
User Guide

AWS CloudFormation Guard

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS CloudFormation Guard User Guide

Table of Contents

What is AWS CloudFormation Guard? .. 1
Are you a first-time Guard user? ... 1
Guard features .. 2
Using Guard with CloudFormation Hooks ... 2
Accessing Guard .. 3
Best practices .. 3

Setting up Guard ... 4
For Linux and macOS .. 4

Install Guard from a pre-built release binary ... 4
Install Guard from Cargo ... 5
Install Guard from Homebrew ... 6

For Windows .. 6
Prerequisites ... 6
Install Guard from Cargo ... 5
Install Guard from Chocolatey ... 8

As an AWS Lambda function ... 8
Prerequisites ... 8
Install the Rust package manager ... 9
To install Guard as a Lambda function .. 9
To build and run ... 10
Calling the Lambda function .. 11

Prerequisites and overview for using Guard rules .. 12
Prerequisites .. 12
Overview of using Guard rules ... 12
Writing Guard rules ... 13

Clauses ... 13
Using queries in clauses .. 15
Using operators in clauses .. 16
Using custom messages in clauses ... 19
Combining clauses .. 20
Using blocks with Guard rules ... 21
Using built-in functions ... 24
Defining queries and filtering .. 25
Assigning and referencing variables in Guard rules .. 39

iii

AWS CloudFormation Guard User Guide

Composing named-rule blocks .. 46
Writing clauses to perform context-aware evaluations .. 52

Testing Guard rules .. 65
Prerequisites ... 65
Overview ... 65
Walkthrough ... 67

Using input parameters with Guard rules ... 76
How to use ... 76
Example usage ... 76
Multiple input parameters .. 78

Validating input data against Guard rules .. 78
Prerequisites ... 78
Using the validate command .. 78
Validating multiple rules against multiple data files .. 79

Troubleshooting Guard ... 81
Clause fails when no resources of the selected type are present .. 81
Guard does not evaluate CloudFormation template .. 81
General troubleshooting topics ... 82

Guard CLI reference ... 83
Guard CLI global parameters ... 83
parse-tree ... 83

Syntax .. 83
Parameters .. 84
Options .. 84
Examples ... 84

rulegen .. 84
Syntax .. 84
Parameters .. 85
Options .. 85
Examples ... 85

test ... 85
Syntax .. 85
Parameters .. 86
Options .. 86
Examples ... 87
Output ... 87

iv

AWS CloudFormation Guard User Guide

See also ... 87
validate ... 87

Syntax .. 87
Parameters .. 87
Options .. 89
Example ... 90
Output ... 90
See also ... 91

Security .. 92
Document history .. 93
AWS Glossary ... 96

v

AWS CloudFormation Guard User Guide

What is AWS CloudFormation Guard?

AWS CloudFormation Guard is an open-source, general-purpose, policy-as-code evaluation tool.
The Guard command line interface (CLI) provides a simple-to-use and declarative domain-specific
language (DSL) that you can use to express policy as code. In addition, you can use CLI commands
to validate structured hierarchical JSON or YAML data against those rules. Guard also provides a
built-in unit testing framework to verify that your rules work as intended.

Guard doesn't validate CloudFormation templates for valid syntax or allowed property values. You
can use the cfn-lint tool to perform a thorough inspection of template structure.

Guard doesn’t provide server-side enforcement. You can use the CloudFormation Hooks to perform
server-side validation and enforcement, where you can block or warn an operation.

For detailed information about AWS CloudFormation Guard development, refer to the Guard
GitHub repository.

Topics

• Are you a first-time Guard user?

• Guard features

• Using Guard with CloudFormation Hooks

• Accessing Guard

• Best practices

Are you a first-time Guard user?

If you're a first-time user of Guard, we recommend that you begin by reading the following
sections:

• Setting up Guard – This section describes how to install Guard. With Guard, you can write policy
rules using the Guard DSL and validate your JSON- or YAML-formatted structured data against
those rules.

• Writing Guard rules – This section provides detailed walkthroughs for writing policy rules.

• Testing Guard rules – This section provides a detailed walkthrough for testing your rules to
verify that they work as intended, and validating your JSON- or YAML-formatted structured data
against your rules.

Are you a first-time Guard user? 1

https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/aws-cloudformation/cloudformation-guard/
https://github.com/aws-cloudformation/cloudformation-guard/

AWS CloudFormation Guard User Guide

• Validating input data against Guard rules – This section provides a detailed walkthrough for
validating your JSON- or YAML-formatted structured data against your rules.

• Guard CLI reference – This section describes the commands that are available in the Guard CLI.

Guard features

Using Guard, you can write policy rules to validate any JSON- or YAML-formatted structured data
against, including but not limited to AWS CloudFormation templates. Guard supports the entire
spectrum of end-to-end evaluation of policy checks. Rules are useful in the following business
domains:

• Preventative governance and compliance (shift-left testing) – Validate infrastructure as
code (IaC) or infrastructure and service compositions against policy rules that represent your
organizational best practices for security and compliance. For example, you can validate
CloudFormation templates, CloudFormation change sets, JSON-based Terraform configuration
files, or Kubernetes configurations.

• Detective governance and compliance – Validate conformity of Configuration Management
Database (CMDB) resources such as AWS Config-based configuration items (CIs). For example,
developers can use Guard policies against AWS Config CIs to continuously monitor the state of
deployed AWS and non-AWS resources, detect violations from policies, and start remediation.

• Deployment safety – Ensure that changes are safe before deployment. For example, validate
CloudFormation change sets against policy rules to prevent changes that result in resource
replacement, such as renaming an Amazon DynamoDB table.

Using Guard with CloudFormation Hooks

You can use CloudFormation Guard to author a Hook in CloudFormation Hooks. CloudFormation
Hooks allows you to proactively enforce your Guard rules before CloudFormation create, update,
or delete operations and AWS Cloud Control API create or update operations. Hooks ensure your
resource configurations are compliant with your organization's security, operational, and cost
optimization best practices.

For details on how to use Guard to author CloudFormation Guard Hooks, see Write Guard rules to
evaluate resources for Guard Hooks in the AWS CloudFormation Hooks User Guide.

Guard features 2

https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/guard-hooks-write-rules.html
https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/guard-hooks-write-rules.html

AWS CloudFormation Guard User Guide

Accessing Guard

To access the Guard DSL and commands, you must install the Guard CLI. For information about
installing the Guard CLI, see Setting up Guard.

Best practices

Write simple rules, and use named rules to reference them in other rules. Complex rules can be
difficult to maintain and test.

Accessing Guard 3

AWS CloudFormation Guard User Guide

Setting up AWS CloudFormation Guard

AWS CloudFormation Guard is an open-source command line interface (CLI). It provides you with
a simple, domain-specific language to write policy rules and validate their structured hierarchical
JSON and YAML data against those rules. The rules can represent company policy guidelines
related to security, compliance, and more. The structured hierarchical data can represent cloud
infrastructure described as code. For example, you can create rules to ensure that they always
model encrypted Amazon Simple Storage Service (Amazon S3) buckets in their CloudFormation
templates.

The following topics provide information about how to install Guard using your chosen operating
system or as an AWS Lambda function.

Topics

• Installing Guard for Linux and macOS

• Installing Guard for Windows

• Installing Guard as an AWS Lambda function

Installing Guard for Linux and macOS

You can install AWS CloudFormation Guard for Linux and macOS by using the pre-built release
binary, Cargo, or through Homebrew.

Install Guard from a pre-built release binary

Use the following procedure to install Guard from a pre-built binary.

1. Open a terminal, and run the following command.

curl --proto '=https' --tlsv1.2 -sSf https://raw.githubusercontent.com/aws-
cloudformation/cloudformation-guard/main/install-guard.sh | sh

2. Run the following command to set your PATH variable.

export PATH=~/.guard/bin:$PATH

Results: You have successfully installed Guard and set the PATH variable.

For Linux and macOS 4

AWS CloudFormation Guard User Guide

• (Optional) To confirm the installation of Guard, run the following command.

cfn-guard --version

The command returns the following output.

cfn-guard 3.1.2

Install Guard from Cargo

Cargo is the Rust package manager. Complete the following steps to install Rust, which includes
Cargo. Then, install Guard from Cargo.

1. Run the following command from a terminal, and follow the onscreen instructions to install
Rust.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

• (Optional) For Ubuntu environments, run the following command.

sudo apt-get update; sudo apt install build-essential

2. Configure your PATH environment variable, and run the following command.

source $HOME/.cargo/env

3. With Cargo installed, run the following command to install Guard.

cargo install cfn-guard

Results: You have successfully installed Guard.

• (Optional) To confirm the installation of Guard, run the following command.

cfn-guard --version

The command returns the following output.

Install Guard from Cargo 5

AWS CloudFormation Guard User Guide

cfn-guard 3.1.2

Install Guard from Homebrew

Homebrew is a package manager for macOS and Linux. Complete the following steps to install
Homebrew. Then, install Guard from Homebrew.

1. Run the following command from a terminal, and follow the onscreen instructions to install
Homebrew.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
install.sh)"

2. With Homebrew installed, run the following command to install Guard.

brew install cloudformation-guard

Results: You have successfully installed Guard.

• (Optional) To confirm the installation of Guard, run the following command.

cfn-guard --version

The command returns the following output.

cfn-guard 3.1.2

Installing Guard for Windows

You can install AWS CloudFormation Guard for Windows through Cargo or through Chocolatey.

Prerequisites

To build Guard from the command line interface, you must install the Build Tools for Visual Studio
2019.

Install Guard from Homebrew 6

AWS CloudFormation Guard User Guide

1. Download Microsoft Visual C++ build tools from the Build Tools for Visual Studio 2019
website.

2. Run the installer, and select the defaults.

Install Guard from Cargo

Cargo is the Rust package manager. Complete the following steps to install Rust, which includes
Cargo. Then, install Guard from Cargo.

1. Download Rust and then run rustup-init.exe.

2. From the command prompt, choose 1, which is the default option.

The command returns the following output.

Rust is installed now. Great!

 To get started you may need to restart your current shell.
 This would reload its PATH environment variable to include
 Cargo's bin directory (%USERPROFILE%\.cargo\bin).

 Press the Enter key to continue.

3. To finish the installation, press the Enter key.

4. With Cargo installed, run the following command to install Guard.

cargo install cfn-guard

Results: You have successfully installed Guard.

• (Optional) To confirm the installation of Guard, run the following command.

cfn-guard --version

The command returns the following output.

cfn-guard 3.1.2

Install Guard from Cargo 7

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://forge.rust-lang.org/infra/other-installation-methods.html#other-ways-to-install-rustup

AWS CloudFormation Guard User Guide

Install Guard from Chocolatey

Chocolatey is a package manager for Windows. Complete the following steps to install Chocolatey.
Then, install Guard from Chocolatey.

1. Follow this guide to install Chocolatey

2. With Chocolatey installed, run the following command to install Guard.

choco install cloudformation-guard

Results: You have successfully installed Guard.

• (Optional) To confirm the installation of Guard, run the following command.

cfn-guard --version

The command returns the following output.

cfn-guard 3.1.2

Installing Guard as an AWS Lambda function

You can install AWS CloudFormation Guard through Cargo, the Rust package manager. Guard as an
AWS Lambda function (cfn-guard-lambda) is a lightweight wrapper around Guard (cfn-guard)
that can be used as a Lambda function.

Prerequisites

Before you can install Guard as a Lambda function, you must fulfill the following prerequisites:

• AWS Command Line Interface (AWS CLI) configured with permissions to deploy and invoke
Lambda functions. For more information, see Configuring the AWS CLI.

• An AWS Lambda execution role in AWS Identity and Access Management (IAM). For more
information, see AWS Lambda execution role.

• In CentOS/RHEL environments, add the musl-libc package repository to your yum config. For
more information, see ngompa/musl-libc.

Install Guard from Chocolatey 8

https://chocolatey.org/install
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://copr.fedorainfracloud.org/coprs/ngompa/musl-libc/

AWS CloudFormation Guard User Guide

Install the Rust package manager

Cargo is the Rust package manager. Complete the following steps to install Rust, which includes
Cargo.

1. Run the following command from a terminal, and then follow the onscreen instructions to
install Rust.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

• (Optional) For Ubuntu environments, run the following command.

sudo apt-get update; sudo apt install build-essential

2. Configure your PATH environment variable, and run the following command.

source $HOME/.cargo/env

Install Guard as a Lambda function (Linux, macOS, or Unix)

To install Guard as a Lambda function, complete the following steps.

1. From your command terminal, run the following command.

cargo install cfn-guard-lambda

• (Optional) To confirm the installation of Guard as a Lambda function, run the following
command.

cfn-guard-lambda --version

The command returns the following output.

cfn-guard-lambda 3.1.2

2. To install musl support, run the following command.

rustup target add x86_64-unknown-linux-musl

Install the Rust package manager 9

AWS CloudFormation Guard User Guide

3. Build with musl, and then run the following command in your terminal.

cargo build --release --target x86_64-unknown-linux-musl

For a custom runtime, AWS Lambda requires an executable with the name bootstrap in the
deployment package .zip file. Rename the generated cfn-lambda executable to bootstrap
and then add it to the .zip archive.

• For macOS environments, create your cargo configuration file in the root of the Rust
project or in ~/.cargo/config.

