my-bucket-name");

// Construct a proxy for an existing VPC from its attribute(s)
Vpc.FromVpcAttributes(this, "MyVpc", new VpcAttributes
{
 VpcId = "vpc-1234567890abcdef"

Referencing resources Version 2 103

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

Let's take a closer look at the Vpc.fromLookup() method. Because the ec2.Vpc construct is
complex, there are many ways you might want to select the VPC to be used with your CDK app. To
address this, the VPC construct has a fromLookup static method (Python: from_lookup) that lets
you look up the desired Amazon VPC by querying your AWS account at synthesis time.

To use Vpc.fromLookup(), the system that synthesizes the stack must have access to the account
that owns the Amazon VPC. This is because the CDK Toolkit queries the account to find the right
Amazon VPC at synthesis time.

Furthermore, Vpc.fromLookup() works only in stacks that are defined with an explicit account
and region (see the section called “Environments”). If the AWS CDK tries to look up an Amazon VPC
from an environment-agnostic stack, the CDK Toolkit doesn't know which environment to query to
find the VPC.

You must provide Vpc.fromLookup() attributes sufficient to uniquely identify a VPC in your AWS
account. For example, there can only ever be one default VPC, so it's sufficient to specify the VPC as
the default.

TypeScript

ec2.Vpc.fromLookup(this, 'DefaultVpc', {
 isDefault: true
});

JavaScript

ec2.Vpc.fromLookup(this, 'DefaultVpc', {
 isDefault: true
});

Python

ec2.Vpc.from_lookup(self, "DefaultVpc", is_default=True)

Java

Vpc.fromLookup(this, "DefaultVpc", VpcLookupOptions.builder()

Referencing resources Version 2 104

https://docs.aws.amazon.com/cdk/api/v1/docs/@aws-cdk_aws-ec2.Vpc.html#static-fromwbrlookupscope-id-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .isDefault(true).build());

C#

Vpc.FromLookup(this, id = "DefaultVpc", new VpcLookupOptions { IsDefault = true });

You can also use the tags property to query for VPCs by tag. You can add tags to the Amazon
VPC at the time of its creation by using AWS CloudFormation or the AWS CDK. You can edit tags
at any time after creation by using the AWS Management Console, the AWS CLI, or an AWS SDK.
In addition to any tags you add yourself, the AWS CDK automatically adds the following tags to all
VPCs it creates.

• Name – The name of the VPC.

• aws-cdk:subnet-name – The name of the subnet.

• aws-cdk:subnet-type – The type of the subnet: Public, Private, or Isolated.

TypeScript

ec2.Vpc.fromLookup(this, 'PublicVpc',
 {tags: {'aws-cdk:subnet-type': "Public"}});

JavaScript

ec2.Vpc.fromLookup(this, 'PublicVpc',
 {tags: {'aws-cdk:subnet-type': "Public"}});

Python

ec2.Vpc.from_lookup(self, "PublicVpc",
 tags={"aws-cdk:subnet-type": "Public"})

Java

Vpc.fromLookup(this, "PublicVpc", VpcLookupOptions.builder()
 .tags(java.util.Map.of("aws-cdk:subnet-type", "Public")) // Java 9 or later
 .build());

Referencing resources Version 2 105

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

Vpc.FromLookup(this, id = "PublicVpc", new VpcLookupOptions
 { Tags = new Dictionary<string, string> { ["aws-cdk:subnet-type"] =
 "Public" });

Results of Vpc.fromLookup() are cached in the project's cdk.context.json file. (See the
section called “Context”.) Commit this file to version control so that your app will continue to
refer to the same Amazon VPC. This works even if you later change the attributes of your VPCs in
a way that would result in a different VPC being selected. This is particularly important if you're
deploying the stack in an environment that doesn't have access to the AWS account that defines
the VPC, such as CDK Pipelines.

Although you can use an external resource anywhere you'd use a similar resource defined in your
AWS CDK app, you cannot modify it. For example, calling addToResourcePolicy (Python:
add_to_resource_policy) on an external s3.Bucket does nothing.

Resource physical names

The logical names of resources in AWS CloudFormation are different from the names of resources
that are shown in the AWS Management Console after they're deployed by AWS CloudFormation.
The AWS CDK calls these final names physical names.

For example, AWS CloudFormation might create the Amazon S3 bucket with the logical
ID Stack2MyBucket4DD88B4F from the previous example with the physical name
stack2mybucket4dd88b4f-iuv1rbv9z3to.

You can specify a physical name when creating constructs that represent resources by using the
property <resourceType>Name. The following example creates an Amazon S3 bucket with the
physical name my-bucket-name.

TypeScript

const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: 'my-bucket-name',
});

Resource physical names Version 2 106

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: 'my-bucket-name'
});

Python

bucket = s3.Bucket(self, "MyBucket", bucket_name="my-bucket-name")

Java

Bucket bucket = Bucket.Builder.create(this, "MyBucket")
 .bucketName("my-bucket-name").build();

C#

var bucket = new Bucket(this, "MyBucket", new BucketProps { BucketName = "my-bucket-
name" });

Assigning physical names to resources has some disadvantages in AWS CloudFormation. Most
importantly, any changes to deployed resources that require a resource replacement, such as
changes to a resource's properties that are immutable after creation, will fail if a resource has
a physical name assigned. If you end up in that state, the only solution is to delete the AWS
CloudFormation stack, then deploy the AWS CDK app again. See the AWS CloudFormation
documentation for details.

In some cases, such as when creating an AWS CDK app with cross-environment references, physical
names are required for the AWS CDK to function correctly. In those cases, if you don't want to
bother with coming up with a physical name yourself, you can let the AWS CDK name it for you. To
do so, use the special value PhysicalName.GENERATE_IF_NEEDED, as follows.

TypeScript

const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: core.PhysicalName.GENERATE_IF_NEEDED,
});

Resource physical names Version 2 107

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-name.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-name.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: core.PhysicalName.GENERATE_IF_NEEDED
});

Python

bucket = s3.Bucket(self, "MyBucket",
 bucket_name=core.PhysicalName.GENERATE_IF_NEEDED)

Java

Bucket bucket = Bucket.Builder.create(this, "MyBucket")
 .bucketName(PhysicalName.GENERATE_IF_NEEDED).build();

C#

var bucket = new Bucket(this, "MyBucket", new BucketProps
 { BucketName = PhysicalName.GENERATE_IF_NEEDED });

Passing unique resource identifiers

Whenever possible, you should pass resources by reference, as described in the previous section.
However, there are cases where you have no other choice but to refer to a resource by one of its
attributes. Example use cases include the following:

• When you are using low-level AWS CloudFormation resources.

• When you need to expose resources to the runtime components of an AWS CDK application, such
as when referring to Lambda functions through environment variables.

These identifiers are available as attributes on the resources, such as the following.

TypeScript

bucket.bucketName
lambdaFunc.functionArn
securityGroup.groupArn

Passing unique resource identifiers Version 2 108

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

bucket.bucketName
lambdaFunc.functionArn
securityGroup.groupArn

Python

bucket.bucket_name
lambda_func.function_arn
security_group_arn

Java

The Java AWS CDK binding uses getter methods for attributes.

bucket.getBucketName()
lambdaFunc.getFunctionArn()
securityGroup.getGroupArn()

C#

bucket.BucketName
lambdaFunc.FunctionArn
securityGroup.GroupArn

The following example shows how to pass a generated bucket name to an AWS Lambda function.

TypeScript

const bucket = new s3.Bucket(this, 'Bucket');

new lambda.Function(this, 'MyLambda', {
 // ...
 environment: {
 BUCKET_NAME: bucket.bucketName,
 },
});

Passing unique resource identifiers Version 2 109

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const bucket = new s3.Bucket(this, 'Bucket');

new lambda.Function(this, 'MyLambda', {
 // ...
 environment: {
 BUCKET_NAME: bucket.bucketName
 }
});

Python

bucket = s3.Bucket(self, "Bucket")

lambda.Function(self, "MyLambda", environment=dict(BUCKET_NAME=bucket.bucket_name))

Java

final Bucket bucket = new Bucket(this, "Bucket");

Function.Builder.create(this, "MyLambda")
 .environment(java.util.Map.of(// Java 9 or later
 "BUCKET_NAME", bucket.getBucketName()))
 .build();

C#

var bucket = new Bucket(this, "Bucket");

new Function(this, "MyLambda", new FunctionProps
{
 Environment = new Dictionary<string, string>
 {
 ["BUCKET_NAME"] = bucket.BucketName
 }
});

Passing unique resource identifiers Version 2 110

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Granting permissions between resources

Higher-level constructs make least-privilege permissions achievable by offering simple, intent-
based APIs to express permission requirements. For example, many L2 constructs offer grant
methods that you can use to grant an entity (such as an IAM role or user) permission to work with
the resource, without having to manually create IAM permission statements.

The following example creates the permissions to allow a Lambda function's execution role to read
and write objects to a particular Amazon S3 bucket. If the Amazon S3 bucket is encrypted with
an AWS KMS key, this method also grants permissions to the Lambda function's execution role to
decrypt with the key.

TypeScript

if (bucket.grantReadWrite(func).success) {
 // ...
}

JavaScript

if (bucket.grantReadWrite(func).success) {
 // ...
}

Python

if bucket.grant_read_write(func).success:
 # ...

Java

if (bucket.grantReadWrite(func).getSuccess()) {
 // ...
}

C#

if (bucket.GrantReadWrite(func).Success)
{
 // ...

Granting permissions between resources Version 2 111

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

The grant methods return an iam.Grant object. Use the success attribute of the Grant object
to determine whether the grant was effectively applied (for example, it may not have been applied
on external resources). You can also use the assertSuccess (Python: assert_success) method
of the Grant object to enforce that the grant was successfully applied.

If a specific grant method isn't available for the particular use case, you can use a generic grant
method to define a new grant with a specified list of actions.

The following example shows how to grant a Lambda function access to the Amazon DynamoDB
CreateBackup action.

TypeScript

table.grant(func, 'dynamodb:CreateBackup');

JavaScript

table.grant(func, 'dynamodb:CreateBackup');

Python

table.grant(func, "dynamodb:CreateBackup")

Java

table.grant(func, "dynamodb:CreateBackup");

C#

table.Grant(func, "dynamodb:CreateBackup");

Many resources, such as Lambda functions, require a role to be assumed when executing code. A
configuration property enables you to specify an iam.IRole. If no role is specified, the function
automatically creates a role specifically for this use. You can then use grant methods on the
resources to add statements to the role.

Granting permissions between resources Version 2 112

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The grant methods are built using lower-level APIs for handling with IAM policies. Policies
are modeled as PolicyDocument objects. Add statements directly to roles (or a construct's
attached role) using the addToRolePolicy method (Python: add_to_role_policy), or
to a resource's policy (such as a Bucket policy) using the addToResourcePolicy (Python:
add_to_resource_policy) method.

Resource metrics and alarms

Many resources emit CloudWatch metrics that can be used to set up monitoring dashboards and
alarms. Higher-level constructs have metric methods that let you access the metrics without
looking up the correct name to use.

The following example shows how to define an alarm when the
ApproximateNumberOfMessagesNotVisible of an Amazon SQS queue exceeds 100.

TypeScript

import * as cw from '@aws-cdk/aws-cloudwatch';
import * as sqs from '@aws-cdk/aws-sqs';
import { Duration } from '@aws-cdk/core';

const queue = new sqs.Queue(this, 'MyQueue');

const metric = queue.metricApproximateNumberOfMessagesNotVisible({
 label: 'Messages Visible (Approx)',
 period: Duration.minutes(5),
 // ...
});
metric.createAlarm(this, 'TooManyMessagesAlarm', {
 comparisonOperator: cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
 threshold: 100,
 // ...
});

JavaScript

const cw = require('@aws-cdk/aws-cloudwatch');
const sqs = require('@aws-cdk/aws-sqs');
const { Duration } = require('@aws-cdk/core');

const queue = new sqs.Queue(this, 'MyQueue');

Resource metrics and alarms Version 2 113

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyDocument.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const metric = queue.metricApproximateNumberOfMessagesNotVisible({
 label: 'Messages Visible (Approx)',
 period: Duration.minutes(5)
 // ...
});
metric.createAlarm(this, 'TooManyMessagesAlarm', {
 comparisonOperator: cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
 threshold: 100
 // ...
});

Python

import aws_cdk.aws_cloudwatch as cw
import aws_cdk.aws_sqs as sqs
from aws_cdk.core import Duration

queue = sqs.Queue(self, "MyQueue")
metric = queue.metric_approximate_number_of_messages_not_visible(
 label="Messages Visible (Approx)",
 period=Duration.minutes(5),
 # ...
)
metric.create_alarm(self, "TooManyMessagesAlarm",
 comparison_operator=cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
 threshold=100,
 # ...
)

Java

import software.amazon.awscdk.core.Duration;
import software.amazon.awscdk.services.sqs.Queue;
import software.amazon.awscdk.services.cloudwatch.Metric;
import software.amazon.awscdk.services.cloudwatch.MetricOptions;
import software.amazon.awscdk.services.cloudwatch.CreateAlarmOptions;
import software.amazon.awscdk.services.cloudwatch.ComparisonOperator;

Queue queue = new Queue(this, "MyQueue");

Metric metric = queue
 .metricApproximateNumberOfMessagesNotVisible(MetricOptions.builder()
 .label("Messages Visible (Approx)")

Resource metrics and alarms Version 2 114

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .period(Duration.minutes(5)).build());

metric.createAlarm(this, "TooManyMessagesAlarm", CreateAlarmOptions.builder()
 .comparisonOperator(ComparisonOperator.GREATER_THAN_THRESHOLD)
 .threshold(100)
 // ...
 .build());

C#

using cdk = Amazon.CDK;
using cw = Amazon.CDK.AWS.CloudWatch;
using sqs = Amazon.CDK.AWS.SQS;

var queue = new sqs.Queue(this, "MyQueue");
var metric = queue.MetricApproximateNumberOfMessagesNotVisible(new cw.MetricOptions
{
 Label = "Messages Visible (Approx)",
 Period = cdk.Duration.Minutes(5),
 // ...
});
metric.CreateAlarm(this, "TooManyMessagesAlarm", new cw.CreateAlarmOptions
{
 ComparisonOperator = cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
 Threshold = 100,
 // ..
});

If there is no method for a particular metric, you can use the general metric method to specify the
metric name manually.

Metrics can also be added to CloudWatch dashboards. See CloudWatch.

Network traffic

In many cases, you must enable permissions on a network for an application to work, such as when
the compute infrastructure needs to access the persistence layer. Resources that establish or listen
for connections expose methods that enable traffic flows, including setting security group rules or
network ACLs.

Network traffic Version 2 115

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_cloudwatch-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

IConnectable resources have a connections property that is the gateway to network traffic rules
configuration.

You enable data to flow on a given network path by using allow methods. The following example
enables HTTPS connections to the web and incoming connections from the Amazon EC2 Auto
Scaling group fleet2.

TypeScript

import * as asg from '@aws-cdk/aws-autoscaling';
import * as ec2 from '@aws-cdk/aws-ec2';

const fleet1: asg.AutoScalingGroup = asg.AutoScalingGroup(/*...*/);

// Allow surfing the (secure) web
fleet1.connections.allowTo(new ec2.Peer.anyIpv4(), new ec2.Port({ fromPort: 443,
 toPort: 443 }));

const fleet2: asg.AutoScalingGroup = asg.AutoScalingGroup(/*...*/);
fleet1.connections.allowFrom(fleet2, ec2.Port.AllTraffic());

JavaScript

const asg = require('@aws-cdk/aws-autoscaling');
const ec2 = require('@aws-cdk/aws-ec2');

const fleet1 = asg.AutoScalingGroup();

// Allow surfing the (secure) web
fleet1.connections.allowTo(new ec2.Peer.anyIpv4(), new ec2.Port({ fromPort: 443,
 toPort: 443 }));

const fleet2 = asg.AutoScalingGroup();
fleet1.connections.allowFrom(fleet2, ec2.Port.AllTraffic());

Python

import aws_cdk.aws_autoscaling as asg
import aws_cdk.aws_ec2 as ec2

fleet1 = asg.AutoScalingGroup(...)

Network traffic Version 2 116

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.IConnectable.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Allow surfing the (secure) web
fleet1.connections.allow_to(ec2.Peer.any_ipv4(),
 ec2.Port(PortProps(from_port=443, to_port=443)))

fleet2 = asg.AutoScalingGroup(...)
fleet1.connections.allow_from(fleet2, ec2.Port.all_traffic())

Java

import software.amazon.awscdk.services.autoscaling.AutoScalingGroup;
import software.amazon.awscdk.services.ec2.Peer;
import software.amazon.awscdk.services.ec2.Port;

AutoScalingGroup fleet1 = AutoScalingGroup.Builder.create(this, "MyFleet")
 /* ... */.build();

// Allow surfing the (secure) Web
fleet1.getConnections().allowTo(Peer.anyIpv4(),
 Port.Builder.create().fromPort(443).toPort(443).build());

AutoScalingGroup fleet2 = AutoScalingGroup.Builder.create(this, "MyFleet2")
 /* ... */.build();
fleet1.getConnections().allowFrom(fleet2, Port.allTraffic());

C#

using cdk = Amazon.CDK;
using asg = Amazon.CDK.AWS.AutoScaling;
using ec2 = Amazon.CDK.AWS.EC2;

// Allow surfing the (secure) Web
var fleet1 = new asg.AutoScalingGroup(this, "MyFleet", new asg.AutoScalingGroupProps
 { /* ... */ });
fleet1.Connections.AllowTo(ec2.Peer.AnyIpv4(), new ec2.Port(new ec2.PortProps
 { FromPort = 443, ToPort = 443 });

var fleet2 = new asg.AutoScalingGroup(this, "MyFleet2", new
 asg.AutoScalingGroupProps { /* ... */ });
fleet1.Connections.AllowFrom(fleet2, ec2.Port.AllTraffic());

Certain resources have default ports associated with them. Examples include the listener
of a load balancer on the public port, and the ports on which the database engine

Network traffic Version 2 117

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

accepts connections for instances of an Amazon RDS database. In such cases, you can
enforce tight network control without having to manually specify the port. To do so,
use the allowDefaultPortFrom and allowToDefaultPort methods (Python:
allow_default_port_from, allow_to_default_port).

The following example shows how to enable connections from any IPV4 address, and a connection
from an Auto Scaling group to access a database.

TypeScript

listener.connections.allowDefaultPortFromAnyIpv4('Allow public access');

fleet.connections.allowToDefaultPort(rdsDatabase, 'Fleet can access database');

JavaScript

listener.connections.allowDefaultPortFromAnyIpv4('Allow public access');

fleet.connections.allowToDefaultPort(rdsDatabase, 'Fleet can access database');

Python

listener.connections.allow_default_port_from_any_ipv4("Allow public access")

fleet.connections.allow_to_default_port(rds_database, "Fleet can access database")

Java

listener.getConnections().allowDefaultPortFromAnyIpv4("Allow public access");

fleet.getConnections().AllowToDefaultPort(rdsDatabase, "Fleet can access database");

C#

listener.Connections.AllowDefaultPortFromAnyIpv4("Allow public access");

fleet.Connections.AllowToDefaultPort(rdsDatabase, "Fleet can access database");

Network traffic Version 2 118

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Event handling

Some resources can act as event sources. Use the addEventNotification method (Python:
add_event_notification) to register an event target to a particular event type emitted by
the resource. In addition to this, addXxxNotification methods offer a simple way to register a
handler for common event types.

The following example shows how to trigger a Lambda function when an object is added to an
Amazon S3 bucket.

TypeScript

import * as s3nots from '@aws-cdk/aws-s3-notifications';

const handler = new lambda.Function(this, 'Handler', { /*…*/ });
const bucket = new s3.Bucket(this, 'Bucket');
bucket.addObjectCreatedNotification(new s3nots.LambdaDestination(handler));

JavaScript

const s3nots = require('@aws-cdk/aws-s3-notifications');

const handler = new lambda.Function(this, 'Handler', { /*…*/ });
const bucket = new s3.Bucket(this, 'Bucket');
bucket.addObjectCreatedNotification(new s3nots.LambdaDestination(handler));

Python

import aws_cdk.aws_s3_notifications as s3_nots

handler = lambda_.Function(self, "Handler", ...)
bucket = s3.Bucket(self, "Bucket")
bucket.add_object_created_notification(s3_nots.LambdaDestination(handler))

Java

import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.s3.notifications.LambdaDestination;

Function handler = Function.Builder.create(this, "Handler")/* ... */.build();
Bucket bucket = new Bucket(this, "Bucket");

Event handling Version 2 119

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

bucket.addObjectCreatedNotification(new LambdaDestination(handler));

C#

using lambda = Amazon.CDK.AWS.Lambda;
using s3 = Amazon.CDK.AWS.S3;
using s3Nots = Amazon.CDK.AWS.S3.Notifications;

var handler = new lambda.Function(this, "Handler", new lambda.FunctionProps { .. });
var bucket = new s3.Bucket(this, "Bucket");
bucket.AddObjectCreatedNotification(new s3Nots.LambdaDestination(handler));

Removal policies

Resources that maintain persistent data, such as databases, Amazon S3 buckets, and Amazon ECR
registries, have a removal policy. The removal policy indicates whether to delete persistent objects
when the AWS CDK stack that contains them is destroyed. The values specifying the removal policy
are available through the RemovalPolicy enumeration in the AWS CDK core module.

Note

Resources besides those that store data persistently might also have a removalPolicy
that is used for a different purpose. For example, a Lambda function version uses a
removalPolicy attribute to determine whether a given version is retained when a new
version is deployed. These have different meanings and defaults compared to the removal
policy on an Amazon S3 bucket or DynamoDB table.

Value meaning

RemovalPolicy.RETAIN Keep the contents of the resource when
destroying the stack (default). The resource
is orphaned from the stack and must be
deleted manually. If you attempt to re-deploy
the stack while the resource still exists, you
will receive an error message due to a name
conflict.

Removal policies Version 2 120

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Value meaning

RemovalPolicy.DESTROY The resource will be destroyed along with the
stack.

AWS CloudFormation does not remove Amazon S3 buckets that contain files even if their removal
policy is set to DESTROY. Attempting to do so is an AWS CloudFormation error. To have the AWS
CDK delete all files from the bucket before destroying it, set the bucket's autoDeleteObjects
property to true.

Following is an example of creating an Amazon S3 bucket with RemovalPolicy of DESTROY and
autoDeleteOjbects set to true.

TypeScript

import * as cdk from '@aws-cdk/core';
import * as s3 from '@aws-cdk/aws-s3';

export class CdkTestStack extends cdk.Stack {
 constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const bucket = new s3.Bucket(this, 'Bucket', {
 removalPolicy: cdk.RemovalPolicy.DESTROY,
 autoDeleteObjects: true
 });
 }
}

JavaScript

const cdk = require('@aws-cdk/core');
const s3 = require('@aws-cdk/aws-s3');

class CdkTestStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 const bucket = new s3.Bucket(this, 'Bucket', {
 removalPolicy: cdk.RemovalPolicy.DESTROY,
 autoDeleteObjects: true

Removal policies Version 2 121

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 });
 }
}

module.exports = { CdkTestStack }

Python

import aws_cdk.core as cdk
import aws_cdk.aws_s3 as s3

class CdkTestStack(cdk.stack):
 def __init__(self, scope: cdk.Construct, id: str, **kwargs):
 super().__init__(scope, id, **kwargs)

 bucket = s3.Bucket(self, "Bucket",
 removal_policy=cdk.RemovalPolicy.DESTROY,
 auto_delete_objects=True)

Java

software.amazon.awscdk.core.*;
import software.amazon.awscdk.services.s3.*;

public class CdkTestStack extends Stack {
 public CdkTestStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public CdkTestStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 Bucket.Builder.create(this, "Bucket")
 .removalPolicy(RemovalPolicy.DESTROY)
 .autoDeleteObjects(true).build();
 }
}

C#

using Amazon.CDK;

Removal policies Version 2 122

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Amazon.CDK.AWS.S3;

public CdkTestStack(Construct scope, string id, IStackProps props) : base(scope, id,
 props)
{
 new Bucket(this, "Bucket", new BucketProps {
 RemovalPolicy = RemovalPolicy.DESTROY,
 AutoDeleteObjects = true
 });
}

You can also apply a removal policy directly to the underlying AWS CloudFormation resource via
the applyRemovalPolicy() method. This method is available on some stateful resources that do
not have a removalPolicy property in their L2 resource's props. Examples include the following:

• AWS CloudFormation stacks

• Amazon Cognito user pools

• Amazon DocumentDB database instances

• Amazon EC2 volumes

• Amazon OpenSearch Service domains

• Amazon FSx file systems

• Amazon SQS queues

TypeScript

const resource = bucket.node.findChild('Resource') as cdk.CfnResource;
resource.applyRemovalPolicy(cdk.RemovalPolicy.DESTROY);

JavaScript

const resource = bucket.node.findChild('Resource');
resource.applyRemovalPolicy(cdk.RemovalPolicy.DESTROY);

Python

resource = bucket.node.find_child('Resource')
resource.apply_removal_policy(cdk.RemovalPolicy.DESTROY);

Removal policies Version 2 123

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

CfnResource resource = (CfnResource)bucket.node.findChild("Resource");
resource.applyRemovalPolicy(cdk.RemovalPolicy.DESTROY);

C#

var resource = (CfnResource)bucket.node.findChild('Resource');
resource.ApplyRemovalPolicy(cdk.RemovalPolicy.DESTROY);

Note

The AWS CDK's RemovalPolicy translates to AWS CloudFormation's DeletionPolicy.
However, the default in AWS CDK is to retain the data, which is the opposite of the AWS
CloudFormation default.

Identifiers

When building AWS Cloud Development Kit (AWS CDK) apps, you will use many types of identifiers
and names. To use the AWS CDK effectively and avoid errors, it is important to understand the
types of identifiers.

Identifiers must be unique within the scope in which they are created; they do not need to be
globally unique in your AWS CDK application.

If you attempt to create an identifier with the same value within the same scope, the AWS CDK
throws an exception.

Topics

• Construct IDs

• Paths

• Unique IDs

• Logical IDs

Identifiers Version 2 124

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Construct IDs

The most common identifier, id, is the identifier passed as the second argument when
instantiating a construct object. This identifier, like all identifiers, only needs to be unique within
the scope in which it is created, which is the first argument when instantiating a construct object.

Note

The id of a stack is also the identifier that you use to refer to it in the the section called
“AWS CDK Toolkit”.

Let's look at an example where we have two constructs with the identifier MyBucket in our app.
The first is defined in the scope of the stack with the identifier Stack1. The second is defined in
the scope of a stack with the identifier Stack2. Because they're defined in different scopes, this
doesn't cause any conflict, and they can coexist in the same app without issues.

TypeScript

import { App, Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import * as s3 from 'aws-cdk-lib/aws-s3';

class MyStack extends Stack {
 constructor(scope: Construct, id: string, props: StackProps = {}) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyBucket');
 }
}

const app = new App();
new MyStack(app, 'Stack1');
new MyStack(app, 'Stack2');

JavaScript

const { App , Stack } = require('aws-cdk-lib');
const s3 = require('aws-cdk-lib/aws-s3');

class MyStack extends Stack {

Construct IDs Version 2 125

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 constructor(scope, id, props = {}) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyBucket');
 }
}

const app = new App();
new MyStack(app, 'Stack1');
new MyStack(app, 'Stack2');

Python

from aws_cdk import App, Construct, Stack, StackProps
from constructs import Construct
from aws_cdk import aws_s3 as s3

class MyStack(Stack):

 def __init__(self, scope: Construct, id: str, **kwargs):

 super().__init__(scope, id, **kwargs)
 s3.Bucket(self, "MyBucket")

app = App()
MyStack(app, 'Stack1')
MyStack(app, 'Stack2')

Java

// MyStack.java
package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.constructs.Construct;
import software.amazon.awscdk.services.s3.Bucket;

public class MyStack extends Stack {
 public MyStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

Construct IDs Version 2 126

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public MyStack(final Construct scope, final String id, final StackProps props) {
 super(scope, id, props);
 new Bucket(this, "MyBucket");
 }
}

// Main.java
package com.myorg;

import software.amazon.awscdk.App;

public class Main {
 public static void main(String[] args) {
 App app = new App();
 new MyStack(app, "Stack1");
 new MyStack(app, "Stack2");
 }
}

C#

using Amazon.CDK;
using constructs;
using Amazon.CDK.AWS.S3;

public class MyStack : Stack
{
 public MyStack(Construct scope, string id, IStackProps props) : base(scope, id,
 props)
 {
 new Bucket(this, "MyBucket");
 }
}

class Program
{
 static void Main(string[] args)
 {
 var app = new App();
 new MyStack(app, "Stack1");
 new MyStack(app, "Stack2");
 }

Construct IDs Version 2 127

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

Paths

The constructs in an AWS CDK application form a hierarchy rooted in the App class. We refer to the
collection of IDs from a given construct, its parent construct, its grandparent, and so on to the root
of the construct tree, as a path.

The AWS CDK typically displays paths in your templates as a string. The IDs from the levels are
separated by slashes, starting at the node immediately under the root App instance, which is
usually a stack. For example, the paths of the two Amazon S3 bucket resources in the previous code
example are Stack1/MyBucket and Stack2/MyBucket.

You can access the path of any construct programmatically, as shown in the following example.
This gets the path of myConstruct (or my_construct, as Python developers would write it).
Since IDs must be unique within the scope they are created, their paths are always unique within an
AWS CDK application.

TypeScript

const path: string = myConstruct.node.path;

JavaScript

const path = myConstruct.node.path;

Python

path = my_construct.node.path

Java

String path = myConstruct.getNode().getPath();

C#

string path = myConstruct.Node.Path;

Paths Version 2 128

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Unique IDs

AWS CloudFormation requires that all logical IDs in a template be unique. Because of this, the
AWS CDK must be able to generate a unique identifier for each construct in an application.
Resources have paths that are globally unique (the names of all scopes from the stack to a specific
resource). Therefore, the AWS CDK generates the necessary unique identifiers by concatenating
the elements of the path and adding an 8-digit hash. (The hash is necessary to distinguish distinct
paths, such as A/B/C and A/BC, that would result in the same AWS CloudFormation identifier.
AWS CloudFormation identifiers are alphanumeric and cannot contain slashes or other separator
characters.) The AWS CDK calls this string the unique ID of the construct.

In general, your AWS CDK app should not need to know about unique IDs. You can, however, access
the unique ID of any construct programmatically, as shown in the following example.

TypeScript

const uid: string = Names.uniqueId(myConstruct);

JavaScript

const uid = Names.uniqueId(myConstruct);

Python

uid = Names.unique_id(my_construct)

Java

String uid = Names.uniqueId(myConstruct);

C#

string uid = Names.Uniqueid(myConstruct);

The address is another kind of unique identifier that uniquely distinguishes CDK resources. Derived
from the SHA-1 hash of the path, it is not human-readable. However, its constant, relatively short
length (always 42 hexadecimal characters) makes it useful in situations where the "traditional"

Unique IDs Version 2 129

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

unique ID might be too long. Some constructs may use the address in the synthesized AWS
CloudFormation template instead of the unique ID. Again, your app generally should not need to
know about its constructs' addresses, but you can retrieve a construct's address as follows.

TypeScript

const addr: string = myConstruct.node.addr;

JavaScript

const addr = myConstruct.node.addr;

Python

addr = my_construct.node.addr

Java

String addr = myConstruct.getNode().getAddr();

C#

string addr = myConstruct.Node.Addr;

Logical IDs

Unique IDs serve as the logical identifiers (or logical names) of resources in the generated AWS
CloudFormation templates for constructs that represent AWS resources.

For example, the Amazon S3 bucket in the previous example that is created within Stack2 results
in an AWS::S3::Bucket resource. The resource's logical ID is Stack2MyBucket4DD88B4F in the
resulting AWS CloudFormation template. (For details on how this identifier is generated, see the
section called “Unique IDs”.)

Logical ID stability

Avoid changing the logical ID of a resource after it has been created. AWS CloudFormation
identifies resources by their logical ID. Therefore, if you change the logical ID of a resource, AWS

Logical IDs Version 2 130

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CloudFormation creates a new resource with the new logical ID, then deletes the existing one.
Depending on the type of resource, this might cause service interruption, data loss, or both.

Tokens

Tokens represent values that can only be resolved at a later time in the app lifecycle. For example,
the name of an Amazon Simple Storage Service (Amazon S3) bucket that you define in your CDK
app is only allocated when the AWS CloudFormation template is synthesized. If you print the
bucket.bucketName attribute, which is a string, you will see that it contains something like the
following:

${TOKEN[Bucket.Name.1234]}

This is how the AWS CDK encodes a token whose value is not yet known at construction time, but
will become available later. The AWS CDK calls these placeholders tokens. In this case, it's a token
encoded as a string.

You can pass this string around as if it was the name of the bucket. In the following example, the
bucket name is specified as an environment variable to an AWS Lambda function.

TypeScript

const bucket = new s3.Bucket(this, 'MyBucket');

const fn = new lambda.Function(stack, 'MyLambda', {
 // ...
 environment: {
 BUCKET_NAME: bucket.bucketName,
 }
});

JavaScript

const bucket = new s3.Bucket(this, 'MyBucket');

const fn = new lambda.Function(stack, 'MyLambda', {
 // ...
 environment: {
 BUCKET_NAME: bucket.bucketName
 }

Tokens Version 2 131

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

Python

bucket = s3.Bucket(self, "MyBucket")

fn = lambda_.Function(stack, "MyLambda",
 environment=dict(BUCKET_NAME=bucket.bucket_name))

Java

final Bucket bucket = new Bucket(this, "MyBucket");

Function fn = Function.Builder.create(this, "MyLambda")
 .environment(java.util.Map.of(// Map.of requires Java 9+
 "BUCKET_NAME", bucket.getBucketName()))
 .build();

C#

var bucket = new s3.Bucket(this, "MyBucket");

var fn = new Function(this, "MyLambda", new FunctionProps {
 Environment = new Dictionary<string, string>
 {
 ["BUCKET_NAME"] = bucket.BucketName
 }
});

When the AWS CloudFormation template is finally synthesized, the token is rendered as the AWS
CloudFormation intrinsic { "Ref": "MyBucket" }. At deployment time, AWS CloudFormation
replaces this intrinsic with the actual name of the bucket that was created.

Topics

• Tokens and token encodings

• String-encoded tokens

• List-encoded tokens

• Number-encoded tokens

• Lazy values

Tokens Version 2 132

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Converting to JSON

Tokens and token encodings

Tokens are objects that implement the IResolvable interface, which contains a single resolve
method. The AWS CDK calls this method during synthesis to produce the final value for the AWS
CloudFormation template. Tokens participate in the synthesis process to produce arbitrary values
of any type.

Note

You'll rarely work directly with the IResolvable interface. You will most likely only see
string-encoded versions of tokens.

Other functions typically only accept arguments of basic types, such as string or number. To use
tokens in these cases, you can encode them into one of three types by using static methods on the
cdk.Token class.

• Token.asString to generate a string encoding (or call .toString() on the token object)

• Token.asList to generate a list encoding

• Token.asNumber to generate a numeric encoding

These take an arbitrary value, which can be an IResolvable, and encode them into a primitive
value of the indicated type.

Important

Because any one of the previous types can potentially be an encoded token, be careful
when you parse or try to read their contents. For example, if you attempt to parse a string
to extract a value from it, and the string is an encoded token, your parsing fails. Similarly,
if you try to query the length of an array or perform math operations with a number, you
must first verify that they aren't encoded tokens.

To check whether a value has an unresolved token in it, call the Token.isUnresolved (Python:
is_unresolved) method.

Tokens and token encodings Version 2 133

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.IResolvable.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-aswbrstringvalue-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-aswbrlistvalue-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-aswbrnumbervalue

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The following example validates that a string value, which could be a token, is no more than 10
characters long.

TypeScript

if (!Token.isUnresolved(name) && name.length > 10) {
 throw new Error(`Maximum length for name is 10 characters`);
}

JavaScript

if (!Token.isUnresolved(name) && name.length > 10) {
 throw (new Error(`Maximum length for name is 10 characters`));
}

Python

if not Token.is_unresolved(name) and len(name) > 10:
 raise ValueError("Maximum length for name is 10 characters")

Java

if (!Token.isUnresolved(name) && name.length() > 10)
 throw new IllegalArgumentException("Maximum length for name is 10 characters");

C#

if (!Token.IsUnresolved(name) && name.Length > 10)
 throw new ArgumentException("Maximum length for name is 10 characters");

If name is a token, validation isn't performed, and an error could still occur in a later stage in the
lifecycle, such as during deployment.

Note

You can use token encodings to escape the type system. For example, you could string-
encode a token that produces a number value at synthesis time. If you use these functions,
it's your responsibility to make sure that your template resolves to a usable state after
synthesis.

Tokens and token encodings Version 2 134

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

String-encoded tokens

String-encoded tokens look like the following.

${TOKEN[Bucket.Name.1234]}

They can be passed around like regular strings, and can be concatenated, as shown in the following
example.

TypeScript

const functionName = bucket.bucketName + 'Function';

JavaScript

const functionName = bucket.bucketName + 'Function';

Python

function_name = bucket.bucket_name + "Function"

Java

String functionName = bucket.getBucketName().concat("Function");

C#

string functionName = bucket.BucketName + "Function";

You can also use string interpolation, if your language supports it, as shown in the following
example.

TypeScript

const functionName = `${bucket.bucketName}Function`;

JavaScript

const functionName = `${bucket.bucketName}Function`;

String-encoded tokens Version 2 135

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

function_name = f"{bucket.bucket_name}Function"

Java

String functionName = String.format("%sFunction". bucket.getBucketName());

C#

string functionName = $"${bucket.bucketName}Function";

Avoid manipulating the string in other ways. For example, taking a substring of a string is likely to
break the string token.

List-encoded tokens

List-encoded tokens look like the following:

["#{TOKEN[Stack.NotificationArns.1234]}"]

The only safe thing to do with these lists is pass them directly to other constructs. Tokens in string
list form cannot be concatenated, nor can an element be taken from the token. The only safe way
to manipulate them is by using AWS CloudFormation intrinsic functions like Fn.select.

Number-encoded tokens

Number-encoded tokens are a set of tiny negative floating-point numbers that look like the
following.

-1.8881545897087626e+289

As with list tokens, you cannot modify the number value, as doing so is likely to break the number
token. The only allowed operation is to pass the value around to another construct.

Lazy values

In addition to representing deploy-time values, such as AWS CloudFormation parameters, tokens
are also commonly used to represent synthesis-time lazy values. These are values for which the

List-encoded tokens Version 2 136

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-select.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

final value will be determined before synthesis has completed, but not at the point where the value
is constructed. Use tokens to pass a literal string or number value to another construct, while the
actual value at synthesis time might depend on some calculation that has yet to occur.

You can construct tokens representing synth-time lazy values using static methods on the Lazy
class, such as Lazy.string and Lazy.number. These methods accept an object whose produce
property is a function that accepts a context argument and returns the final value when called.

The following example creates an Auto Scaling group whose capacity is determined after its
creation.

TypeScript

let actualValue: number;

new AutoScalingGroup(this, 'Group', {
 desiredCapacity: Lazy.numberValue({
 produce(context) {
 return actualValue;
 }
 })
});

// At some later point
actualValue = 10;

JavaScript

let actualValue;

new AutoScalingGroup(this, 'Group', {
 desiredCapacity: Lazy.numberValue({
 produce(context) {
 return (actualValue);
 }
 })
});

// At some later point
actualValue = 10;

Lazy values Version 2 137

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Lazy.html#static-stringproducer-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Lazy.html#static-numberproducer

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

class Producer:
 def __init__(self, func):
 self.produce = func

actual_value = None

AutoScalingGroup(self, "Group",
 desired_capacity=Lazy.number_value(Producer(lambda context: actual_value))
)

At some later point
actual_value = 10

Java

double actualValue = 0;

class ProduceActualValue implements INumberProducer {

 @Override
 public Number produce(IResolveContext context) {
 return actualValue;
 }
}

AutoScalingGroup.Builder.create(this, "Group")
 .desiredCapacity(Lazy.numberValue(new ProduceActualValue())).build();

// At some later point
actualValue = 10;

C#

public class NumberProducer : INumberProducer
{
 Func<Double> function;

 public NumberProducer(Func<Double> function)
 {
 this.function = function;
 }

Lazy values Version 2 138

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public Double Produce(IResolveContext context)
 {
 return function();
 }
}

double actualValue = 0;

new AutoScalingGroup(this, "Group", new AutoScalingGroupProps
{
 DesiredCapacity = Lazy.NumberValue(new NumberProducer(() => actualValue))
});

// At some later point
actualValue = 10;

Converting to JSON

Sometimes you want to produce a JSON string of arbitrary data, and you may not know whether
the data contains tokens. To properly JSON-encode any data structure, regardless of whether it
contains tokens, use the method stack.toJsonString, as shown in the following example.

TypeScript

const stack = Stack.of(this);
const str = stack.toJsonString({
 value: bucket.bucketName
});

JavaScript

const stack = Stack.of(this);
const str = stack.toJsonString({
 value: bucket.bucketName
});

Python

stack = Stack.of(self)
string = stack.to_json_string(dict(value=bucket.bucket_name))

Converting to JSON Version 2 139

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#towbrjsonwbrstringobj-space

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

Stack stack = Stack.of(this);
String stringVal = stack.toJsonString(java.util.Map.of(// Map.of requires Java
 9+
 put("value", bucket.getBucketName())));

C#

var stack = Stack.Of(this);
var stringVal = stack.ToJsonString(new Dictionary<string, string>
{
 ["value"] = bucket.BucketName
});

Parameters

Parameters are custom values that are supplied at deployment time. Parameters are a feature
of AWS CloudFormation. Since the AWS Cloud Development Kit (AWS CDK) synthesizes AWS
CloudFormation templates, it also offers support for deployment-time parameters.

Topics

• About parameters

• Defining parameters

• Using parameters

• Deploying with parameters

About parameters

Using the AWS CDK, you can define parameters, which can then be used in the properties of
constructs you create. You can also deploy stacks that contain parameters.

When deploying the AWS CloudFormation template using the AWS CDK Toolkit, you provide
the parameter values on the command line. If you deploy the template through the AWS
CloudFormation console, you are prompted for the parameter values.

In general, we recommend against using AWS CloudFormation parameters with the AWS CDK.
The usual ways to pass values into AWS CDK apps are context values and environment variables.

Parameters Version 2 140

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Because they are not available at synthesis time, parameter values cannot be easily used for flow
control and other purposes in your CDK app.

Note

To do control flow with parameters, you can use CfnCondition constructs, although this
is awkward compared to native if statements.

Using parameters requires you to be mindful of how the code you're writing behaves at
deployment time, and also at synthesis time. This makes it harder to understand and reason about
your AWS CDK application, in many cases for little benefit.

Generally, it's better to have your CDK app accept necessary information in a well-defined way
and use it directly to declare constructs in your CDK app. An ideal AWS CDK–generated AWS
CloudFormation template is concrete, with no values remaining to be specified at deployment
time.

There are, however, use cases to which AWS CloudFormation parameters are uniquely suited.
If you have separate teams defining and deploying infrastructure, for example, you can use
parameters to make the generated templates more widely useful. Also, because the AWS CDK
supports AWS CloudFormation parameters, you can use the AWS CDK with AWS services that use
AWS CloudFormation templates (such as Service Catalog). These AWS services use parameters to
configure the template that's being deployed.

Defining parameters

Use the CfnParameter class to define a parameter. You'll want to specify at least a type and a
description for most parameters, though both are technically optional. The description appears
when the user is prompted to enter the parameter's value in the AWS CloudFormation console. For
more information on the available types, see Types.

Note

You can define parameters in any scope. However, we recommend defining parameters at
the stack level so that their logical ID doesn't change when you refactor your code.

Defining parameters Version 2 141

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnCondition.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnParameter.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html#parameters-section-structure-properties-type

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

const uploadBucketName = new CfnParameter(this, "uploadBucketName", {
 type: "String",
 description: "The name of the Amazon S3 bucket where uploaded files will be
 stored."});

JavaScript

const uploadBucketName = new CfnParameter(this, "uploadBucketName", {
 type: "String",
 description: "The name of the Amazon S3 bucket where uploaded files will be
 stored."});

Python

upload_bucket_name = CfnParameter(self, "uploadBucketName", type="String",
 description="The name of the Amazon S3 bucket where uploaded files will be
 stored.")

Java

CfnParameter uploadBucketName = CfnParameter.Builder.create(this,
 "uploadBucketName")
 .type("String")
 .description("The name of the Amazon S3 bucket where uploaded files will be
 stored")
 .build();

C#

var uploadBucketName = new CfnParameter(this, "uploadBucketName", new
 CfnParameterProps
{
 Type = "String",
 Description = "The name of the Amazon S3 bucket where uploaded files will be
 stored"
});

Defining parameters Version 2 142

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Using parameters

A CfnParameter instance exposes its value to your AWS CDK app via a token. Like all tokens, the
parameter's token is resolved at synthesis time. But it resolves to a reference to the parameter
defined in the AWS CloudFormation template (which will be resolved at deploy time), rather than
to a concrete value.

You can retrieve the token as an instance of the Token class, or in string, string list, or numeric
encoding. Your choice depends on the kind of value required by the class or method that you want
to use the parameter with.

TypeScript

Property kind of value

value Token class instance

valueAsList The token represented as a string list

valueAsNumber The token represented as a number

valueAsString The token represented as a string

JavaScript

Property kind of value

value Token class instance

valueAsList The token represented as a string list

valueAsNumber The token represented as a number

valueAsString The token represented as a string

Using parameters Version 2 143

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

Property kind of value

value Token class instance

value_as_list The token represented as a string list

value_as_number The token represented as a number

value_as_string The token represented as a string

Java

Property kind of value

getValue() Token class instance

getValueAsList() The token represented as a string list

getValueAsNumber() The token represented as a number

getValueAsString() The token represented as a string

C#

Property kind of value

Value Token class instance

ValueAsList The token represented as a string list

ValueAsNumber The token represented as a number

ValueAsString The token represented as a string

For example, to use a parameter in a Bucket definition:

Using parameters Version 2 144

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

const bucket = new Bucket(this, "myBucket",
 { bucketName: uploadBucketName.valueAsString});

JavaScript

const bucket = new Bucket(this, "myBucket",
 { bucketName: uploadBucketName.valueAsString});

Python

bucket = Bucket(self, "myBucket",
 bucket_name=upload_bucket_name.value_as_string)

Java

Bucket bucket = Bucket.Builder.create(this, "myBucket")
 .bucketName(uploadBucketName.getValueAsString())
 .build();

C#

var bucket = new Bucket(this, "myBucket")
{
 BucketName = uploadBucketName.ValueAsString
};

Deploying with parameters

A generated template containing parameters can be deployed in the usual way through the AWS
CloudFormation console. You are prompted for the values of each parameter.

The AWS CDK Toolkit (cdk command line tool) also supports specifying parameters at deployment.
You provide these on the command line following the --parameters flag. You might deploy a
stack that uses the uploadBucketName parameter, like the following example.

cdk deploy MyStack --parameters uploadBucketName=uploadbucket

To define multiple parameters, use multiple --parameters flags.

Deploying with parameters Version 2 145

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk deploy MyStack --parameters uploadBucketName=upbucket --parameters
 downloadBucketName=downbucket

If you are deploying multiple stacks, you can specify a different value of each parameter for each
stack. To do so, prefix the name of the parameter with the stack name and a colon.

cdk deploy MyStack YourStack --parameters MyStack:uploadBucketName=uploadbucket --
parameters YourStack:uploadBucketName=upbucket

By default, the AWS CDK retains values of parameters from previous deployments and uses
them in subsequent deployments if they are not specified explicitly. Use the --no-previous-
parameters flag to require all parameters to be specified.

Tagging

Tags are informational key-value elements that you can add to constructs in your AWS CDK app. A
tag applied to a given construct also applies to all of its taggable children. Tags are included in the
AWS CloudFormation template synthesized from your app and are applied to the AWS resources it
deploys. You can use tags to identify and categorize resources for the following purposes:

• Simplifying management

• Cost allocation

• Access control

• Any other purposes that you devise

Tip

For more information about how you can use tags with your AWS resources, see Best
Practices for Tagging AWS Resources in the AWS Whitepaper.

Topics

• Using tags

• Tag priorities

• Optional properties

• Example

Tagging Version 2 146

https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Tagging single constructs

Using tags

The Tags class includes the static method of(), through which you can add tags to, or remove
tags from, the specified construct.

• Tags.of(SCOPE).add() applies a new tag to the given construct and all of its children.

• Tags.of(SCOPE).remove() removes a tag from the given construct and any of its children,
including tags a child construct may have applied to itself.

Note

Tagging is implemented using the section called “Aspects”. Aspects are a way to apply an
operation (such as tagging) to all constructs in a given scope.

The following example applies the tag key with the value value to a construct.

TypeScript

Tags.of(myConstruct).add('key', 'value');

JavaScript

Tags.of(myConstruct).add('key', 'value');

Python

Tags.of(my_construct).add("key", "value")

Java

Tags.of(myConstruct).add("key", "value");

C#

Tags.Of(myConstruct).Add("key", "value");

Using tags Version 2 147

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tags.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tags.html#addkey-value-props
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tags.html#removekey-props

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The following example deletes the tag key from a construct.

TypeScript

Tags.of(myConstruct).remove('key');

JavaScript

Tags.of(myConstruct).remove('key');

Python

Tags.of(my_construct).remove("key")

Java

Tags.of(myConstruct).remove("key");

C#

Tags.Of(myConstruct).Remove("key");

If you are using Stage constructs, apply the tag at the Stage level or below. Tags are not applied
across Stage boundaries.

Tag priorities

The AWS CDK applies and removes tags recursively. If there are conflicts, the tagging operation
with the highest priority wins. (Priorities are set using the optional priority property.) If the
priorities of two operations are the same, the tagging operation closest to the bottom of the
construct tree wins. By default, applying a tag has a priority of 100 (except for tags added directly
to an AWS CloudFormation resource, which has a priority of 50). The default priority for removing a
tag is 200.

The following applies a tag with a priority of 300 to a construct.

TypeScript

Tags.of(myConstruct).add('key', 'value', {

Tag priorities Version 2 148

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 priority: 300
});

JavaScript

Tags.of(myConstruct).add('key', 'value', {
 priority: 300
});

Python

Tags.of(my_construct).add("key", "value", priority=300)

Java

Tags.of(myConstruct).add("key", "value", TagProps.builder()
 .priority(300).build());

C#

Tags.Of(myConstruct).Add("key", "value", new TagProps { Priority = 300 });

Optional properties

Tags support properties that fine-tune how tags are applied to, or removed from, resources. All
properties are optional.

applyToLaunchedInstances (Python: apply_to_launched_instances)

Available for add() only. By default, tags are applied to instances launched in an Auto Scaling
group. Set this property to false to ignore instances launched in an Auto Scaling group.

includeResourceTypes/excludeResourceTypes (Python:
include_resource_types/exclude_resource_types)

Use these to manipulate tags only on a subset of resources, based on AWS CloudFormation
resource types. By default, the operation is applied to all resources in the construct subtree, but
this can be changed by including or excluding certain resource types. Exclude takes precedence
over include, if both are specified.

Optional properties Version 2 149

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.TagProps.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

priority

Use this to set the priority of this operation with respect to other Tags.add() and
Tags.remove() operations. Higher values take precedence over lower values. The default is
100 for add operations (50 for tags applied directly to AWS CloudFormation resources) and 200
for remove operations.

The following example applies the tag tagname with the value value and priority 100 to resources
of type AWS::Xxx::Yyy in the construct. It doesn't apply the tag to instances launched in an
Amazon EC2 Auto Scaling group or to resources of type AWS::Xxx::Zzz. (These are placeholders for
two arbitrary but different AWS CloudFormation resource types.)

TypeScript

Tags.of(myConstruct).add('tagname', 'value', {
 applyToLaunchedInstances: false,
 includeResourceTypes: ['AWS::Xxx::Yyy'],
 excludeResourceTypes: ['AWS::Xxx::Zzz'],
 priority: 100,
});

JavaScript

Tags.of(myConstruct).add('tagname', 'value', {
 applyToLaunchedInstances: false,
 includeResourceTypes: ['AWS::Xxx::Yyy'],
 excludeResourceTypes: ['AWS::Xxx::Zzz'],
 priority: 100
});

Python

Tags.of(my_construct).add("tagname", "value",
 apply_to_launched_instances=False,
 include_resource_types=["AWS::Xxx::Yyy"],
 exclude_resource_types=["AWS::Xxx::Zzz"],
 priority=100)

Java

Tags.of(myConstruct).add("key", "value", TagProps.builder()

Optional properties Version 2 150

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .applyToLaunchedInstances(false)
 .includeResourceTypes(Arrays.asList("AWS::Xxx::Yyy"))
 .excludeResourceTypes(Arrays.asList("AWS::Xxx::Zzz"))
 .priority(100).build());

C#

Tags.Of(myConstruct).Add("tagname", "value", new TagProps
{
 ApplyToLaunchedInstances = false,
 IncludeResourceTypes = ["AWS::Xxx::Yyy"],
 ExcludeResourceTypes = ["AWS::Xxx::Zzz"],
 Priority = 100
});

The following example removes the tag tagname with priority 200 from resources of type
AWS::Xxx::Yyy in the construct, but not from resources of type AWS::Xxx::Zzz.

TypeScript

Tags.of(myConstruct).remove('tagname', {
 includeResourceTypes: ['AWS::Xxx::Yyy'],
 excludeResourceTypes: ['AWS::Xxx::Zzz'],
 priority: 200,
});

JavaScript

Tags.of(myConstruct).remove('tagname', {
 includeResourceTypes: ['AWS::Xxx::Yyy'],
 excludeResourceTypes: ['AWS::Xxx::Zzz'],
 priority: 200
});

Python

Tags.of(my_construct).remove("tagname",
 include_resource_types=["AWS::Xxx::Yyy"],
 exclude_resource_types=["AWS::Xxx::Zzz"],
 priority=200,)

Optional properties Version 2 151

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

Tags.of((myConstruct).remove("tagname", TagProps.builder()
 .includeResourceTypes(Arrays.asList("AWS::Xxx::Yyy"))
 .excludeResourceTypes(Arrays.asList("AWS::Xxx::Zzz"))
 .priority(100).build());

C#

Tags.Of(myConstruct).Remove("tagname", new TagProps
{
 IncludeResourceTypes = ["AWS::Xxx::Yyy"],
 ExcludeResourceTypes = ["AWS::Xxx::Zzz"],
 Priority = 100
});

Example

The following example adds the tag key StackType with value TheBest to any resource created
within the Stack named MarketingSystem. Then it removes it again from all resources except
Amazon EC2 VPC subnets. The result is that only the subnets have the tag applied.

TypeScript

import { App, Stack, Tags } from 'aws-cdk-lib';

const app = new App();
const theBestStack = new Stack(app, 'MarketingSystem');

// Add a tag to all constructs in the stack
Tags.of(theBestStack).add('StackType', 'TheBest');

// Remove the tag from all resources except subnet resources
Tags.of(theBestStack).remove('StackType', {
 excludeResourceTypes: ['AWS::EC2::Subnet']
});

JavaScript

const { App, Stack, Tags } = require('aws-cdk-lib');

Example Version 2 152

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const app = new App();
const theBestStack = new Stack(app, 'MarketingSystem');

// Add a tag to all constructs in the stack
Tags.of(theBestStack).add('StackType', 'TheBest');

// Remove the tag from all resources except subnet resources
Tags.of(theBestStack).remove('StackType', {
 excludeResourceTypes: ['AWS::EC2::Subnet']
});

Python

from aws_cdk import App, Stack, Tags

app = App();
the_best_stack = Stack(app, 'MarketingSystem')

Add a tag to all constructs in the stack
Tags.of(the_best_stack).add("StackType", "TheBest")

Remove the tag from all resources except subnet resources
Tags.of(the_best_stack).remove("StackType",
 exclude_resource_types=["AWS::EC2::Subnet"])

Java

import software.amazon.awscdk.App;
import software.amazon.awscdk.Tags;

// Add a tag to all constructs in the stack
Tags.of(theBestStack).add("StackType", "TheBest");

// Remove the tag from all resources except subnet resources
Tags.of(theBestStack).remove("StackType", TagProps.builder()
 .excludeResourceTypes(Arrays.asList("AWS::EC2::Subnet"))
 .build());

C#

using Amazon.CDK;

Example Version 2 153

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

var app = new App();
var theBestStack = new Stack(app, 'MarketingSystem');

// Add a tag to all constructs in the stack
Tags.Of(theBestStack).Add("StackType", "TheBest");

// Remove the tag from all resources except subnet resources
Tags.Of(theBestStack).Remove("StackType", new TagProps
{
 ExcludeResourceTypes = ["AWS::EC2::Subnet"]
});

The following code achieves the same result. Consider which approach (inclusion or exclusion)
makes your intent clearer.

TypeScript

Tags.of(theBestStack).add('StackType', 'TheBest',
 { includeResourceTypes: ['AWS::EC2::Subnet']});

JavaScript

Tags.of(theBestStack).add('StackType', 'TheBest',
 { includeResourceTypes: ['AWS::EC2::Subnet']});

Python

Tags.of(the_best_stack).add("StackType", "TheBest",
 include_resource_types=["AWS::EC2::Subnet"])

Java

Tags.of(theBestStack).add("StackType", "TheBest", TagProps.builder()
 .includeResourceTypes(Arrays.asList("AWS::EC2::Subnet"))
 .build());

C#

Tags.Of(theBestStack).Add("StackType", "TheBest", new TagProps {

Example Version 2 154

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 IncludeResourceTypes = ["AWS::EC2::Subnet"]
});

Tagging single constructs

Tags.of(scope).add(key, value) is the standard way to add tags to constructs in the AWS
CDK. Its tree-walking behavior, which recursively tags all taggable resources under the given
scope, is almost always what you want. Sometimes, however, you need to tag a specific, arbitrary
construct (or constructs).

One such case involves applying tags whose value is derived from some property of the construct
being tagged. The standard tagging approach recursively applies the same key and value to all
matching resources in the scope. However, here the value could be different for each tagged
construct.

Tags are implemented using aspects, and the CDK calls the tag's visit() method for each
construct under the scope you specified using Tags.of(scope). We can call Tag.visit()
directly to apply a tag to a single construct.

TypeScript

new cdk.Tag(key, value).visit(scope);

JavaScript

new cdk.Tag(key, value).visit(scope);

Python

cdk.Tag(key, value).visit(scope)

Java

Tag.Builder.create(key, value).build().visit(scope);

C#

new Tag(key, value).Visit(scope);

Tagging single constructs Version 2 155

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can tag all constructs under a scope but let the values of the tags derive from properties
of each construct. To do so, write an aspect and apply the tag in the aspect's visit()
method as shown in the preceding example. Then, add the aspect to the desired scope using
Aspects.of(scope).add(aspect).

The following example applies a tag to each resource in a stack containing the resource's path.

TypeScript

class PathTagger implements cdk.IAspect {
 visit(node: IConstruct) {
 new cdk.Tag("aws-cdk-path", node.node.path).visit(node);
 }
}

stack = new MyStack(app);
cdk.Aspects.of(stack).add(new PathTagger())

JavaScript

class PathTagger {
 visit(node) {
 new cdk.Tag("aws-cdk-path", node.node.path).visit(node);
 }
}

stack = new MyStack(app);
cdk.Aspects.of(stack).add(new PathTagger())

Python

@jsii.implements(cdk.IAspect)
class PathTagger:
 def visit(self, node: IConstruct):
 cdk.Tag("aws-cdk-path", node.node.path).visit(node)

stack = MyStack(app)
cdk.Aspects.of(stack).add(PathTagger())

Java

final class PathTagger implements IAspect {

Tagging single constructs Version 2 156

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public void visit(IConstruct node) {
 Tag.Builder.create("aws-cdk-path", node.getNode().getPath()).build().visit(node);
 }
}

stack stack = new MyStack(app);
Aspects.of(stack).add(new PathTagger());

C#

public class PathTagger : IAspect
{
 public void Visit(IConstruct node)
 {
 new Tag("aws-cdk-path", node.Node.Path).Visit(node);
 }
}

var stack = new MyStack(app);
Aspects.Of(stack).Add(new PathTagger);

Tip

The logic of conditional tagging, including priorities, resource types, and so on, is built into
the Tag class. You can use these features when applying tags to arbitrary resources; the tag
is not applied if the conditions aren't met. Also, the Tag class only tags taggable resources,
so you don't need to test whether a construct is taggable before applying a tag.

Assets

Assets are local files, directories, or Docker images that can be bundled into AWS CDK libraries
and apps. For example, an asset might be a directory that contains the handler code for an AWS
Lambda function. Assets can represent any artifact that the app needs to operate.

The following tutorial video provides a comprehensive overview of CDK assets, and explains how
you can use them in your insfrastructure as code (IaC).

CDK Assets Explained

Assets Version 2 157

https://www.youtube.com/embed/jHNtXQmkKfw

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You add assets through APIs that are exposed by specific AWS constructs. For example, when you
define a lambda.Function construct, the code property lets you pass an asset (directory). Function
uses assets to bundle the contents of the directory and use it for the function's code. Similarly,
ecs.ContainerImage.fromAsset uses a Docker image built from a local directory when defining an
Amazon ECS task definition.

Assets in detail

When you refer to an asset in your app, the cloud assembly that's synthesized from your
application includes metadata information with instructions for the AWS CDK CLI. The instructions
include where to find the asset on the local disk and what type of bundling to perform based on
the asset type, such as a directory to compress (zip) or a Docker image to build.

The AWS CDK generates a source hash for assets. This can be used at construction time to
determine whether the contents of an asset have changed.

By default, the AWS CDK creates a copy of the asset in the cloud assembly directory, which defaults
to cdk.out, under the source hash. This way, the cloud assembly is self-contained, so if it moved
over to a different host for deployment, it can still be deployed. See the section called “Cloud
assemblies” for details.

When the AWS CDK deploys an app that references assets (either directly by the app code or
through a library), the AWS CDK CLI first prepares and publishes the assets to an Amazon S3
bucket or Amazon ECR repository. (The S3 bucket or repository is created during bootstrapping.)
Only then are the resources defined in the stack deployed.

This section describes the low-level APIs available in the framework.

Asset types

The AWS CDK supports the following types of assets:

Amazon S3 assets

These are local files and directories that the AWS CDK uploads to Amazon S3.

Docker Image

These are Docker images that the AWS CDK uploads to Amazon ECR.

These asset types are explained in the following sections.

Assets in detail Version 2 158

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html#code
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Code.html#static-fromwbrassetpath-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs.ContainerImage.html#static-fromwbrassetdirectory-props

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Amazon S3 assets

You can define local files and directories as assets, and the AWS CDK packages and uploads them
to Amazon S3 through the aws-s3-assets module.

The following example defines a local directory asset and a file asset.

TypeScript

import { Asset } from 'aws-cdk-lib/aws-s3-assets';

// Archived and uploaded to Amazon S3 as a .zip file
const directoryAsset = new Asset(this, "SampleZippedDirAsset", {
 path: path.join(__dirname, "sample-asset-directory")
});

// Uploaded to Amazon S3 as-is
const fileAsset = new Asset(this, 'SampleSingleFileAsset', {
 path: path.join(__dirname, 'file-asset.txt')
});

JavaScript

const { Asset } = require('aws-cdk-lib/aws-s3-assets');

// Archived and uploaded to Amazon S3 as a .zip file
const directoryAsset = new Asset(this, "SampleZippedDirAsset", {
 path: path.join(__dirname, "sample-asset-directory")
});

// Uploaded to Amazon S3 as-is
const fileAsset = new Asset(this, 'SampleSingleFileAsset', {
 path: path.join(__dirname, 'file-asset.txt')
});

Python

import os.path
dirname = os.path.dirname(__file__)

from aws_cdk.aws_s3_assets import Asset

Amazon S3 assets Version 2 159

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3_assets-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Archived and uploaded to Amazon S3 as a .zip file
directory_asset = Asset(self, "SampleZippedDirAsset",
 path=os.path.join(dirname, "sample-asset-directory")
)

Uploaded to Amazon S3 as-is
file_asset = Asset(self, 'SampleSingleFileAsset',
 path=os.path.join(dirname, 'file-asset.txt')
)

Java

import java.io.File;

import software.amazon.awscdk.services.s3.assets.Asset;

// Directory where app was started
File startDir = new File(System.getProperty("user.dir"));

// Archived and uploaded to Amazon S3 as a .zip file
Asset directoryAsset = Asset.Builder.create(this, "SampleZippedDirAsset")
 .path(new File(startDir, "sample-asset-
directory").toString()).build();

// Uploaded to Amazon S3 as-is
Asset fileAsset = Asset.Builder.create(this, "SampleSingleFileAsset")
 .path(new File(startDir, "file-asset.txt").toString()).build();

C#

using System.IO;
using Amazon.CDK.AWS.S3.Assets;

// Archived and uploaded to Amazon S3 as a .zip file
var directoryAsset = new Asset(this, "SampleZippedDirAsset", new AssetProps
{
 Path = Path.Combine(Directory.GetCurrentDirectory(), "sample-asset-directory")
});

// Uploaded to Amazon S3 as-is
var fileAsset = new Asset(this, "SampleSingleFileAsset", new AssetProps
{
 Path = Path.Combine(Directory.GetCurrentDirectory(), "file-asset.txt")

Amazon S3 assets Version 2 160

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

In most cases, you don't need to directly use the APIs in the aws-s3-assets module. Modules
that support assets, such as aws-lambda, have convenience methods so that you can use assets.
For Lambda functions, the fromAsset() static method enables you to specify a directory or a .zip file
in the local file system.

Lambda function example

A common use case is creating Lambda functions with the handler code as an Amazon S3 asset.

The following example uses an Amazon S3 asset to define a Python handler in the local directory
handler. It also creates a Lambda function with the local directory asset as the code property.
Following is the Python code for the handler.

def lambda_handler(event, context):
 message = 'Hello World!'
 return {
 'message': message
 }

The code for the main AWS CDK app should look like the following.

TypeScript

import * as cdk from 'aws-cdk-lib';
import { Constructs } from 'constructs';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as path from 'path';

export class HelloAssetStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 new lambda.Function(this, 'myLambdaFunction', {
 code: lambda.Code.fromAsset(path.join(__dirname, 'handler')),
 runtime: lambda.Runtime.PYTHON_3_6,
 handler: 'index.lambda_handler'
 });
 }
}

Amazon S3 assets Version 2 161

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Code.html#static-fromwbrassetpath-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const cdk = require('aws-cdk-lib');
const lambda = require('aws-cdk-lib/aws-lambda');
const path = require('path');

class HelloAssetStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 new lambda.Function(this, 'myLambdaFunction', {
 code: lambda.Code.fromAsset(path.join(__dirname, 'handler')),
 runtime: lambda.Runtime.PYTHON_3_6,
 handler: 'index.lambda_handler'
 });
 }
}

module.exports = { HelloAssetStack }

Python

from aws_cdk import Stack
from constructs import Construct
from aws_cdk import aws_lambda as lambda_

import os.path
dirname = os.path.dirname(__file__)

class HelloAssetStack(Stack):
 def __init__(self, scope: Construct, id: str, **kwargs):
 super().__init__(scope, id, **kwargs)

 lambda_.Function(self, 'myLambdaFunction',
 code=lambda_.Code.from_asset(os.path.join(dirname, 'handler')),
 runtime=lambda_.Runtime.PYTHON_3_6,
 handler="index.lambda_handler")

Java

import java.io.File;

import software.amazon.awscdk.Stack;

Amazon S3 assets Version 2 162

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;

public class HelloAssetStack extends Stack {

 public HelloAssetStack(final App scope, final String id) {
 this(scope, id, null);
 }

 public HelloAssetStack(final App scope, final String id, final StackProps props)
 {
 super(scope, id, props);

 File startDir = new File(System.getProperty("user.dir"));

 Function.Builder.create(this, "myLambdaFunction")
 .code(Code.fromAsset(new File(startDir, "handler").toString()))
 .runtime(Runtime.PYTHON_3_6)
 .handler("index.lambda_handler").build();
 }
}

C#

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;
using System.IO;

public class HelloAssetStack : Stack
{
 public HelloAssetStack(Construct scope, string id, StackProps props) :
 base(scope, id, props)
 {
 new Function(this, "myLambdaFunction", new FunctionProps
 {
 Code = Code.FromAsset(Path.Combine(Directory.GetCurrentDirectory(),
 "handler")),
 Runtime = Runtime.PYTHON_3_6,
 Handler = "index.lambda_handler"
 });
 }
}

Amazon S3 assets Version 2 163

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The Function method uses assets to bundle the contents of the directory and use it for the
function's code.

Tip

Java .jar files are ZIP files with a different extension. These are uploaded as-is to Amazon
S3, but when deployed as a Lambda function, the files they contain are extracted, which
you might not want. To avoid this, place the .jar file in a directory and specify that
directory as the asset.

Deploy-time attributes example

Amazon S3 asset types also expose deploy-time attributes that can be referenced in AWS CDK
libraries and apps. The AWS CDK CLI command cdk synth displays asset properties as AWS
CloudFormation parameters.

The following example uses deploy-time attributes to pass the location of an image asset into a
Lambda function as environment variables. (The kind of file doesn't matter; the PNG image used
here is only an example.)

TypeScript

import { Asset } from 'aws-cdk-lib/aws-s3-assets';
import * as path from 'path';

const imageAsset = new Asset(this, "SampleAsset", {
 path: path.join(__dirname, "images/my-image.png")
});

new lambda.Function(this, "myLambdaFunction", {
 code: lambda.Code.asset(path.join(__dirname, "handler")),
 runtime: lambda.Runtime.PYTHON_3_6,
 handler: "index.lambda_handler",
 environment: {
 'S3_BUCKET_NAME': imageAsset.s3BucketName,
 'S3_OBJECT_KEY': imageAsset.s3ObjectKey,
 'S3_OBJECT_URL': imageAsset.s3ObjectUrl
 }
});

Amazon S3 assets Version 2 164

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const { Asset } = require('aws-cdk-lib/aws-s3-assets');
const path = require('path');

const imageAsset = new Asset(this, "SampleAsset", {
 path: path.join(__dirname, "images/my-image.png")
});

new lambda.Function(this, "myLambdaFunction", {
 code: lambda.Code.asset(path.join(__dirname, "handler")),
 runtime: lambda.Runtime.PYTHON_3_6,
 handler: "index.lambda_handler",
 environment: {
 'S3_BUCKET_NAME': imageAsset.s3BucketName,
 'S3_OBJECT_KEY': imageAsset.s3ObjectKey,
 'S3_OBJECT_URL': imageAsset.s3ObjectUrl
 }
});

Python

import os.path

import aws_cdk.aws_lambda as lambda_
from aws_cdk.aws_s3_assets import Asset

dirname = os.path.dirname(__file__)

image_asset = Asset(self, "SampleAsset",
 path=os.path.join(dirname, "images/my-image.png"))

lambda_.Function(self, "myLambdaFunction",
 code=lambda_.Code.asset(os.path.join(dirname, "handler")),
 runtime=lambda_.Runtime.PYTHON_3_6,
 handler="index.lambda_handler",
 environment=dict(
 S3_BUCKET_NAME=image_asset.s3_bucket_name,
 S3_OBJECT_KEY=image_asset.s3_object_key,
 S3_OBJECT_URL=image_asset.s3_object_url))

Amazon S3 assets Version 2 165

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

import java.io.File;

import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.s3.assets.Asset;

public class FunctionStack extends Stack {
 public FunctionStack(final App scope, final String id, final StackProps props) {
 super(scope, id, props);

 File startDir = new File(System.getProperty("user.dir"));

 Asset imageAsset = Asset.Builder.create(this, "SampleAsset")
 .path(new File(startDir, "images/my-image.png").toString()).build())

 Function.Builder.create(this, "myLambdaFunction")
 .code(Code.fromAsset(new File(startDir, "handler").toString()))
 .runtime(Runtime.PYTHON_3_6)
 .handler("index.lambda_handler")
 .environment(java.util.Map.of(// Java 9 or later
 "S3_BUCKET_NAME", imageAsset.getS3BucketName(),
 "S3_OBJECT_KEY", imageAsset.getS3ObjectKey(),
 "S3_OBJECT_URL", imageAsset.getS3ObjectUrl()))
 .build();
 }
}

C#

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.S3.Assets;
using System.IO;
using System.Collections.Generic;

var imageAsset = new Asset(this, "SampleAsset", new AssetProps
{
 Path = Path.Combine(Directory.GetCurrentDirectory(), @"images\my-image.png")
});

Amazon S3 assets Version 2 166

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new Function(this, "myLambdaFunction", new FunctionProps
{
 Code = Code.FromAsset(Path.Combine(Directory.GetCurrentDirectory(), "handler")),
 Runtime = Runtime.PYTHON_3_6,
 Handler = "index.lambda_handler",
 Environment = new Dictionary<string, string>
 {
 ["S3_BUCKET_NAME"] = imageAsset.S3BucketName,
 ["S3_OBJECT_KEY"] = imageAsset.S3ObjectKey,
 ["S3_OBJECT_URL"] = imageAsset.S3ObjectUrl
 }
});

Permissions

If you use Amazon S3 assets directly through the aws-s3-assets module, IAM roles, users, or groups,
and you need to read assets in runtime, then grant those assets IAM permissions through the
asset.grantRead method.

