
AWS CloudFormation Command Line Interface (CLI) User Guide

Extension Development for
CloudFormation

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Extension Development for CloudFormation: AWS CloudFormation
Command Line Interface (CLI) User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Table of Contents

What is the CloudFormation Command Line Interface (CFN-CLI)? ... 1
Setting up your development environment ... 1

Setting up your environment ... 2
Upgrading to CFN-CLI 2.0 ... 3

Creating resource types .. 6
Using the CloudFormation CLI to create resource type ... 6
Modeling resource types ... 8

Defining property attributes ... 9
How to define a minimal resource .. 9
Defining the account-level configuration of an extension ... 10
Resource type schema ... 13
Patterns for modeling resources ... 26
Preventing false drift results .. 29

Developing resource types ... 31
Implementing resource handlers ... 32
Monitoring runtime logging for resource types ... 33
Testing resource types ... 33
Progress chaining, stabilization, and callback pattern .. 60

Walkthrough: Develop a resource type ... 66
Prerequisites ... 67
Create the resource type development project .. 67
Model the resource type ... 67
Implement the Resource handler .. 71
Test the resource type ... 97
Submit the resource type ... 104
Provision the resource in a CloudFormation stack .. 106

Resource type FAQ .. 107
Updates ... 107
Schema development .. 107
Permissions and authorization .. 108
Resource type development ... 109
Testing ... 109
Deployment .. 112

Developing modules .. 113

iii

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Module structure .. 114
Creating the template fragment ... 114
Generating the module schema .. 119
Publishing requirements ... 119

Develop a module ... 121
Hooks User Guide .. 123
Updating Lambda runtimes for resource types and hooks ... 124

Upgrading the Java runtime ... 124
Upgrading the Go runtime .. 125
Upgrading the Python runtime .. 127
Upgrading the Node.js runtime .. 129

Registering extensions .. 131
Registering extensions using the submit command ... 131

To enable activated Hooks ... 132
Resource type provisioning .. 132
Extension versions and scope ... 132
Deregistering extensions and extension versions ... 132

Publishing extensions ... 134
Developing a public extension .. 134
Registering as a publisher .. 135
Testing your public extension ... 136
Publishing your public extension ... 137

Versioning your public extension .. 137
Open-sourcing your public extension project .. 138

Publishing your extension in multiple Regions using StackSets .. 138
Prerequisites for using StackSets .. 138
Using StackSets to publish in multiple Regions for the first time ... 139
Using StackSets to update already published extensions .. 142

CloudFormation CLI reference .. 143
Global parameters ... 143
init ... 143

Description ... 143
Synopsis .. 144
Options ... 144
Output ... 144

generate ... 144

iv

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Description ... 144
Synopsis .. 144
Examples ... 144
Output ... 145

validate ... 145
Description ... 145
Synopsis .. 145
Examples ... 145

invoke ... 145
Description ... 145
Synopsis .. 145
Options ... 146

test .. 146
Description ... 146
Synopsis .. 147
Options ... 147
Examples ... 148

submit ... 149
Description ... 149
Synopsis .. 150
Options ... 150
Examples ... 151
Output ... 151

Document history .. 152
AWS Glossary ... 154

v

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

What is the CloudFormation Command Line Interface
(CFN-CLI)?

The CloudFormation Command Line Interface (CFN-CLI) is an open-source tool that enables you to
develop and test AWS and third-party extensions, such as resource types or modules, and register
them for use in AWS CloudFormation. The CloudFormation CLI provides a consistent way to model
and provision both AWS and third-party extensions through CloudFormation. The CloudFormation
CLI includes commands to manage each step of creating your extensions. For more information
about CloudFormation CLI commands see, CloudFormation CLI reference.

An extension is an artifact, registered in the CloudFormation registry, which augments the
functionality of CloudFormation in a native manner. Extensions are registered by AWS, AWS
Partner Network, AWS Marketplace sellers, and the developer community.

You can use the CloudFormation CLI to register extensions – both those you create yourself,
in addition to ones shared with you – with the CloudFormation registry. Extensions enable
CloudFormation capabilities to create, provision, and manage these custom types in a safe
and repeatable manner, just as you would any AWS resource. For more information about the
CloudFormation registry, see Using the CloudFormation registry in the CloudFormation User Guide.

Setting up your environment for developing extensions

Before you can develop extensions, you'll need to set up your developer environment, including the
CloudFormation CLI.

Currently, plugins are available for the following languages:

• Go

• Java

• Python

• TypeScript

Or, if you're using another language, you can install the CloudFormation CLI directly.

Setting up your development environment 1

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Setting up your environment

Prerequisites

• Python version 3.6 or above.

• CloudFormation CLI command reference for access to aws cloudformation commands.

• Your choice of IDE.

The Walkthrough: Develop a resource type walkthrough uses the Community Edition of the
IntelliJ IDEA.

• AWS Serverless Application Model Command Line Interface (AWS SAM CLI).

Note

Installing the AWS SAM CLI requires Docker as a prerequisite for testing your resource
type locally.

Installing the CloudFormation CLI

The CloudFormation CLI can be installed using pip from the Python Package Index (PyPI).

• Resource – Requires at least one language plugin.

• Module – Language plugins aren't required.

• Hook – Requires at least one language plugin.

The language plugins are also available on PyPI. Use the following command to install all the
language plugins at once.

$ pip install cloudformation-cli cloudformation-cli-java-plugin cloudformation-cli-go-
plugin cloudformation-cli-python-plugin cloudformation-cli-typescript-plugin

(macOS) Installing CloudFormation CLI

Install Homebrew

1. Install Homebrew, an open-source package manager for macOS. You'll use Homebrew to
install additional development requirements.

Setting up your environment 2

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cli.html
https://www.jetbrains.com/idea/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install-mac.html
https://pypi.org/
https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/what-is-cloudformation-hooks.html
https://brew.sh/

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

2. Use Homebrew to install Python and the CloudFormation Command Line Interface (CFN-CLI).

$ brew update
$ brew install cloudformation-cli

Installing the CloudFormation CLI and plugins

Use the Python Package Index (PyPI) to install the development plugin for the language of your
choice. Installing any of the plugins listed below also installs the CloudFormation CLI. For full
installation instructions, refer to the appropriate plugin repository.

Available Language Plugins

Language Plugin status GitHub location PyPI installation

Go General availability cloudformation-cli-
go-plugin

pip install
cloudformation-
cli-go-plugin

Java General availability cloudformation-cli-
java-plugin

pip install
cloudformation-
cli-java-plu
gin

Python General availability cloudformation-cli-
python-plugin

pip install
cloudformation-
cli-python-p
lugin

TypeScript General availability cloudformation-cli-
typescript-plugin

pip install
cloudformation-
cli-typescri
pt-plugin

Upgrading to CFN-CLI 2.0

If you have developed resource types using the CFN-CLI 1.0, we suggest you update to CFN-CLI
2.0 and rebuild those types. Upgrading involves updating the CloudFormation CLI, in addition to

Upgrading to CFN-CLI 2.0 3

https://github.com/aws-cloudformation/cloudformation-cli-go-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-go-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-java-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-java-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-python-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-python-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-typescript-plugin/
https://github.com/aws-cloudformation/cloudformation-cli-typescript-plugin/

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

any language plugins you are using, but doesn't require any changes to your resource type solution
itself.

Enhancements in CFN-CLI 2.0 include:

• Increased resource payload limit, from 8 KB to 6 MB.

• Increased resource stabilization time, from 12 hours to 36 hours, or 48 hours if you are using a
stack role to consume the resource.

• Improved resource stability, with improved retry strategy and fail-fast.

To upgrade CFN-CLI 2.0 and the CloudFormation Provider Development Toolkit Go Plugin

1. Upgrade the Go Plugin using the following command:

$ pip3 install --upgrade cloudformation-cli-go-plugin

2. Update the Go plugin in the go.mod file.

$ go get -u github.com/aws-cloudformation/cloudformation-cli-go-plugin

3. To update a resource type to use the CFN-CLI 2.0, build and register a new version of the
resource using the following command:

$ make
$ cfn submit --set-default

To upgrade CFN-CLI 2.0 and the CloudFormation Provider Development Toolkit Java Plugin

1. Upgrade the Java Plugin using the following command:

$ pip3 install --upgrade cloudformation-cli-java-plugin

2. Update Java plugin in maven pom.xml to 2.0.0.

<dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-rpdk-java-plugin</artifactId>
 <version>2.0.0</version>
</dependency>

Upgrading to CFN-CLI 2.0 4

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

3. To update a resource type to use the CFN-CLI 2.0, build and register a new version of the
resource using the following command:

$ mvn package
$ cfn submit --set-default

To upgrade CFN-CLI 2.0 and the CloudFormation Provider Development Toolkit Python Plugin

1. Upgrade the Python Plugin using the following command:

$ pip3 install cloudformation-cli-python-plugin

2. To update a resource type to use the CFN-CLI 2.0, build and register a new version of the
resource using the following command:

$ cfn submit --set-default

Upgrading to CFN-CLI 2.0 5

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Creating resource types

If you use third-party resources in your infrastructure and applications, you can now model and
automate those resources by developing them as resource types for use within CloudFormation. A
resource type includes a resource type specification and handlers that control API interactions with
the underlying AWS or third-party services. These interactions include create, read, update, delete,
and list (CRUDL) operations for resources. Use resource types to model and provision resources
using CloudFormation.

Resource types are treated as first-class citizens within AWS CloudFormation: you can use AWS
CloudFormation capabilities to create, provision, and manage these custom resources in a safe
and repeatable manner, just as you would any AWS resource. Using resource types for third-party
resources provides you a way to reliably manage these resources using a single tool, without having
to resort to time-consuming and error-prone methods like manual configuration or custom scripts.