[target.x86_64-unknown-linux-musl]
linker = "x86_64-linux-musl-gcc"

4. Change to the cfn-guard-lambda root directory.

cd ~/.cargo/bin/cfn-guard-lambda

5. Run the following command in your terminal.

cp ./../target/x86_64-unknown-linux-musl/release/cfn-guard-lambda ./bootstrap &&
 zip lambda.zip bootstrap && rm bootstrap

6. Run the following command to submit cfn-guardas a Lambda function to your account.

aws lambda create-function --function-name cfnGuard \
 --handler guard.handler \
 --zip-file fileb://./lambda.zip \
 --runtime provided \
 --role arn:aws:iam::444455556666:role/your_lambda_execution_role \
 --environment Variables={RUST_BACKTRACE=1} \
 --tracing-config Mode=Active

To build and run Guard as a Lambda function

To invoke the submitted cfn-guard-lambda as a Lambda function, run the following command.

aws lambda invoke --function-name cfnGuard \
 --payload '{"data":"input data","rules":["rule1","rule2"]}' \

To build and run 10

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html

AWS CloudFormation Guard User Guide

 output.json

To call the Lambda function request structure

Requests to cfn-guard-lambda require the following fields:

• data – The string version of the YAML or JSON template

• rules – The string version of the rule set file

Calling the Lambda function 11

AWS CloudFormation Guard User Guide

Prerequisites and overview for using Guard rules

This section demonstrates how you can complete the core Guard tasks of writing, testing,
and validating rules against JSON- or YAML-formatted data. In addition, it contains detailed
walkthroughs that demonstrate writing rules that respond to specific use cases.

Topics

• Prerequisites

• Overview of using Guard rules

• Writing AWS CloudFormation Guard rules

• Testing AWS CloudFormation Guard rules

• Using input parameters with AWS CloudFormation Guard rules

• Validating input data against AWS CloudFormation Guard rules

Prerequisites

Before you can write policy rules using the Guard domain-specific language (DSL), you must install
the Guard command line interface (CLI). For more information, see Setting up Guard.

Overview of using Guard rules

When using Guard, you typically perform the following steps:

1. Write JSON- or YAML-formatted data to validate.

2. Write Guard policy rules. For more information, see Writing Guard rules.

3. Verify that your rules work as intended by using the Guard test command. For more
information about unit testing, see Testing Guard rules.

4. Use the Guard validate command to validate your JSON- or YAML-formatted data against
your rules. For more information, see Validating input data against Guard rules.

Prerequisites 12

AWS CloudFormation Guard User Guide

Writing AWS CloudFormation Guard rules

In AWS CloudFormation Guard, rules are policy-as-code rules. You write rules in the Guard domain-
specific language (DSL) that you can validate your JSON- or YAML-formatted data against. Rules
are made up of clauses.

You can save rules written using the Guard DSL into plaintext files that use any file extension.

You can create multiple rule files and categorize them as a rule set. Rule sets allow you to validate
your JSON- or YAML-formatted data against multiple rule files at the same time.

Topics

• Clauses

• Using queries in clauses

• Using operators in clauses

• Using custom messages in clauses

• Combining clauses

• Using blocks with Guard rules

• Using built-in functions

• Defining Guard queries and filtering

• Assigning and referencing variables in Guard rules

• Composing named-rule blocks in AWS CloudFormation Guard

• Writing clauses to perform context-aware evaluations

Clauses

Clauses are Boolean expressions that evaluate to either true (PASS) or false (FAIL). Clauses use
either binary operators to compare two values or unary operators that operate on a single value.

Examples of unary clauses

The following unary clause evaluates whether the collection TcpBlockedPorts is empty.

InputParameters.TcpBlockedPorts not empty

The following unary clause evaluates whether the ExecutionRoleArn property is a string.

Writing Guard rules 13

AWS CloudFormation Guard User Guide

Properties.ExecutionRoleArn is_string

Examples of binary clauses

The following binary clause evaluates whether the BucketName property contains the string
encrypted, regardless of casing.

Properties.BucketName != /(?i)encrypted/

The following binary clause evaluates whether the ReadCapacityUnits property is less than or
equal to 5,000.

Properties.ProvisionedThroughput.ReadCapacityUnits <= 5000

Syntax for writing Guard rule clauses

<query> <operator> [query|value literal] [custom message]

Properties of Guard rule clauses

query

A dot (.) separated expression written to traverse hierarchical data. Query expressions can
include filter expressions to target a subset of values. Queries can be assigned to variables so
that you can write them once and reference them elsewhere in a rule set, which will allow you
to access query results.

For more information about writing queries and filtering, see Defining queries and filtering.

Required: Yes

operator

A unary or binary operator that helps check the state of the query. The left-hand side (LHS) of
a binary operator must be a query, and the right-hand side (RHS) must be either a query or a
value literal.

Supported binary operators: == (Equal) | != (Not equal) | > (Greater than) | >= (Greater than or
equal to) | < (Less than) | <= (Less than or equal to) | IN (In a list of form [x, y, z]

Clauses 14

AWS CloudFormation Guard User Guide

Supported unary operators: exists | empty | is_string | is_list | is_struct | not(!)

Required: Yes

query|value literal

A query or a supported value literal such as string or integer(64).

Supported value literals:

• All primitive types: string, integer(64), float(64), bool, char, regex

• All specialized range types for expressing integer(64), float(64), or char ranges
expressed as:

• r[<lower_limit>, <upper_limit>], which translates to any value k that satisfies the
following expression: lower_limit <= k <= upper_limit

• r[<lower_limit>, <upper_limit>), which translates to any value k that satisfies the
following expression: lower_limit <= k < upper_limit

• r(<lower_limit>, <upper_limit>], which translates to any value k that satisfies the
following expression: lower_limit < k <= upper_limit

• r(<lower_limit>, <upper_limit>), which translates to any value k that satisfies the
following expression: lower_limit < k < upper_limit

• Associative arrays (maps) for nested key-value structure data. For example:

{ "my-map": { "nested-maps": [{ "key": 10, "value": 20 }] } }

• Arrays of primitive types or associative array types

Required: Conditional; required when a binary operator is used.

custom message

A string that provides information about the clause. The message is displayed in the verbose
outputs of the validate and test commands and can be useful for understanding or
debugging rule evaluation on hierarchical data.

Required: No

Using queries in clauses

For information about writing queries, see Defining queries and filtering and Assigning and
referencing variables in Guard rules.

Using queries in clauses 15

AWS CloudFormation Guard User Guide

Using operators in clauses

The following are example CloudFormation templates, Template-1 and Template-2. To
demonstrate the use of supported operators, the example queries and clauses in this section refer
to these example templates.

Template-1

Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: MyServiceS3Bucket
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: 'arn:aws:kms:us-
east-1:123456789:key/056ea50b-1013-3907-8617-c93e474e400'
 Tags:
 - Key: stage
 Value: prod
 - Key: service
 Value: myService

Template-2

Resources:
 NewVolume:
 Type: AWS::EC2::Volume
 Properties:
 Size: 100
 VolumeType: io1
 Iops: 100
 AvailabilityZone:
 Fn::Select:
 - 0
 - Fn::GetAZs: us-east-1
 Tags:
 - Key: environment
 Value: test
 DeletionPolicy: Snapshot

Using operators in clauses 16

AWS CloudFormation Guard User Guide

Examples of clauses that use unary operators

• empty – Checks if a collection is empty. You can also use it to check if a query has values in a
hierarchical data because queries result in a collection. You can't use it to check whether string
value queries have an empty string ("") defined. For more information, see Defining queries and
filtering.

The following clause checks whether the template has one or more resources defined. It
evaluates to PASS because a resource with the logical ID S3Bucket is defined in Template-1.

Resources !empty

The following clause checks whether one or more tags are defined for the S3Bucket resource.
It evaluates to PASS because S3Bucket has two tags defined for the Tags property in
Template-1.

Resources.S3Bucket.Properties.Tags !empty

• exists – Checks whether each occurrence of the query has a value and can be used in place of !
= null.

The following clause checks whether the BucketEncryption property is defined for the
S3Bucket. It evaluates to PASS because BucketEncryption is defined for S3Bucket in
Template-1.

Resources.S3Bucket.Properties.BucketEncryption exists

Note

The empty and not exists checks evaluate to true for missing property keys when
traversing the input data. For example, if the Properties section isn't defined in the
template for the S3Bucket, the clause Resources.S3Bucket.Properties.Tag empty
evaluates to true. The exists and empty checks don't display the JSON pointer path
inside the document in the error messages. Both of these clauses often have retrieval errors
that don't maintain this traversal information.

Using operators in clauses 17

AWS CloudFormation Guard User Guide

• is_string – Checks whether each occurrence of the query is of string type.

The following clause checks whether a string value is specified for the BucketName property of
the S3Bucket resource. It evaluates to PASS because the string value "MyServiceS3Bucket"
is specified for BucketName in Template-1.

Resources.S3Bucket.Properties.BucketName is_string

• is_list – Checks whether each occurrence of the query is of list type.

The following clause checks whether a list is specified for the Tags property of the S3Bucket
resource. It evaluates to PASS because two key-value pairs are specified for Tags in
Template-1.

Resources.S3Bucket.Properties.Tags is_list

• is_struct – Checks whether each occurrence of the query is structured data.

The following clause checks whether structured data is specified for the BucketEncryption
property of the S3Bucket resource. It evaluates to PASS because BucketEncryption is
specified using the ServerSideEncryptionConfiguration property type (object) in
Template-1.

Resources.S3Bucket.Properties.BucketEncryption is_struct

Note

To check the inverse state, you can use the (not !) operator with the is_string,
is_list, and is_struct operators .

Examples of clauses that use binary operators

The following clause checks whether the value specified for the BucketName property of the
S3Bucket resource in Template-1 contains the string encrypt, regardless of casing. This
evaluates to PASS because the specified bucket name "MyServiceS3Bucket" does not contain
the string encrypt.

Using operators in clauses 18

AWS CloudFormation Guard User Guide

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/

The following clause checks whether the value specified for the Size property of the NewVolume
resource in Template-2 is within a specific range: 50 <= Size <= 200. It evaluates to PASS
because 100 is specified for Size.

Resources.NewVolume.Properties.Size IN r[50,200]

The following clause checks whether the value specified for the VolumeType property of the
NewVolume resource in Template-2 is io1, io2, or gp3. It evaluates to PASS because io1 is
specified for NewVolume.

Resources.NewVolume.Properties.NewVolume.VolumeType IN ['io1','io2','gp3']

Note

The example queries in this section demonstrate the use of operators using the resources
with logical IDs S3Bucket and NewVolume. Resource names are often user-defined and
can be arbitrarily named in an infrastructure as code (IaC) template. To write a rule that is
generic and applies to all AWS::S3::Bucket resources defined in the template, the most
common form of query used is Resources.*[Type == ‘AWS::S3::Bucket’]. For
more information, see Defining queries and filtering for details about usage and explore
the examples directory in the cloudformation-guard GitHub repository.

Using custom messages in clauses

In the following example, clauses for Template-2 include a custom message.

Resources.NewVolume.Properties.Size IN r[50,200]
<<
 EC2Volume size must be between 50 and 200,
 not including 50 and 200
>>
Resources.NewVolume.Properties.VolumeType IN ['io1','io2','gp3'] <<Allowed Volume
 Types are io1, io2, and gp3>>

Using custom messages in clauses 19

https://github.com/aws-cloudformation/cloudformation-guard/tree/main/guard-examples

AWS CloudFormation Guard User Guide

Combining clauses

In Guard, each clause written on a new line is combined implicitly with the next clause by using
conjunction (Boolean and logic). See the following example.

clause_A ^ clause_B ^ clause_C
clause_A
clause_B
clause_C

You can also use disjunction to combine a clause with the next clause by specifying or|OR at the
end of the first clause.

<query> <operator> [query|value literal] [custom message] [or|OR]

In a Guard clause, disjunctions are evaluated first, followed by conjunctions. Guard rules can be
defined as a conjunction of disjunction of clauses (an and|AND of or|ORs) that evaluate to either
true (PASS) or false (FAIL). This is similar to Conjunctive normal form.

The following examples demonstrate the order of evaluations of clauses.

(clause_E v clause_F) ^ clause_G
clause_E OR clause_F
clause_G

(clause_H v clause_I) ^ (clause_J v clause_K)
clause_H OR
clause_I
clause_J OR
clause_K

(clause_L v clause_M v clause_N) ^ clause_O
clause_L OR
clause_M OR
clause_N
clause_O

All clauses that are based on the example Template-1 can be combined by using conjunction. See
the following example.

Resources.S3Bucket.Properties.BucketName is_string

Combining clauses 20

https://en.wikipedia.org/wiki/Conjunctive_normal_form

AWS CloudFormation Guard User Guide

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
Resources.S3Bucket.Properties.BucketEncryption exists
Resources.S3Bucket.Properties.BucketEncryption is_struct
Resources.S3Bucket.Properties.Tags is_list
Resources.S3Bucket.Properties.Tags !empty

Using blocks with Guard rules

Blocks are compositions that remove verbosity and repetition from a set of related clauses,
conditions, or rules. There are three types of blocks:

• Query blocks

• when blocks

• Named-rule blocks

Query blocks

Following are the clauses that are based on the example Template-1. Conjunction was used to
combine the clauses.

Resources.S3Bucket.Properties.BucketName is_string
Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
Resources.S3Bucket.Properties.BucketEncryption exists
Resources.S3Bucket.Properties.BucketEncryption is_struct
Resources.S3Bucket.Properties.Tags is_list
Resources.S3Bucket.Properties.Tags !empty

Parts of the query expression in each clause are repeated. You can improve composability and
remove verbosity and repetition from a set of related clauses with the same initial query path by
using a query block. The same set of clauses can be written as shown in the following example.

Resources.S3Bucket.Properties {
 BucketName is_string
 BucketName != /(?i)encrypt/
 BucketEncryption exists
 BucketEncryption is_struct
 Tags is_list
 Tags !empty
}

Using blocks with Guard rules 21

AWS CloudFormation Guard User Guide

In a query block, the query preceding the block sets the context for the clauses inside the block.

For more information about using blocks, see Composing named-rule blocks.

when blocks

You can evaluate blocks conditionally by using when blocks, which take the following form.

 when <condition> {
 Guard_rule_1
 Guard_rule_2
 ...
 }

The when keyword designates the start of the when block. condition is a Guard rule. The block is
only evaluated if the evaluation of the condition results in true (PASS).

The following is an example when block that is based on Template-1.

when Resources.S3Bucket.Properties.BucketName is_string {
 Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
 }

The clause within the when block is only evaluated if the value specified for BucketName is a
string. If the value specified for BucketName is referenced in the Parameters section of the
template as shown in the following example, the clause within the when block is not evaluated.