The following example grants an IAM group read permissions on a file asset.

TypeScript

import { Asset } from 'aws-cdk-lib/aws-s3-assets';
import * as path from 'path';

const asset = new Asset(this, 'MyFile', {
 path: path.join(__dirname, 'my-image.png')
});

const group = new iam.Group(this, 'MyUserGroup');
asset.grantRead(group);

JavaScript

const { Asset } = require('aws-cdk-lib/aws-s3-assets');
const path = require('path');

const asset = new Asset(this, 'MyFile', {
 path: path.join(__dirname, 'my-image.png')
});

Amazon S3 assets Version 2 167

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3_assets-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3_assets.Asset.html#grantwbrreadgrantee

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const group = new iam.Group(this, 'MyUserGroup');
asset.grantRead(group);

Python

from aws_cdk.aws_s3_assets import Asset
import aws_cdk.aws_iam as iam

import os.path
dirname = os.path.dirname(__file__)

 asset = Asset(self, "MyFile",
 path=os.path.join(dirname, "my-image.png"))

 group = iam.Group(self, "MyUserGroup")
 asset.grant_read(group)

Java

import java.io.File;

import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.services.iam.Group;
import software.amazon.awscdk.services.s3.assets.Asset;

public class GrantStack extends Stack {
 public GrantStack(final App scope, final String id, final StackProps props) {
 super(scope, id, props);

 File startDir = new File(System.getProperty("user.dir"));

 Asset asset = Asset.Builder.create(this, "SampleAsset")
 .path(new File(startDir, "images/my-image.png").toString()).build();

 Group group = new Group(this, "MyUserGroup");
 asset.grantRead(group); }
}

C#

using Amazon.CDK;

Amazon S3 assets Version 2 168

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Amazon.CDK.AWS.IAM;
using Amazon.CDK.AWS.S3.Assets;
using System.IO;

var asset = new Asset(this, "MyFile", new AssetProps {
 Path = Path.Combine(Path.Combine(Directory.GetCurrentDirectory(), @"images\my-
image.png"))
});

var group = new Group(this, "MyUserGroup");
asset.GrantRead(group);

Docker image assets

The AWS CDK supports bundling local Docker images as assets through the aws-ecr-assets module.

The following example defines a Docker image that is built locally and pushed to Amazon ECR.
Images are built from a local Docker context directory (with a Dockerfile) and uploaded to Amazon
ECR by the AWS CDK CLI or your app's CI/CD pipeline. The images can be naturally referenced in
your AWS CDK app.

TypeScript

import { DockerImageAsset } from 'aws-cdk-lib/aws-ecr-assets';

const asset = new DockerImageAsset(this, 'MyBuildImage', {
 directory: path.join(__dirname, 'my-image')
});

JavaScript

const { DockerImageAsset } = require('aws-cdk-lib/aws-ecr-assets');

const asset = new DockerImageAsset(this, 'MyBuildImage', {
 directory: path.join(__dirname, 'my-image')
});

Python

from aws_cdk.aws_ecr_assets import DockerImageAsset

Docker image assets Version 2 169

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecr_assets-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import os.path
dirname = os.path.dirname(__file__)

asset = DockerImageAsset(self, 'MyBuildImage',
 directory=os.path.join(dirname, 'my-image'))

Java

import software.amazon.awscdk.services.ecr.assets.DockerImageAsset;

File startDir = new File(System.getProperty("user.dir"));

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "MyBuildImage")
 .directory(new File(startDir, "my-image").toString()).build();

C#

using System.IO;
using Amazon.CDK.AWS.ECR.Assets;

var asset = new DockerImageAsset(this, "MyBuildImage", new DockerImageAssetProps
{
 Directory = Path.Combine(Directory.GetCurrentDirectory(), "my-image")
});

The my-image directory must include a Dockerfile. The AWS CDK CLI builds a Docker image from
my-image, pushes it to an Amazon ECR repository, and specifies the name of the repository as
an AWS CloudFormation parameter to your stack. Docker image asset types expose deploy-time
attributes that can be referenced in AWS CDK libraries and apps. The AWS CDK CLI command cdk
synth displays asset properties as AWS CloudFormation parameters.

Amazon ECS task definition example

A common use case is to create an Amazon ECS TaskDefinition to run Docker containers. The
following example specifies the location of a Docker image asset that the AWS CDK builds locally
and pushes to Amazon ECR.

TypeScript

import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as ecr_assets from 'aws-cdk-lib/aws-ecr-assets';

Docker image assets Version 2 170

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs.TaskDefinition.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import * as path from 'path';

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {
 memoryLimitMiB: 1024,
 cpu: 512
});

const asset = new ecr_assets.DockerImageAsset(this, 'MyBuildImage', {
 directory: path.join(__dirname, 'my-image')
});

taskDefinition.addContainer("my-other-container", {
 image: ecs.ContainerImage.fromDockerImageAsset(asset)
});

JavaScript

const ecs = require('aws-cdk-lib/aws-ecs');
const ecr_assets = require('aws-cdk-lib/aws-ecr-assets');
const path = require('path');

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {
 memoryLimitMiB: 1024,
 cpu: 512
});

const asset = new ecr_assets.DockerImageAsset(this, 'MyBuildImage', {
 directory: path.join(__dirname, 'my-image')
});

taskDefinition.addContainer("my-other-container", {
 image: ecs.ContainerImage.fromDockerImageAsset(asset)
});

Python

import aws_cdk.aws_ecs as ecs
import aws_cdk.aws_ecr_assets as ecr_assets

import os.path
dirname = os.path.dirname(__file__)

task_definition = ecs.FargateTaskDefinition(self, "TaskDef",

Docker image assets Version 2 171

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 memory_limit_mib=1024,
 cpu=512)

asset = ecr_assets.DockerImageAsset(self, 'MyBuildImage',
 directory=os.path.join(dirname, 'my-image'))

task_definition.add_container("my-other-container",
 image=ecs.ContainerImage.from_docker_image_asset(asset))

Java

import java.io.File;

import software.amazon.awscdk.services.ecs.FargateTaskDefinition;
import software.amazon.awscdk.services.ecs.ContainerDefinitionOptions;
import software.amazon.awscdk.services.ecs.ContainerImage;

import software.amazon.awscdk.services.ecr.assets.DockerImageAsset;

File startDir = new File(System.getProperty("user.dir"));

FargateTaskDefinition taskDefinition = FargateTaskDefinition.Builder.create(
 this, "TaskDef").memoryLimitMiB(1024).cpu(512).build();

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "MyBuildImage")
 .directory(new File(startDir, "my-image").toString()).build();

taskDefinition.addContainer("my-other-container",
 ContainerDefinitionOptions.builder()
 .image(ContainerImage.fromDockerImageAsset(asset))
 .build();

C#

using System.IO;
using Amazon.CDK.AWS.ECS;
using Amazon.CDK.AWS.Ecr.Assets;

var taskDefinition = new FargateTaskDefinition(this, "TaskDef", new
 FargateTaskDefinitionProps
{
 MemoryLimitMiB = 1024,
 Cpu = 512

Docker image assets Version 2 172

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

var asset = new DockerImageAsset(this, "MyBuildImage", new DockerImageAssetProps
{
 Directory = Path.Combine(Directory.GetCurrentDirectory(), "my-image")
});

taskDefinition.AddContainer("my-other-container", new ContainerDefinitionOptions
{
 Image = ContainerImage.FromDockerImageAsset(asset)
});

Deploy-time attributes example

The following example shows how to use the deploy-time attributes repository and imageUri
to create an Amazon ECS task definition with the AWS Fargate launch type. Note that the Amazon
ECR repo lookup requires the image's tag, not its URI, so we snip it from the end of the asset's URI.

TypeScript

import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as path from 'path';
import { DockerImageAsset } from 'aws-cdk-lib/aws-ecr-assets';

const asset = new DockerImageAsset(this, 'my-image', {
 directory: path.join(__dirname, "..", "demo-image")
});

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {
 memoryLimitMiB: 1024,
 cpu: 512
});

taskDefinition.addContainer("my-other-container", {
 image: ecs.ContainerImage.fromEcrRepository(asset.repository,
 asset.imageUri.split(":").pop())
});

JavaScript

const ecs = require('aws-cdk-lib/aws-ecs');
const path = require('path');

Docker image assets Version 2 173

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const { DockerImageAsset } = require('aws-cdk-lib/aws-ecr-assets');

const asset = new DockerImageAsset(this, 'my-image', {
 directory: path.join(__dirname, "..", "demo-image")
});

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {
 memoryLimitMiB: 1024,
 cpu: 512
});

taskDefinition.addContainer("my-other-container", {
 image: ecs.ContainerImage.fromEcrRepository(asset.repository,
 asset.imageUri.split(":").pop())
});

Python

import aws_cdk.aws_ecs as ecs
from aws_cdk.aws_ecr_assets import DockerImageAsset

import os.path
dirname = os.path.dirname(__file__)

asset = DockerImageAsset(self, 'my-image',
 directory=os.path.join(dirname, "..", "demo-image"))

task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
 memory_limit_mib=1024, cpu=512)

task_definition.add_container("my-other-container",
 image=ecs.ContainerImage.from_ecr_repository(
 asset.repository, asset.image_uri.rpartition(":")[-1]))

Java

import java.io.File;

import software.amazon.awscdk.services.ecr.assets.DockerImageAsset;

import software.amazon.awscdk.services.ecs.FargateTaskDefinition;
import software.amazon.awscdk.services.ecs.ContainerDefinitionOptions;
import software.amazon.awscdk.services.ecs.ContainerImage;

Docker image assets Version 2 174

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

File startDir = new File(System.getProperty("user.dir"));

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "my-image")
 .directory(new File(startDir, "demo-image").toString()).build();

FargateTaskDefinition taskDefinition = FargateTaskDefinition.Builder.create(
 this, "TaskDef").memoryLimitMiB(1024).cpu(512).build();

// extract the tag from the asset's image URI for use in ECR repo lookup
String imageUri = asset.getImageUri();
String imageTag = imageUri.substring(imageUri.lastIndexOf(":") + 1);

taskDefinition.addContainer("my-other-container",
 ContainerDefinitionOptions.builder().image(ContainerImage.fromEcrRepository(
 asset.getRepository(), imageTag)).build());

C#

using System.IO;
using Amazon.CDK.AWS.ECS;
using Amazon.CDK.AWS.ECR.Assets;

var asset = new DockerImageAsset(this, "my-image", new DockerImageAssetProps {
 Directory = Path.Combine(Directory.GetCurrentDirectory(), "demo-image")
});

var taskDefinition = new FargateTaskDefinition(this, "TaskDef", new
 FargateTaskDefinitionProps
{
 MemoryLimitMiB = 1024,
 Cpu = 512
});

taskDefinition.AddContainer("my-other-container", new ContainerDefinitionOptions
{
 Image = ContainerImage.FromEcrRepository(asset.Repository,
 asset.ImageUri.Split(":").Last())
});

Docker image assets Version 2 175

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Build arguments example

You can provide customized build arguments for the Docker build step through the buildArgs
(Python: build_args) property option when the AWS CDK CLI builds the image during
deployment.

TypeScript

const asset = new DockerImageAsset(this, 'MyBuildImage', {
 directory: path.join(__dirname, 'my-image'),
 buildArgs: {
 HTTP_PROXY: 'http://10.20.30.2:1234'
 }
});

JavaScript

const asset = new DockerImageAsset(this, 'MyBuildImage', {
 directory: path.join(__dirname, 'my-image'),
 buildArgs: {
 HTTP_PROXY: 'http://10.20.30.2:1234'
 }
});

Python

asset = DockerImageAsset(self, "MyBulidImage",
 directory=os.path.join(dirname, "my-image"),
 build_args=dict(HTTP_PROXY="http://10.20.30.2:1234"))

Java

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "my-image"),
 .directory(new File(startDir, "my-image").toString())
 .buildArgs(java.util.Map.of(// Java 9 or later
 "HTTP_PROXY", "http://10.20.30.2:1234"))
 .build();

C#

var asset = new DockerImageAsset(this, "MyBuildImage", new DockerImageAssetProps {
 Directory = Path.Combine(Directory.GetCurrentDirectory(), "my-image"),

Docker image assets Version 2 176

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 BuildArgs = new Dictionary<string, string>
 {
 ["HTTP_PROXY"] = "http://10.20.30.2:1234"
 }
});

Permissions

If you use a module that supports Docker image assets, such as aws-ecs, the AWS CDK manages
permissions for you when you use assets directly or through ContainerImage.fromEcrRepository
(Python: from_ecr_repository). If you use Docker image assets directly, make sure that the
consuming principal has permissions to pull the image.

In most cases, you should use asset.repository.grantPull method (Python: grant_pull. This
modifies the IAM policy of the principal to enable it to pull images from this repository. If the
principal that is pulling the image is not in the same account, or if it's an AWS service that doesn't
assume a role in your account (such as AWS CodeBuild), you must grant pull permissions on the
resource policy and not on the principal's policy. Use the asset.repository.addToResourcePolicy
method (Python: add_to_resource_policy) to grant the appropriate principal permissions.

AWS CloudFormation resource metadata

Note

This section is relevant only for construct authors. In certain situations, tools need to know
that a certain CFN resource is using a local asset. For example, you can use the AWS SAM
CLI to invoke Lambda functions locally for debugging purposes. See the section called
“AWS SAM integration” for details.

To enable such use cases, external tools consult a set of metadata entries on AWS CloudFormation
resources:

• aws:asset:path – Points to the local path of the asset.

• aws:asset:property – The name of the resource property where the asset is used.

Using these two metadata entries, tools can identify that assets are used by a certain resource, and
enable advanced local experiences.

AWS CloudFormation resource metadata Version 2 177

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs.ContainerImage.html#static-fromwbrecrwbrrepositoryrepository-tag
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecr.Repository.html#grantwbrpullgrantee
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecr.Repository.html#addwbrtowbrresourcewbrpolicystatement

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To add these metadata entries to a resource, use the asset.addResourceMetadata (Python:
add_resource_metadata) method.

Permissions

The AWS Construct Library uses a few common, widely implemented idioms to manage access and
permissions. The IAM module provides you with the tools you need to use these idioms.

AWS CDK uses AWS CloudFormation to deploy changes. Every deployment involves an actor (either
a developer, or an automated system) that starts a AWS CloudFormation deployment. In the course
of doing this, the actor will assume one or more IAM Identities (user or roles) and optionally pass a
role to AWS CloudFormation.

If you use AWS IAM Identity Center to authenticate as a user, then the single sign-on provider
supplies short-lived session credentials that authorize you to act as a pre-defined IAM role. To
learn how the AWS CDK obtains AWS credentials from IAM Identity Center authentication, see
Understand IAM Identity Center authentication in the AWS SDKs and Tools Reference Guide.

Principals

An IAM principal is an authenticated AWS entity representing a user, service, or application that can
call AWS APIs. The AWS Construct Library supports specifying principals in several flexible ways to
grant them access your AWS resources.

In security contexts, the term "principal" refers specifically to authenticated entities such as users.
Objects like groups and roles do not represent users (and other authenticated entities) but rather
identify them indirectly for the purpose of granting permissions.

For example, if you create an IAM group, you can grant the group (and thus its members) write
access to an Amazon RDS table. However, the group itself is not a principal because it doesn't
represent a single entity (also, you cannot log in to a group).

In the CDK's IAM library, classes that directly or indirectly identify principals implement the
IPrincipal interface, allowing these objects to be used interchangeably in access policies.
However, not all of them are principals in the security sense. These objects include:

1. IAM resources such as Role, User, and Group

2. Service principals (new iam.ServicePrincipal('service.amazonaws.com'))

Permissions Version 2 178

https://docs.aws.amazon.com/sdkref/latest/guide/understanding-sso.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.IPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ServicePrincipal.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

3. Federated principals (new iam.FederatedPrincipal('cognito-
identity.amazonaws.com'))

4. Account principals (new iam.AccountPrincipal('0123456789012'))

5. Canonical user principals (new iam.CanonicalUserPrincipal('79a59d[...]7ef2be'))

6. AWS Organizations principals (new iam.OrganizationPrincipal('org-id'))

7. Arbitrary ARN principals (new iam.ArnPrincipal(res.arn))

8. An iam.CompositePrincipal(principal1, principal2, ...) to trust multiple
principals

Grants

Every construct that represents a resource that can be accessed, such as an Amazon S3 bucket or
Amazon DynamoDB table, has methods that grant access to another entity. All such methods have
names starting with grant.

For example, Amazon S3 buckets have the methods grantRead and grantReadWrite (Python:
grant_read, grant_read_write) to enable read and read/write access, respectively, from an
entity to the bucket. The entity doesn't have to know exactly which Amazon S3 IAM permissions
are required to perform these operations.

The first argument of a grant method is always of type IGrantable. This interface represents
entities that can be granted permissions. That is, it represents resources with roles, such as the IAM
objects Role, User, and Group.

Other entities can also be granted permissions. For example, later in this topic, we show how to
grant a CodeBuild project access to an Amazon S3 bucket. Generally, the associated role is obtained
via a role property on the entity being granted access.

Resources that use execution roles, such as lambda.Function, also implement IGrantable, so
you can grant them access directly instead of granting access to their role. For example, if bucket
is an Amazon S3 bucket, and function is a Lambda function, the following code grants the
function read access to the bucket.

TypeScript

bucket.grantRead(function);

Grants Version 2 179

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.FederatedPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.AccountPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.CanonicalUserPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.OrganizationPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ArnPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.CompositePrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#grantwbrreadidentity-objectskeypattern
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#grantwbrreadwbrwriteidentity-objectskeypattern
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.IGrantable.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

bucket.grantRead(function);

Python

bucket.grant_read(function)

Java

bucket.grantRead(function);

C#

bucket.GrantRead(function);

Sometimes permissions must be applied while your stack is being deployed. One such case is
when you grant an AWS CloudFormation custom resource access to some other resource. The
custom resource will be invoked during deployment, so it must have the specified permissions at
deployment time.

Another case is when a service verifies that the role you pass to it has the right policies applied. (A
number of AWS services do this to make sure that you didn't forget to set the policies.) In those
cases, the deployment might fail if the permissions are applied too late.

To force the grant's permissions to be applied before another resource is created, you can add
a dependency on the grant itself, as shown here. Though the return value of grant methods is
commonly discarded, every grant method in fact returns an iam.Grant object.

TypeScript

const grant = bucket.grantRead(lambda);
const custom = new CustomResource(...);
custom.node.addDependency(grant);

JavaScript

const grant = bucket.grantRead(lambda);
const custom = new CustomResource(...);

Grants Version 2 180

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

custom.node.addDependency(grant);

Python

grant = bucket.grant_read(function)
custom = CustomResource(...)
custom.node.add_dependency(grant)

Java

Grant grant = bucket.grantRead(function);
CustomResource custom = new CustomResource(...);
custom.node.addDependency(grant);

C#

var grant = bucket.GrantRead(function);
var custom = new CustomResource(...);
custom.node.AddDependency(grant);

Roles

The IAM package contains a Role construct that represents IAM roles. The following code creates a
new role, trusting the Amazon EC2 service.

TypeScript

import * as iam from 'aws-cdk-lib/aws-iam';

const role = new iam.Role(this, 'Role', {
 assumedBy: new iam.ServicePrincipal('ec2.amazonaws.com'), // required
});

JavaScript

const iam = require('aws-cdk-lib/aws-iam');

const role = new iam.Role(this, 'Role', {
 assumedBy: new iam.ServicePrincipal('ec2.amazonaws.com') // required
});

Roles Version 2 181

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

import aws_cdk.aws_iam as iam

role = iam.Role(self, "Role",
 assumed_by=iam.ServicePrincipal("ec2.amazonaws.com")) # required

Java

import software.amazon.awscdk.services.iam.Role;
import software.amazon.awscdk.services.iam.ServicePrincipal;

Role role = Role.Builder.create(this, "Role")
 .assumedBy(new ServicePrincipal("ec2.amazonaws.com")).build();

C#

using Amazon.CDK.AWS.IAM;

var role = new Role(this, "Role", new RoleProps
{
 AssumedBy = new ServicePrincipal("ec2.amazonaws.com"), // required
});

You can add permissions to a role by calling the role's addToPolicy method (Python:
add_to_policy), passing in a PolicyStatement that defines the rule to be added. The
statement is added to the role's default policy; if it has none, one is created.

The following example adds a Deny policy statement to the role for the actions ec2:SomeAction
and s3:AnotherAction on the resources bucket and otherRole (Python: other_role), under
the condition that the authorized service is AWS CodeBuild.

TypeScript

role.addToPolicy(new iam.PolicyStatement({
 effect: iam.Effect.DENY,
 resources: [bucket.bucketArn, otherRole.roleArn],
 actions: ['ec2:SomeAction', 's3:AnotherAction'],
 conditions: {StringEquals: {
 'ec2:AuthorizedService': 'codebuild.amazonaws.com',

Roles Version 2 182

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#addwbrtowbrpolicystatement
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}}}));

JavaScript

role.addToPolicy(new iam.PolicyStatement({
 effect: iam.Effect.DENY,
 resources: [bucket.bucketArn, otherRole.roleArn],
 actions: ['ec2:SomeAction', 's3:AnotherAction'],
 conditions: {StringEquals: {
 'ec2:AuthorizedService': 'codebuild.amazonaws.com'
}}}));

Python

role.add_to_policy(iam.PolicyStatement(
 effect=iam.Effect.DENY,
 resources=[bucket.bucket_arn, other_role.role_arn],
 actions=["ec2:SomeAction", "s3:AnotherAction"],
 conditions={"StringEquals": {
 "ec2:AuthorizedService": "codebuild.amazonaws.com"}}
))

Java

role.addToPolicy(PolicyStatement.Builder.create()
 .effect(Effect.DENY)
 .resources(Arrays.asList(bucket.getBucketArn(), otherRole.getRoleArn()))
 .actions(Arrays.asList("ec2:SomeAction", "s3:AnotherAction"))
 .conditions(java.util.Map.of(// Map.of requires Java 9 or later
 "StringEquals", java.util.Map.of(
 "ec2:AuthorizedService", "codebuild.amazonaws.com")))
 .build());

C#

role.AddToPolicy(new PolicyStatement(new PolicyStatementProps
{
 Effect = Effect.DENY,
 Resources = new string[] { bucket.BucketArn, otherRole.RoleArn },
 Actions = new string[] { "ec2:SomeAction", "s3:AnotherAction" },
 Conditions = new Dictionary<string, object>
 {

Roles Version 2 183

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 ["StringEquals"] = new Dictionary<string, string>
 {
 ["ec2:AuthorizedService"] = "codebuild.amazonaws.com"
 }
 }
}));

In the preceding example, we've created a new PolicyStatement inline with the addToPolicy
(Python: add_to_policy) call. You can also pass in an existing policy statement or one you've
modified. The PolicyStatement object has numerous methods for adding principals, resources,
conditions, and actions.

If you're using a construct that requires a role to function correctly, you can do one of the
following:

• Pass in an existing role when instantiating the construct object.

• Let the construct create a new role for you, trusting the appropriate service principal. The
following example uses such a construct: a CodeBuild project.

TypeScript

import * as codebuild from 'aws-cdk-lib/aws-codebuild';

// imagine roleOrUndefined is a function that might return a Role object
// under some conditions, and undefined under other conditions
const someRole: iam.IRole | undefined = roleOrUndefined();

const project = new codebuild.Project(this, 'Project', {
 // if someRole is undefined, the Project creates a new default role,
 // trusting the codebuild.amazonaws.com service principal
 role: someRole,
});

JavaScript

const codebuild = require('aws-cdk-lib/aws-codebuild');

// imagine roleOrUndefined is a function that might return a Role object
// under some conditions, and undefined under other conditions
const someRole = roleOrUndefined();

Roles Version 2 184

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#addwbrtowbrpolicystatement
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html#methods

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const project = new codebuild.Project(this, 'Project', {
 // if someRole is undefined, the Project creates a new default role,
 // trusting the codebuild.amazonaws.com service principal
 role: someRole
});

Python

import aws_cdk.aws_codebuild as codebuild

imagine role_or_none is a function that might return a Role object
under some conditions, and None under other conditions
some_role = role_or_none();

project = codebuild.Project(self, "Project",
if role is None, the Project creates a new default role,
trusting the codebuild.amazonaws.com service principal
role=some_role)

Java

import software.amazon.awscdk.services.iam.Role;
import software.amazon.awscdk.services.codebuild.Project;

// imagine roleOrNull is a function that might return a Role object
// under some conditions, and null under other conditions
Role someRole = roleOrNull();

// if someRole is null, the Project creates a new default role,
// trusting the codebuild.amazonaws.com service principal
Project project = Project.Builder.create(this, "Project")
 .role(someRole).build();

C#

using Amazon.CDK.AWS.CodeBuild;

// imagine roleOrNull is a function that might return a Role object
// under some conditions, and null under other conditions
var someRole = roleOrNull();

// if someRole is null, the Project creates a new default role,

Roles Version 2 185

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// trusting the codebuild.amazonaws.com service principal
var project = new Project(this, "Project", new ProjectProps
{
 Role = someRole
});

Once the object is created, the role (whether the role passed in or the default one created
by the construct) is available as the property role. However, this property is not available
on external resources. Therefore, these constructs have an addToRolePolicy (Python:
add_to_role_policy) method.

The method does nothing if the construct is an external resource, and it calls the addToPolicy
(Python: add_to_policy) method of the role property otherwise. This saves you the trouble of
handling the undefined case explicitly.

The following example demonstrates:

TypeScript

// project is imported into the CDK application
const project = codebuild.Project.fromProjectName(this, 'Project', 'ProjectName');

// project is imported, so project.role is undefined, and this call has no effect
project.addToRolePolicy(new iam.PolicyStatement({
 effect: iam.Effect.ALLOW, // ... and so on defining the policy
}));

JavaScript

// project is imported into the CDK application
const project = codebuild.Project.fromProjectName(this, 'Project', 'ProjectName');

// project is imported, so project.role is undefined, and this call has no effect
project.addToRolePolicy(new iam.PolicyStatement({
 effect: iam.Effect.ALLOW // ... and so on defining the policy
}));

Python

project is imported into the CDK application
project = codebuild.Project.from_project_name(self, 'Project', 'ProjectName')

Roles Version 2 186

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

project is imported, so project.role is undefined, and this call has no effect
project.add_to_role_policy(iam.PolicyStatement(
 effect=iam.Effect.ALLOW, # ... and so on defining the policy
)

Java

// project is imported into the CDK application
Project project = Project.fromProjectName(this, "Project", "ProjectName");

// project is imported, so project.getRole() is null, and this call has no effect
project.addToRolePolicy(PolicyStatement.Builder.create()
 .effect(Effect.ALLOW) // .. and so on defining the policy
 .build();

C#

// project is imported into the CDK application
var project = Project.FromProjectName(this, "Project", "ProjectName");

// project is imported, so project.role is null, and this call has no effect
project.AddToRolePolicy(new PolicyStatement(new PolicyStatementProps
{
 Effect = Effect.ALLOW, // ... and so on defining the policy
}));

Resource policies

A few resources in AWS, such as Amazon S3 buckets and IAM roles, also have a resource policy.
These constructs have an addToResourcePolicy method (Python: add_to_resource_policy),
which takes a PolicyStatement as its argument. Every policy statement added to a resource
policy must specify at least one principal.

In the following example, the Amazon S3 bucket bucket grants a role with the s3:SomeAction
permission to itself.

TypeScript

bucket.addToResourcePolicy(new iam.PolicyStatement({

Resource policies Version 2 187

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 effect: iam.Effect.ALLOW,
 actions: ['s3:SomeAction'],
 resources: [bucket.bucketArn],
 principals: [role]
}));

JavaScript

bucket.addToResourcePolicy(new iam.PolicyStatement({
 effect: iam.Effect.ALLOW,
 actions: ['s3:SomeAction'],
 resources: [bucket.bucketArn],
 principals: [role]
}));

Python

bucket.add_to_resource_policy(iam.PolicyStatement(
 effect=iam.Effect.ALLOW,
 actions=["s3:SomeAction"],
 resources=[bucket.bucket_arn],
 principals=role))

Java

bucket.addToResourcePolicy(PolicyStatement.Builder.create()
 .effect(Effect.ALLOW)
 .actions(Arrays.asList("s3:SomeAction"))
 .resources(Arrays.asList(bucket.getBucketArn()))
 .principals(Arrays.asList(role))
 .build());

C#

bucket.AddToResourcePolicy(new PolicyStatement(new PolicyStatementProps
{
 Effect = Effect.ALLOW,
 Actions = new string[] { "s3:SomeAction" },
 Resources = new string[] { bucket.BucketArn },
 Principals = new IPrincipal[] { role }
}));

Resource policies Version 2 188

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Using external IAM objects

If you have defined an IAM user, principal, group, or role outside your AWS CDK app, you can use
that IAM object in your AWS CDK app. To do so, create a reference to it using its ARN or its name.
(Use the name for users, groups, and roles.) The returned reference can then be used to grant
permissions or to construct policy statements as explained previously.

• For users, call User.fromUserArn() or User.fromUserName().
User.fromUserAttributes() is also available, but currently provides the same functionality
as User.fromUserArn().

• For principals, instantiate an ArnPrincipal object.

• For groups, call Group.fromGroupArn() or Group.fromGroupName().

• For roles, call Role.fromRoleArn() or Role.fromRoleName().

Policies (including managed policies) can be used in similar fashion using the following methods.
You can use references to these objects anywhere an IAM policy is required.

• Policy.fromPolicyName

• ManagedPolicy.fromManagedPolicyArn

• ManagedPolicy.fromManagedPolicyName

• ManagedPolicy.fromAwsManagedPolicyName

Note

As with all references to external AWS resources, you cannot modify external IAM objects in
your CDK app.

Runtime context

Context values are key-value pairs that can be associated with an app, stack, or construct. They
may be supplied to your app from a file (usually either cdk.json or cdk.context.json in your
project directory) or on the command line.

The CDK Toolkit uses context to cache values retrieved from your AWS account during synthesis.
Values include the Availability Zones in your account or the Amazon Machine Image (AMI) IDs

Using external IAM objects Version 2 189

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html#static-fromwbruserwbrarnscope-id-userarn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html#static-fromwbruserwbrnamescope-id-username
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ArnPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html#static-fromwbrgroupwbrarnscope-id-grouparn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html#static-fromwbrgroupwbrnamescope-id-groupname
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#static-fromwbrrolewbrarnscope-id-rolearn-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#static-fromwbrrolewbrnamescope-id-rolename
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Policy.html#static-fromwbrpolicywbrnamescope-id-policyname
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ManagedPolicy.html#static-fromwbrmanagedwbrpolicywbrarnscope-id-managedpolicyarn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ManagedPolicy.html#static-fromwbrmanagedwbrpolicywbrnamescope-id-managedpolicyname
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ManagedPolicy.html#static-fromwbrawswbrmanagedwbrpolicywbrnamemanagedpolicyname

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

currently available for Amazon EC2 instances. Because these values are provided by your AWS
account, they can change between runs of your CDK application. This makes them a potential
source of unintended change. The CDK Toolkit's caching behavior "freezes" these values for your
CDK app until you decide to accept the new values.

Imagine the following scenario without context caching. Let's say you specified "latest Amazon
Linux" as the AMI for your Amazon EC2 instances, and a new version of this AMI was released. Then,
the next time you deployed your CDK stack, your already-deployed instances would be using the
outdated ("wrong") AMI and would need to be upgraded. Upgrading would result in replacing all
your existing instances with new ones, which would probably be unexpected and undesired.

Instead, the CDK records your account's available AMIs in your project's cdk.context.json file,
and uses the stored value for future synthesis operations. This way, the list of AMIs is no longer a
potential source of change. You can also be sure that your stacks will always synthesize to the same
AWS CloudFormation templates.

Not all context values are cached values from your AWS environment. the section called “Feature
flags” are also context values. You can also create your own context values for use by your apps or
constructs.

Context keys are strings. Values may be any type supported by JSON: numbers, strings, arrays, or
objects.

Tip

If your constructs create their own context values, incorporate your library's package name
in its keys so they won't conflict with other packages' context values.

Many context values are associated with a particular AWS environment, and a given CDK app can
be deployed in more than one environment. The key for such values includes the AWS account and
Region so that values from different environments do not conflict.

The following context key illustrates the format used by the AWS CDK, including the account and
Region.

availability-zones:account=123456789012:region=eu-central-1

Context Version 2 190

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Important

Cached context values are managed by the AWS CDK and its constructs, including
constructs you may write. Do not add or change cached context values by manually editing
files. It can be useful, however, to review cdk.context.json occasionally to see what
values are being cached. Context values that don't represent cached values should be
stored under the context key of cdk.json. This way, they won't be cleared when cached
values are cleared.

Sources of context values

Context values can be provided to your AWS CDK app in six different ways:

• Automatically from the current AWS account.

• Through the --context option to the cdk command. (These values are always strings.)

• In the project's cdk.context.json file.

• In the context key of the project's cdk.json file.

• In the context key of your ~/.cdk.json file.

• In your AWS CDK app using the construct.node.setContext() method.

The project file cdk.context.json is where the AWS CDK caches context values retrieved
from your AWS account. This practice avoids unexpected changes to your deployments when, for
example, a new Availability Zone is introduced. The AWS CDK does not write context data to any of
the other files listed.

Important

Because they're part of your application's state, cdk.json and cdk.context.json must
be committed to source control along with the rest of your app's source code. Otherwise,
deployments in other environments (for example, a CI pipeline) might produce inconsistent
results.

Context values are scoped to the construct that created them; they are visible to child constructs,
but not to parents or siblings. Context values that are set by the AWS CDK Toolkit (the cdk

Sources of context values Version 2 191

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

command) can be set automatically, from a file, or from the --context option. Context values from
these sources are implicitly set on the App construct. Therefore, they're visible to every construct in
every stack in the app.

Your app can read a context value using the construct.node.tryGetContext method. If the
requested entry isn't found on the current construct or any of its parents, the result is undefined.
(Alternatively, the result could be your language's equivalent, such as None in Python.)

Context methods

The AWS CDK supports several context methods that enable AWS CDK apps to obtain contextual
information from the AWS environment. For example, you can get a list of Availability Zones that
are available in a given AWS account and Region, using the stack.availabilityZones method.

The following are the context methods:

HostedZone.fromLookup

Gets the hosted zones in your account.

stack.availabilityZones

Gets the supported Availability Zones.

StringParameter.valueFromLookup

Gets a value from the current Region's Amazon EC2 Systems Manager Parameter Store.

Vpc.fromLookup

Gets the existing Amazon Virtual Private Clouds in your accounts.

LookupMachineImage

Looks up a machine image for use with a NAT instance in an Amazon Virtual Private Cloud.

If a required context value isn't available, the AWS CDK app notifies the CDK Toolkit that the
context information is missing. Next, the CLI queries the current AWS account for the information
and stores the resulting context information in the cdk.context.json file. Then, it executes the
AWS CDK app again with the context values.

Context methods Version 2 192

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#availabilityzones
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_route53.HostedZone.html#static-fromwbrlookupscope-id-query
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#availabilityzones
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ssm.StringParameter.html#static-valuewbrfromwbrlookupscope-parametername
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.Vpc.html#static-fromwbrlookupscope-id-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.LookupMachineImage.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Viewing and managing context

Use the cdk context command to view and manage the information in your cdk.context.json
file. To see this information, use the cdk context command without any options. The output should
be something like the following.

Context found in cdk.json:

###
Key # Value
 #
###
1 # availability-zones:account=123456789012:region=eu-central-1 # ["eu-central-1a",
 "eu-central-1b", "eu-central-1c"] #
###
2 # availability-zones:account=123456789012:region=eu-west-1 # ["eu-west-1a",
 "eu-west-1b", "eu-west-1c"] #
###

Run cdk context --reset KEY_OR_NUMBER to remove a context key. If it is a cached value,
 it will be refreshed on the next cdk synth.

To remove a context value, run cdk context --reset, specifying the value's corresponding key or
number. The following example removes the value that corresponds to the second key in the
preceding example. This value represents the list of Availability Zones in the Europe (Ireland)
Region.

cdk context --reset 2

Context value
availability-zones:account=123456789012:region=eu-west-1
reset. It will be refreshed on the next SDK synthesis run.

Therefore, if you want to update to the latest version of the Amazon Linux AMI, use the preceding
example to do a controlled update of the context value and reset it. Then, synthesize and deploy
your app again.

cdk synth

To clear all of the stored context values for your app, run cdk context --clear, as follows.

Viewing and managing context Version 2 193

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk context --clear

Only context values stored in cdk.context.json can be reset or cleared. The AWS CDK does
not touch other context values. Therefore, to protect a context value from being reset using these
commands, you might copy the value to cdk.json.

AWS CDK Toolkit --context flag

Use the --context (-c for short) option to pass runtime context values to your CDK app during
synthesis or deployment.

cdk synth --context key=value MyStack

To specify multiple context values, repeat the --context option any number of times, providing one
key-value pair each time.

cdk synth --context key1=value1 --context key2=value2 MyStack

When synthesizing multiple stacks, the specified context values are passed to all stacks. To provide
different context values to individual stacks, either use different keys for the values, or use multiple
cdk synth or cdk deploy commands.

Context values passed from the command line are always strings. If a value is usually of some other
type, your code must be prepared to convert or parse the value. You might have non-string context
values provided in other ways (for example, in cdk.context.json). To make sure this kind of
value works as expected, confirm that the value is a string before converting it.

Example

Following is an example of using an existing Amazon VPC using AWS CDK context.

TypeScript

import * as cdk from 'aws-cdk-lib';
import * as ec2 from 'aws-cdk-lib/aws-ec2';
import { Construct } from 'constructs';

export class ExistsVpcStack extends cdk.Stack {

AWS CDK Toolkit --context flag Version 2 194

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 constructor(scope: Construct, id: string, props?: cdk.StackProps) {

 super(scope, id, props);

 const vpcid = this.node.tryGetContext('vpcid');
 const vpc = ec2.Vpc.fromLookup(this, 'VPC', {
 vpcId: vpcid,
 });

 const pubsubnets = vpc.selectSubnets({subnetType: ec2.SubnetType.PUBLIC});

 new cdk.CfnOutput(this, 'publicsubnets', {
 value: pubsubnets.subnetIds.toString(),
 });
 }
}

JavaScript

const cdk = require('aws-cdk-lib');
const ec2 = require('aws-cdk-lib/aws-ec2');

class ExistsVpcStack extends cdk.Stack {

 constructor(scope, id, props) {

 super(scope, id, props);

 const vpcid = this.node.tryGetContext('vpcid');
 const vpc = ec2.Vpc.fromLookup(this, 'VPC', {
 vpcId: vpcid
 });

 const pubsubnets = vpc.selectSubnets({subnetType: ec2.SubnetType.PUBLIC});

 new cdk.CfnOutput(this, 'publicsubnets', {
 value: pubsubnets.subnetIds.toString()
 });
 }
}

module.exports = { ExistsVpcStack }

Example Version 2 195

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

import aws_cdk as cdk
import aws_cdk.aws_ec2 as ec2
from constructs import Construct

class ExistsVpcStack(cdk.Stack):

 def __init__(scope: Construct, id: str, **kwargs):

 super().__init__(scope, id, **kwargs)

 vpcid = self.node.try_get_context("vpcid")
 vpc = ec2.Vpc.from_lookup(self, "VPC", vpc_id=vpcid)

 pubsubnets = vpc.select_subnets(subnetType=ec2.SubnetType.PUBLIC)

 cdk.CfnOutput(self, "publicsubnets",
 value=pubsubnets.subnet_ids.to_string())

Java

import software.amazon.awscdk.CfnOutput;

import software.amazon.awscdk.services.ec2.Vpc;
import software.amazon.awscdk.services.ec2.VpcLookupOptions;
import software.amazon.awscdk.services.ec2.SelectedSubnets;
import software.amazon.awscdk.services.ec2.SubnetSelection;
import software.amazon.awscdk.services.ec2.SubnetType;
import software.constructs.Construct;

public class ExistsVpcStack extends Stack {
 public ExistsVpcStack(Construct context, String id) {
 this(context, id, null);
 }

 public ExistsVpcStack(Construct context, String id, StackProps props) {
 super(context, id, props);

 String vpcId = (String)this.getNode().tryGetContext("vpcid");
 Vpc vpc = (Vpc)Vpc.fromLookup(this, "VPC", VpcLookupOptions.builder()
 .vpcId(vpcId).build());

Example Version 2 196

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 SelectedSubnets pubSubNets = vpc.selectSubnets(SubnetSelection.builder()
 .subnetType(SubnetType.PUBLIC).build());

 CfnOutput.Builder.create(this, "publicsubnets")
 .value(pubSubNets.getSubnetIds().toString()).build();

 }
}

C#

using Amazon.CDK;
using Amazon.CDK.AWS.EC2;
using Constructs;

class ExistsVpcStack : Stack
{
 public ExistsVpcStack(Construct scope, string id, StackProps props) :
 base(scope, id, props)
 {
 var vpcId = (string)this.Node.TryGetContext("vpcid");
 var vpc = Vpc.FromLookup(this, "VPC", new VpcLookupOptions
 {
 VpcId = vpcId
 });

 SelectedSubnets pubSubNets = vpc.SelectSubnets([new SubnetSelection
 {
 SubnetType = SubnetType.PUBLIC
 }]);

 new CfnOutput(this, "publicsubnets", new CfnOutputProps {
 Value = pubSubNets.SubnetIds.ToString()
 });
 }
}

You can use cdk diff to see the effects of passing in a context value on the command line:

cdk diff -c vpcid=vpc-0cb9c31031d0d3e22

Example Version 2 197

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Stack ExistsvpcStack
Outputs
[+] Output publicsubnets publicsubnets:
 {"Value":"subnet-06e0ea7dd302d3e8f,subnet-01fc0acfb58f3128f"}

The resulting context values can be viewed as shown here.

cdk context -j

{
 "vpc-provider:account=123456789012:filter.vpc-id=vpc-0cb9c31031d0d3e22:region=us-
east-1": {
 "vpcId": "vpc-0cb9c31031d0d3e22",
 "availabilityZones": [
 "us-east-1a",
 "us-east-1b"
],
 "privateSubnetIds": [
 "subnet-03ecfc033225be285",
 "subnet-0cded5da53180ebfa"
],
 "privateSubnetNames": [
 "Private"
],
 "privateSubnetRouteTableIds": [
 "rtb-0e955393ced0ada04",
 "rtb-05602e7b9f310e5b0"
],
 "publicSubnetIds": [
 "subnet-06e0ea7dd302d3e8f",
 "subnet-01fc0acfb58f3128f"
],
 "publicSubnetNames": [
 "Public"
],
 "publicSubnetRouteTableIds": [
 "rtb-00d1fdfd823c82289",
 "rtb-04bb1969b42969bcb"
]
 }
}

Example Version 2 198

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Feature flags

The AWS CDK uses feature flags to enable potentially breaking behaviors in a release. Flags
are stored as the section called “Context” values in cdk.json (or ~/.cdk.json). They are not
removed by the cdk context --reset or cdk context --clear commands.

Feature flags are disabled by default. Existing projects that do not specify the flag will continue
to work as before with later AWS CDK releases. New projects created using cdk init include flags
enabling all features available in the release that created the project. Edit cdk.json to disable
any flags for which you prefer the earlier behavior. You can also add flags to enable new behaviors
after upgrading the AWS CDK.

A list of all current feature flags can be found on the AWS CDK GitHub repository in
FEATURE_FLAGS.md. See the CHANGELOG in a given release for a description of any new feature
flags added in that release.

Reverting to v1 behavior

In CDK v2, the defaults for some feature flags have been changed with respect to v1. You can set
these back to false to revert to specific AWS CDK v1 behavior. Use the cdk diff command to
inspect the changes to your synthesized template to see if any of these flags are needed.

@aws-cdk/core:newStyleStackSynthesis

Use the new stack synthesis method, which assumes bootstrap resources with well-known
names. Requires modern bootstrapping, but in turn allows CI/CD via CDK Pipelines and cross-
account deployments out of the box.

@aws-cdk/aws-apigateway:usagePlanKeyOrderInsensitiveId

If your application uses multiple Amazon API Gateway API keys and associates them to usage
plans.

@aws-cdk/aws-rds:lowercaseDbIdentifier

If your application uses Amazon RDS database instance or database clusters, and explicitly
specifies the identifier for these.

@aws-cdk/aws-cloudfront:defaultSecurityPolicyTLSv1.2_2021

If your application uses the TLS_V1_2_2019 security policy with Amazon CloudFront
distributions. CDK v2 uses security policy TLSv1.2_2021 by default.

Feature flags Version 2 199

https://github.com/aws/aws-cdk/blob/main/packages/%40aws-cdk/cx-api/FEATURE_FLAGS.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

@aws-cdk/core:stackRelativeExports

If your application uses multiple stacks and you refer to resources from one stack in another,
this determines whether absolute or relative path is used to construct AWS CloudFormation
exports.

@aws-cdk/aws-lambda:recognizeVersionProps

If set to false, the CDK includes metadata when detecting whether a Lambda function has
changed. This can cause deployment failures when only the metadata has changed, since
duplicate versions are not allowed. There is no need to revert this flag if you've made at least
one change to all Lambda Functions in your application.

The syntax for reverting these flags in cdk.json is shown here.

{
 "context": {
 "@aws-cdk/core:newStyleStackSynthesis": false,
 "@aws-cdk/aws-apigateway:usagePlanKeyOrderInsensitiveId": false,
 "@aws-cdk/aws-cloudfront:defaultSecurityPolicyTLSv1.2_2021": false,
 "@aws-cdk/aws-rds:lowercaseDbIdentifier": false,
 "@aws-cdk/core:stackRelativeExports": false,
 "@aws-cdk/aws-lambda:recognizeVersionProps": false
 }
}

Aspects

Aspects are a way to apply an operation to all constructs in a given scope. The aspect could
modify the constructs, such as by adding tags. Or it could verify something about the state of the
constructs, such as making sure that all buckets are encrypted.

To apply an aspect to a construct and all constructs in the same scope, call
Aspects.of(SCOPE).add() with a new aspect, as shown in the following example.

TypeScript

Aspects.of(myConstruct).add(new SomeAspect(...));

Aspects Version 2 200

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Aspects.html#static-ofscope

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

Aspects.of(myConstruct).add(new SomeAspect(...));

Python

Aspects.of(my_construct).add(SomeAspect(...))

Java

Aspects.of(myConstruct).add(new SomeAspect(...));

C#

Aspects.Of(myConstruct).add(new SomeAspect(...));

The AWS CDK uses aspects to tag resources, but the framework can also be used for other
purposes. For example, you can use it to validate or change the AWS CloudFormation resources
that are defined for you by higher-level constructs.

Aspects in detail

Aspects employ the visitor pattern. An aspect is a class that implements the following interface.

TypeScript

interface IAspect {
 visit(node: IConstruct): void;}

JavaScript

JavaScript doesn't have interfaces as a language feature. Therefore, an aspect is simply an
instance of a class having a visit method that accepts the node to be operated on.

Python

Python doesn't have interfaces as a language feature. Therefore, an aspect is simply an instance
of a class having a visit method that accepts the node to be operated on.

Aspects in detail Version 2 201

https://en.wikipedia.org/wiki/Visitor_pattern

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

public interface IAspect {
 public void visit(Construct node);
}

C#

public interface IAspect
{
 void Visit(IConstruct node);
}

When you call Aspects.of(SCOPE).add(...), the construct adds the aspect to an internal list
of aspects. You can obtain the list with Aspects.of(SCOPE).

During the prepare phase, the AWS CDK calls the visit method of the object for the construct
and each of its children in top-down order.

The visit method is free to change anything in the construct. In strongly typed languages, cast
the received construct to a more specific type before accessing construct-specific properties or
methods.

Aspects don't propagate across Stage construct boundaries, because Stages are self-contained
and immutable after definition. Apply aspects on the Stage construct itself (or lower) if you want
them to visit constructs inside the Stage.

Example

The following example validates that all buckets created in the stack have versioning enabled. The
aspect adds an error annotation to the constructs that fail the validation. This results in the synth
operation failing and prevents deploying the resulting cloud assembly.

TypeScript

class BucketVersioningChecker implements IAspect {
 public visit(node: IConstruct): void {
 // See that we're dealing with a CfnBucket
 if (node instanceof s3.CfnBucket) {

Example Version 2 202

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // Check for versioning property, exclude the case where the property
 // can be a token (IResolvable).
 if (!node.versioningConfiguration
 || (!Tokenization.isResolvable(node.versioningConfiguration)
 && node.versioningConfiguration.status !== 'Enabled') {
 Annotations.of(node).addError('Bucket versioning is not enabled');
 }
 }
 }
}

// Later, apply to the stack
Aspects.of(stack).add(new BucketVersioningChecker());

JavaScript

class BucketVersioningChecker {
 visit(node) {
 // See that we're dealing with a CfnBucket
 if (node instanceof s3.CfnBucket) {

 // Check for versioning property, exclude the case where the property
 // can be a token (IResolvable).
 if (!node.versioningConfiguration
 || !Tokenization.isResolvable(node.versioningConfiguration)
 && node.versioningConfiguration.status !== 'Enabled') {
 Annotations.of(node).addError('Bucket versioning is not enabled');
 }
 }
 }
}

// Later, apply to the stack
Aspects.of(stack).add(new BucketVersioningChecker());

Python

@jsii.implements(cdk.IAspect)
class BucketVersioningChecker:

 def visit(self, node):
 # See that we're dealing with a CfnBucket
 if isinstance(node, s3.CfnBucket):

Example Version 2 203

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 # Check for versioning property, exclude the case where the property
 # can be a token (IResolvable).
 if (not node.versioning_configuration or
 not Tokenization.is_resolvable(node.versioning_configuration)
 and node.versioning_configuration.status != "Enabled"):
 Annotations.of(node).add_error('Bucket versioning is not enabled')

Later, apply to the stack
Aspects.of(stack).add(BucketVersioningChecker())

Java

public class BucketVersioningChecker implements IAspect
{
 @Override
 public void visit(Construct node)
 {
 // See that we're dealing with a CfnBucket
 if (node instanceof CfnBucket)
 {
 CfnBucket bucket = (CfnBucket)node;
 Object versioningConfiguration = bucket.getVersioningConfiguration();
 if (versioningConfiguration == null ||
 !Tokenization.isResolvable(versioningConfiguration.toString())
 &&
 !versioningConfiguration.toString().contains("Enabled"))
 Annotations.of(bucket.getNode()).addError("Bucket versioning is not
 enabled");
 }
 }
}

// Later, apply to the stack
Aspects.of(stack).add(new BucketVersioningChecker());

C#

class BucketVersioningChecker : Amazon.Jsii.Runtime.Deputy.DeputyBase, IAspect
{
 public void Visit(IConstruct node)
 {

Example Version 2 204

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // See that we're dealing with a CfnBucket
 if (node is CfnBucket)
 {
 var bucket = (CfnBucket)node;
 if (bucket.VersioningConfiguration is null ||
 !Tokenization.IsResolvable(bucket.VersioningConfiguration) &&
 !bucket.VersioningConfiguration.ToString().Contains("Enabled"))
 Annotations.Of(bucket.Node).AddError("Bucket versioning is not
 enabled");
 }
 }
}

// Later, apply to the stack
Aspects.Of(stack).add(new BucketVersioningChecker());

Example Version 2 205

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Getting started with the AWS CDK

Get started with the AWS Cloud Development Kit (AWS CDK) by installing the AWS CDK CLI and
creating your first CDK app.

Topics

• Prerequisites

• Step 1: Create an AWS account

• Step 2: Configure programmatic access

• Step 3: Install the AWS CDK CLI

• Step 4: Bootstrap your environment

• Optional AWS CDK tools

• Next steps

• Learn more

• Your first AWS CDK app

Prerequisites

Recommended resources

Before getting started with the AWS CDK, we recommend a basic understanding of the
following:

• An introduction to the AWS CDK. To learn more, see What is the AWS CDK?

• Core concepts behind the AWS CDK. To learn more, see AWS CDK concepts.

• The AWS services that you want to manage with the AWS CDK.

• AWS Identity and Access Management. For more information, see What is IAM? and What is
IAM Identity Center?

• AWS CloudFormation since the AWS CDK utilizes the AWS CloudFormation service to
provision resources created in the CDK. To learn more, see What is AWS CloudFormation?

• The supported programming language that you plan to use with the AWS CDK.

Prerequisites Version 2 206

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Prepare your local environment

All AWS CDK developers, regardless of your preferred language, need Node.js 14.15.0 or later.
All supported programming languages use the same backend, which runs on Node.js. We
recommend a version in active long-term support. Your organization may have a different
recommendation.

Important

Node.js versions 13.0.0 through 13.6.0 are not compatible with the AWS CDK due to
compatibility issues with its dependencies.

Other prerequisites depend on the language in which you develop AWS CDK applications and
are as follows.

TypeScript

• TypeScript 3.8 or later (npm -g install typescript)

JavaScript

No additional requirements

Python

• Python 3.7 or later including pip and virtualenv

Java

• Java Development Kit (JDK) 8 (a.k.a. 1.8) or later

• Apache Maven 3.5 or later

Java IDE recommended (we use Eclipse in some examples in this guide). IDE must be able to
import Maven projects. Check to make sure that your project is set to use Java 1.8. Set the
JAVA_HOME environment variable to the path where you have installed the JDK.

C#

.NET Core 3.1 or later, or .NET 6.0 or later.

Visual Studio 2019 (any edition) or Visual Studio Code recommended.

Go

Go 1.1.8 or later.

Prerequisites Version 2 207

https://nodejs.org/en/download/
https://nodejs.org/en/about/releases/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For more detailed information, see the Prerequisites section for your language:

• the section called “In TypeScript”

• the section called “In JavaScript”

• the section called “In Python”

• the section called “In Java”

• the section called “In C#”

• the section called “In Go”

Third-party language deprecation

Each language version is only supported until it is EOL (End Of Life) and is subject to
change with prior notice.

Step 1: Create an AWS account

If you are new to AWS, you must sign up for an AWS account and create an administrative user. For
more information, see Getting set up with IAM in the IAM User Guide.

When you interact with AWS, you specify your AWS security credentials to verify who you are
and whether you have permission to access the resources that you are requesting. AWS uses the
security credentials to authenticate and authorize your requests. To learn more, see AWS security
credentials in the IAM User Guide.

Step 2: Configure programmatic access

When developing with the AWS CDK in your local environment, you will rely on the AWS CDK CLI
to interact with AWS services and manage your AWS resources. To use the AWS CDK CLI, you must
configure programmatic access. To learn more about the different ways that you can configure
programmatic access, see Authentication and access in the AWS SDKs and Tools Reference Guide.

For new users who aren’t given a method of authentication by their employer, we recommend
using AWS IAM Identity Center. This method includes installing the AWS Command Line Interface
(AWS CLI) and using it for configuration and signing in to the AWS access portal. To configure
programmatic access using IAM Identity Center, see IAM Identity Center authentication in the AWS

Step 1: Create an AWS account Version 2 208

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-set-up.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

SDKs and Tools Reference Guide. After completion, your environment should contain the following
elements:

• The AWS CLI, which you use to start an AWS access portal session before you run your
application.

• A shared AWSconfig file having a [default] profile with a set of configuration values that can
be referenced from the AWS CDK. To find the location of this file, see Location of the shared files
in the AWS SDKs and Tools Reference Guide.

• The shared config file sets the region setting. This sets the default AWS Region the AWS CDK
uses for AWS requests.

• The AWS CDK uses the profile's SSO token provider configuration to acquire credentials before
sending requests to AWS. The sso_role_name value, which is an IAM role connected to an IAM
Identity Center permission set, should allow access to the AWS services used in your application.

The following sample config file shows a default profile set up with SSO token provider
configuration. The profile's sso_session setting refers to the named sso-session section.
The sso-session section contains settings to initiate an AWS access portal session.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

Start an AWS access portal session

Before accessing AWS services, you need an active AWS access portal session for the AWS
CDK to use IAM Identity Center authentication to resolve credentials. Depending on your
configured session lengths, your access will eventually expire and the AWS CDK will encounter
an authentication error. Run the following command in the AWS CLI to sign in to the AWS access
portal.

Start an AWS access portal session Version 2 209

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#section-session

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

aws sso login

If your SSO token provider configuration is using a named profile instead of the default profile,
the command is aws sso login --profile NAME. Also specify this profile when issuing cdk
commands using the --profile option or the AWS_PROFILE environment variable.

To test if you already have an active session, run the following AWS CLI command.

aws sts get-caller-identity

The response to this command should report the IAM Identity Center account and permission set
configured in the shared config file.

Note

If you already have an active AWS access portal session and run aws sso login, you
won't be required to provide credentials.
The sign in process may prompt you to allow the AWS CLI access to your data. Since the
AWS CLI is built on top of the SDK for Python, permission messages may contain variations
of the botocore name.

Step 3: Install the AWS CDK CLI

Install the AWS CDK CLI globally using the following Node Package Manager command.

npm install -g aws-cdk

Note

If you get a permission error, and have administrator access on your system, try sudo npm
install -g aws-cdk.

Run the following command to verify a successful installation. The AWS CDK CLI should output the
version number:

cdk --version

Step 3: Install the AWS CDK CLI Version 2 210

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you receive an error message, try uninstalling the AWS CDK CLI by running the following:

npm uninstall -g aws-cdk

Then, repeat steps to reinstall the AWS CDK CLI.

If you still receive an error, delete the node-modules folder from the current project and also from
the global node-modules folder. To locate this folder, run npm config get prefix.

The AWS CDK CLI will obtain security credentials from sources that you configured in previous
steps.

Note

CDK Toolkit v2 works with existing CDK v1 projects. However, it can't initialize new CDK v1
projects. See the section called “New prerequisites” if you need to be able to do that.

Step 4: Bootstrap your environment

Each AWS environment that you plan to deploy resources to must be bootstrapped.

To bootstrap, run the following:

cdk bootstrap aws://ACCOUNT-NUMBER/REGION

Tip

If you don't have your AWS account number handy, you can get it from the AWS
Management Console. Or, if you have the AWS CLI installed, the following command
displays your default account information, including the account number.

aws sts get-caller-identity

If you created named profiles in your local AWS configuration, you can use the --profile
option to display the account information for a specific profile. The following example
shows how to display account information for the prod profile.

aws sts get-caller-identity --profile prod

Step 4: Bootstrap your environment Version 2 211

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To display the default Region, use aws configure get.

aws configure get region
aws configure get region --profile prod

Optional AWS CDK tools

The AWS Toolkit for Visual Studio Code is an open source plug-in for Visual Studio Code that helps
you create, debug, and deploy applications on AWS. The toolkit provides an integrated experience
for developing AWS CDK applications. It includes the AWS CDK Explorer feature to list your AWS
CDK projects and browse the various components of the CDK application. Install the plug-in and
learn more about using the AWS CDK Explorer.

Next steps

Now that you've installed the AWS CDK CLI, use it to build your first AWS CDK app.

To learn more about using the AWS CDK in your preferred programming language, see Working
with the AWS CDK in supported programming languages.

The AWS CDK is an open-source project. To contribute, see Contributing to the AWS Cloud
Development Kit (AWS CDK).

Learn more

To learn more about the AWS CDK, see the following:

• CDK Workshop – In-depth hands-on workshop.

• API reference – Explore constructs available for the AWS services that you will use.

• Construct Hub – Find constructs from the CDK community.

• AWS CDK examples – Explore code examples of AWS CDK projects.

Your first AWS CDK app

Get started with using the AWS Cloud Development Kit (AWS CDK) by building your first CDK app.

Optional AWS CDK tools Version 2 212

https://aws.amazon.com/visualstudiocode/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/cdk-explorer.html
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md
https://cdkworkshop.com/
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&sort=downloadsDesc&offset=0
https://github.com/aws-samples/aws-cdk-examples

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Before starting this tutorial, we recommend that you complete the following:

• See What is the AWS CDK? for an introduction to the AWS CDK.

• See AWS CDK concepts to learn core concepts of the AWS CDK.

• Go through prerequisites and AWS CDK setup steps at Getting started with the AWS CDK.

Topics

• About this tutorial

• Step 1: Create the app

• Step 2: Build the app

• Step 3: List the stacks in the app

• Step 4: Add an Amazon S3 bucket

• Step 5: Synthesize an AWS CloudFormation template

• Step 6: Deploy your stack

• Step 7: Modify your app

• Step 8: Destroying the app's resources

• Next steps

About this tutorial

In this tutorial, you will create and deploy a simple AWS CDK app. This app contains one stack with
a single Amazon Simple Storage Service (Amazon S3) bucket resource. Through this tutorial, you
will learn the following:

• The structure of an AWS CDK project.

• How to create an AWS CDK app.

• How to use the AWS Construct Library to define apps, stacks, and AWS resources.

• How to use the CDK CLI to synthesize, diff, deploy, and delete your CDK app.

• How to modify and re-deploy your CDK app to update your deployed resources.

The standard AWS CDK development workflow consists of the following steps:

1. Create your AWS CDK app – Here, you will use a template provided by the AWS CDK CLI.

About this tutorial Version 2 213

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

2. Define your stacks and resources – Use constructs to define your stacks and AWS resources
within your app.

3. Build your app – This step is optional. The AWS CDK CLI automatically performs this step if
necessary. Performing this step is recommended to identify syntax and type errors.

4. Synthesize your stacks – This step creates an AWS CloudFormation template for each stack in
your app. This step is useful to identify logical errors in your defined AWS resources.

5. Deploy your app – Deploy to your AWS environment using AWS CloudFormation to provision
your resources. During deployment, you will identify any permission issues with your app.

Through a typical workflow, you'll go back and repeat previous steps to modify or debug your app.

We recommend that you use version control for your AWS CDK projects.

Step 1: Create the app

A CDK app should be in its own directory, with its own local module dependencies. On your
development machine, create a new directory. The following is an example that creates a new
hello-cdk directory:

$ mkdir hello-cdk
$ cd hello-cdk

Important

Be sure to name your project directory hello-cdk, exactly as shown here. The AWS CDK
project template uses the directory name to name things in the generated code. If you use
a different name, the code in this tutorial won't work.

Next, from your new directory, initialize the app by using the cdk init command. Specify the app
template and your preferred programming language with the --language option. The following
is an example:

TypeScript

cdk init app --language typescript

Step 1: Create the app Version 2 214

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

cdk init app --language javascript

Python

cdk init app --language python

After the app has been created, also enter the following two commands. These activate the
app's Python virtual environment and install the AWS CDK core dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

cdk init app --language java

If you are using an IDE, you can now open or import the project. In Eclipse, for example, choose
File > Import > Maven > Existing Maven Projects. Make sure that the project settings are set to
use Java 8 (1.8).

C#

cdk init app --language csharp

If you are using Visual Studio, open the solution file in the src directory.

Go

cdk init app --language go

After the app has been created, also enter the following command to install the AWS Construct
Library modules that the app requires.

go get

Step 1: Create the app Version 2 215

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The cdk init command creates a number of files and folders inside the hello-cdk directory to
help you organize the source code for your AWS CDK app. Collectively, this is called your AWS CDK
project. Take a moment to explore the CDK project.

If you have Git installed, each project you create using cdk init is also initialized as a Git repository.

Step 2: Build the app

In most programming environments, you build or compile code after making changes. This isn't
necessary with the AWS CDK since the CDK CLI will automatically perform this step. However,
you can still build manually when you want to catch syntax and type errors. The following is an
example:

TypeScript

npm run build

JavaScript

No build step is necessary.

Python

No build step is necessary.

Java

mvn compile -q

Or press Control-B in Eclipse (other Java IDEs may vary)

C#

dotnet build src

Or press F6 in Visual Studio

Go

go build

Step 2: Build the app Version 2 216

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Step 3: List the stacks in the app

Verify your app has been correctly created by listing the stacks in your app. Run the following:

cdk ls

The output should display HelloCdkStack. If you don't see this output, verify that you are in the
correct working directory of your project and try again. If you still don't see your stack, repeat the
section called “Step 1: Create the app” and try again.

Step 4: Add an Amazon S3 bucket

At this point, your CDK app contains a single stack. Next, you will define an Amazon Simple Storage
Service (Amazon S3) bucket resource within your stack. To do this, you will import and use the
Bucket L2 construct from the AWS Construct Library.

Modify your CDK app by importing the Bucket construct and defining your Amazon S3 bucket
resource. The following is an example:

TypeScript

In lib/hello-cdk-stack.ts:

import * as cdk from 'aws-cdk-lib';
import { aws_s3 as s3 } from 'aws-cdk-lib';

export class HelloCdkStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true
 });
 }
}

JavaScript

In lib/hello-cdk-stack.js:

const cdk = require('aws-cdk-lib');
const s3 = require('aws-cdk-lib/aws-s3');

Step 3: List the stacks in the app Version 2 217

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class HelloCdkStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true
 });
 }
}

module.exports = { HelloCdkStack }

Python

In hello_cdk/hello_cdk_stack.py:

import aws_cdk as cdk
import aws_cdk.aws_s3 as s3

class HelloCdkStack(cdk.Stack):

 def __init__(self, scope: cdk.App, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 bucket = s3.Bucket(self, "MyFirstBucket", versioned=True)

Java

In src/main/java/com/myorg/HelloCdkStack.java:

package com.myorg;

import software.amazon.awscdk.*;
import software.amazon.awscdk.services.s3.Bucket;

public class HelloCdkStack extends Stack {
 public HelloCdkStack(final App scope, final String id) {
 this(scope, id, null);
 }

 public HelloCdkStack(final App scope, final String id, final StackProps props) {
 super(scope, id, props);

Step 4: Add an Amazon S3 bucket Version 2 218

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Bucket.Builder.create(this, "MyFirstBucket")
 .versioned(true).build();
 }
}

C#

In src/HelloCdk/HelloCdkStack.cs:

using Amazon.CDK;
using Amazon.CDK.AWS.S3;

namespace HelloCdk
{
 public class HelloCdkStack : Stack
 {
 public HelloCdkStack(App scope, string id, IStackProps props=null) :
 base(scope, id, props)
 {
 new Bucket(this, "MyFirstBucket", new BucketProps
 {
 Versioned = true
 });
 }
 }
}

Go

In hello-cdk.go:

package main

import (
 "github.com/aws/aws-cdk-go/awscdk/v2"
 "github.com/aws/aws-cdk-go/awscdk/v2/awss3"
 "github.com/aws/constructs-go/constructs/v10"
 "github.com/aws/jsii-runtime-go"
)

type HelloCdkStackProps struct {
 awscdk.StackProps

Step 4: Add an Amazon S3 bucket Version 2 219

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

func NewHelloCdkStack(scope constructs.Construct, id string, props
 *HelloCdkStackProps) awscdk.Stack {
 var sprops awscdk.StackProps
 if props != nil {
 sprops = props.StackProps
 }
 stack := awscdk.NewStack(scope, &id, &sprops)

 awss3.NewBucket(stack, jsii.String("MyFirstBucket"), &awss3.BucketProps{
 Versioned: jsii.Bool(true),
 })

 return stack
}

func main() {
 defer jsii.Close()

 app := awscdk.NewApp(nil)

 NewHelloCdkStack(app, "HelloCdkStack", &HelloCdkStackProps{
 awscdk.StackProps{
 Env: env(),
 },
 })

 app.Synth(nil)
}

func env() *awscdk.Environment {
 return nil
}

Let's take a closer look at the Bucket construct. Like all constructs, the Bucket class takes three
parameters:

• scope – Defines the Stack class as the parent of the Bucket construct. All constructs that
define AWS resources are created within the scope of a stack. You can define constructs inside
of constructs, creating a hierarchy (tree). Here, and in most cases, the scope is this (self in
Python).

Step 4: Add an Amazon S3 bucket Version 2 220

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Id – The logical ID of the Bucket within your AWS CDK app. This ID, plus a hash based on the
bucket's location within the stack, uniquely identifies the bucket during deployment. The AWS
CDK also references this ID when you update the construct in your app and re-deploy to update
the deployed resource. Here, your logical ID is MyFirstBucket. Buckets can also have a name,
specified with the bucketName property. This is different from the logical ID.

• props – A bundle of values that define properties of the bucket. Here you defined the
versioned property as true, which enables versioning for the files in the bucket.

Props are represented differently in the languages supported by the AWS CDK.

• In TypeScript and JavaScript, props is a single argument and you pass in an object containing
the desired properties.

• In Python, props are passed as keyword arguments.

• In Java, a Builder is provided to pass the props. There are two: one for BucketProps, and a
second for Bucket to let you build the construct and its props object in one step. This code
uses the latter.

• In C#, you instantiate a BucketProps object using an object initializer and pass it as the third
parameter.

If a construct's props are optional, you can omit the props parameter entirely.

All constructs take these same three arguments, so it's easy to stay oriented as you learn about new
ones. And as you might expect, you can subclass any construct to extend it to suit your needs, or if
you want to change its defaults.

Step 5: Synthesize an AWS CloudFormation template

Synthesize an AWS CloudFormation template for the app, as follows:

cdk synth

If your app contains more than one stack, you must specify which stacks to synthesize. Since your
app contains a single stack, the CDK CLI automatically detects the stack to synthesize.

If you don't run cdk synth, the CDK CLI will automatically perform this step when you deploy.
However, we recommend that you run this step before each deployment.

Step 5: Synthesize an AWS CloudFormation template Version 2 221

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Tip

If you receive an error such as --app is required ..., check the directory that you are
running CDK CLI commands from. You should be in your main app directory.

The cdk synth command runs your app. This creates an AWS CloudFormation template for each
stack in your app. The CDK CLI will display a YAML formatted version of your template at the
command line and save a JSON formatted version of your template in the cdk.out directory. The
following is a snippet of the command line output that shows the bucket being defined in the AWS
CloudFormation template:

Resources:
 MyFirstBucketB8884501:
 Type: AWS::S3::Bucket
 Properties:
 VersioningConfiguration:
 Status: Enabled
 UpdateReplacePolicy: Retain
 DeletionPolicy: Retain
 Metadata:...

Note

Every generated template contains an AWS::CDK::Metadata resource by default. The
AWS CDK team uses this metadata to gain insight into AWS CDK usage and find ways to
improve it. For details, including how to opt out of version reporting, see Version reporting.

The generated template can be deployed through the AWS CloudFormation console or any AWS
CloudFormation deployment tool. You can also use the CDK CLI to deploy. In the next step, you use
the CDK CLI to deploy.

Step 6: Deploy your stack

To deploy your CDK stack to AWS CloudFormation using the CDK CLI, run the following:

cdk deploy

Step 6: Deploy your stack Version 2 222

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Important

You must perform a one-time bootstrapping of your AWS environment before deployment.
For instructions, see Bootstrap your environment.

Similar to cdk synth, you don't have to specify the AWS CDK stack since the app contains a single
stack.

If your code has security implications, the CDK CLI will output a summary. You will need to confirm
them to continue with deployment. The app in this tutorial doesn't have these implications.

After running cdk deploy, the CDK CLI displays progress information as your stack is deployed.
When complete, you can go to the AWS CloudFormation console to view your HelloCdkStack
stack. You can also go to the Amazon S3 console to view your MyFirstBucket resource.

Congratulations! You've deployed your first stack using the AWS CDK. Next, you will modify your
app and re-deploy to update your resource.

Step 7: Modify your app

In this step, you will modify your Amazon S3 bucket by configuring it to be automatically deleted
when your stack is deleted. This modification involves changing the bucket's RemovalPolicy
property. You will also configure the autoDeleteObjects property to configure the CDK CLI
to delete objects from the bucket before destroying it. By default, AWS CloudFormation doesn't
delete Amazon S3 buckets that contain objects.

Use the following example to modify your resource:

TypeScript

Update lib/hello-cdk-stack.ts.

new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true,
 removalPolicy: cdk.RemovalPolicy.DESTROY,
 autoDeleteObjects: true
});

Step 7: Modify your app Version 2 223

https://console.aws.amazon.com/cloudformation/home

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

Update lib/hello-cdk-stack.js.

new s3.Bucket(this, 'MyFirstBucket', {
 versioned: true,
 removalPolicy: cdk.RemovalPolicy.DESTROY,
 autoDeleteObjects: true
});

Python

Update hello_cdk/hello_cdk_stack.py.

bucket = s3.Bucket(self, "MyFirstBucket",
 versioned=True,
 removal_policy=cdk.RemovalPolicy.DESTROY,
 auto_delete_objects=True)

Java

Update src/main/java/com/myorg/HelloCdkStack.java.

Bucket.Builder.create(this, "MyFirstBucket")
 .versioned(true)
 .removalPolicy(RemovalPolicy.DESTROY)
 .autoDeleteObjects(true)
 .build();

C#

Update src/HelloCdk/HelloCdkStack.cs.

new Bucket(this, "MyFirstBucket", new BucketProps
{
 Versioned = true,
 RemovalPolicy = RemovalPolicy.DESTROY,
 AutoDeleteObjects = true
});

Go

Update hello-cdk.go.