You can create resource types and make them available for use within the AWS account in which
they're registered.

Note

Make sure your Lambda runtimes are up-to-date to avoid using a deprecated version. For
more information, see Updating Lambda runtimes for resource types and hooks.

Using the CloudFormation CLI to create resource types

Use the CloudFormation Command Line Interface (CLI) to develop your resource types. The
CloudFormation CLI is an open-source project that provides a consistent way to model and
provision both AWS and third-party resources using CloudFormation. It includes commands to
enable each step of creating your resource types.

There are three major steps in developing resource types:

• Model

Create and validate a schema that serves as the canonical definition of your resource type.

Use the init command to generate your resource project, including an example resource
schema. Edit the example schema to define the actual model of your resource type. This includes

Using the CloudFormation CLI to create resource type 6

https://github.com/aws-cloudformation/aws-cloudformation-rpdk

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

resource properties and their attributes, as well specifying resource event handlers and any
permissions needed for each.

As you iterate on your resource model, you can use the validate command to validate your
schema against the Resource type definition schema and fix any issues.

• Develop

Add logic that controls what happens to the resource at each stage in its lifecycle, and then test
the resource locally to ensure it works as expected.

Implement the resource provisioning actions that the CloudFormation CLI stubbed out when you
initially generated your resource project.

If you make changes to your resource schema, use the generate command to generate the
language-specific data model, contract test, and unit test stubs based on the current state of
the resource schema. (If you use the Java add-in for the CloudFormation CLI, this is done for you
automatically.)

When you're ready to test the resource behavior, the CloudFormation CLI provides two
commands for testing:

• Use the invoke command to test a single handler.

• Use the test command to run the entire suite of resource contract tests locally, using the AWS
SAM Command Line Interface (SAM CLI), to make sure the handlers you've written comply with
expected handler behavior at each stage of the resource lifecycle.

• Register

Register the resource type with the CloudFormation registry in order to make it available for use
in CloudFormation templates.

Use the submit command to register the resource type with CloudFormation and make it
available for use in CloudFormation operations. Registration includes:

• Validating the resource schema.

• Packaging up the resource project files and uploading them to CloudFormation.

• Registering the resource definition in your account, in the specified Region.

You can register multiple versions of a resource type, and specify which version you want users
to use by default.

Using the CloudFormation CLI to create resource type 7

https://github.com/aws-cloudformation/aws-cloudformation-rpdk/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Modeling resource types for use in AWS CloudFormation

The first step in creating a resource type is modeling that resource, which involves crafting a
schema that defines the resource, its properties, and their attributes. When you initially create your
resource type project using the CloudFormation CLI init command, one of the files created is
an example resource schema. Use this schema file as a starting point for defining the shape and
semantics of your resource type.

Note

When naming your extension, we recommend that you don't use the following
namespaces: aws, amzn, alexa, amazon, awsquickstart. CloudFormation doesn't block
private registration using cfn submit for types whose names include these namespaces,
but you won't be able to publish these types.

In order to be considered valid, your resource type's schema must adhere to the Resource type
definition schema. This meta-schema provides a means of validating your resource specification
during resource development.

The Resource Type Definition Schema is a meta-schema that extends draft-07 of the JSON Schema.
To simplify authoring resource specifications, the Resource Type Definition Schema constrains the
scope of the full JSON Schema standard in terms of how certain validations can be expressed, and
encourages consistent modeling for all resource schemas. (For full details on how the Resource
Type Definition Schema differs from the full JSON schema, see Divergence From JSON Schema.)

Once you have defined your resource schema, you can use the CloudFormation CLI validate
command to verify that the resource schema is valid.

In terms of testing, the resource schema also determines:

• What unit test stubs are generated in your resource package, and what contract tests are
appropriate to run for the resource. When you run the CloudFormation CLI generate
command, the CloudFormation CLI generates empty unit tests based on the properties of the
resource and their attributes.

• Which contract tests are appropriate for CloudFormation CLI to run for your resources. When you
run the test command, the CloudFormation CLI runs the appropriate contract tests, based on
which handlers are included in your resource schema.

Modeling resource types 8

https://github.com/aws-cloudformation/aws-cloudformation-rpdk/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json
https://github.com/aws-cloudformation/aws-cloudformation-rpdk/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json
https://json-schema.org/draft-07/json-schema-release-notes.html
https://json-schema.org/
https://github.com/aws-cloudformation/aws-cloudformation-resource-schema/blob/master/README.md#divergence-from-json-schema

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Note

Make sure your Lambda runtimes are up-to-date to avoid using a deprecated version. For
more information, see Updating Lambda runtimes for resource types and hooks.

Defining property attributes

Certain properties of a resource may have special meaning when used in different contexts. For
example, a given resource property may be read-only when read back for state changes, but can
be specified when used as the target of a $ref from a related resource. Because of this semantic
difference in how this property metadata should be interpreted, certain property attributes are
defined at the resource level, rather than at a property level.

These attributes include:

• primaryIdentifier

• additionalIdentifiers

• createOnlyProperties

• readOnlyProperties

• writeOnlyProperties

For reference information on resource schema elements, see Resource type schema.

How to define a minimal resource

The example below displays a minimal resource type definition. In this case, the resource consists
of a single optional property, Name, which is also specified as its primary (and only) identifier.

Note that this resource schema would require a handlers section with the create, read,
and update handlers specified in order for the resource to actually be provisioned within a
CloudFormation account.

{
 "typeName": "myORG::myService::myResource",
 "properties": {
 "Name": {
 "description": "The name of the resource.",

Defining property attributes 9

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "type": "string",
 "pattern": "^[a-zA-Z0-9_-]{0,64}$",
 "maxLength": 64
 }
 },
 "createOnlyProperties": [
 "/properties/Name"
],
 "identifiers": [
 [
 "/properties/Name"
]
],
 "additionalProperties": false
}

Defining the account-level configuration of an extension

There might be cases where your extension includes properties that the user must specify for
all instances of the extension in a given account and Region. In such cases, you can define those
properties in a configuration definition that the user then sets at the Region level. For example, if
your extension needs to access a third-party web service, you can include a configuration for the
user to specify their credentials for that service.

When the user sets the configuration, CloudFormation validates it against the configuration
definition, and then saves this information at the Region level. From then on, CloudFormation can
access that configuration during operations involving any instances of that extension in the Region.
Configurations are available to CloudFormation during all resource operations, including read and
list events that don't explicitly involve a stack template.

Note

Configuration definitions aren't compatible with module extensions.

Your configuration definition must validate against the provider configuration definition meta-
schema.

The CloudFormation property name is reserved, and can't be used to define any properties in
your configuration definition.

Defining the account-level configuration of an extension 10

https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/data/schema/provider.configuration.definition.schema.v1.json
https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/data/schema/provider.configuration.definition.schema.v1.json

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Use the typeConfiguration element of the provider definition meta-schema to include the
configuration definition as part of your extension's schema.

Important

It's strongly recommended that you use dynamic references to restrict sensitive
configuration definitions, such as third-party credentials, as in the example below. For more
details on dynamic references, see Using dynamic references to specify template values in
the AWS CloudFormation User Guide.

Example: Defining a configuration definition to specify third-party credentials

The following example illustrates how you might model third-party credentials in an extension.
The schema below for the MyOrg::MyService::Resource resource type includes a
typeConfiguration section. The configuration definition includes a required property,
ServiceCredentials, of type Credentials. As defined in the definitions section, the
Credentials type includes two properties for the user to specify their credentials for a third-
party service: ApiKey and ApplicationKey.

In this example, both properties must be dynamic references, as represented by the regex pattern
for each property. By using dynamic references here, CloudFormation never stores the actual
credential values, but instead retrieves them from AWS Secrets Manager or Systems Manager
Parameter Store only when necessary. For more information about dynamic references, including
how CloudFormation distinguishes which service to retrieve values from, see Using dynamic
references to specify template values in the AWS CloudFormation User Guide.

To see how users set configuration data for their extensions, see Configuring extensions at the
account level in the AWS CloudFormation User Guide.

{
 "typeName": "MyOrg::MyService::Resource",
 "description": "Example resource type that requires third-party credentials",
 "additionalProperties": false,
 "typeConfiguration": {
 "properties": {
 "ServiceCredentials": {
 "$ref": "#/definitions/Credentials"
 }
 },

Defining the account-level configuration of an extension 11

https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-register.html#registry-set-configuration
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-register.html#registry-set-configuration

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "additionalProperties": false,
 "required": [
 "ServiceCredentials"
]
 },
 "definitions": {
 "Credentials": {
 "type": "object",
 "properties": {
 "ApiKey": {
 "description": "Third-party API key",
 "type": "string",
 "pattern": "{{resolve:.*:[a-zA-Z0-9_.-/]+}}"
 },
 "ApplicationKey": {
 "description": "Third-party application key",
 "type": "string",
 "pattern": "{{resolve:.*:[a-zA-Z0-9_.-/]+}}"
 }
 },
 "additionalProperties": false
 }
 },
 "properties": {
 "Id": {
 "type": "string"
 },
 "Name": {
 "type": "string"
 }
 },
 "primaryIdentifier": [
 "/properties/Id"
],
 "additionalIdentifiers": [
 ["/properties/Name"]
],
 "handlers": {
 }
}

Defining the account-level configuration of an extension 12

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Resource type schema

To be considered valid, your resource type's schema must adhere to the Resource provider
definition schema. This meta-schema provides a means of validating your resource specification
during resource development.

Syntax

Below is the structure for a typical resource type schema. For the complete meta-schema
definition, see the Resource Provider Definition Schema on GitHub.