Parameters:
 S3BucketName:
 Type: String
 Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName:
 Ref: S3BucketName
 ...

Named-rule blocks

You can assign a name to a set of rules (rule set), and then reference these modular validation
blocks, called named-rule blocks, in other rules. Named-rule blocks take the following form.

Using blocks with Guard rules 22

AWS CloudFormation Guard User Guide

 rule <rule name> [when <condition>] {
 Guard_rule_1
 Guard_rule_2
 ...
 }

The rule keyword designates the start of the named-rule block.

rule name is a human-readable string that uniquely identifies a named-rule block. It's a label
for the Guard rule set that it encapsulates. In this use, the term Guard rule includes clauses, query
blocks, when blocks, and named-rule blocks. The rule name can be used to refer to the evaluation
result of the rule set that it encapsulates, which makes named-rule blocks reusable. The rule name
also provides context about rule failures in the validate and test command outputs. The rule
name is displayed along with the block’s evaluation status (PASS, FAIL, or SKIP) in the evaluation
output of the rules file. See the following example.

Sample output of an evaluation where check1, check2, and check3 are rule names.
template.json Status = **FAIL**
SKIP rules
check1 **SKIP**
PASS rules
check2 **PASS**
FAILED rules
check3 **FAIL**

You can also evaluate named-rule blocks conditionally by specifying the when keyword followed by
a condition after the rule name.

Following is the example when block that was discussed previously in this topic.

rule checkBucketNameStringValue when Resources.S3Bucket.Properties.BucketName is_string
 {
 Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
}

Using named-rule blocks, the preceding can also be written as follows.

rule checkBucketNameIsString {
 Resources.S3Bucket.Properties.BucketName is_string

Using blocks with Guard rules 23

AWS CloudFormation Guard User Guide

}
rule checkBucketNameStringValue when checkBucketNameIsString {
 Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
}

You can reuse and group named-rule blocks with other Guard rules. Following are a few examples.

rule rule_name_A {
 Guard_rule_1 OR
 Guard_rule_2
 ...
}

rule rule_name_B {
 Guard_rule_3
 Guard_rule_4
 ...
}

rule rule_name_C {
 rule_name_A OR rule_name_B
}

rule rule_name_D {
 rule_name_A
 rule_name_B
}

rule rule_name_E when rule_name_D {
 Guard_rule_5
 Guard_rule_6
 ...
}

Using built-in functions

AWS CloudFormation Guard provides built-in functions that you can use in your rules to perform
operations such as string manipulation, JSON parsing, and data type conversion. Functions are
supported only through assignment to a variable.

Using built-in functions 24

AWS CloudFormation Guard User Guide

Key functions

json_parse(json_string)

Parses inline JSON strings from a template. After parsing, you can evaluate properties of the
resulting object.

count(collection)

Returns the number of items that a query resolves to.

regex_replace(base_string, regex_to_extract, regex_replacement)

Replaces parts of a string using regular expressions.

For a complete list of available functions including string manipulation, collection operations, and
data type conversion functions, see the Functions documentation in the Guard GitHub repository.

Defining Guard queries and filtering

This topic covers writing queries and using filtering when writing Guard rule clauses.

Prerequisites

Filtering is an advanced AWS CloudFormation Guard concept. We recommend that you review the
following foundational topics before you learn about filtering:

• What is AWS CloudFormation Guard?

• Writing rules, clauses

Defining queries

Query expressions are simple dot (.) separated expressions written to traverse hierarchical data.
Query expressions can include filter expressions to target a subset of values. When queries are
evaluated, they result in a collection of values, similar to a result set returned from an SQL query.

The following example query searches a AWS CloudFormation template for AWS::IAM::Role
resources.

Resources.*[Type == 'AWS::IAM::Role']

Defining queries and filtering 25

https://github.com/aws-cloudformation/cloudformation-guard/blob/main/docs/FUNCTIONS.md

AWS CloudFormation Guard User Guide

Queries follow these basic principles:

• Each dot (.) part of the query traverses down the hierarchy when an explicit key term is used,
such as Resources or Properties.Encrypted. If any part of the query doesn't match the
incoming datum, Guard throws a retrieval error.

• A dot (.) part of the query that uses a wildcard * traverses all values for the structure at that
level.

• A dot (.) part of the query that uses an array wildcard [*] traverses all indices for that array.

• All collections can be filtered by specifying filters inside square brackets []. Collections can be
encountered in the following ways:

• Naturally occurring arrays in datum are collections. Following are examples:

Ports: [20, 21, 110, 190]

Tags: [{"Key": "Stage", "Value": "PROD"}, {"Key": "App", "Value":
"MyService"}]

• When traversing all values for a structure like Resources.*

• Any query result is itself a collection from which values can be further filtered. See the
following example.

Query all resources
let all_resources = Resource.*

Filter IAM resources from query results
let iam_resources = %resources[Type == /IAM/]

Further refine to get managed policies
let managed_policies = %iam_resources[Type == /ManagedPolicy/]

Traverse each managed policy
%managed_policies {
 # Do something with each policy
}

The following is an example CloudFormation template snippet.

Resources:
 SampleRole:

Defining queries and filtering 26

AWS CloudFormation Guard User Guide

 Type: AWS::IAM::Role
 ...
 SampleInstance:
 Type: AWS::EC2::Instance
 ...
 SampleVPC:
 Type: AWS::EC2::VPC
 ...
 SampleSubnet1:
 Type: AWS::EC2::Subnet
 ...
 SampleSubnet2:
 Type: AWS::EC2::Subnet
 ...

Based on this template, the path traversed is SampleRole and the final value selected is Type:
AWS::IAM::Role.

Resources:
 SampleRole:
 Type: AWS::IAM::Role
 ...

The resulting value of the query Resources.*[Type == 'AWS::IAM::Role'] in YAML
format is shown in the following example.

- Type: AWS::IAM::Role
 ...

Some of the ways that you can use queries are as follows:

• Assign a query to variables so that query results can be accessed by referencing those variables.

• Follow the query with a block that tests against each of the selected values.

• Compare a query directly against a basic clause.

Assigning queries to variables

Guard supports one-shot variable assignments within a given scope. For more information about
variables in Guard rules, see Assigning and referencing variables in Guard rules.

Defining queries and filtering 27

AWS CloudFormation Guard User Guide

You can assign queries to variables so that you can write queries once and then reference them
elsewhere in your Guard rules. See the following example variable assignments that demonstrate
query principles discussed later in this section.

#
Simple query assignment
#
let resources = Resources.* # All resources

#
A more complex query here (this will be explained below)
#
let iam_policies_allowing_log_creates = Resources.*[
 Type in [/IAM::Policy/, /IAM::ManagedPolicy/]
 some Properties.PolicyDocument.Statement[*] {
 some Action[*] == 'cloudwatch:CreateLogGroup'
 Effect == 'Allow'
 }
]

Directly looping through values from a variable assigned to a query

Guard supports directly running against the results from a query. In the following example, the
when block tests against the Encrypted, VolumeType, and AvailabilityZone property for
each AWS::EC2::Volume resource found in a CloudFormation template.

let ec2_volumes = Resources.*[Type == 'AWS::EC2::Volume']

when %ec2_volumes !empty {
 %ec2_volumes {
 Properties {
 Encrypted == true
 VolumeType in ['gp2', 'gp3']
 AvailabilityZone in ['us-west-2b', 'us-west-2c']
 }
 }
}

Direct clause-level comparisons

Guard also supports queries as a part of direct comparisons. For example, see the following.

Defining queries and filtering 28

AWS CloudFormation Guard User Guide

let resources = Resources.*

 some %resources.Properties.Tags[*].Key == /PROD$/
 some %resources.Properties.Tags[*].Value == /^App/

In the preceding example, the two clauses (starting with the some keyword) expressed in the form
shown are considered independent clauses and are evaluated separately.

Single clause and block clause form

Taken together, the two example clauses shown in the preceding section aren't equivalent to the
following block.

let resources = Resources.*

some %resources.Properties.Tags[*] {
 Key == /PROD$/
 Value == /^App/
}

This block queries for each Tag value in the collection and compares its property values to the
expected property values. The combined form of the clauses in the preceding section evaluates the
two clauses independently. Consider the following input.

Resources:
 ...
 MyResource:
 ...
 Properties:
 Tags:
 - Key: EndPROD
 Value: NotAppStart
 - Key: NotPRODEnd
 Value: AppStart

Clauses in the first form evaluate to PASS. When validating the first clause in first form, the
following path across Resources, Properties, Tags, and Key matches the value NotPRODEnd
and does not match the expected value PROD.

Resources:

Defining queries and filtering 29

AWS CloudFormation Guard User Guide

 ...
 MyResource:
 ...
 Properties:
 Tags:
 - Key: EndPROD
 Value: NotAppStart
 - Key: NotPRODEnd
 Value: AppStart

The same happens with the second clause of the first form. The path across Resources,
Properties, Tags, and Value matches the value AppStart. As a result, the second clause
independently.

The overall result is a PASS.

However, the block form evaluates as follows. For each Tags value, it compares if both the Key
and Value does match; NotAppStart and NotPRODEnd values are not matched in the following
example.

Resources:
 ...
 MyResource:
 ...
 Properties:
 Tags:
 - Key: EndPROD
 Value: NotAppStart
 - Key: NotPRODEnd
 Value: AppStart

Because evaluations check for both Key == /PROD$/, and Value == /^App/, the match is not
complete. Therefore, the result is FAIL.

Note

When working with collections, we recommend that you use the block clause form when
you want to compare multiple values for each element in the collection. Use the single
clause form when the collection is a set of scalar values, or when you only intend to
compare a single attribute.

Defining queries and filtering 30

AWS CloudFormation Guard User Guide

Query outcomes and associated clauses

All queries return a list of values. Any part of a traversal, such as a missing key, empty values for
an array (Tags: []) when accessing all indices, or missing values for a map when encountering an
empty map (Resources: {}), can lead to retrieval errors.

All retrieval errors are considered failures when evaluating clauses against such queries. The only
exception is when explicit filters are used in the query. When filters are used, associated clauses are
skipped.

The following block failures are associated with running queries.

• If a template does not contain resources, then the query evaluates to FAIL, and the associated
block level clauses also evaluate to FAIL.

• When a template contains an empty resources block like { "Resources": {} }, the query
evaluates to FAIL, and the associated block level clauses also evaluate to FAIL.

• If a template contains resources but none match the query, then the query returns empty results,
and the block level clauses are skipped.

Using filters in queries

Filters in queries are effectively Guard clauses that are used as selection criteria. Following is the
structure of a clause.

 <query> <operator> [query|value literal] [message] [or|OR]

Keep in mind the following key points from Writing AWS CloudFormation Guard rules when you
work with filters:

• Combine clauses by using Conjunctive Normal Form (CNF).

• Specify each conjunction (and) clause on a new line.

• Specify disjunctions (or) by using the or keyword between two clauses.

The following example demonstrates conjunctive and disjunctive clauses.

resourceType == 'AWS::EC2::SecurityGroup'
InputParameters.TcpBlockedPorts not empty

Defining queries and filtering 31

https://en.wikipedia.org/wiki/Conjunctive_normal_form

AWS CloudFormation Guard User Guide

InputParameters.TcpBlockedPorts[*] {
 this in r(100, 400] or
 this in r(4000, 65535]
}

Using clauses for selection criteria

You can apply filtering to any collection. Filtering can be applied directly on attributes in the
input that are already a collection like securityGroups: [....]. You can also apply filtering
against a query, which is always a collection of values. You can use all features of clauses, including
conjunctive normal form, for filtering.

The following common query is often used when selecting resources by type from a
CloudFormation template.

Resources.*[Type == 'AWS::IAM::Role']

The query Resources.* returns all values present in the Resources section of the input. For the
example template input in Defining queries, the query returns the following.

- Type: AWS::IAM::Role
 ...
- Type: AWS::EC2::Instance
 ...
- Type: AWS::EC2::VPC
 ...
- Type: AWS::EC2::Subnet
 ...
- Type: AWS::EC2::Subnet
 ...

Now, apply the filter against this collection. The criterion to match is Type == AWS::IAM::Role.
Following is the output of the query after the filter is applied.

- Type: AWS::IAM::Role
 ...

Next, check various clauses for AWS::IAM::Role resources.

let all_resources = Resources.*

Defining queries and filtering 32

AWS CloudFormation Guard User Guide

let all_iam_roles = %all_resources[Type == 'AWS::IAM::Role']

The following is an example filtering query that selects all AWS::IAM::Policy and
AWS::IAM::ManagedPolicy resources.

Resources.*[
 Type in [/IAM::Policy/,
 /IAM::ManagedPolicy/]
]

The following example checks if these policy resources have a PolicyDocument specified.

Resources.*[
 Type in [/IAM::Policy/,
 /IAM::ManagedPolicy/]
 Properties.PolicyDocument exists
]

Building out more complex filtering needs

Consider the following example of an AWS Config configuration item for ingress and egress
security groups information.

resourceType: 'AWS::EC2::SecurityGroup'
configuration:
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 toPort: 172
 ipv4Ranges:
 - cidrIp: 10.0.0.0/24
 - cidrIp: 0.0.0.0/0
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: '::/0'
 toPort: 189
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 1.1.1.1/32
 - fromPort: 89

Defining queries and filtering 33

AWS CloudFormation Guard User Guide

 ipProtocol: '-1'
 toPort: 189
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 1.1.1.1/32
 ipPermissionsEgress:
 - ipProtocol: '-1'
 ipv6Ranges: []
 prefixListIds: []
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 tags:
 - key: Name
 value: good-sg-delete-me
 vpcId: vpc-0123abcd
InputParameter:
 TcpBlockedPorts:
 - 3389
 - 20
 - 21
 - 110
 - 143

Note the following:

• ipPermissions (ingress rules) is a collection of rules inside a configuration block.

• Each rule structure contains attributes such as ipv4Ranges and ipv6Ranges to specify a
collection of CIDR blocks.

Let’s write a rule that selects any ingress rules that allow connections from any IP address, and
verifies that the rules do not allow TCP blocked ports to be exposed.