Step 7: Modify your app Version 2 224

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 awss3.NewBucket(stack, jsii.String("MyFirstBucket"), &awss3.BucketProps{
 Versioned: jsii.Bool(true),
 RemovalPolicy: awscdk.RemovalPolicy_DESTROY,
 AutoDeleteObjects: jsii.Bool(true),
 })

Currently, your code changes have not made any direct updates to your deployed Amazon S3
bucket resource. Your code defines the desired state of your resource. To modify your deployed
resource, you will use the CDK CLI to synthesize the desired state into a new AWS CloudFormation
template. Then, you will deploy your new AWS CloudFormation template as a change set. Change
sets make only the necessary changes to reach your new desired state.

To see these changes, use the cdk diff command. Run the following:

cdk diff

The CDK CLI queries your AWS account account for the latest AWS CloudFormation template
for the HelloCdkStack stack. Then, it compares the latest template with the template it just
synthesized from your app. The output should look like the following.

Stack HelloCdkStack
IAM Statement Changes
###
Resource # Effect # Action # Principal
 # Condition #
###
+ # ${Custom::S3AutoDeleteObject # Allow # sts:AssumeRole #
 Service:lambda.amazonaws.com # #
sCustomResourceProvider/Role # # #
 # #
.Arn} # # #
 # #
###
+ # ${MyFirstBucket.Arn} # Allow # s3:DeleteObject* # AWS:
${Custom::S3AutoDeleteOb # #
${MyFirstBucket.Arn}/* # # s3:GetBucket* #
 jectsCustomResourceProvider/ # #
s3:GetObject* # Role.Arn}
 # #

Step 7: Modify your app Version 2 225

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

s3:List* #
 # #
###
IAM Policy Changes
###
Resource # Managed Policy ARN
 #
###
+ # ${Custom::S3AutoDeleteObjectsCustomResourceProvider/Ro # {"Fn::Sub":"arn:
${AWS::Partition}:iam::aws:policy/serv #
le} # ice-role/
AWSLambdaBasicExecutionRole"} #
###
(NOTE: There may be security-related changes not in this list. See https://github.com/
aws/aws-cdk/issues/1299)

Parameters
[+] Parameter
 AssetParameters/4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392/
S3Bucket
 AssetParameters4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392S3BucketBF7A7F3F:
 {"Type":"String","Description":"S3 bucket for asset
 \"4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392\""}
[+] Parameter
 AssetParameters/4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392/
S3VersionKey
 AssetParameters4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392S3VersionKeyFAF93626:
 {"Type":"String","Description":"S3 key for asset version
 \"4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392\""}
[+] Parameter
 AssetParameters/4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392/
ArtifactHash
 AssetParameters4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392ArtifactHashE56CD69A:
 {"Type":"String","Description":"Artifact hash for asset
 \"4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392\""}

Resources
[+] AWS::S3::BucketPolicy MyFirstBucket/Policy MyFirstBucketPolicy3243DEFD
[+] Custom::S3AutoDeleteObjects MyFirstBucket/AutoDeleteObjectsCustomResource
 MyFirstBucketAutoDeleteObjectsCustomResourceC52FCF6E
[+] AWS::IAM::Role Custom::S3AutoDeleteObjectsCustomResourceProvider/Role
 CustomS3AutoDeleteObjectsCustomResourceProviderRole3B1BD092
[+] AWS::Lambda::Function Custom::S3AutoDeleteObjectsCustomResourceProvider/Handler
 CustomS3AutoDeleteObjectsCustomResourceProviderHandler9D90184F

Step 7: Modify your app Version 2 226

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

[~] AWS::S3::Bucket MyFirstBucket MyFirstBucketB8884501
 ## [~] DeletionPolicy
 # ## [-] Retain
 # ## [+] Delete
 ## [~] UpdateReplacePolicy
 ## [-] Retain
 ## [+] Delete

This diff has four sections:

• IAM Statement Changes and IAM Policy Changes – These permission changes are there because
you set the AutoDeleteObjects property on your Amazon S3 bucket. The auto-delete feature
uses a custom resource to delete the objects in the bucket before the bucket itself is deleted. The
IAM objects grant the custom resource's code access to the bucket.

• Parameters – The AWS CDK uses these entries to locate the AWS Lambda function asset for the
custom resource.

• Resources – The new and changed resources in this stack. We can see the previously mentioned
IAM objects, the custom resource, and its associated Lambda function being added. We can
also see that the bucket's DeletionPolicy and UpdateReplacePolicy attributes are being
updated. These allow the bucket to be deleted along with the stack, and to be replaced with a
new one.

You may notice that we specified RemovalPolicy in our AWS CDK app but got a
DeletionPolicy property in the resulting AWS CloudFormation template. This is because the
AWS CDK uses a different name for the property. The AWS CDK default is to retain the bucket when
the stack is deleted, while the AWS CloudFormation default is to delete it. For more information,
see the section called “Removal policies”.

To see your new AWS CloudFormation template, you can run cdk synth. By making a few changes
to your CDK app, your new AWS CloudFormation template now includes many additional lines of
code compared to the original AWS CloudFormation template.

Next, deploy your app by running the following:

cdk deploy

Step 7: Modify your app Version 2 227

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK will inform you about the security policy changes we've already seen in the diff.
Enter y to approve the changes and deploy the updated stack. The CDK CLI will deploy your stack
to make your desired changes. The following is an example output:

HelloCdkStack: deploying...
[0%] start: Publishing
 4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392:current
[100%] success: Published
 4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392:current
HelloCdkStack: creating CloudFormation changeset...
 0/5 | 4:32:31 PM | UPDATE_IN_PROGRESS | AWS::CloudFormation::Stack | HelloCdkStack
 User Initiated
 0/5 | 4:32:36 PM | CREATE_IN_PROGRESS | AWS::IAM::Role
 | Custom::S3AutoDeleteObjectsCustomResourceProvider/Role
 (CustomS3AutoDeleteObjectsCustomResourceProviderRole3B1BD092)
 1/5 | 4:32:36 PM | UPDATE_COMPLETE | AWS::S3::Bucket | MyFirstBucket
 (MyFirstBucketB8884501)
 1/5 | 4:32:36 PM | CREATE_IN_PROGRESS | AWS::IAM::Role
 | Custom::S3AutoDeleteObjectsCustomResourceProvider/Role
 (CustomS3AutoDeleteObjectsCustomResourceProviderRole3B1BD092) Resource creation
 Initiated
 3/5 | 4:32:54 PM | CREATE_COMPLETE | AWS::IAM::Role
 | Custom::S3AutoDeleteObjectsCustomResourceProvider/Role
 (CustomS3AutoDeleteObjectsCustomResourceProviderRole3B1BD092)
 3/5 | 4:32:56 PM | CREATE_IN_PROGRESS | AWS::Lambda::Function
 | Custom::S3AutoDeleteObjectsCustomResourceProvider/Handler
 (CustomS3AutoDeleteObjectsCustomResourceProviderHandler9D90184F)
 3/5 | 4:32:56 PM | CREATE_IN_PROGRESS | AWS::S3::BucketPolicy | MyFirstBucket/
Policy (MyFirstBucketPolicy3243DEFD)
 3/5 | 4:32:56 PM | CREATE_IN_PROGRESS | AWS::Lambda::Function
 | Custom::S3AutoDeleteObjectsCustomResourceProvider/Handler
 (CustomS3AutoDeleteObjectsCustomResourceProviderHandler9D90184F) Resource creation
 Initiated
 3/5 | 4:32:57 PM | CREATE_COMPLETE | AWS::Lambda::Function
 | Custom::S3AutoDeleteObjectsCustomResourceProvider/Handler
 (CustomS3AutoDeleteObjectsCustomResourceProviderHandler9D90184F)
 3/5 | 4:32:57 PM | CREATE_IN_PROGRESS | AWS::S3::BucketPolicy | MyFirstBucket/
Policy (MyFirstBucketPolicy3243DEFD) Resource creation Initiated
 4/5 | 4:32:57 PM | CREATE_COMPLETE | AWS::S3::BucketPolicy | MyFirstBucket/
Policy (MyFirstBucketPolicy3243DEFD)
 4/5 | 4:32:59 PM | CREATE_IN_PROGRESS | Custom::S3AutoDeleteObjects
 | MyFirstBucket/AutoDeleteObjectsCustomResource/Default
 (MyFirstBucketAutoDeleteObjectsCustomResourceC52FCF6E)

Step 7: Modify your app Version 2 228

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 5/5 | 4:33:06 PM | CREATE_IN_PROGRESS | Custom::S3AutoDeleteObjects
 | MyFirstBucket/AutoDeleteObjectsCustomResource/Default
 (MyFirstBucketAutoDeleteObjectsCustomResourceC52FCF6E) Resource creation Initiated
 5/5 | 4:33:06 PM | CREATE_COMPLETE | Custom::S3AutoDeleteObjects
 | MyFirstBucket/AutoDeleteObjectsCustomResource/Default
 (MyFirstBucketAutoDeleteObjectsCustomResourceC52FCF6E)
 5/5 | 4:33:08 PM | UPDATE_COMPLETE_CLEA | AWS::CloudFormation::Stack | HelloCdkStack
 6/5 | 4:33:09 PM | UPDATE_COMPLETE | AWS::CloudFormation::Stack | HelloCdkStack

 # HelloCdkStack

Stack ARN:
arn:aws:cloudformation:REGION:ACCOUNT:stack/HelloCdkStack/UNIQUE-ID

Step 8: Destroying the app's resources

Now that you've completed this tutorial, you can delete the deployed AWS CloudFormation stack
and all resources associated with it. This is a good practice to minimize unnecessary costs and keep
your environment clean. Run the following:

cdk destroy

Enter y to approve the changes and delete your stack.

Note

If you didn't change the bucket's RemovalPolicy, the stack deletion would complete
successfully, but the bucket would become orphaned (no longer associated with the stack).

Next steps

Congratulations! You've completed this tutorial and have used the AWS CDK to successfully create,
modify, and delete resources in the AWS Cloud. You're now ready to begin using the AWS CDK.

To learn more about using the AWS CDK in your preferred programming language, see Working
with the AWS CDK in supported programming languages.

For additional resources, see the following:

• Try the CDK Workshop for a more in-depth tour involving a more complex project.

Step 8: Destroying the app's resources Version 2 229

https://cdkworkshop.com/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Dive deeper into concepts like the section called “Environments”, the section called “Assets”, the
section called “Permissions”, the section called “Context”, the section called “Parameters”, and
the section called “Customizing constructs”.

• See the API reference to begin exploring the CDK constructs available for your favorite AWS
services.

• Visit Construct Hub to discover constructs created by AWS and others.

• Explore Examples of using the AWS CDK.

The AWS CDK is an open-source project. To contribute, see to Contributing to the AWS Cloud
Development Kit (AWS CDK).

Next steps Version 2 230

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&sort=downloadsDesc&offset=0
https://github.com/aws-samples/aws-cdk-examples
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrating from AWS CDK v1 to AWS CDK v2

Version 2 of the AWS Cloud Development Kit (AWS CDK) is designed to make writing infrastructure
as code in your preferred programming language easier. This topic describes the changes between
v1 and v2 of the AWS CDK.

Tip

To identify stacks deployed with AWS CDK v1, use the awscdk-v1-stack-finder utility.

The main changes from AWS CDK v1 to CDK v2 are as follows.

• AWS CDK v2 consolidates the stable parts of the AWS Construct Library, including the core
library, into a single package, aws-cdk-lib. Developers no longer need to install additional
packages for the individual AWS services they use. This single-package approach also means that
you don't have to synchronize the versions of the various CDK library packages.

L1 (CfnXXXX) constructs, which represent the exact resources available in AWS CloudFormation,
are always considered stable and so are included in aws-cdk-lib.

• Experimental modules, where we're still working with the community to develop new L2 or L3
constructs, are not included in aws-cdk-lib. Instead, they're distributed as individual packages.
Experimental packages are named with an alpha suffix and a semantic version number. The
semantic version number matches the first version of the AWS Construct Library that they're
compatible with, also with an alpha suffix. Constructs move into aws-cdk-lib after being
designated stable, permitting the main Construct Library to adhere to strict semantic versioning.

Stability is specified at the service level. For example, if we begin creating one or more L2
constructs for Amazon AppFlow, which at this writing has only L1 constructs, they first appear in
a module named @aws-cdk/aws-appflow-alpha. Then, they move to aws-cdk-lib when we
feel that the new constructs meet the fundamental needs of customers.

Once a module has been designated stable and incorporated into aws-cdk-lib, new APIs are
added using the "BetaN" convention described in the next bullet.

A new version of each experimental module is released with every release of the AWS CDK.
For the most part, however, they needn't be kept in sync. You can upgrade aws-cdk-lib or

Version 2 231

https://www.npmjs.com/package/awscdk-v1-stack-finder

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

the experimental module whenever you want. The exception is that when two or more related
experimental modules depend on each other, they must be the same version.

• For stable modules to which new functionality is being added, new APIs (whether entirely new
constructs or new methods or properties on an existing construct) receive a Beta1 suffix while
work is in progress. (Followed by Beta2, Beta3, and so on when breaking changes are needed.)
A version of the API without the suffix is added when the API is designated stable. All methods
except the latest (whether beta or final) are then deprecated.

For example, if we add a new method grantPower() to a construct, it initially appears as
grantPowerBeta1(). If breaking changes are needed (for example, a new required parameter
or property), the next version of the method would be named grantPowerBeta2(), and so on.
When work is complete and the API is finalized, the method grantPower() (with no suffix) is
added, and the BetaN methods are deprecated.

All the beta APIs remain in the Construct Library until the next major version (3.0) release, and
their signatures will not change. You'll see deprecation warnings if you use them, so you should
move to the final version of the API at your earliest convenience. However, no future AWS CDK
2.x releases will break your application.

• The Construct class has been extracted from the AWS CDK into a separate library, along with
related types. This is done to support efforts to apply the Construct Programming Model to
other domains. If you are writing your own constructs or using related APIs, you must declare the
constructs module as a dependency and make minor changes to your imports. If you are using
advanced features, such as hooking into the CDK app lifecycle, more changes may be needed. For
full details, see the RFC.

• Deprecated properties, methods, and types in AWS CDK v1.x and its Construct Library have been
removed completely from the CDK v2 API. In most supported languages, these APIs produce
warnings under v1.x, so you may have already migrated to the replacement APIs. A complete list
of deprecated APIs in CDK v1.x is available on GitHub.

• Behavior that was gated by feature flags in AWS CDK v1.x is enabled by default in CDK v2.
The earlier feature flags are no longer needed, and in most cases they're not supported. A few
are still available to let you revert to CDK v1 behavior in very specific circumstances. For more
information, see the section called “Updating feature flags”.

• With CDK v2, the environments you deploy into must be bootstrapped using the modern
bootstrap stack. The legacy bootstrap stack (the default under v1) is no longer supported.
CDK v2 furthermore requires a new version of the modern stack. To upgrade your existing

Version 2 232

https://github.com/aws/aws-cdk-rfcs/blob/master/text/0192-remove-constructs-compat.md#release-notes
https://github.com/aws/aws-cdk/blob/master/DEPRECATED_APIs.md
https://github.com/aws/aws-cdk/blob/master/DEPRECATED_APIs.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

environments, re-bootstrap them. It is no longer necessary to set any feature flags or
environment variables to use the modern bootstrap stack.

Important

The modern bootstrap template effectively grants the permissions implied by the --
cloudformation-execution-policies to any AWS account in the --trust list. By
default, this extends permissions to read and write to any resource in the bootstrapped
account. Make sure to configure the bootstrapping stack with policies and trusted accounts
that you are comfortable with.

New prerequisites

Most requirements for AWS CDK v2 are the same as for AWS CDK v1.x. Additional requirements are
listed here.

• For TypeScript developers, TypeScript 3.8 or later is required.

• A new version of the CDK Toolkit is required for use with CDK v2. Now that CDK v2 is generally
available, v2 is the default version when installing the CDK Toolkit. It is backward-compatible
with CDK v1 projects, so you don't need to keep the earlier version installed unless you want to
create CDK v1 projects. To upgrade, issue npm install -g aws-cdk.

Upgrading from AWS CDK v2 Developer Preview

If you're using the CDK v2 Developer Preview, you have dependencies in your project on a Release
Candidate version of the AWS CDK, such as 2.0.0-rc1. Update these to 2.0.0, then update the
modules installed in your project.

TypeScript

npm install or yarn install

JavaScript

npm install or yarn install

New prerequisites Version 2 233

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

python -m pip install -r requirements.txt

Java

mvn package

C#

dotnet restore

Go

go get

After updating your dependencies, issue npm update -g aws-cdk to update the CDK Toolkit to
the release version.

Migrating from AWS CDK v1 to CDK v2

To migrate your app to AWS CDK v2, first update the feature flags in cdk.json. Then update your
app's dependencies and imports as necessary for the programming language that it's written in.

Updating to a recent v1

We are seeing a number of customers upgrading from an old version of AWS CDK v1 to the
most recent version of v2 in one step. While it is certainly possible to do that, you would be both
upgrading across multiple years of changes (that unfortunately may not all have had the same
amount of evolution testing we have today), as well as upgrading across versions with new defaults
and a different code organization.

For the safest upgrade experience and to more easily diagnose the sources of any unexpected
changes, we recommend you separate those two steps: first upgrade to the latest v1 version, then
make the switch to v2 afterwards.

Migrating from AWS CDK v1 to CDK v2 Version 2 234

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Updating feature flags

Remove the following v1 feature flags from cdk.json if they exist, as these are all active by
default in AWS CDK v2. If their old effect is important for your infrastructure, you will need to
make source code changes. See the list of flags on GitHub for more information.

• @aws-cdk/core:enableStackNameDuplicates

• aws-cdk:enableDiffNoFail

• @aws-cdk/aws-ecr-assets:dockerIgnoreSupport

• @aws-cdk/aws-secretsmanager:parseOwnedSecretName

• @aws-cdk/aws-kms:defaultKeyPolicies

• @aws-cdk/aws-s3:grantWriteWithoutAcl

• @aws-cdk/aws-efs:defaultEncryptionAtRest

A handful of v1 feature flags can be set to false in order to revert to specific AWS CDK v1
behaviors; see the section called “Reverting to v1 behavior” or the list on GitHub for a complete
reference.

For both types of flags, use the cdk diff command to inspect the changes to your synthesized
template to see if the changes to any of these flags affect your infrastructure.

CDK Toolkit compatibility

CDK v2 requires v2 or later of the CDK Toolkit. This version is backward-compatible with CDK v1
apps. Therefore, you can use a single globally installed version of CDK Toolkit with all your AWS
CDK projects, whether they use v1 or v2. An exception is that CDK Toolkit v2 only creates CDK v2
projects.

If you need to create both v1 and v2 CDK projects, do not install CDK Toolkit v2 globally.
(Remove it if you already have it installed: npm remove -g aws-cdk.) To invoke the CDK Toolkit,
use npx to run v1 or v2 of the CDK Toolkit as desired.

npx aws-cdk@1.x init app --language typescript
npx aws-cdk@2.x init app --language typescript

Updating feature flags Version 2 235

https://github.com/aws/aws-cdk/blob/main/packages/%40aws-cdk/cx-api/FEATURE_FLAGS.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Tip

Set up command line aliases so you can use the cdk and cdk1 commands to invoke the
desired version of the CDK Toolkit.

macOS/Linux

alias cdk1="npx aws-cdk@1.x"
alias cdk="npx aws-cdk@2.x"

Windows

doskey cdk1=npx aws-cdk@1.x $*
doskey cdk=npx aws-cdk@2.x $*

Updating dependencies and imports

Update your app's dependencies, then install the new packages. Finally, update the imports in your
code.

TypeScript

Applications

For CDK apps, update package.json as follows. Remove dependencies on v1-style individual
stable modules and establish the lowest version of aws-cdk-lib you require for your
application (2.0.0 here).

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-lib with which they're compatible. Here, we have pinned aws-
codestar to v2.0.0-alpha.1.

{
 "dependencies": {
 "aws-cdk-lib": "^2.0.0",
 "@aws-cdk/aws-codestar-alpha": "2.0.0-alpha.1",
 "constructs": "^10.0.0"

Updating dependencies and imports Version 2 236

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 }
}

Construct libraries

For construct libraries, establish the lowest version of aws-cdk-lib you require for your
application (2.0.0 here) and update package.json as follows.

Note that aws-cdk-lib appears both as a peer dependency and a dev dependency.

{
 "peerDependencies": {
 "aws-cdk-lib": "^2.0.0",
 "constructs": "^10.0.0"
 },
 "devDependencies": {
 "aws-cdk-lib": "^2.0.0",
 "constructs": "^10.0.0",
 "typescript": "~3.9.0"
 }
}

Note

You should perform a major version bump on your library's version number when
releasing a v2-compatible library, because this is a breaking change for library
consumers. It is not possible to support both CDK v1 and v2 with a single library. To
continue to support customers who are still using v1, you could maintain the earlier
release in parallel, or create a new package for v2.
It's up to you how long you want to continue supporting AWS CDK v1 customers. You
might take your cue from the lifecycle of CDK v1 itself, which entered maintenance on
June 1, 2022 and will reach end-of-life on June 1, 2023. For full details, see AWS CDK
Maintenance Policy.

Both libraries and apps

Install the new dependencies by running npm install or yarn install.

Updating dependencies and imports Version 2 237

https://github.com/aws/aws-cdk-rfcs/blob/master/text/0079-cdk-2.0.md#aws-cdk-maintenance-policy
https://github.com/aws/aws-cdk-rfcs/blob/master/text/0079-cdk-2.0.md#aws-cdk-maintenance-policy

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Change your imports to import Construct from the new constructs module, core types
such as App and Stack from the top level of aws-cdk-lib, and stable Construct Library
modules for the services you use from namespaces under aws-cdk-lib.

import { Construct } from 'constructs';
import { App, Stack } from 'aws-cdk-lib'; // core constructs
import { aws_s3 as s3 } from 'aws-cdk-lib'; // stable module
import * as codestar from '@aws-cdk/aws-codestar-alpha'; // experimental module

JavaScript

Update package.json as follows. Remove dependencies on v1-style individual stable modules
and establish the lowest version of aws-cdk-lib you require for your application (2.0.0 here).

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-lib with which they're compatible. Here, we have pinned aws-
codestar to v2.0.0-alpha.1.

{
 "dependencies": {
 "aws-cdk-lib": "^2.0.0",
 "@aws-cdk/aws-codestar-alpha": "2.0.0-alpha.1",
 "constructs": "^10.0.0"
 }
}

Install the new dependencies by running npm install or yarn install.

Change your app's imports to do the following:

• Import Construct from the new constructs module

• Import core types, such as App and Stack, from the top level of aws-cdk-lib

• Import AWS Construct Library modules from namespaces under aws-cdk-lib

const { Construct } = require('constructs');
const { App, Stack } = require('aws-cdk-lib'); // core constructs
const s3 = require('aws-cdk-lib').aws_s3; // stable module

Updating dependencies and imports Version 2 238

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const codestar = require('@aws-cdk/aws-codestar-alpha'); // experimental module

Python

Update requirements.txt or the install_requires definition in setup.py as follows.
Remove dependencies on v1-style individual stable modules.

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-lib with which they're compatible. Here, we have pinned aws-
codestar to v2.0.0alpha1.

install_requires=[
 "aws-cdk-lib>=2.0.0",
 "constructs>=10.0.0",
 "aws-cdk.aws-codestar-alpha>=2.0.0alpha1",
 # ...
],

Tip

Uninstall any other versions of AWS CDK modules already installed in your app's virtual
environment using pip uninstall. Then Install the new dependencies with python
-m pip install -r requirements.txt.

Change your app's imports to do the following:

• Import Construct from the new constructs module

• Import core types, such as App and Stack, from the top level of aws_cdk

• Import AWS Construct Library modules from namespaces under aws_cdk

from constructs import Construct
from aws_cdk import App, Stack # core constructs
from aws_cdk import aws_s3 as s3 # stable module
import aws_cdk.aws_codestar_alpha as codestar # experimental module

...

Updating dependencies and imports Version 2 239

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class MyConstruct(Construct):
 # ...

class MyStack(Stack):
 # ...

s3.Bucket(...)

Java

In pom.xml, remove all software.amazon.awscdk dependencies for stable modules
and replace them with dependencies on software.constructs (for Construct) and
software.amazon.awscdk.

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-lib with which they're compatible. Here, we have pinned aws-
codestar to v2.0.0-alpha.1.

<dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>aws-cdk-lib</artifactId>
 <version>2.0.0</version>
</dependency><dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>code-star-alpha</artifactId>
 <version>2.0.0-alpha.1</version>
</dependency>
<dependency>
 <groupId>software.constructs</groupId>
 <artifactId>constructs</artifactId>
 <version>10.0.0</version>
</dependency>

Install the new dependencies by running mvn package.

Change your code to do the following:

• Import Construct from the new software.constructs library

• Import core classes, like Stack and App, from software.amazon.awscdk

• Import service constructs from software.amazon.awscdk.services

Updating dependencies and imports Version 2 240

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.App;
import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.codestar.alpha.GitHubRepository;

C#

The most straightforward way to upgrade the dependencies of a C# CDK application is to edit
the .csproj file manually. Remove all stable Amazon.CDK.* package references and replace
them with references to the Amazon.CDK.Lib and Constructs packages.

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-lib with which they're compatible. Here, we have pinned aws-
codestar to v2.0.0-alpha.1.

<PackageReference Include="Amazon.CDK.Lib" Version="2.0.0" />
<PackageReference Include="Amazon.CDK.AWS.Codestar.Alpha" Version="2.0.0-alpha.1" />
<PackageReference Include="Constructs" Version="10.0.0" />

Install the new dependencies by running dotnet restore.

Change the imports in your source files as follows.

using Constructs; // for Construct class
using Amazon.CDK; // for core classes like App and Stack
using Amazon.CDK.AWS.S3; // for stable constructs like Bucket
using Amazon.CDK.Codestar.Alpha; // for experimental constructs

Go

Issue go get to update your dependencies to the latest version and update your project's .mod
file.

Testing your migrated app before deploying

Before deploying your stacks, use cdk diff to check for unexpected changes to the resources.
Changes to logical IDs (causing replacement of resources) are not expected.

Testing your migrated app before deploying Version 2 241

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Expected changes include but are not limited to:

• Changes to the CDKMetadata resource.

• Updated asset hashes.

• Changes related to the new-style stack synthesis. Applies if your app used the legacy stack
synthesizer in v1. (CDK v2 does not support the legacy stack synthesizer.)

• The addition of a CheckBootstrapVersion rule.

Unexpected changes are typically not caused by upgrading to AWS CDK v2 in itself. Usually, they're
the result of deprecated behavior that was previously changed by feature flags. This is a symptom
of upgrading from a version of CDK earlier than about 1.85.x. You would see the same changes
upgrading to the latest v1.x release. You can usually resolve this by doing the following:

1. Upgrade your app to the latest v1.x release

2. Remove feature flags

3. Revise your code as necessary

4. Deploy

5. Upgrade to v2

Note

If your upgraded app is undeployable after the two-stage upgrade, report the issue.

When you are ready to deploy the stacks in your app, consider deploying a copy first so you can
test it. The easiest way to do this is to deploy it into a different Region. However, you can also
change the IDs of your stacks. After testing, be sure to destroy the testing copy with cdk destroy.

Troubleshooting

TypeScript 'from' expected or ';' expected error in imports

Upgrade to TypeScript 3.8 or later.

Run 'cdk bootstrap'

Troubleshooting Version 2 242

https://github.com/aws/aws-cdk/issues/new/choose

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you see an error like the following:

MyStack failed: Error: MyStack: SSM parameter /cdk-bootstrap/hnb659fds/version not
 found. Has the environment been bootstrapped? Please run 'cdk bootstrap' (see https://
docs.aws.amazon.com/cdk/latest/guide/bootstrapping.html)
 at CloudFormationDeployments.validateBootstrapStackVersion (.../aws-cdk/lib/api/
cloudformation-deployments.ts:323:13)
 at processTicksAndRejections (internal/process/task_queues.js:97:5)
MyStack: SSM parameter /cdk-bootstrap/hnb659fds/version not found. Has the environment
 been bootstrapped? Please run 'cdk bootstrap' (see https://docs.aws.amazon.com/cdk/
latest/guide/bootstrapping.html)

AWS CDK v2 requires an updated bootstrap stack, and furthermore, all v2 deployments require
bootstrap resources. (With v1, you could deploy simple stacks without bootstrapping.) For
complete details, see the section called “Bootstrapping”.

Finding v1 stacks

When migrating your CDK application from v1 to v2, you might want to identify the deployed AWS
CloudFormation stacks that were created using v1. To do this, run the following command:

npx awscdk-v1-stack-finder

For usage details, see the awscdk-v1-stack-finder README.

Finding v1 stacks Version 2 243

https://github.com/cdklabs/awscdk-v1-stack-finder/blob/main/README.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrate existing resources and AWS CloudFormation
templates to the AWS CDK

The CDK Migrate feature is in preview release for AWS CDK and is subject to change.

Use the AWS Cloud Development Kit (AWS CDK) Command Line Interface (AWS CDK CLI) to migrate
deployed AWS resources, deployed AWS CloudFormation stacks, and local AWS CloudFormation
templates to AWS CDK.

Topics

• How migration works

• Benefits of CDK Migrate

• Considerations

• Prerequisites

• Get started with CDK Migrate

• Migrate from an AWS CloudFormation stack

• Migrate from an AWS CloudFormation template

• Migrate from deployed resources

• Manage and deploy your CDK app

How migration works

Use the AWS CDK CLI cdk migrate command to migrate from the following sources:

• Deployed AWS resources.

• Deployed AWS CloudFormation stacks.

• Local AWS CloudFormation templates.

Deployed AWS resources

You can migrate deployed AWS resources from a specific environment (AWS account and AWS
Region) that are not associated with an AWS CloudFormation stack.

How migration works Version 2 244

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK CLI utilizes the IaC generator service to scan for resources in your AWS
environment to gather resource details. To learn more about IaC generator, see Generating
templates for existing resources in the AWS CloudFormation User Guide.

After gathering resource details, the AWS CDK CLI creates a new CDK app that includes a single
stack containing your migrated resources.

Deployed AWS CloudFormation stacks

You can migrate a single AWS CloudFormation stack into a new AWS CDK app. The AWS CDK
CLI will retrieve the AWS CloudFormation template of your stack and create a new CDK app. The
CDK app will consist of a single stack that contains your migrated AWS CloudFormation stack.

Local AWS CloudFormation templates

You can migrate from a local AWS CloudFormation template. Local templates may or may not
contain deployed resources. The AWS CDK CLI will create a new CDK app that contains a single
stack with your resources.

After migrating, you can manage, modify, and deploy your CDK app to AWS CloudFormation to
provision or update your resources.

Benefits of CDK Migrate

Migrating resources into AWS CDK has historically been a manual process that requires time and
expertise with AWS CloudFormation and AWS CDK to even begin. With CDK Migrate, the AWS
CDK CLI facilitates a majority of the migration effort for you in a fraction of the time. CDK Migrate
will quickly get you started with using the AWS CDK to develop and manage new and existing
applications on AWS.

Considerations

General considerations

CDK Migrate vs. CDK Import

The cdk import command can import deployed resources into a new or existing CDK app.
When importing, each resource will have to manually be defined as an L1 construct in your app.
We recommend using cdk import to import one or more resources at a time into a new or
existing CDK app. To learn more, see Importing existing resources into a stack.

Benefits of CDK Migrate Version 2 245

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The cdk migrate command migrates from deployed resources, deployed AWS
CloudFormation stacks, or local AWS CloudFormation templates into a new CDK app. During
migration, the AWS CDK CLI uses cdk import to import your resources into the new CDK app.
The AWS CDK CLI also generates L1 constructs for each resource for you. We recommend using
cdk migrate when importing from a supported migration source into a new AWS CDK app.

CDK Migrate creates L1 constructs only

The newly created CDK app will include L1 constructs only. You can add higher-level constructs
to your app after migration.

CDK Migrate creates CDK apps that contain a single stack

The newly created CDK app will contain a single stack.

When migrating deployed resources, all migrated resources will be contained within a single
stack in the new CDK app.

When migrating AWS CloudFormation stacks, you can only migrate a single AWS
CloudFormation stack into a single stack in the new CDK app.

Migrating assets

Project assets, such as AWS Lambda code, will not directly migrate into the new CDK app. After
migration, you can specify asset values to include them in the CDK app.

Migrating stateful resources

When migrating stateful resources, such as databases and Amazon Simple Storage Service
(Amazon S3) buckets, you’d most often want to migrate the existing resource instead of
creating a new resource.

To migrate and preserve stateful resources, do the following:

• Verify that your stateful resource supports import. For more information, see Resource type
support in the AWS CloudFormation User Guide.

• After migration, verify that the migrated resource’s logical ID in the new CDK app matches
the logical ID of the deployed resource.

• If migrating from an AWS CloudFormation stack, verify that the stack name in the new CDK
app matches the AWS CloudFormation stack.

• Deploy the CDK app using the same AWS account and AWS Region of the migrated resource.

General considerations Version 2 246

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Considerations when migrating from an AWS CloudFormation template

CDK Migrate supports single template migration

When migrating AWS CloudFormation templates, you can select a single template to migrate.
Nested templates are not supported.

Migrating templates with intrinsic functions

When migrating from an AWS CloudFormation template that uses intrinsic functions, the AWS
CDK CLI will attempt to migrate your logic into the CDK app with the Fn class. To learn more,
see class Fn in the AWS Cloud Development Kit (AWS CDK) API Reference.

Considerations when migrating from deployed resources

Scan limitations

When scanning your environment for resources, IaC generator has specific limitations on the
data it can retrieve and quota limitations when scanning. To learn more, see Considerations in
the AWS CloudFormation User Guide.

Prerequisites

Before using the cdk migrate command, do the following:

1. Establish authentication with AWS. For instructions, see Step 2: Configure programmatic access.

2. Install or upgrade the AWS CDK CLI. For installation instructions, see Step 3: Install the AWS
CDK CLI.

Get started with CDK Migrate

To begin, run the AWS CDK CLI cdk migrate command from a directory of your choice. Provide
required and optional options, depending on the type of migration you are performing.

For a full list and description of options that you can use with cdk migrate, see cdk migrate
command reference.

The following are some important options that you may want to provide.

Considerations when migrating from an AWS CloudFormation template Version 2 247

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Fn.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html#generate-template-considerations

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Stack name

The only required option is --stack-name. Use this option to specify a name for the stack that
will be created within the AWS CDK app after migration. The stack name will also be used as the
name of your AWS CloudFormation stack at deployment.

Language

Use --language to specify the programming language of the new CDK app.

AWS account and AWS Region

The AWS CDK CLI retrieves AWS account and AWS Region information from default sources. For
more information, see Step 2: Configure programmatic access. You can use --account and --
region options with cdk migrate to provide other values.

Output directory of your new CDK project

By default, the AWS CDK CLI will create a new CDK project in your working directory and use
the value you provide with --stack-name to name the project folder. If a folder with the same
name currently exists, the AWS CDK CLI will overwrite that folder.

You can specify a different output path for the new CDK project folder with the --output-
path option.

Migration source

Provide an option to specify the source you are migrating from.

• --from-path – Migrate from a local AWS CloudFormation template.

• --from-scan – Migrate from deployed resources in an AWS account and AWS Region.

• --from-stack – Migrate from an AWS CloudFormation stack.

Depending on your migration source, you can provide additional options to customize the cdk
migrate command.

Migrate from an AWS CloudFormation stack

To migrate from a deployed AWS CloudFormation stack, provide the --from-stack option.
Provide the name of your deployed AWS CloudFormation stack with --stack-name. The following
is an example:

$ cdk migrate --from-stack --stack-name "myCloudFormationStack"

Migrate from an AWS CloudFormation stack Version 2 248

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK CLI will do the following:

1. Retrieve the AWS CloudFormation template of your deployed stack.

2. Run cdk init to initialize a new CDK app.

3. Create a stack within the CDK app that contains your migrated AWS CloudFormation stack.

When you migrate from a deployed AWS CloudFormation stack, the AWS CDK CLI attempts to
match deployed resource logical IDs and the deployed AWS CloudFormation stack name to the
migrated resources and stack in the new CDK app.

After migration, you can manage and modify your CDK app normally. When you deploy, AWS
CloudFormation will identify the deployment as an AWS CloudFormation stack update due to the
matching AWS CloudFormation stack name. Resources with matching logical IDs will be updated.
For more information on deploying, see Manage and deploy your CDK app.

Migrate from an AWS CloudFormation template

CDK Migrate supports migrating from AWS CloudFormation templates formatted in JSON or YAML.

To migrate from a local AWS CloudFormation template, use the --from-path option and provide
a path to the local template. You must also provide the required --stack-name option. The
following is an example:

$ cdk migrate --from-path "./template.json" --stack-name "myCloudFormationStack"

The AWS CDK CLI will do the following:

1. Retrieve your local AWS CloudFormation template.

2. Run cdk init to initialize a new CDK app.

3. Create a stack within the CDK app that contains your migrated AWS CloudFormation template.

After migration, you can manage and modify your CDK app normally. At deployment, you have the
following options:

• Update an AWS CloudFormation stack – If the local AWS CloudFormation template was
previously deployed, you can update the deployed AWS CloudFormation stack.

Migrate from an AWS CloudFormation template Version 2 249

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Deploy a new AWS CloudFormation stack – If the local AWS CloudFormation template was
never deployed, or if you want to create a new stack from a previously deployed template, you
can deploy a new AWS CloudFormation stack.

Migrate from an AWS SAM template

To migrate from an AWS Serverless Application Model (AWS SAM) template, you must first convert
it to an AWS CloudFormation template or deploy to create an AWS CloudFormation stack.

To convert an AWS SAM template to AWS CloudFormation, you can use the AWS SAM CLI sam
validate --debug command. You may have to set lint to false in your samconfig.toml file
before running this command.

To convert to an AWS CloudFormation stack, deploy the AWS SAM template using the AWS SAM
CLI. Then migrate from the deployed stack.

Migrate from deployed resources

To migrate from deployed AWS resources, provide the --from-scan option. You must also provide
the required --stack-name option. The following is an example:

$ cdk migrate --from-scan --stack-name "myCloudFormationStack"

The AWS CDK CLI will do the following:

1. Scan your account for resource and property details – The AWS CDK CLI utilizes IaC generator
to scan your account and gather details.

2. Generate an AWS CloudFormation template – After scanning, the AWS CDK CLI utilizes IaC
generator to create an AWS CloudFormation template.

3. Initialize a new CDK app and migrate your template – The AWS CDK CLI runs cdk init to
initialize a new AWS CDK app and migrates your AWS CloudFormation template into the CDK
app as a single stack.

Use filters

By default, the AWS CDK CLI will scan the entire AWS environment and migrate resources up to the
maximum quota limit of IaC generator. You can provide filters with the AWS CDK CLI to specify a

Migrate from an AWS SAM template Version 2 250

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

criteria for which resources get migrated from your account to the new CDK app. To learn more, see
--filter.

Scanning for resources with IaC generator

Depending on the number of resources in your account, scanning may take a few minutes. A
progress bar will display during the scanning process.

Supported resource types

The AWS CDK CLI will migrate resources supported by the IaC generator. For a full list, see
Resource type support in the AWS CloudFormation User Guide.

Resolve write-only properties

Some supported resources contain write-only properties. These properties can be written to, to
configure the property, but can’t be read by IaC generator or AWS CloudFormation to obtain the
value. For example, a property used to specify a database password may be write-only for security
reasons.

When scanning resources during migration, IaC generator will detect resources that may contain
write-only properties and will categorize them into any of the following types:

• MUTUALLY_EXCLUSIVE_PROPERTIES – These are write-only properties for a specific resource
that are interchangeable and serve a similar purpose. One of the mutually exclusive properties
are required to configure your resource. For example, the S3Bucket, ImageUri, and ZipFile
properties for an AWS::Lambda::Function resource are mutually exclusive write-only
properties. Any one of them can be used to specify your function assets, but you must use one.

• MUTUALLY_EXCLUSIVE_TYPES – These are required write-only properties that accept multiple
configuration types. For example, the Body property of an AWS::ApiGateway::RestApi
resource accepts an object or string type.

• UNSUPPORTED_PROPERTIES – These are write-only properties that don't fall under the other
two categories. They are either optional properties or required properties that accept an array of
objects.

For more information on write-only properties and how IaC generator manages them when
scanning for deployed resources and creating AWS CloudFormation templates, see IaC generator
and write-only properties in the AWS CloudFormation User Guide.

Scanning for resources with IaC generator Version 2 251

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC-write-only-properties.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC-write-only-properties.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

After migration, you must specify write-only property values in the new CDK app. The AWS CDK
CLI will append a Warnings section to the CDK project’s ReadMe file to document any write-only
properties that were identified by IaC generator. The following is an example:

Welcome to your CDK TypeScript project
...
Warnings
Write-only properties
Write-only properties are resource property values that can be written to but can't be
 read by AWS CloudFormation or CDK Migrate. For more information, see [IaC generator
 and write-only properties](https://docs.aws.amazon.com/AWSCloudFormation/latest/
UserGuide/generate-IaC-write-only-properties.html).

Write-only properties discovered during migration are organized here by resource ID and
 categorized by write-only property type. Resolve write-only properties by providing
 property values in your CDK app. For guidance, see [Resolve write-only properties]
(https://docs.aws.amazon.com/cdk/v2/guide/migrate.html#migrate-resources-writeonly).
MyLambdaFunction
- **UNSUPPORTED_PROPERTIES**:
 - SnapStart/ApplyOn: Applying SnapStart setting on function resource type.Possible
 values: [PublishedVersions, None]
This property can be replaced with other types
 - Code/S3ObjectVersion: For versioned objects, the version of the deployment package
 object to use.
This property can be replaced with other exclusive properties
- **MUTUALLY_EXCLUSIVE_PROPERTIES**:
 - Code/S3Bucket: An Amazon S3 bucket in the same AWS Region as your function. The
 bucket can be in a different AWS account.
This property can be replaced with other exclusive properties
 - Code/S3Key: The Amazon S3 key of the deployment package.
This property can be replaced with other exclusive properties

• Warnings are organized under headings that identify the resource’s logical ID that they are
associated with.

• Warnings are categorized by type. These types come directly from IaC generator.

To resolve write-only properties

1. Identify write-only properties to resolve from the Warnings section of your CDK project’s
ReadMe file. Here, you can take note of the resources in your CDK app that may contain write-
only properties and identify the write-only property types that were discovered.

Resolve write-only properties Version 2 252

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

a. For MUTUALLY_EXCLUSIVE_PROPERTIES, determine which mutually exclusive property
to configure in your AWS CDK app.

b. For MUTUALLY_EXCLUSIVE_TYPES, determine which accepted type that you will use to
configure the property.

c. For UNSUPPORTED_PROPERTIES, determine if the property is optional or required. Then,
configure as necessary.

2. Use guidance from IaC generator and write-only properties to reference what the warning
types mean.

3. In your CDK app, write-only property values to resolve will also be specified in the Props
section of your app. Provide the correct values here. For property descriptions and guidance,
you can reference the AWS CDK API Reference.

The following is an example of the Props section within a migrated CDK app with two write-
only properties to resolve:

export interface MyTestAppStackProps extends cdk.StackProps {
 /**
 * The Amazon S3 key of the deployment package.
 */
 readonly lambdaFunction00asdfasdfsadf008grk1CodeS3Keym8P82: string;
 /**
 * An Amazon S3 bucket in the same AWS Region as your function. The bucket can be
 in a different AWS account.
 */
 readonly lambdaFunction00asdfasdfsadf008grk1CodeS3Bucketzidw8: string;
}

Once you resolve all write-only property values, you’re ready to prepare for deployment.

The migrate.json file

The AWS CDK CLI creates a migrate.json file in your AWS CDK project during migration. This file
contains reference information on your deployed resources. When you deploy your CDK app for
the first time, the AWS CDK CLI uses this file to reference your deployed resources, associates your
resources with the new AWS CloudFormation stack, and deletes the file.

The migrate.json file Version 2 253

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC-write-only-properties.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Manage and deploy your CDK app

When migrating to AWS CDK, the new CDK app may not be deployment-ready immediately. This
topic describes action items to consider while managing and deploying your new CDK app.

Prepare for deployment

Before deploying, you must prepare your CDK app.

Synthesize your app

Use the cdk synth command to synthesize the stack in your CDK app into an AWS
CloudFormation template.

If you migrated from a deployed AWS CloudFormation stack or template, you can compare the
synthesized template to the migrated template to verify resource and property values.

To learn more about cdk synth, see Synthesizing stacks.

Perform a diff

If you migrated from a deployed AWS CloudFormation stack, you can use the cdk diff command
to compare with the stack in your new CDK app.

To learn more about cdk diff, see Comparing stacks.

Bootstrap your environment

If you are deploying from an AWS environment for the first time, use cdk bootstrap to
prepare your environment. To learn more, see Bootstrapping.

Deploy your CDK app

When you deploy a CDK app, the AWS CDK CLI utilizes the AWS CloudFormation service to
provision your resources. Resources are bundled into a single stack in the CDK app and are
deployed as a single AWS CloudFormation stack.

Depending on where you migrated from, you can deploy to create a new AWS CloudFormation
stack or update an existing AWS CloudFormation stack.

Manage and deploy your CDK app Version 2 254

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Deploy to create a new AWS CloudFormation stack

If you migrated from deployed resources, the AWS CDK CLI will automatically create a new AWS
CloudFormation stack at deployment. Your deployed resources will be included in the new AWS
CloudFormation stack.

If you migrated from a local AWS CloudFormation template that was never deployed, the AWS
CDK CLI will automatically create a new AWS CloudFormation stack at deployment.

If you migrated from a deployed AWS CloudFormation stack or local AWS CloudFormation
template that was previously deployed, you can deploy to create a new AWS CloudFormation
stack. To create a new stack, do the following:

• Deploy to a new AWS environment. This consists of using a different AWS account or
deploying to a different AWS Region.

• If you want to deploy a new stack to the same AWS environment of the migrated stack
or template, you must modify the stack name in your CDK app to a new value. You must
also modify all logical IDs of resources in your CDK app. Then, you can deploy to the same
environment to create a new stack and new resources.

Deploy to update an existing AWS CloudFormation stack

If you migrated from a deployed AWS CloudFormation stack or local AWS CloudFormation
template that was previously deployed, you can deploy to update the existing AWS
CloudFormation stack.

Verify that the stack name in your CDK app matches the stack name of the deployed AWS
CloudFormation stack and deploy to the same AWS environment.

Deploy your CDK app Version 2 255

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with the AWS CDK in supported programming
languages

Use the AWS Cloud Development Kit (AWS CDK) to define your AWS Cloud infrastructure with a
supported programming language.

Topics

• Importing the AWS Construct Library

• Managing dependencies

• Comparing AWS CDK in TypeScript with other languages

• Working with the AWS CDK in TypeScript

• Working with the AWS CDK in JavaScript

• Working with the AWS CDK in Python

• Working with the AWS CDK in Java

• Working with the AWS CDK in C#

• Working with the AWS CDK in Go

Importing the AWS Construct Library

The AWS CDK includes the AWS Construct Library, a collection of constructs organized by AWS
service. The library's stable constructs are offered in a single module, called by its TypeScript
package name: aws-cdk-lib. The actual package name varies by language.

TypeScript

Install npm install aws-cdk-lib

Import const cdk = require('aws-cdk-l
ib');

JavaScript

Install npm install aws-cdk-lib

Importing the AWS Construct Library Version 2 256

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Import const cdk = require('aws-cdk-l
ib');

Python

Install python -m pip install aws-cdk-lib

Import import aws_cdk as cdk

Java

Add to pom.xml Group software.amazon.awscdk ;
artifact aws-cdk-lib

Import import software.amazon.aw
scdk.App; (for example)

C#

Install dotnet add package Amazon.CDK.Lib

Import using Amazon.CDK;

The construct base class and supporting code is in the constructs module. Experimental
constructs, where the API is still undergoing refinement, are distributed as separate modules.

The AWS CDK API Reference

The AWS CDK API Reference provides detailed documentation of the constructs (and other
components) in the library. A version of the API Reference is provided for each supported
programming language.

Each module's reference material is broken into the following sections.

The AWS CDK API Reference Version 2 257

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Overview: Introductory material you'll need to know to work with the service in the AWS CDK,
including concepts and examples.

• Constructs: Library classes that represent one or more concrete AWS resources. These are the
"curated" (L2) resources or patterns (L3 resources) that provide a high-level interface with sane
defaults.

• Classes: Non-construct classes that provide functionality used by constructs in the module.

• Structs: Data structures (attribute bundles) that define the structure of composite values such as
properties (the props argument of constructs) and options.

• Interfaces: Interfaces, whose names all begin with "I", define the absolute minimum functionality
for the corresponding construct or other class. The CDK uses construct interfaces to represent
AWS resources that are defined outside your AWS CDK app and referenced by methods such as
Bucket.fromBucketArn().

• Enums: Collections of named values for use in specifying certain construct parameters. Using an
enumerated value allows the CDK to check these values for validity during synthesis.

• CloudFormation Resources: These L1 constructs, whose names begin with "Cfn", represent exactly
the resources defined in the CloudFormation specification. They are automatically generated
from that specification with each CDK release. Each L2 or L3 construct encapsulates one or more
CloudFormation resources.

• CloudFormation Property Types: The collection of named values that define the properties for
each CloudFormation Resource.

Interfaces compared with construct classes

The AWS CDK uses interfaces in a specific way that may not be obvious even if you are familiar with
interfaces as a programming concept.

The AWS CDK supports using resources defined outside CDK applications using methods such
as Bucket.fromBucketArn(). External resources cannot be modified and may not have all
the functionality available with resources defined in your CDK app using e.g. the Bucket class.
Interfaces, then, represent the bare minimum functionality available in the CDK for a given AWS
resource type, including external resources.

When instantiating resources in your CDK app, then, you should always use concrete classes
such as Bucket. When specifying the type of an argument you are accepting in one of your own
constructs, use the interface type such as IBucket if you are prepared to deal with external

Interfaces compared with construct classes Version 2 258

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

resources (that is, you won't need to change them). If you require a CDK-defined construct, specify
the most general type you can use.

Some interfaces are minimum versions of properties or options bundles associated with specific
classes, rather than constructs. Such interfaces can be useful when subclassing to accept
arguments that you'll pass on to your parent class. If you require one or more additional properties,
you'll want to implement or derive from this interface, or from a more specific type.

Note

Some programming languages supported by the AWS CDK don't have an interface feature.
In these languages, interfaces are just ordinary classes. You can identify them by their
names, which follow the pattern of an initial "I" followed by the name of some other
construct (e.g. IBucket). The same rules apply.

Managing dependencies

Dependencies for your AWS CDK app or library are managed using package management tools.
These tools are commonly used with the programming languages.

Typically, the AWS CDK supports the language's standard or official package management tool
if there is one. Otherwise, the AWS CDK will support the language's most popular or widely
supported one. You may also be able to use other tools, especially if they work with the supported
tools. However, official support for other tools is limited.

The AWS CDK supports the following package managers:

Language Supported package management tool

TypeScript/JavaScript NPM (Node Package Manager) or Yarn

Python PIP (Package Installer for Python)

Java Maven

C# NuGet

Go Go modules

Managing dependencies Version 2 259

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

When you create a new project using the AWS CDK CLI cdk init command, dependencies for the
CDK core libraries and stable constructs are automatically specified.

For more information on managing dependencies for supported programming languages, see the
following:

• Managing dependencies in TypeScript.

• Managing dependencies in JavaScript.

• Managing dependencies in Python.

• Managing dependencies in Java.

• Managing dependencies in C#.

• Managing dependencies in Go.

Comparing AWS CDK in TypeScript with other languages

TypeScript was the first language supported for developing AWS CDK applications. Therefore,
a substantial amount of example CDK code is written in TypeScript. If you are developing
in another language, it might be useful to compare how AWS CDK code is implemented in
TypeScript compared to your language of choice. This can help you use the examples throughout
documentation.

Importing a module

TypeScript/JavaScript

TypeScript supports importing either an entire namespace, or individual objects from a
namespace. Each namespace includes constructs and other classes for use with a given AWS
service.

// Import main CDK library as cdk
import * as cdk from 'aws-cdk-lib'; // ES6 import preferred in TS
const cdk = require('aws-cdk-lib'); // Node.js require() preferred in JS

// Import specific core CDK classes
import { Stack, App } from 'aws-cdk-lib';
const { Stack, App } = require('aws-cdk-lib');

Comparing AWS CDK in TypeScript with other languages Version 2 260

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Import AWS S3 namespace as s3 into current namespace
import { aws_s3 as s3 } from 'aws-cdk-lib'; // TypeScript
const s3 = require('aws-cdk-lib/aws-s3'); // JavaScript

// Having imported cdk already as above, this is also valid
const s3 = cdk.aws_s3;

// Now use s3 to access the S3 types
const bucket = s3.Bucket(...);

// Selective import of s3.Bucket
import { Bucket } from 'aws-cdk-lib/aws-s3'; // TypeScript
const { Bucket } = require('aws-cdk-lib/aws-s3'); // JavaScript

// Now use Bucket to instantiate an S3 bucket
const bucket = Bucket(...);

Python

Like TypeScript, Python supports namespaced module imports and selective imports.
Namespaces in Python look like aws_cdk.xxx, where xxx represents an AWS service name, such
as s3 for Amazon S3. (Amazon S3 is used in these examples).

Import main CDK library as cdk
import aws_cdk as cdk

Selective import of specific core classes
from aws_cdk import Stack, App

Import entire module as s3 into current namespace
import aws_cdk.aws_s3 as s3

s3 can now be used to access classes it contains
bucket = s3.Bucket(...)

Selective import of s3.Bucket into current namespace
from aws_cdk.s3 import Bucket

Bucket can now be used to instantiate a bucket
bucket = Bucket(...)

Importing a module Version 2 261

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

Java's imports work differently from TypeScript's. Each import statement imports either a single
class name from a given package, or all classes defined in that package (using *). Classes may
be accessed using either the class name by itself if it has been imported, or the qualified class
name including its package.

Libraries are named like software.amazon.awscdk.services.xxx for the AWS Construct
Library (the main library is software.amazon.awscdk). The Maven group ID for AWS CDK
packages is software.amazon.awscdk.

// Make certain core classes available
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.App;

// Make all Amazon S3 construct library classes available
import software.amazon.awscdk.services.s3.*;

// Make only Bucket and EventType classes available
import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.s3.EventType;

// An imported class may now be accessed using the simple class name (assuming that
 name
// does not conflict with another class)
Bucket bucket = Bucket.Builder.create(...).build();

// We can always use the qualified name of a class (including its package) even
 without an
// import directive
software.amazon.awscdk.services.s3.Bucket bucket =
 software.amazon.awscdk.services.s3.Bucket.Builder.create(...)
 .build();

// Java 10 or later can use var keyword to avoid typing the type twice
var bucket =
 software.amazon.awscdk.services.s3.Bucket.Builder.create(...)
 .build();

Importing a module Version 2 262

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

In C#, you import types with the using directive. There are two styles. One gives you access
to all the types in the specified namespace by using their plain names. With the other, you can
refer to the namespace itself by using an alias.

Packages are named like Amazon.CDK.AWS.xxx for AWS Construct Library packages. (The core
module is Amazon.CDK.)

// Make CDK base classes available under cdk
using cdk = Amazon.CDK;

// Make all Amazon S3 construct library classes available
using Amazon.CDK.AWS.S3;

// Now we can access any S3 type using its name
var bucket = new Bucket(...);

// Import the S3 namespace under an alias
using s3 = Amazon.CDK.AWS.S3;

// Now we can access an S3 type through the namespace alias
var bucket = new s3.Bucket(...);

// We can always use the qualified name of a type (including its namespace) even
 without a
// using directive
var bucket = new Amazon.CDK.AWS.S3.Bucket(...)

Go

Each AWS Construct Library module is provided as a Go package.

import (
 "github.com/aws/aws-cdk-go/awscdk/v2" // CDK core package
 "github.com/aws/aws-cdk-go/awscdk/v2/awss3" // AWS S3 construct library
 module
)

// now instantiate a bucket
bucket := awss3.NewBucket(...)

Importing a module Version 2 263

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// use aliases for brevity/clarity
import (
 cdk "github.com/aws/aws-cdk-go/awscdk/v2" // CDK core package
 s3 "github.com/aws/aws-cdk-go/awscdk/v2/awss3" // AWS S3 construct library
 module
)

bucket := s3.NewBucket(...)

Instantiating a construct

AWS CDK construct classes have the same name in all supported languages. Most languages
use the new keyword to instantiate a class (Python and Go do not). Also, in most languages, the
keyword this refers to the current instance. (Python uses self by convention.) You should pass a
reference to the current instance as the scope parameter to every construct you create.

The third argument to an AWS CDK construct is props, an object containing attributes needed
to build the construct. This argument may be optional, but when it is required, the supported
languages handle it in idiomatic ways. The names of the attributes are also adapted to the
language's standard naming patterns.

TypeScript/JavaScript

// Instantiate default Bucket
const bucket = new s3.Bucket(this, 'MyBucket');

// Instantiate Bucket with bucketName and versioned properties
const bucket = new s3.Bucket(this, 'MyBucket', {
 bucketName: 'my-bucket',
 versioned: true,
});

// Instantiate Bucket with websiteRedirect, which has its own sub-properties
const bucket = new s3.Bucket(this, 'MyBucket', {
 websiteRedirect: {host: 'aws.amazon.com'}});

Python

Python doesn't use a new keyword when instantiating a class. The properties argument is
represented using keyword arguments, and the arguments are named using snake_case.

Instantiating a construct Version 2 264

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If a props value is itself a bundle of attributes, it is represented by a class named after the
property, which accepts keyword arguments for the subproperties.

In Python, the current instance is passed to methods as the first argument, which is named
self by convention.

Instantiate default Bucket
bucket = s3.Bucket(self, "MyBucket")

Instantiate Bucket with bucket_name and versioned properties
bucket = s3.Bucket(self, "MyBucket", bucket_name="my-bucket", versioned=true)

Instantiate Bucket with website_redirect, which has its own sub-properties
bucket = s3.Bucket(self, "MyBucket", website_redirect=s3.WebsiteRedirect(
 host_name="aws.amazon.com"))

Java

In Java, the props argument is represented by a class named XxxxProps (for example,
BucketProps for the Bucket construct's props). You build the props argument using a builder
pattern.

Each XxxxProps class has a builder. There is also a convenient builder for each construct that
builds the props and the construct in one step, as shown in the following example.

Props are named the same as in TypeScript, using camelCase.

// Instantiate default Bucket
Bucket bucket = Bucket(self, "MyBucket");

// Instantiate Bucket with bucketName and versioned properties
Bucket bucket = Bucket.Builder.create(self, "MyBucket")
 .bucketName("my-bucket").versioned(true)
 .build();

Instantiate Bucket with websiteRedirect, which has its own sub-properties
Bucket bucket = Bucket.Builder.create(self, "MyBucket")
 .websiteRedirect(new websiteRedirect.Builder()
 .hostName("aws.amazon.com").build())
 .build();

Instantiating a construct Version 2 265

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

In C#, props are specified using an object initializer to a class named XxxxProps (for example,
BucketProps for the Bucket construct's props).

Props are named similarly to TypeScript, except using PascalCase.

It is convenient to use the var keyword when instantiating a construct, so you don't need to
type the class name twice. However, your local code style guide may vary.

// Instantiate default Bucket
var bucket = Bucket(self, "MyBucket");

// Instantiate Bucket with BucketName and Versioned properties
var bucket = Bucket(self, "MyBucket", new BucketProps {
 BucketName = "my-bucket",
 Versioned = true});

// Instantiate Bucket with WebsiteRedirect, which has its own sub-properties
var bucket = Bucket(self, "MyBucket", new BucketProps {
 WebsiteRedirect = new WebsiteRedirect {
 HostName = "aws.amazon.com"
 }});

Go

To create a construct in Go, call the function NewXxxxxx where Xxxxxxx is the name of the
construct. The constructs' properties are defined as a struct.

In Go, all construct parameters are pointers, including values like numbers, Booleans, and
strings. Use the convenience functions like jsii.String to create these pointers.

 // Instantiate default Bucket
 bucket := awss3.NewBucket(stack, jsii.String("MyBucket"), nil)

 // Instantiate Bucket with BucketName and Versioned properties
 bucket1 := awss3.NewBucket(stack, jsii.String("MyBucket"), &awss3.BucketProps{
 BucketName: jsii.String("my-bucket"),
 Versioned: jsii.Bool(true),
 })

 // Instantiate Bucket with WebsiteRedirect, which has its own sub-properties

Instantiating a construct Version 2 266

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 bucket2 := awss3.NewBucket(stack, jsii.String("MyBucket"), &awss3.BucketProps{
 WebsiteRedirect: &awss3.RedirectTarget{
 HostName: jsii.String("aws.amazon.com"),
 }})

Accessing members

It is common to refer to attributes or properties of constructs and other AWS CDK classes and use
these values as, for example, inputs to build other constructs. The naming differences described
previously for methods apply here also. Furthermore, in Java, it is not possible to access members
directly. Instead, a getter method is provided.

TypeScript/JavaScript

Names are camelCase.

bucket.bucketArn

Python

Names are snake_case.

bucket.bucket_arn

Java

A getter method is provided for each property; these names are camelCase.

bucket.getBucketArn()

C#

Names are PascalCase.

bucket.BucketArn

Go

Names are PascalCase.

Accessing members Version 2 267

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

bucket.BucketArn

Enum constants

Enum constants are scoped to a class, and have uppercase names with underscores in all languages
(sometimes referred to as SCREAMING_SNAKE_CASE). Since class names also use the same casing
in all supported languages except Go, qualified enum names are also the same in these languages.

s3.BucketEncryption.KMS_MANAGED

In Go, enum constants are attributes of the module namespace and are written as follows.

awss3.BucketEncryption_KMS_MANAGED

Object interfaces

The AWS CDK uses TypeScript object interfaces to indicate that a class implements an expected set
of methods and properties. You can recognize an object interface because its name starts with I. A
concrete class indicates the interfaces that it implements by using the implements keyword.

TypeScript/JavaScript

Note

JavaScript doesn't have an interface feature. You can ignore the implements keyword
and the class names following it.

import { IAspect, IConstruct } from 'aws-cdk-lib';

class MyAspect implements IAspect {
 public visit(node: IConstruct) {
 console.log('Visited', node.node.path);
 }
}

Enum constants Version 2 268

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

Python doesn't have an interface feature. However, for the AWS CDK you can indicate interface
implementation by decorating your class with @jsii.implements(interface).

from aws_cdk import IAspect, IConstruct
import jsii

@jsii.implements(IAspect)
class MyAspect():
 def visit(self, node: IConstruct) -> None:
 print("Visited", node.node.path)

Java

import software.amazon.awscdk.IAspect;
import software.amazon.awscdk.IConstruct;

public class MyAspect implements IAspect {
 public void visit(IConstruct node) {
 System.out.format("Visited %s", node.getNode().getPath());
 }
}

C#

using Amazon.CDK;

public class MyAspect : IAspect
{
 public void Visit(IConstruct node)
 {
 System.Console.WriteLine($"Visited ${node.Node.Path}");
 }
}

Go

Go structs do not need to explicitly declare which interfaces they implement. The Go compiler
determines implementation based on the methods and properties available on the structure.
For example, in the following code, MyAspect implements the IAspect interface because it
provides a Visit method that takes a construct.

Object interfaces Version 2 269

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

type MyAspect struct {
}

func (a MyAspect) Visit(node constructs.IConstruct) {
 fmt.Println("Visited", *node.Node().Path())
}

Working with the AWS CDK in TypeScript

TypeScript is a fully-supported client language for the AWS Cloud Development Kit (AWS CDK)
and is considered stable. Working with the AWS CDK in TypeScript uses familiar tools, including
Microsoft's TypeScript compiler (tsc), Node.js and the Node Package Manager (npm). You may also
use Yarn if you prefer, though the examples in this Guide use NPM. The modules comprising the
AWS Construct Library are distributed via the NPM repository, npmjs.org.

You can use any editor or IDE. Many AWS CDK developers use Visual Studio Code (or its open-
source equivalent VSCodium), which has excellent support for TypeScript.

Topics

• Get started with TypeScript

• Creating a project

• Using local tsc and cdk

• Managing AWS Construct Library modules

• Managing dependencies in TypeScript

• AWS CDK idioms in TypeScript

• Building, synthesizing, and deploying

Get started with TypeScript

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

You also need TypeScript itself (version 3.8 or later). If you don't already have it, you can install it
using npm.

npm install -g typescript

In TypeScript Version 2 270

https://nodejs.org/
https://yarnpkg.com/
https://www.npmjs.com/
https://code.visualstudio.com/
https://vscodium.com/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

If you get a permission error, and have administrator access on your system, try sudo npm
install -g typescript.

Keep TypeScript up to date with a regular npm update -g typescript.

Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify typescript:

mkdir my-project
cd my-project
cdk init app --language typescript

Creating a project also installs the aws-cdk-lib module and its dependencies.

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a TypeScript identifier; for example, it should not
start with a number or contain spaces.

Using local tsc and cdk

For the most part, this guide assumes you install TypeScript and the CDK Toolkit globally (npm
install -g typescript aws-cdk), and the provided command examples (such as cdk
synth) follow this assumption. This approach makes it easy to keep both components up to date,
and since both take a strict approach to backward compatibility, there is generally little risk in
always using the latest versions.

Creating a project Version 2 271

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Some teams prefer to specify all dependencies within each project, including tools like the
TypeScript compiler and the CDK Toolkit. This practice lets you pin these components to
specific versions and ensure that all developers on your team (and your CI/CD environment) use
exactly those versions. This eliminates a possible source of change, helping to make builds and
deployments more consistent and repeatable.

The CDK includes dependencies for both TypeScript and the CDK Toolkit in the TypeScript project
template's package.json, so if you want to use this approach, you don't need to make any
changes to your project. All you need to do is use slightly different commands for building your
app and for issuing cdk commands.

Operation Use global tools Use local tools

Initialize project cdk init --language
typescript

npx aws-cdk init --
language typescript

Build tsc npm run build

Run CDK Toolkit command cdk ... npm run cdk ... or npx
aws-cdk ...

npx aws-cdk runs the version of the CDK Toolkit installed locally in the current project, if one
exists, falling back to the global installation, if any. If no global installation exists, npx downloads a
temporary copy of the CDK Toolkit and runs that. You may specify an arbitrary version of the CDK
Toolkit using the @ syntax: npx aws-cdk@2.0 --version prints 2.0.0.

Tip

Set up an alias so you can use the cdk command with a local CDK Toolkit installation.

macOS/Linux

alias cdk="npx aws-cdk"

Windows

doskey cdk=npx aws-cdk $*

Using local tsc and cdk Version 2 272

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Managing AWS Construct Library modules

Use the Node Package Manager (npm) to install and update AWS Construct Library modules for use
by your apps, as well as other packages you need. (You may use yarn instead of npm if you prefer.)
npm also installs the dependencies for those modules automatically.

Most AWS CDK constructs are in the main CDK package, named aws-cdk-lib, which is a default
dependency in new projects created by cdk init. "Experimental" AWS Construct Library modules,
where higher-level constructs are still under development, are named like @aws-cdk/SERVICE-
NAME-alpha. The service name has an aws- prefix. If you're unsure of a module's name, search for
it on NPM.

Note

The CDK API Reference also shows the package names.

For example, the command below installs the experimental module for AWS CodeStar.

npm install @aws-cdk/aws-codestar-alpha

Some services' Construct Library support is in more than one namespace. For example, besides
aws-route53, there are three additional Amazon Route 53 namespaces, aws-route53-targets,
aws-route53-patterns, and aws-route53resolver.

Your project's dependencies are maintained in package.json. You can edit this file to lock some
or all of your dependencies to a specific version or to allow them to be updated to newer versions
under certain criteria. To update your project's NPM dependencies to the latest permitted version
according to the rules you specified in package.json:

npm update

In TypeScript, you import modules into your code under the same name you use to install them
using NPM. We recommend the following practices when importing AWS CDK classes and AWS
Construct Library modules in your applications. Following these guidelines will help make your
code consistent with other AWS CDK applications as well as easier to understand.

• Use ES6-style import directives, not require().

Managing AWS Construct Library modules Version 2 273

https://www.npmjs.com/search?q=%40aws-cdk
https://www.npmjs.com/search?q=%40aws-cdk
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Generally, import individual classes from aws-cdk-lib.

import { App, Stack } from 'aws-cdk-lib';

• If you need many classes from aws-cdk-lib, you may use a namespace alias of cdk instead of
importing the individual classes. Avoid doing both.

import * as cdk from 'aws-cdk-lib';

• Generally, import AWS service constructs using short namespace aliases.

import { aws_s3 as s3 } from 'aws-cdk-lib';

Managing dependencies in TypeScript

In TypeScript CDK projects, dependencies are specified in the package.json file in the project's
main directory. The core AWS CDK modules are in a single NPM package called aws-cdk-lib.

When you install a package using npm install, NPM records the package in package.json for you.

If you prefer, you may use Yarn in place of NPM. However, the CDK does not support Yarn's plug-
and-play mode, which is default mode in Yarn 2. Add the following to your project's .yarnrc.yml
file to turn off this feature.

nodeLinker: node-modules

CDK applications

The following is an example package.json file generated by the cdk init --language
typescript command:

{
 "name": "my-package",
 "version": "0.1.0",
 "bin": {
 "my-package": "bin/my-package.js"
 },
 "scripts": {
 "build": "tsc",
 "watch": "tsc -w",

Managing dependencies in TypeScript Version 2 274

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "test": "jest",
 "cdk": "cdk"
 },
 "devDependencies": {
 "@types/jest": "^26.0.10",
 "@types/node": "10.17.27",
 "jest": "^26.4.2",
 "ts-jest": "^26.2.0",
 "aws-cdk": "2.16.0",
 "ts-node": "^9.0.0",
 "typescript": "~3.9.7"
 },
 "dependencies": {
 "aws-cdk-lib": "2.16.0",
 "constructs": "^10.0.0",
 "source-map-support": "^0.5.16"
 }
}

For deployable CDK apps, aws-cdk-lib must be specified in the dependencies section of
package.json. You can use a caret (^) version number specifier to indicate that you will accept
later versions than the one specified as long as they are within the same major version.

For experimental constructs, specify exact versions for the alpha construct library modules, which
have APIs that may change. Do not use ^ or ~ since later versions of these modules may bring API
changes that can break your app.

Specify versions of libraries and tools needed to test your app (for example, the jest testing
framework) in the devDependencies section of package.json. Optionally, use ^ to specify that
later compatible versions are acceptable.

Third-party construct libraries

If you're developing a construct library, specify its dependencies using a combination of the
peerDependencies and devDependencies sections, as shown in the following example
package.json file.

{
 "name": "my-package",
 "version": "0.0.1",
 "peerDependencies": {
 "aws-cdk-lib": "^2.14.0",

Managing dependencies in TypeScript Version 2 275

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
 "constructs": "^10.0.0"
 },
 "devDependencies": {
 "aws-cdk-lib": "2.14.0",
 "@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
 "constructs": "10.0.0",
 "jsii": "^1.50.0",
 "aws-cdk": "^2.14.0"
 }
}

In peerDependencies, use a caret (^) to specify the lowest version of aws-cdk-lib that your
library works with. This maximizes the compatibility of your library with a range of CDK versions.
Specify exact versions for alpha construct library modules, which have APIs that may change.
Using peerDependencies makes sure that there is only one copy of all CDK libraries in the
node_modules tree.

In devDependencies, specify the tools and libraries you need for testing, optionally with ^
to indicate that later compatible versions are acceptable. Specify exactly (without ^ or ~) the
lowest versions of aws-cdk-lib and other CDK packages that you advertise your library be
compatible with. This practice makes sure that your tests run against those versions. This way, if
you inadvertently use a feature found only in newer versions, your tests can catch it.

Warning

peerDependencies are installed automatically only by NPM 7 and later. If you are using
NPM 6 or earlier, or if you are using Yarn, you must include the dependencies of your
dependencies in devDependencies. Otherwise, they won't be installed, and you will
receive a warning about unresolved peer dependencies.

Installing and updating dependencies

Run the following command to install your project's dependencies.

NPM

Install the latest version of everything that matches the ranges in 'package.json'
npm install

Managing dependencies in TypeScript Version 2 276

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Install the same exact dependency versions as recorded in 'package-lock.json'
npm ci

Yarn

Install the latest version of everything that matches the ranges in 'package.json'
yarn upgrade

Install the same exact dependency versions as recorded in 'yarn.lock'
yarn install --frozen-lockfile

To update the installed modules, the preceding npm install and yarn upgrade commands can be
used. Either command updates the packages in node_modules to the latest versions that satisfy
the rules in package.json. However, they do not update package.json itself, which you might
want to do to set a new minimum version. If you host your package on GitHub, you can configure
Dependabot version updates to automatically update package.json. Alternatively, use npm-
check-updates.