{
 "typeName": "string",
 "description": "string",
 "sourceUrl": "string",
 "documentationUrl": "string",
 "replacementStrategy": "create_then_delete" | "delete_then_create",
 "taggable": true | false,
 "tagging": {
 "taggable": true | false,
 "tagOnCreate": true | false,
 "tagUpdatable": true | false,
 "cloudFormationSystemTags": true | false,
 "tagProperty": "json-pointer",
 },
 "definitions": {
 "definitionName": {
 . . .
 }
 },
 "properties": {
 "propertyName": {
 "description": "string",
 "type": "string",
 . . .
 },
 },
 },
 "required": [
 "propertyName"
],
 "propertyTransform": {
 {

Resource type schema 13

https://github.com/aws-cloudformation/aws-cloudformation-rpdk/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json
https://github.com/aws-cloudformation/aws-cloudformation-rpdk/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json
https://github.com/aws-cloudformation/aws-cloudformation-rpdk/blob/master/src/rpdk/core/data/schema/provider.definition.schema.v1.json
https://github.com

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "/properties/propertyName": "transform"
 }
 },
 "handlers": {
 "create": {
 "permissions": [
 "permission"
],
 "timeoutInMinutes": integer
 },
 "read": {
 "permissions": [
 "permission"
],
 "timeoutInMinutes": integer
 },
 "update": {
 "permissions": [
 "permission"
],
 "timeoutInMinutes": integer
 },
 "delete": {
 "permissions": [
 "permission"
],
 "timeoutInMinutes": integer
 },
 "list": {
 "permissions": [
 "permission"
],
 "timeoutInMinutes": integer
 }
 },
 "readOnlyProperties": [
 "/properties/propertyName"
],
 "writeOnlyProperties": [
 "/properties/propertyName"
],
 "conditionalCreateOnlyProperties": [
 "/properties/propertyName"
],

Resource type schema 14

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "nonPublicProperties": [
 "/properties/propertyName"
],
 "nonPublicDefinitions": [
 "/properties/propertyName"
],
 "createOnlyProperties": [
 "/properties/propertyName"
],
 "deprecatedProperties": [
 "/properties/propertyName"
],
 "primaryIdentifier": [
 "/properties/propertyName"
],
 "additionalIdentifiers": [
 "/properties/propertyName"
],
 "typeConfiguration": {
 . . .
 },
 "resourceLink": {
 "templateUri": "string",
 "mappings": "json-pointer"
 },
}

Properties

typeName

The unique name for your resource. Specifies a three-part namespace for your resource, with a
recommended pattern of Organization::Service::Resource.

Note

The following organization namespaces are reserved and can't be used in your resource
type names:

• Alexa

• AMZN

• Amazon

Resource type schema 15

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• ASK

• AWS

• Custom

• Dev

Required: Yes

Pattern: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

description

A short description of the resource. This will be displayed in the AWS CloudFormation console.

Required: Yes

sourceUrl

The URL of the source code for this resource, if public.

documentationUrl

The URL of a page providing detailed documentation for this resource.

Note

While the resource schema itself should include complete and accurate property
descriptions, the documentationURL property enables you to provide users with
documentation that describes and explains the resource in more detail, including
examples, use cases, and other detailed information.

replacementStrategy

The order of replacement when a resource update necessitates replacing the existing
resource with a new resource. For example, updating a resource property that is listed in
createonlyProperties results in a new resource being created to replace the existing
resource.

By default, when updating a resource that requires replacement, AWS CloudFormation first
creates the new resource, and then delete the old resource. However, some resources can only

Resource type schema 16

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

exist one at a time in a given account/region. For these resources, this attribute can be used to
instruct AWS CloudFormation to delete the existing resource before creating its replacement.

For more information on how resources are updated, see Update behaviors of stack resources in
the AWS CloudFormation User Guide.

Valid values: create_then_delete | delete_then_create

taggable

Deprecated. Use the tagging element instead.

tagging

Contains properties that specify the resource type's support for tags.

If your resource type does not support tagging, you must set taggable to false or your
resource type will fail contract testing.

taggable

Whether this resource type supports tagging.

If your resource type does not support tagging, you must set taggable to false or your
resource type will fail contract testing.

The default is true.

tagOnCreate

Whether this resource type supports tagging resources upon creation.

The default is true.

tagUpdatable

Whether this resource type supports updating tags during resource update operations.

The default is true.

cloudFormationSystemTags

Whether this resource type supports CloudFormation system tags.

The default is true.

Resource type schema 17

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

tagProperty

A reference to where you have defined the Tags property in this resource type schema.

The default is /properties/Tags.

definitions

Use the definitions block to provide shared resource property schemas.

It's considered a best practice is to use the definitions section to define schema elements
that may be used at multiple points in your resource type schema. You can then use a JSON
pointer to reference that element at the appropriate places in your resource type schema.

properties

The properties of the resource.

All properties of a resource must be expressed in the schema. Arbitrary inputs aren't allowed. A
resource must contain at least one property.

Nested properties are not allowed. Instead, define any nested properties in the definitions
element, and use a $ref pointer to reference them in the desired property.

Required: Yes

propertyName

insertionOrder

For properties of type array, set to true to specify that the order in which array items
are specified must be honored, and that changing the order of the array will indicate a
change in the property.

The default is true.

dependencies

Any properties that are required if this property is specified.

patternProperties

Use to specify a specification for key-value pairs.

"type": "object",
"propertyNames": {

Resource type schema 18

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "format": "regex"
}

properties

Minimum: 1

patternProperties

Pattern: ^[A-Za-z0-9]{1,64}$

Specifies a pattern that properties must match to be valid.

allOf

The property must contain all of the data structures define here.

Contains a single schema. A list of schemas is not allowed.

Minimum: 1

anyOf

The property can contain any number of the data structures define here.

Contains a single schema. A list of schemas is not allowed.

Minimum: 1

oneOf

The property must contain only one of the data structures define here.

Contains a single schema. A list of schemas is not allowed.

Minimum: 1

items

For properties of type array, defines the data structure of each array item.

Contains a single schema. A list of schemas is not allowed.

In addition, the following elements, defined in draft-07 of the JSON Schema, are allowed in
the properties object:

• $ref

Resource type schema 19

https://json-schema.org/draft-07/json-schema-release-notes.html
https://json-schema.org/

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• $comment

• title

• description

• examples

• default

• multipleOf

• maximum

• exclusiveMaximum

• minimum

• exclusiveMinimum

• minLength

• pattern

• maxItems

• minItems

• uniqueItems

• contains

• maxProperties

• required

• const

• enum

• type

• format

propertyTransform

One or more transforms to apply to the property value when comparing for drift. For more
information, see Preventing false drift detection results for resource types.

remote

Reserved for CloudFormation use.

readOnlyProperties

Resource properties that can be returned by a read or list request, but can't be set by the
user.

Resource type schema 20

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-model-false-drift.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Type: List of JSON pointers

writeOnlyProperties

Resource properties that can be specified by the user, but can't be returned by a read or list
request. Write-only properties are often used to contain passwords, secrets, or other sensitive
data.

Type: List of JSON pointers

conditionalCreateOnlyProperties

A list of JSON pointers for properties that can only be updated under certain conditions. For
example, you can upgrade the engine version of an RDS DBInstance but you cannot downgrade
it. When updating this property for a resource in a CloudFormation stack, the resource will be
replaced if it cannot be updated.

Type: List of JSON pointers

nonPublicProperties

A list of JSON pointers for properties that are hidden. These properties will still be used but will
not be visible

Type: List of JSON pointers

nonPublicDefinitions

A list of JSON pointers for definitions that are hidden. These definitions will still be used but
will not be visible

Type: List of JSON pointers

createOnlyProperties

Resource properties that can be specified by the user only during resource creation.

Note

Any property not explicitly listed in the createOnlyProperties element can be
specified by the user during a resource update operation.

Type: List of JSON pointers

Resource type schema 21

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

deprecatedProperties

Resource properties that have been deprecated by the underlying service provider. These
properties are still accepted in create and update operations. However they may be ignored, or
converted to a consistent model on application. Deprecated properties are not guaranteed to be
returned by read operations.

Type: List of JSON pointers

primaryIdentifier

The uniquely identifier for an instance of this resource type. An identifier is a non-zero-length
list of JSON pointers to properties that form a single key. An identifier can be a single or
multiple properties to support composite-key identifiers.

Type: List of JSON pointers

Required: Yes

additionalIdentifiers

An optional list of supplementary identifiers, each of which uniquely identifies an instance of
this resource type. An identifier is a non-zero-length list of JSON pointers to properties that
form a single key. An identifier can be a single property, or multiple properties to construct
composite-key identifiers.

Type: List of JSON pointers

Minimum: 1

handlers

Specifies the provisioning operations which can be performed on this resource type. The
handlers specified determine what provisioning actions CloudFormation takes with respect to
the resource during various stack operations.

• If the resource type doesn't contain create, read, and delete handlers, CloudFormation
can't actually provision the resource.

• If the resource type doesn't contain an update handler, CloudFormation can't update the
resource during stack update operations, and will instead replace it.

If your resource type calls AWS APIs in any of its handlers, you must create an IAM execution role
that includes the necessary permissions to call those AWS APIs, and provision that execution
role in your account. For more information, see Accessing AWS APIs from a Resource Type.

Resource type schema 22

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

create

permissions

A string array that specifies the AWS permissions needed to invoke the create handler.

You must specify at least one permission for each handler.

Required: Yes

timeoutInMinutes

An integer specifying the timeout for the entire operation to be interpreted by the
invoker of the handler, in minutes.

Minimum: 2

Maximum: 2160

Default: 120

Required: No

read

permissions

A string array that specifies the AWS permissions needed to invoke the read handler.

You must specify at least one permission for each handler.

Required: Yes

timeoutInMinutes

An integer specifying the timeout for the entire operation to be interpreted by the
invoker of the handler, in minutes.