Start with the query portion that covers IPv4, as shown in the following example.

configuration.ipPermissions[
 #
 # at least one ipv4Ranges equals ANY IPv4
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0'

Defining queries and filtering 34

AWS CloudFormation Guard User Guide

]

The some keyword is useful in this context. All queries return a collection of values that match the
query. By default, Guard evaluates that all values returned as a result of the query are matched
against checks. However, this behavior might not always be what you need for checks. Consider the
following part of the input from the configuration item.

ipv4Ranges:
 - cidrIp: 10.0.0.0/24
 - cidrIp: 0.0.0.0/0 # any IP allowed

There are two values present for ipv4Ranges. Not all ipv4Ranges values equal an IP address
denoted by 0.0.0.0/0. You want to see if at least one value matches 0.0.0.0/0. You tell Guard
that not all results returned from a query need to match, but at least one result must match. The
some keyword tells Guard to ensure that one or more values from the resultant query match the
check. If no query result values match, Guard throws an error.

Next, add IPv6, as shown in the following example.

configuration.ipPermissions[
 #
 # at-least-one ipv4Ranges equals ANY IPv4
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 #
 # at-least-one ipv6Ranges contains ANY IPv6
 #
 some ipv6Ranges[*].cidrIpv6 == '::/0'
]

Finally, in the following example, validate that the protocol is not udp.

configuration.ipPermissions[
 #
 # at-least-one ipv4Ranges equals ANY IPv4
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 #
 # at-least-one ipv6Ranges contains ANY IPv6
 #
 some ipv6Ranges[*].cidrIpv6 == '::/0'

Defining queries and filtering 35

AWS CloudFormation Guard User Guide

 #
 # and ipProtocol is not udp
 #
 ipProtocol != 'udp']
]

The following is the complete rule.

rule any_ip_ingress_checks
{

 let ports = InputParameter.TcpBlockedPorts[*]

 let targets = configuration.ipPermissions[
 #
 # if either ipv4 or ipv6 that allows access from any address
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 some ipv6Ranges[*].cidrIpv6 == '::/0'

 #
 # the ipProtocol is not UDP
 #
 ipProtocol != 'udp']

 when %targets !empty
 {
 %targets {
 ipProtocol != '-1'
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2334
 message: Any IP Protocol is allowed
 >>

 when fromPort exists
 toPort exists
 {
 let each_target = this
 %ports {
 this < %each_target.fromPort or
 this > %each_target.toPort

Defining queries and filtering 36

AWS CloudFormation Guard User Guide

 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2340
 message: Blocked TCP port was allowed in range
 >>
 }
 }

 }
 }
}

Separating collections based on their contained types

When using infrastructure as code (IaC) configuration templates, you might encounter a collection
that contains references to other entities within the configuration template. The following is an
example CloudFormation template that describes Amazon Elastic Container Service (Amazon
ECS) tasks with a local reference to TaskRoleArn, a reference to TaskArn, and a direct string
reference.

Parameters:
 TaskArn:
 Type: String
Resources:
 ecsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Metadata:
 SharedExectionRole: allowed
 Properties:
 TaskRoleArn: 'arn:aws:....'
 ExecutionRoleArn: 'arn:aws:...'
 ecsTask2:
 Type: 'AWS::ECS::TaskDefinition'
 Metadata:
 SharedExectionRole: allowed
 Properties:
 TaskRoleArn:
 'Fn::GetAtt':
 - iamRole
 - Arn
 ExecutionRoleArn: 'arn:aws:...2'
 ecsTask3:
 Type: 'AWS::ECS::TaskDefinition'

Defining queries and filtering 37

AWS CloudFormation Guard User Guide

 Metadata:
 SharedExectionRole: allowed
 Properties:
 TaskRoleArn:
 Ref: TaskArn
 ExecutionRoleArn: 'arn:aws:...2'
 iamRole:
 Type: 'AWS::IAM::Role'
 Properties:
 PermissionsBoundary: 'arn:aws:...3'

Consider the following query.

let ecs_tasks = Resources.*[Type == 'AWS::ECS::TaskDefinition']

This query returns a collection of values that contains all three AWS::ECS::TaskDefinition
resources shown in the example template. Separate ecs_tasks that contain TaskRoleArn local
references from others, as shown in the following example.

let ecs_tasks = Resources.*[Type == 'AWS::ECS::TaskDefinition']

let ecs_tasks_role_direct_strings = %ecs_tasks[
 Properties.TaskRoleArn is_string]

let ecs_tasks_param_reference = %ecs_tasks[
 Properties.TaskRoleArn.'Ref' exists]

rule task_role_from_parameter_or_string {
 %ecs_tasks_role_direct_strings !empty or
 %ecs_tasks_param_reference !empty
}

rule disallow_non_local_references {
 # Known issue for rule access: Custom message must start on the same line
 not task_role_from_parameter_or_string
 <<
 result: NON_COMPLIANT
 message: Task roles are not local to stack definition
 >>
}

Defining queries and filtering 38

AWS CloudFormation Guard User Guide

Assigning and referencing variables in Guard rules

You can assign variables in your AWS CloudFormation Guard rules files to store information that
you want to reference in your Guard rules. Guard supports one-shot variable assignment. Variables
are evaluated lazily, meaning that Guard only evaluates variables when rules are run.

Topics

• Assigning variables

• Referencing variables

• Variable scope

• Examples of variables in Guard rules files

Assigning variables

Use the let keyword to initialize and assign a variable. As a best practice, use snake case for
variable names. Variables can store static literals or dynamic properties resulting from queries. In
the following example, the variable ecs_task_definition_task_role_arn stores the static
string value arn:aws:iam:123456789012:role/my-role-name.

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-role-name'

In the following example, the variable ecs_tasks stores the results of a query that searches for
all AWS::ECS::TaskDefinition resources in an AWS CloudFormation template. You could
reference ecs_tasks to access information about those resources when you write rules.

let ecs_tasks = Resources.*[
 Type == 'AWS::ECS::TaskDefinition'
]

Referencing variables

Use the % prefix to reference a variable.

Based on the ecs_task_definition_task_role_arn variable example in Assigning
variables, you can reference ecs_task_definition_task_role_arn in the query|value
literal section of a Guard rule clause. Using that reference ensures that the value specified

Assigning and referencing variables in Guard rules 39

AWS CloudFormation Guard User Guide

for the TaskDefinitionArn property of any AWS::ECS::TaskDefinition resources in a
CloudFormation template is the static string value arn:aws:iam:123456789012:role/my-
role-name.

Resources.*.Properties.TaskDefinitionArn == %ecs_task_definition_role_arn

Based on the ecs_tasks variable example in Assigning variables, you can reference ecs_tasks in
a query (for example, %ecs_tasks.Properties). First, Guard evaluates the variable ecs_tasks and
then uses the returned values to traverse the hierarchy. If the variable ecs_tasks resolves to non-
string values, then Guard throws an error.

Note

Currently, Guard doesn't support referencing variables inside custom error messages.

Variable scope

Scope refers to the visibility of variables defined in a rules file. A variable name can only be used
once within a scope. There are three levels where a variable can be declared, or three possible
variable scopes:

• File-level – Usually declared at the top of the rules file, you can use file-level variables in all rules
within the rules file. They are visible to the entire file.

In the following example rules file, the variables ecs_task_definition_task_role_arn and
ecs_task_definition_execution_role_arn are initialized at the file-level.

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-task-role-
name'
let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/my-
execution-role-name'

rule check_ecs_task_definition_task_role_arn
{
 Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

rule check_ecs_task_definition_execution_role_arn
{

Assigning and referencing variables in Guard rules 40

AWS CloudFormation Guard User Guide

 Resources.*.Properties.ExecutionRoleArn ==
 %ecs_task_definition_execution_role_arn
}

• Rule-level – Declared within a rule, rule-level variables are only visible to that specific rule. Any
references outside of the rule result in an error.

In the following example rules file, the variables ecs_task_definition_task_role_arn
and ecs_task_definition_execution_role_arn are initialized at the rule-
level. The ecs_task_definition_task_role_arn can only be referenced within
the check_ecs_task_definition_task_role_arn named rule. You can only
reference the ecs_task_definition_execution_role_arn variable within the
check_ecs_task_definition_execution_role_arn named rule.

rule check_ecs_task_definition_task_role_arn
{
 let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-task-
role-name'
 Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

rule check_ecs_task_definition_execution_role_arn
{
 let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/my-
execution-role-name'
 Resources.*.Properties.ExecutionRoleArn ==
 %ecs_task_definition_execution_role_arn
}

• Block-level – Declared within a block, such as a when clause, block-level variables are only visible
to that specific block. Any references outside of the block result in an error.

In the following example rules file, the variables ecs_task_definition_task_role_arn
and ecs_task_definition_execution_role_arn are initialized at
the block-level within the AWS::ECS::TaskDefinition type block. You
can only reference the ecs_task_definition_task_role_arn and
ecs_task_definition_execution_role_arn variables within the
AWS::ECS::TaskDefinition type blocks for their respective rules.

rule check_ecs_task_definition_task_role_arn
{

Assigning and referencing variables in Guard rules 41

AWS CloudFormation Guard User Guide

 AWS::ECS::TaskDefinition
 {
 let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-
task-role-name'
 Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
 }
}

rule check_ecs_task_definition_execution_role_arn
{
 AWS::ECS::TaskDefinition
 {
 let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/
my-execution-role-name'
 Properties.ExecutionRoleArn == %ecs_task_definition_execution_role_arn
 }
}

Examples of variables in Guard rules files

The following sections provide examples of both static and dynamic assignment of variables.

Static assignment

The following is an example CloudFormation template.

Resources:
 EcsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 TaskRoleArn: 'arn:aws:iam::123456789012:role/my-role-name'

Based on this template, you can write a rule called
check_ecs_task_definition_task_role_arn that ensures that the
TaskRoleArn property of all AWS::ECS::TaskDefinition template resources is
arn:aws:iam::123456789012:role/my-role-name.

rule check_ecs_task_definition_task_role_arn
{
 let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-role-
name'

Assigning and referencing variables in Guard rules 42

AWS CloudFormation Guard User Guide

 Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

Within the scope of the rule, you can initialize a variable called
ecs_task_definition_task_role_arn and assign to it the static string value
'arn:aws:iam::123456789012:role/my-role-name'. The rule clause checks
whether the value specified for the TaskRoleArn property of the EcsTask resource
is arn:aws:iam::123456789012:role/my-role-name by referencing the
ecs_task_definition_task_role_arn variable in the query|value literal section.

Dynamic assignment

The following is an example CloudFormation template.

Resources:
 EcsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 TaskRoleArn: 'arn:aws:iam::123456789012:role/my-role-name'

Based on this template, you can initialize a variable called ecs_tasks within the scope of the file
and assign to it the query Resources.*[Type == 'AWS::ECS::TaskDefinition'. Guard
queries all resources in the input template and stores information about them in ecs_tasks.
You can also write a rule called check_ecs_task_definition_task_role_arn that ensures
that the TaskRoleArn property of all AWS::ECS::TaskDefinition template resources is
arn:aws:iam::123456789012:role/my-role-name

let ecs_tasks = Resources.*[
 Type == 'AWS::ECS::TaskDefinition'
]

rule check_ecs_task_definition_task_role_arn
{
 %ecs_tasks.Properties.TaskRoleArn == 'arn:aws:iam::123456789012:role/my-role-name'
}

The rule clause checks whether the value specified for the TaskRoleArn property of the
EcsTask resource is arn:aws:iam::123456789012:role/my-role-name by referencing the
ecs_task_definition_task_role_arn variable in the query section.

Assigning and referencing variables in Guard rules 43

AWS CloudFormation Guard User Guide

Enforcing AWS CloudFormation template configuration

Let’s walk through a more complex example of a production use case. In this example, we write
Guard rules to ensure stricter controls on how Amazon ECS tasks are defined.

The following is an example CloudFormation template.

Resources:
 EcsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 TaskRoleArn:
 'Fn::GetAtt': [TaskIamRole, Arn]
 ExecutionRoleArn:
 'Fn::GetAtt': [ExecutionIamRole, Arn]

 TaskIamRole:
 Type: 'AWS::IAM::Role'
 Properties:
 PermissionsBoundary: 'arn:aws:iam::123456789012:policy/MyExamplePolicy'

 ExecutionIamRole:
 Type: 'AWS::IAM::Role'
 Properties:
 PermissionsBoundary: 'arn:aws:iam::123456789012:policy/MyExamplePolicy'

Based on this template, we write the following rules to ensure that these requirements are met:

• Each AWS::ECS::TaskDefinition resource in the template has both a task role and an
execution role attached.

• The task roles and execution roles are AWS Identity and Access Management (IAM) roles.

• The roles are defined in the template.

• The PermissionsBoundary property is specified for each role.

Select all Amazon ECS task definition resources from the template
let ecs_tasks = Resources.*[
 Type == 'AWS::ECS::TaskDefinition'
]

Select a subset of task definitions whose specified value for the TaskRoleArn
 property is an Fn::Gett-retrievable attribute

Assigning and referencing variables in Guard rules 44

AWS CloudFormation Guard User Guide

let task_role_refs = some %ecs_tasks.Properties.TaskRoleArn.'Fn::GetAtt'[0]

Select a subset of TaskDefinitions whose specified value for the ExecutionRoleArn
 property is an Fn::Gett-retrievable attribute
let execution_role_refs = some %ecs_tasks.Properties.ExecutionRoleArn.'Fn::GetAtt'[0]

Verify requirement #1
rule all_ecs_tasks_must_have_task_end_execution_roles
 when %ecs_tasks !empty
{
 %ecs_tasks.Properties {
 TaskRoleArn exists
 ExecutionRoleArn exists
 }
}

Verify requirements #2 and #3
rule all_roles_are_local_and_type_IAM
 when all_ecs_tasks_must_have_task_end_execution_roles
{
 let task_iam_references = Resources.%task_role_refs
 let execution_iam_reference = Resources.%execution_role_refs

 when %task_iam_references !empty {
 %task_iam_references.Type == 'AWS::IAM::Role'
 }

 when %execution_iam_reference !empty {
 %execution_iam_reference.Type == 'AWS::IAM::Role'
 }
}

Verify requirement #4
rule check_role_have_permissions_boundary
 when all_ecs_tasks_must_have_task_end_execution_roles
{
 let task_iam_references = Resources.%task_role_refs
 let execution_iam_reference = Resources.%execution_role_refs

 when %task_iam_references !empty {
 %task_iam_references.Properties.PermissionsBoundary exists
 }

 when %execution_iam_reference !empty {

Assigning and referencing variables in Guard rules 45

AWS CloudFormation Guard User Guide

 %execution_iam_reference.Properties.PermissionsBoundary exists
 }
}

Composing named-rule blocks in AWS CloudFormation Guard

When writing named-rule blocks using AWS CloudFormation Guard, you can use the following two
styles of composition:

• Conditional dependency

• Correlational dependency

Using either of these styles of dependency composition helps promote reusability and reduces
verbosity and repetition in named-rule blocks.