Important

By design, when you install or update dependencies, NPM and Yarn choose the latest
version of every package that satisfies the requirements specified in package.json. There
is always a risk that these versions may be broken (either accidentally or intentionally). Test
thoroughly after updating your project's dependencies.

AWS CDK idioms in TypeScript

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props. Argument props is a
bundle of key/value pairs that the construct uses to configure the AWS resources it creates. Other
classes and methods also use the "bundle of attributes" pattern for arguments.

In TypeScript, the shape of props is defined using an interface that tells you the required and
optional arguments and their types. Such an interface is defined for each kind of props argument,

AWS CDK idioms in TypeScript Version 2 277

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuring-dependabot-version-updates
https://www.npmjs.com/package/npm-check-updates
https://www.npmjs.com/package/npm-check-updates

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

usually specific to a single construct or method. For example, the Bucket construct (in the aws-
cdk-lib/aws-s3 module) specifies a props argument conforming to the BucketProps interface.

If a property is itself an object, for example the websiteRedirect property of BucketProps, that
object will have its own interface to which its shape must conform, in this case RedirectTarget.

If you are subclassing an AWS Construct Library class (or overriding a method that takes a props-
like argument), you can inherit from the existing interface to create a new one that specifies any
new props your code requires. When calling the parent class or base method, generally you can
pass the entire props argument you received, since any attributes provided in the object but not
specified in the interface will be ignored.

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. Passing the value you receive up the inheritance chain can then cause
unexpected behavior. It's safer to pass a shallow copy of the props you received with your property
removed or set to undefined. For example:

super(scope, name, {...props, encryptionKeys: undefined});

Alternatively, name your properties so that it is clear that they belong to your construct. This way,
it is unlikely they will collide with properties in future AWS CDK releases. If there are many of them,
use a single appropriately-named object to hold them.

Missing values

Missing values in an object (such as props) have the value undefined in TypeScript. Version 3.7
of the language introduced operators that simplify working with these values, making it easier
to specify defaults and "short-circuit" chaining when an undefined value is reached. For more
information about these features, see the TypeScript 3.7 Release Notes, specifically the first two
features, Optional Chaining and Nullish Coalescing.

Building, synthesizing, and deploying

Generally, you should be in the project's root directory when building and running your application.

Node.js cannot run TypeScript directly; instead, your application is converted to JavaScript using
the TypeScript compiler, tsc. The resulting JavaScript code is then executed.

The AWS CDK automatically does this whenever it needs to run your app. However, it can be useful
to compile manually to check for errors and to run tests. To compile your TypeScript app manually,

Building, synthesizing, and deploying Version 2 278

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.BucketProps.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.BucketProps.html#websiteredirect
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.RedirectTarget.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

issue npm run build. You may also issue npm run watch to enter watch mode, in which the
TypeScript compiler automatically rebuilds your app whenever you save changes to a source file.

The stacks defined in your AWS CDK app can be synthesized and deployed individually or together
using the commands below. Generally, you should be in your project's main directory when you
issue them.

• cdk synth: Synthesizes a AWS CloudFormation template from one or more of the stacks in your
AWS CDK app.

• cdk deploy: Deploys the resources defined by one or more of the stacks in your AWS CDK app
to AWS.

You can specify the names of multiple stacks to be synthesized or deployed in a single command. If
your app defines only one stack, you do not need to specify it.

cdk synth # app defines single stack
cdk deploy Happy Grumpy # app defines two or more stacks; two are deployed

You may also use the wildcards * (any number of characters) and ? (any single character) to identify
stacks by pattern. When using wildcards, enclose the pattern in quotes. Otherwise, the shell may
try to expand it to the names of files in the current directory before they are passed to the AWS
CDK Toolkit.

cdk synth "Stack?" # Stack1, StackA, etc.
cdk deploy "*Stack" # PipeStack, LambdaStack, etc.

Tip

You don't need to explicitly synthesize stacks before deploying them; cdk deploy
performs this step for you to make sure your latest code gets deployed.

For full documentation of the cdk command, see the section called “AWS CDK Toolkit”.

Working with the AWS CDK in JavaScript

JavaScript is a fully-supported client language for the AWS CDK and is considered stable. Working
with the AWS Cloud Development Kit (AWS CDK) in JavaScript uses familiar tools, including Node.js

In JavaScript Version 2 279

https://nodejs.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

and the Node Package Manager (npm). You may also use Yarn if you prefer, though the examples
in this Guide use NPM. The modules comprising the AWS Construct Library are distributed via the
NPM repository, npmjs.org.

You can use any editor or IDE. Many AWS CDK developers use Visual Studio Code (or its open-
source equivalent VSCodium), which has good support for JavaScript.

Topics

• Get started with JavaScript

• Creating a project

• Using local cdk

• Managing AWS Construct Library modules

• Managing dependencies in JavaScript

• AWS CDK idioms in JavaScript

• Synthesizing and deploying

• Using TypeScript examples with JavaScript

• Migrating to TypeScript

Get started with JavaScript

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

JavaScript AWS CDK applications require no additional prerequisites beyond these.

Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify javascript:

mkdir my-project

Get started with JavaScript Version 2 280

https://yarnpkg.com/
https://www.npmjs.com/
https://code.visualstudio.com/
https://vscodium.com/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cd my-project
cdk init app --language javascript

Creating a project also installs the aws-cdk-lib module and its dependencies.

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a JavaScript identifier; for example, it should not
start with a number or contain spaces.

Using local cdk

For the most part, this guide assumes you install the CDK Toolkit globally (npm install -g
aws-cdk), and the provided command examples (such as cdk synth) follow this assumption.
This approach makes it easy to keep the CDK Toolkit up to date, and since the CDK takes a strict
approach to backward compatibility, there is generally little risk in always using the latest version.

Some teams prefer to specify all dependencies within each project, including tools like the
CDK Toolkit. This practice lets you pin such components to specific versions and ensure that all
developers on your team (and your CI/CD environment) use exactly those versions. This eliminates
a possible source of change, helping to make builds and deployments more consistent and
repeatable.

The CDK includes a dependency for the CDK Toolkit in the JavaScript project template's
package.json, so if you want to use this approach, you don't need to make any changes to your
project. All you need to do is use slightly different commands for building your app and for issuing
cdk commands.

Operation Use global CDK Toolkit Use local CDK Toolkit

Initialize project cdk init --language
javascript

npx aws-cdk init --
language javascript

Run CDK Toolkit command cdk ... npm run cdk ... or npx
aws-cdk ...

npx aws-cdk runs the version of the CDK Toolkit installed locally in the current project, if one
exists, falling back to the global installation, if any. If no global installation exists, npx downloads a

Using local cdk Version 2 281

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

temporary copy of the CDK Toolkit and runs that. You may specify an arbitrary version of the CDK
Toolkit using the @ syntax: npx aws-cdk@1.120 --version prints 1.120.0.

Tip

Set up an alias so you can use the cdk command with a local CDK Toolkit installation.

macOS/Linux

alias cdk="npx aws-cdk"

Windows

doskey cdk=npx aws-cdk $*

Managing AWS Construct Library modules

Use the Node Package Manager (npm) to install and update AWS Construct Library modules for use
by your apps, as well as other packages you need. (You may use yarn instead of npm if you prefer.)
npm also installs the dependencies for those modules automatically.

Most AWS CDK constructs are in the main CDK package, named aws-cdk-lib, which is a
default dependency in new projects created by cdk init. "Experimental" AWS Construct Library
modules, where higher-level constructs are still under development, are named like aws-cdk-
lib/SERVICE-NAME-alpha. The service name has an aws- prefix. If you're unsure of a module's
name, search for it on NPM.

Note

The CDK API Reference also shows the package names.

For example, the command below installs the experimental module for AWS CodeStar.

npm install @aws-cdk/aws-codestar-alpha

Managing AWS Construct Library modules Version 2 282

https://www.npmjs.com/search?q=%40aws-cdk
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Some services' Construct Library support is in more than one namespace. For example, besides
aws-route53, there are three additional Amazon Route 53 namespaces, aws-route53-targets,
aws-route53-patterns, and aws-route53resolver.

Your project's dependencies are maintained in package.json. You can edit this file to lock some
or all of your dependencies to a specific version or to allow them to be updated to newer versions
under certain criteria. To update your project's NPM dependencies to the latest permitted version
according to the rules you specified in package.json:

npm update

In JavaScript, you import modules into your code under the same name you use to install them
using NPM. We recommend the following practices when importing AWS CDK classes and AWS
Construct Library modules in your applications. Following these guidelines will help make your
code consistent with other AWS CDK applications as well as easier to understand.

• Use require(), not ES6-style import directives. Older versions of Node.js do not support
ES6 imports, so using the older syntax is more widely compatible. (If you really want to use ES6
imports, use esm to ensure your project is compatible with all supported versions of Node.js.)

• Generally, import individual classes from aws-cdk-lib.

const { App, Stack } = require('aws-cdk-lib');

• If you need many classes from aws-cdk-lib, you may use a namespace alias of cdk instead of
importing the individual classes. Avoid doing both.

const cdk = require('aws-cdk-lib');

• Generally, import AWS Construct Libraries using short namespace aliases.

const { s3 } = require('aws-cdk-lib/aws-s3');

Managing dependencies in JavaScript

In JavaScript CDK projects, dependencies are specified in the package.json file in the project's
main directory. The core AWS CDK modules are in a single NPM package called aws-cdk-lib.

When you install a package using npm install, NPM records the package in package.json for you.

Managing dependencies in JavaScript Version 2 283

https://www.npmjs.com/package/esm

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you prefer, you may use Yarn in place of NPM. However, the CDK does not support Yarn's plug-
and-play mode, which is default mode in Yarn 2. Add the following to your project's .yarnrc.yml
file to turn off this feature.

nodeLinker: node-modules

CDK applications

The following is an example package.json file generated by the cdk init --language
typescript command. The file generated for JavaScript is similar, only without the TypeScript-
related entries.

{
 "name": "my-package",
 "version": "0.1.0",
 "bin": {
 "my-package": "bin/my-package.js"
 },
 "scripts": {
 "build": "tsc",
 "watch": "tsc -w",
 "test": "jest",
 "cdk": "cdk"
 },
 "devDependencies": {
 "@types/jest": "^26.0.10",
 "@types/node": "10.17.27",
 "jest": "^26.4.2",
 "ts-jest": "^26.2.0",
 "aws-cdk": "2.16.0",
 "ts-node": "^9.0.0",
 "typescript": "~3.9.7"
 },
 "dependencies": {
 "aws-cdk-lib": "2.16.0",
 "constructs": "^10.0.0",
 "source-map-support": "^0.5.16"
 }
}

Managing dependencies in JavaScript Version 2 284

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For deployable CDK apps, aws-cdk-lib must be specified in the dependencies section of
package.json. You can use a caret (^) version number specifier to indicate that you will accept
later versions than the one specified as long as they are within the same major version.

For experimental constructs, specify exact versions for the alpha construct library modules, which
have APIs that may change. Do not use ^ or ~ since later versions of these modules may bring API
changes that can break your app.

Specify versions of libraries and tools needed to test your app (for example, the jest testing
framework) in the devDependencies section of package.json. Optionally, use ^ to specify that
later compatible versions are acceptable.

Third-party construct libraries

If you're developing a construct library, specify its dependencies using a combination of the
peerDependencies and devDependencies sections, as shown in the following example
package.json file.

{
 "name": "my-package",
 "version": "0.0.1",
 "peerDependencies": {
 "aws-cdk-lib": "^2.14.0",
 "@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
 "constructs": "^10.0.0"
 },
 "devDependencies": {
 "aws-cdk-lib": "2.14.0",
 "@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
 "constructs": "10.0.0",
 "jsii": "^1.50.0",
 "aws-cdk": "^2.14.0"
 }
}

In peerDependencies, use a caret (^) to specify the lowest version of aws-cdk-lib that your
library works with. This maximizes the compatibility of your library with a range of CDK versions.
Specify exact versions for alpha construct library modules, which have APIs that may change.
Using peerDependencies makes sure that there is only one copy of all CDK libraries in the
node_modules tree.

Managing dependencies in JavaScript Version 2 285

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

In devDependencies, specify the tools and libraries you need for testing, optionally with ^
to indicate that later compatible versions are acceptable. Specify exactly (without ^ or ~) the
lowest versions of aws-cdk-lib and other CDK packages that you advertise your library be
compatible with. This practice makes sure that your tests run against those versions. This way, if
you inadvertently use a feature found only in newer versions, your tests can catch it.

Warning

peerDependencies are installed automatically only by NPM 7 and later. If you are using
NPM 6 or earlier, or if you are using Yarn, you must include the dependencies of your
dependencies in devDependencies. Otherwise, they won't be installed, and you will
receive a warning about unresolved peer dependencies.

Installing and updating dependencies

Run the following command to install your project's dependencies.

NPM

Install the latest version of everything that matches the ranges in 'package.json'
npm install

Install the same exact dependency versions as recorded in 'package-lock.json'
npm ci

Yarn

Install the latest version of everything that matches the ranges in 'package.json'
yarn upgrade

Install the same exact dependency versions as recorded in 'yarn.lock'
yarn install --frozen-lockfile

To update the installed modules, the preceding npm install and yarn upgrade commands can be
used. Either command updates the packages in node_modules to the latest versions that satisfy
the rules in package.json. However, they do not update package.json itself, which you might
want to do to set a new minimum version. If you host your package on GitHub, you can configure

Managing dependencies in JavaScript Version 2 286

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Dependabot version updates to automatically update package.json. Alternatively, use npm-
check-updates.

Important

By design, when you install or update dependencies, NPM and Yarn choose the latest
version of every package that satisfies the requirements specified in package.json. There
is always a risk that these versions may be broken (either accidentally or intentionally). Test
thoroughly after updating your project's dependencies.

AWS CDK idioms in JavaScript

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the AWS resources it creates. Other classes and methods
also use the "bundle of attributes" pattern for arguments.

Using an IDE or editor that has good JavaScript autocomplete will help avoid misspelling
property names. If a construct is expecting an encryptionKeys property, and you spell it
encryptionkeys, when instantiating the construct, you haven't passed the value you intended.
This can cause an error at synthesis time if the property is required, or cause the property to be
silently ignored if it is optional. In the latter case, you may get a default behavior you intended to
override. Take special care here.

When subclassing an AWS Construct Library class (or overriding a method that takes a props-like
argument), you may want to accept additional properties for your own use. These values will be
ignored by the parent class or overridden method, because they are never accessed in that code, so
you can generally pass on all the props you received.

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. Passing the value you receive up the inheritance chain can then cause
unexpected behavior. It's safer to pass a shallow copy of the props you received with your property
removed or set to undefined. For example:

super(scope, name, {...props, encryptionKeys: undefined});

AWS CDK idioms in JavaScript Version 2 287

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuring-dependabot-version-updates
https://www.npmjs.com/package/npm-check-updates
https://www.npmjs.com/package/npm-check-updates

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Alternatively, name your properties so that it is clear that they belong to your construct. This way,
it is unlikely they will collide with properties in future AWS CDK releases. If there are many of them,
use a single appropriately-named object to hold them.

Missing values

Missing values in an object (such as props) have the value undefined in JavaScript. The usual
techniques apply for dealing with these. For example, a common idiom for accessing a property of
a value that may be undefined is as follows:

// a may be undefined, but if it is not, it may have an attribute b
// c is undefined if a is undefined, OR if a doesn't have an attribute b
let c = a && a.b;

However, if a could have some other "falsy" value besides undefined, it is better to make the test
more explicit. Here, we'll take advantage of the fact that null and undefined are equal to test
for them both at once:

let c = a == null ? a : a.b;

Tip

Node.js 14.0 and later support new operators that can simplify the handling of undefined
values. For more information, see the optional chaining and nullish coalescing proposals.

Synthesizing and deploying

The stacks defined in your AWS CDK app can be synthesized and deployed individually or together
using the commands below. Generally, you should be in your project's main directory when you
issue them.

• cdk synth: Synthesizes a AWS CloudFormation template from one or more of the stacks in your
AWS CDK app.

• cdk deploy: Deploys the resources defined by one or more of the stacks in your AWS CDK app
to AWS.

Synthesizing and deploying Version 2 288

https://github.com/tc39/proposal-optional-chaining/blob/master/README.md
https://github.com/tc39/proposal-nullish-coalescing/blob/master/README.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can specify the names of multiple stacks to be synthesized or deployed in a single command. If
your app defines only one stack, you do not need to specify it.

cdk synth # app defines single stack
cdk deploy Happy Grumpy # app defines two or more stacks; two are deployed

You may also use the wildcards * (any number of characters) and ? (any single character) to identify
stacks by pattern. When using wildcards, enclose the pattern in quotes. Otherwise, the shell may
try to expand it to the names of files in the current directory before they are passed to the AWS
CDK Toolkit.

cdk synth "Stack?" # Stack1, StackA, etc.
cdk deploy "*Stack" # PipeStack, LambdaStack, etc.

Tip

You don't need to explicitly synthesize stacks before deploying them; cdk deploy
performs this step for you to make sure your latest code gets deployed.

For full documentation of the cdk command, see the section called “AWS CDK Toolkit”.

Using TypeScript examples with JavaScript

TypeScript is the language we use to develop the AWS CDK, and it was the first language
supported for developing applications, so many available AWS CDK code examples are written in
TypeScript. These code examples can be a good resource for JavaScript developers; you just need
to remove the TypeScript-specific parts of the code.

TypeScript snippets often use the newer ECMAScript import and export keywords to import
objects from other modules and to declare the objects to be made available outside the current
module. Node.js has just begun supporting these keywords in its latest releases. Depending on the
version of Node.js you're using (or wish to support), you might rewrite imports and exports to use
the older syntax.

Imports can be replaced with calls to the require() function.

TypeScript

import * as cdk from 'aws-cdk-lib';

Using TypeScript examples with JavaScript Version 2 289

https://www.typescriptlang.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import { Bucket, BucketPolicy } from 'aws-cdk-lib/aws-s3';

JavaScript

const cdk = require('aws-cdk-lib');
const { Bucket, BucketPolicy } = require('aws-cdk-lib/aws-s3');

Exports can be assigned to the module.exports object.

TypeScript

export class Stack1 extends cdk.Stack {
 // ...
}

export class Stack2 extends cdk.Stack {
 // ...
}

JavaScript

class Stack1 extends cdk.Stack {
 // ...
}

class Stack2 extends cdk.Stack {
 // ...
}

module.exports = { Stack1, Stack2 }

Note

An alternative to using the old-style imports and exports is to use the esm module.

Once you've got the imports and exports sorted, you can dig into the actual code. You may run into
these commonly-used TypeScript features:

Using TypeScript examples with JavaScript Version 2 290

https://www.npmjs.com/package/esm

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Type annotations

• Interface definitions

• Type conversions/casts

• Access modifiers

Type annotations may be provided for variables, class members, function parameters, and function
return types. For variables, parameters, and members, types are specified by following the
identifier with a colon and the type. Function return values follow the function signature and
consist of a colon and the type.

To convert type-annotated code to JavaScript, remove the colon and the type. Class members
must have some value in JavaScript; set them to undefined if they only have a type annotation in
TypeScript.

TypeScript

var encrypted: boolean = true;

class myStack extends cdk.Stack {
 bucket: s3.Bucket;
 // ...
}

function makeEnv(account: string, region: string) : object {
 // ...
}

JavaScript

var encrypted = true;

class myStack extends cdk.Stack {
 bucket = undefined;
 // ...
}

function makeEnv(account, region) {
 // ...
}

Using TypeScript examples with JavaScript Version 2 291

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

In TypeScript, interfaces are used to give bundles of required and optional properties, and their
types, a name. You can then use the interface name as a type annotation. TypeScript will make sure
that the object you use as, for example, an argument to a function has the required properties of
the right types.

interface myFuncProps {
 code: lambda.Code,
 handler?: string
}

JavaScript does not have an interface feature, so once you've removed the type annotations, delete
the interface declarations entirely.

When a function or method returns a general-purpose type (such as object), but you want to
treat that value as a more specific child type to access properties or methods that are not part of
the more general type's interface, TypeScript lets you cast the value using as followed by a type or
interface name. JavaScript doesn't support (or need) this, so simply remove as and the following
identifier. A less-common cast syntax is to use a type name in brackets, <LikeThis>; these casts,
too, must be removed.

Finally, TypeScript supports the access modifiers public, protected, and private for members
of classes. All class members in JavaScript are public. Simply remove these modifiers wherever you
see them.

Knowing how to identify and remove these TypeScript features goes a long way toward adapting
short TypeScript snippets to JavaScript. But it may be impractical to convert longer TypeScript
examples in this fashion, since they are more likely to use other TypeScript features. For these
situations, we recommend Sucrase. Sucrase won't complain if code uses an undefined variable, for
example, as tsc would. If it is syntactically valid, then with few exceptions, Sucrase can translate it
to JavaScript. This makes it particularly valuable for converting snippets that may not be runnable
on their own.

Migrating to TypeScript

Many JavaScript developers move to TypeScript as their projects get larger and more complex.
TypeScript is a superset of JavaScript—all JavaScript code is valid TypeScript code, so no changes
to your code are required—and it is also a supported AWS CDK language. Type annotations and
other TypeScript features are optional and can be added to your AWS CDK app as you find value in

Migrating to TypeScript Version 2 292

https://github.com/alangpierce/sucrase
https://www.typescriptlang.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

them. TypeScript also gives you early access to new JavaScript features, such as optional chaining
and nullish coalescing, before they're finalized—and without requiring that you upgrade Node.js.

TypeScript's "shape-based" interfaces, which define bundles of required and optional properties
(and their types) within an object, allow common mistakes to be caught while you're writing the
code, and make it easier for your IDE to provide robust autocomplete and other real-time coding
advice.

Coding in TypeScript does involve an additional step: compiling your app with the TypeScript
compiler, tsc. For typical AWS CDK apps, compilation requires a few seconds at most.

The easiest way to migrate an existing JavaScript AWS CDK app to TypeScript is to create a new
TypeScript project using cdk init app --language typescript, then copy your source files
(and any other necessary files, such as assets like AWS Lambda function source code) to the new
project. Rename your JavaScript files to end in .ts and begin developing in TypeScript.

Working with the AWS CDK in Python

Python is a fully-supported client language for the AWS Cloud Development Kit (AWS CDK) and is
considered stable. Working with the AWS CDK in Python uses familiar tools, including the standard
Python implementation (CPython), virtual environments with virtualenv, and the Python
package installer pip. The modules comprising the AWS Construct Library are distributed via
pypi.org. The Python version of the AWS CDK even uses Python-style identifiers (for example,
snake_case method names).

You can use any editor or IDE. Many AWS CDK developers use Visual Studio Code (or its open-
source equivalent VSCodium), which has good support for Python via an official extension. The
IDLE editor included with Python will suffice to get started. The Python modules for the AWS CDK
do have type hints, which are useful for a linting tool or an IDE that supports type validation.

Topics

• Get started with Python

• Creating a project

• Managing AWS Construct Library modules

• Managing dependencies in Python

• AWS CDK idioms in Python

• Synthesizing and deploying

In Python Version 2 293

https://pypi.org/search/?q=aws-cdk
https://code.visualstudio.com/
https://vscodium.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Get started with Python

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

Python AWS CDK applications require Python 3.6 or later. If you don't already have it installed,
download a compatible version for your operating system at python.org. If you run Linux, your
system may have come with a compatible version, or you may install it using your distro's package
manager (yum, apt, etc.). Mac users may be interested in Homebrew, a Linux-style package
manager for macOS.

Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

The Python package installer, pip, and virtual environment manager, virtualenv, are also
required. Windows installations of compatible Python versions include these tools. On Linux, pip
and virtualenv may be provided as separate packages in your package manager. Alternatively,
you may install them with the following commands:

python -m ensurepip --upgrade
python -m pip install --upgrade pip
python -m pip install --upgrade virtualenv

If you encounter a permission error, run the above commands with the --user flag so that the
modules are installed in your user directory, or use sudo to obtain the permissions to install the
modules system-wide.

Note

It is common for Linux distros to use the executable name python3 for Python 3.x, and
have python refer to a Python 2.x installation. Some distros have an optional package
you can install that makes the python command refer to Python 3. Failing that, you can
adjust the command used to run your application by editing cdk.json in the project's
main directory.

Get started with Python Version 2 294

https://www.python.org/downloads/
https://www.python.org/
https://brew.sh/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

On Windows, you may want to invoke Python (and pip) using the py executable, the
>Python launcher for Windows. Among other things, the launcher allows you to easily
specify which installed version of Python you want to use.
If typing python at the command line results in a message about installing Python from
the Windows Store, even after installing a Windows version of Python, open Windows'
Manage App Execution Aliases settings panel and turn off the two App Installer entries for
Python.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify python:

mkdir my-project
cd my-project
cdk init app --language python

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a Python identifier; for example, it should not start
with a number or contain spaces.

To work with the new project, activate its virtual environment. This allows the project's
dependencies to be installed locally in the project folder, instead of globally.

source .venv/bin/activate

Note

You may recognize this as the Mac/Linux command to activate a virtual environment. The
Python templates include a batch file, source.bat, that allows the same command to be
used on Windows. The traditional Windows command, .venv\Scripts\activate.bat,
works, too.

Creating a project Version 2 295

https://docs.python.org/3/using/windows.html#launcher

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you initialized your AWS CDK project using CDK Toolkit v1.70.0 or earlier, your virtual
environment is in the .env directory instead of .venv.

Important

Activate the project's virtual environment whenever you start working on it. Otherwise,
you won't have access to the modules installed there, and modules you install will go in the
Python global module directory (or will result in a permission error).

After activating your virtual environment for the first time, install the app's standard dependencies:

python -m pip install -r requirements.txt

Managing AWS Construct Library modules

Use the Python package installer, pip, to install and update AWS Construct Library modules for
use by your apps, as well as other packages you need. pip also installs the dependencies for those
modules automatically. If your system does not recognize pip as a standalone command, invoke
pip as a Python module, like this:

python -m pip PIP-COMMAND

Most AWS CDK constructs are in aws-cdk-lib. Experimental modules are in separate modules
named like aws-cdk.SERVICE-NAME.alpha. The service name includes an aws prefix. If you're
unsure of a module's name, search for it at PyPI. For example, the command below installs the AWS
CodeStar library.

python -m pip install aws-cdk.aws-codestar-alpha

Some services' constructs are in more than one namespace. For example, besides aws-cdk.aws-
route53, there are three additional Amazon Route 53 namespaces, named aws-route53-
targets, aws-route53-patterns, and aws-route53resolver.

Managing AWS Construct Library modules Version 2 296

https://pypi.org/search/?q=aws-cdk

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

The Python edition of the CDK API Reference also shows the package names.

The names used for importing AWS Construct Library modules into your Python code look like the
following.

import aws_cdk.aws_s3 as s3
import aws_cdk.aws_lambda as lambda_

We recommend the following practices when importing AWS CDK classes and AWS Construct
Library modules in your applications. Following these guidelines will help make your code
consistent with other AWS CDK applications as well as easier to understand.

• Generally, import individual classes from top-level aws_cdk.

from aws_cdk import App, Construct

• If you need many classes from the aws_cdk, you may use a namespace alias of cdk instead of
importing individual classes. Avoid doing both.

import aws_cdk as cdk

• Generally, import AWS Construct Libraries using short namespace aliases.

import aws_cdk.aws_s3 as s3

After installing a module, update your project's requirements.txt file, which lists your project's
dependencies. It is best to do this manually rather than using pip freeze. pip freeze captures
the current versions of all modules installed in your Python virtual environment, which can be
useful when bundling up a project to be run elsewhere.

Usually, though, your requirements.txt should list only top-level dependencies (modules that
your app depends on directly) and not the dependencies of those libraries. This strategy makes
updating your dependencies simpler.

Managing AWS Construct Library modules Version 2 297

https://docs.aws.amazon.com/cdk/api/v2/python/index.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can edit requirements.txt to allow upgrades; simply replace the == preceding a version
number with ~= to allow upgrades to a higher compatible version, or remove the version
requirement entirely to specify the latest available version of the module.

With requirements.txt edited appropriately to allow upgrades, issue this command to upgrade
your project's installed modules at any time:

pip install --upgrade -r requirements.txt

Managing dependencies in Python

In Python, you specify dependencies by putting them in requirements.txt for applications or
setup.py for construct libraries. Dependencies are then managed with the PIP tool. PIP is invoked
in one of the following ways:

pip command options
python -m pip command options

The python -m pip invocation works on most systems; pip requires that PIP's executable be on the
system path. If pip doesn't work, try replacing it with python -m pip.

The cdk init --language python command creates a virtual environment for your new project. This
lets each project have its own versions of dependencies, and also a basic requirements.txt file.
You must activate this virtual environment by running source .venv/bin/activate each time you
begin working with the project.

CDK applications

The following is an example requirements.txt file. Because PIP does not have a dependency-
locking feature, we recommend that you use the == operator to specify exact versions for all
dependencies, as shown here.

aws-cdk-lib==2.14.0
aws-cdk.aws-appsync-alpha==2.10.0a0

Installing a module with pip install does not automatically add it to requirements.txt. You
must do that yourself. If you want to upgrade to a later version of a dependency, edit its version
number in requirements.txt.

Managing dependencies in Python Version 2 298

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To install or update your project's dependencies after creating or editing requirements.txt, run
the following:

python -m pip install -r requirements.txt

Tip

The pip freeze command outputs the versions of all installed dependencies in a format
that can be written to a text file. This can be used as a requirements file with pip install
-r. This file is convenient for pinning all dependencies (including transitive ones) to the
exact versions that you tested with. To avoid problems when upgrading packages later, use
a separate file for this, such as freeze.txt (not requirements.txt). Then, regenerate it
when you upgrade your project's dependencies.

Third-party construct libraries

In libraries, dependencies are specified in setup.py, so that transitive dependencies are
automatically downloaded when the package is consumed by an application. Otherwise,
every application that wants to use your package needs to copy your dependencies into their
requirements.txt. An example setup.py is shown here.

from setuptools import setup

setup(
 name='my-package',
 version='0.0.1',
 install_requires=[
 'aws-cdk-lib==2.14.0',
],
 ...
)

To work on the package for development, create or activate a virtual environment, then run the
following command.

python -m pip install -e .

Managing dependencies in Python Version 2 299

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Although PIP automatically installs transitive dependencies, there can only be one installed copy
of any one package. The version that is specified highest in the dependency tree is selected;
applications always have the last word in what version of packages get installed.

AWS CDK idioms in Python

Language conflicts

In Python, lambda is a language keyword, so you cannot use it as a name for the AWS Lambda
construct library module or Lambda functions. The Python convention for such conflicts is to use a
trailing underscore, as in lambda_, in the variable name.

By convention, the second argument to AWS CDK constructs is named id. When writing your own
stacks and constructs, calling a parameter id "shadows" the Python built-in function id(), which
returns an object's unique identifier. This function isn't used very often, but if you should happen to
need it in your construct, rename the argument, for example construct_id.

Arguments and properties

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the resources it creates. Other classes and methods also
use the "bundle of attributes" pattern for arguments.

scope and id should always be passed as positional arguments, not keyword arguments, because
their names change if the construct accepts a property named scope or id.

In Python, props are expressed as keyword arguments. If an argument contains nested data
structures, these are expressed using a class which takes its own keyword arguments at
instantiation. The same pattern is applied to other method calls that take a structured argument.

For example, in a Amazon S3 bucket's add_lifecycle_rule method, the transitions property
is a list of Transition instances.

bucket.add_lifecycle_rule(
 transitions=[
 Transition(
 storage_class=StorageClass.GLACIER,
 transition_after=Duration.days(10)
)

AWS CDK idioms in Python Version 2 300

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

]
)

When extending a class or overriding a method, you may want to accept additional arguments for
your own purposes that are not understood by the parent class. In this case you should accept the
arguments you don't care about using the **kwargs idiom, and use keyword-only arguments to
accept the arguments you're interested in. When calling the parent's constructor or the overridden
method, pass only the arguments it is expecting (often just **kwargs). Passing arguments that the
parent class or method doesn't expect results in an error.

class MyConstruct(Construct):
 def __init__(self, id, *, MyProperty=42, **kwargs):
 super().__init__(self, id, **kwargs)
 # ...

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. This won't cause any technical issues for users of your construct or method
(since your property isn't passed "up the chain," the parent class or overridden method will simply
use a default value) but it may cause confusion. You can avoid this potential problem by naming
your properties so they clearly belong to your construct. If there are many new properties, bundle
them into an appropriately-named class and pass it as a single keyword argument.

Missing values

The AWS CDK uses None to represent missing or undefined values. When working with **kwargs,
use the dictionary's get() method to provide a default value if a property is not provided. Avoid
using kwargs[...], as this raises KeyError for missing values.

encrypted = kwargs.get("encrypted") # None if no property "encrypted" exists
encrypted = kwargs.get("encrypted", False) # specify default of False if property is
 missing

Some AWS CDK methods (such as tryGetContext() to get a runtime context value) may return
None, which you will need to check explicitly.

Using interfaces

Python doesn't have an interface feature as some other languages do, though it does have
abstract base classes, which are similar. (If you're not familiar with interfaces, Wikipedia has a

AWS CDK idioms in Python Version 2 301

https://docs.python.org/3/library/abc.html
https://en.wikipedia.org/wiki/Interface_(computing)#In_object-oriented_languages

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

good introduction.) TypeScript, the language in which the AWS CDK is implemented, does provide
interfaces, and constructs and other AWS CDK objects often require an object that adheres to a
particular interface, rather than inheriting from a particular class. So the AWS CDK provides its own
interface feature as part of the JSII layer.

To indicate that a class implements a particular interface, you can use the @jsii.implements
decorator:

from aws_cdk import IAspect, IConstruct
import jsii

@jsii.implements(IAspect)
class MyAspect():
 def visit(self, node: IConstruct) -> None:
 print("Visited", node.node.path)

Type pitfalls

Python uses dynamic typing, where all variables may refer to a value of any type. Parameters and
return values may be annotated with types, but these are "hints" and are not enforced. This means
that in Python, it is easy to pass the incorrect type of value to a AWS CDK construct. Instead of
getting a type error during build, as you would from a statically-typed language, you may instead
get a runtime error when the JSII layer (which translates between Python and the AWS CDK's
TypeScript core) is unable to deal with the unexpected type.

In our experience, the type errors Python programmers make tend to fall into these categories.

• Passing a single value where a construct expects a container (Python list or dictionary) or vice
versa.

• Passing a value of a type associated with a layer 1 (CfnXxxxxx) construct to a L2 or L3 construct,
or vice versa.

The AWS CDK Python modules do include type annotations, so you can use tools that support
them to help with types. If you are not using an IDE that supports these, such as PyCharm, you
might want to call the MyPy type validator as a step in your build process. There are also runtime
type checkers that can improve error messages for type-related errors.

AWS CDK idioms in Python Version 2 302

https://en.wikipedia.org/wiki/Interface_(computing)#In_object-oriented_languages
https://github.com/aws/jsii
https://www.jetbrains.com/pycharm/
http://mypy-lang.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Synthesizing and deploying

The stacks defined in your AWS CDK app can be synthesized and deployed individually or together
using the commands below. Generally, you should be in your project's main directory when you
issue them.

• cdk synth: Synthesizes a AWS CloudFormation template from one or more of the stacks in your
AWS CDK app.

• cdk deploy: Deploys the resources defined by one or more of the stacks in your AWS CDK app
to AWS.

You can specify the names of multiple stacks to be synthesized or deployed in a single command. If
your app defines only one stack, you do not need to specify it.

cdk synth # app defines single stack
cdk deploy Happy Grumpy # app defines two or more stacks; two are deployed

You may also use the wildcards * (any number of characters) and ? (any single character) to identify
stacks by pattern. When using wildcards, enclose the pattern in quotes. Otherwise, the shell may
try to expand it to the names of files in the current directory before they are passed to the AWS
CDK Toolkit.

cdk synth "Stack?" # Stack1, StackA, etc.
cdk deploy "*Stack" # PipeStack, LambdaStack, etc.

Tip

You don't need to explicitly synthesize stacks before deploying them; cdk deploy
performs this step for you to make sure your latest code gets deployed.

For full documentation of the cdk command, see the section called “AWS CDK Toolkit”.

Working with the AWS CDK in Java

Java is a fully-supported client language for the AWS CDK and is considered stable. You can
develop AWS CDK applications in Java using familiar tools, including the JDK (Oracle's, or an
OpenJDK distribution such as Amazon Corretto) and Apache Maven.

Synthesizing and deploying Version 2 303

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK supports Java 8 and later. We recommend using the latest version you can, however,
because later versions of the language include improvements that are particularly convenient
for developing AWS CDK applications. For example, Java 9 introduces the Map.of() method (a
convenient way to declare hashmaps that would be written as object literals in TypeScript). Java 10
introduces local type inference using the var keyword.

Note

Most code examples in this Developer Guide work with Java 8. A few examples use
Map.of(); these examples include comments noting that they require Java 9.

You can use any text editor, or a Java IDE that can read Maven projects, to work on your AWS CDK
apps. We provide Eclipse hints in this Guide, but IntelliJ IDEA, NetBeans, and other IDEs can import
Maven projects and can be used for developing AWS CDK applications in Java.

It is possible to write AWS CDK applications in JVM-hosted languages other than Java (for example,
Kotlin, Groovy, Clojure, or Scala), but the experience may not be particularly idiomatic, and we are
unable to provide any support for these languages.

Topics

• Get started with Java

• Creating a project

• Managing AWS Construct Library modules

• Managing dependencies in Java

• AWS CDK idioms in Java

• Building, synthesizing, and deploying

Get started with Java

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

Java AWS CDK applications require Java 8 (v1.8) or later. We recommend Amazon Corretto, but you
can use any OpenJDK distribution or Oracle's JDK. You will also need Apache Maven 3.5 or later.
You can also use tools such as Gradle, but the application skeletons generated by the AWS CDK
Toolkit are Maven projects.

Get started with Java Version 2 304

https://www.eclipse.org/downloads/
https://aws.amazon.com/corretto/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify java:

mkdir my-project
cd my-project
cdk init app --language java

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a Java identifier; for example, it should not start
with a number or contain spaces.

The resulting project includes a reference to the software.amazon.awscdk Maven package. It
and its dependencies are automatically installed by Maven.

If you are using an IDE, you can now open or import the project. In Eclipse, for example, choose File
> Import > Maven > Existing Maven Projects. Make sure that the project settings are set to use
Java 8 (1.8).

Managing AWS Construct Library modules

Use Maven to install AWS Construct Library packages, which are in the group
software.amazon.awscdk. Most constructs are in the artifact aws-cdk-lib, which is added
to new Java projects by default. Modules for services whose higher-level CDK support is still
being developed are in separate "experimental" packages, named with a short version (no AWS or
Amazon prefix) of their service's name. Search the Maven Central Repository to find the names of
all AWS CDK and AWS Construct Module libraries.

Note

The Java edition of the CDK API Reference also shows the package names.

Creating a project Version 2 305

https://search.maven.org/search?q=software.amazon.awscdk
https://docs.aws.amazon.com/cdk/api/v2/java/index.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Some services' AWS Construct Library support is in more than one namespace. For example,
Amazon Route 53 has its functionality divided into software.amazon.awscdk.route53,
route53-patterns, route53resolver, and route53-targets.

The main AWS CDK package is imported in Java code as software.amazon.awscdk.
Modules for the various services in the AWS Construct Library live under
software.amazon.awscdk.services and are named similarly to their Maven package name.
For example, the Amazon S3 module's namespace is software.amazon.awscdk.services.s3.

We recommend writing a separate Java import statement for each AWS Construct Library class
you use in each of your Java source files, and avoiding wildcard imports. You can always use a
type's fully-qualified name (including its namespace) without an import statement.

If your application depends on an experimental package, edit your project's pom.xml and add
a new <dependency> element in the <dependencies> container. For example, the following
<dependency> element specifies the CodeStar experimental construct library module:

<dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>codestar-alpha</artifactId>
 <version>2.0.0-alpha.10</version>
</dependency>

Tip

If you use a Java IDE, it probably has features for managing Maven dependencies. We
recommend editing pom.xml directly, however, unless you are absolutely sure the IDE's
functionality matches what you'd do by hand.

Managing dependencies in Java

In Java, dependencies are specified in pom.xml and installed using Maven. The <dependencies>
container includes a <dependency> element for each package. Following is a section of pom.xml
for a typical CDK Java app.

<dependencies>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>

Managing dependencies in Java Version 2 306

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 <artifactId>aws-cdk-lib</artifactId>
 <version>2.14.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>appsync-alpha</artifactId>
 <version>2.10.0-alpha.0</version>
 </dependency>
</dependencies>

Tip

Many Java IDEs have integrated Maven support and visual pom.xml editors, which you may
find convenient for managing dependencies.

Maven does not support dependency locking. Although it's possible to specify version ranges in
pom.xml, we recommend you always use exact versions to keep your builds repeatable.

Maven automatically installs transitive dependencies, but there can only be one installed copy of
each package. The version that is specified highest in the POM tree is selected; applications always
have the last word in what version of packages get installed.

Maven automatically installs or updates your dependencies whenever you build (mvn compile) or
package (mvn package) your project. The CDK Toolkit does this automatically every time you run
it, so generally there is no need to manually invoke Maven.

AWS CDK idioms in Java

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the resources it creates. Other classes and methods also
use the "bundle of attributes" pattern for arguments.

In Java, props are expressed using the Builder pattern. Each construct type has a corresponding
props type; for example, the Bucket construct (which represents an Amazon S3 bucket) takes as its
props an instance of BucketProps.

AWS CDK idioms in Java Version 2 307

https://en.wikipedia.org/wiki/Builder_pattern

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The BucketProps class (like every AWS Construct Library props class) has an inner class called
Builder. The BucketProps.Builder type offers methods to set the various properties of a
BucketProps instance. Each method returns the Builder instance, so the method calls can be
chained to set multiple properties. At the end of the chain, you call build() to actually produce
the BucketProps object.

Bucket bucket = new Bucket(this, "MyBucket", new BucketProps.Builder()
 .versioned(true)
 .encryption(BucketEncryption.KMS_MANAGED)
 .build());

Constructs, and other classes that take a props-like object as their final argument, offer a shortcut.
The class has a Builder of its own that instantiates it and its props object in one step. This way,
you don't need to explicitly instantiate (for example) both BucketProps and a Bucket—and you
don't need an import for the props type.

Bucket bucket = Bucket.Builder.create(this, "MyBucket")
 .versioned(true)
 .encryption(BucketEncryption.KMS_MANAGED)
 .build();

When deriving your own construct from an existing construct, you may want to accept additional
properties. We recommend that you follow these builder patterns. However, this isn't as simple as
subclassing a construct class. You must provide the moving parts of the two new Builder classes
yourself. You may prefer to simply have your construct accept one or more additional arguments.
You should provide additional constructors when an argument is optional.

Generic structures

In some APIs, the AWS CDK uses JavaScript arrays or untyped objects as input to a method. (See,
for example, AWS CodeBuild's BuildSpec.fromObject() method.) In Java, these objects are
represented as java.util.Map<String, Object>. In cases where the values are all strings, you
can use Map<String, String>.

Java does not provide a way to write literals for such containers like some other languages do. In
Java 9 and later, you can use java.util.Map.of() to conveniently define maps of up to ten
entries inline with one of these calls.

java.util.Map.of(

AWS CDK idioms in Java Version 2 308

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_codebuild.BuildSpec.html#static-fromwbrobjectvalue
https://docs.oracle.com/javase/9/docs/api/java/util/Map.html#ofEntries-java.util.Map.Entry...-

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "base-directory", "dist",
 "files", "LambdaStack.template.json"
)

To create maps with more than ten entries, use java.util.Map.ofEntries().

If you are using Java 8, you could provide your own methods similar to to these.

JavaScript arrays are represented as List<Object> or List<String> in Java. The method
java.util.Arrays.asList is convenient for defining short Lists.

List<String> cmds = Arrays.asList("cd lambda", "npm install", "npm install typescript")

Missing values

In Java, missing values in AWS CDK objects such as props are represented by null. You must
explicitly test any value that could be null to make sure it contains a value before doing anything
with it. Java does not have "syntactic sugar" to help handle null values as some other languages
do. You may find Apache ObjectUtil's defaultIfNull and firstNonNull useful in some situations.
Alternatively, write your own static helper methods to make it easier to handle potentially null
values and make your code more readable.

Building, synthesizing, and deploying

The AWS CDK automatically compiles your app before running it. However, it can be useful to
build your app manually to check for errors and to run tests. You can do this in your IDE (for
example, press Control-B in Eclipse) or by issuing mvn compile at a command prompt while in
your project's root directory.

Run any tests you've written by running mvn test at a command prompt.

The stacks defined in your AWS CDK app can be synthesized and deployed individually or together
using the commands below. Generally, you should be in your project's main directory when you
issue them.

• cdk synth: Synthesizes a AWS CloudFormation template from one or more of the stacks in your
AWS CDK app.

• cdk deploy: Deploys the resources defined by one or more of the stacks in your AWS CDK app
to AWS.

Building, synthesizing, and deploying Version 2 309

https://docs.oracle.com/javase/9/docs/api/java/util/Map.html#ofEntries-java.util.Map.Entry...-
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ObjectUtils.html#defaultIfNull-T-T-
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ObjectUtils.html#firstNonNull-T...-

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can specify the names of multiple stacks to be synthesized or deployed in a single command. If
your app defines only one stack, you do not need to specify it.

cdk synth # app defines single stack
cdk deploy Happy Grumpy # app defines two or more stacks; two are deployed

You may also use the wildcards * (any number of characters) and ? (any single character) to identify
stacks by pattern. When using wildcards, enclose the pattern in quotes. Otherwise, the shell may
try to expand it to the names of files in the current directory before they are passed to the AWS
CDK Toolkit.

cdk synth "Stack?" # Stack1, StackA, etc.
cdk deploy "*Stack" # PipeStack, LambdaStack, etc.

Tip

You don't need to explicitly synthesize stacks before deploying them; cdk deploy
performs this step for you to make sure your latest code gets deployed.

For full documentation of the cdk command, see the section called “AWS CDK Toolkit”.

Working with the AWS CDK in C#

.NET is a fully-supported client language for the AWS CDK and is considered stable. C# is the
main .NET language for which we provide examples and support. You can choose to write AWS CDK
applications in other .NET languages, such as Visual Basic or F#, but AWS offers limited support for
using these languages with the CDK.

You can develop AWS CDK applications in C# using familiar tools including Visual Studio, Visual
Studio Code, the dotnet command, and the NuGet package manager. The modules comprising the
AWS Construct Library are distributed via nuget.org.

We suggest using Visual Studio 2019 (any edition) on Windows to develop AWS CDK apps in C#.

Topics

• Get started with C#

• Creating a project

In C# Version 2 310

https://www.nuget.org/packages?q=amazon.cdk.aws
https://visualstudio.microsoft.com/downloads/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Managing AWS Construct Library modules

• Managing dependencies in C#

• AWS CDK idioms in C#

• Building, synthesizing, and deploying

Get started with C#

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

C# AWS CDK applications require .NET Core v3.1 or later, available here.

The .NET toolchain includes dotnet, a command-line tool for building and running .NET
applications and managing NuGet packages. Even if you work mainly in Visual Studio, this
command can be useful for batch operations and for installing AWS Construct Library packages.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify csharp:

mkdir my-project
cd my-project
cdk init app --language csharp

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a C# identifier; for example, it should not start with
a number or contain spaces.

The resulting project includes a reference to the Amazon.CDK.Lib NuGet package. It and its
dependencies are installed automatically by NuGet.

Managing AWS Construct Library modules

The .NET ecosystem uses the NuGet package manager. The main CDK package, which contains the
core classes and all stable service constructs, is Amazon.CDK.Lib. Experimental modules, where

Get started with C# Version 2 311

https://dotnet.microsoft.com/download/dotnet-core/3.1

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new functionality is under active development, are named like Amazon.CDK.AWS.SERVICE-
NAME.Alpha, where the service name is a short name without an AWS or Amazon prefix. For
example, the NuGet package name for the AWS IoT module is Amazon.CDK.AWS.IoT.Alpha. If
you can't find a package you want, search Nuget.org.

Note

The .NET edition of the CDK API Reference also shows the package names.

Some services' AWS Construct Library support is in more than one module. For example, AWS IoT
has a second module named Amazon.CDK.AWS.IoT.Actions.Alpha.

The AWS CDK's main module, which you'll need in most AWS CDK apps, is imported in C# code
as Amazon.CDK. Modules for the various services in the AWS Construct Library live under
Amazon.CDK.AWS. For example, the Amazon S3 module's namespace is Amazon.CDK.AWS.S3.

We recommend writing C# using directives for the CDK core constructs and for each AWS service
you use in each of your C# source files. You may find it convenient to use an alias for a namespace
or type to help resolve name conflicts. You can always use a type's fully-qualfiied name (including
its namespace) without a using statement.

Managing dependencies in C#

In C# AWS CDK apps, you manage dependencies using NuGet. NuGet has four standard, mostly
equivalent interfaces. Use the one that suits your needs and working style. You can also use
compatible tools, such as Paket or MyGet or even edit the .csproj file directly.

NuGet does not let you specify version ranges for dependencies. Every dependency is pinned to a
specific version.

After updating your dependencies, Visual Studio will use NuGet to retrieve the specified versions
of each package the next time you build. If you are not using Visual Studio, use the dotnet restore
command to update your dependencies.

Editing the project file directly

Your project's .csproj file contains an <ItemGroup> container that lists your dependencies as
<PackageReference elements.

Managing dependencies in C# Version 2 312

https://www.nuget.org/packages?q=amazon.cdk.aws
https://docs.aws.amazon.com/cdk/api/latest/dotnet/api/index.html
https://fsprojects.github.io/Paket/
https://www.myget.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

<ItemGroup>
 <PackageReference Include="Amazon.CDK.Lib" Version="2.14.0" />
 <PackageReference Include="Constructs" Version="%constructs-version%" />
</ItemGroup>

The Visual Studio NuGet GUI

Visual Studio's NuGet tools are accessible from Tools > NuGet Package Manager > Manage NuGet
Packages for Solution. Use the Browse tab to find the AWS Construct Library packages you want
to install. You can choose the desired version, including prerelease versions of your modules, and
add them to any of the open projects.

Note

All AWS Construct Library modules deemed "experimental" (see the section called
“Versioning”) are flagged as prerelease in NuGet and have an alpha name suffix.

Managing dependencies in C# Version 2 313

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Look on the Updates page to install new versions of your packages.

The NuGet console

The NuGet console is a PowerShell-based interface to NuGet that works in the context of a Visual
Studio project. You can open it in Visual Studio by choosing Tools > NuGet Package Manager >
Package Manager Console. For more information about using this tool, see Install and Manage
Packages with the Package Manager Console in Visual Studio.

Managing dependencies in C# Version 2 314

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-powershell
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-powershell

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The dotnet command

The dotnet command is the primary command line tool for working with Visual Studio C#
projects. You can invoke it from any Windows command prompt. Among its many capabilities,
dotnet can add NuGet dependencies to a Visual Studio project.

Assuming you're in the same directory as the Visual Studio project (.csproj) file, issue a command
like the following to install a package. Because the main CDK library is included when you create
a project, you only need to explicitly install experimental modules. Experimental modules require
you to specify an explicit version number.

dotnet add package Amazon.CDK.AWS.IoT.Alpha -v VERSION-NUMBER

You can issue the command from another directory. To do so, include the path to the project file, or
to the directory that contains it, after the add keyword. The following example assumes that you
are in your AWS CDK project's main directory.

dotnet add src/PROJECT-DIR package Amazon.CDK.AWS.IoT.Alpha -v VERSION-NUMBER

To install a specific version of a package, include the -v flag and the desired version.

To update a package, issue the same dotnet add command you used to install it. For
experimental modules, again, you must specify an explicit version number.

For more information about managing packages using the dotnet command, see Install and
Manage Packages Using the dotnet CLI.

The nuget command

The nuget command line tool can install and update NuGet packages. However, it requires your
Visual Studio project to be set up differently from the way cdk init sets up projects. (Technical
details: nuget works with Packages.config projects, while cdk init creates a newer-style
PackageReference project.)

We do not recommend the use of the nuget tool with AWS CDK projects created by cdk init. If
you are using another type of project, and want to use nuget, see the NuGet CLI Reference.

Managing dependencies in C# Version 2 315

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-dotnet-cli
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-dotnet-cli
https://docs.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK idioms in C#

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the resources it creates. Other classes and methods also
use the "bundle of attributes" pattern for arguments.

In C#, props are expressed using a props type. In idiomatic C# fashion, we can use an object
initializer to set the various properties. Here we're creating an Amazon S3 bucket using the Bucket
construct; its corresponding props type is BucketProps.

var bucket = new Bucket(this, "MyBucket", new BucketProps {
 Versioned = true
});

Tip

Add the package Amazon.JSII.Analyzers to your project to get required-values
checking in your props definitions inside Visual Studio.

When extending a class or overriding a method, you may want to accept additional props for your
own purposes that are not understood by the parent class. To do this, subclass the appropriate
props type and add the new attributes.

// extend BucketProps for use with MimeBucket
class MimeBucketProps : BucketProps {
 public string MimeType { get; set; }
}

// hypothetical bucket that enforces MIME type of objects inside it
class MimeBucket : Bucket {
 public MimeBucket(readonly Construct scope, readonly string id, readonly
 MimeBucketProps props=null) : base(scope, id, props) {
 // ...
 }
}

AWS CDK idioms in C# Version 2 316

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// instantiate our MimeBucket class
var bucket = new MimeBucket(this, "MyBucket", new MimeBucketProps {
 Versioned = true,
 MimeType = "image/jpeg"
});

When calling the parent class's initializer or overridden method, you can generally pass the props
you received. The new type is compatible with its parent, and extra props you added are ignored.

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. This won't cause any technical issues using your construct or method (since
your property isn't passed "up the chain," the parent class or overridden method will simply use a
default value) but it may cause confusion for your construct's users. You can avoid this potential
problem by naming your properties so they clearly belong to your construct. If there are many new
properties, bundle them into an appropriately-named class and pass them as a single property.

Generic structures

In some APIs, the AWS CDK uses JavaScript arrays or untyped objects as input to a method. (See,
for example, AWS CodeBuild's BuildSpec.fromObject() method.) In C#, these objects are
represented as System.Collections.Generic.Dictionary<String, Object>. In cases
where the values are all strings, you can use Dictionary<String, String>. JavaScript arrays
are represented as object[] or string[] array types in C#.

Tip

You might define short aliases to make it easier to work with these specific dictionary
types.

using StringDict = System.Collections.Generic.Dictionary<string, string>;
using ObjectDict = System.Collections.Generic.Dictionary<string, object>;

Missing values

In C#, missing values in AWS CDK objects such as props are represented by null. The null-
conditional member access operator ?. and the null coalescing operator ?? are convenient for
working with these values.

AWS CDK idioms in C# Version 2 317

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_codebuild.BuildSpec.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// mimeType is null if props is null or if props.MimeType is null
string mimeType = props?.MimeType;

// mimeType defaults to text/plain. either props or props.MimeType can be null
string MimeType = props?.MimeType ?? "text/plain";

Building, synthesizing, and deploying

The AWS CDK automatically compiles your app before running it. However, it can be useful to build
your app manually to check for errors and run tests. You can do this by pressing F6 in Visual Studio
or by issuing dotnet build src from the command line, where src is the directory in your
project directory that contains the Visual Studio Solution (.sln) file.

The stacks defined in your AWS CDK app can be synthesized and deployed individually or together
using the commands below. Generally, you should be in your project's main directory when you
issue them.

• cdk synth: Synthesizes a AWS CloudFormation template from one or more of the stacks in your
AWS CDK app.

• cdk deploy: Deploys the resources defined by one or more of the stacks in your AWS CDK app
to AWS.

You can specify the names of multiple stacks to be synthesized or deployed in a single command. If
your app defines only one stack, you do not need to specify it.

cdk synth # app defines single stack
cdk deploy Happy Grumpy # app defines two or more stacks; two are deployed

You may also use the wildcards * (any number of characters) and ? (any single character) to identify
stacks by pattern. When using wildcards, enclose the pattern in quotes. Otherwise, the shell may
try to expand it to the names of files in the current directory before they are passed to the AWS
CDK Toolkit.

cdk synth "Stack?" # Stack1, StackA, etc.
cdk deploy "*Stack" # PipeStack, LambdaStack, etc.

Building, synthesizing, and deploying Version 2 318

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Tip

You don't need to explicitly synthesize stacks before deploying them; cdk deploy
performs this step for you to make sure your latest code gets deployed.

For full documentation of the cdk command, see the section called “AWS CDK Toolkit”.

Working with the AWS CDK in Go

Go is a fully-supported client language for the AWS Cloud Development Kit (AWS CDK) and is
considered stable. Working with the AWS CDK in Go uses familiar tools. The Go version of the AWS
CDK even uses Go-style identifiers.

Unlike the other languages the CDK supports, Go is not a traditional object-oriented programming
language. Go uses composition where other languages often leverage inheritance. We have tried
to employ idiomatic Go approaches as much as possible, but there are places where the CDK may
differ.

This topic provides guidance when working with the AWS CDK in Go. See the announcement blog
post for a walkthrough of a simple Go project for the AWS CDK.

Topics

• Get started with Go

• Creating a project

• Managing AWS Construct Library modules

• Managing dependencies in Go

• AWS CDK idioms in Go

• Building, synthesizing, and deploying

Get started with Go

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

The Go bindings for the AWS CDK use the standard Go toolchain, v1.18 or later. You can use the
editor of your choice.

In Go Version 2 319

https://aws.amazon.com/blogs/developer/getting-started-with-the-aws-cloud-development-kit-and-go/
https://aws.amazon.com/blogs/developer/getting-started-with-the-aws-cloud-development-kit-and-go/
https://golang.org/dl/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify go:

mkdir my-project
cd my-project
cdk init app --language go

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a Go identifier; for example, it should not start with
a number or contain spaces.

The resulting project includes a reference to the core AWS CDK Go module, github.com/aws/
aws-cdk-go/awscdk/v2, in go.mod. Issue go get to install this and other required modules.

Managing AWS Construct Library modules

In most AWS CDK documentation and examples, the word "module" is often used to refer to AWS
Construct Library modules, one or more per AWS service, which differs from idiomatic Go usage of
the term. The CDK Construct Library is provided in one Go module with the individual Construct
Library modules, which support the various AWS services, provided as Go packages within that
module.

Some services' AWS Construct Library support is in more than one Construct Library module (Go
package). For example, Amazon Route 53 has three Construct Library modules in addition to
the main awsroute53 package, named awsroute53patterns, awsroute53resolver, and
awsroute53targets.

The AWS CDK's core package, which you'll need in most AWS CDK apps, is imported in Go code
as github.com/aws/aws-cdk-go/awscdk/v2. Packages for the various services in the AWS

Creating a project Version 2 320

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Construct Library live under github.com/aws/aws-cdk-go/awscdk/v2. For example, the
Amazon S3 module's namespace is github.com/aws/aws-cdk-go/awscdk/v2/awss3.

import (
 "github.com/aws/aws-cdk-go/awscdk/v2/awss3"
 // ...
)

Once you have imported the Construct Library modules (Go packages) for the services you want to
use in your app, you access constructs in that module using, for example, awss3.Bucket.

Managing dependencies in Go

In Go, dependencies versions are defined in go.mod. The default go.mod is similar to the one
shown here.

module my-package

go 1.16

require (
 github.com/aws/aws-cdk-go/awscdk/v2 v2.16.0
 github.com/aws/constructs-go/constructs/v10 v10.0.5
 github.com/aws/jsii-runtime-go v1.29.0
)

Package names (modules, in Go parlance) are specified by URL with the required version number
appended. Go's module system does not support version ranges.

Issue the go get command to install all required modules and update go.mod. To see a list of
available updates for your dependencies, issue go list -m -u all.

AWS CDK idioms in Go

Field and method names

Field and method names use camel casing (likeThis) in TypeScript, the CDK's language of origin.
In Go, these follow Go conventions, so are Pascal-cased (LikeThis).

Managing dependencies in Go Version 2 321

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Cleaning up

In your main method, use defer jsii.Close() to make sure your CDK app cleans up after itself.

Missing values and pointer conversion

In Go, missing values in AWS CDK objects such as property bundles are represented by nil. Go
doesn't have nullable types; the only type that can contain nil is a pointer. To allow values to be
optional, then, all CDK properties, arguments, and return values are pointers, even for primitive
types. This applies to required values as well as optional ones, so if a required value later becomes
optional, no breaking change in type is needed.

When passing literal values or expressions, use the following helper functions to create pointers to
the values.

• jsii.String

• jsii.Number

• jsii.Bool

• jsii.Time

For consistency, we recommend that you use pointers similarly when defining your own constructs,
even though it may seem more convenient to, for example, receive your construct's id as a string
rather than a pointer to a string.

When dealing with optional AWS CDK values, including primitive values as well as complex types,
you should explicitly test pointers to make sure they are not nil before doing anything with
them. Go does not have "syntactic sugar" to help handle empty or missing values as some other
languages do. However, required values in property bundles and similar structures are guaranteed
to exist (construction fails otherwise), so these values need not be nil-checked.

Constructs and Props

Constructs, which represent one or more AWS resources and their associated attributes, are
represented in Go as interfaces. For example, awss3.Bucket is an interface. Every construct has a
factory function, such as awss3.NewBucket, to return a struct that implements the corresponding
interface.

All factory functions take three arguments: the scope in which the construct is being defined (its
parent in the construct tree), an id, and props, a bundle of key/value pairs that the construct uses

AWS CDK idioms in Go Version 2 322

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

to configure the resources it creates. The "bundle of attributes" pattern is also used elsewhere in
the AWS CDK.

In Go, props are represented by a specific struct type for each construct. For example, an
awss3.Bucket takes a props argument of type awss3.BucketProps. Use a struct literal to write
props arguments.

var bucket = awss3.NewBucket(stack, jsii.String("MyBucket"), &awss3.BucketProps{
 Versioned: jsii.Bool(true),
})

Generic structures

In some places, the AWS CDK uses JavaScript arrays or untyped objects as input to a method. (See,
for example, AWS CodeBuild's BuildSpec.fromObject() method.) In Go, these objects are
represented as slices and an empty interface, respectively.

The CDK provides variadic helper functions such as jsii.Strings for building slices containing
primitive types.

jsii.Strings("One", "Two", "Three")

Developing custom constructs

In Go, it is usually more straightforward to write a new construct than to extend an existing one.
First, define a new struct type, anonymously embedding one or more existing types if extension-
like semantics are desired. Write methods for any new functionality you're adding and the fields
necessary to hold the data they need. Define a props interface if your construct needs one. Finally,
write a factory function NewMyConstruct() to return an instance of your construct.

If you are simply changing some default values on an existing construct or adding a simple
behavior at instantiation, you don't need all that plumbing. Instead, write a factory function that
calls the factory function of the construct you're "extending." In other CDK languages, for example,
you might create a TypedBucket construct that enforces the type of objects in an Amazon S3
bucket by overriding the s3.Bucket type and, in your new type's initializer, adding a bucket policy
that allows only specified filename extensions to be added to the bucket. In Go, it is easier to
simply write a NewTypedBucket that returns an s3.Bucket (instantiated using s3.NewBucket)
to which you have added an appropriate bucket policy. No new construct type is necessary because

AWS CDK idioms in Go Version 2 323

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_codebuild.BuildSpec.html#static-fromwbrobjectvalue

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

the functionality is already available in the standard bucket construct; the new "construct" just
provides a simpler way to configure it.

Building, synthesizing, and deploying

The AWS CDK automatically compiles your app before running it. However, it can be useful to build
your app manually to check for errors and to run tests. You can do this by issuing go build at a
command prompt while in your project's root directory.

Run any tests you've written by running go test at a command prompt.

The stacks defined in your AWS CDK app can be synthesized and deployed individually or together
using the commands below. Generally, you should be in your project's main directory when you
issue them.

• cdk synth: Synthesizes a AWS CloudFormation template from one or more of the stacks in your
AWS CDK app.

• cdk deploy: Deploys the resources defined by one or more of the stacks in your AWS CDK app
to AWS.

You can specify the names of multiple stacks to be synthesized or deployed in a single command. If
your app defines only one stack, you do not need to specify it.

cdk synth # app defines single stack
cdk deploy Happy Grumpy # app defines two or more stacks; two are deployed

You may also use the wildcards * (any number of characters) and ? (any single character) to identify
stacks by pattern. When using wildcards, enclose the pattern in quotes. Otherwise, the shell may
try to expand it to the names of files in the current directory before they are passed to the AWS
CDK Toolkit.

cdk synth "Stack?" # Stack1, StackA, etc.
cdk deploy "*Stack" # PipeStack, LambdaStack, etc.

Tip

You don't need to explicitly synthesize stacks before deploying them; cdk deploy
performs this step for you to make sure your latest code gets deployed.

Building, synthesizing, and deploying Version 2 324

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For full documentation of the cdk command, see the section called “AWS CDK Toolkit”.

Building, synthesizing, and deploying Version 2 325

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Developing AWS CDK applications

Develop AWS Cloud Development Kit (AWS CDK) applications.

Topics

• Customizing constructs from the AWS Construct Library

• Get a value from an environment variable

• Use an AWS CloudFormation value

• Import an existing AWS CloudFormation template

• Get a value from the Systems Manager Parameter Store

• Get a value from AWS Secrets Manager

• Set a CloudWatch alarm

• Save and retrieve context variable values

• Using resources from the AWS CloudFormation Public Registry

Customizing constructs from the AWS Construct Library

Customize constructs from the AWS Construct Library through escape hatches, raw overrides, and
custom resources.

Topics

• Using escape hatches

• Un-escape hatches

• Raw overrides

• Custom resources

Using escape hatches

The AWS Construct Library provides constructs of varying levels of abstraction.

At the highest level, your AWS CDK application and the stacks in it are themselves abstractions of
your entire cloud infrastructure, or significant chunks of it. They can be parameterized to deploy
them in different environments or for different needs.

Customizing constructs Version 2 326

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Abstractions are powerful tools for designing and implementing cloud applications. The AWS CDK
gives you the power not only to build with its abstractions, but also to create new abstractions.
Using the existing open-source L2 and L3 constructs as guidance, you can build your own L2 and L3
constructs to reflect your own organization's best practices and opinions.

No abstraction is perfect, and even good abstractions cannot cover every possible use case. During
development, you may find a construct that almost fits your needs, requiring a small or large
customization.

For this reason, the AWS CDK provides ways to break out of the construct model. This includes
moving to a lower-level abstraction or to a different model entirely. Escape hatches let you escape
the AWS CDK paradigm and customize it in ways that suit your needs. Then, you can wrap your
changes in a new construct to abstract away the underlying complexity and provide a clean API for
other developers.

The following are examples of situations where you can use escape hatches:

• An AWS service feature is available through AWS CloudFormation, but there are no L2 constructs
for it.

• An AWS service feature is available through AWS CloudFormation, and there are L2 constructs
for the service, but these don't yet expose the feature. Because L2 constructs are curated by the
CDK team, they may not be immediately available for new features.

• The feature is not yet available through AWS CloudFormation at all.

To determine whether a feature is available through AWS CloudFormation, see AWS Resource
and Property Types Reference.

Develop escape hatches for L1 constructs

If L2 constructs are not available for the service, you can use the automatically generated L1
constructs. These resources can be recognized by their name starting with Cfn, such as CfnBucket
or CfnRole. You instantiate them exactly as you would use the equivalent AWS CloudFormation
resource.

For example, to instantiate a low-level Amazon S3 bucket L1 with analytics enabled, you would
write something like the following.

Using escape hatches Version 2 327

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

new s3.CfnBucket(this, 'MyBucket', {
 analyticsConfigurations: [
 {
 id: 'Config',
 // ...
 }
]
});

JavaScript

new s3.CfnBucket(this, 'MyBucket', {
 analyticsConfigurations: [
 {
 id: 'Config'
 // ...
 }
]
});

Python

s3.CfnBucket(self, "MyBucket",
 analytics_configurations: [
 dict(id="Config",
 # ...
)
]
)

Java

CfnBucket.Builder.create(this, "MyBucket")
 .analyticsConfigurations(Arrays.asList(java.util.Map.of(// Java 9 or later
 "id", "Config", // ...
))).build();

C#

new CfnBucket(this, 'MyBucket', new CfnBucketProps {

Using escape hatches Version 2 328

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 AnalyticsConfigurations = new Dictionary<string, string>
 {
 ["id"] = "Config",
 // ...
 }
});

There might be rare cases where you want to define a resource that doesn't have a corresponding
CfnXxx class. This could be a new resource type that hasn't yet been published in the
AWS CloudFormation resource specification. In cases like this, you can instantiate the
cdk.CfnResource directly and specify the resource type and properties. This is shown in the
following example.

TypeScript

new cdk.CfnResource(this, 'MyBucket', {
 type: 'AWS::S3::Bucket',
 properties: {
 // Note the PascalCase here! These are CloudFormation identifiers.
 AnalyticsConfigurations: [
 {
 Id: 'Config',
 // ...
 }
]
 }
});

JavaScript

new cdk.CfnResource(this, 'MyBucket', {
 type: 'AWS::S3::Bucket',
 properties: {
 // Note the PascalCase here! These are CloudFormation identifiers.
 AnalyticsConfigurations: [
 {
 Id: 'Config'
 // ...
 }
]
 }

Using escape hatches Version 2 329

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

Python

cdk.CfnResource(self, 'MyBucket',
 type="AWS::S3::Bucket",
 properties=dict(
 # Note the PascalCase here! These are CloudFormation identifiers.
 "AnalyticsConfigurations": [
 {
 "Id": "Config",
 # ...
 }
]
 }
)

Java

CfnResource.Builder.create(this, "MyBucket")
 .type("AWS::S3::Bucket")
 .properties(java.util.Map.of(// Map.of requires Java 9 or later
 // Note the PascalCase here! These are CloudFormation identifiers
 "AnalyticsConfigurations", Arrays.asList(
 java.util.Map.of("Id", "Config", // ...
))))
 .build();

C#

new CfnResource(this, "MyBucket", new CfnResourceProps
{
 Type = "AWS::S3::Bucket",
 Properties = new Dictionary<string, object>
 { // Note the PascalCase here! These are CloudFormation identifiers
 ["AnalyticsConfigurations"] = new Dictionary<string, string>[]
 {
 new Dictionary<string, string> {
 ["Id"] = "Config"
 }
 }
 }

Using escape hatches Version 2 330

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

});

Develop escape hatches for L2 constructs

If an L2 construct is missing a feature or you're trying to work around an issue, you can modify the
L1 construct that's encapsulated by the L2 construct.

All L2 constructs contain within them the corresponding L1 construct. For example, the high-level
Bucket construct wraps the low-level CfnBucket construct. Because the CfnBucket corresponds
directly to the AWS CloudFormation resource, it exposes all features that are available through
AWS CloudFormation.

The basic approach to get access to the L1 construct is to use construct.node.defaultChild
(Python: default_child), cast it to the right type (if necessary), and modify its properties. Again,
let's take the example of a Bucket.

TypeScript

// Get the CloudFormation resource
const cfnBucket = bucket.node.defaultChild as s3.CfnBucket;

// Change its properties
cfnBucket.analyticsConfiguration = [
 {
 id: 'Config',
 // ...
 }
];

JavaScript

// Get the CloudFormation resource
const cfnBucket = bucket.node.defaultChild;

// Change its properties
cfnBucket.analyticsConfiguration = [
 {
 id: 'Config'
 // ...
 }

Using escape hatches Version 2 331

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

];

Python

Get the CloudFormation resource
cfn_bucket = bucket.node.default_child

Change its properties
cfn_bucket.analytics_configuration = [
 {
 "id": "Config",
 # ...
 }
]

Java

// Get the CloudFormation resource
CfnBucket cfnBucket = (CfnBucket)bucket.getNode().getDefaultChild();

cfnBucket.setAnalyticsConfigurations(
 Arrays.asList(java.util.Map.of(// Java 9 or later
 "Id", "Config", // ...
));

C#

// Get the CloudFormation resource
var cfnBucket = (CfnBucket)bucket.Node.DefaultChild;

cfnBucket.AnalyticsConfigurations = new List<object> {
 new Dictionary<string, string>
 {
 ["Id"] = "Config",
 // ...
 }
};

You can also use this object to change AWS CloudFormation options such as Metadata and
UpdatePolicy.

Using escape hatches Version 2 332

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

cfnBucket.cfnOptions.metadata = {
 MetadataKey: 'MetadataValue'
};

JavaScript

cfnBucket.cfnOptions.metadata = {
 MetadataKey: 'MetadataValue'
};

Python

cfn_bucket.cfn_options.metadata = {
 "MetadataKey": "MetadataValue"
}

Java

cfnBucket.getCfnOptions().setMetadata(java.util.Map.of(// Java 9+
 "MetadataKey", "Metadatavalue"));

C#

cfnBucket.CfnOptions.Metadata = new Dictionary<string, object>
{
 ["MetadataKey"] = "Metadatavalue"
};

Un-escape hatches

The AWS CDK also provides the capability to go up an abstraction level, which we might refer to
as an "un-escape" hatch. If you have an L1 construct, such as CfnBucket, you can create a new L2
construct (Bucket in this case) to wrap the L1 construct.