Minimum: 2

Maximum: 2160

Default: 120

Required: No

Resource type schema 23

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

update

permissions

A string array that specifies the AWS permissions needed to invoke the update handler.

You must specify at least one permission for each handler.

Required: Yes

timeoutInMinutes

An integer specifying the timeout for the entire operation to be interpreted by the
invoker of the handler, in minutes.

Minimum: 2

Maximum: 2160

Default: 120

Required: No

delete

permissions

A string array that specifies the AWS permissions needed to invoke the delete handler.

You must specify at least one permission for each handler.

Required: Yes

timeoutInMinutes

An integer specifying the timeout for the entire operation to be interpreted by the
invoker of the handler, in minutes.

Minimum: 2

Maximum: 2160

Default: 120

Required: No

Resource type schema 24

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

list

The list handler must at least return the resource's primary identifier.

permissions

A string array that specifies the AWS permissions needed to invoke the list handler.

You must specify at least one permission for each handler.

Required: Yes

timeoutInMinutes

An integer specifying the timeout for the entire operation to be interpreted by the
invoker of the handler, in minutes.

Minimum: 2

Maximum: 2160

Default: 120

Required: No

allOf

The resource must contain all of the data structures defined here.

Minimum: 1

anyOf

The resource can contain any number of the data structures define here.

Minimum: 1

oneOf

The resource must contain only one of the data structures define here.

Minimum: 1

resourceLink

A template-able link to a resource instance. External service links must be absolute, HTTPS
URIs.

Resource type schema 25

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

templateUri

Required: Yes

Pattern: ^(/|https:)

mappings

Required: Yes

Type: List of JSON pointers

typeConfiguration

A type configuration schema that defines any properties that the user must specify for all
instances of the extension in a given account and Region. For example, if your extension needs
to access a third-party web service, you can include a configuration schema for the user to
specify their credentials for that service.

Your configuration definition must validate against the provider configuration definition meta-
schema.

When the user specifices a resource, they can sets the configuration. CloudFormation validates
it against the configuration definition, and then saves this information at the Region level. From
then on, CloudFormation can access that configuration schema during operations involving
any instances of that extension in the Region. Configurations are available to CloudFormation
during all resource operations, including read and list events that don't explicitly involve a
stack template.

The CloudFormation property name is reserved, and cannot be used to define any properties
in your configuration definition.

For more information, see Defining the account-level configuration of an extension.

Patterns for modeling your resource types

Use the following patterns to model the data structures of your resource types using the Resource
Provider Schema.

How to specify a property as dependent on another

Use the dependencies element to specify if a property is required in order for another property
to be specified. In the following example, if the user specifies a value for the ResponseCode

Patterns for modeling resources 26

https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/data/schema/provider.configuration.definition.schema.v1.json
https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/data/schema/provider.configuration.definition.schema.v1.json
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-model.html#resource-type-howto-configuration

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

property, they must also specify a value for ResponsePagePath, and vice versa. (Note that, as a
best practice, this is also called out in the description of each property.)

"properties": {
"CustomErrorResponse": {
 "additionalProperties": false,
 "dependencies": {
 "ResponseCode": [
 "ResponsePagePath"
],
 "ResponsePagePath": [
 "ResponseCode"
]
 },
 "properties": {
 "ResponseCode": {
 "description": "The HTTP status code that you want CloudFront to return to
 the viewer along with the custom error page. If you specify a value for ResponseCode,
 you must also specify a value for ResponsePagePath.",
 "type": "integer"
 },
 "ResponsePagePath": {
 "description": "The path to the custom error page that you want CloudFront
 to return to a viewer when your origin returns the HTTP status code specified by
 ErrorCode. If you specify a value for ResponsePagePath, you must also specify a value
 for ResponseCode.",
 "type": "string"
 }
 . . .
 },
 "type": "object"
},
},
. . .

How to define nested properties

It's considered a best practice is to use the definitions section to define schema elements that
may be used at multiple points in your resource type schema. You can then use a JSON pointer to
reference that element at the appropriate places in your resource type schema.

For example, define the reused element in the definitions section:

Patterns for modeling resources 27

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

"definitions": {
 "AccountId": {
 "pattern": "^[0-9]{12}$",
 "type": "string"
 },
 . . .
},
. . .

And then reference that definition where appropriate:

"AwsAccountNumber": {
 "description": "An AWS account that is included in the TrustedSigners complex type
 for this distribution.",
 "$ref": "#/definitions/AccountId"
},
 . . .

Advanced: How to encapsulate complex logic

Use the allOf, oneOf, or anyOf elements to encapsulate complex logic in your resource type
schema.

In the example below, if whitelist is specified for the Forward property in your resource, then
the WhitelistedNames property must also be specified.

"properties": {
"Cookies": {
 "oneOf": [
 {
 "additionalProperties": false,
 "properties": {
 "Forward": {
 "description": "Specifies which cookies to forward to the origin
 for this cache behavior.",
 "enum": [
 "all",
 "none"
],
 "type": "string"
 }

Patterns for modeling resources 28

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 },
 "required": [
 "Forward"
]
 },
],
 {
 "additionalProperties": false,
 "properties": {
 "Forward": {
 "description": "Specifies which cookies to forward to the origin
 for this cache behavior.",
 "enum": [
 "whitelist"
],
 "type": "string"
 },
 "WhitelistedNames": {
 "description": "Required if you specify whitelist for the value of
 Forward.",
 "items": {
 "type": "string"
 },
 "minItems": 1,
 "type": "array"
 }
 },
 "required": [
 "Forward",
 "WhitelistedNames"
]
 },
 "type": "object"
 }
}
. . .

Preventing false drift detection results for resource types

When AWS CloudFormation performs drift detection on a resource, it looks up the value for each
resource property as specified in the stack template, and compares that value with the current
resource property value returned by the resource read handler. A resource is then considered to
have drifted if one or more of its properties have been deleted, or had their value changed. In some

Preventing false drift results 29

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

cases, however, the resource may not be able to return the exact same value in the read handler as
was specified in the stack template, even though the value is essentially the same and shouldn't be
considered as drifted.

To prevent these cases from being incorrectly reported as drifted resources, you can specify
a property transform in your resource schema. The property transform provides a way for
CloudFormation to accurately compare the resource property value specified in the template
with the value returned from the read handler. During drift detection, if CloudFormation finds
a property where the template value differs from the value returned by the read handler, it
determines if a property transform has been defined for that property in the resource schema. If
it has, CloudFormation applies that property transform to the value specified in the template, and
then compares it to the read handler value again. If these two values match, the property isn't
considered to have drifted, and is marked as IN_SYNC.

For more information about drift detection, see Detecting unmanaged configuration changes to
stacks and resources in the CloudFormation User Guide.

Defining a property transform for drift detection operations

Use the propertyTransform element to define a property transform for a given resource
property.

"propertyTransform": {
 "property_path": "transform"
}

Where:

• property_path is the path to the resource property in the resource schema.

• transform is the transform to perform on the resource property value specified in the stack
template.

Property transforms are written in JSONata, an open-source, lightweight query and
transformation language for JSON data.

For example, consider the AWS::Route53::HostedZone resource. For the Name property,
users can specify a domain name with or without a trailing . in their templates. However,
assume the Route 53 service always returns the domain name with a trailing .. This means that

Preventing false drift results 30

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.jsonata.org/overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-route53-hostedzone.html#cfn-route53-hostedzone-name
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-route53-hostedzone.html#cfn-route53-hostedzone-name

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

if a user specified a domain name without the trailing . in their template, created the stack,
and then performed drift detection on the stack, CloudFormation would erroneously report
the AWS::Route53::HostedZone resource as drifted. To prevent this from happening, the
resource developer would add a propertyTransform element to the resource schema to enable
CloudFormation to determine if both property values were actually the same:

"propertyTransform": {
 "/properties/Name": "$join([Name, \".\"])"
}

Specifying multiple transforms for a property

You can specify multiple transforms for CloudFormation to attempt by using the $OR operator. If
you specify multiple transforms, CloudFormation tries them all, in the order they're specified, until
it finds one that results in the property values matching, or it has tried them all.

For example, for the following property transform, CloudFormation would attempt two transforms
to determine whether the property value has actually drifted:

• Append . to the template property value, and determine if the updated value now matches the
property value returned by the resource read handler. If it does, CloudFormation reports the
property as IN_SYNC. If not, CloudFormation performs the next transform.

• Append the string test to the template property value, and determine if the updated value now
matches the property value returned by the resource read handler. If it does, CloudFormation
reports the property as IN_SYNC. If not, CloudFormation reports the property, and the resource,
as MODIFIED.

"propertyTransform": {
 "/properties/Name": "$join([Name, \".\"]) $OR $join([Name, \"test\"])"
}

Developing resource types for use in AWS CloudFormation
templates

Once you've modeled your resource type, and validated its schema, the next step is to develop the
resource. Developing the resource consists of two main steps:

Developing resource types 31

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• Implementing the appropriate event handlers for your resource.

• Testing the resource locally to ensure it works as expected.

Implementing resource handlers

When you generate your resource package, the CloudFormation CLI stubs out empty handler
functions, each of which each corresponds to a specific event in the resource lifecycle. You add
logic to these handlers to control what happens to your resource type at each stage of its lifecycle.

• create: CloudFormation invokes this handler when the resource is initially created during stack
create operations.

• read: CloudFormation invokes this handler as part of a stack update operation when detailed
information about the resource's current state is required.

• update: CloudFormation invokes this handler when the resource is updated as part of a stack
update operation.

• delete: CloudFormation invokes this handler when the resource is deleted, either when the
resource is deleted from the stack as part of a stack update operation, or the stack itself is
deleted.

• list: CloudFormation invokes this handler when summary information about multiple resources
of this resource type is required.