Topics

• Prerequisites

• Conditional dependency composition

• Correlational dependency composition

Prerequisites

Learn about named-rule blocks in Writing rules.

Conditional dependency composition

In this style of composition, the evaluation of a when block or a named-rule block has a conditional
dependency on the evaluation result of one or more other named-rule blocks or clauses. The
following example Guard rules file contains named-rule blocks that demonstrate conditional
dependencies.

Named-rule block, rule_name_A
rule rule_name_A {
 Guard_rule_1
 Guard_rule_2
 ...
}

Composing named-rule blocks 46

AWS CloudFormation Guard User Guide

Example-1, Named-rule block, rule_name_B, takes a conditional dependency on
 rule_name_A
rule rule_name_B when rule_name_A {
 Guard_rule_3
 Guard_rule_4
 ...
}

Example-2, when block takes a conditional dependency on rule_name_A
when rule_name_A {
 Guard_rule_3
 Guard_rule_4
 ...
}

Example-3, Named-rule block, rule_name_C, takes a conditional dependency on
 rule_name_A ^ rule_name_B
rule rule_name_C when rule_name_A
 rule_name_B {
 Guard_rule_3
 Guard_rule_4
 ...
}

Example-4, Named-rule block, rule_name_D, takes a conditional dependency on
 (rule_name_A v clause_A) ^ clause_B ^ rule_name_B
rule rule_name_D when rule_name_A OR
 clause_A
 clause_B
 rule_name_B {
 Guard_rule_3
 Guard_rule_4
 ...
}

In the preceding example rules file, Example-1 has the following possible outcomes:

• If rule_name_A evaluates to PASS, the Guard rules encapsulated by rule_name_B are
evaluated.

• If rule_name_A evaluates to FAIL, the Guard rules encapsulated by rule_name_B are not
evaluated. rule_name_B evaluates to SKIP.

Composing named-rule blocks 47

AWS CloudFormation Guard User Guide

• If rule_name_A evaluates to SKIP, the Guard rules encapsulated by rule_name_B are not
evaluated. rule_name_B evaluates to SKIP.

Note

This case happens if rule_name_A conditionally depends on a rule that evaluates to
FAIL and results in rule_name_A evaluating to SKIP.

Following is an example of a configuration management database (CMDB) configuration item from
an AWS Config item for ingress and egress security groups information. This example demonstrates
conditional dependency composition.

rule check_resource_type_and_parameter {
 resourceType == /AWS::EC2::SecurityGroup/
 InputParameters.TcpBlockedPorts NOT EMPTY
}

rule check_parameter_validity when check_resource_type_and_parameter {
 InputParameters.TcpBlockedPorts[*] {
 this in r[0,65535]
 }
}

rule check_ip_procotol_and_port_range_validity when check_parameter_validity {
 let ports = InputParameters.TcpBlockedPorts[*]

 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let configuration = configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"
 ipProtocol != 'udp']
 when %configuration !empty {
 %configuration {
 ipProtocol != '-1'

 when fromPort exists
 toPort exists {
 let ip_perm_block = this

Composing named-rule blocks 48

AWS CloudFormation Guard User Guide

 %ports {
 this < %ip_perm_block.fromPort or
 this > %ip_perm_block.toPort
 }
 }
 }
 }
}

In the preceding example, check_parameter_validity is conditionally
dependent on check_resource_type_and_parameter and
check_ip_procotol_and_port_range_validity is conditionally dependent on
check_parameter_validity. The following is a configuration management database (CMDB)
configuration item that conforms to the preceding rules.

version: '1.3'
resourceType: 'AWS::EC2::SecurityGroup'
resourceId: sg-12345678abcdefghi
configuration:
 description: Delete-me-after-testing
 groupName: good-sg-test-delete-me
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 ipv6Ranges: []
 prefixListIds: []
 toPort: 172
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: '::/0'
 prefixListIds: []
 toPort: 89
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:

Composing named-rule blocks 49

AWS CloudFormation Guard User Guide

 - 0.0.0.0/0
 ipPermissionsEgress:
 - ipProtocol: '-1'
 ipv6Ranges: []
 prefixListIds: []
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 tags:
 - key: Name
 value: good-sg-delete-me
 vpcId: vpc-0123abcd
InputParameters:
 TcpBlockedPorts:
 - 3389
 - 20
 - 110
 - 142
 - 1434
 - 5500
supplementaryConfiguration: {}
resourceTransitionStatus: None

Correlational dependency composition

In this style of composition, the evaluation of a when block or a named-rule block has a
correlational dependency on the evaluation result of one or more other Guard rules. Correlational
dependency can be achieved as follows.

Named-rule block, rule_name_A, takes a correlational dependency on all of the Guard
 rules encapsulated by the named-rule block
rule rule_name_A {
 Guard_rule_1
 Guard_rule_2
 ...
}

when block takes a correlational dependency on all of the Guard rules encapsulated by
 the when block
when condition {
 Guard_rule_1

Composing named-rule blocks 50

AWS CloudFormation Guard User Guide

 Guard_rule_2
 ...
}

To help you understand correlational dependency composition, review the following example of a
Guard rules file.

#
Allowed valid protocols for AWS::ElasticLoadBalancingV2::Listener resources
#
let allowed_protocols = ["HTTPS", "TLS"]

let elbs = Resources.*[Type == 'AWS::ElasticLoadBalancingV2::Listener']

#
If there are AWS::ElasticLoadBalancingV2::Listener resources present, ensure that
 they have protocols specified from the
list of allowed protocols and that the Certificates property is not empty
#
rule ensure_all_elbs_are_secure when %elbs !empty {
 %elbs.Properties {
 Protocol in %allowed_protocols
 Certificates !empty
 }
}

In addition to secure settings, ensure that AWS::ElasticLoadBalancingV2::Listener
 resources are private
#
rule ensure_elbs_are_internal_and_secure when %elbs !empty {
 ensure_all_elbs_are_secure
 %elbs.Properties.Scheme == 'internal'
}

In the preceding rules file, ensure_elbs_are_internal_and_secure has a correlational
dependency on ensure_all_elbs_are_secure. The following is an example CloudFormation
template that conforms to the preceding rules.

Resources:
 ServiceLBPublicListener46709EAA:
 Type: 'AWS::ElasticLoadBalancingV2::Listener'

Composing named-rule blocks 51

AWS CloudFormation Guard User Guide

 Properties:
 Scheme: internal
 Protocol: HTTPS
 Certificates:
 - CertificateArn: 'arn:aws:acm...'
 ServiceLBPublicListener4670GGG:
 Type: 'AWS::ElasticLoadBalancingV2::Listener'
 Properties:
 Scheme: internal
 Protocol: HTTPS
 Certificates:
 - CertificateArn: 'arn:aws:acm...'

Writing clauses to perform context-aware evaluations

AWS CloudFormation Guard clauses are evaluated against hierarchical data. The Guard evaluation
engine resolves queries against incoming data by following hierarchical data as specified, using a
simple dotted notation. Frequently, multiple clauses are needed to evaluate against a map of data
or a collection. Guard provides a convenient syntax to write such clauses. The engine is contextually
aware and uses the corresponding data associated for evaluations.

The following is an example of a Kubernetes Pod configuration with containers, to which you can
apply context-aware evaluations.

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: 'images.my-company.example/app:v4'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.5
 - name: log-aggregator
 image: 'images.my-company.example/log-aggregator:v6'
 resources:

Writing clauses to perform context-aware evaluations 52

AWS CloudFormation Guard User Guide

 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.75

You can author Guard clauses to evaluate this data. When evaluating a rules file, the context is
the entire input document. Following are example clauses that validate limits enforcement for
containers specified in a Pod.

#
At this level, the root document is available for evaluation
#

#
Our rule only evaluates for apiVersion == v1 and K8s kind is Pod
#
rule ensure_container_limits_are_enforced
 when apiVersion == 'v1'
 kind == 'Pod'
{
 spec.containers[*] {
 resources.limits {
 #
 # Ensure that cpu attribute is set
 #
 cpu exists
 <<
 Id: K8S_REC_18
 Description: CPU limit must be set for the container
 >>

 #
 # Ensure that memory attribute is set
 #
 memory exists
 <<
 Id: K8S_REC_22
 Description: Memory limit must be set for the container
 >>
 }
 }

Writing clauses to perform context-aware evaluations 53

AWS CloudFormation Guard User Guide

}

Understanding context in evaluations

At the rule-block level, the incoming context is the complete document. Evaluations for the when
condition happen against this incoming root context where the apiVersion and kind attributes
are located. In the previous example, these conditions evaluate to true.

Now, traverse the hierarchy in spec.containers[*] shown in the preceding example. For each
traverse of the hierarchy, the context value changes accordingly. After the traversal of the spec
block is finished, the context changes, as shown in the following example.

containers:
 - name: app
 image: 'images.my-company.example/app:v4'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.5
 - name: log-aggregator
 image: 'images.my-company.example/log-aggregator:v6'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.75

After traversing the containers attribute, the context is shown in the following example.

- name: app
 image: 'images.my-company.example/app:v4'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi

Writing clauses to perform context-aware evaluations 54

AWS CloudFormation Guard User Guide

 cpu: 0.5
- name: log-aggregator
 image: 'images.my-company.example/log-aggregator:v6'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.75

Understanding loops

You can use the expression [*] to define a loop for all values contained in the array for the
containers attribute. The block is evaluated for each element inside containers. In the
preceding example rule snippet, the clauses contained inside the block define checks to be
validated against a container definition. The block of clauses contained inside is evaluated twice,
once for each container definition.

{
 spec.containers[*] {
 ...
 }
}

For each iteration, the context value is the value at that corresponding index.

Note

The only index access format supported is [<integer>] or [*]. Currently, Guard does not
support ranges like [2..4].

Arrays

Often in places where an array is accepted, single values are also accepted. For example, if there is
only one container, the array can be dropped and the following input is accepted.

apiVersion: v1
kind: Pod

Writing clauses to perform context-aware evaluations 55

AWS CloudFormation Guard User Guide

metadata:
 name: frontend
spec:
 containers:
 name: app
 image: images.my-company.example/app:v4
 resources:
 requests:
 memory: "64Mi"
 cpu: 0.25
 limits:
 memory: "128Mi"
 cpu: 0.5

If an attribute can accept an array, ensure that your rule uses the array form. In the preceding
example, you use containers[*] and not containers. Guard evaluates correctly when
traversing the data when it encounters only the single-value form.

Note

Always use the array form when expressing access for a rule clause when an attribute
accepts an array. Guard evaluates correctly even in the case that a single value is used.

Using the form spec.containers[*] instead of spec.containers

Guard queries return a collection of resolved values. When you use the form spec.containers,
the resolved values for the query contain the array referred to by containers, not the elements
inside it. When you use the form spec.containers[*], you refer to each individual element
contained. Remember to use the [*] form whenever you intend to evaluate each element
contained in the array.

Using this to reference the current context value

When you author a Guard rule, you can reference the context value by using this. Often, this is
implicit because it's bound to the context’s value. For example, this.apiVersion, this.kind,
and this.spec are bound to the root or document. In contrast, this.resources is bound
to each value for containers, such as /spec/containers/0/ and /spec/containers/1.
Similarly, this.cpu and this.memory map to limits, specifically /spec/containers/0/
resources/limits and /spec/containers/1/resources/limits.

Writing clauses to perform context-aware evaluations 56

AWS CloudFormation Guard User Guide

In the next example, the preceding rule for the Kubernetes Pod configuration is rewritten to use
this explicitly.

rule ensure_container_limits_are_enforced
 when this.apiVersion == 'v1'
 this.kind == 'Pod'
{
 this.spec.containers[*] {
 this.resources.limits {
 #
 # Ensure that cpu attribute is set
 #
 this.cpu exists
 <<
 Id: K8S_REC_18
 Description: CPU limit must be set for the container
 >>

 #
 # Ensure that memory attribute is set
 #
 this.memory exists
 <<
 Id: K8S_REC_22
 Description: Memory limit must be set for the container
 >>
 }
 }
}

You don't need to use this explicitly. However, the this reference can be useful when working
with scalars, as shown in the following example.

InputParameters.TcpBlockedPorts[*] {
 this in r[0, 65535)
 <<
 result: NON_COMPLIANT
 message: TcpBlockedPort not in range (0, 65535)
 >>
}

In the previous example, this is used to refer to each port number.