This is convenient when you create an L1 resource but want to use it with a construct that requires
an L2 resource. It's also helpful when you want to use convenience methods like .grantXxxxx()
that aren't available on the L1 construct.

Un-escape hatches Version 2 333

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You move to the higher abstraction level using a static method on the L2 class called
.fromCfnXxxxx()—for example, Bucket.fromCfnBucket() for Amazon S3 buckets. The L1
resource is the only parameter.

TypeScript

b1 = new s3.CfnBucket(this, "buck09", { ... });
b2 = s3.Bucket.fromCfnBucket(b1);

JavaScript

b1 = new s3.CfnBucket(this, "buck09", { ...});
b2 = s3.Bucket.fromCfnBucket(b1);

Python

b1 = s3.CfnBucket(self, "buck09", ...)
 b2 = s3.from_cfn_bucket(b1)

Java

CfnBucket b1 = CfnBucket.Builder.create(this, "buck09")
 //
 .build();
IBucket b2 = Bucket.fromCfnBucket(b1);

C#

var b1 = new CfnBucket(this, "buck09", new CfnBucketProps { ... });
var v2 = Bucket.FromCfnBucket(b1);

L2 constructs created from L1 constructs are proxy objects that refer to the L1 resource, similar
to those created from resource names, ARNs, or lookups. Modifications to these constructs do
not affect the final synthesized AWS CloudFormation template (since you have the L1 resource,
however, you can modify that instead). For more information on proxy objects, see the section
called “Referencing resources in your AWS account”.

To avoid confusion, do not create multiple L2 constructs that refer to the same L1 construct. For
example, if you extract the CfnBucket from a Bucket using the technique in the previous section,

Un-escape hatches Version 2 334

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

you shouldn't create a second Bucket instance by calling Bucket.fromCfnBucket() with that
CfnBucket. It actually works as you'd expect (only one AWS::S3::Bucket is synthesized) but it
makes your code more difficult to maintain.

Raw overrides

If there are properties that are missing from the L1 construct, you can bypass all typing using raw
overrides. This also makes it possible to delete synthesized properties.

Use one of the addOverride methods (Python: add_override) methods, as shown in the
following example.

TypeScript

// Get the CloudFormation resource
const cfnBucket = bucket.node.defaultChild as s3.CfnBucket;

// Use dot notation to address inside the resource template fragment
cfnBucket.addOverride('Properties.VersioningConfiguration.Status', 'NewStatus');
cfnBucket.addDeletionOverride('Properties.VersioningConfiguration.Status');

// use index (0 here) to address an element of a list
cfnBucket.addOverride('Properties.Tags.0.Value', 'NewValue');
cfnBucket.addDeletionOverride('Properties.Tags.0');

// addPropertyOverride is a convenience function for paths starting with
 "Properties."
cfnBucket.addPropertyOverride('VersioningConfiguration.Status', 'NewStatus');
cfnBucket.addPropertyDeletionOverride('VersioningConfiguration.Status');
cfnBucket.addPropertyOverride('Tags.0.Value', 'NewValue');
cfnBucket.addPropertyDeletionOverride('Tags.0');

JavaScript

// Get the CloudFormation resource
const cfnBucket = bucket.node.defaultChild ;

// Use dot notation to address inside the resource template fragment
cfnBucket.addOverride('Properties.VersioningConfiguration.Status', 'NewStatus');
cfnBucket.addDeletionOverride('Properties.VersioningConfiguration.Status');

// use index (0 here) to address an element of a list

Raw overrides Version 2 335

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cfnBucket.addOverride('Properties.Tags.0.Value', 'NewValue');
cfnBucket.addDeletionOverride('Properties.Tags.0');

// addPropertyOverride is a convenience function for paths starting with
 "Properties."
cfnBucket.addPropertyOverride('VersioningConfiguration.Status', 'NewStatus');
cfnBucket.addPropertyDeletionOverride('VersioningConfiguration.Status');
cfnBucket.addPropertyOverride('Tags.0.Value', 'NewValue');
cfnBucket.addPropertyDeletionOverride('Tags.0');

Python

Get the CloudFormation resource
cfn_bucket = bucket.node.default_child

Use dot notation to address inside the resource template fragment
cfn_bucket.add_override("Properties.VersioningConfiguration.Status", "NewStatus")
cfn_bucket.add_deletion_override("Properties.VersioningConfiguration.Status")

use index (0 here) to address an element of a list
cfn_bucket.add_override("Properties.Tags.0.Value", "NewValue")
cfn_bucket.add_deletion_override("Properties.Tags.0")

addPropertyOverride is a convenience function for paths starting with
 "Properties."
cfn_bucket.add_property_override("VersioningConfiguration.Status", "NewStatus")
cfn_bucket.add_property_deletion_override("VersioningConfiguration.Status")
cfn_bucket.add_property_override("Tags.0.Value", "NewValue")
cfn_bucket.add_property_deletion_override("Tags.0")

Java

// Get the CloudFormation resource
CfnBucket cfnBucket = (CfnBucket)bucket.getNode().getDefaultChild();

// Use dot notation to address inside the resource template fragment
cfnBucket.addOverride("Properties.VersioningConfiguration.Status", "NewStatus");
cfnBucket.addDeletionOverride("Properties.VersioningConfiguration.Status");

// use index (0 here) to address an element of a list
cfnBucket.addOverride("Properties.Tags.0.Value", "NewValue");
cfnBucket.addDeletionOverride("Properties.Tags.0");

Raw overrides Version 2 336

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// addPropertyOverride is a convenience function for paths starting with
 "Properties."
cfnBucket.addPropertyOverride("VersioningConfiguration.Status", "NewStatus");
cfnBucket.addPropertyDeletionOverride("VersioningConfiguration.Status");
cfnBucket.addPropertyOverride("Tags.0.Value", "NewValue");
cfnBucket.addPropertyDeletionOverride("Tags.0");

C#

// Get the CloudFormation resource
var cfnBucket = (CfnBucket)bucket.node.defaultChild;

// Use dot notation to address inside the resource template fragment
cfnBucket.AddOverride("Properties.VersioningConfiguration.Status", "NewStatus");
cfnBucket.AddDeletionOverride("Properties.VersioningConfiguration.Status");

// use index (0 here) to address an element of a list
cfnBucket.AddOverride("Properties.Tags.0.Value", "NewValue");
cfnBucket.AddDeletionOverride("Properties.Tags.0");

// addPropertyOverride is a convenience function for paths starting with
 "Properties."
cfnBucket.AddPropertyOverride("VersioningConfiguration.Status", "NewStatus");
cfnBucket.AddPropertyDeletionOverride("VersioningConfiguration.Status");
cfnBucket.AddPropertyOverride("Tags.0.Value", "NewValue");
cfnBucket.AddPropertyDeletionOverride("Tags.0");

Custom resources

If the feature isn't available through AWS CloudFormation, but only through a direct API call, you
must write an AWS CloudFormation Custom Resource to make the API call you need. You can use
the AWS CDK to write custom resources and wrap them into a regular construct interface. From the
perspective of a consumer of your construct, the experience will feel native.

Building a custom resource involves writing a Lambda function that responds to a resource's
CREATE, UPDATE, and DELETE lifecycle events. If your custom resource needs to make only a single
API call, consider using the AwsCustomResource. This makes it possible to perform arbitrary SDK
calls during an AWS CloudFormation deployment. Otherwise, you should write your own Lambda
function to perform the work you need to get done.

The subject is too broad to cover completely here, but the following links should get you started:

Custom resources Version 2 337

https://github.com/awslabs/aws-cdk/tree/master/packages/%40aws-cdk/custom-resources

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Custom Resources

• Custom-Resource Example

• For a more fully fledged example, see the DnsValidatedCertificate class in the CDK standard
library. This is implemented as a custom resource.

Get a value from an environment variable

To get the value of an environment variable, use code like the following. This code gets the value
of the environment variable MYBUCKET.

TypeScript

// Sets bucket_name to undefined if environment variable not set
var bucket_name = process.env.MYBUCKET;

// Sets bucket_name to a default if env var doesn't exist
var bucket_name = process.env.MYBUCKET || "DefaultName";

JavaScript

// Sets bucket_name to undefined if environment variable not set
var bucket_name = process.env.MYBUCKET;

// Sets bucket_name to a default if env var doesn't exist
var bucket_name = process.env.MYBUCKET || "DefaultName";

Python

import os

Raises KeyError if environment variable doesn't exist
bucket_name = os.environ["MYBUCKET"]

Sets bucket_name to None if environment variable doesn't exist
bucket_name = os.getenv("MYBUCKET")

Sets bucket_name to a default if env var doesn't exist
bucket_name = os.getenv("MYBUCKET", "DefaultName")

Get environment value Version 2 338

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
https://github.com/aws-samples/aws-cdk-examples/tree/master/typescript/custom-resource/
https://github.com/awslabs/aws-cdk/blob/master/packages/@aws-cdk/aws-certificatemanager/lib/dns-validated-certificate.ts

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

// Sets bucketName to null if environment variable doesn't exist
String bucketName = System.getenv("MYBUCKET");

// Sets bucketName to a default if env var doesn't exist
String bucketName = System.getenv("MYBUCKET");
if (bucketName == null) bucketName = "DefaultName";

C#

using System;

// Sets bucket name to null if environment variable doesn't exist
string bucketName = Environment.GetEnvironmentVariable("MYBUCKET");

// Sets bucket_name to a default if env var doesn't exist
string bucketName = Environment.GetEnvironmentVariable("MYBUCKET") ?? "DefaultName";

Use an AWS CloudFormation value

See the section called “Parameters” for information about using AWS CloudFormation parameters
with the AWS CDK.

To get a reference to a resource in an existing AWS CloudFormation template, see the section
called “Import an AWS CloudFormation template”.

Import an existing AWS CloudFormation template

Import resources from an AWS CloudFormation template into your AWS Cloud Development Kit
(AWS CDK) applications by using the cloudformation-include.CfnInclude construct to
convert resources to L1 constructs.

After import, you can work with these resources in your app in the same way that you would if they
were originally defined in AWS CDK code. You can also use these L1 constructs within higher-level
AWS CDK constructs. For example, this can let you use the L2 permission grant methods with the
resources they define.

The cloudformation-include.CfnInclude construct essentially adds an AWS CDK API
wrapper to any resource in your AWS CloudFormation template. Use this capability to import your

Get CloudFormation value Version 2 339

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

existing AWS CloudFormation templates to the AWS CDK a piece at a time. By doing this, you can
manage your existing resources using AWS CDK constructs to utilize the benefits of higher-level
abstractions. You can also use this feature to vend your AWS CloudFormation templates to AWS
CDK developers by providing an AWS CDK construct API.

Note

AWS CDK v1 also included aws-cdk-lib.CfnInclude, which was previously used for the
same general purpose. However, it lacks much of the functionality of cloudformation-
include.CfnInclude.

Topics

• Importing an AWS CloudFormation template

• Accessing imported resources

• Replacing parameters

• Other template elements

• Nested stacks

Importing an AWS CloudFormation template

The following is a sample AWS CloudFormation template that we will use to provide examples
in this topic. Copy and save the template as my-template.json to follow along. After working
through these examples, you can explore further by using any of your existing deployed AWS
CloudFormation templates. You can obtain them from the AWS CloudFormation console.

{
 "Resources": {
 "MyBucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "MyBucket",
 }
 }
 }
}

Importing a template Version 2 340

https://docs.aws.amazon.com/cdk/api/latest/docs/aws-cdk-lib.CfnInclude.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can work with either JSON or YAML templates. We recommend JSON if available since YAML
parsers can vary slightly in what they accept.

The following is an example of how to import the sample template into your AWS CDK app using
cloudformation-include. Templates are imported within the context of an CDK stack.

TypeScript

import * as cdk from 'aws-cdk-lib';
import * as cfninc from 'aws-cdk-lib/cloudformation-include';
import { Construct } from 'constructs';

export class MyStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const template = new cfninc.CfnInclude(this, 'Template', {
 templateFile: 'my-template.json',
 });
 }
}

JavaScript

const cdk = require('aws-cdk-lib');
const cfninc = require('aws-cdk-lib/cloudformation-include');

class MyStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 const template = new cfninc.CfnInclude(this, 'Template', {
 templateFile: 'my-template.json',
 });
 }
}

module.exports = { MyStack }

Python

import aws_cdk as cdk
from aws_cdk import cloudformation_include as cfn_inc

Importing a template Version 2 341

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

from constructs import Construct

class MyStack(cdk.Stack):

 def __init__(self, scope: Construct, id: str, **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 template = cfn_inc.CfnInclude(self, "Template",
 template_file="my-template.json")

Java

import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.cloudformation.include.CfnInclude;
import software.constructs.Construct;

public class MyStack extends Stack {
 public MyStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public MyStack(final Construct scope, final String id, final StackProps props) {
 super(scope, id, props);

 CfnInclude template = CfnInclude.Builder.create(this, "Template")
 .templateFile("my-template.json")
 .build();
 }
}

C#

using Amazon.CDK;
using Constructs;
using cfnInc = Amazon.CDK.CloudFormation.Include;

namespace MyApp
{
 public class MyStack : Stack
 {
 internal MyStack(Construct scope, string id, IStackProps props = null) :
 base(scope, id, props)

Importing a template Version 2 342

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 {
 var template = new cfnInc.CfnInclude(this, "Template", new
 cfnInc.CfnIncludeProps
 {
 TemplateFile = "my-template.json"
 });
 }
 }
}

By default, importing a resource preserves the resource's original logical ID from the template.
This behavior is suitable for importing an AWS CloudFormation template into the AWS CDK, where
logical IDs must be retained. AWS CloudFormation needs this information to recognize these
imported resources as the same resources from the AWS CloudFormation template.

If you are developing an AWS CDK construct wrapper for the template so that it can be used by
other AWS CDK developers, have the AWS CDK generate new resource IDs instead. By doing this,
the construct can be used multiple times in a stack without name conflicts. To do this, set the
preserveLogicalIds property to false when importing the template. The following is an
example:

TypeScript

const template = new cfninc.CfnInclude(this, 'MyConstruct', {
 templateFile: 'my-template.json',
 preserveLogicalIds: false
});

JavaScript

const template = new cfninc.CfnInclude(this, 'MyConstruct', {
 templateFile: 'my-template.json',
 preserveLogicalIds: false
});

Python

template = cfn_inc.CfnInclude(self, "Template",
 template_file="my-template.json",
 preserve_logical_ids=False)

Importing a template Version 2 343

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

CfnInclude template = CfnInclude.Builder.create(this, "Template")
 .templateFile("my-template.json")
 .preserveLogicalIds(false)
 .build();

C#

var template = new cfnInc.CfnInclude(this, "Template", new cfn_inc.CfnIncludeProps
{
 TemplateFile = "my-template.json",
 PreserveLogicalIds = false
});

To put imported resources under the control of your AWS CDK app, add the stack to the App:

TypeScript

import * as cdk from 'aws-cdk-lib';
import { MyStack } from '../lib/my-stack';

const app = new cdk.App();
new MyStack(app, 'MyStack');

JavaScript

const cdk = require('aws-cdk-lib');
const { MyStack } = require('../lib/my-stack');

const app = new cdk.App();
new MyStack(app, 'MyStack');

Python

import aws_cdk as cdk
from mystack.my_stack import MyStack

app = cdk.App()
MyStack(app, "MyStack")

Importing a template Version 2 344

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

import software.amazon.awscdk.App;

public class MyApp {
 public static void main(final String[] args) {
 App app = new App();

 new MyStack(app, "MyStack");
 }
}

C#

using Amazon.CDK;

namespace CdkApp
{
 sealed class Program
 {
 public static void Main(string[] args)
 {
 var app = new App();
 new MyStack(app, "MyStack");
 }
 }
}

To verify that there won't be any unintended changes to the AWS resources in the stack, you
can perform a diff. Use the AWS CDK CLI cdk diff command and omit any AWS CDK-specific
metadata. The following is an example:

cdk diff --no-version-reporting --no-path-metadata --no-asset-metadata

After you import an AWS CloudFormation template, the AWS CDK app should become the source
of truth for your imported resources. To make changes to your resources, modify them in your AWS
CDK app and deploy with the AWS CDK CLI cdk deploy command.

Importing a template Version 2 345

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Accessing imported resources

The name template in the example code represents the imported AWS CloudFormation template.
To access a resource from it, use the object's getResource() method. To access the returned
resource as a specific kind of resource, cast the result to the desired type. This isn't necessary in
Python or JavaScript. The following is an example:

TypeScript

const cfnBucket = template.getResource('MyBucket') as s3.CfnBucket;

JavaScript

const cfnBucket = template.getResource('MyBucket');

Python

cfn_bucket = template.get_resource("MyBucket")

Java

CfnBucket cfnBucket = (CfnBucket)template.getResource("MyBucket");

C#

var cfnBucket = (CfnBucket)template.GetResource("MyBucket");

From this example, cfnBucket is now an instance of the aws-s3.CfnBucket class. This is an L1
construct that represents the corresponding AWS CloudFormation resource. You can treat it like
any other resource of its type. For example, you can get its ARN value with the bucket.attrArn
property.

To wrap the L1 CfnBucket resource in an L2 aws-s3.Bucket instance instead, use the static
methods fromBucketArn(), fromBucketAttributes(), or fromBucketName(). Usually, the
fromBucketName() method is most convenient. The following is an example:

Accessing imported resources Version 2 346

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrresourcelogicalid
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#static-fromwbrbucketwbrarnscope-id-bucketarn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#static-fromwbrbucketwbrattributesscope-id-attrs
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#static-fromwbrbucketwbrnamescope-id-bucketname

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

const bucket = s3.Bucket.fromBucketName(this, 'Bucket', cfnBucket.ref);

JavaScript

const bucket = s3.Bucket.fromBucketName(this, 'Bucket', cfnBucket.ref);

Python

bucket = s3.Bucket.from_bucket_name(self, "Bucket", cfn_bucket.ref)

Java

Bucket bucket = (Bucket)Bucket.fromBucketName(this, "Bucket", cfnBucket.getRef());

C#

var bucket = (Bucket)Bucket.FromBucketName(this, "Bucket", cfnBucket.Ref);

Other L2 constructs have similar methods for creating the construct from an existing resource.

When you wrap an L1 construct in an L2 construct, it doesn't create a new resource. From our
example, we are not creating a second S3; bucket. Instead, the new Bucket instance encapsulates
the existing CfnBucket.

From the example, the bucket is now an L2 Bucket construct that behaves like any other L2
construct. For example, you can grant an AWS Lambda function write access to the bucket by using
the bucket's convenient grantWrite() method. You don't have to define the necessary AWS
Identity and Access Management (IAM) policy manually. The following is an example:

TypeScript

bucket.grantWrite(lambdaFunc);

JavaScript

bucket.grantWrite(lambdaFunc);

Accessing imported resources Version 2 347

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#grantwbrwriteidentity-objectskeypattern

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

bucket.grant_write(lambda_func)

Java

bucket.grantWrite(lambdaFunc);

C#

bucket.GrantWrite(lambdaFunc);

Replacing parameters

If your AWS CloudFormation template contains parameters, you can replace them with build time
values at import by using the parameters property. In the following example, we replace the
UploadBucket parameter with the ARN of a bucket defined elsewhere in our AWS CDK code.

TypeScript

const template = new cfninc.CfnInclude(this, 'Template', {
 templateFile: 'my-template.json',
 parameters: {
 'UploadBucket': bucket.bucketArn,
 },
});

JavaScript

const template = new cfninc.CfnInclude(this, 'Template', {
 templateFile: 'my-template.json',
 parameters: {
 'UploadBucket': bucket.bucketArn,
 },
});

Python

template = cfn_inc.CfnInclude(self, "Template",

Replacing parameters Version 2 348

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 template_file="my-template.json",
 parameters=dict(UploadBucket=bucket.bucket_arn)
)

Java

CfnInclude template = CfnInclude.Builder.create(this, "Template")
 .templateFile("my-template.json")
 .parameters(java.util.Map.of(// Map.of requires Java 9+
 "UploadBucket", bucket.getBucketArn()))
 .build();

C#

var template = new cfnInc.CfnInclude(this, "Template", new cfnInc.CfnIncludeProps
{
 TemplateFile = "my-template.json",
 Parameters = new Dictionary<string, string>
 {
 { "UploadBucket", bucket.BucketArn }
 }
});

Other template elements

You can import any AWS CloudFormation template element, not just resources. The imported
elements become a part of the AWS CDK stack. To import these elements, use the following
methods of the CfnInclude object:

• getCondition() – AWS CloudFormation conditions.

• getHook() – AWS CloudFormation hooks for blue/green deployments.

• getMapping() – AWS CloudFormation mappings.

• getOutput() – AWS CloudFormation outputs.

• getParameter() – AWS CloudFormation parameters.

• getRule() – AWS CloudFormation rules for AWS Service Catalog templates.

Each of these methods return an instance of a class that represents the specific type of AWS
CloudFormation element. These objects are mutable. Changes that you make to them will appear

Other template elements Version 2 349

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrconditionconditionname
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrhookhooklogicalid
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/blue-green.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrmappingmappingname
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbroutputlogicalid
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrparameterparametername
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrrulerulename
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/reference-template_constraint_rules.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

in the template that gets generated from the AWS CDK stack. The following is an example that
imports a parameter from the template and modifies its default value:

TypeScript

const param = template.getParameter('MyParameter');
param.default = "AWS CDK"

JavaScript

const param = template.getParameter('MyParameter');
param.default = "AWS CDK"

Python

param = template.get_parameter("MyParameter")
param.default = "AWS CDK"

Java

CfnParameter param = template.getParameter("MyParameter");
param.setDefaultValue("AWS CDK")

C#

var cfnBucket = (CfnBucket)template.GetResource("MyBucket");
var param = template.GetParameter("MyParameter");
param.Default = "AWS CDK";

Nested stacks

You can import nested stacks by specifying them either when you import their main template,
or at some later point. The nested template must be stored in a local file, but referenced as a
NestedStack resource in the main template. Also, the resource name used in the AWS CDK code
must match the name used for the nested stack in the main template.

Given this resource definition in the main template, the following code shows how to import the
referenced nested stack both ways.

"NestedStack": {

Nested stacks Version 2 350

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "Type": "AWS::CloudFormation::Stack",
 "Properties": {
 "TemplateURL": "https://my-s3-template-source.s3.amazonaws.com/nested-stack.json"
 }

TypeScript

// include nested stack when importing main stack
const mainTemplate = new cfninc.CfnInclude(this, 'MainStack', {
 templateFile: 'main-template.json',
 loadNestedStacks: {
 'NestedStack': {
 templateFile: 'nested-template.json',
 },
 },
});

// or add it some time after importing the main stack
const nestedTemplate = mainTemplate.loadNestedStack('NestedTemplate', {
 templateFile: 'nested-template.json',
});

JavaScript

// include nested stack when importing main stack
const mainTemplate = new cfninc.CfnInclude(this, 'MainStack', {
 templateFile: 'main-template.json',
 loadNestedStacks: {
 'NestedStack': {
 templateFile: 'nested-template.json',
 },
 },
});

// or add it some time after importing the main stack
const nestedTemplate = mainTemplate.loadNestedStack('NestedStack', {
 templateFile: 'my-nested-template.json',
});

Python

include nested stack when importing main stack

Nested stacks Version 2 351

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

main_template = cfn_inc.CfnInclude(self, "MainStack",
 template_file="main-template.json",
 load_nested_stacks=dict(NestedStack=
 cfn_inc.CfnIncludeProps(template_file="nested-template.json")))

or add it some time after importing the main stack
nested_template = main_template.load_nested_stack("NestedStack",
 template_file="nested-template.json")

Java

CfnInclude mainTemplate = CfnInclude.Builder.create(this, "MainStack")
 .templateFile("main-template.json")
 .loadNestedStacks(java.util.Map.of(// Map.of requires Java 9+
 "NestedStack", CfnIncludeProps.builder()
 .templateFile("nested-template.json").build()))
 .build();

// or add it some time after importing the main stack
IncludedNestedStack nestedTemplate = mainTemplate.loadNestedStack("NestedTemplate",
 CfnIncludeProps.builder()
 .templateFile("nested-template.json")
 .build());

C#

// include nested stack when importing main stack
var mainTemplate = new cfnInc.CfnInclude(this, "MainStack", new
 cfnInc.CfnIncludeProps
{
 TemplateFile = "main-template.json",
 LoadNestedStacks = new Dictionary<string, cfnInc.ICfnIncludeProps>
 {
 { "NestedStack", new cfnInc.CfnIncludeProps { TemplateFile = "nested-
template.json" } }
 }
});

// or add it some time after importing the main stack
var nestedTemplate = mainTemplate.LoadNestedStack("NestedTemplate", new
 cfnInc.CfnIncludeProps {
 TemplateFile = 'nested-template.json'
});

Nested stacks Version 2 352

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can import multiple nested stacks with either methods. When importing the main template,
you provide a mapping between the resource name of each nested stack and its template
file. This mapping can contain any number of entries. To do it after the initial import, call
loadNestedStack() once for each nested stack.

After importing a nested stack, you can access it using the main template's getNestedStack()
method.

TypeScript

const nestedStack = mainTemplate.getNestedStack('NestedStack').stack;

JavaScript

const nestedStack = mainTemplate.getNestedStack('NestedStack').stack;

Python

nested_stack = main_template.get_nested_stack("NestedStack").stack

Java

NestedStack nestedStack = mainTemplate.getNestedStack("NestedStack").getStack();

C#

var nestedStack = mainTemplate.GetNestedStack("NestedStack").Stack;

The getNestedStack() method returns an IncludedNestedStack instance. From this
instance, you can access the AWS CDK NestedStack instance via the stack property, as
shown in the example. You can also access the original AWS CloudFormation template object
via includedTemplate, from which you can load resources and other AWS CloudFormation
elements.

Nested stacks Version 2 353

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrnestedwbrstacklogicalid
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.cloudformation_include.CfnInclude.html#getwbrnestedwbrstacklogicalid
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.NestedStack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Get a value from the Systems Manager Parameter Store

The AWS Cloud Development Kit (AWS CDK) can retrieve the value of AWS Systems Manager
Parameter Store attributes. During synthesis, the AWS CDK produces a token that is resolved by
AWS CloudFormation during deployment.

The AWS CDK supports retrieving both plain and secure values. You may request a specific version
of either kind of value. For plain values, you may omit the version from your request to retrieve the
latest version. For secure values, you must specify the version when requesting the value of the
secure attribute.

Note

This topic shows how to read attributes from the AWS Systems Manager Parameter Store.
You can also read secrets from the AWS Secrets Manager (see Get a value from AWS Secrets
Manager).

Topics

• Read Systems Manager values at deployment time

• Read Systems Manager values at synthesis time

• Write values to Systems Manager

Read Systems Manager values at deployment time

To read values from the Systems Manager Parameter Store, use the valueForStringParameter and
valueForSecureStringParameter methods. Choose a method based on whether the attribute you
want is a plain string or a secure string value. These methods return tokens, not the actual value.
The value is resolved by AWS CloudFormation during deployment. The following is an example:

TypeScript

import * as ssm from 'aws-cdk-lib/aws-ssm';

// Get latest version or specified version of plain string attribute
const latestStringToken = ssm.StringParameter.valueForStringParameter(
 this, 'my-plain-parameter-name'); // latest version
const versionOfStringToken = ssm.StringParameter.valueForStringParameter(

Get SSM value Version 2 354

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ssm.StringParameter.html#static-valuewbrforwbrstringwbrparameterscope-parametername-version
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ssm.StringParameter.html#static-valuewbrforwbrsecurewbrstringwbrparameterscope-parametername-version

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 this, 'my-plain-parameter-name', 1); // version 1

// Get specified version of secure string attribute
const secureStringToken = ssm.StringParameter.valueForSecureStringParameter(
 this, 'my-secure-parameter-name', 1); // must specify version

JavaScript

const ssm = require('aws-cdk-lib/aws-ssm');

// Get latest version or specified version of plain string attribute
const latestStringToken = ssm.StringParameter.valueForStringParameter(
 this, 'my-plain-parameter-name'); // latest version
const versionOfStringToken = ssm.StringParameter.valueForStringParameter(
 this, 'my-plain-parameter-name', 1); // version 1

// Get specified version of secure string attribute
const secureStringToken = ssm.StringParameter.valueForSecureStringParameter(
 this, 'my-secure-parameter-name', 1); // must specify version

Python

import aws_cdk.aws_ssm as ssm

Get latest version or specified version of plain string attribute
latest_string_token = ssm.StringParameter.value_for_string_parameter(
 self, "my-plain-parameter-name")
latest_string_token = ssm.StringParameter.value_for_string_parameter(
 self, "my-plain-parameter-name", 1)

Get specified version of secure string attribute
secure_string_token = ssm.StringParameter.value_for_secure_string_parameter(
 self, "my-secure-parameter-name", 1) # must specify version

Java

import software.amazon.awscdk.services.ssm.StringParameter;

//Get latest version or specified version of plain string attribute
String latestStringToken = StringParameter.valueForStringParameter(
 this, "my-plain-parameter-name"); // latest version
String versionOfStringToken = StringParameter.valueForStringParameter(

Read Systems Manager values at deployment time Version 2 355

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 this, "my-plain-parameter-name", 1); // version 1

//Get specified version of secure string attribute
String secureStringToken = StringParameter.valueForSecureStringParameter(
 this, "my-secure-parameter-name", 1); // must specify version

C#

using Amazon.CDK.AWS.SSM;

// Get latest version or specified version of plain string attribute
var latestStringToken = StringParameter.ValueForStringParameter(
 this, "my-plain-parameter-name"); // latest version
var versionOfStringToken = StringParameter.ValueForStringParameter(
 this, "my-plain-parameter-name", 1); // version 1

// Get specified version of secure string attribute
var secureStringToken = StringParameter.ValueForSecureStringParameter(
 this, "my-secure-parameter-name", 1); // must specify version

A limited number of AWS services currently support this feature.

Read Systems Manager values at synthesis time

At times, it's useful to provide a parameter at synthesis time. By doing this, the AWS
CloudFormation template will always use the same value instead of resolving the value during
deployment.

To read a value from the Systems Manager Parameter Store at synthesis time, use the
valueFromLookup method (Python: value_from_lookup). This method returns the actual value
of the parameter as a the section called “Context” value. If the value is not already cached in
cdk.json or passed on the command line, it is retrieved from the current AWS account. For this
reason, the stack must be synthesized with explicit AWS environment information.

The following is an example:

TypeScript

import * as ssm from 'aws-cdk-lib/aws-ssm';

Read Systems Manager values at synthesis time Version 2 356

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#template-parameters-dynamic-patterns-resources
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ssm.StringParameter.html#static-valuewbrfromwbrlookupscope-parametername

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const stringValue = ssm.StringParameter.valueFromLookup(this, 'my-plain-parameter-
name');

JavaScript

const ssm = require('aws-cdk-lib/aws-ssm');

const stringValue = ssm.StringParameter.valueFromLookup(this, 'my-plain-parameter-
name');

Python

import aws_cdk.aws_ssm as ssm

string_value = ssm.StringParameter.value_from_lookup(self, "my-plain-parameter-
name")

Java

import software.amazon.awscdk.services.ssm.StringParameter;

String stringValue = StringParameter.valueFromLookup(this, "my-plain-parameter-
name");

C#

using Amazon.CDK.AWS.SSM;

var stringValue = StringParameter.ValueFromLookup(this, "my-plain-parameter-name");

Only plain Systems Manager strings may be retrieved. Secure strings cannot be retrieved. The latest
version will always be returned. Specific versions cannot be requested.

Important

The retrieved value will end up in your synthesized AWS CloudFormation template. This
might be a security risk, depending on who has access to your AWS CloudFormation
templates and what kind of value it is. Generally, don't use this feature for passwords, keys,
or other values you want to keep private.

Read Systems Manager values at synthesis time Version 2 357

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Write values to Systems Manager

You can use the AWS CLI, the AWS Management Console, or an AWS SDK to set Systems Manager
parameter values. The following examples use the ssm put-parameter CLI command.

aws ssm put-parameter --name "parameter-name" --type "String" --value "parameter-value"
aws ssm put-parameter --name "secure-parameter-name" --type "SecureString" --value
 "secure-parameter-value"

When updating an SSM value that already exists, also include the --overwrite option.

aws ssm put-parameter --overwrite --name "parameter-name" --type "String" --value
 "parameter-value"
aws ssm put-parameter --overwrite --name "secure-parameter-name" --type "SecureString"
 --value "secure-parameter-value"

Get a value from AWS Secrets Manager

To use values from AWS Secrets Manager in your AWS CDK app, use the fromSecretAttributes()
method. It represents a value that is retrieved from Secrets Manager and used at AWS
CloudFormation deployment time. The following is an example:

TypeScript

import * as sm from "aws-cdk-lib/aws-secretsmanager";

export class SecretsManagerStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const secret = sm.Secret.fromSecretAttributes(this, "ImportedSecret", {
 secretCompleteArn:
 "arn:aws:secretsmanager:<region>:<account-id-number>:secret:<secret-name>-
<random-6-characters>"
 // If the secret is encrypted using a KMS-hosted CMK, either import or
 reference that key:
 // encryptionKey: ...
 });

Write values to Systems Manager Version 2 358

https://docs.aws.amazon.com/cli/latest/reference/ssm/put-parameter.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.Secret.html#static-fromwbrsecretwbrattributesscope-id-attrs

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const sm = require("aws-cdk-lib/aws-secretsmanager");

class SecretsManagerStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 const secret = sm.Secret.fromSecretAttributes(this, "ImportedSecret", {
 secretCompleteArn:
 "arn:aws:secretsmanager:<region>:<account-id-number>:secret:<secret-name>-
<random-6-characters>"
 // If the secret is encrypted using a KMS-hosted CMK, either import or
 reference that key:
 // encryptionKey: ...
 });
 }
}

module.exports = { SecretsManagerStack }

Python

import aws_cdk.aws_secretsmanager as sm

class SecretsManagerStack(cdk.Stack):
 def __init__(self, scope: cdk.App, id: str, **kwargs):
 super().__init__(scope, name, **kwargs)

 secret = sm.Secret.from_secret_attributes(self, "ImportedSecret",
 secret_complete_arn="arn:aws:secretsmanager:<region>:<account-id-
number>:secret:<secret-name>-<random-6-characters>",
 # If the secret is encrypted using a KMS-hosted CMK, either import or
 reference that key:
 # encryption_key=....
)

Java

import software.amazon.awscdk.services.secretsmanager.Secret;
import software.amazon.awscdk.services.secretsmanager.SecretAttributes;

public class SecretsManagerStack extends Stack {

Get Secrets Manager value Version 2 359

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public SecretsManagerStack(App scope, String id) {
 this(scope, id, null);
 }

 public SecretsManagerStack(App scope, String id, StackProps props) {
 super(scope, id, props);

 Secret secret = (Secret)Secret.fromSecretAttributes(this, "ImportedSecret",
 SecretAttributes.builder()
 .secretCompleteArn("arn:aws:secretsmanager:<region>:<account-id-
number>:secret:<secret-name>-<random-6-characters>")
 // If the secret is encrypted using a KMS-hosted CMK, either import or
 reference that key:
 // .encryptionKey(...)
 .build());
 }
}

C#

using Amazon.CDK.AWS.SecretsManager;

public class SecretsManagerStack : Stack
{
 public SecretsManagerStack(App scope, string id, StackProps props) : base(scope,
 id, props) {

 var secret = Secret.FromSecretAttributes(this, "ImportedSecret", new
 SecretAttributes {
 SecretCompleteArn = "arn:aws:secretsmanager:<region>:<account-id-
number>:secret:<secret-name>-<random-6-characters>"
 // If the secret is encrypted using a KMS-hosted CMK, either import or
 reference that key:
 // encryptionKey = ...,
 });
 }

Tip

Use the AWS CLI create-secret CLI command to create a secret from the command line,
such as when testing:

Get Secrets Manager value Version 2 360

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.Secret.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

aws secretsmanager create-secret --name ImportedSecret --secret-string
 mygroovybucket

The command returns an ARN that you can use with the preceding example.

Once you have created a Secret instance, you can get the secret's value from the instance's
secretValue attribute. The value is represented by a SecretValue instance, a special type of
the section called “Tokens”. Because it's a token, it has meaning only after resolution. Your CDK app
does not need to access its actual value. Instead, the app can pass the SecretValue instance (or
its string or numeric representation) to whatever CDK method needs the value.

Set a CloudWatch alarm

Use the aws-cloudwatch package to set up Amazon CloudWatch alarms on CloudWatch metrics.
You can use predefined metrics or create your own.

Topics

• Using an existing metric

• Creating your own metric

• Creating the alarm

Using an existing metric

Many AWS Construct Library modules let you set an alarm on an existing metric by passing the
metric's name to a convenience method on an instance of an object that has metrics. For example,
given an Amazon SQS queue, you can get the metric ApproximateNumberOfMessagesVisible
from the queue's metric() method:

TypeScript

const metric = queue.metric("ApproximateNumberOfMessagesVisible");

JavaScript

const metric = queue.metric("ApproximateNumberOfMessagesVisible");

Set CloudWatch alarm Version 2 361

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.SecretValue.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_cloudwatch-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_sqs.Queue.html#metricmetricname-props

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

metric = queue.metric("ApproximateNumberOfMessagesVisible")

Java

Metric metric = queue.metric("ApproximateNumberOfMessagesVisible");

C#

var metric = queue.Metric("ApproximateNumberOfMessagesVisible");

Creating your own metric

Create your own metric as follows, where the namespace value should be something like AWS/SQS
for an Amazon SQS queue. You also need to specify your metric's name and dimension:

TypeScript

const metric = new cloudwatch.Metric({
 namespace: 'MyNamespace',
 metricName: 'MyMetric',
 dimensionsMap: { MyDimension: 'MyDimensionValue' }
});

JavaScript

const metric = new cloudwatch.Metric({
 namespace: 'MyNamespace',
 metricName: 'MyMetric',
 dimensionsMap: { MyDimension: 'MyDimensionValue' }
});

Python

metric = cloudwatch.Metric(
 namespace="MyNamespace",
 metric_name="MyMetric",

Creating your own metric Version 2 362

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_cloudwatch.Metric.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 dimensionsMap=dict(MyDimension="MyDimensionValue")
)

Java

Metric metric = Metric.Builder.create()
 .namespace("MyNamespace")
 .metricName("MyMetric")
 .dimensionsMap(java.util.Map.of(// Java 9 or later
 "MyDimension", "MyDimensionValue"))
 .build();

C#

var metric = new Metric(this, "Metric", new MetricProps
{
 Namespace = "MyNamespace",
 MetricName = "MyMetric",
 Dimensions = new Dictionary<string, object>
 {
 { "MyDimension", "MyDimensionValue" }
 }
});

Creating the alarm

Once you have a metric, either an existing one or one you defined, you can create an alarm. In
this example, the alarm is raised when there are more than 100 of your metric in two of the
last three evaluation periods. You can use comparisons such as less-than in your alarms via the
comparisonOperator property. Greater-than-or-equal-to is the AWS CDK default, so we don't
need to specify it.

TypeScript

const alarm = new cloudwatch.Alarm(this, 'Alarm', {
 metric: metric,
 threshold: 100,
 evaluationPeriods: 3,
 datapointsToAlarm: 2,
});

Creating the alarm Version 2 363

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const alarm = new cloudwatch.Alarm(this, 'Alarm', {
 metric: metric,
 threshold: 100,
 evaluationPeriods: 3,
 datapointsToAlarm: 2
});

Python

alarm = cloudwatch.Alarm(self, "Alarm",
 metric=metric,
 threshold=100,
 evaluation_periods=3,
 datapoints_to_alarm=2
)

Java

import software.amazon.awscdk.services.cloudwatch.Alarm;
import software.amazon.awscdk.services.cloudwatch.Metric;

Alarm alarm = Alarm.Builder.create(this, "Alarm")
 .metric(metric)
 .threshold(100)
 .evaluationPeriods(3)
 .datapointsToAlarm(2).build();

C#

var alarm = new Alarm(this, "Alarm", new AlarmProps
{
 Metric = metric,
 Threshold = 100,
 EvaluationPeriods = 3,
 DatapointsToAlarm = 2
});

Creating the alarm Version 2 364

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

An alternative way to create an alarm is using the metric's createAlarm() method, which takes
essentially the same properties as the Alarm constructor. You don't need to pass in the metric,
because it's already known.

TypeScript

metric.createAlarm(this, 'Alarm', {
 threshold: 100,
 evaluationPeriods: 3,
 datapointsToAlarm: 2,
});

JavaScript

metric.createAlarm(this, 'Alarm', {
 threshold: 100,
 evaluationPeriods: 3,
 datapointsToAlarm: 2,
});

Python

metric.create_alarm(self, "Alarm",
 threshold=100,
 evaluation_periods=3,
 datapoints_to_alarm=2
)

Java

metric.createAlarm(this, "Alarm", new CreateAlarmOptions.Builder()
 .threshold(100)
 .evaluationPeriods(3)
 .datapointsToAlarm(2)
 .build());

C#

metric.CreateAlarm(this, "Alarm", new CreateAlarmOptions
{
 Threshold = 100,

Creating the alarm Version 2 365

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_cloudwatch.Metric.html#createwbralarmscope-id-props

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 EvaluationPeriods = 3,
 DatapointsToAlarm = 2
});

Save and retrieve context variable values

You can specify context variables with the AWS Cloud Development Kit (AWS CDK) CLI or in the
cdk.json file. Then, use the TryGetContext method to retrieve values.

Topics

• Specify context variables

• Retrieve context variable values

Specify context variables

You can specify a context variable either as part of an AWS CDK CLI command, or in cdk.json.

To create a command line context variable, use the --context (-c) option, as shown in the following
example.

cdk synth -c bucket_name=mygroovybucket

To specify the same context variable and value in the cdk.json file, use the following code.

{
 "context": {
 "bucket_name": "myotherbucket"
 }
}

If you specify a context variable using both the AWS CDK CLI and cdk.json file, the AWS CDK CLI
value takes precedence.

Retrieve context variable values

To get the value of a context variable in your app, use the TryGetContext method in the context
of a construct. (That is, when this, or self in Python, is an instance of some construct.)

Get context value Version 2 366

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

In this example, we retrieve the value of the bucket_name context variable. If the requested value
is not defined, TryGetContext returns undefined (None in Python; null in Java and C#; nil in
Go) rather than raising an exception.

TypeScript

const bucket_name = this.node.tryGetContext('bucket_name');

JavaScript

const bucket_name = this.node.tryGetContext('bucket_name');

Python

bucket_name = self.node.try_get_context("bucket_name")

Java

String bucketName = (String)this.getNode().tryGetContext("bucket_name");

C#

var bucketName = this.Node.TryGetContext("bucket_name");

Outside the context of a construct, you can access the context variable from the app object, like
this.

TypeScript

const app = new cdk.App();
const bucket_name = app.node.tryGetContext('bucket_name')

JavaScript

const app = new cdk.App();
const bucket_name = app.node.tryGetContext('bucket_name');

Retrieve context variable values Version 2 367

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

app = cdk.App()
bucket_name = app.node.try_get_context("bucket_name")

Java

App app = App();
String bucketName = (String)app.getNode().tryGetContext("bucket_name");

C#

app = App();
var bucketName = app.Node.TryGetContext("bucket_name");

For more details on working with context variables, see the section called “Context”.

Using resources from the AWS CloudFormation Public Registry

The AWS CloudFormation Public Registry lets you manage extensions, both public and private,
such as resources, modules, and hooks that are available for use in your AWS account. You can use
public resource extensions in your AWS Cloud Development Kit (AWS CDK) applications with the
CfnResource construct.

To learn more about the AWS CloudFormation Public Registry, see Using the AWS CloudFormation
registry in the AWS CloudFormation User Guide.

All public extensions published by AWS are available to all accounts in all Regions without any
action on your part. However, you must activate each third-party extension you want to use, in
each account and Region where you want to use it.

Note

When you use AWS CloudFormation with third-party resource types, you will incur charges.
Charges are based on the number of handler operations you run per month and handler
operation duration. See CloudFormation pricing for complete details.

Use resources from the CloudFormation Public Registry Version 2 368

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnResource.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html
https://aws.amazon.com/cloudformation/pricing/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To learn more about public extensions, see Using public extensions in CloudFormation in the AWS
CloudFormation User Guide

Topics

• Activating a third-party resource in your account and Region

• Adding a resource from the AWS CloudFormation Public Registry to your CDK app

Activating a third-party resource in your account and Region

Extensions published by AWS do not require activation. They are always available in every account
and Region. You can activate a third-party extension through the AWS Management Console, via
the AWS Command Line Interface, or by deploying a special AWS CloudFormation resource.

To activate a third-party extension through the AWS Management Console or see what
resources are available

Activating a third-party resource in your account and Region Version 2 369

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-public.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1. Sign in to the AWS account in which you want to use the extension, then switch to the Region
where you want to use it.

2. Navigate to the CloudFormation console via the Services menu.

3. Choose Public extensions on the navigation bar, then activate the Third party radio button
under Publisher. A list of the available third-party public extensions appears. (You may also
choose AWS to see a list of the public extensions published by AWS, though you don't need to
activate them.)

4. Browse the list and find the extension you want to activate. Alternatively, search for it, then
activate the radio button in the upper right corner of the extension's card.

5. Choose the Activate button at the top of the list to activate the selected extension. The
extension's Activate page appears.

6. In the Activate page, you can override the extension's default name and specify an execution
role and logging configuration. You can also choose whether to automatically update the
extension when a new version is released. When you have set these options as you like, choose
Activate extension at the bottom of the page.

To activate a third-party extension using the AWS CLI

• Use the activate-type command. Substitute the ARN of the custom type you want to use
where indicated.

The following is an example:

aws cloudformation activate-type --public-type-arn public_extension_ARN --auto-
update-activated

To activate a third-party extension through CloudFormation or CDK

• Deploy a resource of type AWS::CloudFormation::TypeActivation and specify the
following properties:

a. TypeName - The name of the type, such as AWSQS::EKS::Cluster.

b. MajorVersion - The major version number of the extension that you want. Omit if you
want the latest version.

Activating a third-party resource in your account and Region Version 2 370

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

c. AutoUpdate - Whether to automatically update this extension when a new minor
version is released by the publisher. (Major version updates require explicitly changing the
MajorVersion property.)

d. ExecutionRoleArn - The ARN of the IAM role under which this extension will run.

e. LoggingConfig - The logging configuration for the extension.

The TypeActivation resource can be deployed by the CDK using the CfnResource
construct. This is shown for the actual extensions in the following section.

Adding a resource from the AWS CloudFormation Public Registry to
your CDK app

Use the CfnResource construct to include a resource from the AWS CloudFormation Public
Registry in your application. This construct is in the CDK's aws-cdk-lib module.

For example, suppose that there is a public resource named MY::S5::UltimateBucket that you
want to use in your AWS CDK application. This resource takes one property: the bucket name. The
corresponding CfnResource instantiation looks like this.

TypeScript

const ubucket = new CfnResource(this, 'MyUltimateBucket', {
 type: 'MY::S5::UltimateBucket::MODULE',
 properties: {
 BucketName: 'UltimateBucket'
 }
});

JavaScript

const ubucket = new CfnResource(this, 'MyUltimateBucket', {
 type: 'MY::S5::UltimateBucket::MODULE',
 properties: {
 BucketName: 'UltimateBucket'
 }
});

Adding a resource from the AWS CloudFormation Public Registry to your CDK app Version 2 371

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnResource.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnResource.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

ubucket = CfnResource(self, "MyUltimateBucket",
 type="MY::S5::UltimateBucket::MODULE",
 properties=dict(
 BucketName="UltimateBucket"))

Java

CfnResource.Builder.create(this, "MyUltimateBucket")
 .type("MY::S5::UltimateBucket::MODULE")
 .properties(java.util.Map.of(// Map.of requires Java 9+
 "BucketName", "UltimateBucket"))
 .build();

C#

new CfnResource(this, "MyUltimateBucket", new CfnResourceProps
{
 Type = "MY::S5::UltimateBucket::MODULE",
 Properties = new Dictionary<string, object>
 {
 ["BucketName"] = "UltimateBucket"
 }
});

Adding a resource from the AWS CloudFormation Public Registry to your CDK app Version 2 372

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Deploying AWS CDK applications

Deploy AWS Cloud Development Kit (AWS CDK) applications.

Topics

• AWS CDK policy validation at synthesis time

• Continuous integration and delivery (CI/CD) using CDK Pipelines

AWS CDK policy validation at synthesis time

Topics

• Policy validation at synthesis time

• For application developers

• For plugin authors

Policy validation at synthesis time

If you or your organization use any policy validation tool, such as AWS CloudFormation Guard or
OPA, to define constraints on your AWS CloudFormation template, you can integrate them with
the AWS CDK at synthesis time. By using the appropriate policy validation plugin, you can make
the AWS CDK application check the generated AWS CloudFormation template against your policies
immediately after synthesis. If there are any violations, the synthesis will fail and a report will be
printed to the console.

The validation performed by the AWS CDK at synthesis time validate controls at one point in the
deployment lifecycle, but they can't affect actions that occur outside synthesis. Examples include
actions taken directly in the console or via service APIs. They aren't resistant to alteration of AWS
CloudFormation templates after synthesis. Some other mechanism to validate the same rule set
more authoritatively should be set up independently, like AWS CloudFormation hooks or AWS
Config. Nevertheless, the ability of the AWS CDK to evaluate the rule set during development is
still useful as it will improve detection speed and developer productivity.

The goal of AWS CDK policy validation is to minimize the amount of set up needed during
development, and make it as easy as possible.

Policy validation Version 2 373

https://docs.aws.amazon.com/cfn-guard/latest/ug/what-is-guard.html
https://www.openpolicyagent.org/
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/hooks.html
https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html
https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

This feature is considered experimental, and both the plugin API and the format of the
validation report are subject to change in the future.

Topics

• For application developers

• For plugin authors

For application developers

To use one or more validation plugins in your application, use the policyValidationBeta1
property of Stage:

import { CfnGuardValidator } from '@cdklabs/cdk-validator-cfnguard';
const app = new App({
 policyValidationBeta1: [
 new CfnGuardValidator()
],
});
// only apply to a particular stage
const prodStage = new Stage(app, 'ProdStage', {
 policyValidationBeta1: [...],
});

Immediately after synthesis, all plugins registered this way will be invoked to validate all the
templates generated in the scope you defined. In particular, if you register the templates in the
App object, all templates will be subject to validation.

Warning

Other than modifying the cloud assembly, plugins can do anything that your AWS CDK
application can. They can read data from the filesystem, access the network etc. It's your
responsibility as the consumer of a plugin to verify that it's secure to use.

For application developers Version 2 374

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CloudFormation Guard plugin

Using the CfnGuardValidator plugin allows you to use AWS CloudFormation Guard to perform
policy validations. The CfnGuardValidator plugin comes with a select set of AWS Control Tower
proactive controls built in. The current set of rules can be found in the project documentation. As
mentioned in Policy validation at synthesis time, we recommend that organizations set up a more
authoritative method of validation using AWS CloudFormation hooks.

ForAWS Control Tower customers, these same proactive controls can be deployed across your
organization. When you enable AWS Control Tower proactive controls in your AWS Control Tower
environment, the controls can stop the deployment of non-compliant resources deployed via AWS
CloudFormation. For more information about managed proactive controls and how they work, see
the AWS Control Tower documentation.

These AWS CDK bundled controls and managed AWS Control Tower proactive controls are best
used together. In this scenario you can configure this validation plugin with the same proactive
controls that are active in your AWS Control Tower cloud environment. You can then quickly gain
confidence that your AWS CDK application will pass the AWS Control Tower controls by running
cdk synth locally.

Validation Report

When you synthesize the AWS CDK app the validator plugins will be called and the results will be
printed. An example report is showing below.

Validation Report (CfnGuardValidator)

(Summary)
######################################
Status # failure
######################################
Plugin # CfnGuardValidator
######################################
(Violations)
Ensure S3 Buckets are encrypted with a KMS CMK (1 occurrences)
Severity: medium
 Occurrences:

 - Construct Path: MyStack/MyCustomL3Construct/Bucket
 - Stack Template Path: ./cdk.out/MyStack.template.json

For application developers Version 2 375

https://github.com/cdklabs/cdk-validator-cfnguard
https://github.com/aws-cloudformation/cloudformation-guard
https://docs.aws.amazon.com/controltower/latest/userguide/proactive-controls.html
https://docs.aws.amazon.com/controltower/latest/userguide/proactive-controls.html
https://github.com/cdklabs/cdk-validator-cfnguard/blob/main/README.md
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/hooks.html
https://docs.aws.amazon.com/controltower/latest/userguide/what-is-control-tower.html
https://docs.aws.amazon.com/controltower/latest/userguide/proactive-controls.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 - Creation Stack:
 ### MyStack (MyStack)
 # Library: aws-cdk-lib.Stack
 # Library Version: 2.50.0
 # Location: Object.<anonymous> (/home/johndoe/tmp/cdk-tmp-app/src/
main.ts:25:20)
 ### MyCustomL3Construct (MyStack/MyCustomL3Construct)
 # Library: N/A - (Local Construct)
 # Library Version: N/A
 # Location: new MyStack (/home/johndoe/tmp/cdk-tmp-app/src/
main.ts:15:20)
 ### Bucket (MyStack/MyCustomL3Construct/Bucket)
 # Library: aws-cdk-lib/aws-s3.Bucket
 # Library Version: 2.50.0
 # Location: new MyCustomL3Construct (/home/johndoe/tmp/cdk-tmp-
app/src/main.ts:9:20)
 - Resource Name: my-bucket
 - Locations:
 > BucketEncryption/ServerSideEncryptionConfiguration/0/
ServerSideEncryptionByDefault/SSEAlgorithm
 Recommendation: Missing value for key `SSEAlgorithm` - must specify `aws:kms`
 How to fix:
 > Add to construct properties for `cdk-app/MyStack/Bucket`
 `encryption: BucketEncryption.KMS`

Validation failed. See above reports for details

By default, the report will be printed in a human readable format. If you want a report in JSON
format, enable it usingthe @aws-cdk/core:validationReportJsonvia the CLI or passing it
directly to the application:

const app = new App({
 context: { '@aws-cdk/core:validationReportJson': true },
});

Alternatively, you can set this context key-value pair using the cdk.json or cdk.context.json
files in your project directory (see Runtime context).

If you choose the JSON format, the AWS CDK will print the policy validation report to a file called
policy-validation-report.json in the cloud assembly directory. For the default, human-
readable format, the report will be printed to the standard output.

For application developers Version 2 376

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For plugin authors

Plugins

The AWS CDK core framework is responsible for registering and invoking plugins and then
displaying the formatted validation report. The responsibility of the plugin is to act as the
translation layer between the AWS CDK framework and the policy validation tool. A plugin can
be created in any language supported by AWS CDK. If you are creating a plugin that might be
consumed by multiple languages then it's recommended that you create the plugin in TypeScript
so that you can use JSII to publish the plugin in each AWS CDK language.

Creating plugins

The communication protocol between the AWS CDK core module and your policy tool is defined by
the IPolicyValidationPluginBeta1interface. To create a new plugin you must write a class
that implements this interface. There are two things you need to implement: the plugin name (by
overriding the name property), and the validate() method.

The framework will call validate(), passing an IValidationContextBeta1 object. The
location of the templates to be validated is given by templatePaths. The plugin should return an
instance of ValidationPluginReportBeta1. This object represents the report that the user wil
receive at the end of the synthesis.

validate(context: IPolicyValidationContextBeta1): PolicyValidationReportBeta1 {
 // First read the templates using context.templatePaths...
 // ...then perform the validation, and then compose and return the report.
 // Using hard-coded values here for better clarity:
 return {
 success: false,
 violations: [{
 ruleName: 'CKV_AWS_117',
 description: 'Ensure that AWS Lambda function is configured inside a VPC',
 fix: 'https://docs.bridgecrew.io/docs/ensure-that-aws-lambda-function-is-
configured-inside-a-vpc-1',
 violatingResources: [{
 resourceName: 'MyFunction3BAA72D1',
 templatePath: '/home/johndoe/myapp/cdk.out/MyService.template.json',
 locations: 'Properties/VpcConfig',
 }],
 }],

For plugin authors Version 2 377

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 };
}

Note that plugins aren't allowed to modify anything in the cloud assembly. Any attempt to do so
will result in synthesis failure.

If your plugin depends on an external tool, keep in mind that some developers may not have
that tool installed in their workstations yet. To minimize friction, we highly recommend that you
provide some installation script along with your plugin package, to automate the whole process.
Better yet, run that script as part of the installation of your package. With npm, for example, you
can add it to the postinstall script in the package.json file.

Handling Exemptions

If your organization has a mechanism for handling exemptions, it can be implemented as part of
the validator plugin.

An example scenario to illustrate a possible exemption mechanism:

• An organization has a rule that public Amazon S3 buckets aren't allowed, except for under certain
scenarios.

• A developer is creating an Amazon S3 bucket that falls under one of those scenarios and
requests an exemption (create a ticket for example).

• Security tooling knows how to read from the internal system that registers exemptions

In this scenario the developer would request an exception in the internal system and then will need
some way of "registering" that exception. Adding on to the guard plugin example, you could create
a plugin that handles exemptions by filtering out the violations that have a matching exemption in
an internal ticketing system.

See the existing plugins for example implementations.

• @cdklabs/cdk-validator-cfnguard

For plugin authors Version 2 378

https://docs.npmjs.com/cli/v9/using-npm/scripts
https://github.com/cdklabs/cdk-validator-cfnguard

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Continuous integration and delivery (CI/CD) using CDK
Pipelines

Use the CDK Pipelines module from the AWS Construct Library to configure continuous delivery
of AWS CDK applications. When you commit your CDK app's source code into AWS CodeCommit,
GitHub, or AWS CodeStar, CDK Pipelines can automatically build, test, and deploy your new version.

CDK Pipelines are self-updating. If you add application stages or stacks, the pipeline automatically
reconfigures itself to deploy those new stages or stacks.

Note

CDK Pipelines supports two APIs. One is the original API that was made available in the
CDK Pipelines Developer Preview. The other is a modern API that incorporates feedback
from CDK customers received during the preview phase. The examples in this topic use
the modern API. For details on the differences between the two supported APIs, see CDK
Pipelines original API in the aws-cdk GitHub repository.

Topics

• Bootstrap your AWS environments

• Initialize a project

• Define a pipeline

• Application stages

• Testing deployments

• Security notes

• Troubleshooting

Bootstrap your AWS environments

Before you can use CDK Pipelines, you must bootstrap the AWS environment that you will deploy
your stacks to.

A CDK Pipeline involves at least two environments. The first environment is where the pipeline
is provisioned. The second environment is where you want to deploy the application's stacks or

Create CDK Pipelines Version 2 379

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines-readme.html
https://github.com/aws/aws-cdk/blob/master/packages/@aws-cdk/pipelines/ORIGINAL_API.md
https://github.com/aws/aws-cdk/blob/master/packages/@aws-cdk/pipelines/ORIGINAL_API.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

stages to (stages are groups of related stacks). These environments can be the same, but a best
practice recommendation is to isolate stages from each other in different environments.

Note

See the section called “Bootstrapping” for more information on the kinds of resources
created by bootstrapping and how to customize the bootstrap stack.

Continuous deployment with CDK Pipelines requires the following to be included in the CDK
Toolkit stack:

• An Amazon Simple Storage Service (Amazon S3) bucket.

• An Amazon ECR repository.

• IAM roles to give the various parts of a pipeline the permissions they need.

The CDK Toolkit will upgrade your existing bootstrap stack or creates a new one if necessary.

To bootstrap an environment that can provision an AWS CDK pipeline, invoke cdk bootstrap as
shown in the following example. Invoking the AWS CDK Toolkit via the npx command temporarily
installs it if necessary. It will also use the version of the Toolkit installed in the current project, if
one exists.

--cloudformation-execution-policies specifies the ARN of a policy under which future CDK
Pipelines deployments will execute. The default AdministratorAccess policy makes sure that
your pipeline can deploy every type of AWS resource. If you use this policy, make sure you trust all
the code and dependencies that make up your AWS CDK app.

Most organizations mandate stricter controls on what kinds of resources can be deployed by
automation. Check with the appropriate department within your organization to determine the
policy your pipeline should use.

You can omit the --profile option if your default AWS profile contains the necessary authentication
configuration and AWS Region.

macOS/Linux

npx cdk bootstrap aws://ACCOUNT-NUMBER/REGION --profile ADMIN-PROFILE \

Bootstrap your AWS environments Version 2 380

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 --cloudformation-execution-policies arn:aws:iam::aws:policy/AdministratorAccess

Windows

npx cdk bootstrap aws://ACCOUNT-NUMBER/REGION --profile ADMIN-PROFILE ^
 --cloudformation-execution-policies arn:aws:iam::aws:policy/AdministratorAccess

To bootstrap additional environments into which AWS CDK applications will be deployed by the
pipeline, use the following commands instead. The --trust option indicates which other account
should have permissions to deploy AWS CDK applications into this environment. For this option,
specify the pipeline's AWS account ID.

Again, you can omit the --profile option if your default AWS profile contains the necessary
authentication configuration and AWS Region.

macOS/Linux

npx cdk bootstrap aws://ACCOUNT-NUMBER/REGION --profile ADMIN-PROFILE \
 --cloudformation-execution-policies arn:aws:iam::aws:policy/AdministratorAccess
 \
 --trust PIPELINE-ACCOUNT-NUMBER

Windows

npx cdk bootstrap aws://ACCOUNT-NUMBER/REGION --profile ADMIN-PROFILE ^
 --cloudformation-execution-policies arn:aws:iam::aws:policy/AdministratorAccess
 ^
 --trust PIPELINE-ACCOUNT-NUMBER

Tip

Use administrative credentials only to bootstrap and to provision the initial pipeline.
Afterward, use the pipeline itself, not your local machine, to deploy changes.

If you are upgrading a legacy bootstrapped environment, the previous Amazon S3 bucket is
orphaned when the new bucket is created. Delete it manually by using the Amazon S3 console.

Bootstrap your AWS environments Version 2 381

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Initialize a project

Create a new, empty GitHub project and clone it to your workstation in the my-pipeline
directory. (Our code examples in this topic use GitHub. You can also use AWS CodeStar or AWS
CodeCommit.)

git clone GITHUB-CLONE-URL my-pipeline
cd my-pipeline

Note

You can use a name other than my-pipeline for your app's main directory. However, if
you do so, you will have to tweak the file and class names later in this topic. This is because
the AWS CDK Toolkit bases some file and class names on the name of the main directory.

After cloning, initialize the project as usual.

TypeScript

cdk init app --language typescript

JavaScript

cdk init app --language javascript

Python

cdk init app --language python

After the app has been created, also enter the following two commands. These activate the
app's Python virtual environment and install the AWS CDK core dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

cdk init app --language java

Initialize a project Version 2 382

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you are using an IDE, you can now open or import the project. In Eclipse, for example, choose
File > Import > Maven > Existing Maven Projects. Make sure that the project settings are set to
use Java 8 (1.8).

C#

cdk init app --language csharp

If you are using Visual Studio, open the solution file in the src directory.

Go

cdk init app --language go

After the app has been created, also enter the following command to install the AWS Construct
Library modules that the app requires.

go get

Important

Be sure to commit your cdk.json and cdk.context.json files to source control.
The context information (such as feature flags and cached values retrieved from your
AWS account) are part of your project's state. The values may be different in another
environment, which can cause unexpected changes in your results. For more information,
see the section called “Context”.

Define a pipeline

Your CDK Pipelines application will include at least two stacks: one that represents the pipeline
itself, and one or more stacks that represent the application deployed through it. Stacks can also
be grouped into stages, which you can use to deploy copies of infrastructure stacks to different
environments. For now, we'll consider the pipeline, and later delve into the application it will
deploy.

The construct CodePipeline is the construct that represents a CDK Pipeline that uses AWS
CodePipeline as its deployment engine. When you instantiate CodePipeline in a stack, you define

Define a pipeline Version 2 383

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines.CodePipeline.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

the source location for the pipeline (such as a GitHub repository). You also define the commands to
build the app.

For example, the following defines a pipeline whose source is stored in a GitHub repository. It also
includes a build step for a TypeScript CDK application. Fill in the information about your GitHub
repo where indicated.

Note

By default, the pipeline authenticates to GitHub using a personal access token stored in
Secrets Manager under the name github-token.

You'll also need to update the instantiation of the pipeline stack to specify the AWS account and
Region.

TypeScript

In lib/my-pipeline-stack.ts (may vary if your project folder isn't named my-pipeline):

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { CodePipeline, CodePipelineSource, ShellStep } from 'aws-cdk-lib/pipelines';

export class MyPipelineStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: new ShellStep('Synth', {
 input: CodePipelineSource.gitHub('OWNER/REPO', 'main'),
 commands: ['npm ci', 'npm run build', 'npx cdk synth']
 })
 });
 }
}

In bin/my-pipeline.ts (may vary if your project folder isn't named my-pipeline):

#!/usr/bin/env node

Define a pipeline Version 2 384

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import * as cdk from 'aws-cdk-lib';
import { MyPipelineStack } from '../lib/my-pipeline-stack';

const app = new cdk.App();
new MyPipelineStack(app, 'MyPipelineStack', {
 env: {
 account: '111111111111',
 region: 'eu-west-1',
 }
});

app.synth();

JavaScript

In lib/my-pipeline-stack.js (may vary if your project folder isn't named my-pipeline):

const cdk = require('aws-cdk-lib');
const { CodePipeline, CodePipelineSource, ShellStep } = require('aws-cdk-lib/
pipelines');

 class MyPipelineStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: new ShellStep('Synth', {
 input: CodePipelineSource.gitHub('OWNER/REPO', 'main'),
 commands: ['npm ci', 'npm run build', 'npx cdk synth']
 })
 });
 }
}

module.exports = { MyPipelineStack }

In bin/my-pipeline.js (may vary if your project folder isn't named my-pipeline):

#!/usr/bin/env node

const cdk = require('aws-cdk-lib');
const { MyPipelineStack } = require('../lib/my-pipeline-stack');

Define a pipeline Version 2 385

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const app = new cdk.App();
new MyPipelineStack(app, 'MyPipelineStack', {
 env: {
 account: '111111111111',
 region: 'eu-west-1',
 }
});

app.synth();

Python

In my-pipeline/my-pipeline-stack.py (may vary if your project folder isn't named my-
pipeline):

import aws_cdk as cdk
from constructs import Construct
from aws_cdk.pipelines import CodePipeline, CodePipelineSource, ShellStep

class MyPipelineStack(cdk.Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 pipeline = CodePipeline(self, "Pipeline",
 pipeline_name="MyPipeline",
 synth=ShellStep("Synth",
 input=CodePipelineSource.git_hub("OWNER/REPO", "main"),
 commands=["npm install -g aws-cdk",
 "python -m pip install -r requirements.txt",
 "cdk synth"]
)
)

In app.py:

#!/usr/bin/env python3
import aws_cdk as cdk
from my_pipeline.my_pipeline_stack import MyPipelineStack

app = cdk.App()
MyPipelineStack(app, "MyPipelineStack",

Define a pipeline Version 2 386

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 env=cdk.Environment(account="111111111111", region="eu-west-1")
)

app.synth()

Java

In src/main/java/com/myorg/MyPipelineStack.java (may vary if your project folder
isn't named my-pipeline):

package com.myorg;

import java.util.Arrays;
import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.pipelines.CodePipeline;
import software.amazon.awscdk.pipelines.CodePipelineSource;
import software.amazon.awscdk.pipelines.ShellStep;

public class MyPipelineStack extends Stack {
 public MyPipelineStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public MyPipelineStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
 .pipelineName("MyPipeline")
 .synth(ShellStep.Builder.create("Synth")
 .input(CodePipelineSource.gitHub("OWNER/REPO", "main"))
 .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
 .build())
 .build();
 }
}

In src/main/java/com/myorg/MyPipelineApp.java (may vary if your project folder isn't
named my-pipeline):

package com.myorg;

Define a pipeline Version 2 387

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.amazon.awscdk.App;
import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

public class MyPipelineApp {
 public static void main(final String[] args) {
 App app = new App();

 new MyPipelineStack(app, "PipelineStack", StackProps.builder()
 .env(Environment.builder()
 .account("111111111111")
 .region("eu-west-1")
 .build())
 .build());

 app.synth();
 }
}

C#

In src/MyPipeline/MyPipelineStack.cs (may vary if your project folder isn't named my-
pipeline):

using Amazon.CDK;
using Amazon.CDK.Pipelines;

namespace MyPipeline
{
 public class MyPipelineStack : Stack
 {
 internal MyPipelineStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 var pipeline = new CodePipeline(this, "pipeline", new CodePipelineProps
 {
 PipelineName = "MyPipeline",
 Synth = new ShellStep("Synth", new ShellStepProps
 {
 Input = CodePipelineSource.GitHub("OWNER/REPO", "main"),
 Commands = new string[] { "npm install -g aws-cdk", "cdk
 synth" }

Define a pipeline Version 2 388

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 })
 });
 }
 }
}

In src/MyPipeline/Program.cs (may vary if your project folder isn't named my-pipeline):

using Amazon.CDK;

namespace MyPipeline
{
 sealed class Program
 {
 public static void Main(string[] args)
 {
 var app = new App();
 new MyPipelineStack(app, "MyPipelineStack", new StackProps
 {
 Env = new Amazon.CDK.Environment {
 Account = "111111111111", Region = "eu-west-1" }
 });

 app.Synth();
 }
 }
}

You must deploy a pipeline manually once. After that, the pipeline keeps itself up to date from the
source code repository. So be sure that the code in the repo is the code you want deployed. Check
in your changes and push to GitHub, then deploy:

git add --all
git commit -m "initial commit"
git push
cdk deploy

Define a pipeline Version 2 389

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Tip

Now that you've done the initial deployment, your local AWS account no longer needs
administrative access. This is because all changes to your app will be deployed via the
pipeline. All you need to be able to do is push to GitHub.

Application stages

To define a multi-stack AWS application that can be added to the pipeline all at once, define a
subclass of Stage. (This is different from CdkStage in the CDK Pipelines module.)

The stage contains the stacks that make up your application. If there are dependencies between
the stacks, the stacks are automatically added to the pipeline in the right order. Stacks that don't
depend on each other are deployed in parallel. You can add a dependency relationship between
stacks by calling stack1.addDependency(stack2).

Stages accept a default env argument, which becomes the default environment for the stacks
inside it. (Stacks can still have their own environment specified.).

An application is added to the pipeline by calling addStage() with instances of Stage. A stage
can be instantiated and added to the pipeline multiple times to define different stages of your
DTAP or multi-Region application pipeline.

We will create a stack containing a simple Lambda function and place that stack in a stage. Then
we will add the stage to the pipeline so it can be deployed.

TypeScript

Create the new file lib/my-pipeline-lambda-stack.ts to hold our application stack
containing a Lambda function.

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { Function, InlineCode, Runtime } from 'aws-cdk-lib/aws-lambda';

export class MyLambdaStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

Application stages Version 2 390

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stage.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines.CodePipeline.html#addwbrstagestage-optionss
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stage.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 new Function(this, 'LambdaFunction', {
 runtime: Runtime.NODEJS_18_X,
 handler: 'index.handler',
 code: new InlineCode('exports.handler = _ => "Hello, CDK";')
 });
 }
}

Create the new file lib/my-pipeline-app-stage.ts to hold our stage.

import * as cdk from 'aws-cdk-lib';
import { Construct } from "constructs";
import { MyLambdaStack } from './my-pipeline-lambda-stack';

export class MyPipelineAppStage extends cdk.Stage {

 constructor(scope: Construct, id: string, props?: cdk.StageProps) {
 super(scope, id, props);

 const lambdaStack = new MyLambdaStack(this, 'LambdaStack');
 }
}

Edit lib/my-pipeline-stack.ts to add the stage to our pipeline.