You can only specify a single handler for each event.

Which handlers you implement for a resource determine what provisioning actions CloudFormation
takes with respect to the resource during various stack operations:

• If the resource type contains both create and update handlers, CloudFormation invokes the
appropriate handler during stack create and update operation.

• If the resource type doesn't contain an update handler, CloudFormation can't update the
resource during stack update operations, and will instead replace it. CloudFormation invokes the
create handler to creates a new resource, then deletes the old resource by invoking the delete
handler.

• If the resource type doesn't contain create, read, and delete handlers, CloudFormation can't
actually provision the resource.

Implementing resource handlers 32

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Use the resource schema to specify which handlers you have implemented. If you choose not to
implement a specific handler, remove it from the handlers section of the resource schema.

Accessing AWS APIs from a resource type

If your resource type calls AWS APIs in any of its handlers, you must create an IAM execution role
that includes the necessary permissions to call those AWS APIs, and provision that execution role in
your account. CloudFormation then assumes that execution role to provide your resource type with
the appropriate credentials.

When you call generate, the CloudFormation CLI automatically generates an execution role
template, resource-role.yaml, as part of generating the code files for the resource type
package. This template is based on the permissions specified for each handler in the handlers
section of the Resource type schema. When you use submit to register the resource type, the
CloudFormation CLI attempts to create or update an execution role based on the template, and
then passes this execution role to CloudFormation as part of the registration.

For more information about the permissions available per AWS service, see Actions, resources, and
condition keys for AWS services in the AWS Identity and Access Management User Guide.

Monitoring runtime logging for resource types

When you register a resource type using cfn submit, CloudFormation creates a CloudWatch log
group for the resource type in your account. This enables you to access the logs for your resource
to help you diagnose any faults. The log group is named according to the following pattern:

/my-resource-type-stack-ResourceHandler-string

Where:

• my-resource-type is the three-part resource type name.

• string is a unique string generated by CloudFormation.

Now, when you initiate stack operations for stacks that contain the resource type, CloudFormation
delivers log events emitted by the resource type to this log group.

Testing resource types using contract tests

As you model and develop your resource type, you should have the CloudFormation CLI
perform tests to ensure that the resource type is behaving as expected during each event in

Monitoring runtime logging for resource types 33

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-schema.html#schema-properties-handlers
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-schema.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

the resource lifecycle. The CloudFormation CLI performs a suite of tests called contract tests to
enforce CloudFormation’s handler contract. Developing and registering your resource type in
CloudFormation signifies an agreement that your resource is compliant and doesn't break any
framework expectations. All resources that fail contract tests are blocked from publishing into our
registry.

Testing resource types locally using AWS SAM

Once you've implemented the desired handlers for your resource, you can also test the resource
locally using the AWS SAM command line interface (CLI), to make sure your resource behaves as
expected, debug what's wrong, and fix any issues.

To start testing, use the AWS SAM CLI to start the Local Lambda service. Run the following
command in a terminal separate from your resource type workspace, or as a background process.

$ sam local start-lambda

If you have functions defined in your AWS SAM template, it will provide an endpoint to invoke
these functions locally. This is especially helpful because it allows for remote debugging to step
through resource type invocations in real time.

Starting the Local Lambda Service. You can now invoke your Lambda Functions defined in
 your template through the endpoint.
2020-01-15 15:27:19 * Running on http://127.0.0.1:3001/ (Press CTRL+C to quit)

Alternatively, you can also specify using the public Lambda service and invoke functions deployed
in your account. Be aware, however, that using the local service allows for more iteration. To
specify a debug port for remote debugging, use the -d option:

$ sam local start-lambda -d PORT

Once you have the Lambda service started, use the test command to perform contract tests:

$ cfn test

The CloudFormation CLI selects the appropriate contract tests to execute, based on the handlers
specified in your resource type schema. If a test fails, the CloudFormation CLI outputs a detailed
trace of the failure, including the related assertion failure and mismatched values.

Testing resource types 34

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-test.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

For more information about testing using AWS SAM CLI, see Testing and debugging serverless
applications in the AWS Serverless Application Model Developer Guide.

How the CloudFormation CLI constructs and executes contract tests

The CloudFormation CLI uses PyTest, an open-source testing framework, to execute the contract
tests.

The tests themselves are located in the suite folder of the CloudFormation CLI repository on
GitHub. Each test is adorned with the appropriate pytest markers. For example, tests applicable
to the create handler are adorned with the @pytest.mark.create marker. This enables the
CloudFormation CLI to execute only those tests appropriate for a resource type, based on the
handlers specified in the resource type's schema. For example, suppose a resource type's schema
specified create, read, and delete handlers. In this case, the CloudFormation CLI would not
perform any test marked with only the @pytest.mark.update or @pytest.mark.list, since
those handlers weren't implemented.

To test create and update handlers, the CloudFormation CLI uses the resource type's schema
and Hypothesis, an open-source Python library used to generate testing strategies. The resource
type schema is walked to generate a strategy for valid resource models, and the strategy is used to
generate models for tests.

Tests create, update, and delete resources to test various aspects of the resource handler contract
during handler operations. The CloudFormation CLI uses PyTest fixtures to decrease the amount
of time the contract tests take to perform. Using fixtures enable the tests within a test module to
share resources, rather than have to create a new resource for each test. Currently, the contract
tests employ the following fixtures:

• created_resource in the handler_create test module.

• updated_resource in the handler_update test module.

• deleted_resource in handler_delete test module.

Specifying input data for use in contract tests

By default, the CloudFormation CLI performs resource contract tests using input properties
generated from the patterns you define in your resource type schema. However, most resources
are complex enough that the input properties for creating or updating those resources requires

Testing resource types 35

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.pytest.org/en/latest/
https://github.com/aws-cloudformation/cloudformation-cli/tree/master/src/rpdk/core/contract/suite
https://hypothesis.readthedocs.io/en/latest/
https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/contract/suite/resource/handler_create.py
https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/contract/suite/resource/handler_update.py
https://github.com/aws-cloudformation/cloudformation-cli/blob/master/src/rpdk/core/contract/suite/resource/handler_delete.py

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

an understanding of the resource being provisioned. To address this, you can specify the input the
CloudFormation CLI uses when performing its contract tests.

The CloudFormation CLI offers two ways for you to specify the input data for it to use when
performing contract tests:

• Overrides file

Using an overrides file provides a light-weight way of specifying input data for certain specific
properties for the CloudFormation CLI to use during both create and update operations testing.

• Input files

You can also use multiple input files to specify contract test input data if:

• You want or need to specify different input data for create and update operations, or invalid
data with which to test.

• You want to specify multiple different input data sets.

Specifying input data using an override file

Using an override file enables you to overwrite input values for specific resource properties.
Input values specified in the override file are used in contract testing for both create and update
operations. You can only specify a single override file, and only specify a single input value for each
resource property. For any properties for which you don't specify values, the CloudFormation CLI
uses generated input.

Because the input data specified in the overrides.json file is used by the CloudFormation CLI
during testing of create and update operations, you can't include input values for create-only
properties in the file, as this would lead to contract test failures during update operations. For
more information, see createOnlyProperties.

To override the input data used for specific properties during contract testing, add an
overrides.json file to the root directory of your resource type project. The overrides.json
file should contain only the resource properties to be used in testing. Use the following syntax:

{
 "CREATE": {
 "property_name": "property_value" # optional_comment
 }
}

Testing resource types 36

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-schema.html#schema-properties-createonlyproperties

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

For example:

{
 "CREATE": {
 "SubnetId": "subnet-0bc6136e" # This should be a real subnet that exists in the
 account you're testing against.
 }
}

You can also use output values from other stacks when specifying input data. For example, suppose
you had a stack that contained an export value named SubnetExport:

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 CidrBlock: "10.0.0.0/16"
 Subnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 CidrBlock: "10.0.0.0/24"
 VpcId: !Ref VPC
Outputs:
 SubnetId:
 Value: !Ref Subnet
 Export:
 Name: SubnetExport

You could then specify that export value as input data using the export value name using the
following syntax:

{
 "CREATE": {
 "SubnetId": "{{SubnetExport}}"
 }
}

For more information, see Outputs.

Testing resource types 37

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Specifying input data using input files

Use input files to specify different kinds of input data for the CloudFormation CLI to use: create
input, update input, and invalid input. Each kind of data is specified in a separate file. You can also
specify multiple sets of input data for contract tests.

To specify input files for the CloudFormation CLI to use in contract testing, add an inputs folder
to the root directory of your resource type project. Then add your input files.

Specify which kind of input data a file contains by using the following naming conventions, where
n is an integer:

• inputs_n_create.json: Use files with _create.json for specifying inputs for creating
the resource. This includes input values for create-only properties. For more information, see
createOnlyProperties.

• inputs_n_update.json: Use files with _update.json for specifying inputs for updating the
resource.

• inputs_n_invalid.json: Use files with _invalid.json for specifying invalid inputs to test
when creating or updating the resource.

To specify multiple sets of input data for contract tests, increment the integer in the file
names to order your input data sets. For example, your first set of input files should be named
inputs_1_create.json, inputs_1_update.json, and inputs_1_invalid.json.
Your next set would be named inputs_2_create.json, inputs_2_update.json, and
inputs_2_invalid.json, and so on.

Each input file is a JSON file containing only the resource properties to be used in testing. Below is
an example of an input file data set.

{
 "AlarmName": "Name",
 "AlarmDescription": "TestAlarmDimensions Description",
 "Namespace": "CloudWatchNamespace",
 "MetricName": "Fault",
 "Dimensions": [
 {
 "Name": "MethodName",
 "Value": "Value"
 }
],

Testing resource types 38

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-schema.html#schema-properties-createonlyproperties

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "Statistic": "Average",
 "Period": 60,
 "EvaluationPeriods": 5,
 "Threshold": 0.01,
 "ComparisonOperator": "GreaterThanOrEqualToThreshold"
}

If you specify an inputs folder, the CloudFormation CLI uses only the input data included in that
folder. Therefore, you must specify create, update, and invalid data files for the CloudFormation
CLI to successfully complete the contract tests.