Writing clauses to perform context-aware evaluations 57

AWS CloudFormation Guard User Guide

Potential errors with the usage of implicit this

When authoring rules and clauses, there are some common mistakes when referencing elements
from the implicit this context value. For example, consider the following input datum to evaluate
against (this must pass).

resourceType: 'AWS::EC2::SecurityGroup'
InputParameters:
 TcpBlockedPorts: [21, 22, 110]
configuration:
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 ipv6Ranges: []
 prefixListIds: []
 toPort: 172
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: "0.0.0.0/0"
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: "::/0"
 prefixListIds: []
 toPort: 109
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 10.2.0.0/24

When tested against the preceding template, the following rule results in an error because it makes
an incorrect assumption of leveraging the implicit this.

rule check_ip_procotol_and_port_range_validity
{
 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"

Writing clauses to perform context-aware evaluations 58

AWS CloudFormation Guard User Guide

 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 ipProtocol != '-1' # this here refers to each ipPermission instance
 InputParameters.TcpBlockedPorts[*] {
 fromPort > this or
 toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
}

To walk through this example, save the preceding rules file with the name
any_ip_ingress_check.guard and the data with the file name ip_ingress.yaml. Then, run
the following validate command with these files.

cfn-guard validate -r any_ip_ingress_check.guard -d ip_ingress.yaml --show-clause-
failures

In the following output, the engine indicates that its attempt to retrieve a property
InputParameters.TcpBlockedPorts[*] on the value /configuration/ipPermissions/0,
/configuration/ipPermissions/1 failed.

Clause #2 FAIL(Block[Location[file:any_ip_ingress_check.guard, line:17,
 column:13]])

 Attempting to retrieve array index or key from map at Path = /
configuration/ipPermissions/0, Type was not an array/object map, Remaining Query =
 InputParameters.TcpBlockedPorts[*]

Clause #3 FAIL(Block[Location[file:any_ip_ingress_check.guard, line:17,
 column:13]])

 Attempting to retrieve array index or key from map at Path = /
configuration/ipPermissions/1, Type was not an array/object map, Remaining Query =
 InputParameters.TcpBlockedPorts[*]

Writing clauses to perform context-aware evaluations 59

AWS CloudFormation Guard User Guide

To help understand this result, rewrite the rule using this explicitly referenced.

rule check_ip_procotol_and_port_range_validity
{
 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = this.configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"

 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 this.ipProtocol != '-1' # this here refers to each ipPermission instance
 this.InputParameters.TcpBlockedPorts[*] {
 this.fromPort > this or
 this.toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
}

this.InputParameters references each value contained inside the
variable any_ip_permissions. The query assigned to the variable selects
configuration.ipPermissions values that match. The error indicates an attempt to retrieve
InputParamaters in this context, but InputParameters was in the root context.

The inner block also references variables that are out of scope, as shown in the following example.

{
 this.ipProtocol != '-1' # this here refers to each ipPermission instance
 this.InputParameter.TcpBlockedPorts[*] { # ERROR referencing InputParameter off /
configuration/ipPermissions[*]
 this.fromPort > this or # ERROR: implicit this refers to values inside /
InputParameter/TcpBlockedPorts[*]

Writing clauses to perform context-aware evaluations 60

AWS CloudFormation Guard User Guide

 this.toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
}

this refers to each port value in [21, 22, 110], but it also refers to fromPort and toPort.
They both belong to the outer block scope.

Resolving errors with the implicit use of this

Use variables to explicitly assign and reference values. First,
InputParameter.TcpBlockedPorts is part of the input (root) context. Move
InputParameter.TcpBlockedPorts out of the inner block and assign it explicitly, as shown in
the following example.

rule check_ip_procotol_and_port_range_validity
{
 let ports = InputParameters.TcpBlockedPorts[*]
 # ... cut off for illustrating change
}

Then, refer to this variable explicitly.

rule check_ip_procotol_and_port_range_validity
{
 #
 # Important: Assigning InputParameters.TcpBlockedPorts results in an ERROR.
 # We need to extract each port inside the array. The difference is the query
 # InputParameters.TcpBlockedPorts returns [[21, 20, 110]] whereas the query
 # InputParameters.TcpBlockedPorts[*] returns [21, 20, 110].
 #
 let ports = InputParameters.TcpBlockedPorts[*]

 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or

Writing clauses to perform context-aware evaluations 61

AWS CloudFormation Guard User Guide

 some ipv6Ranges[*].cidrIpv6 == "::/0"

 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 this.ipProtocol != '-1' # this here refers to each ipPermission instance
 %ports {
 this.fromPort > this or
 this.toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
}

Do the same for inner this references within %ports.

However, all errors aren't fixed yet because the loop inside ports still has an incorrect reference.
The following example shows the removal of the incorrect reference.

rule check_ip_procotol_and_port_range_validity
{
 #
 # Important: Assigning InputParameters.TcpBlockedPorts results in an ERROR.
 # We need to extract each port inside the array. The difference is the query
 # InputParameters.TcpBlockedPorts returns [[21, 20, 110]] whereas the query
 # InputParameters.TcpBlockedPorts[*] returns [21, 20, 110].
 #
 let ports = InputParameters.TcpBlockedPorts[*]

 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = configuration.ipPermissions[
 #
 # if either ipv4 or ipv6 that allows access from any address
 #

Writing clauses to perform context-aware evaluations 62

AWS CloudFormation Guard User Guide

 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 some ipv6Ranges[*].cidrIpv6 == '::/0'

 #
 # the ipProtocol is not UDP
 #
 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 ipProtocol != '-1'
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2334
 message: Any IP Protocol is allowed
 >>

 when fromPort exists
 toPort exists
 {
 let each_any_ip_perm = this
 %ports {
 this < %each_any_ip_perm.fromPort or
 this > %each_any_ip_perm.toPort
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2340
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
 }
}

Next, run the validate command again. This time, it passes.

cfn-guard validate -r any_ip_ingress_check.guard -d ip_ingress.yaml --show-clause-
failures

The following is the output of the validate command.

Writing clauses to perform context-aware evaluations 63

AWS CloudFormation Guard User Guide

ip_ingress.yaml Status = PASS
PASS rules
check_ip_procotol_and_port_range_validity PASS

To test this approach for failures, the following example uses a payload change.

resourceType: 'AWS::EC2::SecurityGroup'
InputParameters:
 TcpBlockedPorts: [21, 22, 90, 110]
configuration:
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 ipv6Ranges: []
 prefixListIds: []
 toPort: 172
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: "0.0.0.0/0"
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: "::/0"
 prefixListIds: []
 toPort: 109
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 10.2.0.0/24

90 is within the range from 89–109 that has any IPv6 address allowed. The following is the output
of the validate command after running it again.

Clause #3 FAIL(Clause(Location[file:any_ip_ingress_check.guard, line:43,
 column:21], Check: _ LESS THAN %each_any_ip_perm.fromPort))
 Comparing Int((Path("/InputParameters/TcpBlockedPorts/2"), 90))
 with Int((Path("/configuration/ipPermissions/1/fromPort"), 89)) failed
 (DEFAULT: NO_MESSAGE)
Clause #4 FAIL(Clause(Location[file:any_ip_ingress_check.guard, line:44,
 column:21], Check: _ GREATER THAN %each_any_ip_perm.toPort))
 Comparing Int((Path("/InputParameters/TcpBlockedPorts/2"), 90))
 with Int((Path("/configuration/ipPermissions/1/toPort"), 109)) failed

Writing clauses to perform context-aware evaluations 64

AWS CloudFormation Guard User Guide

 result: NON_COMPLIANT
 check_id: HUB_ID_2340
 message: Blocked TCP port was allowed in
 range

Testing AWS CloudFormation Guard rules

You can use the AWS CloudFormation Guard built-in unit testing framework to verify that your
Guard rules work as intended. This section provides a walkthrough on how to write a unit testing
file and how to use it to test your rules file with the test command.

Your unit test file must have one of the following extensions: .json, .JSON, .jsn, .yaml, .YAML,
or .yml.

Topics

• Prerequisites

• Overview of Guard unit testing files

• Walkthrough of writing a Guard rules unit testing file

Prerequisites

Write Guard rules to evaluate your input data against. For more information, see Writing Guard
rules.

Overview of Guard unit testing files

Guard unit testing files are JSON- or YAML-formatted files that contain multiple inputs and the
expected outcomes for rules written inside a Guard rules file. There can be multiple samples to
assess different expectations. We recommend that you start by testing for empty inputs and then
progressively add information for assessing various rules and clauses.

Also, we recommend that you name unit testing files using the suffix _test.json or
_tests.yaml. For example, if you have a rules file named my_rules.guard, name your unit
testing file my_rules_tests.yaml.

Syntax

The following shows the syntax of a unit testing file in YAML format.

Testing Guard rules 65

AWS CloudFormation Guard User Guide

- name: <TEST NAME>
 input:
 <SAMPLE INPUT>
 expectations:
 rules:
 <RULE NAME>: [PASS|FAIL|SKIP]

Properties

Following are the properties of a Guard test file.

input

Data to test your rules against. We recommend that your first test uses an empty input, as
shown in the following example.

- name: MyTest1
 input {}

For subsequent tests, add input data to test.

Required: Yes

expectations

The expected outcome when specific rules are evaluated against your input data. Specify one
or multiple rules that you want to test in addition to the expected outcome for each rule. The
expected outcome must be one of the following:

• PASS – When run against your input data, the rules evaluate to true.

• FAIL – When run against your input data, the rules evaluate to false.

• SKIP – When run against your input data, the rule isn't triggered.

expectations:
 rules:
 check_rest_api_is_private: PASS

Required: Yes

Overview 66

AWS CloudFormation Guard User Guide

Walkthrough of writing a Guard rules unit testing file

The following is a rules file named api_gateway_private.guard. The intent for this rule is to
check whether all Amazon API Gateway resource types defined in a CloudFormation template are
deployed for private access only. It also checks whether at least one policy statement allows access
from a virtual private cloud (VPC).

#
Select all AWS::ApiGateway::RestApi resources
present in the Resources section of the template.
#
let api_gws = Resources.*[Type == 'AWS::ApiGateway::RestApi']

#
Rule intent:
1) All AWS::ApiGateway::RestApi resources deployed must be private.

2) All AWS::ApiGateway::RestApi resources deployed must have at least one AWS
 Identity and Access Management (IAM) policy condition key to allow access from a VPC.
#
Expectations:
1) SKIP when there are no AWS::ApiGateway::RestApi resources in the template.
2) PASS when:
ALL AWS::ApiGateway::RestApi resources in the template have
 the EndpointConfiguration property set to Type: PRIVATE.
ALL AWS::ApiGateway::RestApi resources in the template have one IAM condition key
 specified in the Policy property with aws:sourceVpc or :SourceVpc.
3) FAIL otherwise.

#
#

rule check_rest_api_is_private when %api_gws !empty {
 %api_gws {
 Properties.EndpointConfiguration.Types[*] == "PRIVATE"

 }
}

rule check_rest_api_has_vpc_access when check_rest_api_is_private {
 %api_gws {
 Properties {
 #

Walkthrough 67

AWS CloudFormation Guard User Guide

 # ALL AWS::ApiGateway::RestApi resources in the template have one IAM
 condition key specified in the Policy property with
 # aws:sourceVpc or :SourceVpc
 #
 some Policy.Statement[*] {
 Condition.*[keys == /aws:[sS]ource(Vpc|VPC|Vpce|VPCE)/] !empty
 }
 }
 }
}

This walkthrough tests the first rule intent: All AWS::ApiGateway::RestApi resources deployed
must be private.

1. Create a unit testing file called api_gateway_private_tests.yaml that
contains the following initial test. With the initial test, add an empty input and
expect that the rule check_rest_api_is_private will skip because there are no
AWS::ApiGateway::RestApi resources as inputs.

- name: MyTest1
 input: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP

2. Run the first test in your terminal using the test command. For the --rules-file
parameter, specify your rules file. For the --test-data parameter, specify your unit testing
file.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml

The outcome for the first test is PASS.

Test Case #1
Name: "MyTest1"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

Walkthrough 68

AWS CloudFormation Guard User Guide

3. Add another test to your unit testing file. Now, extend the testing to include empty resources.
The following is the updated api_gateway_private_tests.yaml file.

- name: MyTest1
 input: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP
- name: MyTest2
 input:
 Resources: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP

4. Run test with the updated unit testing file.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml

The outcome for the second test is PASS.

Test Case #1
Name: "MyTest1"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP
Test Case #2
Name: "MyTest2"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

5. Add two more tests to your unit testing file. Extend the testing to include the following:

• An AWS::ApiGateway::RestApi resource with no properties specified.

Note

This isn’t a valid CloudFormation template, but it's useful to test whether the rule
works correctly even for malformed inputs.

Walkthrough 69

AWS CloudFormation Guard User Guide

Expect that this test will fail because the EndpointConfiguration property isn't specified
and is therefore not set to PRIVATE.

• An AWS::ApiGateway::RestApi resource that satisfies the first intent with the
EndpointConfiguration property set to PRIVATE but does not satisfy the second intent
because it has no policy statements defined. Expect that this test will pass.

The following is the updated unit testing file.

- name: MyTest1
 input: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP
- name: MyTest2
 input:
 Resources: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP
- name: MyTest3
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 expectations:
 rules:
 check_rest_api_is_private: FAIL
- name: MyTest4
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 Properties:
 EndpointConfiguration:
 Types: "PRIVATE"
 expectations:
 rules:
 check_rest_api_is_private: PASS

Walkthrough 70

AWS CloudFormation Guard User Guide

6. Run test with the updated unit testing file.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml \

The third outcome is FAIL, and the fourth outcome is PASS.

Test Case #1
Name: "MyTest1"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

Test Case #2
Name: "MyTest2"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

Test Case #3
Name: "MyTest3"
 PASS Rules:
 check_rest_api_is_private: Expected = FAIL, Evaluated = FAIL

Test Case #4
Name: "MyTest4"
 PASS Rules:
 check_rest_api_is_private: Expected = PASS, Evaluated = PASS

7. Comment out tests 1–3 in your unit testing file. Access the verbose context for the fourth test
only. The following is the updated unit testing file.

#- name: MyTest1
input: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest2
input:
Resources: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP

Walkthrough 71

AWS CloudFormation Guard User Guide

#- name: MyTest3
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
expectations:
rules:
check_rest_api_is_private_and_has_access: FAIL
- name: MyTest4
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 Properties:
 EndpointConfiguration:
 Types: "PRIVATE"
 expectations:
 rules:
 check_rest_api_is_private: PASS

8. Inspect the evaluation results by running the test command in your terminal, using the --
verbose flag. Verbose context is useful for understanding evaluations. In this case, it provides
detailed information about why the fourth test succeeded with a PASS outcome.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml \
 --verbose

Here is the output from that run.