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { CodePipeline, CodePipelineSource, ShellStep } from 'aws-cdk-lib/pipelines';
import { MyPipelineAppStage } from './my-pipeline-app-stage';

export class MyPipelineStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: new ShellStep('Synth', {
 input: CodePipelineSource.gitHub('OWNER/REPO', 'main'),
 commands: ['npm ci', 'npm run build', 'npx cdk synth']
 })
 });

 pipeline.addStage(new MyPipelineAppStage(this, "test", {

Application stages Version 2 391

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 env: { account: "111111111111", region: "eu-west-1" }
 }));
 }
}

JavaScript

Create the new file lib/my-pipeline-lambda-stack.js to hold our application stack
containing a Lambda function.

const cdk = require('aws-cdk-lib');
const { Function, InlineCode, Runtime } = require('aws-cdk-lib/aws-lambda');

class MyLambdaStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 new Function(this, 'LambdaFunction', {
 runtime: Runtime.NODEJS_18_X,
 handler: 'index.handler',
 code: new InlineCode('exports.handler = _ => "Hello, CDK";')
 });
 }
}

module.exports = { MyLambdaStack }

Create the new file lib/my-pipeline-app-stage.js to hold our stage.

const cdk = require('aws-cdk-lib');
const { MyLambdaStack } = require('./my-pipeline-lambda-stack');

class MyPipelineAppStage extends cdk.Stage {

 constructor(scope, id, props) {
 super(scope, id, props);

 const lambdaStack = new MyLambdaStack(this, 'LambdaStack');
 }
}

module.exports = { MyPipelineAppStage };

Application stages Version 2 392

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Edit lib/my-pipeline-stack.ts to add the stage to our pipeline.

const cdk = require('aws-cdk-lib');
const { CodePipeline, CodePipelineSource, ShellStep } = require('aws-cdk-lib/
pipelines');
const { MyPipelineAppStage } = require('./my-pipeline-app-stage');

 class MyPipelineStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: new ShellStep('Synth', {
 input: CodePipelineSource.gitHub('OWNER/REPO', 'main'),
 commands: ['npm ci', 'npm run build', 'npx cdk synth']
 })
 });

 pipeline.addStage(new MyPipelineAppStage(this, "test", {
 env: { account: "111111111111", region: "eu-west-1" }
 }));

 }
}

module.exports = { MyPipelineStack }

Python

Create the new file my_pipeline/my_pipeline_lambda_stack.py to hold our application
stack containing a Lambda function.

import aws_cdk as cdk
from constructs import Construct
from aws_cdk.aws_lambda import Function, InlineCode, Runtime

class MyLambdaStack(cdk.Stack):
 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 Function(self, "LambdaFunction",
 runtime=Runtime.NODEJS_18_X,

Application stages Version 2 393

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 handler="index.handler",
 code=InlineCode("exports.handler = _ => 'Hello, CDK';")
)

Create the new file my_pipeline/my_pipeline_app_stage.py to hold our stage.

import aws_cdk as cdk
from constructs import Construct
from my_pipeline.my_pipeline_lambda_stack import MyLambdaStack

class MyPipelineAppStage(cdk.Stage):
 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 lambdaStack = MyLambdaStack(self, "LambdaStack")

Edit my_pipeline/my-pipeline-stack.py to add the stage to our pipeline.

import aws_cdk as cdk
from constructs import Construct
from aws_cdk.pipelines import CodePipeline, CodePipelineSource, ShellStep
from my_pipeline.my_pipeline_app_stage import MyPipelineAppStage

class MyPipelineStack(cdk.Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 pipeline = CodePipeline(self, "Pipeline",
 pipeline_name="MyPipeline",
 synth=ShellStep("Synth",
 input=CodePipelineSource.git_hub("OWNER/REPO", "main"),
 commands=["npm install -g aws-cdk",
 "python -m pip install -r requirements.txt",
 "cdk synth"]))

 pipeline.add_stage(MyPipelineAppStage(self, "test",
 env=cdk.Environment(account="111111111111", region="eu-west-1")))

Java

Create the new file src/main/java/com.myorg/MyPipelineLambdaStack.java to hold
our application stack containing a Lambda function.

Application stages Version 2 394

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.lambda.InlineCode;

public class MyPipelineLambdaStack extends Stack {
 public MyPipelineLambdaStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public MyPipelineLambdaStack(final Construct scope, final String id, final
 StackProps props) {
 super(scope, id, props);

 Function.Builder.create(this, "LambdaFunction")
 .runtime(Runtime.NODEJS_18_X)
 .handler("index.handler")
 .code(new InlineCode("exports.handler = _ => 'Hello, CDK';"))
 .build();

 }

}

Create the new file src/main/java/com.myorg/MyPipelineAppStage.java to hold our
stage.

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.Stage;
import software.amazon.awscdk.StageProps;

public class MyPipelineAppStage extends Stage {
 public MyPipelineAppStage(final Construct scope, final String id) {
 this(scope, id, null);
 }

Application stages Version 2 395

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public MyPipelineAppStage(final Construct scope, final String id, final
 StageProps props) {
 super(scope, id, props);

 Stack lambdaStack = new MyPipelineLambdaStack(this, "LambdaStack");
 }

}

Edit src/main/java/com.myorg/MyPipelineStack.java to add the stage to our pipeline.

package com.myorg;

import java.util.Arrays;
import software.constructs.Construct;
import software.amazon.awscdk.Environment;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.StageProps;
import software.amazon.awscdk.pipelines.CodePipeline;
import software.amazon.awscdk.pipelines.CodePipelineSource;
import software.amazon.awscdk.pipelines.ShellStep;

public class MyPipelineStack extends Stack {
 public MyPipelineStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public MyPipelineStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 final CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
 .pipelineName("MyPipeline")
 .synth(ShellStep.Builder.create("Synth")
 .input(CodePipelineSource.gitHub("OWNER/REPO", "main"))
 .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
 .build())
 .build();

 pipeline.addStage(new MyPipelineAppStage(this, "test", StageProps.builder()
 .env(Environment.builder()

Application stages Version 2 396

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .account("111111111111")
 .region("eu-west-1")
 .build())
 .build()));
 }
}

C#

Create the new file src/MyPipeline/MyPipelineLambdaStack.cs to hold our application
stack containing a Lambda function.

using Amazon.CDK;
using Constructs;
using Amazon.CDK.AWS.Lambda;

namespace MyPipeline
{
 class MyPipelineLambdaStack : Stack
 {
 public MyPipelineLambdaStack(Construct scope, string id, StackProps
 props=null) : base(scope, id, props)
 {
 new Function(this, "LambdaFunction", new FunctionProps
 {
 Runtime = Runtime.NODEJS_18_X,
 Handler = "index.handler",
 Code = new InlineCode("exports.handler = _ => 'Hello, CDK';")
 });
 }
 }
}

Create the new file src/MyPipeline/MyPipelineAppStage.cs to hold our stage.

using Amazon.CDK;
using Constructs;

namespace MyPipeline
{
 class MyPipelineAppStage : Stage
 {

Application stages Version 2 397

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public MyPipelineAppStage(Construct scope, string id, StageProps
 props=null) : base(scope, id, props)
 {
 Stack lambdaStack = new MyPipelineLambdaStack(this, "LambdaStack");
 }
 }
}

Edit src/MyPipeline/MyPipelineStack.cs to add the stage to our pipeline.

using Amazon.CDK;
using Constructs;
using Amazon.CDK.Pipelines;

namespace MyPipeline
{
 public class MyPipelineStack : Stack
 {
 internal MyPipelineStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 var pipeline = new CodePipeline(this, "pipeline", new CodePipelineProps
 {
 PipelineName = "MyPipeline",
 Synth = new ShellStep("Synth", new ShellStepProps
 {
 Input = CodePipelineSource.GitHub("OWNER/REPO", "main"),
 Commands = new string[] { "npm install -g aws-cdk", "cdk
 synth" }
 })
 });

 pipeline.AddStage(new MyPipelineAppStage(this, "test", new StageProps
 {
 Env = new Environment
 {
 Account = "111111111111", Region = "eu-west-1"
 }
 }));
 }
 }
}

Application stages Version 2 398

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Every application stage added by addStage() results in the addition of a corresponding pipeline
stage, represented by a StageDeployment instance returned by the addStage() call. You can add
pre-deployment or post-deployment actions to the stage by calling its addPre() or addPost()
method.

TypeScript

// import { ManualApprovalStep } from 'aws-cdk-lib/pipelines';

const testingStage = pipeline.addStage(new MyPipelineAppStage(this, 'testing', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));

 testingStage.addPost(new ManualApprovalStep('approval'));

JavaScript

// const { ManualApprovalStep } = require('aws-cdk-lib/pipelines');

const testingStage = pipeline.addStage(new MyPipelineAppStage(this, 'testing', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));

testingStage.addPost(new ManualApprovalStep('approval'));

Python

from aws_cdk.pipelines import ManualApprovalStep

testing_stage = pipeline.add_stage(MyPipelineAppStage(self, "testing",
 env=cdk.Environment(account="111111111111", region="eu-west-1")))

testing_stage.add_post(ManualApprovalStep('approval'))

Java

// import software.amazon.awscdk.pipelines.StageDeployment;
// import software.amazon.awscdk.pipelines.ManualApprovalStep;

StageDeployment testingStage =
 pipeline.addStage(new MyPipelineAppStage(this, "test", StageProps.builder()
 .env(Environment.builder()

Application stages Version 2 399

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines.StageDeployment.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .account("111111111111")
 .region("eu-west-1")
 .build())
 .build()));

testingStage.addPost(new ManualApprovalStep("approval"));

C#

var testingStage = pipeline.AddStage(new MyPipelineAppStage(this, "test", new
 StageProps
{
 Env = new Environment
 {
 Account = "111111111111", Region = "eu-west-1"
 }
}));

testingStage.AddPost(new ManualApprovalStep("approval"));

You can add stages to a Wave to deploy them in parallel, for example when deploying a stage to
multiple accounts or Regions.

TypeScript

const wave = pipeline.addWave('wave');
wave.addStage(new MyApplicationStage(this, 'MyAppEU', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));
wave.addStage(new MyApplicationStage(this, 'MyAppUS', {
 env: { account: '111111111111', region: 'us-west-1' }
}));

JavaScript

const wave = pipeline.addWave('wave');
wave.addStage(new MyApplicationStage(this, 'MyAppEU', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));
wave.addStage(new MyApplicationStage(this, 'MyAppUS', {
 env: { account: '111111111111', region: 'us-west-1' }

Application stages Version 2 400

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines.Wave.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}));

Python

wave = pipeline.add_wave("wave")
wave.add_stage(MyApplicationStage(self, "MyAppEU",
 env=cdk.Environment(account="111111111111", region="eu-west-1")))
wave.add_stage(MyApplicationStage(self, "MyAppUS",
 env=cdk.Environment(account="111111111111", region="us-west-1")))

Java

// import software.amazon.awscdk.pipelines.Wave;
final Wave wave = pipeline.addWave("wave");
wave.addStage(new MyPipelineAppStage(this, "MyAppEU", StageProps.builder()
 .env(Environment.builder()
 .account("111111111111")
 .region("eu-west-1")
 .build())
 .build()));
wave.addStage(new MyPipelineAppStage(this, "MyAppUS", StageProps.builder()
 .env(Environment.builder()
 .account("111111111111")
 .region("us-west-1")
 .build())
 .build()));

C#

var wave = pipeline.AddWave("wave");
wave.AddStage(new MyPipelineAppStage(this, "MyAppEU", new StageProps
{
 Env = new Environment
 {
 Account = "111111111111", Region = "eu-west-1"
 }
}));
wave.AddStage(new MyPipelineAppStage(this, "MyAppUS", new StageProps
{
 Env = new Environment
 {
 Account = "111111111111", Region = "us-west-1"
 }

Application stages Version 2 401

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}));

Testing deployments

You can add steps to a CDK Pipeline to validate the deployments that you're performing. For
example, you can use the CDK Pipeline library's ShellStep to perform tasks such as the following:

• Trying to access a newly deployed Amazon API Gateway backed by a Lambda function

• Checking a setting of a deployed resource by issuing an AWS CLI command

In its simplest form, adding validation actions looks like this:

TypeScript

// stage was returned by pipeline.addStage

stage.addPost(new ShellStep("validate", {
 commands: ['../tests/validate.sh'],
}));

JavaScript

// stage was returned by pipeline.addStage

stage.addPost(new ShellStep("validate", {
 commands: ['../tests/validate.sh'],
}));

Python

stage was returned by pipeline.add_stage

stage.add_post(ShellStep("validate",
 commands=[''../tests/validate.sh'']
))

Java

// stage was returned by pipeline.addStage

Testing deployments Version 2 402

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines.ShellStep.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

stage.addPost(ShellStep.Builder.create("validate")
 .commands(Arrays.asList("'../tests/validate.sh'"))
 .build());

C#

// stage was returned by pipeline.addStage

stage.AddPost(new ShellStep("validate", new ShellStepProps
{
 Commands = new string[] { "'../tests/validate.sh'" }
}));

Many AWS CloudFormation deployments result in the generation of resources with unpredictable
names. Because of this, CDK Pipelines provide a way to read AWS CloudFormation outputs after a
deployment. This makes it possible to pass (for example) the generated URL of a load balancer to a
test action.

To use outputs, expose the CfnOutput object you're interested in. Then, pass it in a step's
envFromCfnOutputs property to make it available as an environment variable within that step.

TypeScript

// given a stack lbStack that exposes a load balancer construct as loadBalancer
this.loadBalancerAddress = new cdk.CfnOutput(lbStack, 'LbAddress', {
 value: `https://${lbStack.loadBalancer.loadBalancerDnsName}/`
});

// pass the load balancer address to a shell step
stage.addPost(new ShellStep("lbaddr", {
 envFromCfnOutputs: {lb_addr: lbStack.loadBalancerAddress},
 commands: ['echo $lb_addr']
}));

JavaScript

// given a stack lbStack that exposes a load balancer construct as loadBalancer
this.loadBalancerAddress = new cdk.CfnOutput(lbStack, 'LbAddress', {
 value: `https://${lbStack.loadBalancer.loadBalancerDnsName}/`
});

Testing deployments Version 2 403

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// pass the load balancer address to a shell step
stage.addPost(new ShellStep("lbaddr", {
 envFromCfnOutputs: {lb_addr: lbStack.loadBalancerAddress},
 commands: ['echo $lb_addr']
}));

Python

given a stack lb_stack that exposes a load balancer construct as load_balancer
self.load_balancer_address = cdk.CfnOutput(lb_stack, "LbAddress",
 value=f"https://{lb_stack.load_balancer.load_balancer_dns_name}/")

pass the load balancer address to a shell step
stage.add_post(ShellStep("lbaddr",
 env_from_cfn_outputs={"lb_addr": lb_stack.load_balancer_address}
 commands=["echo $lb_addr"]))

Java

// given a stack lbStack that exposes a load balancer construct as loadBalancer
loadBalancerAddress = CfnOutput.Builder.create(lbStack, "LbAddress")
 .value(String.format("https://%s/",
 lbStack.loadBalancer.loadBalancerDnsName))
 .build();

stage.addPost(ShellStep.Builder.create("lbaddr")
 .envFromCfnOutputs(// Map.of requires Java 9 or later
 java.util.Map.of("lbAddr", loadBalancerAddress))
 .commands(Arrays.asList("echo $lbAddr"))
 .build());

C#

// given a stack lbStack that exposes a load balancer construct as loadBalancer
loadBalancerAddress = new CfnOutput(lbStack, "LbAddress", new CfnOutputProps
{
 Value = string.Format("https://{0}/", lbStack.loadBalancer.LoadBalancerDnsName)
});

stage.AddPost(new ShellStep("lbaddr", new ShellStepProps
{
 EnvFromCfnOutputs = new Dictionary<string, CfnOutput>
 {

Testing deployments Version 2 404

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 { "lbAddr", loadBalancerAddress }
 },
 Commands = new string[] { "echo $lbAddr" }
}));

You can write simple validation tests right in the ShellStep, but this approach becomes unwieldy
when the test is more than a few lines. For more complex tests, you can bring additional files (such
as complete shell scripts, or programs in other languages) into the ShellStep via the inputs
property. The inputs can be any step that has an output, including a source (such as a GitHub repo)
or another ShellStep.

Bringing in files from the source repository is appropriate if the files are directly usable in the test
(for example, if they are themselves executable). In this example, we declare our GitHub repo as
source (rather than instantiating it inline as part of the CodePipeline). Then, we pass this fileset
to both the pipeline and the validation test.

TypeScript

const source = CodePipelineSource.gitHub('OWNER/REPO', 'main');

const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: new ShellStep('Synth', {
 input: source,
 commands: ['npm ci', 'npm run build', 'npx cdk synth']
 })
});

const stage = pipeline.addStage(new MyPipelineAppStage(this, 'test', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));

stage.addPost(new ShellStep('validate', {
 input: source,
 commands: ['sh ../tests/validate.sh']
}));

JavaScript

const source = CodePipelineSource.gitHub('OWNER/REPO', 'main');

Testing deployments Version 2 405

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: new ShellStep('Synth', {
 input: source,
 commands: ['npm ci', 'npm run build', 'npx cdk synth']
 })
});

const stage = pipeline.addStage(new MyPipelineAppStage(this, 'test', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));

stage.addPost(new ShellStep('validate', {
 input: source,
 commands: ['sh ../tests/validate.sh']
}));

Python

source = CodePipelineSource.git_hub("OWNER/REPO", "main")

pipeline = CodePipeline(self, "Pipeline",
 pipeline_name="MyPipeline",
 synth=ShellStep("Synth",
 input=source,
 commands=["npm install -g aws-cdk",
 "python -m pip install -r requirements.txt",
 "cdk synth"]))

stage = pipeline.add_stage(MyApplicationStage(self, "test",
 env=cdk.Environment(account="111111111111", region="eu-west-1")))

stage.add_post(ShellStep("validate", input=source,
 commands=["sh ../tests/validate.sh"],
))

Java

final CodePipelineSource source = CodePipelineSource.gitHub("OWNER/REPO", "main");

final CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
 .pipelineName("MyPipeline")
 .synth(ShellStep.Builder.create("Synth")

Testing deployments Version 2 406

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .input(source)
 .commands(Arrays.asList("npm install -g aws-cdk", "cdk synth"))
 .build())
 .build();

final StageDeployment stage =
 pipeline.addStage(new MyPipelineAppStage(this, "test", StageProps.builder()
 .env(Environment.builder()
 .account("111111111111")
 .region("eu-west-1")
 .build())
 .build()));

stage.addPost(ShellStep.Builder.create("validate")
 .input(source)
 .commands(Arrays.asList("sh ../tests/validate.sh"))
 .build());

C#

var source = CodePipelineSource.GitHub("OWNER/REPO", "main");

var pipeline = new CodePipeline(this, "pipeline", new CodePipelineProps
{
 PipelineName = "MyPipeline",
 Synth = new ShellStep("Synth", new ShellStepProps
 {
 Input = source,
 Commands = new string[] { "npm install -g aws-cdk", "cdk synth" }
 })
});

var stage = pipeline.AddStage(new MyPipelineAppStage(this, "test", new StageProps
{
 Env = new Environment
 {
 Account = "111111111111", Region = "eu-west-1"
 }
}));

stage.AddPost(new ShellStep("validate", new ShellStepProps
{
 Input = source,

Testing deployments Version 2 407

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Commands = new string[] { "sh ../tests/validate.sh" }
}));

Getting the additional files from the synth step is appropriate if your tests need to be compiled,
which is done as part of synthesis.

TypeScript

const synthStep = new ShellStep('Synth', {
 input: CodePipelineSource.gitHub('OWNER/REPO', 'main'),
 commands: ['npm ci', 'npm run build', 'npx cdk synth'],
});

const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: synthStep
});

const stage = pipeline.addStage(new MyPipelineAppStage(this, 'test', {
 env: { account: '111111111111', region: 'eu-west-1' }
}));

// run a script that was transpiled from TypeScript during synthesis
stage.addPost(new ShellStep('validate', {
 input: synthStep,
 commands: ['node tests/validate.js']
}));

JavaScript

const synthStep = new ShellStep('Synth', {
 input: CodePipelineSource.gitHub('OWNER/REPO', 'main'),
 commands: ['npm ci', 'npm run build', 'npx cdk synth'],
});

const pipeline = new CodePipeline(this, 'Pipeline', {
 pipelineName: 'MyPipeline',
 synth: synthStep
});

const stage = pipeline.addStage(new MyPipelineAppStage(this, "test", {
 env: { account: "111111111111", region: "eu-west-1" }

Testing deployments Version 2 408

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}));

// run a script that was transpiled from TypeScript during synthesis
stage.addPost(new ShellStep('validate', {
 input: synthStep,
 commands: ['node tests/validate.js']
}));

Python

synth_step = ShellStep("Synth",
 input=CodePipelineSource.git_hub("OWNER/REPO", "main"),
 commands=["npm install -g aws-cdk",
 "python -m pip install -r requirements.txt",
 "cdk synth"])

pipeline = CodePipeline(self, "Pipeline",
 pipeline_name="MyPipeline",
 synth=synth_step)

stage = pipeline.add_stage(MyApplicationStage(self, "test",
 env=cdk.Environment(account="111111111111", region="eu-west-1")))

run a script that was compiled during synthesis
stage.add_post(ShellStep("validate",
 input=synth_step,
 commands=["node test/validate.js"],
))

Java

final ShellStep synth = ShellStep.Builder.create("Synth")
 .input(CodePipelineSource.gitHub("OWNER/REPO", "main"))
 .commands(Arrays.asList("npm install -g aws-cdk", "cdk
 synth"))
 .build();

final CodePipeline pipeline = CodePipeline.Builder.create(this, "pipeline")
 .pipelineName("MyPipeline")
 .synth(synth)
 .build();

final StageDeployment stage =

Testing deployments Version 2 409

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 pipeline.addStage(new MyPipelineAppStage(this, "test", StageProps.builder()
 .env(Environment.builder()
 .account("111111111111")
 .region("eu-west-1")
 .build())
 .build()));

stage.addPost(ShellStep.Builder.create("validate")
 .input(synth)
 .commands(Arrays.asList("node ./tests/validate.js"))
 .build());

C#

var synth = new ShellStep("Synth", new ShellStepProps
{
 Input = CodePipelineSource.GitHub("OWNER/REPO", "main"),
 Commands = new string[] { "npm install -g aws-cdk", "cdk synth" }
});

var pipeline = new CodePipeline(this, "pipeline", new CodePipelineProps
{
 PipelineName = "MyPipeline",
 Synth = synth
});

var stage = pipeline.AddStage(new MyPipelineAppStage(this, "test", new StageProps
{
 Env = new Environment
 {
 Account = "111111111111", Region = "eu-west-1"
 }
}));

stage.AddPost(new ShellStep("validate", new ShellStepProps
{
 Input = synth,
 Commands = new string[] { "node ./tests/validate.js" }
}));

Testing deployments Version 2 410

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Security notes

Any form of continuous delivery has inherent security risks. Under the AWS Shared Responsibility
Model, you are responsible for the security of your information in the AWS Cloud. The CDK
Pipelines library gives you a head start by incorporating secure defaults and modeling best
practices.

However, by its very nature, a library that needs a high level of access to fulfill its intended
purpose cannot assure complete security. There are many attack vectors outside of AWS and your
organization.

In particular, keep in mind the following:

• Be mindful of the software you depend on. Vet all third-party software you run in your pipeline,
because it can change the infrastructure that gets deployed.

• Use dependency locking to prevent accidental upgrades. CDK Pipelines respects package-
lock.json and yarn.lock to make sure that your dependencies are the ones you expect.

• CDK Pipelines runs on resources created in your own account, and the configuration of those
resources is controlled by developers submitting code through the pipeline. Therefore, CDK
Pipelines by itself cannot protect against malicious developers trying to bypass compliance
checks. If your threat model includes developers writing CDK code, you should have external
compliance mechanisms in place like AWS CloudFormation Hooks (preventive) or AWS Config
(reactive) that the AWS CloudFormation Execution Role does not have permissions to disable.

• Credentials for production environments should be short-lived. After bootstrapping and initial
provisioning, there is no need for developers to have account credentials at all. Changes can be
deployed through the pipeline. Reduce the possibility of credentials leaking by not needing them
in the first place.

Troubleshooting

The following issues are commonly encountered while getting started with CDK Pipelines.

Pipeline: Internal Failure

CREATE_FAILED | AWS::CodePipeline::Pipeline | Pipeline/Pipeline
Internal Failure

Security notes Version 2 411

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/blogs/mt/proactively-keep-resources-secure-and-compliant-with-aws-cloudformation-hooks/
https://aws.amazon.com/config/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Check your GitHub access token. It might be missing, or might not have the permissions to
access the repository.

Key: Policy contains a statement with one or more invalid principals

CREATE_FAILED | AWS::KMS::Key | Pipeline/Pipeline/ArtifactsBucketEncryptionKey
Policy contains a statement with one or more invalid principals.

One of the target environments has not been bootstrapped with the new bootstrap stack. Make
sure all your target environments are bootstrapped.

Stack is in ROLLBACK_COMPLETE state and can not be updated.

Stack STACK_NAME is in ROLLBACK_COMPLETE state and can not be updated. (Service:
AmazonCloudFormation; Status Code: 400; Error Code: ValidationError; Request
ID: ...)

The stack failed its previous deployment and is in a non-retryable state. Delete the stack from
the AWS CloudFormation console and retry the deployment.

Troubleshooting Version 2 412

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Best practices for developing and deploying cloud
infrastructure with the AWS CDK

With the AWS CDK, developers or administrators can define their cloud infrastructure by using
a supported programming language. CDK applications should be organized into logical units,
such as API, database, and monitoring resources, and optionally have a pipeline for automated
deployments. The logical units should be implemented as constructs including the following:

• Infrastructure (such as Amazon S3 buckets, Amazon RDS databases, or an Amazon VPC network)

• Runtime code (such as AWS Lambda functions)

• Configuration code

Stacks define the deployment model of these logical units. For a more detailed introduction to the
concepts behind the CDK, see Getting started.

The AWS CDK reflects careful consideration of the needs of our customers and internal teams
and of the failure patterns that often arise during the deployment and ongoing maintenance of
complex cloud applications. We discovered that failures are often related to "out-of-band" changes
to an application that aren't fully tested, such as configuration changes. Therefore, we developed
the AWS CDK around a model in which your entire application is defined in code, not only business
logic but also infrastructure and configuration. That way, proposed changes can be carefully
reviewed, comprehensively tested in environments resembling production to varying degrees, and
fully rolled back if something goes wrong.

Version 2 413

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

At deployment time, the AWS CDK synthesizes a cloud assembly that contains the following:

• AWS CloudFormation templates that describe your infrastructure in all target environments

• File assets that contain your runtime code and their supporting files

With the CDK, every commit in your application's main version control branch can represent
a complete, consistent, deployable version of your application. Your application can then be
deployed automatically whenever a change is made.

Version 2 414

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The philosophy behind the AWS CDK leads to our recommended best practices, which we have
divided into four broad categories.

• the section called “Organization best practices”

• the section called “Coding best practices”

• the section called “Construct best practices”

• the section called “Application best practices”

Tip

Also consider best practices for AWS CloudFormation and the individual AWS services that
you use, where applicable to CDK-defined infrastructure.

Organization best practices

In the beginning stages of AWS CDK adoption, it's important to consider how to set up your
organization for success. It's a best practice to have a team of experts responsible for training and
guiding the rest of the company as they adopt the CDK. The size of this team might vary, from one
or two people at a small company to a full-fledged Cloud Center of Excellence (CCoE) at a larger
company. This team is responsible for setting standards and policies for cloud infrastructure at your
company, and also for training and mentoring developers.

The CCoE might provide guidance on what programming languages should be used for cloud
infrastructure. Details will vary from one organization to the next, but a good policy helps make
sure that developers can understand and maintain the company's cloud infrastructure.

The CCoE also creates a "landing zone" that defines your organizational units within AWS. A
landing zone is a pre-configured, secure, scalable, multi-account AWS environment based on best
practice blueprints. To tie together the services that make up your landing zone, you can use AWS
Control Tower, which configures and manages your entire multi-account system from a single user
interface.

Development teams should be able to use their own accounts for testing and deploy new resources
in these accounts as needed. Individual developers can treat these resources as extensions of
their own development workstation. Using CDK Pipelines, the AWS CDK applications can then
be deployed via a CI/CD account to testing, integration, and production environments (each

Organization best practices Version 2 415

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
https://aws.amazon.com/controltower/
https://aws.amazon.com/controltower/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

isolated in its own AWS Region or account). This is done by merging the developers' code into your
organization's canonical repository.

Coding best practices

This section presents best practices for organizing your AWS CDK code. The following diagram
shows the relationship between a team and that team's code repositories, packages, applications,
and construct libraries.

Coding best practices Version 2 416

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Start simple and add complexity only when you need it

The guiding principle for most of our best practices is to keep things simple as possible—but no
simpler. Add complexity only when your requirements dictate a more complicated solution. With
the AWS CDK, you can refactor your code as necessary to support new requirements. You don't
have to architect for all possible scenarios upfront.

Align with the AWS Well-Architected Framework

The AWS Well-Architected Framework defines a component as the code, configuration, and AWS
resources that together deliver against a requirement. A component is often the unit of technical
ownership, and is decoupled from other components. The term workload is used to identify a set
of components that together deliver business value. A workload is usually the level of detail that
business and technology leaders communicate about.

An AWS CDK application maps to a component as defined by the AWS Well-Architected
Framework. AWS CDK apps are a mechanism to codify and deliver Well-Architected cloud
application best practices. You can also create and share components as reusable code libraries
through artifact repositories, such as AWS CodeArtifact.

Every application starts with a single package in a single repository

A single package is the entry point of your AWS CDK app. Here, you define how and where to
deploy the different logical units of your application. You also define the CI/CD pipeline to deploy
the application. The app's constructs define the logical units of your solution.

Use additional packages for constructs that you use in more than one application. (Shared
constructs should also have their own lifecycle and testing strategy.) Dependencies between
packages in the same repository are managed by your repo's build tooling.

Although it's possible, we don't recommend putting multiple applications in the same repository,
especially when using automated deployment pipelines. Doing this increases the "blast radius" of
changes during deployment. When there are multiple applications in a repository, changes to one
application trigger deployment of the others (even if the others haven't changed). Furthermore, a
break in one application prevents the other applications from being deployed.

Move code into repositories based on code lifecycle or team ownership

When packages begin to be used in multiple applications, move them to their own repository. This
way, the packages can be referenced by application build systems that use them, and they can also

Start simple and add complexity only when you need it Version 2 417

https://aws.amazon.com/architecture/well-architected/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

be updated on cadences independent of the application lifecycles. However, at first it might make
sense to put all shared constructs in one repository.

Also, move packages to their own repository when different teams are working on them. This helps
enforce access control.

To consume packages across repository boundaries, you need a private package repository—similar
to NPM, PyPi, or Maven Central, but internal to your organization. You also need a release process
that builds, tests, and publishes the package to the private package repository. CodeArtifact can
host packages for most popular programming languages.

Dependencies on packages in the package repository are managed by your language's package
manager, such as NPM for TypeScript or JavaScript applications. Your package manager helps
to make sure that builds are repeatable. It does this by recording the specific versions of every
package that your application depends on. It also lets you upgrade those dependencies in a
controlled manner.

Shared packages need a different testing strategy. For a single application, it might be good
enough to deploy the application to a testing environment and confirm that it still works. But
shared packages must be tested independently of the consuming application, as if they were being
released to the public. (Your organization might choose to actually release some shared packages
to the public.)

Keep in mind that a construct can be arbitrarily simple or complex. A Bucket is a construct, but
CameraShopWebsite could be a construct, too.

Infrastructure and runtime code live in the same package

In addition to generating AWS CloudFormation templates for deploying infrastructure, the AWS
CDK also bundles runtime assets like Lambda functions and Docker images and deploys them
alongside your infrastructure. This makes it possible to combine the code that defines your
infrastructure and the code that implements your runtime logic into a single construct. It's a best
practice to do this. These two kinds of code don't need to live in separate repositories or even in
separate packages.

To evolve the two kinds of code together, you can use a self-contained construct that completely
describes a piece of functionality, including its infrastructure and logic. With a self-contained
construct, you can test the two kinds of code in isolation, share and reuse the code across projects,
and version all the code in sync.

Infrastructure and runtime code live in the same package Version 2 418

https://docs.aws.amazon.com/codeartifact/latest/ug/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Construct best practices

This section contains best practices for developing constructs. Constructs are reusable, composable
modules that encapsulate resources. They're the building blocks of AWS CDK apps.

Model with constructs, deploy with stacks

Stacks are the unit of deployment: everything in a stack is deployed together. So when building
your application's higher-level logical units from multiple AWS resources, represent each logical
unit as a Construct, not as a Stack. Use stacks only to describe how your constructs should be
composed and connected for your various deployment scenarios.

For example, if one of your logical units is a website, the constructs that make it up (such as an
Amazon S3 bucket, API Gateway, Lambda functions, or Amazon RDS tables) should be composed
into a single high-level construct. Then that construct should be instantiated in one or more stacks
for deployment.

By using constructs for building and stacks for deploying, you improve reuse potential of your
infrastructure and give yourself more flexibility in how it's deployed.

Configure with properties and methods, not environment variables

Environment variable lookups inside constructs and stacks are a common anti-pattern. Both
constructs and stacks should accept a properties object to allow for full configurability completely
in code. Doing otherwise introduces a dependency on the machine that the code will run on, which
creates yet more configuration information that you have to track and manage.

In general, environment variable lookups should be limited to the top level of an AWS CDK app.
They should also be used to pass in information that's needed for running in a development
environment. For more information, see the section called “Environments”.

Unit test your infrastructure

To consistently run a full suite of unit tests at build time in all environments, avoid network
lookups during synthesis and model all your production stages in code. (These best practices are
covered later.) If any single commit always results in the same generated template, you can trust
the unit tests that you write to confirm that the generated templates look the way you expect. For
more information, see Testing constructs.

Construct best practices Version 2 419

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Don't change the logical ID of stateful resources

Changing the logical ID of a resource results in the resource being replaced with a new one at the
next deployment. For stateful resources like databases and S3 buckets, or persistent infrastructure
like an Amazon VPC, this is seldom what you want. Be careful about any refactoring of your AWS
CDK code that could cause the ID to change. Write unit tests that assert that the logical IDs of
your stateful resources remain static. The logical ID is derived from the id you specify when you
instantiate the construct, and the construct's position in the construct tree. For more information,
see the section called “Logical IDs”.

Constructs aren't enough for compliance

Many enterprise customers write their own wrappers for L2 constructs (the "curated" constructs
that represent individual AWS resources with built-in sane defaults and best practices). These
wrappers enforce security best practices such as static encryption and specific IAM policies. For
example, you might create a MyCompanyBucket that you then use in your applications in place of
the usual Amazon S3 Bucket construct. This pattern is useful for surfacing security guidance early
in the software development lifecycle, but don't rely on it as the sole means of enforcement.

Instead, use AWS features such as service control policies and permission boundaries to enforce
your security guardrails at the organization level. Use the section called “Aspects” or tools like
CloudFormation Guard to make assertions about the security properties of infrastructure elements
before deployment. Use AWS CDK for what it does best.

Finally, keep in mind that writing your own "L2+" constructs might prevent your developers from
taking advantage of AWS CDK packages such as AWS Solutions Constructs or third-party constructs
from Construct Hub. These packages are typically built on standard AWS CDK constructs and won't
be able to use your wrapper constructs.

Application best practices

In this section we discuss how to write your AWS CDK applications, combining constructs to define
how your AWS resources are connected.

Make decisions at synthesis time

Although AWS CloudFormation lets you make decisions at deployment time (using Conditions,
{ Fn::If }, and Parameters), and the AWS CDK gives you some access to these mechanisms,
we recommend against using them. The types of values that you can use and the types of

Don't change the logical ID of stateful resources Version 2 420

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://github.com/aws-cloudformation/cloudformation-guard
https://docs.aws.amazon.com/solutions/latest/constructs/welcome.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

operations you can perform on them are limited compared to what's available in a general-purpose
programming language.

Instead, try to make all decisions, such as which construct to instantiate, in your AWS CDK
application by using your programming language's if statements and other features. For example,
a common CDK idiom, iterating over a list and instantiating a construct with values from each item
in the list, simply isn't possible using AWS CloudFormation expressions.

Treat AWS CloudFormation as an implementation detail that the AWS CDK uses for robust cloud
deployments, not as a language target. You're not writing AWS CloudFormation templates
in TypeScript or Python, you're writing CDK code that happens to use CloudFormation for
deployment.

Use generated resource names, not physical names

Names are a precious resource. Each name can only be used once. Therefore, if you hardcode a
table name or bucket name into your infrastructure and application, you can't deploy that piece of
infrastructure twice in the same account. (The name we're talking about here is the name specified
by, for example, the bucketName property on an Amazon S3 bucket construct.)

What's worse, you can't make changes to the resource that require it to be replaced. If a property
can only be set at resource creation, such as the KeySchema of an Amazon DynamoDB table, then
that property is immutable. Changing this property requires a new resource. However, the new
resource must have the same name in order to be a true replacement. But it can't have the same
name while the existing resource is still using that name.

A better approach is to specify as few names as possible. If you omit resource names, the AWS
CDK will generate them for you in a way that won't cause problems. Suppose you have a table
as a resource. You can then pass the generated table name as an environment variable into
your AWS Lambda function. In your AWS CDK application, you can reference the table name as
table.tableName. Alternatively, you can generate a configuration file on your Amazon EC2
instance on startup, or write the actual table name to the AWS Systems Manager Parameter Store
so your application can read it from there.

If the place you need it is another AWS CDK stack, that's even more straightforward. Supposing
that one stack defines the resource and another stack needs to use it, the following applies:

• If the two stacks are in the same AWS CDK app, pass a reference between the two stacks. For
example, save a reference to the resource's construct as an attribute of the defining stack

Use generated resource names, not physical names Version 2 421

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

(this.stack.uploadBucket = myBucket). Then, pass that attribute to the constructor of
the stack that needs the resource.

• When the two stacks are in different AWS CDK apps, use a static from method to use an
externally defined resource based on its ARN, name, or other attributes. (For example, use
Table.fromArn() for a DynamoDB table). Use the CfnOutput construct to print the ARN or
other required value in the output of cdk deploy, or look in the AWS Management Console.
Alternatively, the second app can read the CloudFormation template generated by the first app
and retrieve that value from the Outputs section.

Define removal policies and log retention

The AWS CDK attempts to keep you from losing data by defaulting to policies that retain
everything you create. For example, the default removal policy on resources that contain data (such
as Amazon S3 buckets and database tables) is not to delete the resource when it is removed from
the stack. Instead, the resource is orphaned from the stack. Similarly, the CDK's default is to retain
all logs forever. In production environments, these defaults can quickly result in the storage of
large amounts of data that you don't actually need, and a corresponding AWS bill.

Consider carefully what you want these policies to be for each production resource and specify
them accordingly. Use the section called “Aspects” to validate the removal and logging policies in
your stack.

Separate your application into multiple stacks as dictated by
deployment requirements

There is no hard and fast rule to how many stacks your application needs. You'll usually end up
basing the decision on your deployment patterns. Keep in mind the following guidelines:

• It's typically more straightforward to keep as many resources in the same stack as possible, so
keep them together unless you know you want them separated.

• Consider keeping stateful resources (like databases) in a separate stack from stateless resources.
You can then turn on termination protection on the stateful stack. This way, you can freely
destroy or create multiple copies of the stateless stack without risk of data loss.

• Stateful resources are more sensitive to construct renaming—renaming leads to resource
replacement. Therefore, don't nest stateful resources inside constructs that are likely to be
moved around or renamed (unless the state can be rebuilt if lost, like a cache). This is another
good reason to put stateful resources in their own stack.

Define removal policies and log retention Version 2 422

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Commit cdk.context.json to avoid non-deterministic behavior

Determinism is key to successful AWS CDK deployments. An AWS CDK app should have essentially
the same result whenever it is deployed to a given environment.

Since your AWS CDK app is written in a general-purpose programming language, it can execute
arbitrary code, use arbitrary libraries, and make arbitrary network calls. For example, you could use
an AWS SDK to retrieve some information from your AWS account while synthesizing your app.
Recognize that doing so will result in additional credential setup requirements, increased latency,
and a chance, however small, of failure every time you run cdk synth.

Never modify your AWS account or resources during synthesis. Synthesizing an app should not
have side effects. Changes to your infrastructure should happen only in the deployment phase,
after the AWS CloudFormation template has been generated. This way, if there's a problem, AWS
CloudFormation can automatically roll back the change. To make changes that can't be easily made
within the AWS CDK framework, use custom resources to execute arbitrary code at deployment
time.

Even strictly read-only calls are not necessarily safe. Consider what happens if the value returned
by a network call changes. What part of your infrastructure will that impact? What will happen to
already-deployed resources? Following are two example situations in which a sudden change in
values might cause a problem.

• If you provision an Amazon VPC to all available Availability Zones in a specified Region, and the
number of AZs is two on deployment day, then your IP space gets split in half. If AWS launches
a new Availability Zone the next day, the next deployment after that tries to split your IP space
into thirds, requiring all subnets to be recreated. This probably won't be possible because your
Amazon EC2 instances are still running, and you'll have to clean this up manually.

• If you query for the latest Amazon Linux machine image and deploy an Amazon EC2 instance,
and the next day a new image is released, a subsequent deployment picks up the new AMI and
replaces all your instances. This might not be what you expected to happen.

These situations can be pernicious because the AWS-side change might occur after months or years
of successful deployments. Suddenly your deployments are failing "for no reason" and you long
ago forgot what you did and why.

Fortunately, the AWS CDK includes a mechanism called context providers to record a snapshot
of non-deterministic values. This allows future synthesis operations to produce exactly the same

Commit cdk.context.json to avoid non-deterministic behavior Version 2 423

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.custom_resources-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

template as they did when first deployed. The only changes in the new template are the changes
that you made in your code. When you use a construct's .fromLookup() method, the result of the
call is cached in cdk.context.json. You should commit this to version control along with the
rest of your code to make sure that future executions of your CDK app use the same value. The CDK
Toolkit includes commands to manage the context cache, so you can refresh specific entries when
you need to. For more information, see the section called “Context”.

If you need some value (from AWS or elsewhere) for which there is no native CDK context provider,
we recommend writing a separate script. The script should retrieve the value and write it to a file,
then read that file in your CDK app. Run the script only when you want to refresh the stored value,
not as part of your regular build process.

Let the AWS CDK manage roles and security groups

With the AWS CDK construct library's grant() convenience methods, you can create AWS Identity
and Access Management roles that grant access to one resource by another using minimally scoped
permissions. For example, consider a line like the following:

myBucket.grantRead(myLambda)

This single line adds a policy to the Lambda function's role (which is also created for you). That role
and its policies are more than a dozen lines of CloudFormation that you don't have to write. The
AWS CDK grants only the minimal permissions required for the function to read from the bucket.

If you require developers to always use predefined roles that were created by a security team, AWS
CDK coding becomes much more complicated. Your teams could lose a lot of flexibility in how
they design their applications. A better alternative is to use service control policies and permission
boundaries to make sure that developers stay within the guardrails.

Model all production stages in code

In traditional AWS CloudFormation scenarios, your goal is to produce a single artifact that
is parameterized so that it can be deployed to various target environments after applying
configuration values specific to those environments. In the CDK, you can, and should, build that
configuration into your source code. Create a stack for your production environment, and create
a separate stack for each of your other stages. Then, put the configuration values for each stack
in the code. Use services like Secrets Manager and Systems Manager Parameter Store for sensitive
values that you don't want to check in to source control, using the names or ARNs of those
resources.

Let the AWS CDK manage roles and security groups Version 2 424

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/systems-manager/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

When you synthesize your application, the cloud assembly created in the cdk.out folder contains
a separate template for each environment. Your entire build is deterministic. There are no out-
of-band changes to your application, and any given commit always yields the exact same AWS
CloudFormation template and accompanying assets. This makes unit testing much more reliable.

Measure everything

Achieving the goal of full continuous deployment, with no human intervention, requires a high
level of automation. That automation is only possible with extensive amounts of monitoring.
To measure all aspects of your deployed resources, create metrics, alarms, and dashboards.
Don't stop at measuring things like CPU usage and disk space. Also record your business metrics,
and use those measurements to automate deployment decisions like rollbacks. Most of the
L2 constructs in AWS CDK have convenience methods to help you create metrics, such as the
metricUserErrors() method on the dynamodb.Table class.

Measure everything Version 2 425

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_dynamodb.Table.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK reference

This section contains reference information for the AWS Cloud Development Kit (AWS CDK).

Topics

• API reference

• AWS CDK versioning

API reference

The API Reference contains information about the AWS Construct Library and other APIs provided
by the AWS Cloud Development Kit (AWS CDK). Most of the AWS Construct Library is contained in
a single package called by its TypeScript name: aws-cdk-lib. The actual package name varies by
language. Separate versions of the API reference are provided for each supported programming
language.

The CDK API reference is organized into sub-modules. There are one or more sub-modules for each
AWS service.

Each sub-module has an overview that includes information about how to use its APIs. For
example, the S3 overview demonstrates how to set default encryption on an Amazon Simple
Storage Service (Amazon S3) bucket.

AWS CDK versioning

This topic provides reference information on how the AWS Cloud Development Kit (AWS CDK)
handles versioning.

Version numbers consist of three numeric version parts: major.minor.patch, and strictly adhere to
the semantic versioning model. This means that breaking changes to stable APIs are limited to
major releases.

Minor and patch releases are backward compatible. The code written in a previous version with the
same major version can be upgraded to a newer version within the same major version. It will also
continue to build and run, producing the same output.

Topics

API reference Version 2 426

https://docs.aws.amazon.com/cdk/api/v2
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3-readme.html
https://semver.org

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• AWS CDK CLI compatibility

• AWS Construct Library versioning

• Language binding stability

AWS CDK CLI compatibility

The AWS CDK CLI is always compatible with construct libraries of a semantically lower or equal
version number. It is, therefore, always safe to upgrade the AWS CDK CLI within the same major
version.

The AWS CDK CLI is not always compatible with construct libraries of a semantically higher version.
Compatibility depends on whether the same cloud assembly schema version is employed by the
two components. The AWS CDK framework generates a cloud assembly during synthesis and
the AWS CDK CLI consumes it for deployment. The schema that defines the format of the cloud
assembly is strictly specified and versioned.

AWS construct libraries using a given cloud assembly schema version are compatible with AWS CDK
CLI versions using that schema version or later. This might include releases of the AWS CDK CLI
that are earlier than a given construct library release.

When the cloud assembly version required by the construct library is not compatible with the
version supported by the AWS CDK CLI, you receive an error message like the following:

Cloud assembly schema version mismatch: Maximum schema version supported is 3.0.0, but
 found 4.0.0.
 Please upgrade your CLI in order to interact with this app.

To resolve this error, update the AWS CDK CLI to a version compatible with the required cloud
assembly version, or to the latest available version. The alternative (downgrading the construct
library modules your app uses) is generally not recommended.

Note

For more details on the cloud assembly schema, see Cloud Assembly Versioning.

AWS CDK CLI compatibility Version 2 427

https://github.com/aws/aws-cdk/tree/master/packages/%40aws-cdk/cloud-assembly-schema#versioning

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS Construct Library versioning

The modules in the AWS Construct Library move through various stages as they are developed
from concept to mature API. Different stages offer varying degrees of API stability in subsequent
versions of the AWS CDK.

APIs in the main AWS CDK library, aws-cdk-lib, are stable, and the library is fully semantically
versioned. This package includes AWS CloudFormation (L1) constructs for all AWS services and all
stable higher-level (L2 and L3) modules. (It also includes the core CDK classes like App and Stack).
APIs will not be removed from this package (though they may be deprecated) until the next major
release of the CDK. No individual API will ever have breaking changes. When a breaking change is
required, an entirely new API will be added.

New APIs under development for a service already incorporated in aws-cdk-lib are identified
using a BetaN suffix, where N starts at 1 and is incremented with each breaking change to the new
API. BetaN APIs are never removed, only deprecated, so your existing app continues to work with
newer versions of aws-cdk-lib. When the API is deemed stable, a new API without the BetaN
suffix is added.

When higher-level (L2 or L3) APIs begin to be developed for an AWS service that previously had
only L1 APIs, those APIs are initially distributed in a separate package. The name of such a package
has an "Alpha" suffix, and its version matches the first version of aws-cdk-lib it is compatible
with, with an alpha sub-version. When the module supports the intended use cases, its APIs are
added to aws-cdk-lib.

Language binding stability

Over time, we might add support to the AWS CDK for additional programming languages.
Although the API described in all the languages is the same, the way that API is expressed varies by
language and might change as the language support evolves. For this reason, language bindings
are deemed experimental for a time until they are considered ready for production use.

Language Stability

TypeScript Stable

JavaScript Stable

Python Stable

AWS Construct Library versioning Version 2 428

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Language Stability

Java Stable

C#/.NET Stable

Go Stable

Language binding stability Version 2 429

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Examples

This topic contains the following examples:

• Creating a serverless application using the AWS CDK Creates a serverless application using
Lambda, API Gateway, and Amazon S3.

• Creating an AWS Fargate service using the AWS CDK Creates an Amazon ECS Fargate service
from an image on DockerHub.

Creating a serverless application using the AWS CDK

This example walks you through creating the resources for a simple widget dispensing service. (For
the purpose of this example, a widget is just a name or identifier that can be added to, retrieved
from, and deleted from a collection.) The example includes:

• An AWS Lambda function.

• An Amazon API Gateway API to call the Lambda function.

• An Amazon S3 bucket that holds the widgets.

This tutorial contains the following steps.

1. Create an AWS CDK app

2. Create a Lambda function that gets a list of widgets with HTTP GET /

3. Create the service that calls the Lambda function

4. Add the service to the AWS CDK app

5. Test the app

6. Add Lambda functions to do the following:

• Create a widget with POST /{name}

• Get a widget by name with GET /{name}

• Delete a widget by name with DELETE /{name}

7. Tear everything down when you're finished

Serverless Version 2 430

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Create an AWS CDK app

Create the app MyWidgetService in the current folder.

TypeScript

mkdir MyWidgetService
cd MyWidgetService
cdk init --language typescript

JavaScript

mkdir MyWidgetService
cd MyWidgetService
cdk init --language javascript

Python

mkdir MyWidgetService
cd MyWidgetService
cdk init --language python
source .venv/bin/activate
pip install -r requirements.txt

Java

mkdir MyWidgetService
cd MyWidgetService
cdk init --language java

You may now import the Maven project into your IDE.

C#

mkdir MyWidgetService
cd MyWidgetService
cdk init --language csharp

You may now open src/MyWidgetService.sln in Visual Studio.

Create an AWS CDK app Version 2 431

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

The CDK names source files and classes based on the name of the project directory. If you
don't use the name MyWidgetService as shown previously, it might be difficult to follow
the rest of the steps. Some of the files that the instructions tell you to modify wont' be
there, because they will have different names.

The important files in the blank project are as follows. (We will also be adding a couple of new
files.)

TypeScript

• bin/my_widget_service.ts – Main entry point for the application

• lib/my_widget_service-stack.ts – Defines the widget service stack

JavaScript

• bin/my_widget_service.js – Main entry point for the application

• lib/my_widget_service-stack.js – Defines the widget service stack

Python

• app.py – Main entry point for the application

• my_widget_service/my_widget_service_stack.py – Defines the widget service stack

Java

• src/main/java/com/myorg/MyWidgetServiceApp.java – Main entry point for the
application

• src/main/java/com/myorg/MyWidgetServiceStack.java – Defines the widget service
stack

C#

• src/MyWidgetService/Program.cs – Main entry point for the application

Create an AWS CDK app Version 2 432

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• src/MyWidgetService/MyWidgetServiceStack.cs – Defines the widget service stack

Run the app and note that it synthesizes an empty stack.

cdk synth

You should see output beginning with YAML code like the following.

Resources:
 CDKMetadata:
 Type: AWS::CDK::Metadata
 Properties:
 ...

Create a Lambda function to list all widgets

The next step is to create a Lambda function to list all of the widgets in our Amazon S3 bucket. We
will provide the Lambda function's code in JavaScript.

Create the resources directory in the project's main directory.

mkdir resources

Create the following JavaScript file, widgets.js, in the resources directory.

import { S3Client, ListObjectsCommand } from "@aws-sdk/client-s3";

// The following code uses the AWS SDK for JavaScript (v3).
// For more information, see https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/
index.html.
const s3Client = new S3Client({});

/**
 * @param {string} bucketName
 */
const listObjectNames = async (bucketName) => {
 const command = new ListObjectsCommand({ Bucket: bucketName });
 const { Contents } = await s3Client.send(command);

 if (!Contents.length) {
 const err = new Error(`No objects found in ${bucketName}`);

Create a Lambda function to list all widgets Version 2 433

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 err.name = "EmptyBucketError";
 throw err;
 }

 // Map the response to a list of strings representing the keys of the Amazon Simple
 Storage Service (Amazon S3) objects.
 // Filter out any objects that don't have keys.
 return Contents.map(({ Key }) => Key).filter((k) => !!k);
};

/**
 * @typedef {{ httpMethod: 'GET' | 'POST' | 'PUT' | 'DELETE' | 'PATCH', path: string }}
 LambdaEvent
 */

/**
 *
 * @param {LambdaEvent} lambdaEvent
 */
const routeRequest = (lambdaEvent) => {
 if (lambdaEvent.httpMethod === "GET" && lambdaEvent.path === "/") {
 return handleGetRequest();
 }

 const error = new Error(
 `Unimplemented HTTP method: ${lambdaEvent.httpMethod}`,
);
 error.name = "UnimplementedHTTPMethodError";
 throw error;
};

const handleGetRequest = async () => {
 if (process.env.BUCKET === "undefined") {
 const err = new Error(`No bucket name provided.`);
 err.name = "MissingBucketName";
 throw err;
 }

 const objects = await listObjectNames(process.env.BUCKET);
 return buildResponseBody(200, objects);
};

/**

Create a Lambda function to list all widgets Version 2 434

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 * @typedef {{statusCode: number, body: string, headers: Record<string, string> }}
 LambdaResponse
 */

/**
 *
 * @param {number} status
 * @param {Record<string, string>} headers
 * @param {Record<string, unknown>} body
 *
 * @returns {LambdaResponse}
 */
const buildResponseBody = (status, body, headers = {}) => {
 return {
 statusCode: status,
 headers,
 body,
 };
};

/**
 *
 * @param {LambdaEvent} event
 */
export const handler = async (event) => {
 try {
 return await routeRequest(event);
 } catch (err) {
 console.error(err);

 if (err.name === "MissingBucketName") {
 return buildResponseBody(400, err.message);
 }

 if (err.name === "EmptyBucketError") {
 return buildResponseBody(204, []);
 }

 if (err.name === "UnimplementedHTTPMethodError") {
 return buildResponseBody(400, err.message);
 }

 return buildResponseBody(500, err.message || "Unknown server error");
 }

Create a Lambda function to list all widgets Version 2 435

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

};

Save it and be sure the project still results in an empty stack. We haven't yet wired the Lambda
function to the AWS CDK app, so the Lambda asset doesn't appear in the output.

cdk synth

Create a widget service

Create a new source file to define the widget service with the source code shown below.

TypeScript

File: lib/widget_service.ts

import * as cdk from "aws-cdk-lib";
import { Construct } from "constructs";
import * as apigateway from "aws-cdk-lib/aws-apigateway";
import * as lambda from "aws-cdk-lib/aws-lambda";
import * as s3 from "aws-cdk-lib/aws-s3";

export class WidgetService extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);

 const bucket = new s3.Bucket(this, "WidgetStore");

 const handler = new lambda.Function(this, "WidgetHandler", {
 runtime: lambda.Runtime.NODEJS_18_X,
 code: lambda.Code.fromAsset("resources"),
 handler: "widgets.main",
 environment: {
 BUCKET: bucket.bucketName
 }
 });

 bucket.grantReadWrite(handler);

 const api = new apigateway.RestApi(this, "widgets-api", {
 restApiName: "Widget Service",
 description: "This service serves widgets."
 });

Create a widget service Version 2 436

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 const getWidgetsIntegration = new apigateway.LambdaIntegration(handler, {
 requestTemplates: { "application/json": '{ "statusCode": "200" }' }
 });

 api.root.addMethod("GET", getWidgetsIntegration); // GET /
 }
}

JavaScript

File: lib/widget_service.js

const cdk = require("aws-cdk-lib");
const { Construct } = require("constructs");
const apigateway = require("aws-cdk-lib/aws-apigateway");
const lambda = require("aws-cdk-lib/aws-lambda");
const s3 = require("aws-cdk-lib/aws-s3");

class WidgetService extends Construct {
 constructor(scope, id) {
 super(scope, id);

 const bucket = new s3.Bucket(this, "WidgetStore");

 const handler = new lambda.Function(this, "WidgetHandler", {
 runtime: lambda.Runtime.NODEJS_18_X,
 code: lambda.Code.fromAsset("resources"),
 handler: "widgets.main",
 environment: {
 BUCKET: bucket.bucketName
 }
 });

 bucket.grantReadWrite(handler); // was: handler.role);

 const api = new apigateway.RestApi(this, "widgets-api", {
 restApiName: "Widget Service",
 description: "This service serves widgets."
 });

 const getWidgetsIntegration = new apigateway.LambdaIntegration(handler, {
 requestTemplates: { "application/json": '{ "statusCode": "200" }' }
 });

Create a widget service Version 2 437

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 api.root.addMethod("GET", getWidgetsIntegration); // GET /
 }
}

module.exports = { WidgetService }

Python

File: my_widget_service/widget_service.py

import aws_cdk as cdk
from constructs import Construct
from aws_cdk import (aws_apigateway as apigateway,
 aws_s3 as s3,
 aws_lambda as lambda_)

class WidgetService(Construct):
 def __init__(self, scope: Construct, id: str):
 super().__init__(scope, id)

 bucket = s3.Bucket(self, "WidgetStore")

 handler = lambda_.Function(self, "WidgetHandler",
 runtime=lambda_.Runtime.NODEJS_18_X,
 code=lambda_.Code.from_asset("resources"),
 handler="widgets.main",
 environment=dict(
 BUCKET=bucket.bucket_name)
)

 bucket.grant_read_write(handler)

 api = apigateway.RestApi(self, "widgets-api",
 rest_api_name="Widget Service",
 description="This service serves widgets.")

 get_widgets_integration = apigateway.LambdaIntegration(handler,
 request_templates={"application/json": '{ "statusCode": "200" }'})

 api.root.add_method("GET", get_widgets_integration) # GET /

Java

File: src/src/main/java/com/myorg/WidgetService.java

Create a widget service Version 2 438

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

package com.myorg;

import java.util.HashMap;

import software.constructs.Construct;
import software.amazon.awscdk.services.apigateway.LambdaIntegration;
import software.amazon.awscdk.services.apigateway.Resource;
import software.amazon.awscdk.services.apigateway.RestApi;
import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.s3.Bucket;

public class WidgetService extends Construct {

 @SuppressWarnings("serial")
 public WidgetService(Construct scope, String id) {
 super(scope, id);

 Bucket bucket = new Bucket(this, "WidgetStore");

 Function handler = Function.Builder.create(this, "WidgetHandler")
 .runtime(Runtime.NODEJS_18_X)
 .code(Code.fromAsset("resources"))
 .handler("widgets.main")
 .environment(java.util.Map.of(// Java 9 or later
 "BUCKET", bucket.getBucketName())
 .build();

 bucket.grantReadWrite(handler);

 RestApi api = RestApi.Builder.create(this, "Widgets-API")
 .restApiName("Widget Service").description("This service services
 widgets.")
 .build();

 LambdaIntegration getWidgetsIntegration =
 LambdaIntegration.Builder.create(handler)
 .requestTemplates(java.util.Map.of(// Map.of is Java 9 or later
 "application/json", "{ \"statusCode\": \"200\" }"))
 .build();

 api.getRoot().addMethod("GET", getWidgetsIntegration);

Create a widget service Version 2 439

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 }
}

C#

File: src/MyWidgetService/WidgetService.cs

using Amazon.CDK;
using Amazon.CDK.AWS.APIGateway;
using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.S3;
using System.Collections.Generic;
using constructs;

namespace MyWidgetService
{

 public class WidgetService : Construct
 {
 public WidgetService(Construct scope, string id) : base(scope, id)
 {
 var bucket = new Bucket(this, "WidgetStore");

 var handler = new Function(this, "WidgetHandler", new FunctionProps
 {
 Runtime = Runtime.NODEJS_18_X,
 Code = Code.FromAsset("resources"),
 Handler = "widgets.main",
 Environment = new Dictionary<string, string>
 {
 ["BUCKET"] = bucket.BucketName
 }
 });

 bucket.GrantReadWrite(handler);

 var api = new RestApi(this, "Widgets-API", new RestApiProps
 {
 RestApiName = "Widget Service",
 Description = "This service services widgets."
 });

 var getWidgetsIntegration = new LambdaIntegration(handler, new
 LambdaIntegrationOptions

Create a widget service Version 2 440

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 {
 RequestTemplates = new Dictionary<string, string>
 {
 ["application/json"] = "{ \"statusCode\": \"200\" }"
 }
 });

 api.Root.AddMethod("GET", getWidgetsIntegration);

 }
 }
}

Tip

We're using a lambda.Function in to deploy this function because it supports a wide
variety of programming languages. For JavaScript and TypeScript specifically, you might
consider a lambda-nodejs.NodejsFunction. The latter uses esbuild to bundle up the
script and converts code written in TypeScript automatically.

Save the app and make sure it still synthesizes an empty stack.

cdk synth

Add the service to the app

To add the widget service to our AWS CDK app, we'll need to modify the source file that defines the
stack to instantiate the service construct.

TypeScript

File: lib/my_widget_service-stack.ts

Add the following line of code after the existing import statement.

import * as widget_service from '../lib/widget_service';

Replace the comment in the constructor with the following line of code.

Add the service to the app Version 2 441

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs.NodejsFunction.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 new widget_service.WidgetService(this, 'Widgets');

JavaScript

File: lib/my_widget_service-stack.js

Add the following line of code after the existing require() line.

const widget_service = require('../lib/widget_service');

Replace the comment in the constructor with the following line of code.

 new widget_service.WidgetService(this, 'Widgets');

Python

File: my_widget_service/my_widget_service_stack.py

Add the following line of code after the existing import statement.

from . import widget_service

Replace the comment in the constructor with the following line of code.

 widget_service.WidgetService(self, "Widgets")

Java

File: src/src/main/java/com/myorg/MyWidgetServiceStack.java

Replace the comment in the constructor with the following line of code.

new WidgetService(this, "Widgets");

C#

File: src/MyWidgetService/MyWidgetServiceStack.cs

Replace the comment in the constructor with the following line of code.

new WidgetService(this, "Widgets");

Add the service to the app Version 2 442

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Be sure the app runs and synthesizes a stack (we won't show the stack here: it's over 250 lines).

cdk synth

Deploy and test the app

Before you can deploy your first AWS CDK app, you must bootstrap your AWS environment. Among
other resources, this creates a staging bucket that the AWS CDK uses to deploy stacks containing
assets. For details, see the section called “Bootstrapping your AWS environment”. If you've already
bootstrapped, you'll get a warning and nothing will change.

cdk bootstrap aws://ACCOUNT-NUMBER/REGION

Now we're ready to deploy the app as follows.

cdk deploy

If the deployment succeeds, save the URL for your server. This URL appears in one of the last lines
in the window, where GUID is an alphanumeric GUID and REGION is your AWS Region.

https://GUID.execute-api-REGION.amazonaws.com/prod/

Test your app by getting the list of widgets (currently empty) by navigating to this URL in a
browser, or use the following command.

curl -X GET 'https://GUID.execute-api.REGION.amazonaws.com/prod'

You can also test the app by completing the following steps:

1. Open the AWS Management Console.

2. Navigate to the API Gateway service.

3. Find Widget Service in the list.

4. Select GET and Test to test the function.

Because we haven't stored any widgets yet, the output should be similar to the following.

{ "widgets": [] }

Deploy and test the app Version 2 443

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Add the individual widget functions

The next step is to create Lambda functions to create, show, and delete individual widgets.

Replace the code in widgets.js (in resources) with the following.

import {
 S3Client,
 ListObjectsV2Command,
 GetObjectCommand,
 PutObjectCommand,
 DeleteObjectCommand
} from '@aws-sdk/client-s3';

// In the following code we are using AWS JS SDK v3
// See https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html
const S3 = new S3Client({});
const bucketName = process.env.BUCKET;

exports.main = async function(event, context) {
 try {
 const method = event.httpMethod;
 // Get name, if present
 const widgetName = event.path.startsWith('/') ? event.path.substring(1) :
 event.path;

 if (method === "GET") {
 // GET / to get the names of all widgets
 if (event.path === "/") {
 const data = await S3.send(new ListObjectsV2Command({ Bucket: bucketName }));
 const body = {
 widgets: data.Contents.map(function(e) { return e.Key })
 };
 return {
 statusCode: 200,
 headers: {},
 body: JSON.stringify(body)
 };
 }

 if (widgetName) {
 // GET /name to get info on widget name

Add the individual widget functions Version 2 444

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 const data = await S3.send(new GetObjectCommand({ Bucket: bucketName, Key:
 widgetName}));
 const body = data.Body.toString('utf-8');

 return {
 statusCode: 200,
 headers: {},
 body: JSON.stringify(body)
 };
 }
 }

 if (method === "POST") {
 // POST /name
 // Return error if we do not have a name
 if (!widgetName) {
 return {
 statusCode: 400,
 headers: {},
 body: "Widget name missing"
 };
 }

 // Create some dummy data to populate object
 const now = new Date();
 const data = widgetName + " created: " + now;

 const base64data = Buffer.from(data, 'binary');

 await S3.send(new PutObjectCommand({
 Bucket: bucketName,
 Key: widgetName,
 Body: base64data,
 ContentType: 'application/json'
 }));

 return {
 statusCode: 200,
 headers: {},
 body: data
 };
 }

 if (method === "DELETE") {

Add the individual widget functions Version 2 445

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // DELETE /name
 // Return an error if we do not have a name
 if (!widgetName) {
 return {
 statusCode: 400,
 headers: {},
 body: "Widget name missing"
 };
 }

 await S3.send(new DeleteObjectCommand({
 Bucket: bucketName, Key: widgetName
 }));

 return {
 statusCode: 200,
 headers: {},
 body: "Successfully deleted widget " + widgetName
 };
 }

 // We got something besides a GET, POST, or DELETE
 return {
 statusCode: 400,
 headers: {},
 body: "We only accept GET, POST, and DELETE, not " + method
 };
 } catch(error) {
 var body = error.stack || JSON.stringify(error, null, 2);
 return {
 statusCode: 400,
 headers: {},
 body: body
 }
 }
}

Wire up these functions to your API Gateway code at the end of the WidgetService constructor.

TypeScript

File: lib/widget_service.ts

 const widget = api.root.addResource("{id}");

Add the individual widget functions Version 2 446

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 const widgetIntegration = new apigateway.LambdaIntegration(handler);

 widget.addMethod("POST", widgetIntegration); // POST /{id}
 widget.addMethod("GET", widgetIntegration); // GET /{id}
 widget.addMethod("DELETE", widgetIntegration); // DELETE /{id}

JavaScript

File: lib/widget_service.js

 const widget = api.root.addResource("{id}");

 const widgetIntegration = new apigateway.LambdaIntegration(handler);

 widget.addMethod("POST", widgetIntegration); // POST /{id}
 widget.addMethod("GET", widgetIntegration); // GET /{id}
 widget.addMethod("DELETE", widgetIntegration); // DELETE /{id}

Python

File: my_widget_service/widget_service.py

 widget = api.root.add_resource("{id}")

 widget_integration = apigateway.LambdaIntegration(handler)

 widget.add_method("POST", widget_integration); # POST /{id}
 widget.add_method("GET", widget_integration); # GET /{id}
 widget.add_method("DELETE", widget_integration); # DELETE /{id}

Java

File: src/src/main/java/com/myorg/WidgetService.java

 Resource widget = api.getRoot().addResource("{id}");

 LambdaIntegration widgetIntegration = new LambdaIntegration(handler);

 widget.addMethod("POST", widgetIntegration); // POST /{id}
 widget.addMethod("GET", widgetIntegration); // GET /{id}
 widget.addMethod("DELETE", widgetIntegration); // DELETE /{id}

Add the individual widget functions Version 2 447

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

File: src/MyWidgetService/WidgetService.cs

 var widget = api.Root.AddResource("{id}");

 var widgetIntegration = new LambdaIntegration(handler);

 widget.AddMethod("POST", widgetIntegration); // POST /{id}
 widget.AddMethod("GET", widgetIntegration); // GET /{id}
 widget.AdMethod("DELETE", widgetIntegration); // DELETE /{id}

Save and deploy the app.

cdk deploy

We can now store, show, or delete an individual widget. Use the following commands to list the
widgets, create the widget example, list all of the widgets, show the contents of example (it
should show today's date), delete example, and then show the list of widgets again.

curl -X GET 'https://GUID.execute-api.REGION.amazonaws.com/prod'
curl -X POST 'https://GUID.execute-api.REGION.amazonaws.com/prod/example'
curl -X GET 'https://GUID.execute-api.REGION.amazonaws.com/prod'
curl -X GET 'https://GUID.execute-api.REGION.amazonaws.com/prod/example'
curl -X DELETE 'https://GUID.execute-api.REGION.amazonaws.com/prod/example'
curl -X GET 'https://GUID.execute-api.REGION.amazonaws.com/prod'

You can also use the API Gateway console to test these functions. Set the name value to the name
of a widget, such as example.

Clean up

To avoid unexpected AWS charges, destroy your AWS CDK stack after you're done with this exercise.

cdk destroy

Clean up Version 2 448

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Creating an AWS Fargate service using the AWS CDK

This example walks you through how to create an AWS Fargate service running on an Amazon
Elastic Container Service (Amazon ECS) cluster that's fronted by an internet-facing Application
Load Balancer from an image on Amazon ECR.

Amazon ECS is a highly scalable, fast, container management service that makes it easy to run,
stop, and manage Docker containers on a cluster. You can host your cluster on a serverless
infrastructure that's managed by Amazon ECS by launching your services or tasks using the Fargate
launch type. For more control, you can host your tasks on a cluster of Amazon Elastic Compute
Cloud (Amazon EC2) instances that you manage by using the Amazon EC2 launch type.

This tutorial shows you how to launch some services using the Fargate launch type. If you've used
the AWS Management Console to create a Fargate service, you know that there are many steps to
follow to accomplish that task. AWS has several tutorials and documentation topics that walk you
through creating a Fargate service, including:

• How to Deploy Docker Containers - AWS

• Setting Up with Amazon ECS

• Getting Started with Amazon ECS Using Fargate

This example creates a similar Fargate service in AWS CDK code.

The Amazon ECS construct used in this tutorial helps you use AWS services by providing the
following benefits:

• Automatically configures a load balancer.

• Automatically opens a security group for load balancers. This enables load balancers to
communicate with instances without you explicitly creating a security group.

• Automatically orders dependency between the service and the load balancer attaching to a
target group, where the AWS CDK enforces the correct order of creating the listener before an
instance is created.

• Automatically configures user data on automatically scaling groups. This creates the correct
configuration to associate a cluster to AMIs.

• Validates parameter combinations early. This exposes AWS CloudFormation issues earlier, thus
saving you deployment time. For example, depending on the task, it's easy to misconfigure the

ECS Version 2 449

https://aws.amazon.com/getting-started/tutorials/deploy-docker-containers
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_GetStarted.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

memory settings. Previously, you would not encounter an error until you deployed your app. But
now the AWS CDK can detect a misconfiguration and emit an error when you synthesize your
app.

• Automatically adds permissions for Amazon Elastic Container Registry (Amazon ECR) if you use
an image from Amazon ECR.

• Automatically scales. The AWS CDK supplies a method so you can autoscalinginstances when you
use an Amazon EC2 cluster. This happens automatically when you use an instance in a Fargate
cluster.

In addition, the AWS CDK prevents an instance from being deleted when automatic scaling tries
to kill an instance, but either a task is running or is scheduled on that instance.

Previously, you had to create a Lambda function to have this functionality.

• Provides asset support, so that you can deploy a source from your machine to Amazon ECS in
one step. Previously, to use an application source you had to perform several manual steps, such
as uploading to Amazon ECR and creating a Docker image.

See ECS for details.

Important

The ApplicationLoadBalancedFargateService constructs we'll be using includes
numerous AWS components, some of which have non-trivial costs if left provisioned in
your AWS account, even if you don't use them. Be sure to clean up (cdk destroy) after
completing this example.

Creating the directory and initializing the AWS CDK

Let's start by creating a directory to hold the AWS CDK code, and then creating a AWS CDK app in
that directory.

TypeScript

mkdir MyEcsConstruct
cd MyEcsConstruct
cdk init --language typescript

Creating the directory and initializing the AWS CDK Version 2 450

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

mkdir MyEcsConstruct
cd MyEcsConstruct
cdk init --language javascript

Python

mkdir MyEcsConstruct
cd MyEcsConstruct
cdk init --language python
source .venv/bin/activate
pip install -r requirements.txt

Java

mkdir MyEcsConstruct
cd MyEcsConstruct
cdk init --language java

You may now import the Maven project into your IDE.

C#

mkdir MyEcsConstruct
cd MyEcsConstruct
cdk init --language csharp

You may now open src/MyEcsConstruct.sln in Visual Studio.

Run the app and confirm that it creates an empty stack.

cdk synth

Create a Fargate service

There are two different ways to run your container tasks with Amazon ECS:

• Use the Fargate launch type, where Amazon ECS manages the physical machines that your
containers are running on for you.

Create a Fargate service Version 2 451

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Use the EC2 launch type, where you do the managing, such as specifying automatic scaling.

For this example, we'll create a Fargate service running on an ECS cluster fronted by an internet-
facing Application Load Balancer.

Add the following AWS Construct Library module imports to the indicated file.