If you specify both input files and an overrides files, the CloudFormation CLI ignores the overrides
file and uses the input data specified in the inputs folder.

You can also use output values from other stacks when specifying input data. For example, suppose
you had a stack that contained an export value named SubnetExport:

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 CidrBlock: "10.0.0.0/16"
 Subnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 CidrBlock: "10.0.0.0/24"
 VpcId: !Ref VPC
Outputs:
 SubnetId:
 Value: !Ref Subnet
 Export:
 Name: SubnetExport

You could then specify that export value as input data using the export value name using the
following syntax:

{
 "SubnetId": "{{SubnetExport}}",
 . . .
}

For more information, see Outputs.

Testing resource types 39

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Viewing contract test logs

It's important to note that contract tests aren't run during private type registration (unless the
resource contains one of the following namespaces: aws, amzn, alexa, amazon, awsquickstart),
but failing contract tests does block a publisher's ability to publish their type. This is because public
resources are consumed by other external customers and need to maintain a high quality bar. For
this reason, it's important to debug your contract test failures early on in the resource development
process.

Running contract tests generates two types of logs. Using both helps expedite the debugging
process.

• Lambda logs show logs from your handlers and provide more details on the input and output
for each handler call.

• Test logs show the result of running the test suite, including which tests have failed or passed,
in addition to a traceback if a test has failed.

Because there are multiple ways to invoke contract tests against your resource, there are different
places to find logs depending on which operation you are using.

• If you run contract tests locally, logs are divided into the following two sections:

• Lambda logs are in the terminal tab in which you ran sam local start-lambda.

• Test logs are in the terminal tab in which you ran cfn test.

• If you run contract tests through the type registration (cfn submit), logs are uploaded in two
areas. Contract tests are only run during type registration if your type name includes one of the
following namespaces: aws, amzn, alexa, amazon, awsquickstart.

• Lambda logs are delivered to a CloudWatch log group in your account. The log group adheres
to the following naming pattern:

<Hyphenated TypeName>-ContractTests-<RegistrationToken>

For example, aws-cloudwatch-alarm-ContractTests-ca7096d7-ccb3-4c7d-
ad51-78d0a1a300ca.

• To receive test logs in an Amazon S3 bucket, you have to modify the IAM role that's created by
CloudFormation, which adheres to the following naming pattern:

CloudFormationManagedUplo-LogAndMetricsDeliveryRol-<RandomId>
Testing resource types 40

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Add the following inline policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Also add the following trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cloudformation.amazonaws.com",
 "resources.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"

Testing resource types 41

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 }
]
}

Invoking cfn submit --role-arn <arn for above IAM role> uploads your
test logs to an Amazon S3 bucket named cloudformationmanageduploadinfrast-
artifactbucket-<RandomId> under the following path:

CloudFormation/ContractTestResults/<TypeName>/
<ContractTestInvocationToken>.zip

Download the zip file to see your test logs.

• If you run contract tests against your registered type through the TestType, both logs are
condensed and uploaded to an Amazon S3 bucket in your account. You must specify the --log-
delivery-bucket parameter when invoking TestType to receive logs in your account.

Testing resource types manually

Running contract tests with the cfn-test command uses the AWS SAM CLI, so it's possible to
attach a debugger from your IDE by specifying a port when you start the local Lambda service.
However, we don't suggest this approach because the debugger detaches after each individual
handler invocation completes.

Instead, you can mimic the scenarios modeled in contract tests by invoking the handlers with the
sam local invoke command. This allows you to step through each handler invocation without
interruption. You first need to define test templates that AWS SAM can run against the resource
handlers. Create the test templates in a separate folder in the resource directory and name the
folder sam-tests.

The test templates must adhere to the following format:

 "action": "<Action>",
 "request": {
 "clientRequestToken": "<Random UUID>",
 "desiredResourceState": <ResourceModel json>,
 "logicalResourceIdentifier": "<Logical Id>"
 },
 "callbackContext": <CallbackContext json>
}

Testing resource types 42

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_TestType.html#API_TestType_RequestParameters
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_TestType.html#API_TestType_RequestParameters
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-local-invoke.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• For credentials, use temporary credentials of your personal AWS account. For best practices, see
Set default credentials and Region in the AWS SDK for Java Developer Guide.

• You will need the accessKeyId, secretAccessKey, and sessionToken with their
corresponding values.

• For action, specify the handler you want to test. Allowed values: CREATE, READ, DELETE,
UPDATE, LIST.

• For clientRequestToken, specify a random UUID string. To retrieve this, use any UUID generator
tool.

• For desiredResourceState, specify the properties of the resource required for the request that
follow the resource schema.

• For logicalResourceIdentifier, specify a logical ID to assign to your resource instance. You can
use this in subsequent handler invocations for the same resource.

• For callbackContext, the request begins with a null value for callback context. For handlers with
stabilization logic, the subsequent requests have callback context from the previous request's
response.

Once you've written the input files, do the following to debug your handlers:

1. Ensure that Docker is downloaded and installed on your machine, and that you've added the
resource directory to Docker.

2. In one terminal, start the local Lambda service by running sam local start-lambda.

3. In your IDE, create a remote configuration and add a port number. Add a breakpoint in the
appropriate handler you are invoking.

4. In another terminal, invoke the handler by running sam local invoke TestEntrypoint --
event sam-tests/<input filename> -d <PORT number>.

5. Step through the code to debug any handler errors.

For more information about testing using the AWS SAM CLI, see Testing and Debugging Serverless
Applications in the AWS Serverless Application Model Developer Guide.

Resource type handler contract

The resource type handler contract specifies the expected and required behavior to which a
resource must adhere in each given event handler. It defines a set of specific, unambiguous

Testing resource types 43

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

rules with which create, read, update, delete and list resource handlers must comply.
Following the contract will allow customers to interact with all resource types under a uniform set
of behaviors and expectations, and prevents creation of unintended or duplicate resources.

A resource implementation MUST pass all resource contract tests to be registered.

Assuming no other concurrent interaction on the resource, the handlers must comply with the
following contract.

All terminology in the handler contract requirements adheres to the RFC 2119 specification.

Create handlers

Input assumptions

The create handler can make the following assumptions about input submitted to it:

• The input to a create handler MUST be valid against the resource schema.

Output requirements

The create handler must adhere to the following requirements regarding its output:

• A create handler MUST always return a ProgressEvent object within 60 seconds. For more
information, see ProgressEvent Object Schema.

In every ProgressEvent object, the create handler MUST return a model which conforms to the
shape of the resource schema. For more information, see Returned models must conform to the
shape of the schema.

Every model MUST include the primaryIdentifier. The only exception is if the first progress event
is FAILED, and the resource hasn't yet been created. In this case, a subsequent read call MUST
return NotFound.

• A create handler MUST NOT return SUCCESS until it has applied all properties included in the
create request. For more information, see Update, create, and delete handlers must satisfy
desired-state stabilization.

• A create handler MUST return IN_PROGRESS if it hasn't yet reached the desired-state.

A create handler SHOULD return a model containing all properties set so far and nothing
more during each IN_PROGRESS event.

Testing resource types 44

https://www.ietf.org/rfc/rfc2119.txt
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-shape
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-shape
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• A create handler MUST return FAILED progress event if it can't reach the desired-state within
the timeout specified in the resource schema.

The progress event MUST return an error message and the most applicable error code. For
more information, see Handler error codes.

• A create handler MAY return SUCCESS once it reaches the desired-state.

Once the desired state has been reached, a create handler MAY perform runtime-state
stabilization. For more information, see Update and create handlers should satisfy runtime-
state stabilization.

When the create handler returns SUCCESS, it MUST return a ProgressEvent object containing
a model that satisfies the following requirements:

• All properties specified in the create request MUST be present in the model returned, and
they MUST match exactly, with the exception of properties defined as writeOnlyProperties in
the resource schema.

• The model MUST contain all properties that have values, including any properties that have
default values, and any readOnlyProperties as defined in the resource schema.

• The model MUST NOT return any properties that are null or don't have values.

• After a create operation returns SUCCESS, a subsequent read request MUST succeed when
passed in the primaryIdentifier or any additionalIdentifiers associated with the provisioned
resource instance.

• After a create operation returns SUCCESS, a subsequent list operation MUST return the
primaryIdentifier associated with the provisioned resource instance.

If the list operation is paginated, the entire list operation is defined as all list requests
until the nextToken is null.

• A create handler MUST be idempotent. A create handler MUST NOT create multiple resources
given the same idempotency token.

• A create handler MUST return FAILED with an AlreadyExists error code if the resource already
existed before the create request.

Testing resource types 45

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract-errors.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-runtime
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-runtime

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Update handlers

Input assumptions

The update handler can make the following assumptions about input submitted to it:

• The input to an update handler MUST be valid against the resource schema.

• Any createOnlyProperties specified in update handler input MUST NOT be different from
their previous state.

• The input to an update handler MUST contain either the primaryIdentifier or an
additionalIdentifier.

Output requirements

The update handler must adhere to the following requirements:

• An update handler MUST always return a ProgressEvent object within 60 seconds. For more
information, see ProgressEvent Object Schema.

In every ProgressEvent object, the update handler MUST return a model which conforms to the
shape of the resource schema. For more information, see Returned models must conform to the
shape of the schema.

Every model MUST include the primaryIdentifier.

The primaryIdentifier returned in every progress event must match the primaryIdentifier passed
into the request.