Test Case #1
Name: "MyTest4"
 PASS Rules:
 check_rest_api_is_private: Expected = PASS, Evaluated = PASS
Rule(check_rest_api_is_private, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Condition(check_rest_api_is_private, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Clause(Clause(Location[file:api_gateway_private.guard, line:20, column:37],
 Check: %api_gws NOT EMPTY), PASS)
 | From: Map((Path("/Resources/apiGw"), MapValue { keys:
 [String((Path("/Resources/apiGw/Type"), "Type")), String((Path("/Resources/

Walkthrough 72

AWS CloudFormation Guard User Guide

apiGw/Properties"), "Properties"))], values: {"Type": String((Path("/Resources/
apiGw/Type"), "AWS::ApiGateway::RestApi")), "Properties": Map((Path("/
Resources/apiGw/Properties"), MapValue { keys: [String((Path("/Resources/
apiGw/Properties/EndpointConfiguration"), "EndpointConfiguration"))],
 values: {"EndpointConfiguration": Map((Path("/Resources/apiGw/Properties/
EndpointConfiguration"), MapValue { keys: [String((Path("/Resources/apiGw/
Properties/EndpointConfiguration/Types"), "Types"))], values: {"Types":
 String((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types"),
 "PRIVATE"))} }))} }))} }))
 | Message: (DEFAULT: NO_MESSAGE)
 Conjunction(cfn_guard::rules::exprs::GuardClause, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Clause(Clause(Location[file:api_gateway_private.guard, line:22, column:5],
 Check: Properties.EndpointConfiguration.Types[*] EQUALS String("PRIVATE")), PASS)
 | Message: (DEFAULT: NO_MESSAGE)

The key observation from the output is the line
Clause(Location[file:api_gateway_private.guard, line:22,
column:5], Check: Properties.EndpointConfiguration.Types[*] EQUALS
String("PRIVATE")), PASS), which states that the check passed. The example also
showed the case where Types was expected to be an array, but a single value was given. In
that case, Guard continued to evaluate and provided a correct result.

9. Add a test case like the fourth test case to your unit testing file for an
AWS::ApiGateway::RestApi resource with the EndpointConfiguration property
specified. The test case will fail instead of pass. The following is the updated unit testing file.

#- name: MyTest1
input: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest2
input:
Resources: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest3
input:
Resources:

Walkthrough 73

AWS CloudFormation Guard User Guide

apiGw:
Type: AWS::ApiGateway::RestApi
expectations:
rules:
check_rest_api_is_private_and_has_access: FAIL
#- name: MyTest4
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
Properties:
EndpointConfiguration:
Types: "PRIVATE"
expectations:
rules:
check_rest_api_is_private: PASS
- name: MyTest5
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 Properties:
 EndpointConfiguration:
 Types: [PRIVATE, REGIONAL]
 expectations:
 rules:
 check_rest_api_is_private: FAIL

10. Run the test command with the updated unit testing file using the --verbose flag.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml \
 --verbose

The outcome is FAIL as expected because REGIONAL is specified for
EndpointConfiguration but is not expected.

Test Case #1
Name: "MyTest5"
 PASS Rules:
 check_rest_api_is_private: Expected = FAIL, Evaluated = FAIL
Rule(check_rest_api_is_private, FAIL)
 | Message: DEFAULT MESSAGE(FAIL)

Walkthrough 74

AWS CloudFormation Guard User Guide

 Condition(check_rest_api_is_private, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Clause(Clause(Location[file:api_gateway_private.guard, line:20, column:37],
 Check: %api_gws NOT EMPTY), PASS)
 | From: Map((Path("/Resources/apiGw"), MapValue { keys:
 [String((Path("/Resources/apiGw/Type"), "Type")), String((Path("/Resources/
apiGw/Properties"), "Properties"))], values: {"Type": String((Path("/Resources/
apiGw/Type"), "AWS::ApiGateway::RestApi")), "Properties": Map((Path("/
Resources/apiGw/Properties"), MapValue { keys: [String((Path("/Resources/
apiGw/Properties/EndpointConfiguration"), "EndpointConfiguration"))],
 values: {"EndpointConfiguration": Map((Path("/Resources/apiGw/Properties/
EndpointConfiguration"), MapValue { keys: [String((Path("/Resources/apiGw/
Properties/EndpointConfiguration/Types"), "Types"))], values: {"Types":
 List((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types"),
 [String((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types/0"),
 "PRIVATE")), String((Path("/Resources/apiGw/Properties/EndpointConfiguration/
Types/1"), "REGIONAL"))]))} }))} }))} }))
 | Message: DEFAULT MESSAGE(PASS)
 BlockClause(Block[Location[file:api_gateway_private.guard, line:21, column:3]],
 FAIL)
 | Message: DEFAULT MESSAGE(FAIL)
 Conjunction(cfn_guard::rules::exprs::GuardClause, FAIL)
 | Message: DEFAULT MESSAGE(FAIL)
 Clause(Clause(Location[file:api_gateway_private.guard, line:22,
 column:5], Check: Properties.EndpointConfiguration.Types[*] EQUALS
 String("PRIVATE")), FAIL)
 | From: String((Path("/Resources/apiGw/Properties/
EndpointConfiguration/Types/1"), "REGIONAL"))
 | To: String((Path("api_gateway_private.guard/22/5/Clause/"),
 "PRIVATE"))
 | Message: (DEFAULT: NO_MESSAGE)

The verbose output of the test command follows the structure of the rules file. Every block
in the rules file is a block in the verbose output. The top-most block is each rule. If there are
when conditions against the rule, they appear in a sibling condition block. In the following
example, the condition %api_gws !empty is tested and it passes.

rule check_rest_api_is_private when %api_gws !empty {

Once the condition passes, we test the rule clauses.

%api_gws {

Walkthrough 75

AWS CloudFormation Guard User Guide

 Properties.EndpointConfiguration.Types[*] == "PRIVATE"
}

%api_gws is a block rule that corresponds to the BlockClause level in the
output (line:21). The rule clauseis a set of conjunction (AND) clauses, where each
conjunction clause is a set of disjunctions (ORs). The conjunction has a single clause,
Properties.EndpointConfiguration.Types[*] == "PRIVATE". Therefore, the
verbose output shows a single clause. The path /Resources/apiGw/Properties/
EndpointConfiguration/Types/1 shows which values in the input are compared, which in
this case is the element for Types indexed at 1.

In Validating input data against Guard rules, you can use the examples in this section to use the
validate command to evaluate input data against rules.

Using input parameters with AWS CloudFormation Guard rules

AWS CloudFormation Guard allows you to use input parameters for dynamic data lookups during
validation. This feature is particularly useful when you need to reference external data in your
rules. However, when specifying input parameter keys, Guard requires that there are no conflicting
paths.

How to use

1. Use the --input-parameters or -i flag to specify files containing input parameters. Multiple
input parameter files can be specified and will be combined to form a common context. Input
parameter keys can not have conflicting paths.

2. Use the --data or -d flag to specify the actual template file to be validated.

Example usage

1. Create an input parameter file (For example, network.yaml):

NETWORK:
 allowed_security_groups: ["sg-282850", "sg-292040"]
 allowed_prefix_lists: ["pl-63a5400a", "pl-02cd2c6b"]

2. Reference these parameters in your guard rule file (For example, security_groups.guard):

Using input parameters with Guard rules 76

AWS CloudFormation Guard User Guide

let groups = Resources.*[Type == 'AWS::EC2::SecurityGroup']

let permitted_sgs = NETWORK.allowed_security_groups
let permitted_pls = NETWORK.allowed_prefix_lists
rule check_permitted_security_groups_or_prefix_lists(groups) {
 %groups {
 this in %permitted_sgs or
 this in %permitted_pls
 }
}

rule CHECK_PERMITTED_GROUPS when %groups !empty {
 check_permitted_security_groups_or_prefix_lists(
 %groups.Properties.GroupName
)
}

3. Create a failing data template (For example, security_groups_fail.yaml):

AWSTemplateFormatVersion: 2010-09-09
Description: CloudFormation - EC2 Security Group

Resources:
 mySecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupName: wrong

4. Run the validate command:

cfn-guard validate -r security_groups.guard -i network.yaml -d
 security_groups_fail.yaml

In this command:

• -r specifies the rule file.

• -i specifies the input parameter file.

• -d specifies the data file (template) to be validated.

Example usage 77

AWS CloudFormation Guard User Guide

Multiple input parameters

You can specify multiple input parameter files:

cfn-guard validate -r rules.guard -i params1.yaml -i params2.yaml -d template.yaml

All files specified with -i will be combined to form a single context for parameter lookup.

Validating input data against AWS CloudFormation Guard rules

You can use the AWS CloudFormation Guard validate command to validate data against Guard
rules. For more information about the validate command, including its parameters and options,
see validate.

Prerequisites

• Write Guard rules to validate your input data against. For more information, see Writing Guard
rules.

• Test your rules to ensure that they work as intended. For more information, see Testing Guard
rules.

Using the validate command

To validate your input data against your Guard rules, such as an AWS CloudFormation template,
run the Guard validate command. For the --rules parameter, specify the name of a rules file.
For the --data parameter, specify the name of the input data file.

cfn-guard validate --rules rules.guard --data template.json

If Guard successfully validates the templates, the validate command returns an exit status of 0
($? in bash). If Guard identifies a rule violation, the validate command returns a status report of
the rules that failed. Use the summary flag (-s all) to see the detailed evaluation tree that shows
how Guard evaluated each rule.

template.json Status = FAIL
SKIP rules
rules.guard/aws_apigateway_deployment_checks SKIP
rules.guard/aws_apigateway_stage_checks SKIP

Multiple input parameters 78

AWS CloudFormation Guard User Guide

rules.guard/aws_dynamodb_table_checks SKIP
PASS rules
rules.guard/aws_events_rule_checks PASS
rules.guard/aws_iam_role_checks PASS
FAILED rules
rules.guard/aws_ec2_volume_checks FAIL
rules.guard/mixed_types_checks FAIL

Evaluation of rules rules.guard against data template.json
--
Property [/Resources/vol2/Properties/Encrypted] in data [template.json] is not
 compliant with [rules.guard/aws_ec2_volume_checks] because provided value [false] did
 not match expected value [true]. Error Message []
Property traversed until [/Resources/vol2/Properties] in data [template.json] is not
 compliant with [rules.guard/aws_ec2_volume_checks] due to retrieval error. Error
 Message [Attempting to retrieve array index or key from map at path = /Resources/vol2/
Properties , Type was not an array/object map, Remaining Query = Size]
Property [/Resources/vol2/Properties/Encrypted] in data [template.json] is not
 compliant with [rules.guard/mixed_types_checks] because provided value [false] did not
 match expected value [true]. Error Message []
--
Rule [rules.guard/aws_iam_role_checks] is compliant for data [template.json]
Rule [rules.guard/aws_events_rule_checks] is compliant for data [template.json]
--
Rule [rules.guard/aws_apigateway_deployment_checks] is not applicable for data
 [template.json]
Rule [rules.guard/aws_apigateway_stage_checks] is not applicable for data
 [template.json]
Rule [rules.guard/aws_dynamodb_table_checks] is not applicable for data [template.json]

Validating multiple rules against multiple data files

To help maintain rules, you can write rules into multiple files and organize the rules as you want.
Then, you can validate multiple rule files against a data file or multiple data files. The validate
command can take a directory of files for the --data and --rules options. For example, you can
run the following command where /path/to/dataDirectory contains one or more data files
and /path/to/ruleDirectory contains one or more rules files.

cfn-guard validate --data /path/to/dataDirectory --rules /path/to/ruleDirectory

You can write rules to check whether various resources defined in multiple CloudFormation
templates have the appropriate property assignments to guarantee encryption at rest. For search

Validating multiple rules against multiple data files 79

AWS CloudFormation Guard User Guide

and maintenance ease, you can have rules for checking encryption at rest in each resource in
separate files, called s3_bucket_encryption.guard, ec2_volume_encryption.guard,
and rds_dbinstance_encrytion.guard in a directory with the path ~/GuardRules/
encryption_at_rest. The CloudFormation templates that you need to validate are in a directory
with the path ~/CloudFormation/templates. In this case, run the validate command as
follows.

cfn-guard validate --data ~/CloudFormation/templates --rules ~/GuardRules/
encryption_at_rest

Validating multiple rules against multiple data files 80

AWS CloudFormation Guard User Guide

Troubleshooting AWS CloudFormation Guard

If you encounter issues while working with AWS CloudFormation Guard, consult the topics in this
section.

Topics

• Clause fails when no resources of the selected type are present

• Guard does not evaluate CloudFormation template with short-form Fn::GetAtt references

• General troubleshooting topics

Clause fails when no resources of the selected type are present

When a query uses a filter like Resources.*[Type == 'AWS::ApiGateway::RestApi'], if
there are no AWS::ApiGateway::RestApi resources in the input, the clause evaluates to FAIL.

%api_gws.Properties.EndpointConfiguration.Types[*] == "PRIVATE"

To avoid this outcome, assign filters to variables and use the when condition check.

let api_gws = Resources.*[Type == 'AWS::ApiGateway::RestApi']
 when %api_gws !empty { ...}

Guard does not evaluate CloudFormation template with short-
form Fn::GetAtt references

Guard doesn't support the short forms of intrinsic functions. For example, using !Join, !Sub in a
YAML-formatted AWS CloudFormation template isn't supported. Instead, use the expanded forms
of CloudFormation intrinsic functions. For example, use Fn::Join, Fn::Sub in YAML-formatted
CloudFormation templates when evaluating them against Guard rules.

For more information about intrinsic functions, see the intrinsic function reference in the AWS
CloudFormation User Guide.

Clause fails when no resources of the selected type are present 81

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html

AWS CloudFormation Guard User Guide

General troubleshooting topics

• Verify that string literals don't contain embedded escaped strings. Guard doesn't support
embedded escape strings in string literals. If your intent is to parse inline JSON strings, use
the json_parse() function available in Guard 3.0.0 and later. For more information, see Using
built-in functions.