TypeScript

File: lib/my_ecs_construct-stack.ts

import * as ec2 from "aws-cdk-lib/aws-ec2";
import * as ecs from "aws-cdk-lib/aws-ecs";
import * as ecs_patterns from "aws-cdk-lib/aws-ecs-patterns";

JavaScript

File: lib/my_ecs_construct-stack.js

const ec2 = require("aws-cdk-lib/aws-ec2");
const ecs = require("aws-cdk-lib/aws-ecs");
const ecs_patterns = require("aws-cdk-lib/aws-ecs-patterns");

Python

File: my_ecs_construct/my_ecs_construct_stack.py

from aws_cdk import (aws_ec2 as ec2, aws_ecs as ecs,
 aws_ecs_patterns as ecs_patterns)

Java

File: src/main/java/com/myorg/MyEcsConstructStack.java

import software.amazon.awscdk.services.ec2.*;
import software.amazon.awscdk.services.ecs.*;
import software.amazon.awscdk.services.ecs.patterns.*;

C#

File: src/MyEcsConstruct/MyEcsConstructStack.cs

Create a Fargate service Version 2 452

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Amazon.CDK.AWS.EC2;
using Amazon.CDK.AWS.ECS;
using Amazon.CDK.AWS.ECS.Patterns;

Replace the comment at the end of the constructor with the following code.

TypeScript

 const vpc = new ec2.Vpc(this, "MyVpc", {
 maxAzs: 3 // Default is all AZs in region
 });

 const cluster = new ecs.Cluster(this, "MyCluster", {
 vpc: vpc
 });

 // Create a load-balanced Fargate service and make it public
 new ecs_patterns.ApplicationLoadBalancedFargateService(this, "MyFargateService",
 {
 cluster: cluster, // Required
 cpu: 512, // Default is 256
 desiredCount: 6, // Default is 1
 taskImageOptions: { image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-
sample") },
 memoryLimitMiB: 2048, // Default is 512
 publicLoadBalancer: true // Default is true
 });

JavaScript

 const vpc = new ec2.Vpc(this, "MyVpc", {
 maxAzs: 3 // Default is all AZs in region
 });

 const cluster = new ecs.Cluster(this, "MyCluster", {
 vpc: vpc
 });

 // Create a load-balanced Fargate service and make it public
 new ecs_patterns.ApplicationLoadBalancedFargateService(this, "MyFargateService",
 {
 cluster: cluster, // Required

Create a Fargate service Version 2 453

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 cpu: 512, // Default is 256
 desiredCount: 6, // Default is 1
 taskImageOptions: { image: ecs.ContainerImage.fromRegistry("amazon/amazon-ecs-
sample") },
 memoryLimitMiB: 2048, // Default is 512
 publicLoadBalancer: true // Default is true
 });

Python

 vpc = ec2.Vpc(self, "MyVpc", max_azs=3) # default is all AZs in region

 cluster = ecs.Cluster(self, "MyCluster", vpc=vpc)

 ecs_patterns.ApplicationLoadBalancedFargateService(self, "MyFargateService",
 cluster=cluster, # Required
 cpu=512, # Default is 256
 desired_count=6, # Default is 1
 task_image_options=ecs_patterns.ApplicationLoadBalancedTaskImageOptions(
 image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")),
 memory_limit_mib=2048, # Default is 512
 public_load_balancer=True) # Default is True

Java

 Vpc vpc = Vpc.Builder.create(this, "MyVpc")
 .maxAzs(3) // Default is all AZs in region
 .build();

 Cluster cluster = Cluster.Builder.create(this, "MyCluster")
 .vpc(vpc).build();

 // Create a load-balanced Fargate service and make it public
 ApplicationLoadBalancedFargateService.Builder.create(this,
 "MyFargateService")
 .cluster(cluster) // Required
 .cpu(512) // Default is 256
 .desiredCount(6) // Default is 1
 .taskImageOptions(
 ApplicationLoadBalancedTaskImageOptions.builder()
 .image(ContainerImage.fromRegistry("amazon/
amazon-ecs-sample"))
 .build())

Create a Fargate service Version 2 454

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 .memoryLimitMiB(2048) // Default is 512
 .publicLoadBalancer(true) // Default is true
 .build();

C#

 var vpc = new Vpc(this, "MyVpc", new VpcProps
 {
 MaxAzs = 3 // Default is all AZs in region
 });

 var cluster = new Cluster(this, "MyCluster", new ClusterProps
 {
 Vpc = vpc
 });

 // Create a load-balanced Fargate service and make it public
 new ApplicationLoadBalancedFargateService(this, "MyFargateService",
 new ApplicationLoadBalancedFargateServiceProps
 {
 Cluster = cluster, // Required
 DesiredCount = 6, // Default is 1
 TaskImageOptions = new ApplicationLoadBalancedTaskImageOptions
 {
 Image = ContainerImage.FromRegistry("amazon/amazon-ecs-
sample")
 },
 MemoryLimitMiB = 2048, // Default is 256
 PublicLoadBalancer = true // Default is true
 }
);

Save it and make sure it runs and creates a stack.

cdk synth

The stack is hundreds of lines, so we won't show it here. The stack should contain one default
instance, a private subnet and a public subnet for the three Availability Zones, and a security group.

Deploy the stack.

Create a Fargate service Version 2 455

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk deploy

AWS CloudFormation displays information about the dozens of steps that it takes as it deploys
your app.

That's how easy it is to create a Fargate-powered Amazon ECS service to run a Docker image.

Clean up

To avoid unexpected AWS charges, destroy your AWS CDK stack after you're done with this exercise.

cdk destroy

AWS CDK examples

For more examples of AWS CDK stacks and apps in your favorite supported programming
language, see the AWS CDK Examples repository on GitHub.

Clean up Version 2 456

https://github.com/aws-samples/aws-cdk-examples

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK tutorials

This section contains short code examples that show you how to accomplish a task using the AWS
CDK.

Topics

• Create an app with multiple stacks

Create an app with multiple stacks

You can create an AWS Cloud Development Kit (AWS CDK) application containing multiple stacks.
When you deploy the AWS CDK app, each stack becomes its own AWS CloudFormation template.
You can also synthesize and deploy each stack individually using the AWS CDK CLI cdk deploy
command.

This tutorial covers the following:

• How to extend the Stack class to accept new properties or arguments.

• How to use properties to determine which resources the stack contains and their configuration.

• How to instantiate multiple stacks from this class.

The example in this topic uses a Boolean property, named encryptBucket (Python:
encrypt_bucket). It indicates whether an Amazon S3 bucket should be encrypted. If so, the stack
enables encryption using a key managed by AWS Key Management Service (AWS KMS). The app
creates two instances of this stack, one with encryption and one without.

Topics

• Before you begin

• Add optional parameter

• Define the stack class

• Create two stack instances

• Synthesize and deploy the stack

• Clean up

Create an app with multiple stacks Version 2 457

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Before you begin

First, install Node.js and the AWS CDK command line tools, if you haven't already. See Getting
started with the AWS CDK for details.

Next, create an AWS CDK project by entering the following commands at the command line.

TypeScript

mkdir multistack
cd multistack
cdk init --language=typescript

JavaScript

mkdir multistack
cd multistack
cdk init --language=javascript

Python

mkdir multistack
cd multistack
cdk init --language=python
source .venv/bin/activate
pip install -r requirements.txt

Java

mkdir multistack
cd multistack
cdk init --language=java

You can import the resulting Maven project into your Java IDE.

C#

mkdir multistack
cd multistack
cdk init --language=csharp

Before you begin Version 2 458

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can open the file src/Pipeline.sln in Visual Studio.

Add optional parameter

The props argument of the Stack constructor fulfills the interface StackProps. In this example,
we want the stack to accept an additional property to tell us whether to encrypt the Amazon S3
bucket. We should create an interface or class that includes the property. This allows the compiler
to make sure that the property has a Boolean value and enables autocompletion for it in your IDE.

So open the indicated source file in your IDE or editor and add the new interface, class, or
argument. The code should look like this after the changes. The lines we added are shown in bold.

TypeScript

File: lib/multistack-stack.ts

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';

interface MultiStackProps extends cdk.StackProps {
 encryptBucket?: boolean;
}

export class MultistackStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: MultiStackProps) {
 super(scope, id, props);

 // The code that defines your stack goes here
 }
}

JavaScript

File: lib/multistack-stack.js

JavaScript doesn't have an interface feature; we don't need to add any code.

const cdk = require('aws-cdk-stack');

class MultistackStack extends cdk.Stack {
 constructor(scope, id, props) {

Add optional parameter Version 2 459

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 super(scope, id, props);

 // The code that defines your stack goes here
 }
}

module.exports = { MultistackStack }

Python

File: multistack/multistack_stack.py

Python does not have an interface feature, so we'll extend our stack to accept the new property
by adding a keyword argument.

import aws_cdk as cdk
from constructs import Construct

class MultistackStack(cdk.Stack):

 # The Stack class doesn't know about our encrypt_bucket parameter,
 # so accept it separately and pass along any other keyword arguments.
 def __init__(self, scope: Construct, id: str, *, encrypt_bucket=False,
 **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 # The code that defines your stack goes here

Java

File: src/main/java/com/myorg/MultistackStack.java

It's more complicated than we really want to get into to extend a props type in Java. Instead,
write the stack's constructor to accept an optional Boolean parameter. Because props is an
optional argument, we'll write an additional constructor that lets you skip it. It will default to
false.

package com.myorg;

import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.constructs.Construct;

Add optional parameter Version 2 460

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.amazon.awscdk.services.s3.Bucket;

public class MultistackStack extends Stack {
 // additional constructors to allow props and/or encryptBucket to be omitted
 public MultistackStack(final Construct scope, final String id, boolean
 encryptBucket) {
 this(scope, id, null, encryptBucket);
 }

 public MultistackStack(final Construct scope, final String id) {
 this(scope, id, null, false);
 }

 public MultistackStack(final Construct scope, final String id, final StackProps
 props,
 final boolean encryptBucket) {
 super(scope, id, props);

 // The code that defines your stack goes here
 }
}

C#

File: src/Multistack/MultistackStack.cs

using Amazon.CDK;
using constructs;

namespace Multistack
{

 public class MultiStackProps : StackProps
 {
 public bool? EncryptBucket { get; set; }
 }

 public class MultistackStack : Stack
 {
 public MultistackStack(Construct scope, string id, MultiStackProps props) :
 base(scope, id, props)

Add optional parameter Version 2 461

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 {
 // The code that defines your stack goes here
 }
 }
}

The new property is optional. If encryptBucket (Python: encrypt_bucket) is not present, its
value is undefined, or the local equivalent. The bucket will be unencrypted by default.

Define the stack class

Now let's define our stack class, using our new property. Make the code look like the following. The
code you need to add or change is shown in bold.

TypeScript

File: lib/multistack-stack.ts

import * as cdk from 'aws-cdk-lib';
import { Construct } from constructs;
import * as s3 from 'aws-cdk-lib/aws-s3';

interface MultistackProps extends cdk.StackProps {
 encryptBucket?: boolean;
}

export class MultistackStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: MultistackProps) {
 super(scope, id, props);

 // Add a Boolean property "encryptBucket" to the stack constructor.
 // If true, creates an encrypted bucket. Otherwise, the bucket is unencrypted.
 // Encrypted bucket uses KMS-managed keys (SSE-KMS).
 if (props && props.encryptBucket) {
 new s3.Bucket(this, "MyGroovyBucket", {
 encryption: s3.BucketEncryption.KMS_MANAGED,
 removalPolicy: cdk.RemovalPolicy.DESTROY
 });
 } else {
 new s3.Bucket(this, "MyGroovyBucket", {
 removalPolicy: cdk.RemovalPolicy.DESTROY});
 }

Define the stack class Version 2 462

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 }
}

JavaScript

File: lib/multistack-stack.js

const cdk = require('aws-cdk-lib');
const s3 = require('aws-cdk-lib/aws-s3');

class MultistackStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 // Add a Boolean property "encryptBucket" to the stack constructor.
 // If true, creates an encrypted bucket. Otherwise, the bucket is unencrypted.
 // Encrypted bucket uses KMS-managed keys (SSE-KMS).
 if (props && props.encryptBucket) {
 new s3.Bucket(this, "MyGroovyBucket", {
 encryption: s3.BucketEncryption.KMS_MANAGED,
 removalPolicy: cdk.RemovalPolicy.DESTROY
 });
 } else {
 new s3.Bucket(this, "MyGroovyBucket", {
 removalPolicy: cdk.RemovalPolicy.DESTROY});
 }
 }
}

module.exports = { MultistackStack }

Python

File: multistack/multistack_stack.py

import aws_cdk as cdk
from constructs import Construct
from aws_cdk import aws_s3 as s3

class MultistackStack(cdk.Stack):

 # The Stack class doesn't know about our encrypt_bucket parameter,
 # so accept it separately and pass along any other keyword arguments.

Define the stack class Version 2 463

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 def __init__(self, scope: Construct, id: str, *, encrypt_bucket=False,
 **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 # Add a Boolean property "encryptBucket" to the stack constructor.
 # If true, creates an encrypted bucket. Otherwise, the bucket is
 unencrypted.
 # Encrypted bucket uses KMS-managed keys (SSE-KMS).
 if encrypt_bucket:
 s3.Bucket(self, "MyGroovyBucket",
 encryption=s3.BucketEncryption.KMS_MANAGED,
 removal_policy=cdk.RemovalPolicy.DESTROY)
 else:
 s3.Bucket(self, "MyGroovyBucket",
 removal_policy=cdk.RemovalPolicy.DESTROY)

Java

File: src/main/java/com/myorg/MultistackStack.java

package com.myorg;

import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.constructs.Construct;
import software.amazon.awscdk.RemovalPolicy;

import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.s3.BucketEncryption;

public class MultistackStack extends Stack {
 // additional constructors to allow props and/or encryptBucket to be omitted
 public MultistackStack(final Construct scope, final String id,
 boolean encryptBucket) {
 this(scope, id, null, encryptBucket);
 }

 public MultistackStack(final Construct scope, final String id) {
 this(scope, id, null, false);
 }

 // main constructor
 public MultistackStack(final Construct scope, final String id,
 final StackProps props, final boolean encryptBucket) {

Define the stack class Version 2 464

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 super(scope, id, props);

 // Add a Boolean property "encryptBucket" to the stack constructor.
 // If true, creates an encrypted bucket. Otherwise, the bucket is
 // unencrypted. Encrypted bucket uses KMS-managed keys (SSE-KMS).
 if (encryptBucket) {
 Bucket.Builder.create(this, "MyGroovyBucket")
 .encryption(BucketEncryption.KMS_MANAGED)
 .removalPolicy(RemovalPolicy.DESTROY).build();
 } else {
 Bucket.Builder.create(this, "MyGroovyBucket")
 .removalPolicy(RemovalPolicy.DESTROY).build();
 }
 }
}

C#

File: src/Multistack/MultistackStack.cs

using Amazon.CDK;
using Amazon.CDK.AWS.S3;

namespace Multistack
{

 public class MultiStackProps : StackProps
 {
 public bool? EncryptBucket { get; set; }
 }

 public class MultistackStack : Stack
 {
 public MultistackStack(Construct scope, string id, IMultiStackProps props =
 null) : base(scope, id, props)
 {
 // Add a Boolean property "EncryptBucket" to the stack constructor.
 // If true, creates an encrypted bucket. Otherwise, the bucket is
 unencrypted.
 // Encrypted bucket uses KMS-managed keys (SSE-KMS).
 if (props?.EncryptBucket ?? false)
 {
 new Bucket(this, "MyGroovyBucket", new BucketProps
 {

Define the stack class Version 2 465

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Encryption = BucketEncryption.KMS_MANAGED,
 RemovalPolicy = RemovalPolicy.DESTROY
 });
 }
 else
 {
 new Bucket(this, "MyGroovyBucket", new BucketProps
 {
 RemovalPolicy = RemovalPolicy.DESTROY
 });
 }
 }
 }
}

Create two stack instances

Now we'll add the code to instantiate two separate stacks. As before, the lines of code shown in
bold are the ones you need to add. Delete the existing MultistackStack definition.

TypeScript

File: bin/multistack.ts

#!/usr/bin/env node
import 'source-map-support/register';
import * as cdk from 'aws-cdk-lib';
import { MultistackStack } from '../lib/multistack-stack';

const app = new cdk.App();

new MultistackStack(app, "MyWestCdkStack", {
 env: {region: "us-west-1"},
 encryptBucket: false
});

new MultistackStack(app, "MyEastCdkStack", {
 env: {region: "us-east-1"},
 encryptBucket: true
});

app.synth();

Create two stack instances Version 2 466

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

File: bin/multistack.js

#!/usr/bin/env node
const cdk = require('aws-cdk-lib');
const { MultistackStack } = require('../lib/multistack-stack');

const app = new cdk.App();

new MultistackStack(app, "MyWestCdkStack", {
 env: {region: "us-west-1"},
 encryptBucket: false
});

new MultistackStack(app, "MyEastCdkStack", {
 env: {region: "us-east-1"},
 encryptBucket: true
});

app.synth();

Python

File: ./app.py

#!/usr/bin/env python3

import aws_cdk as cdk

from multistack.multistack_stack import MultistackStack

app = cdk.App()
MultistackStack(app, "MyWestCdkStack",
 env=cdk.Environment(region="us-west-1"),
 encrypt_bucket=False)

MultistackStack(app, "MyEastCdkStack",
 env=cdk.Environment(region="us-east-1"),
 encrypt_bucket=True)

app.synth()

Create two stack instances Version 2 467

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

File: src/main/java/com/myorg/MultistackApp.java

package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

public class MultistackApp {
 public static void main(final String argv[]) {
 App app = new App();

 new MultistackStack(app, "MyWestCdkStack", StackProps.builder()
 .env(Environment.builder()
 .region("us-west-1")
 .build())
 .build(), false);

 new MultistackStack(app, "MyEastCdkStack", StackProps.builder()
 .env(Environment.builder()
 .region("us-east-1")
 .build())
 .build(), true);

 app.synth();
 }
}

C#

File: src/Multistack/Program.cs

using Amazon.CDK;

namespace Multistack
{
 class Program
 {
 static void Main(string[] args)
 {
 var app = new App();

Create two stack instances Version 2 468

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 new MultistackStack(app, "MyWestCdkStack", new MultiStackProps
 {
 Env = new Environment { Region = "us-west-1" },
 EncryptBucket = false
 });

 new MultistackStack(app, "MyEastCdkStack", new MultiStackProps
 {
 Env = new Environment { Region = "us-east-1" },
 EncryptBucket = true
 });

 app.Synth();
 }
 }
}

This code uses the new encryptBucket (Python: encrypt_bucket) property on the
MultistackStack class to instantiate the following:

• One stack with an encrypted Amazon S3 bucket in the us-east-1 AWS Region.

• One stack with an unencrypted Amazon S3 bucket in the us-west-1 AWS Region.

Synthesize and deploy the stack

Now you can deploy stacks from the app. First, synthesize an AWS CloudFormation template for
MyEastCdkStack—the stack in us-east-1. This is the stack with the encrypted S3 bucket.

$ cdk synth MyEastCdkStack

To deploy this stack to your AWS account, issue one of the following commands. The first
command uses your default AWS profile to obtain the credentials to deploy the stack. The second
uses a profile that you specify. For PROFILE_NAME, substitute the name of an AWS CLI profile that
contains appropriate credentials for deploying to the us-east-1 AWS Region.

cdk deploy MyEastCdkStack

cdk deploy MyEastCdkStack --profile=PROFILE_NAME

Synthesize and deploy the stack Version 2 469

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Clean up

To avoid charges for resources that you deployed, destroy the stack using the following command.

cdk destroy MyEastCdkStack

The destroy operation fails if there is anything stored in the stack's bucket. There shouldn't be if
you've only followed the instructions in this topic. But if you did put something in the bucket, you
must delete the bucket contents before destroying the stack. (Do not delete the bucket itself.) Use
the AWS Management Console or the AWS CLI to delete the bucket contents.

Clean up Version 2 470

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK tools

This section contains information about the AWS CDK tools listed below.

Topics

• AWS CDK Toolkit (cdk command)

• AWS Toolkit for Visual Studio Code

• AWS SAM integration

AWS CDK Toolkit (cdk command)

The AWS CDK Toolkit, the CLI command cdk, is the primary tool for interacting with your AWS
CDK app. It executes your app, interrogates the application model you defined, and produces and
deploys the AWS CloudFormation templates generated by the AWS CDK. It also provides other
features useful for creating and working with AWS CDK projects. This topic contains information
about common use cases of the CDK Toolkit.

The AWS CDK Toolkit is installed with the Node Package Manager. In most cases, we recommend
installing it globally.

npm install -g aws-cdk # install latest version
npm install -g aws-cdk@X.YY.Z # install specific version

Tip

If you regularly work with multiple versions of the AWS CDK, consider installing a matching
version of the AWS CDK Toolkit in individual CDK projects. To do this, omit -g from the npm
install command. Then use npx aws-cdk to invoke it. This runs the local version if one
exists, falling back to a global version if not.

Toolkit commands

All CDK Toolkit commands start with cdk, which is followed by a subcommand (list,
synthesize, deploy, etc.). Some subcommands have a shorter version (ls, synth, etc.) that is

AWS CDK Toolkit Version 2 471

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

equivalent. Options and arguments follow the subcommand in any order. The available commands
are summarized here.

Command Function

cdk list (ls) Lists the stacks in the app

cdk synthesize (synth) Synthesizes and prints the CloudFormation
template for one or more specified stacks

cdk bootstrap Deploys the CDK Toolkit staging stack; see the
section called “Bootstrapping”

cdk deploy Deploys one or more specified stacks

cdk destroy Destroys one or more specified stacks

cdk diff Compares the specified stack and its
dependencies with the deployed stacks or a
local CloudFormation template

cdk import Uses CloudFormation resource imports to
bring existing resources into a stack managed
by CDK

cdk metadata Displays metadata about the specified stack

cdk init Creates a new CDK project in the current
directory from a specified template

cdk context Manages cached context values

cdk docs (doc) Opens the CDK API Reference in your browser

cdk doctor Checks your CDK project for potential
problems

For the options available for each command, see the section called “Built-in help”.

Toolkit commands Version 2 472

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Specifying options and their values

Command line options begin with two hyphens (--). Some frequently used options have single-
letter synonyms that begin with a single hyphen (for example, --app has a synonym -a). The order
of options in an AWS CDK Toolkit command is not important.

All options accept a value, which must follow the option name. The value may be separated from
the name by white space or by an equals sign =. The following two options are equivalent.

--toolkit-stack-name MyBootstrapStack
--toolkit-stack-name=MyBootstrapStack

Some options are flags (Booleans). You may specify true or false as their value. If you do not
provide a value, the value is taken to be true. You may also prefix the option name with no- to
imply false.

sets staging flag to true
--staging
--staging=true
--staging true

sets staging flag to false
--no-staging
--staging=false
--staging false

A few options, namely --context, --parameters, --plugin, --tags, and --trust, may be
specified more than once to specify multiple values. These are noted as having [array] type in
the CDK Toolkit help. For example:

cdk bootstrap --tags costCenter=0123 --tags responsibleParty=jdoe

Built-in help

The AWS CDK Toolkit has integrated help. You can see general help about the utility and a list of
the provided subcommands by issuing:

cdk --help

To see help for a particular subcommand, for example deploy, specify it before the --help flag.

Specifying options and their values Version 2 473

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk deploy --help

Issue cdk version to display the version of the AWS CDK Toolkit. Provide this information when
requesting support.

Version reporting

To gain insight into how the AWS CDK is used, the constructs used by AWS CDK applications are
collected and reported by using a resource identified as AWS::CDK::Metadata. This resource is
added to AWS CloudFormation templates, and can easily be reviewed. This information can also be
used by AWS to identify stacks using a construct with known security or reliability issues. It can also
be used to contact their users with important information.

Note

Before version 1.93.0, the AWS CDK reported the names and versions of the modules
loaded during synthesis, instead of the constructs used in the stack.

By default, the AWS CDK reports the use of constructs in the following NPM modules that are used
in the stack:

• AWS CDK core module

• AWS Construct Library modules

• AWS Solutions Constructs module

• AWS Render Farm Deployment Kit module

The AWS::CDK::Metadata resource looks something like the following.

CDKMetadata:
 Type: "AWS::CDK::Metadata"
 Properties:
 Analytics:
 "v2:deflate64:H4sIAND9SGAAAzXKSw5AMBAA0L1b2PdzBYnEAdio3RglglY60zQi7u6TWL/
XKmNUlxeQSOKwaPTBqrNhwEWU3hGHiCzK0dWWfAxoL/Fd8mvk+QkS/0X6BdjnCdgmOOQKWz
+AqqLDt2Y3YMnLYWwAAAA="

Version reporting Version 2 474

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The Analytics property is a gzipped, base64-encoded, prefix-encoded list of the constructs in the
stack.

To opt out of version reporting, use one of the following methods:

• Use the cdk command with the --no-version-reporting argument to opt out for a single
command.

cdk --no-version-reporting synth

Remember, the AWS CDK Toolkit synthesizes fresh templates before deploying, so you should
also add --no-version-reporting to cdk deploy commands.

• Set versionReporting to false in ./cdk.json or ~/.cdk.json. This opts out unless you opt in
by specifying --version-reporting on an individual command.

{
 "app": "...",
 "versionReporting": false
}

Authentication with AWS

There are different ways in which you can configure programmatic access to AWS resources,
depending on the environment and the AWS access available to you.

To choose your method of authentication and configure it for the CDK Toolkit, see Authentication
and access in the AWS SDKs and Tools Reference Guide.

The recommended approach for new users developing locally, who are not given a method of
authentication by their employer, is to set up AWS IAM Identity Center. This method includes
installing the AWS CLI for ease of configuration and for regularly signing in to the AWS access
portal. If you choose this method, your environment should contain the following elements after
you complete the procedure for IAM Identity Center authentication in the AWS SDKs and Tools
Reference Guide:

• The AWS CLI, which you use to start an AWS access portal session before you run your
application.

Authentication with AWS Version 2 475

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• A shared AWSconfig file having a [default] profile with a set of configuration values that can
be referenced from the AWS CDK. To find the location of this file, see Location of the shared files
in the AWS SDKs and Tools Reference Guide.

• The shared config file sets the region setting. This sets the default AWS Region the AWS CDK
and CDK Toolkit use for AWS requests.

• The CDK Toolkit uses the profile's SSO token provider configuration to acquire credentials before
sending requests to AWS. The sso_role_name value, which is an IAM role connected to an IAM
Identity Center permission set, should allow access to the AWS services used in your application.

The following sample config file shows a default profile set up with SSO token provider
configuration. The profile's sso_session setting refers to the named sso-session section.
The sso-session section contains settings to initiate an AWS access portal session.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

Start an AWS access portal session

Before accessing AWS services, you need an active AWS access portal session for the CDK
Toolkit to use IAM Identity Center authentication to resolve credentials. Depending on your
configured session lengths, your access will eventually expire and the CDK Toolkit will encounter
an authentication error. Run the following command in the AWS CLI to sign in to the AWS access
portal.

aws sso login

If your SSO token provider configuration is using a named profile instead of the default profile,
the command is aws sso login --profile NAME. Also specify this profile when issuing cdk
commands using the --profile option or the AWS_PROFILE environment variable.

Authentication with AWS Version 2 476

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#section-session

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To test if you already have an active session, run the following AWS CLI command.

aws sts get-caller-identity

The response to this command should report the IAM Identity Center account and permission set
configured in the shared config file.

Note

If you already have an active AWS access portal session and run aws sso login, you will
not be required to provide credentials.
The sign in process may prompt you to allow the AWS CLI access to your data. Since the
AWS CLI is built on top of the SDK for Python, permission messages may contain variations
of the botocore name.

Specifying Region and other configuration

The CDK Toolkit needs to know the AWS Region that you're deploying into and how to authenticate
with AWS. This is needed for deployment operations and to retrieve context values during
synthesis. Together, your account and Region make up the environment.

Region may be specified using environment variables or in configuration files. These are the same
variables and files used by other AWS tools such as the AWS CLI and the various AWS SDKs. The
CDK Toolkit looks for this information in the following order.

• The AWS_DEFAULT_REGION environment variable.

• A named profile defined in the standard AWS config file and specified using the --profile
option on cdk commands.

• The [default] section of the standard AWS config file.

Besides specifying AWS authentication and a Region in the [default] section, you can also
add one or more [profile NAME] sections, where NAME is the name of the profile. For more
information about named profiles, see Shared config and credentials files in the AWS SDKs and
Tools Reference Guide.

Specifying Region and other configuration Version 2 477

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The standard AWS config file is located at ~/.aws/config (macOS/Linux) or %USERPROFILE%
\.aws\config (Windows). For details and alternate locations, see Location of the shared config
and credentials files in the AWS SDKs and Tools Reference Guide

The environment that you specify in your AWS CDK app by using the stack's env property is used
during synthesis. It's used to generate an environment-specific AWS CloudFormation template, and
during deployment, it overrides the account or Region specified by one of the preceding methods.
For more information, see the section called “Environments”.

Note

The AWS CDK uses credentials from the same source files as other AWS tools and SDKs,
including the AWS Command Line Interface. However, the AWS CDK might behave
somewhat differently from these tools. It uses the AWS SDK for JavaScript under the hood.
For complete details on setting up credentials for the AWS SDK for JavaScript, see Setting
credentials.

You may optionally use the --role-arn (or -r) option to specify the ARN of an IAM role that
should be used for deployment. This role must be assumable by the AWS account being used.

Specifying the app command

Many features of the CDK Toolkit require one or more AWS CloudFormation templates be
synthesized, which in turn requires running your application. The AWS CDK supports programs
written in a variety of languages. Therefore, it uses a configuration option to specify the exact
command necessary to run your app. This option can be specified in two ways.

First, and most commonly, it can be specified using the app key inside the file cdk.json. This is in
the main directory of your AWS CDK project. The CDK Toolkit provides an appropriate command
when creating a new project with cdk init. Here is the cdk.json from a fresh TypeScript
project, for instance.

{
 "app": "npx ts-node bin/hello-cdk.ts"
}

Specifying the app command Version 2 478

https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-credentials.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The CDK Toolkit looks for cdk.json in the current working directory when attempting to run your
app. Because of this, you might keep a shell open in your project's main directory for issuing CDK
Toolkit commands.

The CDK Toolkit also looks for the app key in ~/.cdk.json (that is, in your home directory) if it
can't find it in ./cdk.json. Adding the app command here can be useful if you usually work with
CDK code in the same language.

If you are in some other directory, or to run your app using a command other than the one in
cdk.json, use the --app (or -a) option to specify it.

cdk --app "npx ts-node bin/hello-cdk.ts" ls

When deploying, you may also specify a directory containing synthesized cloud assemblies, such
as cdk.out, as the value of --app. The specified stacks are deployed from this directory; the app is
not synthesized.

Specifying stacks

Many CDK Toolkit commands (for example, cdk deploy) work on stacks defined in your app. If
your app contains only one stack, the CDK Toolkit assumes you mean that one if you don't specify a
stack explicitly.

Otherwise, you must specify the stack or stacks you want to work with. You can do this by
specifying the desired stacks by ID individually on the command line. Recall that the ID is the value
specified by the second argument when you instantiate the stack.

cdk synth PipelineStack LambdaStack

You may also use wildcards to specify IDs that match a pattern.

• ? matches any single character

• * matches any number of characters (* alone matches all stacks)

• ** matches everything in a hierarchy

You may also use the --all option to specify all stacks.

Specifying stacks Version 2 479

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If your app uses CDK Pipelines, the CDK Toolkit understands your stacks and stages as a hierarchy.
Also, the --all option and the * wildcard only match top-level stacks. To match all the stacks, use
**. Also use ** to indicate all the stacks under a particular hierarchy.

When using wildcards, enclose the pattern in quotes, or escape the wildcards with \. If you don't,
your shell may try to expand the pattern to the names of files in the current directory. At best,
this won't do what you expect; at worst, you could deploy stacks you didn't intend to. This isn't
strictly necessary on Windows because cmd.exe does not expand wildcards, but is good practice
nonetheless.

cdk synth "*Stack" # PipelineStack, LambdaStack, etc.
cdk synth 'Stack?' # StackA, StackB, Stack1, etc.
cdk synth * # All stacks in the app, or all top-level stacks in a CDK
 Pipelines app
cdk synth '**' # All stacks in a CDK Pipelines app
cdk synth 'PipelineStack/Prod/**' # All stacks in Prod stage in a CDK Pipelines app

Note

The order in which you specify the stacks is not necessarily the order in which they will
be processed. The AWS CDK Toolkit accounts for dependencies between stacks when
deciding the order in which to process them. For example, let's say that one stack uses a
value produced by another (such as the ARN of a resource defined in the second stack). In
this case, the second stack is synthesized before the first one because of this dependency.
You can add dependencies between stacks manually using the stack's addDependency()
method.

Bootstrapping your AWS environment

Deploying stacks with the CDK requires special dedicated AWS CDK resources to be provisioned.
The cdk bootstrap command creates the necessary resources for you. You only need to
bootstrap if you are deploying a stack that requires these dedicated resources. See the section
called “Bootstrapping” for details.

cdk bootstrap

Bootstrapping your AWS environment Version 2 480

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#addwbrdependencytarget-reason

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If issued with no arguments, as shown here, the cdk bootstrap command synthesizes the
current app and bootstraps the environments its stacks will be deployed to. If the app contains
environment-agnostic stacks, which don't explicitly specify an environment, the default account
and Region are bootstrapped, or the environment specified using --profile.

Outside of an app, you must explicitly specify the environment to be bootstrapped. You may also
do so to bootstrap an environment that's not specified in your app or local AWS profile. Credentials
must be configured (e.g. in ~/.aws/credentials) for the specified account and Region. You may
specify a profile that contains the required credentials.

cdk bootstrap ACCOUNT-NUMBER/REGION # e.g.
cdk bootstrap 1111111111/us-east-1
cdk bootstrap --profile test 1111111111/us-east-1

Important

Each environment (account/region combination) to which you deploy such a stack must be
bootstrapped separately.

You may incur AWS charges for what the AWS CDK stores in the bootstrapped resources.
Additionally, if you use -bootstrap-customer-key, an AWS KMS key will be created, which also
incurs charges per environment.

Note

Earlier versions of the bootstrap template created a KMS key by default. To avoid charges,
re-bootstrap using --no-bootstrap-customer-key.

Note

CDK Toolkit v2 does not support the original bootstrap template, dubbed the legacy
template, used by default with CDK v1.

Bootstrapping your AWS environment Version 2 481

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Important

The modern bootstrap template effectively grants the permissions implied by the --
cloudformation-execution-policies to any AWS account in the --trust list. By
default, this extends permissions to read and write to any resource in the bootstrapped
account. Make sure to configure the bootstrapping stack with policies and trusted accounts
that you are comfortable with.

Creating a new app

To create a new app, create a directory for it, then, inside the directory, issue cdk init.

mkdir my-cdk-app
cd my-cdk-app
cdk init TEMPLATE --language LANGUAGE

The supported languages (LANGUAGE) are:

Code Language

typescript TypeScript

javascript JavaScript

python Python

java Java

csharp C#

TEMPLATE is an optional template. If the desired template is app, the default, you may omit it. The
available templates are:

Template Description

app (default) Creates an empty AWS CDK app.

Creating a new app Version 2 482

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Template Description

sample-app Creates an AWS CDK app with a stack
containing an Amazon SQS queue and an
Amazon SNS topic.

The templates use the name of the project folder to generate names for files and classes inside
your new app.

Listing stacks

To see a list of the IDs of the stacks in your AWS CDK application, enter one of the following
equivalent commands:

cdk list
cdk ls

If your application contains CDK Pipelines stacks, the CDK Toolkit displays stack names as
paths according to their location in the pipeline hierarchy. (For example, PipelineStack,
PipelineStack/Prod, and PipelineStack/Prod/MyService.)

If your app contains many stacks, you can specify full or partial stack IDs of the stacks to be listed.
For more information, see the section called “Specifying stacks”.

Add the --long flag to see more information about the stacks, including the stack names and
their environments (AWS account and Region).

Synthesizing stacks

The cdk synthesize command (almost always abbreviated synth) synthesizes a stack defined in
your app into a CloudFormation template.

cdk synth # if app contains only one stack
cdk synth MyStack
cdk synth Stack1 Stack2
cdk synth "*" # all stacks in app

Listing stacks Version 2 483

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

The CDK Toolkit actually runs your app and synthesizes fresh templates before most
operations (such as when deploying or comparing stacks). These templates are stored by
default in the cdk.out directory. The cdk synth command simply prints the generated
templates for one or more specified stacks.

See cdk synth --help for all available options. A few of the most frequently used options are
covered in the following section.

Specifying context values

Use the --context or -c option to pass runtime context values to your CDK app.

specify a single context value
cdk synth --context key=value MyStack

specify multiple context values (any number)
cdk synth --context key1=value1 --context key2=value2 MyStack

When deploying multiple stacks, the specified context values are normally passed to all of them. If
you want, you can specify different values for each stack by prefixing the stack name to the context
value.

different context values for each stack
cdk synth --context Stack1:key=value Stack2:key=value Stack1 Stack2

Specifying display format

By default, the synthesized template is displayed in YAML format. Add the --json flag to display it
in JSON format instead.

cdk synth --json MyStack

Specifying output directory

Add the --output (-o) option to write the synthesized templates to a directory other than
cdk.out.

Synthesizing stacks Version 2 484

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk synth --output=~/templates

Deploying stacks

The cdk deploy subcommand deploys one or more specified stacks to your AWS account.

cdk deploy # if app contains only one stack
cdk deploy MyStack
cdk deploy Stack1 Stack2
cdk deploy "*" # all stacks in app

Note

The CDK Toolkit runs your app and synthesizes fresh AWS CloudFormation templates
before deploying anything. Therefore, most command line options you can use with cdk
synth (for example, --context) can also be used with cdk deploy.

See cdk deploy --help for all available options. A few of the most useful options are covered in
the following section.

Skipping synthesis

The cdk deploy command normally synthesizes your app's stacks before deploying to make
sure that the deployment reflects the latest version of your app. If you know that you haven't
changed your code since your last cdk synth, you can suppress the redundant synthesis step when
deploying. To do so, specify your project's cdk.out directory in the --app option.

cdk deploy --app cdk.out StackOne StackTwo

Disabling rollback

AWS CloudFormation has the ability to roll back changes so that deployments are atomic. This
means that they either succeed or fail as a whole. The AWS CDK inherits this capability because it
synthesizes and deploys AWS CloudFormation templates.

Rollback makes sure that your resources are in a consistent state at all times, which is vital for
production stacks. However, while you're still developing your infrastructure, some failures are
inevitable, and rolling back failed deployments can slow you down.

Deploying stacks Version 2 485

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For this reason, the CDK Toolkit lets you disable rollback by adding --no-rollback to your
cdk deploy command. With this flag, failed deployments are not rolled back. Instead, resources
deployed before the failed resource remain in place, and the next deployment starts with the failed
resource. You'll spend a lot less time waiting for deployments and a lot more time developing your
infrastructure.

Hot swapping

Use the --hotswap flag with cdk deploy to attempt to update your AWS resources directly
instead of generating an AWS CloudFormation change set and deploying it. Deployment falls back
to AWS CloudFormation deployment if hot swapping is not possible.

Currently hot swapping supports Lambda functions, Step Functions state machines, and Amazon
ECS container images. The --hotswap flag also disables rollback (i.e., implies --no-rollback).

Important

Hot-swapping is not recommended for production deployments.

Watch mode

The CDK Toolkit's watch mode (cdk deploy --watch, or cdk watch for short) continuously monitors
your CDK app's source files and assets for changes. It immediately performs a deployment of the
specified stacks when a change is detected.

By default, these deployments use the --hotswap flag, which fast-tracks deployment of
changes to Lambda functions. It also falls back to deploying through AWS CloudFormation if
you have changed infrastructure configuration. To have cdk watch always perform full AWS
CloudFormation deployments, add the --no-hotswap flag to cdk watch.

Any changes made while cdk watch is already performing a deployment are combined into a
single deployment, which begins as soon as the in-progress deployment is complete.

Watch mode uses the "watch" key in the project's cdk.json to determine which files to monitor.
By default, these files are your application files and assets, but this can be changed by modifying
the "include" and "exclude" entries in the "watch" key. The following cdk.json file shows
an example of these entries.

{

Deploying stacks Version 2 486

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "app": "mvn -e -q compile exec:java",
 "watch": {
 "include": "src/main/**",
 "exclude": "target/*"
 }
}

cdk watch executes the "build" command from cdk.json to build your app before synthesis. If
your deployment requires any commands to build or package your Lambda code (or anything else
that's not in your CDK app), add it here.

Git-style wildcards, both * and **, can be used in the "watch" and "build" keys. Each path is
interpreted relative to the parent directory of cdk.json. The default value of include is **/*,
meaning all files and directories in the project root directory. exclude is optional.

Important

Watch mode is not recommended for production deployments.

Specifying AWS CloudFormation parameters

The AWS CDK Toolkit supports specifying AWS CloudFormation parameters at deployment. You
may provide these on the command line following the --parameters flag.

cdk deploy MyStack --parameters uploadBucketName=UploadBucket

To define multiple parameters, use multiple --parameters flags.

cdk deploy MyStack --parameters uploadBucketName=UpBucket --parameters
 downloadBucketName=DownBucket

If you are deploying multiple stacks, you can specify a different value of each parameter for each
stack. To do so, prefix the name of the parameter with the stack name and a colon. Otherwise, the
same value is passed to all stacks.

cdk deploy MyStack YourStack --parameters MyStack:uploadBucketName=UploadBucket --
parameters YourStack:uploadBucketName=UpBucket

Deploying stacks Version 2 487

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

By default, the AWS CDK retains values of parameters from previous deployments and uses them in
later deployments if they are not specified explicitly. Use the --no-previous-parameters flag
to require all parameters to be specified.

Specifying outputs file

If your stack declares AWS CloudFormation outputs, these are normally displayed on the screen at
the conclusion of deployment. To write them to a file in JSON format, use the --outputs-file
flag.

cdk deploy --outputs-file outputs.json MyStack

Security-related changes

To protect you against unintended changes that affect your security posture, the AWS CDK Toolkit
prompts you to approve security-related changes before deploying them. You can specify the level
of change that requires approval:

cdk deploy --require-approval LEVEL

LEVEL can be one of the following:

Term Meaning

never Approval is never required

any-change Requires approval on any IAM or security-
group-related change

broadening (default) Requires approval when IAM statements or
traffic rules are added; removals don't require
approval

The setting can also be configured in the cdk.json file.

{
 "app": "...",

Deploying stacks Version 2 488

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "requireApproval": "never"
}

Comparing stacks

The cdk diff command compares the current version of a stack (and its dependencies) defined in
your app with the already-deployed versions, or with a saved AWS CloudFormation template, and
displays a list of changes.

Stack HelloCdkStack
IAM Statement Changes
###
Resource # Effect # Action # Principal
 # Condition #
###
+ # ${Custom::S3AutoDeleteObject # Allow # sts:AssumeRole #
 Service:lambda.amazonaws.com # #
sCustomResourceProvider/Role # # #
 # #
.Arn} # # #
 # #
###
+ # ${MyFirstBucket.Arn} # Allow # s3:DeleteObject* # AWS:
${Custom::S3AutoDeleteOb # #
${MyFirstBucket.Arn}/* # # s3:GetBucket* #
 jectsCustomResourceProvider/ # #
s3:GetObject* # Role.Arn}
 # #
s3:List* #
 # #
###
IAM Policy Changes
###
Resource # Managed Policy ARN
 #
###
+ # ${Custom::S3AutoDeleteObjectsCustomResourceProvider/Ro # {"Fn::Sub":"arn:
${AWS::Partition}:iam::aws:policy/serv #
le} # ice-role/
AWSLambdaBasicExecutionRole"} #
###
(NOTE: There may be security-related changes not in this list. See https://github.com/
aws/aws-cdk/issues/1299)

Comparing stacks Version 2 489

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Parameters
[+] Parameter
 AssetParameters/4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392/
S3Bucket
 AssetParameters4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392S3BucketBF7A7F3F:
 {"Type":"String","Description":"S3 bucket for asset
 \"4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392\""}
[+] Parameter
 AssetParameters/4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392/
S3VersionKey
 AssetParameters4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392S3VersionKeyFAF93626:
 {"Type":"String","Description":"S3 key for asset version
 \"4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392\""}
[+] Parameter
 AssetParameters/4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392/
ArtifactHash
 AssetParameters4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392ArtifactHashE56CD69A:
 {"Type":"String","Description":"Artifact hash for asset
 \"4cd61014b71160e8c66fe167e43710d5ba068b80b134e9bd84508cf9238b2392\""}

Resources
[+] AWS::S3::BucketPolicy MyFirstBucket/Policy MyFirstBucketPolicy3243DEFD
[+] Custom::S3AutoDeleteObjects MyFirstBucket/AutoDeleteObjectsCustomResource
 MyFirstBucketAutoDeleteObjectsCustomResourceC52FCF6E
[+] AWS::IAM::Role Custom::S3AutoDeleteObjectsCustomResourceProvider/Role
 CustomS3AutoDeleteObjectsCustomResourceProviderRole3B1BD092
[+] AWS::Lambda::Function Custom::S3AutoDeleteObjectsCustomResourceProvider/Handler
 CustomS3AutoDeleteObjectsCustomResourceProviderHandler9D90184F
[~] AWS::S3::Bucket MyFirstBucket MyFirstBucketB8884501
 ## [~] DeletionPolicy
 # ## [-] Retain
 # ## [+] Delete
 ## [~] UpdateReplacePolicy
 ## [-] Retain
 ## [+] Delete

To compare your app's stacks with the existing deployment:

cdk diff MyStack

To compare your app's stacks with a saved CloudFormation template:

Comparing stacks Version 2 490

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk diff --template ~/stacks/MyStack.old MyStack

Importing existing resources into a stack

You can use the cdk import command to bring resources under the management of
CloudFormation for a particular AWS CDK stack. This is useful if you are migrating to AWS
CDK, or are moving resources between stacks or changing their logical id. cdk import uses
CloudFormation resource imports. See the list of resources that can be imported here.

To import an existing resource into a AWS CDK stack, follow the following steps:

• Make sure the resource is not currently being managed by any other CloudFormation stack.
If it is, first set the removal policy to RemovalPolicy.RETAIN in the stack the resource is
currently in and perform a deployment. Then, remove the resource from the stack and perform
another deployment. This process will make sure that the resource is no longer managed by
CloudFormation but does not delete it.

• Run a cdk diff to make sure there are no pending changes to the AWS CDK stack you want to
import resources into. The only changes allowed in an "import" operation are the addition of new
resources which you want to import.

• Add constructs for the resources you want to import to your stack. For example, if you
want to import an Amazon S3 bucket, add something like new s3.Bucket(this,
'ImportedS3Bucket', {});. Do not make any modifications to any other resource.

You must also make sure to exactly model the state that the resource currently has into the
definition. For the example of the bucket, be sure to include AWS KMS keys, life cycle policies,
and anything else that's relevant about the bucket. If you do not, subsequent update operations
may not do what you expect.

You can choose whether or not to include the physical bucket name. We usually recommend to
not include resource names into your AWS CDK resource definitions so that it becomes easier to
deploy your resources multiple times.

• Run cdk import STACKNAME.

• If the resource names are not in your model, the CLI will prompt you to pass in the actual names
of the resources you are importing. After this, the import starts.

• When cdk import reports success, the resource is now managed by AWS CDK and
CloudFormation. Any subsequent changes you make to the resource properties in your AWS CDK
app the construct configuration will be applied on the next deployment.

Importing existing resources into a stack Version 2 491

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• To confirm that the resource definition in your AWS CDK app matches the current state of the
resource, you can start an CloudFormation drift detection operation.

This feature currently does not support importing resources into nested stacks.

Configuration (cdk.json)

Default values for many CDK Toolkit command line flags can be stored in a project's cdk.json
file or in the .cdk.json file in your user directory. Following is an alphabetical reference to the
supported configuration settings.

Key Notes CDK Toolkit option

app The command that executes
the CDK application.

--app

assetMetadata If false, CDK does not add
metadata to resources that
use assets.

--no-asset-metadata

bootstrapKmsKeyId Overrides the ID of the AWS
KMS key used to encrypt
the Amazon S3 deployment
bucket.

--bootstrap-kms-key-id

build The command that compiles
or builds the CDK applicati
on before synthesis. Not
permitted in ~/.cdk.json .

--build

browser The command for launching
a Web browser for the cdk
docs subcommand.

--browser

context See the section called
“Context”. Context values in
a configuration file will not
be erased by cdk context --

--context

Configuration (cdk.json) Version 2 492

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Key Notes CDK Toolkit option

clear. (The CDK Toolkit places
cached context values in
cdk.context.json .)

debug If true, CDK Toolkit emits
more detailed information
useful for debugging.

--debug

language The language to be used for
initializing new projects.

--language

lookups If false, no context lookups
are permitted. Synthesis will
fail if any context lookups
need to be performed.

--no-lookups

notices If false, suppresses the
display of messages about
security vulnerabilities,
regressions, and unsupported
versions.

--no-notices

output The name of the directory
into which the synthesiz
ed cloud assembly will be
emitted (default "cdk.out"

).

--output

outputsFile The file to which AWS
CloudFormation outputs
from deployed stacks will be
written (in JSON format).

--outputs-file

pathMetadata If false, CDK path metadata
is not added to synthesized
templates.

--no-path-metadata

Configuration (cdk.json) Version 2 493

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Key Notes CDK Toolkit option

plugin JSON array specifying the
package names or local paths
of packages that extend the
CDK

--plugin

profile Name of the default AWS
profile used for specifying
Region and account credentia
ls.

--profile

progress If set to "events", the CDK
Toolkit displays all AWS
CloudFormation events
during deployment, rather
than a progress bar.

--progress

requireApproval Default approval level for
security changes. See the
section called “Security-
related changes”

--require-approval

rollback If false, failed deployments
are not rolled back.

--no-rollback

staging If false, assets are not
copied to the output directory
(use for local debugging of
the source files with AWS
SAM).

--no-staging

tags JSON object containing tags
(key-value pairs) for the stack.

--tags

Configuration (cdk.json) Version 2 494

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Key Notes CDK Toolkit option

toolkitBucketName The name of the Amazon S3
bucket used for deploying
assets such as Lambda
functions and container
images (see the section called
“Bootstrapping your AWS
environment”.

--toolkit-bucket-name

toolkitStackName The name of the bootstrap
stack (see the section called
“Bootstrapping your AWS
environment”.

--toolkit-stack-name

versionReporting If false, opts out of version
reporting.

--no-version-reporting

watch JSON object containing
"include" and "exclude"

 keys that indicate which
files should (or should not)
trigger a rebuild of the
project when changed. See
the section called “Watch
mode”.

--watch

cdk migrate command reference

Reference for the AWS Cloud Development Kit (AWS CDK) Command Line Interface (CLI) cdk
migrate command. For more information on using cdk migrate, see Migrate existing resources
and AWS CloudFormation templates to the AWS CDK.

The cdk migrate command migrates deployed AWS resources, AWS CloudFormation stacks, and
local AWS CloudFormation templates to AWS CDK.

Topics

cdk migrate command reference Version 2 495

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

• Usage

• Options

Usage

$ cdk migrate <options>

Options

Required options

--stack-name STRING

The name of the AWS CloudFormation stack that will be created within the CDK app after
migrating.

Required: Yes

Conditional options

--from-path PATH

The path to the AWS CloudFormation template to migrate. Provide this option to specify a local
template.

Required: Conditional. Required if migrating from a local AWS CloudFormation template.

--from-scan STRING

When migrating deployed resources from an AWS environment, use this option to specify
whether a new scan should be started or if the AWS CDK CLI should use the last successful scan.

Required: Conditional. Required when migrating from deployed AWS resources.

Accepted values: most-recent, new

--from-stack

Provide this option to migrate from a deployed AWS CloudFormation stack. Use --stack-name
to specify the name of the deployed AWS CloudFormation stack.

Required: Conditional. Required if migrating from a deployed AWS CloudFormation stack.

cdk migrate command reference Version 2 496

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Optional options

--account STRING

The account to retrieve the AWS CloudFormation stack template from.

Required: No

Default: The AWS CDK CLI obtains account information from default sources.

--compress

Provide this option to compress the generated CDK project into a ZIP file.

Required: No

--filter ARRAY

Use when migrating deployed resources from an AWS account and AWS Region. This option
specifies a filter to determine which deployed resources to migrate.

This option accepts an array of key-value pairs, where key represents the filter type and value
represents the value to filter.

The following are accepted keys:

• resource-identifier – An identifier for the resource. Value can be the resource logical or
physical ID. For example, resource-identifier="ClusterName".

• resource-type-prefix – The AWS CloudFormation resource type prefix. For example,
specify resource-type-prefix="AWS::DynamoDB::" to filter all Amazon DynamoDB
resources.

• tag-key – The key of a resource tag. For example, tag-key="myTagKey".

• tag-value – The value of a resource tag. For example, tag-value="myTagValue".

Provide multiple key-value pairs for AND conditional logic. The following example filters for
any DynamoDB resource that is tagged with myTagKey as the tag key: --filter resource-
type-prefix="AWS::DynamoDB::", tag-key="myTagKey".

Provide the --filter option multiple times in a single command for OR conditional logic.
The following example filters for any resource that is a DynamoDB resource or is tagged with
myTagKey as the tag key: --filter resource-type-prefix="AWS::DynamoDB::" --
filter tag-key="myTagKey".

cdk migrate command reference Version 2 497

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Required: No

--language STRING

The programming language to use for the CDK project created during migration.

Required: No

Accepted values: typescript, python, java, csharp, go.

Default: typescript

--output-path PATH

The output path for the migrated CDK project.

Required: No

Default: By default, the AWS CDK CLI will use your current working directory.

--region STRING

The AWS Region to retrieve the AWS CloudFormation stack template from.

Required: No

Default: The AWS CDK CLI obtains AWS Region information from default sources.

AWS Toolkit for Visual Studio Code

The AWS Toolkit for Visual Studio Code is an open source plugin for Visual Studio Code that makes
it easier to create, debug, and deploy applications on AWS. The toolkit provides an integrated
experience for developing AWS CDK applications. It includes the AWS CDK Explorer feature to list
your AWS CDK projects and browse the various components of the CDK application. Install the AWS
Toolkit and learn more about using the AWS CDK Explorer.

AWS SAM integration

The AWS CDK and the AWS Serverless Application Model (AWS SAM) can work together to let you
to locally build and test serverless applications defined in the CDK. For complete information, see
AWS Cloud Development Kit (AWS CDK) in the AWS SAM Developer Guide. To install the SAM CLI,
see Installing the AWS SAM CLI.

AWS Toolkit for VS Code Version 2 498

https://aws.amazon.com/visualstudiocode/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/cdk-explorer.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Testing constructs

With the AWS CDK, your infrastructure can be as testable as any other code you write. The standard
approach to testing AWS CDK apps uses the AWS CDK's assertions module and popular test
frameworks like Jest for TypeScript and JavaScript or Pytest for Python.

There are two categories of tests that you can write for AWS CDK apps.

• Fine-grained assertions test specific aspects of the generated AWS CloudFormation template,
such as "this resource has this property with this value." These tests can detect regressions.
They're also useful when you're developing new features using test-driven development. (You
can write a test first, then make it pass by writing a correct implementation.) Fine-grained
assertions are the most frequently used tests.

• Snapshot tests test the synthesized AWS CloudFormation template against a previously
stored baseline template. Snapshot tests let you refactor freely, since you can be sure that the
refactored code works exactly the same way as the original. If the changes were intentional, you
can accept a new baseline for future tests. However, CDK upgrades can also cause synthesized
templates to change, so you can't rely only on snapshots to make sure that your implementation
is correct.

Note

Complete versions of the TypeScript, Python, and Java apps used as examples in this topic
are available on GitHub.

Getting started

To illustrate how to write these tests, we'll create a stack that contains an AWS Step Functions state
machine and an AWS Lambda function. The Lambda function is subscribed to an Amazon SNS topic
and simply forwards the message to the state machine.

First, create an empty CDK application project using the CDK Toolkit and installing the libraries
we'll need. The constructs we'll use are all in the main CDK package, which is a default dependency
in projects created with the CDK Toolkit. However, you must install your testing framework.

Getting started Version 2 499

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.assertions-readme.html
https://jestjs.io/
https://docs.pytest.org/en/6.2.x/
https://github.com/cdklabs/aws-cdk-testing-examples/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

TypeScript

mkdir state-machine && cd state-machine
cdk init --language=typescript
npm install --save-dev jest @types/jest

Create a directory for your tests.

mkdir test

Edit the project's package.json to tell NPM how to run Jest, and to tell Jest what kinds of files
to collect. The necessary changes are as follows.

• Add a new test key to the scripts section

• Add Jest and its types to the devDependencies section

• Add a new jest top-level key with a moduleFileExtensions declaration

These changes are shown in the following outline. Place the new text where indicated in
package.json. The "..." placeholders indicate existing parts of the file that should not be
changed.

{
 ...
 "scripts": {
 ...
 "test": "jest"
 },
 "devDependencies": {
 ...
 "@types/jest": "^24.0.18",
 "jest": "^24.9.0"
 },
 "jest": {
 "moduleFileExtensions": ["js"]
 }
}

JavaScript

mkdir state-machine && cd state-machine

Getting started Version 2 500

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk init --language=javascript
npm install --save-dev jest

Create a directory for your tests.

mkdir test

Edit the project's package.json to tell NPM how to run Jest, and to tell Jest what kinds of files
to collect. The necessary changes are as follows.

• Add a new test key to the scripts section

• Add Jest to the devDependencies section

• Add a new jest top-level key with a moduleFileExtensions declaration

These changes are shown in the following outline. Place the new text where indicated in
package.json. The "..." placeholders indicate existing parts of the file that shouldn't be
changed.

{
 ...
 "scripts": {
 ...
 "test": "jest"
 },
 "devDependencies": {
 ...
 "jest": "^24.9.0"
 },
 "jest": {
 "moduleFileExtensions": ["js"]
 }
}

Python

mkdir state-machine && cd state-machine
cdk init --language=python
source .venv/bin/activate
python -m pip install -r requirements.txt

Getting started Version 2 501

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

python -m pip install -r requirements-dev.txt

Java

mkdir state-machine && cd-state-machine
cdk init --language=java

Open the project in your preferred Java IDE. (In Eclipse, use File > Import > Existing Maven
Projects.)

C#

mkdir state-machine && cd-state-machine
cdk init --language=csharp

Open src\StateMachine.sln in Visual Studio.

Right-click the solution in Solution Explorer and choose Add > New Project. Search for MSTest
C# and add an MSTest Test Project for C#. (The default name TestProject1is fine.)

Right-click TestProject1 and choose Add > Project Reference, and add the StateMachine
project as a reference.

The example stack

Here's the stack that will be tested in this topic. As we've previously described, it contains a Lambda
function and a Step Functions state machine, and accepts one or more Amazon SNS topics. The
Lambda function is subscribed to the Amazon SNS topics and forwards them to the state machine.

You don't have to do anything special to make the app testable. In fact, this CDK stack is not
different in any important way from the other example stacks in this Guide.

TypeScript

Place the following code in lib/state-machine-stack.ts:

import * as cdk from "aws-cdk-lib";
import * as sns from "aws-cdk-lib/aws-sns";
import * as sns_subscriptions from "aws-cdk-lib/aws-sns-subscriptions";
import * as lambda from "aws-cdk-lib/aws-lambda";

The example stack Version 2 502

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import * as sfn from "aws-cdk-lib/aws-stepfunctions";
import { Construct } from "constructs";

export interface StateMachineStackProps extends cdk.StackProps {
 readonly topics: sns.Topic[];
}

export class StateMachineStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props: StateMachineStackProps) {
 super(scope, id, props);

 // In the future this state machine will do some work...
 const stateMachine = new sfn.StateMachine(this, "StateMachine", {
 definition: new sfn.Pass(this, "StartState"),
 });

 // This Lambda function starts the state machine.
 const func = new lambda.Function(this, "LambdaFunction", {
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: "handler",
 code: lambda.Code.fromAsset("./start-state-machine"),
 environment: {
 STATE_MACHINE_ARN: stateMachine.stateMachineArn,
 },
 });
 stateMachine.grantStartExecution(func);

 const subscription = new sns_subscriptions.LambdaSubscription(func);
 for (const topic of props.topics) {
 topic.addSubscription(subscription);
 }
 }
}

JavaScript

Place the following code in lib/state-machine-stack.js:

const cdk = require("aws-cdk-lib");
const sns = require("aws-cdk-lib/aws-sns");
const sns_subscriptions = require("aws-cdk-lib/aws-sns-subscriptions");
const lambda = require("aws-cdk-lib/aws-lambda");
const sfn = require("aws-cdk-lib/aws-stepfunctions");

The example stack Version 2 503

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class StateMachineStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 // In the future this state machine will do some work...
 const stateMachine = new sfn.StateMachine(this, "StateMachine", {
 definition: new sfn.Pass(this, "StartState"),
 });

 // This Lambda function starts the state machine.
 const func = new lambda.Function(this, "LambdaFunction", {
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: "handler",
 code: lambda.Code.fromAsset("./start-state-machine"),
 environment: {
 STATE_MACHINE_ARN: stateMachine.stateMachineArn,
 },
 });
 stateMachine.grantStartExecution(func);

 const subscription = new sns_subscriptions.LambdaSubscription(func);
 for (const topic of props.topics) {
 topic.addSubscription(subscription);
 }
 }
}

module.exports = { StateMachineStack }

Python

Place the following code in state_machine/state_machine_stack.py:

from typing import List

import aws_cdk.aws_lambda as lambda_
import aws_cdk.aws_sns as sns
import aws_cdk.aws_sns_subscriptions as sns_subscriptions
import aws_cdk.aws_stepfunctions as sfn
import aws_cdk as cdk

class StateMachineStack(cdk.Stack):
 def __init__(
 self,

The example stack Version 2 504

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 scope: cdk.Construct,
 construct_id: str,
 *,
 topics: List[sns.Topic],
 **kwargs
) -> None:
 super().__init__(scope, construct_id, **kwargs)

 # In the future this state machine will do some work...
 state_machine = sfn.StateMachine(
 self, "StateMachine", definition=sfn.Pass(self, "StartState")
)

 # This Lambda function starts the state machine.
 func = lambda_.Function(
 self,
 "LambdaFunction",
 runtime=lambda_.Runtime.NODEJS_18_X,
 handler="handler",
 code=lambda_.Code.from_asset("./start-state-machine"),
 environment={
 "STATE_MACHINE_ARN": state_machine.state_machine_arn,
 },
)
 state_machine.grant_start_execution(func)

 subscription = sns_subscriptions.LambdaSubscription(func)
 for topic in topics:
 topic.add_subscription(subscription)

Java

package software.amazon.samples.awscdkassertionssamples;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.sns.ITopicSubscription;
import software.amazon.awscdk.services.sns.Topic;
import software.amazon.awscdk.services.sns.subscriptions.LambdaSubscription;

The example stack Version 2 505

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.amazon.awscdk.services.stepfunctions.Pass;
import software.amazon.awscdk.services.stepfunctions.StateMachine;

import java.util.Collections;
import java.util.List;

public class StateMachineStack extends Stack {
 public StateMachineStack(final Construct scope, final String id, final
 List<Topic> topics) {
 this(scope, id, null, topics);
 }

 public StateMachineStack(final Construct scope, final String id, final
 StackProps props, final List<Topic> topics) {
 super(scope, id, props);

 // In the future this state machine will do some work...
 final StateMachine stateMachine = StateMachine.Builder.create(this,
 "StateMachine")
 .definition(new Pass(this, "StartState"))
 .build();

 // This Lambda function starts the state machine.
 final Function func = Function.Builder.create(this, "LambdaFunction")
 .runtime(Runtime.NODEJS_18_X)
 .handler("handler")
 .code(Code.fromAsset("./start-state-machine"))
 .environment(Collections.singletonMap("STATE_MACHINE_ARN",
 stateMachine.getStateMachineArn()))
 .build();
 stateMachine.grantStartExecution(func);

 final ITopicSubscription subscription = new LambdaSubscription(func);
 for (final Topic topic : topics) {
 topic.addSubscription(subscription);
 }
 }
}

C#

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;

The example stack Version 2 506

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Amazon.CDK.AWS.StepFunctions;
using Amazon.CDK.AWS.SNS;
using Amazon.CDK.AWS.SNS.Subscriptions;
using Constructs;

using System.Collections.Generic;

namespace AwsCdkAssertionSamples
{
 public class StateMachineStackProps : StackProps
 {
 public Topic[] Topics;
 }

 public class StateMachineStack : Stack
 {

 internal StateMachineStack(Construct scope, string id,
 StateMachineStackProps props = null) : base(scope, id, props)
 {
 // In the future this state machine will do some work...
 var stateMachine = new StateMachine(this, "StateMachine", new
 StateMachineProps
 {
 Definition = new Pass(this, "StartState")
 });

 // This Lambda function starts the state machine.
 var func = new Function(this, "LambdaFunction", new FunctionProps
 {
 Runtime = Runtime.NODEJS_18_X,
 Handler = "handler",
 Code = Code.FromAsset("./start-state-machine"),
 Environment = new Dictionary<string, string>
 {
 { "STATE_MACHINE_ARN", stateMachine.StateMachineArn }
 }
 });
 stateMachine.GrantStartExecution(func);

 foreach (Topic topic in props?.Topics ?? new Topic[0])
 {
 var subscription = new LambdaSubscription(func);
 }

The example stack Version 2 507

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 }
 }
}

We'll modify the app's main entry point so that we don't actually instantiate our stack. We don't
want to accidentally deploy it. Our tests will create an app and an instance of the stack for testing.
This is a useful tactic when combined with test-driven development: make sure that the stack
passes all tests before you enable deployment.

TypeScript

In bin/state-machine.ts:

#!/usr/bin/env node
import * as cdk from "aws-cdk-lib";

const app = new cdk.App();

// Stacks are intentionally not created here -- this application isn't meant to
// be deployed.

JavaScript

In bin/state-machine.js:

#!/usr/bin/env node
const cdk = require("aws-cdk-lib");

const app = new cdk.App();

// Stacks are intentionally not created here -- this application isn't meant to
// be deployed.

Python

In app.py:

#!/usr/bin/env python3
import os

The example stack Version 2 508

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import aws_cdk as cdk

app = cdk.App()

Stacks are intentionally not created here -- this application isn't meant to
be deployed.

app.synth()

Java

package software.amazon.samples.awscdkassertionssamples;

import software.amazon.awscdk.App;

public class SampleApp {
 public static void main(final String[] args) {
 App app = new App();

 // Stacks are intentionally not created here -- this application isn't meant
 to be deployed.

 app.synth();
 }
}

C#

using Amazon.CDK;

namespace AwsCdkAssertionSamples
{
 sealed class Program
 {
 public static void Main(string[] args)
 {
 var app = new App();

 // Stacks are intentionally not created here -- this application isn't
 meant to be deployed.

 app.Synth();
 }

The example stack Version 2 509

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 }
}

The Lambda function

Our example stack includes a Lambda function that starts our state machine. We must provide the
source code for this function so the CDK can bundle and deploy it as part of creating the Lambda
function resource.

• Create the folder start-state-machine in the app's main directory.

• In this folder, create at least one file. For example, you can save the following code in start-
state-machines/index.js.

exports.handler = async function (event, context) {
 return 'hello world';
};

However, any file will work, since we won't actually be deploying the stack.

Running tests

For reference, here are the commands you use to run tests in your AWS CDK app. These are the
same commands that you'd use to run the tests in any project using the same testing framework.
For languages that require a build step, include that to make sure that your tests have compiled.

TypeScript

tsc && npm test

JavaScript

npm test

Python

python -m pytest

The Lambda function Version 2 510

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

mvn compile && mvn test

C#

Build your solution (F6) to discover the tests, then run the tests (Test > Run All Tests). To
choose which tests to run, open Test Explorer (Test > Test Explorer).

Or:

dotnet test src

Fine-grained assertions

The first step for testing a stack with fine-grained assertions is to synthesize the stack, because
we're writing assertions against the generated AWS CloudFormation template.

Our StateMachineStackStack requires that we pass it the Amazon SNS topic to be forwarded
to the state machine. So in our test, we'll create a separate stack to contain the topic.

Ordinarily, when writing a CDK app, you can subclass Stack and instantiate the Amazon SNS topic
in the stack's constructor. In our test, we instantiate Stack directly, then pass this stack as the
Topic's scope, attaching it to the stack. This is functionally equivalent and less verbose. It also
helps make stacks that are used only in tests "look different" from the stacks that you intend to
deploy.

TypeScript

import { Capture, Match, Template } from "aws-cdk-lib/assertions";
import * as cdk from "aws-cdk-lib";
import * as sns from "aws-cdk-lib/aws-sns";
import { StateMachineStack } from "../lib/state-machine-stack";

describe("StateMachineStack", () => {
 test("synthesizes the way we expect", () => {
 const app = new cdk.App();

 // Since the StateMachineStack consumes resources from a separate stack
 // (cross-stack references), we create a stack for our SNS topics to live

Fine-grained assertions Version 2 511

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // in here. These topics can then be passed to the StateMachineStack later,
 // creating a cross-stack reference.
 const topicsStack = new cdk.Stack(app, "TopicsStack");

 // Create the topic the stack we're testing will reference.
 const topics = [new sns.Topic(topicsStack, "Topic1", {})];

 // Create the StateMachineStack.
 const stateMachineStack = new StateMachineStack(app, "StateMachineStack", {
 topics: topics, // Cross-stack reference
 });

 // Prepare the stack for assertions.
 const template = Template.fromStack(stateMachineStack);

}

JavaScript

const { Capture, Match, Template } = require("aws-cdk-lib/assertions");
const cdk = require("aws-cdk-lib");
const sns = require("aws-cdk-lib/aws-sns");
const { StateMachineStack } = require("../lib/state-machine-stack");

describe("StateMachineStack", () => {
 test("synthesizes the way we expect", () => {
 const app = new cdk.App();

 // Since the StateMachineStack consumes resources from a separate stack
 // (cross-stack references), we create a stack for our SNS topics to live
 // in here. These topics can then be passed to the StateMachineStack later,
 // creating a cross-stack reference.
 const topicsStack = new cdk.Stack(app, "TopicsStack");

 // Create the topic the stack we're testing will reference.
 const topics = [new sns.Topic(topicsStack, "Topic1", {})];

 // Create the StateMachineStack.
 const StateMachineStack = new StateMachineStack(app, "StateMachineStack", {
 topics: topics, // Cross-stack reference
 });

Fine-grained assertions Version 2 512

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // Prepare the stack for assertions.
 const template = Template.fromStack(stateMachineStack);

Python

from aws_cdk import aws_sns as sns
import aws_cdk as cdk
from aws_cdk.assertions import Template

from app.state_machine_stack import StateMachineStack

def test_synthesizes_properly():
 app = cdk.App()

 # Since the StateMachineStack consumes resources from a separate stack
 # (cross-stack references), we create a stack for our SNS topics to live
 # in here. These topics can then be passed to the StateMachineStack later,
 # creating a cross-stack reference.
 topics_stack = cdk.Stack(app, "TopicsStack")

 # Create the topic the stack we're testing will reference.
 topics = [sns.Topic(topics_stack, "Topic1")]

 # Create the StateMachineStack.
 state_machine_stack = StateMachineStack(
 app, "StateMachineStack", topics=topics # Cross-stack reference
)

 # Prepare the stack for assertions.
 template = Template.from_stack(state_machine_stack)

Java

package software.amazon.samples.awscdkassertionssamples;

import org.junit.jupiter.api.Test;
import software.amazon.awscdk.assertions.Capture;
import software.amazon.awscdk.assertions.Match;
import software.amazon.awscdk.assertions.Template;
import software.amazon.awscdk.App;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.services.sns.Topic;

Fine-grained assertions Version 2 513

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import java.util.*;

import static org.assertj.core.api.Assertions.assertThat;

public class StateMachineStackTest {
 @Test
 public void testSynthesizesProperly() {
 final App app = new App();

 // Since the StateMachineStack consumes resources from a separate stack
 (cross-stack references), we create a stack
 // for our SNS topics to live in here. These topics can then be passed to
 the StateMachineStack later, creating a
 // cross-stack reference.
 final Stack topicsStack = new Stack(app, "TopicsStack");

 // Create the topic the stack we're testing will reference.
 final List<Topic> topics =
 Collections.singletonList(Topic.Builder.create(topicsStack, "Topic1").build());

 // Create the StateMachineStack.
 final StateMachineStack stateMachineStack = new StateMachineStack(
 app,
 "StateMachineStack",
 topics // Cross-stack reference
);

 // Prepare the stack for assertions.
 final Template template = Template.fromStack(stateMachineStack)

C#

using Microsoft.VisualStudio.TestTools.UnitTesting;

using Amazon.CDK;
using Amazon.CDK.AWS.SNS;
using Amazon.CDK.Assertions;
using AwsCdkAssertionSamples;

using ObjectDict = System.Collections.Generic.Dictionary<string, object>;
using StringDict = System.Collections.Generic.Dictionary<string, string>;

namespace TestProject1

Fine-grained assertions Version 2 514

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

{
 [TestClass]
 public class StateMachineStackTest
 {
 [TestMethod]
 public void TestMethod1()
 {
 var app = new App();

 // Since the StateMachineStack consumes resources from a separate stack
 (cross-stack references), we create a stack
 // for our SNS topics to live in here. These topics can then be passed
 to the StateMachineStack later, creating a
 // cross-stack reference.
 var topicsStack = new Stack(app, "TopicsStack");

 // Create the topic the stack we're testing will reference.
 var topics = new Topic[] { new Topic(topicsStack, "Topic1") };

 // Create the StateMachineStack.
 var StateMachineStack = new StateMachineStack(app, "StateMachineStack",
 new StateMachineStackProps
 {
 Topics = topics
 });

 // Prepare the stack for assertions.
 var template = Template.FromStack(stateMachineStack);

 // test will go here
 }
 }
}

Now we can assert that the Lambda function and the Amazon SNS subscription were created.