• An update handler MUST NOT return SUCCESS until it has applied all properties included in
the update request. For more information, see Update, create, and delete handlers must satisfy
desired-state stabilization.

• An update handler MUST return IN_PROGRESS if it hasn't yet reached the desired-state.

An update handler SHOULD return a model containing all properties set so far and nothing
more during each IN_PROGRESS event.

• An update handler MUST return FAILED progress event if it can't reach the desired-state
within the timeout specified in the resource schema.

The progress event MUST return an error message and the most applicable error code. For
more information, see Handler error codes.

Testing resource types 46

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-shape
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-shape
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract-errors.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• An update handler MAY return SUCCESS once it reaches the desired-state.

Once the desired state has been reached, an update handler MAY perform runtime-state
stabilization. For more information, see Update and create handlers should satisfy runtime-
state stabilization.

When the update handler returns SUCCESS, it MUST return a ProgressEvent object containing
a model that satisfies the following requirements:

• All properties specified in the update request MUST be present in the model returned, and
they MUST match exactly, with the exception of properties defined as writeOnlyProperties in
the resource schema.

• The model MUST contain all properties that have values, including any properties that have
default values, and any readOnlyProperties as defined in the resource schema.

• The model MUST NOT return any properties that are null or don't have values.

All list or collection properties MUST be applied in full. The successful outcome MUST be
replacement of the previous properties, if any.

• An update handler MUST return FAILED with a NotFound error code if the resource didn't exist
before the update request.

• An update handler MUST NOT create a new physical resource.

Delete handlers

Input assumptions

The delete handler can make the following assumptions about input submitted to it:

• The input to a delete handler MUST contain either the primaryIdentifier or an
additionalIdentifier. Any other properties MAY NOT be included in the request.

Output requirements

The delete handler must adhere to the following requirements:

• A delete handler MUST always return a ProgressEvent object within 60 seconds. For more
information, see ProgressEvent Object Schema.

Testing resource types 47

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-runtime
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-runtime
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• A delete handler MUST NOT return SUCCESS until the resource has reached the desired state
for deletion. For more information, see Update, create, and delete handlers must satisfy desired-
state stabilization.

• A delete handler MUST return IN_PROGRESS if it hasn't yet reached the desired state.

• A delete handler MUST return FAILED progress event if it can't reach the desired-state within
the timeout specified in the resource schema.

The progress event MUST return an error message and the most applicable error code. For
more information, see Handler error codes.

• A delete handler MUST return SUCCESS once it reaches the desired state. (This is because
there is no runtime-state stabilization for delete requests.)

When the delete handler returns SUCCESS, the ProgressEvent object MUST NOT contain a
model.

• A delete handler MUST return FAILED with a NotFound error code if the resource didn't exist
before the delete request.

• Once a delete operation successfully completes, any subsequent update, delete, or read
request for the deleted resource instance MUST return FAILED with a NotFound error code.

• Once a delete operation successfully completes, any subsequent list operation MUST NOT
return the primaryIdentifier associated with the deleted resource instance.

If the list operation is paginated, the 'list operation' is defined as all list calls until the
nextToken is null.

• Once a delete operation successfully completes, a subsequent create request with the same
primaryIdentifier or additionalIdentifiers MUST NOT return FAILED with an AlreadyExists
error code.

• Once a delete operation successfully completes, the resource SHOULD NOT be billable to the
client.

Read handlers

Input assumptions

The read handler can make the following assumptions about input submitted to it:

• The input to a read handler MUST contain either the primaryIdentifier or an
additionalIdentifier. Any other properties MAY NOT be included in the request.

Testing resource types 48

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract-errors.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Output requirements

The read handler must adhere to the following requirements regarding its output:

• A read handler MUST always return a ProgressEvent object within 30 seconds. For more
information, see ProgressEvent Object Schema.

A read handler MUST always return a status of SUCCESS or FAILED; it MUST NOT return a
status of IN_PROGRESS.

• A read handler MUST return a model representation that conforms to the shape of the resource
schema.

• The model MUST contain all properties that have values, including any properties that have
default values and any readOnlyProperties as defined in the resource schema.

• The model MUST NOT return any properties that are null or don't have values.

• A read handler MUST return FAILED with a NotFound error code if the resource doesn't exist.

List handlers

• A list handler MUST always return a ProgressEvent object within 30 seconds. For more
information, see ProgressEvent Object Schema.

A list handler MUST always return a status of SUCCESS or FAILED; it MUST NOT return a
status of IN_PROGRESS.

• A list handler MUST return an array of primary identifiers.

When passed in a read request, each primaryIdentifier MUST NOT return FAILED with
NotFound error code.

• A list request MUST support pagination by returning a NextToken.

The NextToken returned MUST be able to be used in a subsequent list request to retrieve the
next set of results from the service.

The NextToken MUST be null when all results have been returned.

• A list request MUST return an empty array if there are no resources found.

• A list handler MAY accept a set of properties conforming to the shape of the resource schema
as filter criteria.

Testing resource types 49

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

The filter should use AND(&) when multiple properties are passed in.

Additional requirements

The following requirements also apply to resource handlers.

Returned models must conform to the shape of the schema

A model returned in a ProgressEvent object MUST always conform to the shape of the resource
schema. This means that each property that's returned MUST adhere to its own individual
restrictions: correct data type, regex, length, etc. However, the model returned MAY NOT contain all
properties defined as required in the json-schema.

More specifically, contract tests validate models based on json-schema Validation keywords.

• ALL Validation Keywords for the following MUST be observed:

• Any Instance Type (Section 6.1)

• Numeric Instances (Section 6.2)

• Strings (Section 6.3)

• Arrays (Section 6.4)

• All Validation Keywords for Objects (Section 6.5) MUST be observed EXCEPT for:

• required (Section 6.5.3)

• dependencies (Section 6.5.7)

• propertyNames (Section 6.5.8)

• Contract tests won't validate Validation Keywords for:

• Applying Subschemas Conditionally (Section 6.6)

• Applying Subschemas With Boolean Logic (Section 6.7)

Update, create, and delete handlers must satisfy desired-state stabilization

Stabilization is the process of waiting for a resource to be in a particular state. Note that reaching
the desired-state is mandatory for all handlers before returning SUCCESS.

Create and update handlers

For Create and Update handlers, desired-state stabilization is satisfied when all properties specified
in the request are applied as requested. This is verified by calling the Read handler.

Testing resource types 50

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html
https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.6

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

In many cases, the desired-state is reached immediately upon completion of a Create/Update API
call. However, in some cases, multiple API calls and or wait periods may be required in order to
reach this state.

Eventual consistency in desired-state stabilization

Eventual consistency means that the result of an API command you run might not be immediately
visible to all subsequent commands you run. Handling API eventual consistency is required as part
of desired-state stabilization. This is because a subsequent Read call might fail with a NotFound
error code.

Amazon EC2 resources are a great example of this. For more information, see Eventual Consistency
in the Amazon Elastic Compute Cloud API Reference.

Examples of desired-state stabilization

For a simple example of desired-state stabilization, consider the implementation of the create
handler for the AWS::Logs::MetricFilter resource: immediately after the handler code
completes the call to the PutMetricFilter method, the AWS::Logs::MetricFilter has
achieved its desired state. You can examine the code for this resource in its open-source repository
at github.com/aws-cloudformation/aws-cloudformation-resource-providers-logs.

A more complex example is the implementation of the update handler for the
AWS::Kinesis::Stream resource. The update handler must make multiple API calls during
an update, including AddTagsToStream or RemoveTagsFromStream, UpdateShardCount,
IncreaseRetentionPeriod or DecreaseRetentionPeriod, and StartStreamEncryption
or StopStreamEncryption. Meanwhile, each API call will set the StreamStatus to
UPDATING, during which time other API operations can't be performed or the API will throw a
ResourceInUseException. Therefore, to reach the desired state, the handler will need to wait
for the StreamStatus to become ACTIVE in between each API operation.

Delete handlers

Usually, the definition of deleted is obvious. A delete API operation will result in the resource
being purged from the database, and the resource is no longer describable to the user.

However, sometimes, a deletion will result in the resource leaving an audit trail, in which the
resource can still be described by service API operations, but can no longer be interacted with
by the user. For example, when you delete a CloudFormation stack, it's assigned a status of
DELETE_COMPLETE, but it can still be returned from a DescribeStacks API call. For resources

Testing resource types 51

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-api-troubleshooting.html#eventual-consistency
https://github.com/aws-cloudformation/aws-cloudformation-resource-providers-logs
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeStacks.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

like this, the desired-state for deletion is when the resource has reached a terminal, inoperable, and
irrecoverable state. If the resource can continue to be mutated by the user through another API call,
then it isn't deleted, it's updated.

There is no difference between desired-state stabilization and runtime-state stabilization for
a delete handler. By definition, once a resource has reached the desired-state for deletion, a
subsequent read call MUST return FAILED with a NotFound error code, and a subsequent create
call with the same primaryIdentifier or additionalIdentifiers MUST NOT return FAILED with an
AlreadyExists error code. Additional restrictions are defined in the contract above.

So in the case of a CloudFormation stack, a read handler MUST return FAILED with a NotFound
error code if the stack is DELETE_COMPLETE, even though it's audit trail can still be accessed by the
DescribeStacks API.

Update and create handlers should satisfy runtime-state stabilization

Runtime-state stabilization is a process of waiting for the resource to be "ready" to use. Generally,
runtime-state stabilization is done by continually describing the resource until it reaches a
particular state, though it can take many forms.

Runtime-state stabilization can mean different things for different resources, but the following are
common requirements:

• Additional mutating API calls can be made on the resource

Some resources can't be modified while they're in a particular state.

• Dependent resources can consume the resource

There may be other resources which need to consume the resource in some way, but can't until it
is in a particular state.