• Verify that your != comparisons compare compatible data types. For example, a string and
an int are not compatible data types for comparison. When performing != comparison, if
the values are incompatible, an error occurs internally. Currently, the error is suppressed and
converted to false to satisfy the PartialEq trait in Rust.

General troubleshooting topics 82

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard CLI parameters and
command reference

The following global parameters and commands are available through the AWS CloudFormation
Guard command line interface (CLI).

Topics

• Guard CLI global parameters

• parse-tree

• rulegen

• test

• validate

Guard CLI global parameters

You can use the following parameters with any AWS CloudFormation Guard CLI command.

-h, --help

Prints help information.

-V, --version

Prints version information.

parse-tree

Generates a parse tree for the AWS CloudFormation Guard rules defined in a rules file.

Syntax

cfn-guard parse-tree
--output <value>
--rules <value>

Guard CLI global parameters 83

AWS CloudFormation Guard User Guide

Parameters

-h, --help

Prints help information.

-p, --print-json

Prints the output in JSON format.

-y, --print-yaml

Prints the output in YAML format.

-V, --version

Prints version information.

Options

-o, --output

Writes the generated tree to an output file.

-r, --rules

Provides a rules file.

Examples

cfn-guard parse-tree --output output.json --rules rules.guard

rulegen

Takes a JSON- or YAML-formatted AWS CloudFormation template file and autogenerates a set
of AWS CloudFormation Guard rules that match the properties of the template resources. This
command is a useful way to get started with rule writing or to create ready-to-use rules from
known good templates.

Syntax

cfn-guard rulegen

Parameters 84

AWS CloudFormation Guard User Guide

--output <value>
--template <value>

Parameters

-h, --help

Prints help information.

-V, --version

Prints version information.

Options

-o, --output

Writes the generated rules to an output file. Given the potential for hundreds or even thousands of
rules to emerge, we recommend using this option.

-t, --template

Provides the path to a CloudFormation template file in JSON or YAML format.

Examples

cfn-guard rulegen --output rules.guard --template template.json

test

Validates an AWS CloudFormation Guard rules file against a Guard unit testing file in JSON or
YAML format to determine the success of individual rules.

Syntax

cfn-guard test
--rules-file <value>
--test-data <value>

Parameters 85

AWS CloudFormation Guard User Guide

Parameters

-a, --alphabetical

Sort alphabetically inside a directory.

-h, --help

Prints help information.

-m, --last-modified

Sorts by last-modified times within a directory

-V, --version

Prints version information.

-v, --verbose

Increases the output verbosity. Can be specified multiple times.

The verbose output follows the structure of the Guard rules file. Every block in the rules file is a
block in the verbose output. The top-most block is each rule. If there are when conditions against
the rule, they appear as a sibling condition block.

Options

-d, --dir

Provide the root directory for rules.

-o, --output-format

Specify the format in which the output should be displayed.

Default: single-line-summary

Allowed values: json | yaml | single-line-summary | junit

-r, --rules-file

Provides the name of a rules file.

Parameters 86

AWS CloudFormation Guard User Guide

-t, --test-data

Provides the name of a file or directory for data files in either JSON or YAML format.

Examples

cfn-guard test --rules-file rules.guard --test-data example.json

Output

PASS|FAIL Expected Rule = rule_name, Status = SKIP|FAIL|PASS, Got Status = SKIP|FAIL|
PASS

See also

Testing Guard rules

validate

Validates data against AWS CloudFormation Guard rules to determine success or failure.

Syntax

cfn-guard validate
--data <value>
--output-format <value>
--rules <value>
--show-summary <value>
--type <value>

Parameters

-a, --alphabetical

Validates files in a directory that is ordered alphabetically.

-h, --help

Prints help information.

Examples 87

AWS CloudFormation Guard User Guide

-m, --last-modified

Validates files in a directory that is ordered by last-modified times.

-P, --payload

Provide rules and data in the following JSON format via stdin:

{"rules":["<rules 1>", "<rules 2>", ...], "data":["<data 1>", "<data 2>", ...]}

For example:

{"data": ["{\"Resources\":{\"NewVolume\":{\"Type\":\"AWS::EC2::Volume\",\"Properties
\":{\"Size\":500,\"Encrypted\":false,\"AvailabilityZone\":\"us-west-2b\"}},
\"NewVolume2\":{\"Type\":\"AWS::EC2::Volume\",\"Properties\":{\"Size\":50,\"Encrypted
\":false,\"AvailabilityZone\":\"us-west-2c\"}}},\"Parameters\":{\"InstanceName\":
\"TestInstance\"}}","{\"Resources\":{\"NewVolume\":{\"Type\":\"AWS::EC2::Volume\",
\"Properties\":{\"Size\":500,\"Encrypted\":false,\"AvailabilityZone\":\"us-west-2b\"}},
\"NewVolume2\":{\"Type\":\"AWS::EC2::Volume\",\"Properties\":{\"Size\":50,\"Encrypted
\":false,\"AvailabilityZone\":\"us-west-2c\"}}},\"Parameters\":{\"InstanceName
\":\"TestInstance\"}}"], "rules" : ["Parameters.InstanceName == \"TestInstance
\"","Parameters.InstanceName == \"TestInstance\""]}

For "rules", specify a list of string version of rules files. For "data", specify a list of string version of
data files.

When --payload is specified --rules and --data cannot be specified.

-p, --print-json

Prints the output in JSON format.

-s, --show-clause-failures

Shows clause failure including a summary.

-V, --version

Prints version information.

-v, --verbose

Increases the output verbosity. Can be specified multiple times.

Parameters 88

AWS CloudFormation Guard User Guide

-z, --structured

Prints out a list of structured and valid JSON/YAML. This argument conflicts with the following
arguments: verbose, print-json, show-summary: all/fail/pass/skip, output-format: single-line-
summary

Options

-d, --data (string)

Provides a data file or directory of data files in JSON or YAML. Supports passing multiple values by
using this option repeatedly.

Example: --data template1.yaml --data ./data-dir1 --data template2.yaml

For directory arguments such as data-dir1 above, scanning is only supported for files with
following extensions: .yaml, .yml, .json, .jsn, .template

If you specify the --payload flag, don't specify the --data option.

-i, --input-parameters (string)

Provides a parameter file or directory of parameter files in JSON or YAML that specifies any
additional parameters to use along with data files to be used as a combined context. All the
parameter files passed as input get merged and this combined context is again merged with
each file passed as an argument for data. Due to this, every file is expected to contain mutually
exclusive properties, without any overlap. Supports passing multiple values by using this option
repeatedly.

For directory arguments, scanning is only supported for files with following
extensions: .yaml, .yml, .json, .jsn, .template

-o, --output-format (string)

Specifies the format for the output.

Default: single-line-summary

Allowed values: json | yaml | single-line-summary | junit | sarif

-r, --rules (string)

Options 89

AWS CloudFormation Guard User Guide

Provides a rules file or a directory of rules files. Supports passing multiple values by using this
option repeatedly.

Example: --rules rule1.guard --rules ./rules-dir1 --rules rule2.guard

For directory arguments such as rules-dir1 above, scanning is only supported for files with
following extensions: .guard, .ruleset

If you specify the --payload flag, do not specify the --rules option.

--show-summary (string)

Controls if the summary table needs to be displayed. --show-summary fail (default) or --
show-summary pass,fail (only show rules that did pass/fail) or --show-summary none (to
turn it off) or --show-summary all (to show all the rules that pass, fail or skip).

Default: fail

Allowed values: none | all | pass | fail | skip

-t, --type (string)

Provides the format of your input data. When you specify the input data type, Guard displays the
logical names of CloudFormation template resources in the output. By default, Guard displays
property paths and values, such as Property [/Resources/vol2/Properties/Encrypted.

Allowed values: CFNTemplate

Example

cfn-guard validate --data example.json --rules rules.guard

Output

If Guard successfully validates the templates, the validate command returns an exit status of 0
($? in bash). If Guard identifies a rule violation, the validate command returns a status report of
the rules that failed.

example.json Status = FAIL
FAILED rules
rules.guard/policy_effect_is_deny FAIL

Example 90

AWS CloudFormation Guard User Guide

Evaluation of rules rules.guard against data example.json
--
Property [/path/to/Effect] in data [example.json] is not compliant with
 [policy_effect_is_deny] because provided value ["Allow"] did not match expected value
 ["Deny"]. Error Message [Policy statement "Effect" must be "Deny".]

See also

• Validating input data against Guard rules

• Using input parameters with Guard rules

See also 91

AWS CloudFormation Guard User Guide

Security in AWS CloudFormation Guard

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Guard, see AWS
Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations

The following documentation helps you understand how to apply the shared responsibility model
when installing Guard as an AWS Lambda function (cfn-guard-lambda):

• Security in the AWS Command Line Interface User Guide

• Security in the AWS Lambda Developer Guide

• Security in the AWS Identity and Access Management User Guide

92

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/cli/latest/userguide/security.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security.html

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard Document history

The following table describes the documentation releases for AWS CloudFormation Guard.

• Latest documentation update: July 30, 2025

• Latest version: 3.1.2

Change Description Date

Documentation update Updated Guard CLI command
reference documentation to
align with current implement
ation. Version references
updated to Guard 3.1.2.

July 30, 2025

Version 3.0.0 release Version 3.0.0 introduces the
following improvements:

• Introduction and installat
ion topics updated for
release of Guard 3.0.0.

• Added installation instructi
ons for Homebrew and
Chocolatey.

• Information related to
migrating Guard rules
updated to reflect changes
in Guard version 3.0.0.

• Added a prominent link to
the AWS CloudFormation
Guard GitHub repository.

June 30, 2023

Version 2.1.3 release Version 2.1.3 introduces the
following improvements:

June 9, 2023

93

AWS CloudFormation Guard User Guide

Information on Guard 2.1.3
enhancements has been
added. References to Guard
2.0 have been updated to
Guard 2.1.3.

Version 2.0.4 release Version 2.0.4 introduces the
following improvements:

The --payload flag was
added to the validate
command.

For more information, see
validate in the Guard CLI
reference.

October 19, 2021

Version 2.0.3 release Version 2.0.3 introduces the
following improvements:

• You can provide test names
for each test in your unit
testing file. For more
information, see Testing
Guard rules.

• The following options were
added to the validate
command:

• --output-format

• --show-summary

• --type

For more information, see
validate in the Guard CLI
reference.

July 27, 2021

94

AWS CloudFormation Guard User Guide

Initial release Initial release of the AWS
CloudFormation Guard User
Guide.

July 15, 2021

95

AWS CloudFormation Guard User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

96

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS CloudFormation Guard
	Table of Contents
	What is AWS CloudFormation Guard?
	Are you a first-time Guard user?
	Guard features
	Using Guard with CloudFormation Hooks
	Accessing Guard
	Best practices

	Setting up AWS CloudFormation Guard
	Installing Guard for Linux and macOS
	Install Guard from a pre-built release binary
	Install Guard from Cargo
	Install Guard from Homebrew

	Installing Guard for Windows
	Prerequisites
	Install Guard from Cargo
	Install Guard from Chocolatey

	Installing Guard as an AWS Lambda function
	Prerequisites
	Install the Rust package manager
	Install Guard as a Lambda function (Linux, macOS, or Unix)
	To build and run Guard as a Lambda function
	To call the Lambda function request structure

	Prerequisites and overview for using Guard rules
	Prerequisites
	Overview of using Guard rules
	Writing AWS CloudFormation Guard rules
	Clauses
	Syntax for writing Guard rule clauses
	Properties of Guard rule clauses

	Using queries in clauses
	Using operators in clauses
	Examples of clauses that use unary operators
	Examples of clauses that use binary operators

	Using custom messages in clauses
	Combining clauses
	Using blocks with Guard rules
	Query blocks
	when blocks
	Named-rule blocks

	Using built-in functions
	Key functions

	Defining Guard queries and filtering
	Prerequisites
	Defining queries
	Assigning queries to variables
	Directly looping through values from a variable assigned to a query
	Direct clause-level comparisons
	Single clause and block clause form

	Query outcomes and associated clauses
	Using filters in queries
	Using clauses for selection criteria
	Building out more complex filtering needs
	Separating collections based on their contained types

	Assigning and referencing variables in Guard rules
	Assigning variables
	Referencing variables
	Variable scope
	Examples of variables in Guard rules files
	Static assignment
	Dynamic assignment
	Enforcing AWS CloudFormation template configuration

	Composing named-rule blocks in AWS CloudFormation Guard
	Prerequisites
	Conditional dependency composition
	Correlational dependency composition

	Writing clauses to perform context-aware evaluations
	Understanding context in evaluations
	Understanding loops
	Arrays
	Using the form spec.containers[*] instead of spec.containers
	Using this to reference the current context value
	Potential errors with the usage of implicit this
	Resolving errors with the implicit use of this

	Testing AWS CloudFormation Guard rules
	Prerequisites
	Overview of Guard unit testing files
	Syntax
	Properties

	Walkthrough of writing a Guard rules unit testing file

	Using input parameters with AWS CloudFormation Guard rules
	How to use
	Example usage
	Multiple input parameters

	Validating input data against AWS CloudFormation Guard rules
	Prerequisites
	Using the validate command
	Validating multiple rules against multiple data files

	Troubleshooting AWS CloudFormation Guard
	Clause fails when no resources of the selected type are present
	Guard does not evaluate CloudFormation template with short-form Fn::GetAtt references
	General troubleshooting topics

	AWS CloudFormation Guard CLI parameters and command reference
	Guard CLI global parameters
	parse-tree
	Syntax
	Parameters
	Options
	Examples

	rulegen
	Syntax
	Parameters
	Options
	Examples

	test
	Syntax
	Parameters
	Options
	Examples
	Output
	See also

	validate
	Syntax
	Parameters
	Options
	Example
	Output
	See also

	Security in AWS CloudFormation Guard
	AWS CloudFormation Guard Document history
	AWS Glossary