TypeScript

 // Assert it creates the function with the correct properties...
 template.hasResourceProperties("AWS::Lambda::Function", {
 Handler: "handler",
 Runtime: "nodejs14.x",

Fine-grained assertions Version 2 515

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 });

 // Creates the subscription...
 template.resourceCountIs("AWS::SNS::Subscription", 1);

JavaScript

 // Assert it creates the function with the correct properties...
 template.hasResourceProperties("AWS::Lambda::Function", {
 Handler: "handler",
 Runtime: "nodejs14.x",
 });

 // Creates the subscription...
 template.resourceCountIs("AWS::SNS::Subscription", 1);

Python

Assert that we have created the function with the correct properties
 template.has_resource_properties(
 "AWS::Lambda::Function",
 {
 "Handler": "handler",
 "Runtime": "nodejs14.x",
 },
)

 # Assert that we have created a subscription
 template.resource_count_is("AWS::SNS::Subscription", 1)

Java

 // Assert it creates the function with the correct properties...
 template.hasResourceProperties("AWS::Lambda::Function", Map.of(
 "Handler", "handler",
 "Runtime", "nodejs14.x"
));

 // Creates the subscription...
 template.resourceCountIs("AWS::SNS::Subscription", 1);

Fine-grained assertions Version 2 516

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

 // Prepare the stack for assertions.
 var template = Template.FromStack(stateMachineStack);

 // Assert it creates the function with the correct properties...
 template.HasResourceProperties("AWS::Lambda::Function", new StringDict {
 { "Handler", "handler"},
 { "Runtime", "nodejs14x" }
 });

 // Creates the subscription...
 template.ResourceCountIs("AWS::SNS::Subscription", 1);

Our Lambda function test asserts that two particular properties of the function resource have
specific values. By default, the hasResourceProperties method performs a partial match on
the resource's properties as given in the synthesized CloudFormation template. This test requires
that the provided properties exist and have the specified values, but the resource can also have
other properties, which are not tested.

Our Amazon SNS assertion asserts that the synthesized template contains a subscription, but
nothing about the subscription itself. We included this assertion mainly to illustrate how to assert
on resource counts. The Template class offers more specific methods to write assertions against
the Resources, Outputs, and Mapping sections of the CloudFormation template.

Matchers

The default partial matching behavior of hasResourceProperties can be changed using
matchers from the Match class.

Matchers range from lenient (Match.anyValue) to strict (Match.objectEquals). They can
be nested to apply different matching methods to different parts of the resource properties.
Using Match.objectEquals and Match.anyValue together, for example, we can test the state
machine's IAM role more fully, while not requiring specific values for properties that may change.

TypeScript

 // Fully assert on the state machine's IAM role with matchers.
 template.hasResourceProperties(
 "AWS::IAM::Role",

Matchers Version 2 517

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.assertions.Match.html#methods

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 Match.objectEquals({
 AssumeRolePolicyDocument: {
 Version: "2012-10-17",
 Statement: [
 {
 Action: "sts:AssumeRole",
 Effect: "Allow",
 Principal: {
 Service: {
 "Fn::Join": [
 "",
 ["states.", Match.anyValue(), ".amazonaws.com"],
],
 },
 },
 },
],
 },
 })
);

JavaScript

 // Fully assert on the state machine's IAM role with matchers.
 template.hasResourceProperties(
 "AWS::IAM::Role",
 Match.objectEquals({
 AssumeRolePolicyDocument: {
 Version: "2012-10-17",
 Statement: [
 {
 Action: "sts:AssumeRole",
 Effect: "Allow",
 Principal: {
 Service: {
 "Fn::Join": [
 "",
 ["states.", Match.anyValue(), ".amazonaws.com"],
],
 },
 },
 },
],

Matchers Version 2 518

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 },
 })
);

Python

from aws_cdk.assertions import Match

 # Fully assert on the state machine's IAM role with matchers.
 template.has_resource_properties(
 "AWS::IAM::Role",
 Match.object_equals(
 {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": {
 "Fn::Join": [
 "",
 [
 "states.",
 Match.any_value(),
 ".amazonaws.com",
],
],
 },
 },
 },
],
 },
 }
),
)

Java

 // Fully assert on the state machine's IAM role with matchers.
 template.hasResourceProperties("AWS::IAM::Role", Match.objectEquals(
 Collections.singletonMap("AssumeRolePolicyDocument", Map.of(

Matchers Version 2 519

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 "Version", "2012-10-17",
 "Statement", Collections.singletonList(Map.of(
 "Action", "sts:AssumeRole",
 "Effect", "Allow",
 "Principal", Collections.singletonMap(
 "Service", Collections.singletonMap(
 "Fn::Join", Arrays.asList(
 "",
 Arrays.asList("states.",
 Match.anyValue(), ".amazonaws.com")
)
)
)
))
))
));

C#

 // Fully assert on the state machine's IAM role with matchers.
 template.HasResource("AWS::IAM::Role", Match.ObjectEquals(new ObjectDict
 {
 { "AssumeRolePolicyDocument", new ObjectDict
 {
 { "Version", "2012-10-17" },
 { "Action", "sts:AssumeRole" },
 { "Principal", new ObjectDict
 {
 { "Version", "2012-10-17" },
 { "Statement", new object[]
 {
 new ObjectDict {
 { "Action", "sts:AssumeRole" },
 { "Effect", "Allow" },
 { "Principal", new ObjectDict
 {
 { "Service", new ObjectDict
 {
 { "", new object[]
 { "states",
 Match.AnyValue(), ".amazonaws.com" }
 }
 }

Matchers Version 2 520

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }));

Many CloudFormation resources include serialized JSON objects represented as strings. The
Match.serializedJson() matcher can be used to match properties inside this JSON.

For example, Step Functions state machines are defined using a string in the JSON-based Amazon
States Language. We'll use Match.serializedJson() to make sure that our initial state is the
only step. Again, we'll use nested matchers to apply different kinds of matching to different parts
of the object.

TypeScript

 // Assert on the state machine's definition with the Match.serializedJson()
 // matcher.
 template.hasResourceProperties("AWS::StepFunctions::StateMachine", {
 DefinitionString: Match.serializedJson(
 // Match.objectEquals() is used implicitly, but we use it explicitly
 // here for extra clarity.
 Match.objectEquals({
 StartAt: "StartState",
 States: {
 StartState: {
 Type: "Pass",
 End: true,
 // Make sure this state doesn't provide a next state -- we can't
 // provide both Next and set End to true.
 Next: Match.absent(),
 },
 },
 })
),

Matchers Version 2 521

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 });

JavaScript

 // Assert on the state machine's definition with the Match.serializedJson()
 // matcher.
 template.hasResourceProperties("AWS::StepFunctions::StateMachine", {
 DefinitionString: Match.serializedJson(
 // Match.objectEquals() is used implicitly, but we use it explicitly
 // here for extra clarity.
 Match.objectEquals({
 StartAt: "StartState",
 States: {
 StartState: {
 Type: "Pass",
 End: true,
 // Make sure this state doesn't provide a next state -- we can't
 // provide both Next and set End to true.
 Next: Match.absent(),
 },
 },
 })
),
 });

Python

 # Assert on the state machine's definition with the serialized_json matcher.
 template.has_resource_properties(
 "AWS::StepFunctions::StateMachine",
 {
 "DefinitionString": Match.serialized_json(
 # Match.object_equals() is the default, but specify it here for
 clarity
 Match.object_equals(
 {
 "StartAt": "StartState",
 "States": {
 "StartState": {
 "Type": "Pass",
 "End": True,
 # Make sure this state doesn't provide a next state
 --

Matchers Version 2 522

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 # we can't provide both Next and set End to true.
 "Next": Match.absent(),
 },
 },
 }
)
),
 },
)

Java

 // Assert on the state machine's definition with the Match.serializedJson()
 matcher.
 template.hasResourceProperties("AWS::StepFunctions::StateMachine",
 Collections.singletonMap(
 "DefinitionString", Match.serializedJson(
 // Match.objectEquals() is used implicitly, but we use it
 explicitly here for extra clarity.
 Match.objectEquals(Map.of(
 "StartAt", "StartState",
 "States", Collections.singletonMap(
 "StartState", Map.of(
 "Type", "Pass",
 "End", true,
 // Make sure this state doesn't
 provide a next state -- we can't provide
 // both Next and set End to true.
 "Next", Match.absent()
)
)
))
)
));

C#

 // Assert on the state machine's definition with the
 Match.serializedJson() matcher
 template.HasResourceProperties("AWS::StepFunctions::StateMachine", new
 ObjectDict
 {
 { "DefinitionString", Match.SerializedJson(

Matchers Version 2 523

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 // Match.objectEquals() is used implicitly, but we use it
 explicitly here for extra clarity.
 Match.ObjectEquals(new ObjectDict {
 { "StartAt", "StartState" },
 { "States", new ObjectDict
 {
 { "StartState", new ObjectDict {
 { "Type", "Pass" },
 { "End", "True" },
 // Make sure this state doesn't provide a next state
 -- we can't provide
 // both Next and set End to true.
 { "Next", Match.Absent() }
 }}
 }}
 })
)}});

Capturing

It's often useful to test properties to make sure they follow specific formats, or have the same
value as another property, without needing to know their exact values ahead of time. The
assertions module provides this capability in its Capture class.

By specifying a Capture instance in place of a value in hasResourceProperties, that value
is retained in the Capture object. The actual captured value can be retrieved using the object's
as methods, including asNumber(), asString(), and asObject, and subjected to test. Use
Capture with a matcher to specify the exact location of the value to be captured within the
resource's properties, including serialized JSON properties.

The following example tests to make sure that the starting state of our state machine has a name
beginning with Start. It also tests that this state is present within the list of states in the machine.

TypeScript

 // Capture some data from the state machine's definition.
 const startAtCapture = new Capture();
 const statesCapture = new Capture();
 template.hasResourceProperties("AWS::StepFunctions::StateMachine", {
 DefinitionString: Match.serializedJson(
 Match.objectLike({

Capturing Version 2 524

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.assertions.Capture.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 StartAt: startAtCapture,
 States: statesCapture,
 })
),
 });

 // Assert that the start state starts with "Start".
 expect(startAtCapture.asString()).toEqual(expect.stringMatching(/^Start/));

 // Assert that the start state actually exists in the states object of the
 // state machine definition.
 expect(statesCapture.asObject()).toHaveProperty(startAtCapture.asString());

JavaScript

 // Capture some data from the state machine's definition.
 const startAtCapture = new Capture();
 const statesCapture = new Capture();
 template.hasResourceProperties("AWS::StepFunctions::StateMachine", {
 DefinitionString: Match.serializedJson(
 Match.objectLike({
 StartAt: startAtCapture,
 States: statesCapture,
 })
),
 });

 // Assert that the start state starts with "Start".
 expect(startAtCapture.asString()).toEqual(expect.stringMatching(/^Start/));

 // Assert that the start state actually exists in the states object of the
 // state machine definition.
 expect(statesCapture.asObject()).toHaveProperty(startAtCapture.asString());

Python

import re

 from aws_cdk.assertions import Capture

 # ...

 # Capture some data from the state machine's definition.

Capturing Version 2 525

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 start_at_capture = Capture()
 states_capture = Capture()
 template.has_resource_properties(
 "AWS::StepFunctions::StateMachine",
 {
 "DefinitionString": Match.serialized_json(
 Match.object_like(
 {
 "StartAt": start_at_capture,
 "States": states_capture,
 }
)
),
 },
)

 # Assert that the start state starts with "Start".
 assert re.match("^Start", start_at_capture.as_string())

 # Assert that the start state actually exists in the states object of the
 # state machine definition.
 assert start_at_capture.as_string() in states_capture.as_object()

Java

 // Capture some data from the state machine's definition.
 final Capture startAtCapture = new Capture();
 final Capture statesCapture = new Capture();
 template.hasResourceProperties("AWS::StepFunctions::StateMachine",
 Collections.singletonMap(
 "DefinitionString", Match.serializedJson(
 Match.objectLike(Map.of(
 "StartAt", startAtCapture,
 "States", statesCapture
))
)
));

 // Assert that the start state starts with "Start".
 assertThat(startAtCapture.asString()).matches("^Start.+");

 // Assert that the start state actually exists in the states object of the
 state machine definition.

Capturing Version 2 526

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 assertThat(statesCapture.asObject()).containsKey(startAtCapture.asString());

C#

 // Capture some data from the state machine's definition.
 var startAtCapture = new Capture();
 var statesCapture = new Capture();
 template.HasResourceProperties("AWS::StepFunctions::StateMachine", new
 ObjectDict
 {
 { "DefinitionString", Match.SerializedJson(
 new ObjectDict
 {
 { "StartAt", startAtCapture },
 { "States", statesCapture }
 }
)}
 });

 Assert.IsTrue(startAtCapture.ToString().StartsWith("Start"));

 Assert.IsTrue(statesCapture.AsObject().ContainsKey(startAtCapture.ToString()));

Snapshot tests

In snapshot testing, you compare the entire synthesized CloudFormation template against a
previously stored baseline (often called a "master") template. Unlike fine-grained assertions,
snapshot testing isn't useful in catching regressions. This is because snapshot testing applies to the
entire template, and things besides code changes can cause small (or not-so-small) differences in
synthesis results. These changes may not even affect your deployment, but they will still cause a
snapshot test to fail.

For example, you might update a CDK construct to incorporate a new best practice, which can
cause changes to the synthesized resources or how they're organized. Alternatively, you might
update the CDK Toolkit to a version that reports additional metadata. Changes to context values
can also affect the synthesized template.

Snapshot tests can be of great help in refactoring, though, as long as you hold constant all other
factors that might affect the synthesized template. You will know immediately if a change you

Snapshot tests Version 2 527

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

made has unintentionally changed the template. If the change is intentional, simply accept the new
template as the baseline.

For example, if we have this DeadLetterQueue construct:

TypeScript

export class DeadLetterQueue extends sqs.Queue {
 public readonly messagesInQueueAlarm: cloudwatch.IAlarm;

 constructor(scope: Construct, id: string) {
 super(scope, id);

 // Add the alarm
 this.messagesInQueueAlarm = new cloudwatch.Alarm(this, 'Alarm', {
 alarmDescription: 'There are messages in the Dead Letter Queue',
 evaluationPeriods: 1,
 threshold: 1,
 metric: this.metricApproximateNumberOfMessagesVisible(),
 });
 }
}

JavaScript

class DeadLetterQueue extends sqs.Queue {

 constructor(scope, id) {
 super(scope, id);

 // Add the alarm
 this.messagesInQueueAlarm = new cloudwatch.Alarm(this, 'Alarm', {
 alarmDescription: 'There are messages in the Dead Letter Queue',
 evaluationPeriods: 1,
 threshold: 1,
 metric: this.metricApproximateNumberOfMessagesVisible(),
 });
 }
}

module.exports = { DeadLetterQueue }

Snapshot tests Version 2 528

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

class DeadLetterQueue(sqs.Queue):
 def __init__(self, scope: Construct, id: str):
 super().__init__(scope, id)

 self.messages_in_queue_alarm = cloudwatch.Alarm(
 self,
 "Alarm",
 alarm_description="There are messages in the Dead Letter Queue.",
 evaluation_periods=1,
 threshold=1,
 metric=self.metric_approximate_number_of_messages_visible(),
)

Java

public class DeadLetterQueue extends Queue {
 private final IAlarm messagesInQueueAlarm;

 public DeadLetterQueue(@NotNull Construct scope, @NotNull String id) {
 super(scope, id);

 this.messagesInQueueAlarm = Alarm.Builder.create(this, "Alarm")
 .alarmDescription("There are messages in the Dead Letter Queue.")
 .evaluationPeriods(1)
 .threshold(1)
 .metric(this.metricApproximateNumberOfMessagesVisible())
 .build();
 }

 public IAlarm getMessagesInQueueAlarm() {
 return messagesInQueueAlarm;
 }
}

C#

namespace AwsCdkAssertionSamples
{
 public class DeadLetterQueue : Queue
 {
 public IAlarm messagesInQueueAlarm;

Snapshot tests Version 2 529

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public DeadLetterQueue(Construct scope, string id) : base(scope, id)
 {
 messagesInQueueAlarm = new Alarm(this, "Alarm", new AlarmProps
 {
 AlarmDescription = "There are messages in the Dead Letter Queue.",
 EvaluationPeriods = 1,
 Threshold = 1,
 Metric = this.MetricApproximateNumberOfMessagesVisible()
 });
 }
 }
}

We can test it like this:

TypeScript

import { Match, Template } from "aws-cdk-lib/assertions";
import * as cdk from "aws-cdk-lib";
import { DeadLetterQueue } from "../lib/dead-letter-queue";

describe("DeadLetterQueue", () => {
 test("matches the snapshot", () => {
 const stack = new cdk.Stack();
 new DeadLetterQueue(stack, "DeadLetterQueue");

 const template = Template.fromStack(stack);
 expect(template.toJSON()).toMatchSnapshot();
 });
});

JavaScript

const { Match, Template } = require("aws-cdk-lib/assertions");
const cdk = require("aws-cdk-lib");
const { DeadLetterQueue } = require("../lib/dead-letter-queue");

describe("DeadLetterQueue", () => {
 test("matches the snapshot", () => {
 const stack = new cdk.Stack();
 new DeadLetterQueue(stack, "DeadLetterQueue");

Snapshot tests Version 2 530

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 const template = Template.fromStack(stack);
 expect(template.toJSON()).toMatchSnapshot();
 });
});

Python

import aws_cdk_lib as cdk
from aws_cdk_lib.assertions import Match, Template

from app.dead_letter_queue import DeadLetterQueue

def snapshot_test():
 stack = cdk.Stack()
 DeadLetterQueue(stack, "DeadLetterQueue")

 template = Template.from_stack(stack)
 assert template.to_json() == snapshot

Java

package software.amazon.samples.awscdkassertionssamples;

import org.junit.jupiter.api.Test;
import au.com.origin.snapshots.Expect;
import software.amazon.awscdk.assertions.Match;
import software.amazon.awscdk.assertions.Template;
import software.amazon.awscdk.Stack;

import java.util.Collections;
import java.util.Map;

public class DeadLetterQueueTest {
 @Test
 public void snapshotTest() {
 final Stack stack = new Stack();
 new DeadLetterQueue(stack, "DeadLetterQueue");

 final Template template = Template.fromStack(stack);
 expect.toMatchSnapshot(template.toJSON());
 }

Snapshot tests Version 2 531

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

C#

using Microsoft.VisualStudio.TestTools.UnitTesting;

using Amazon.CDK;
using Amazon.CDK.Assertions;
using AwsCdkAssertionSamples;

using ObjectDict = System.Collections.Generic.Dictionary<string, object>;
using StringDict = System.Collections.Generic.Dictionary<string, string>;

namespace TestProject1
{
 [TestClass]
 public class StateMachineStackTest

 [TestClass]
 public class DeadLetterQueueTest
 {
 [TestMethod]
 public void SnapshotTest()
 {
 var stack = new Stack();
 new DeadLetterQueue(stack, "DeadLetterQueue");

 var template = Template.FromStack(stack);

 return Verifier.Verify(template.ToJSON());
 }
 }
}

Tips for tests

Remember, your tests will live just as long as the code they test, and they will be read and modified
just as often. Therefore, it pays to take a moment to consider how best to write them.

Don't copy and paste setup lines or common assertions. Instead, refactor this logic into fixtures or
helper functions. Use good names that reflect what each test actually tests.

Tips for tests Version 2 532

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Don't try to do too much in one test. Preferably, a test should test one and only one behavior.
If you accidentally break that behavior, exactly one test should fail, and the name of the test
should tell you what failed. This is more an ideal to be striven for, however; sometimes you will
unavoidably (or inadvertently) write tests that test more than one behavior. Snapshot tests are, for
reasons we've already described, especially prone to this problem, so use them sparingly.

Tips for tests Version 2 533

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Security for the AWS Cloud Development Kit (AWS CDK)

Cloud security at Amazon Web Services (AWS) is the highest priority. As an AWS customer, you
benefit from a data center and network architecture that is built to meet the requirements of the
most security-sensitive organizations. Security is a shared responsibility between AWS and you. The
Shared Responsibility Model describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the
services offered in the AWS Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at AWS, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the AWS Compliance Programs.

Security in the Cloud – Your responsibility is determined by the AWS service you are using,
and other factors including the sensitivity of your data, your organization's requirements, and
applicable laws and regulations.

The AWS CDK follows the shared responsibility model through the specific Amazon Web Services
(AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Topics

• Identity and access management for the AWS Cloud Development Kit (AWS CDK)

• Compliance validation for the AWS Cloud Development Kit (AWS CDK)

• Resilience for the AWS Cloud Development Kit (AWS CDK)

• Infrastructure security for the AWS Cloud Development Kit (AWS CDK)

Identity and access management for the AWS Cloud
Development Kit (AWS CDK)

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS resources. IAM is an AWS service that you can use
with no additional charge.

Identity and access management Version 2 534

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS.

Service user – If you use AWS services to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more AWS features to do your work, you
might need additional permissions. Understanding how access is managed can help you request
the right permissions from your administrator.

Service administrator – If you're in charge of AWS resources at your company, you probably have
full access to AWS resources. It's your job to determine which AWS services and resources your
service users should access. You must then submit requests to your IAM administrator to change
the permissions of your service users. Review the information on this page to understand the basic
concepts of IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS services.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

To access AWS programmatically, AWS provides the AWS CDK, software development kits (SDKs),
and a command line interface (CLI) to cryptographically sign your requests using your credentials.
If you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signature Version 4 signing process in the
AWS General Reference.

Audience Version 2 535

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Authenticating with identities Version 2 536

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It's similar to an
IAM user, but isn't associated with a specific person. You can temporarily assume an IAM role in the
AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS
API operation or by using a custom URL. For more information about methods for using roles, see
Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Authenticating with identities Version 2 537

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Compliance validation for the AWS Cloud Development Kit
(AWS CDK)

The AWS CDK follows the shared responsibility model through the specific Amazon Web Services
(AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

The security and compliance of AWS services is assessed by third-party auditors as part of multiple
AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others. AWS provides a
frequently updated list of AWS services in scope of specific compliance programs at AWS Services
in Scope by Compliance Program.

Compliance validation Version 2 538

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Third-party audit reports are available for you to download using AWS Artifact. For more
information, see Downloading Reports in AWS Artifact.

For more information about AWS compliance programs, see AWS Compliance Programs.

Your compliance responsibility when using the AWS CDK to access an AWS service is determined
by the sensitivity of your data, your organization's compliance objectives, and applicable laws and
regulations. If your use of an AWS service is subject to compliance with standards such as HIPAA,
PCI, or FedRAMP, AWS provides resources to help:

• Security and Compliance Quick Start Guides – Deployment guides that discuss architectural
considerations and provide steps for deploying security-focused and compliance-focused
baseline environments on AWS.

• AWS Compliance Resources – A collection of workbooks and guides that might apply to your
industry and location.

• AWS Config – A service that assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Security Hub – A comprehensive view of your security state within AWS that helps you
check your compliance with security industry standards and best practices.

Resilience for the AWS Cloud Development Kit (AWS CDK)

The Amazon Web Services (AWS) global infrastructure is built around AWS Regions and Availability
Zones.

AWS Regions provide multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between Availability Zones without interruption. Availability Zones are more highly
available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

The AWS CDK follows the shared responsibility model through the specific Amazon Web Services
(AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Resilience Version 2 539

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/quickstart/?quickstart-all.sort-by=item.additionalFields.updateDate&quickstart-all.sort-order=desc&awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://aws.amazon.com/config/
https://aws.amazon.com/security-hub/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Infrastructure security for the AWS Cloud Development Kit
(AWS CDK)

The AWS CDK follows the shared responsibility model through the specific Amazon Web Services
(AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Infrastructure security Version 2 540

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Troubleshooting common AWS CDK issues

This topic describes how to troubleshoot the following issues with the AWS CDK.

• After updating the AWS CDK, the AWS CDK Toolkit (CLI) reports a mismatch with the AWS
Construct Library

• When deploying my AWS CDK stack, I receive a NoSuchBucket error

• When deploying my AWS CDK stack, I receive a forbidden: null message

• When synthesizing an AWS CDK stack, I get the message --app is required either in
command-line, in cdk.json or in ~/.cdk.json

• When synthesizing an AWS CDK stack, I receive an error because the AWS CloudFormation
template contains too many resources

• I specified three (or more) Availability Zones for my Auto Scaling group or VPC, but it was only
deployed in two

• My S3 bucket, DynamoDB table, or other resource is not deleted when I issue cdk destroy

After updating the AWS CDK, the AWS CDK Toolkit (CLI) reports a mismatch with the AWS
Construct Library

The version of the AWS CDK Toolkit (which provides the cdk command) must be at least equal to
the version of the main AWS Construct Library module, aws-cdk-lib. The Toolkit is intended to
be backward compatible. The latest 2.x version of the toolkit can be used with any 1.x or 2.x release
of the library. For this reason, we recommend you install this component globally and keep it up to
date.

npm update -g aws-cdk

If you need to work with multiple versions of the AWS CDK Toolkit, install a specific version of the
toolkit locally in your project folder.

If you are using TypeScript or JavaScript, your project directory already contains a versioned local
copy of the CDK Toolkit.

If you are using another language, use npm to install the AWS CDK Toolkit, omitting the -g flag and
specifying the desired version. For example:

Version 2 541

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

npm install aws-cdk@2.0

To run a locally installed AWS CDK Toolkit, use the command npx aws-cdk instead of only cdk.
For example:

npx aws-cdk deploy MyStack

npx aws-cdk runs the local version of the AWS CDK Toolkit if one exists. It falls back to the global
version when a project doesn't have a local installation. You may find it convenient to set up a shell
alias to make sure cdk is always invoked this way.

macOS/Linux

alias cdk="npx aws-cdk"

Windows

doskey cdk=npx aws-cdk $*

(back to list)

When deploying my AWS CDK stack, I receive a NoSuchBucket error

Your AWS environment has not been bootstrapped, and so does not have an Amazon S3 bucket to
hold resources during deployment. You can create the staging bucket and other required resources
with the following command:

cdk bootstrap aws://ACCOUNT-NUMBER/REGION

To avoid generating unexpected AWS charges, the AWS CDK does not automatically bootstrap any
environment. You must explicitly bootstrap each environment into which you will deploy.

By default, the bootstrap resources are created in the Region or Regions that are used by stacks
in the current AWS CDK application. Alternatively, they are created in the Region specified in your
local AWS profile (set by aws configure), using that profile's account. You can specify a different
account and Region on the command line as follows. (You must specify the account and Region if
you are not in an app's directory.)

Version 2 542

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk bootstrap aws://ACCOUNT-NUMBER/REGION

For more information, see the section called “Bootstrapping”.

(back to list)

When deploying my AWS CDK stack, I receive a forbidden: null message

You are deploying a stack that requires bootstrap resources, but are using an IAM role or account
that lacks permission to write to it. (The staging bucket is used when deploying stacks that contain
assets or that synthesize an AWS CloudFormation template larger than 50K.) Use an account or
role that has permission to perform the action s3:* against the bucket mentioned in the error
message.

(back to list)

When synthesizing an AWS CDK stack, I get the message --app is required either in
command-line, in cdk.json or in ~/.cdk.json

This message usually means that you aren't in the main directory of your AWS CDK project when
you issue cdk synth. The file cdk.json in this directory, created by the cdk init command,
contains the command line needed to run (and thereby synthesize) your AWS CDK app. For a
TypeScript app, for example, the default cdk.json looks something like this:

{
 "app": "npx ts-node bin/my-cdk-app.ts"
}

We recommend issuing cdk commands only in your project's main directory, so the AWS CDK
toolkit can find cdk.json there and successfully run your app.

If this isn't practical for some reason, the AWS CDK Toolkit looks for the app's command line in two
other locations:

• In cdk.json in your home directory

• On the cdk synth command itself using the -a option

For example, you might synthesize a stack from a TypeScript app as follows.

Version 2 543

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

cdk synth --app "npx ts-node my-cdk-app.ts" MyStack

(back to list)

When synthesizing an AWS CDK stack, I receive an error because the AWS CloudFormation
template contains too many resources

The AWS CDK generates and deploys AWS CloudFormation templates. AWS CloudFormation has
a hard limit on the number of resources a stack can contain. With the AWS CDK, you can run up
against this limit more quickly than you might expect.

Note

The AWS CloudFormation resource limit is 500 at this writing. See AWS CloudFormation
quotas for the current resource limit.

The AWS Construct Library's higher-level, intent-based constructs automatically provision any
auxiliary resources that are needed for logging, key management, authorization, and other
purposes. For example, granting one resource access to another generates any IAM objects needed
for the relevant services to communicate.

In our experience, real-world use of intent-based constructs results in 1–5 AWS CloudFormation
resources per construct, though this can vary. For serverless applications, 5–8 AWS resources per
API endpoint is typical.

Patterns, which represent a higher level of abstraction, let you define even more AWS resources
with even less code. The AWS CDK code in the section called “ECS”, for example, generates more
than 50 AWS CloudFormation resources while defining only three constructs!

Exceeding the AWS CloudFormation resource limit is an error during AWS CloudFormation
synthesis. The AWS CDK issues a warning if your stack exceeds 80% of the limit. You can use a
different limit by setting the maxResources property on your stack, or disable validation by
setting maxResources to 0.

Tip

You can get an exact count of the resources in your synthesized output using the following
utility script. (Since every AWS CDK developer needs Node.js, the script is written in
JavaScript.)

Version 2 544

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// rescount.js - count the resources defined in a stack
// invoke with: node rescount.js <path-to-stack-json>
// e.g. node rescount.js cdk.out/MyStack.template.json

import * as fs from 'fs';
const path = process.argv[2];

if (path) fs.readFile(path, 'utf8', function(err, contents) {
 console.log(err ? `${err}` :
 `${Object.keys(JSON.parse(contents).Resources).length} resources defined in
 ${path}`);
}); else console.log("Please specify the path to the stack's output .json
 file");

As your stack's resource count approaches the limit, consider re-architecting to reduce the number
of resources your stack contains: for example, by combining some Lambda functions, or by
breaking your stack into multiple stacks. The CDK supports references between stacks, so you can
separate your app's functionality into different stacks in whatever way makes the most sense to
you.

Note

AWS CloudFormation experts often suggest the use of nested stacks as a solution to the
resource limit. The AWS CDK supports this approach via the NestedStack construct.

(back to list)

I specified three (or more) Availability Zones for my Auto Scaling group or VPC, but it was only
deployed in two

To get the number of Availability Zones that you request, specify the account and Region in
the stack's env property. If you do not specify both, the AWS CDK, by default, synthesizes the
stack as environment-agnostic. You can then deploy the stack to a specific Region using AWS
CloudFormation. Because some Regions have only two Availability Zones, an environment-agnostic
template doesn't use more than two.

Version 2 545

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Note

In the past, Regions have occasionally launched with only one Availability Zone.
Environment-agnostic AWS CDK stacks cannot be deployed to such Regions. At this writing,
however, all AWS Regions have at least two AZs.

You can change this behavior by overriding your stack's availablilityZones (Python:
availability_zones) property to explicitly specify the zones that you want to use.

For more information about specifying a stack's account and region at synthesis time, while
retaining the flexibility to deploy to any region, see the section called “Environments”.

(back to list)

My S3 bucket, DynamoDB table, or other resource is not deleted when I issue cdk destroy

By default, resources that can contain user data have a removalPolicy (Python:
removal_policy) property of RETAIN, and the resource is not deleted when the stack is
destroyed. Instead, the resource is orphaned from the stack. You must then delete the resource
manually after the stack is destroyed. Until you do, redeploying the stack fails. This is because
the name of the new resource being created during deployment conflicts with the name of the
orphaned resource.

If you set a resource's removal policy to DESTROY, that resource will be deleted when the stack is
destroyed.

TypeScript

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import * as s3 from 'aws-cdk-lib/aws-s3';

export class CdkTestStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const bucket = new s3.Bucket(this, 'Bucket', {
 removalPolicy: cdk.RemovalPolicy.DESTROY,
 });
 }

Version 2 546

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#availabilityzones

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

JavaScript

const cdk = require('aws-cdk-lib');
const s3 = require('aws-cdk-lib/aws-s3');

class CdkTestStack extends cdk.Stack {
 constructor(scope, id, props) {
 super(scope, id, props);

 const bucket = new s3.Bucket(this, 'Bucket', {
 removalPolicy: cdk.RemovalPolicy.DESTROY
 });
 }
}

module.exports = { CdkTestStack }

Python

import aws_cdk as cdk
from constructs import Construct
import aws_cdk.aws_s3 as s3

class CdkTestStack(cdk.stack):
 def __init__(self, scope: Construct, id: str, **kwargs):
 super().__init__(scope, id, **kwargs)

 bucket = s3.Bucket(self, "Bucket",
 removal_policy=cdk.RemovalPolicy.DESTROY)

Java

software.amazon.awscdk.*;
import software.amazon.awscdk.services.s3.*;
import software.constructs;

public class CdkTestStack extends Stack {
 public CdkTestStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

Version 2 547

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 public CdkTestStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 Bucket.Builder.create(this, "Bucket")
 .removalPolicy(RemovalPolicy.DESTROY).build();
 }
}

C#

using Amazon.CDK;
using Amazon.CDK.AWS.S3;

public CdkTestStack(Construct scope, string id, IStackProps props) : base(scope, id,
 props)
{
 new Bucket(this, "Bucket", new BucketProps {
 RemovalPolicy = RemovalPolicy.DESTROY
 });
}

Note

AWS CloudFormation cannot delete a non-empty Amazon S3 bucket. If you set an Amazon
S3 bucket's removal policy to DESTROY, and it contains data, attempting to destroy
the stack will fail because the bucket cannot be deleted. You can have the AWS CDK
delete the objects in the bucket before attempting to destroy it by setting the bucket's
autoDeleteObjects prop to true.

(back to list)

Version 2 548

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

OpenPGP keys for the AWS CDK and jsii

This topic contains current and historical OpenPGP keys for the AWS CDK and jsii.

Current keys

These keys should be used to validate current releases of the AWS CDK and jsii.

AWS CDK OpenPGP key

Key ID: 0x42B9CF2286CD987A

Type: RSA

Size: 4096/4096

Created: 2022-07-05

Expires: 2026-07-04

User ID: AWS Cloud Development Kit <aws-cdk@
amazon.com>

Key fingerprint: 69B5 2D5B A295 1D11 FA65 413B 42B9 CF22
86CD 987A

Select the "Copy" icon to copy the following OpenPGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGLEgOsBEADCoAMwvnszMLybJ+AD9cHhVyX6+rYIUEXYSgVnfkl6Z7qawIwv
wgd/a5fEs9Kiz2XJmfwS9Rxb4d+0+Y1ls1A+gnpw9FMLcZlqkC9KLnS2MqvuXWLB
t3z4kjZaL9fQ+58PoD4gy/M2hDg6gZrYqR3gtJuw8FcFpb/1KlkzRQUM8eAMFxf2
TyfjP0V0tSHwcB+84oushX7fUXVMyc3+OHsCPOe/WBFMIlWgKA+n33JKIQlUUC8f
kCWBAsAFupil0lCveT6mZu5slNRlc1I3iBLjUZ3/MtLygfqAMKwUVXeawtDvRIZe
PrAFc2NyODEhly2JG6K0FW7eIcvBqR3rg8U49t9Y74ELTM0kKnfd+flvq35xWqQC
0zghnk3kDppRTN4zWBgTKiCMxBcsHXGOoGn57t4B9VY9Zy3vkeySigeiwl/Tw9nJ
PE0SRnwEc/HnjTTfX+GTG1aQVE0xSVyZ4m5ymRNCu6+rNH8lKwo5FujlXJ+GXPkp

Current keys Version 2 549

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

qT+Lx6Ix/Ny7PaoweWxwtZUkLRS4pWUsg0yotZrGyIbS+X3yMEG8WBTFI9hf6HTq
0ryfi5/TsBrdrGKqWB99EC9xYEGgtHp4fKO5X0ynOagVOhf0jSe8t1uyuJPGb2Gc
MQagSys5xMhdG/ZnEY4Cb+JDtH/4jc3tca0+4Z5RQ7kF9IhCncFtrbjJbwARAQAB
tC5BV1MgQ2xvdWQgRGV2ZWxvcG1lbnQgS2l0IDxhd3MtY2RrQGFtYXpvbi5jb20+
iQI/BBMBAgApBQJixIDrAhsvBQkHhM4ABwsJCAcDAgEGFQgCCQoLBBYCAwECHgEC
F4AACgkQQrnPIobNmHo2qg//Zt9p/kN1DevflzxWKouUX0AS7UmUtRYXu5k/EEbu
wkYNHpUr7+lZ+Me5YyjcIpt6UwuG9cW4SvwuxIfXucyKAWiwEbydCQauvnrYDxDa
J6Yr/ntk7Sii6An9re99qic3IsvX+xlUXh+qJ/34ooP/1PHziCMqykvW/DwAIyhx
2qvTXy+9+OlOWSUbhkCnNz5XKb4XQGq73DqalZX1nH4dG6fckZmYRX+dpw2njfTw
ZLdZ7bkrfiL84FI4A21RfSbEU4s4ngiV17lZ9ivilBKTbDv3da7+yc919M7C5N4J
yrlxvtyYNDoqKAD2WYZAnpEbG/shu3f56RyOJd56tXGwl9nKPh+F9y+379XthSwA
xZTURFtjWf7wWHaDZadU0DKi+Oeeszjg2f/VJaGmmS8PIg7q6GiSHHpqHqNvACHm
ZXMw12QFd3qt3xu0JMmE11ZC5VBgblwpkQTrO04Sq1rOpJwXI9ODMS/ZEhAIoYmT
OR7ouknlAx6mj9fwpavWDAAJHLdVUMYBZTXiQYFzDvx51ivvTRWkB1zTJcFdqShY
B37+Jz2jLDNdMrcHk2yfVp/VvfbxKcexg8wEwrrtQUslTUenl5jBZJouoz/wW81s
Y4U1nCPCdTK5/C7JCKzR2gVnCpe6uaxAWkkM2feQhjqJZkTC4cFVgBT+4M6WcT1r
yq4=
=ahbs
-----END PGP PUBLIC KEY BLOCK-----

jsii OpenPGP key

Key ID: 0x056C4E15DAE3D8D9

Type: RSA

Size: 4096/4096

Created: 2022-07-05

Expires: 2026-07-04

User ID: AWS JSII Team <aws-jsii@amazon.com>

Key fingerprint: 1E07 31D4 57E5 FE87 87E5 530A 056C 4E15
DAE3 D8D9

Select the "Copy" icon to copy the following OpenPGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

jsii OpenPGP key Version 2 550

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

mQINBGLEgOkBEAD27EPVG9g2mHQ3+M6tF6le+tfhARJ2EV7m7NKIrTdSlCZATLWn
AVLlxG1unW34NlkKZbcbR86gAxRnnAhuEhPuloU/S5wAqPGbRiFl58YjYZDNJw6U
1SSMpE4O1sfjxv9yAbiRihLYtvksyHHZmaDhYner2aK1PdeWu+BKq/tjfm3Yzsd2
uuVEduJ72YoQk/29dEiGOHfT+2kUKxUX+0tJSJ9MGlEf4NtQE4WLzrT6Xqb2SG4+
alIiIVxIEi0XKDn7n8ZLjFwfJwOYxVYLtEUkqFWM8e8vgoc9/nYc+vDXZVED2g3Z
FWrwSnDSXbQpnMa2cLhD4xLpDHUS3i2p7r3dkJQGLo/5JGOopLibrOAbYZ72izhu
H/TuPFogSz0mNFPglrWdnLF04UIjIq420+06V4WQZC9n55Zjcbki/OhnC3B9pAdU
tiy8zg070bWq45dPGf5STkPPn7G8A2zmKefyO51iLIi26ZzW78siB+FvcGRhdg25
39sHJ1cmrTeC+B+k4KeV5sQ/m3UucimrZnk1xdaiVp8mWzRqWb8bB6Rs8K9RMrMV
tFBOKOBAT2QxOQtRGAantVgm193E1T1cmNpD0FKAKkDdPs64rKBEwFiHxccXHbah
eMd1weVwn3AKFD6uAm8ZRMV+dyssfcQxqpo/kfT1XpA6cQeOmGDOcKBfdwARAQAB
tCNBV1MgSlNJSSBUZWFtIDxhd3MtanNpaUBhbWF6b24uY29tPokCPwQTAQIAKQUC
YsSA6QIbLwUJB4TOAAcLCQgHAwIBBhUIAgkKCwQWAgMBAh4BAheAAAoJEAVsThXa
49jZjU4QANoyqOJUT4gRrXshE3N0mW5Ad4i8Ke09GA62HyvTtfbsA+2nkNVGJpXm
sFMzdaFO95Q65RkLS9vW4nhhjXBEc2XYNCt2AnARudA/41ykjDPwU112z9ZTB9he
y4ItIeNGpHvMWr51fihl0y2nkpODOBeiv44jscLbHyOmZfki1f5fuIu2U2IbUGK3
5FtYyeHcgRHnpYkzLuzK4PfayOywqQPJ7M9DWrHf+v5Cu4ZCZDOIKfzF+ew7MWwc
6KaoWHCYbFpX8jxFppbGsSFOQ8Sl2quoP0TLz9Wsq70Khi6C2P8JI6lm0HRLO+1M
jFbQxNOwAcN3k4HSwunAjXBlmT/6oc1RsdBdpXBaZ2AWseIXwSYZqNXp+5L179uZ
vSiD3DSSUqLJbdQRVOsJi3/87V5QU59byq2dToHveRjtSbVnK0TkTx9ZlgkcpjvM
BwHNqWhratV6af2Upjq2YQ0fdSB42f3pgopInxNJPMvlAb+cCfr0Pfwu7ge7UooQ
WHTxbpCvwtn/HNctMGpWscO02WsWgoYVjnVFay/XphE77pQ9rRUkhMe6VKXfxj/n
OCZJKrydluIIwR8vvONNqO+QwZ1xDEhO7MaSZlOm1AuUZIXFPgaWQkPZHKiiwFA/
QWnL/+shuRtMH2geTjkev198Jgb5HyXFm4SyYtZferQROyliEhik
=BuGv
-----END PGP PUBLIC KEY BLOCK-----

Historical keys

These keys may be used to validate releases of the AWS CDK and jsii before 2022-07-05.

Important

New keys are created before the previous ones expire. As a result, at any given moment in
time, more than one key may be valid. Keys are used to sign artifacts starting the day they
are created, so use the more recently-issued key where keys' validity overlaps.

Historical keys Version 2 551

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK OpenPGP key (2022-04-07)

Note

This key was not used to sign AWS CDK artifacts after 2022-07-05.

Key ID: 0x015584281F44A3C3

Type: RSA

Size: 4096/4096

Created: 2022-04-07

Expires: 2026-04-06

User ID: AWS Cloud Development Kit <aws-cdk@
amazon.com>

Key fingerprint: EAE1 1A24 82B0 AA86 456E 6C67 0155 8428
1F44 A3C3

Select the "Copy" icon to copy the following OpenPGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGJPLgUBEADtlR5jQtxtBmROQvmWlPOViqqnJNhk0dULc3tXnq8NS/l6X81r
wHk+/CHG5kBunwvM0qaqLFRC6z9NnnNDxEHcTi47n+OAjWyDM6unxxWOPz8Dfaps
Uq/ZWa4by292ZeqRC9Ir2wdrizb69JbRjeshBwlJDAS/qtqCAqBRH/f7Zw7QSD6/
XTxyIy+KOVjZwFPFNHMRQ/NmgUc/Rfxsa0pUjk1YAj/AkvQlwwD8DEnASoBhO0DP
QonZxouLqIpgp4LsGo8TZdQv30ocIj0C9DuYUiUXWlCPlYPgDj6IWf3rgpMQ6nB9
wC9lx4t/L3Zg1HUD52y8aymndmbdHVn90mzlNg4XWyc58rioYrEk57YwbDnea/Kk
Hv4kVHZRfJ4/OFPyqs5ex1X3X6rb07VvA1tfLgPywO9XF2Xws8YWOWcEobaWTcnb
AzyVC6wKya8rEQzxkYJ6UkJlhDB6g6bZwIpsI2zlimG+kSBsyFvE2oRYMS0cXPqU
o+tX0+4TvxEyW3RrUQzQHIpqXrb0X1Q8Z2idPn5dwsipDEa4gsFXtrSXmbB/0Cee
eJVvKWQAsxol3+NE9L/yozq3cz5PWh0SSbmCLRcs78lMJ23MmzbMWV7BWC9DXdY+
TywY5IkDUPjGCKlD8VlrI3TgC222bH6qaua6LYCiTtRtvpDYuJNAlUjhawARAQAB
tC5BV1MgQ2xvdWQgRGV2ZWxvcG1lbnQgS2l0IDxhd3MtY2RrQGFtYXpvbi5jb20+
iQI/BBMBAgApBQJiTy4FAhsvBQkHhM4ABwsJCAcDAgEGFQgCCQoLBBYCAwECHgEC

AWS CDK OpenPGP key (2022-04-07) Version 2 552

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

F4AACgkQAVWEKB9Eo8NpbxAAiBF0kR/lVw3vuam60mk4l0iGMVsP8Xq6g/buzbEO
2MEB4Ftk04qOnoa+93S0ZiLR9PqxrwsGSp4ADDX3Vtc4uxwzUlKUi1ywEhQ1cwyL
YHQI3Hd75K1J81ozMEu6qJH+yF0TtTDZMeZHtH/XvuIYJW3Lx4o5ZFlsEegFPAgX
YCCpUS+k9qC6M8g2VjcltQJpyjGswsKm6FWaKHW+B9dfjdOHlImB9E2jaknJ8eoY
zb9zHgFANluMzpZ6rYVSiCuXiEgYmazQWCvlPcMOP7nX+1hq1z11LMqeSnfE09gX
H+OYho9cMEJkb1dzx1H9MRpylFIn9tL+2iCp4UPJjnqi6uawWyLZ2tp4G11haqQq
1yAh69u233I8GZKFUySzjHwH5qWGRgBTjrZ6FdcjSS2w/wMkVKuCPkWtdvo/TJrm
msCd1Reye8SEKYqrs0ujTwmlvWmUZmO06AdUjo1kWiBKeslTJrWEuG7Yk4pFOoA4
dsaq83gxpOJNVCh6M3y4DLNrvl7dhF95NwTWMROPj2otw7NIjF4/cdzve2+P7YNN
pVAtyCtTJdD3eZbQPVaL3T8cf1VGqt6++pnLGnWJ0+X3TyvfmTohdJvN3TE+tq7A
7cprDX/q9c56HaXdJzVpxEzuf/YC+JuYKeHwsX3QouDhyRg3PsigdZES/02Wr8so
l6U=
=MQI4
-----END PGP PUBLIC KEY BLOCK-----

jsii OpenPGP key (2022-04-07)

Note

This key was not used to sign jsii artifacts after 2022-07-05.

Key ID: 0x985F5BC974B79356

Type: RSA

Size: 4096/4096

Created: 2022-04-07

Expires: 2026-04-06

User ID: AWS JSII Team <aws-jsii@amazon.com>

Key fingerprint: 35A7 1785 8FA6 282D C5AC CD95 985F 5BC9
74B7 9356

Select the "Copy" icon to copy the following OpenPGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

jsii OpenPGP key (2022-04-07) Version 2 553

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

mQINBGJPLewBEADHH4TXup/gOlHrKDZRbj8MvsMTdM6eDteA6/c32UYV/YsK9rDA
jN8Jv/xlfosOebcHrfnFpHF9VTkmjuOpN695XdwMrW/NvlEPISTGEJf21x6ZTQ2r
1xWFYzC3sl3FZmvj9XAXTmygdv+XM3TqsFgZeCaBkZVdiLbQf+FhYrovUlgotb5D
YiCQI3ofV5QTE+141jhO5Pkd3ZIoBG+P826LaT8NXhwS0o1XqVk39DCZNoFshNmR
WFZpkVCTHyv5ZhVey1NWXnD8opO375htGNV4AeSmSIH9YkURD1g5F+2t7RiosKFo
kJrfPmUjhHn8IFpReGc8qmMMZX0WaV3t+VAWfOHGGyrXDfQ4xz1VCot75C2+qypM
+qhwOAOOP0zA7CfI96ULZzSH/j8HuQk3O0DsUCybpMuKEazEMxP3tgGtRerwDaFG
jQvAlK8Rbq3v8buBI6YJuXTwSzJE8KLjleUiTFumE6WP4rsAvlP/5rBvubeMfa3n
NIMm5Rkl36Z+jt3e2Z2ZqWDPpBRta8m7QHccrZhkvqu3YC3Gl6kdnm4Vio3Xfpg2
qtWhIQutQ6DmItewV+weQHas3hl88RPJtSrfWWIIMkpbF7Y4vbX9xcnsYCLlp2Mz
tWbbnU+EWATNSsufml/Kdnu9iEEuLmeovE11I69nwjNOq9P+GJ3r/FUb2wARAQAB
tCNBV1MgSlNJSSBUZWFtIDxhd3MtanNpaUBhbWF6b24uY29tPokCPwQTAQIAKQUC
Yk8t7AIbLwUJB4TOAAcLCQgHAwIBBhUIAgkKCwQWAgMBAh4BAheAAAoJEJhfW8l0
t5NWo64P/2y7gcMRylLLW/wbrCjton2O4+YRocwQxKm1cBml9FVDUR5967YczNuu
EwEOfH/Pu3UAlrBfKAfxPNhKchLwYiOBNh2Wk5UUxRcldNHTLb5jn5gxCeWNAsl/
Tc46qY+ObdBMdOf2Vu33UCOg83WLbg1bfBoA8Bm1cd0XObtLGucu606EBt1dBrKq
9UTcbJfuGivY2Xjy5r4kEiMHBoLKcFrSo2Mm7VtYlE4Mabjyj9+orqUio7qxOl60
aa7Psa6rMvs1Ip9IOrAdG7o5Y29tQpeINH0R1/u47BrlTEAgG63Dfy49w2h/1g0G
c9KPXVuN55OWRIu0hsiySDMk/2ERsF348TU3NURZltnCOxp6pHlbPJIxRVTNa9Cn
f8tbLB3y3HfA80516g+qwNYIYiqksDdV2bz+VbvmCWcO+FellDZli831gyMGa5JJ
rq7d0lEr6nqjcnKiVwItTQXyFYmKTAXweQtVC72g1sd3oZIyqa7T8pvhWpKXxoJV
WP+OPBhGg/JEVC9sguhuv53tzVwayrNwb54JxJsD2nemfhQm1Wyvb2bPTEaJ3mrv
mhPUvXZj/I9rgsEq3L/sm2Xjy09nra4o3oe3bhEL8nOj11wkIodi17VaGP0y+H3s
I5zB5UztS6dy+cH+J7DoRaxzVzq7qtH/ZY2quClt30wwqDHUX1ef
=+iYX
-----END PGP PUBLIC KEY BLOCK-----

AWS CDK OpenPGP key (2018-06-19)

Key ID: 0x0566A784E17F3870

Type: RSA

Size: 4096/4096

Created: 2018-06-19

Expires: 2022-06-18

User ID: AWS CDK Team <aws-cdk@amazon.com>

AWS CDK OpenPGP key (2018-06-19) Version 2 554

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Key fingerprint: E88B E3B6 F0B1 E350 9E36 4F96 0566 A784
E17F 3870

Select the "Copy" icon to copy the following OpenPGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFsovE8BEADEFVCHeAVPvoQgsjVu9FPUczxy9P+2zGIT/MLI3/vPLiULQwRy
IN2oxyBNDtcDToNa/fTkW3Ev0NTP4V1h+uBoKDZD/p+dTmSDRfByECMI0sGZ3UsG
Ohhyl2Of44s0sL8gdLtDnqSRLf+ZrfT3gpgUnplW7VitkwLxr78jDpW4QD8p8dZ9
WNm3JgB55jyPgaJKqA1Ln4Vduni/1XkrG42nxrrU71uUdZPvPZ2ELLJa6n0/raG8
jq3le+xQh45gAIs6PGaAgy7jAsfbwkGTBHjjujITAY1DwvQH5iS31OaCM9n4JNpc
xGZeJAVYTLilznf2QtS/a50t+ZOmpq67Ssp2j6qYpiumm0Lo9q3K/R4/yF0FZ8SL
1TuNX0ecXEptiMVUfTiqrLsANg18EPtLZZOYW+ZkbcVytkDpiqj7bMwA7mI7zGCJ
1gjaTbcEmOmVdQYS1G6ZptwbTtvrgA6AfnZxX1HUxLRQ7tT/wvRtABfbQKAh85Ff
a3U9W4oC3c1MP5IyhNV1Wo8Zm0flZiZc0iZnojTtSG6UbcxNNL4Q8e08FWjhungj
yxSsIBnQO1Aeo1N4BbzlI+n9iaXVDUN7Kz1QEyS4PNpjvUyrUiQ+a9C5sRA7WP+x
IEOaBBGpoAXB3oLsdTNO6AcwcDd9+r2NlXlhWC4/uH2YHQUIegPqHmPWxwARAQAB
tCFBV1MgQ0RLIFRlYW0gPGF3cy1jZGtAYW1hem9uLmNvbT6JAj8EEwEIACkFAlso
vE8CGy8FCQeEzgAHCwkIBwMCAQYVCAIJCgsEFgIDAQIeAQIXgAAKCRAFZqeE4X84
cLGxD/0XHnhoR2xvz38GM8HQlwlZy9W1wVhQKmNDQUavw8Zx7+iRR3m7nq3xM7Qq
BDbcbKSg1lVLSBQ6H2V6vRpysOhkPSH1nN2dO8DtvSKIPcxK48+1x7lmO+ksSs/+
oo1UvOmTDaRzOitYh3kOGXHHXk/l11GtF2FGQzYssX5iM4PHcjBsK1unThs56IMh
OJeZezEYzBaskTu/ytRJ236bPP2kZIEXfzAvhmTytuXWUXEftxOxc6fIAcYiKTha
aofG7WyR+Fvb1j5gNLcbY552QMxa23NZd5cSZH7468WEW1SGJ3AdLA7k5xvsPPOC
2YvQFD+vUOZ1JJuu6B5rHkiEMhRTLklkvqXEShTxuXiCp7iTOo6TBCmrWAT4eQr7
htLmqlXrgKi8qPkWmRdXXG+MQBzI/UyZq2q8KC6cx2md1PhANmeefhiM7FZZfeNM
WLonWfh8gVCsNH5h8WJ9fxsQCADd3Xxx3NelS2zDYBPRoaqZEEBbgUP6LnWFprA2
EkSlc/RoDqZCpBGgcoy1FFWvV/ZLgNU6OTQlYH6oYOWiylSJnaTDyurrktsxJI6d
4gdsFb6tqwTGecuUPvvZaEuvhWExLxAebhu780FdAPXgVTX+YCLI2zf+dWQvkFQf
80RE7ayn7BsiaLzFBVux/zz/WgvudsZX18r8tDiVQBL51ORmqw==
=0wuQ
-----END PGP PUBLIC KEY BLOCK-----

jsii OpenPGP key (2018-08-06)

Key ID: 0x1C7ACE4CB2A1B93A

Type: RSA

jsii OpenPGP key (2018-08-06) Version 2 555

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Size: 4096/4096

Created: 2018-08-06

Expires: 2022-08-05

User ID: AWS JSII Team <aws-jsii@amazon.com>

Key fingerprint: 85EF 6522 4CE2 1E8C 72DB 28EC 1C7A CE4C
B2A1 B93A

Select the "Copy" icon to copy the following OpenPGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFtoSs0BEAD6WweLD0B26h0F7Jo9iR6tVQ4PgQBK1Va5H/eP+A2Iqw79UyxZ
WNzHYhzQ5MjYYI1SgcPavXy5/LV1N8HJ7QzyKszybnLYpNTLPYArWE8ZM9ZmjvIR
p1GzwnVBGQfoOlxyeutE9T5ZkAn45dTS5jlno4unji4gHjnwXKf2nP1APU2CZfdK
8vDpLOgj9LeeGlerYNbx+7xtY/I+csFIQvK09FPLSNMJQLlkBhY0r6Rt9ZQG+653
tJn+AUjyM237w0UIX1IqyYc5IONXu8HklPGu0NYuX9AY/63Ak2Cyfj0w/PZlvueQ
noQNM3j0nkOEsTOEXCyaLQw9iBKpxvLnm5RjMSODDCkj8c9uu0LHr7J4EOtgt2S1
pem7Y/c/N+/Z+Ksg9fP8fVTfYwRPvdI1x2sCiRDfLoQSG9tdrN5VwPFi4sGV04sI
x7Al8Vf/OBjAGZrDaJgM/gVvb9SKAQUA6t3ofeP14gDrS0eYodEXZ+lamnxFglxF
Sn8NRC4JFNmkXSUaTNGUdFf//F0D69PRNT8CnFfmniGj0CphN5037PCA2LC/Buq2
3+K6mTPkCcCHYPC/SwItp/xIDAQsGuDc1i1SfDYXrjsK7uOuwC5jLA9X6wZ/jgXQ
4umRRJBAV1aW8b1+yfaYYCO2AfXXO6caObv8IvH7Pc4leC2DoqylD3KklQARAQAB
tCNBV1MgSlNJSSBUZWFtIDxhd3MtanNpaUBhbWF6b24uY29tPokCPwQTAQgAKQUC
W2hKzQIbLwUJB4TOAAcLCQgHAwIBBhUIAgkKCwQWAgMBAh4BAheAAAoJEBx6zkyy
obk6B34P/iNb5QjKyhT0glZiq1wK7tuDDRpR6fC/sp6Jd/GhaNjO4BzlDbUPSjW5
950VT+qwaHXbIma/QVP7EIRztfwWy7m8eOodjpiu7JyJprhwG9nocXiNsLADcMoH
BvabkDRWXWIWSurq2wbcFMlTVwxjHPIQs6kt2oojpzP985CDS/KTzyjow6/gfMim
DLdhSSbDUM34STEgew79L2sQzL7cvM/N59k+AGyEMHZDXHkEw/Bge5Ovz50YOnsp
lisH4BzPRIw7uWqPlkVPzJKwMuo2WvMjDfgbYLbyjfvs5mqDxT2GTwAx/rd2taU6
iSqP0QmLM54BtTVVdoVXZSmJyTmXAAGlITq8ECZ/coUW9K2pUSgVuWyu63lktFP6
MyCQYRmXPh9aSd4+ielteXM9Y39snlyLgEJBhMxioZXVO2oszwluPuhPoAp4ekwj
/umVsBf6As6PoAchg7Qzr+lRZGmV9YTJOgDn2Z7jf/7tOes0g/mdiXTQMSGtp/Fp
ggnifTBx3iXkrQhqHlwtam8XTHGHy3MvX17ZslNuB8Pjh+07hhCxv0VUVZPUHJqJ
ZsLa398LMteQ8UMxwJ3t06jwDWAd7mbr2tatIilLHtWWBFoCwBh1XLe/03ENCpDp
njZ7OsBsBK2nVVcN0H2v5ey0T1yE93o6r7xOwCwBiVp5skTCRUob
=2Tag
-----END PGP PUBLIC KEY BLOCK-----

jsii OpenPGP key (2018-08-06) Version 2 556

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK Developer Guide history

See Releases for information about AWS CDK releases. The AWS CDK is updated approximately
once a week. Maintenance versions may be released between weekly releases to address critical
issues. Each release includes a matched AWS CDK Toolkit (CDK CLI), AWS Construct Library, and API
Reference. Updates to this Guide generally do not synchronize with AWS CDK releases.

Note

The table below represents significant documentation milestones. We fix errors and
improve content on an ongoing basis.

Change Description Date

Add documentation for CDK
Migrate feature

Use the AWS CDK CLI cdk
migrate command to
migrate deployed AWS
resources, deployed AWS
CloudFormation stacks,
and local AWS CloudForm
ation templates to AWS CDK.
For more information, see
Migrate to AWS CDK.

February 2, 2024

IAM best practices updates Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

March 23, 2023

Document cdk.json Add documentation of
cdk.json configuration
values.

April 20, 2022

Dependency management Add topic on managing
dependencies with the AWS
CDK.

April 7, 2022

Version 2 557

https://github.com/awslabs/aws-cdk/releases
https://docs.aws.amazon.com/cdk/v2/guide/migrate.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Remove double-braces from
Java examples

Replace this anti-pattern with
Java 9 Map.of throughout.

March 9, 2022

AWS CDK v2 release Version 2 of the AWS CDK
Developer Guide is released.
Document history for CDK v1.

December 4, 2021

Version 2 558

../../v1/guide/doc-history.html

	AWS Cloud Development Kit (AWS CDK) v2
	Table of Contents
	What is the AWS CDK?
	Benefits of the AWS CDK
	Example of the AWS CDK
	AWS CDK features
	The AWS CDK GitHub repository
	The AWS CDK API reference
	The Construct Programming Model
	The Construct Hub

	Next steps
	Learn more

	AWS CDK concepts
	Supported programming languages
	Constructs
	AWS Construct Library
	Construct levels

	Defining constructs
	Composition
	Initialization
	Configuration
	Interacting with constructs
	The app and stack construct
	The construct tree

	Working with constructs
	Working with L1 constructs
	Working with L2 constructs

	Working with third-party constructs
	Writing your own constructs

	Learn more

	Apps
	Defining apps
	Working with apps
	The app lifecycle
	Cloud assemblies

	Stacks
	Defining stacks
	The stack API

	Working with stacks
	Nested stacks

	Environments
	Configuring environments
	Bootstrapping environments

	Bootstrapping
	Bootstrapping environments
	Bootstrapping with CDK Pipelines

	How to bootstrap
	Bootstrapping with the AWS CDK CLI
	Bootstrapping from the AWS CloudFormation template

	Customizing bootstrapping
	Customizing the template

	Bootstrapping template differences
	Stack synthesizers
	Customizing synthesis
	Changing the qualifier
	Changing the resource names

	The bootstrapping template contract
	Versioning
	Roles
	Outputs
	Template history

	Security Hub Findings
	[KMS.2] IAM principals should not have IAM inline policies that allow decryption actions on all KMS keys

	Resources
	Configuring resources using constructs
	Resource attributes

	Referencing resources
	Referencing resources in a different stack
	Resolving dependency deadlocks

	Referencing resources in your AWS account

	Resource physical names
	Passing unique resource identifiers
	Granting permissions between resources
	Resource metrics and alarms
	Network traffic
	Event handling
	Removal policies

	Identifiers
	Construct IDs
	Paths
	Unique IDs
	Logical IDs
	Logical ID stability

	Tokens
	Tokens and token encodings
	String-encoded tokens
	List-encoded tokens
	Number-encoded tokens
	Lazy values
	Converting to JSON

	Parameters
	About parameters
	Defining parameters
	Using parameters
	Deploying with parameters

	Tagging
	Using tags
	Tag priorities
	Optional properties
	Example
	Tagging single constructs

	Assets
	Assets in detail
	Asset types
	Amazon S3 assets
	Lambda function example
	Deploy-time attributes example
	Permissions

	Docker image assets
	Amazon ECS task definition example
	Deploy-time attributes example
	Build arguments example
	Permissions

	AWS CloudFormation resource metadata

	Permissions
	Principals
	Grants
	Roles
	Resource policies
	Using external IAM objects

	Runtime context
	Sources of context values
	Context methods
	Viewing and managing context
	AWS CDK Toolkit --context flag
	Example

	Feature flags
	Reverting to v1 behavior

	Aspects
	Aspects in detail
	Example

	Getting started with the AWS CDK
	Prerequisites
	Step 1: Create an AWS account
	Step 2: Configure programmatic access
	Start an AWS access portal session

	Step 3: Install the AWS CDK CLI
	Step 4: Bootstrap your environment
	Optional AWS CDK tools
	Next steps
	Learn more
	Your first AWS CDK app
	About this tutorial
	Step 1: Create the app
	Step 2: Build the app
	Step 3: List the stacks in the app
	Step 4: Add an Amazon S3 bucket
	Step 5: Synthesize an AWS CloudFormation template
	Step 6: Deploy your stack
	Step 7: Modify your app
	Step 8: Destroying the app's resources
	Next steps

	Migrating from AWS CDK v1 to AWS CDK v2
	New prerequisites
	Upgrading from AWS CDK v2 Developer Preview
	Migrating from AWS CDK v1 to CDK v2
	Updating to a recent v1
	Updating feature flags
	CDK Toolkit compatibility
	Updating dependencies and imports

	Testing your migrated app before deploying
	Troubleshooting
	Finding v1 stacks

	Migrate existing resources and AWS CloudFormation templates to the AWS CDK
	How migration works
	Benefits of CDK Migrate
	Considerations
	General considerations
	Considerations when migrating from an AWS CloudFormation template
	Considerations when migrating from deployed resources

	Prerequisites
	Get started with CDK Migrate
	Migrate from an AWS CloudFormation stack
	Migrate from an AWS CloudFormation template
	Migrate from an AWS SAM template

	Migrate from deployed resources
	Use filters
	Scanning for resources with IaC generator
	Resolve write-only properties
	The migrate.json file

	Manage and deploy your CDK app
	Prepare for deployment
	Deploy your CDK app

	Working with the AWS CDK in supported programming languages
	Importing the AWS Construct Library
	The AWS CDK API Reference
	Interfaces compared with construct classes

	Managing dependencies
	Comparing AWS CDK in TypeScript with other languages
	Importing a module
	Instantiating a construct
	Accessing members
	Enum constants
	Object interfaces

	Working with the AWS CDK in TypeScript
	Get started with TypeScript
	Creating a project
	Using local tsc and cdk
	Managing AWS Construct Library modules
	Managing dependencies in TypeScript
	CDK applications
	Third-party construct libraries
	Installing and updating dependencies

	AWS CDK idioms in TypeScript
	Props
	Missing values

	Building, synthesizing, and deploying

	Working with the AWS CDK in JavaScript
	Get started with JavaScript
	Creating a project
	Using local cdk
	Managing AWS Construct Library modules
	Managing dependencies in JavaScript
	CDK applications
	Third-party construct libraries
	Installing and updating dependencies

	AWS CDK idioms in JavaScript
	Props
	Missing values

	Synthesizing and deploying
	Using TypeScript examples with JavaScript
	Migrating to TypeScript

	Working with the AWS CDK in Python
	Get started with Python
	Creating a project
	Managing AWS Construct Library modules
	Managing dependencies in Python
	CDK applications
	Third-party construct libraries

	AWS CDK idioms in Python
	Language conflicts
	Arguments and properties
	Missing values
	Using interfaces
	Type pitfalls

	Synthesizing and deploying

	Working with the AWS CDK in Java
	Get started with Java
	Creating a project
	Managing AWS Construct Library modules
	Managing dependencies in Java
	AWS CDK idioms in Java
	Props
	Generic structures
	Missing values

	Building, synthesizing, and deploying

	Working with the AWS CDK in C#
	Get started with C#
	Creating a project
	Managing AWS Construct Library modules
	Managing dependencies in C#
	Editing the project file directly
	The Visual Studio NuGet GUI
	The NuGet console
	The dotnet command
	The nuget command

	AWS CDK idioms in C#
	Props
	Generic structures
	Missing values

	Building, synthesizing, and deploying

	Working with the AWS CDK in Go
	Get started with Go
	Creating a project
	Managing AWS Construct Library modules
	Managing dependencies in Go
	AWS CDK idioms in Go
	Field and method names
	Cleaning up
	Missing values and pointer conversion
	Constructs and Props
	Generic structures
	Developing custom constructs

	Building, synthesizing, and deploying

	Developing AWS CDK applications
	Customizing constructs from the AWS Construct Library
	Using escape hatches
	Develop escape hatches for L1 constructs
	Develop escape hatches for L2 constructs

	Un-escape hatches
	Raw overrides
	Custom resources

	Get a value from an environment variable
	Use an AWS CloudFormation value
	Import an existing AWS CloudFormation template
	Importing an AWS CloudFormation template
	Accessing imported resources
	Replacing parameters
	Other template elements
	Nested stacks

	Get a value from the Systems Manager Parameter Store
	Read Systems Manager values at deployment time
	Read Systems Manager values at synthesis time
	Write values to Systems Manager

	Get a value from AWS Secrets Manager
	Set a CloudWatch alarm
	Using an existing metric
	Creating your own metric
	Creating the alarm

	Save and retrieve context variable values
	Specify context variables
	Retrieve context variable values

	Using resources from the AWS CloudFormation Public Registry
	Activating a third-party resource in your account and Region
	Adding a resource from the AWS CloudFormation Public Registry to your CDK app

	Deploying AWS CDK applications
	AWS CDK policy validation at synthesis time
	Policy validation at synthesis time
	For application developers
	AWS CloudFormation Guard plugin
	Validation Report

	For plugin authors
	Plugins
	Creating plugins
	Handling Exemptions

	Continuous integration and delivery (CI/CD) using CDK Pipelines
	Bootstrap your AWS environments
	Initialize a project
	Define a pipeline
	Application stages
	Testing deployments
	Security notes
	Troubleshooting

	Best practices for developing and deploying cloud infrastructure with the AWS CDK
	Organization best practices
	Coding best practices
	Start simple and add complexity only when you need it
	Align with the AWS Well-Architected Framework
	Every application starts with a single package in a single repository
	Move code into repositories based on code lifecycle or team ownership
	Infrastructure and runtime code live in the same package

	Construct best practices
	Model with constructs, deploy with stacks
	Configure with properties and methods, not environment variables
	Unit test your infrastructure
	Don't change the logical ID of stateful resources
	Constructs aren't enough for compliance

	Application best practices
	Make decisions at synthesis time
	Use generated resource names, not physical names
	Define removal policies and log retention
	Separate your application into multiple stacks as dictated by deployment requirements
	Commit cdk.context.json to avoid non-deterministic behavior
	Let the AWS CDK manage roles and security groups
	Model all production stages in code
	Measure everything

	AWS CDK reference
	API reference
	AWS CDK versioning
	AWS CDK CLI compatibility
	AWS Construct Library versioning
	Language binding stability

	Examples
	Creating a serverless application using the AWS CDK
	Create an AWS CDK app
	Create a Lambda function to list all widgets
	Create a widget service
	Add the service to the app
	Deploy and test the app
	Add the individual widget functions
	Clean up

	Creating an AWS Fargate service using the AWS CDK
	Creating the directory and initializing the AWS CDK
	Create a Fargate service
	Clean up

	AWS CDK examples

	AWS CDK tutorials
	Create an app with multiple stacks
	Before you begin
	Add optional parameter
	Define the stack class
	Create two stack instances
	Synthesize and deploy the stack
	Clean up

	AWS CDK tools
	AWS CDK Toolkit (cdk command)
	Toolkit commands
	Specifying options and their values
	Built-in help
	Version reporting
	Authentication with AWS
	Start an AWS access portal session

	Specifying Region and other configuration
	Specifying the app command
	Specifying stacks
	Bootstrapping your AWS environment
	Creating a new app
	Listing stacks
	Synthesizing stacks
	Specifying context values
	Specifying display format
	Specifying output directory

	Deploying stacks
	Skipping synthesis
	Disabling rollback
	Hot swapping
	Watch mode
	Specifying AWS CloudFormation parameters
	Specifying outputs file
	Security-related changes

	Comparing stacks
	Importing existing resources into a stack
	Configuration (cdk.json)
	cdk migrate command reference
	Usage
	Options
	Required options
	Conditional options
	Optional options

	AWS Toolkit for Visual Studio Code
	AWS SAM integration

	Testing constructs
	Getting started
	The example stack
	The Lambda function
	Running tests
	Fine-grained assertions
	Matchers
	Capturing

	Snapshot tests
	Tips for tests

	Security for the AWS Cloud Development Kit (AWS CDK)
	Identity and access management for the AWS Cloud Development Kit (AWS CDK)
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Compliance validation for the AWS Cloud Development Kit (AWS CDK)
	Resilience for the AWS Cloud Development Kit (AWS CDK)
	Infrastructure security for the AWS Cloud Development Kit (AWS CDK)

	Troubleshooting common AWS CDK issues
	OpenPGP keys for the AWS CDK and jsii
	Current keys
	AWS CDK OpenPGP key
	jsii OpenPGP key

	Historical keys
	AWS CDK OpenPGP key (2022-04-07)
	jsii OpenPGP key (2022-04-07)
	AWS CDK OpenPGP key (2018-06-19)
	jsii OpenPGP key (2018-08-06)

	AWS CDK Developer Guide history