• Users can interact with the resource

Customers may not be able to use the resource until it is in a particular status. This usually
overlaps with the dependent resources requirement, although there could be different
qualifications, depending on the resources.

While desired-state stabilization is mandatory, runtime-state stabilization is optional but
encouraged. Users have come to expect that once a resource is COMPLETE, they will be able to use
it.

Testing resource types 52

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Examples of run-time stabilization

For a simple example of run-time stabilization, consider the implementation of the create
handler for the AWS::KinesisFirehose::DeliveryStream resource. The create handler
invokes only a single API, CreateDeliveryStream, in order for the resource to reach its desired
state. Immediately after this API call is made, a read request will return the correct desired state.
However, the resource still has not reached run-time stabilization because it can't be used by the
customer or downstream resources until the DeliveryStreamStatus is ACTIVE.

For a more complex example, consider the implementation of the update handler for the
AWS::Kinesis::Stream resource once again. Once the update handler has made its final call,
to StartStreamEncryption or StopStreamEncryption as described in Examples of desired-
state stabilization, the resource has reached its desired state. However, like the other API calls
on the Kinesis resource, the StreamStatus will again be set to UPDATING. During this period, it
has reached its desired state, and customers can even continue using the stream. But it hasn't yet
achieved runtime-stabilization, because additional API calls cannot be made on the resource until
the StreamStatus gets set to ACTIVE.

Handlers must not leak resources

Resource leaking refers to when a handler loses track of the existence of a resource. This happens
most often in the following cases:

• A create handler isn't idempotent. Re-invoking the handler with the same idempotencyToken
will cause another resource to be created, and the handler is only tracking a single resource.

• A create handler creates the resource, but is unable to communicate an identifier for that
resource back to CloudFormation. A subsequent delete call doesn't have enough information to
delete the resource.

• A bug in the delete handler causes the resource to not actually be deleted, but the delete
handler reports that the resource was successfully deleted.

Contract tests

As part of testing your resource, the CloudFormation CLI performs a suite of tests, each written
to test a requirement contained in the resource type handler contract. Each handler invocation is
expected to follow the general requirements for that handler listed in the contract. This topic lists
tests that explicitly test some more specific requirements.

Testing resource types 53

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization-examples
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-additional-stabilization-examples

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

create handler tests

The CloudFormation CLI performs the following contract tests for create handlers.

Test Description

contract_create_create Creates a resource, waits for the resource creation to
complete, and then creates the resource again with the
expectation that the second create operation will fail with
the AlreadyExists error code. This test isn't run for
resources if the primary identifier or any additional identifie
rs are read-only.

contract_create_read Creates a resource, waits for the resource creation to
complete, and then reads the created resource to ensure that
the input to the create handler is equal to the output from
the read handler. The comparison ignores any read-only
/generated properties in the read output, as create input
can't specify these. It also ignores any write-only properties
in the create input, as these are removed from read output to
avoid security issues.

contract_create_delete Creates a resource, waits for the resource creation to
complete, and then deletes the created resource. It also
checks if the create input is equal to the create output (which
is then used for delete input), with the exception of readOnly
and writeOnly properties.

contract_create_list Creates a resource, waits for the resource creation to
complete, and then lists out the resources with the expectati
on that the created resource exists in the returned list.

update handler tests

The CloudFormation CLI performs the following contract tests for update handlers.

Testing resource types 54

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Test Description

contract_update_read Creates a resource, updates the resource, and then reads the
resource to check that the update was made by comparing
the read output with the update input. The comparison
excludes read-only and write-only properties because they
can't be included in the update input and read output,
respectively.

contract_update_list Creates a resource, updates the resource, and then lists the
resource to check that the updated resource exists in the
returned list.

contract_update_wi
thout_create

Updates a resource without creating it first. The test expects
the update operation to fail with the NotFound error code.

delete handler tests

The CloudFormation CLI performs the following contract tests for delete handlers.

Test Description

contract_delete_create Creates a resource, deletes the resource, and then creates
the resource again with the expectation that the deletion
was successful and a new resource can be created. The
CloudFormation CLI performs this contract test for resources
with create-only primary identifiers.

contract_delete_update Creates a resource, deletes the resource, and then updates
the resource with the expectation that the update operation
will fail with the NotFound error code.

contract_delete_read Creates a resource, deletes the resource, and then reads the
resource with the expectation that the read operation will
fail with the NotFound error code.

Testing resource types 55

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Test Description

contract_delete_list Creates a resource, deletes the resource, and then lists the
resource with the expectation that the returned list doesn't
contain the deleted resource.

contract_delete_delete Creates a resource, deletes the resource, and then deletes the
resource again with the expectation that the second delete
operation will fail with the NotFound error code.

Handler error codes

One of the following error codes MUST be returned from the handler whenever there is a progress
event with an operation status of FAILED.

• AccessDenied

The customer has insufficient permissions to perform this request.

Type: Terminal

• AlreadyExists

The specified resource already existed before the execution of this handler. This error is
applicable to create handlers only.

Type: Terminal

• GeneralServiceException

The downstream service generated an error that doesn't map to any other handler error code.

Type: Terminal

• InternalFailure

An unexpected error occurred within the handler.

Type: Terminal

• InvalidCredentials

The credentials provided by the user are invalid.

Testing resource types 56

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-progressevent.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Type: Terminal

• InvalidRequest

Invalid input from the user has generated a generic exception.

Type: Terminal

• NetworkFailure

The request couldn't be completed due to networking issues, such as a failure to receive a
response from the server.

Type: Retriable

• NotFound

The specified resource doesn't exist, or is in a terminal, inoperable, and irrecoverable state.

Type: Terminal

• NotStabilized

The downstream resource failed to complete all of its ready-state checks.

Type: Terminal

• NotUpdatable

The user has requested an update to a property defined in the resource type schema as a create-
only property. This error is applicable to update handlers only.

Type: Terminal

• ResourceConflict

The resource is temporarily unavailable to be acted upon. For example, if the resource is
currently undergoing an operation and can't be acted upon until that operation is finished.

Type: Retriable

• ServiceInternalError

The downstream service returned an internal error, typically with a 5XX HTTP Status code.

Type: Retriable

Testing resource types 57

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-schema.html#schema-properties-createonlyproperties
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-schema.html#schema-properties-createonlyproperties

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• ServiceLimitExceeded

A non-transient resource limit was reached on the service side.

Type: Terminal

• Throttling

The request was throttled by a downstream service.

Type: Retriable

ProgressEvent object schema

A ProgressEvent is a JSON object which represents the current operation status of the handler,
the current live state of the resource, and any additional resource information the handler wishes
to communicate to the CloudFormation CLI. Each handler MUST communicate a progress event to
the CloudFormation CLI under certain circumstances, and SHOULD communicate a progress event
under others. For more information, see Handler Communication Contract.

A handler MAY use progress events on a re-invocation to continue work from where it left off. For a
detailed discussion of this, see Progress chaining, stabilization and callback pattern.

Syntax

Below is the syntax for the ProgressEvent object.

{
 "OperationStatus": "string",
 "HandlerErrorCode": "string",
 "Message": "string",
 "CallbackContext": "string",
 "CallbackDelaySeconds": "string",
 "ResourceModel": "string",
 "ResourceModels": [
 "string"
],
 "NextToken": "string",
 }

Testing resource types 58

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract.html#resource-type-test-contract-communication
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop-stabilize.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Properties

OperationStatus

Indicates whether the handler has reached a terminal state or is still computing and requires
more time to complete.

Values: PENDING | IN_PROGRESS | SUCCESS | FAILED

Required: No

HandlerErrorCode

A handler error code should be provided when the event operation status is FAILED or
IN_PROGRESS.

For a list of handler error codes, see Handler Error Codes.

Required: Conditional. A handler error codes MUST be returned from the handler whenever
there is a progress event with an operation status of FAILED.

Message

Information which can be shown to users to indicate the nature of a progress transition or
callback delay.

Required: No

CallbackContext

Arbitrary information which the handler can return in an event with operation status of
IN_PROGRESS, to allow the passing through of additional state or metadata between
subsequent retries. For example, to pass through a resource identifier which can be used to
continue polling for stabilization.

For more detailed examples, see Progress chaining, stabilization and callback pattern.

Required: No

CallbackDelaySeconds

A callback will be scheduled with an initial delay of no less than the number of seconds
specified.

Testing resource types 59

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test-contract-errors.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop-stabilize.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Set this value to less than 0 to indicate no callback should be made.

Required: No

ResourceModel

Resource model returned by a read or list operation response for synchronous results, or for
final response validation/confirmation by create, update, and delete operations.

Required: No

ResourceModels

List of resource models returned by a list operation response for synchronous results.

Required: Conditional. Required for List handlers.

NextToken

Token used to request additional pages of resources from a list operation response.

Required: Conditional. Required for List handlers.

Progress chaining, stabilization, and callback pattern

Often when you develop CloudFormation resource types, when interacting with web service
APIs you need to chain them in sequence to apply the desired state. CloudFormation provides a
framework to write these chain patterns. The framework does a lot of the heavy lifting needed to
handle error conditions, throttle when calling downstream API, and more. The framework provides
callbacks that the handler can use to inspect and change the behavior when making these service
calls.

Most web service API calls follows a typical pattern:

1. Initiate the call context for the API.

2. Transform the incoming resource model properties to the underlying service API request.

3. Make the service call.

4. (Optional) Handle errors.

5. (Optional) Handle stabilization (if you need resource to be in a specific state before you apply
the next state).

6. Finalize progress to the next part of the call chain, or indicate successful completion.

Progress chaining, stabilization, and callback pattern 60

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

In writing the handler, you don't need to do anything special with replay/continuation semantics.
The framework ensures that the call chain is effectively resumed from where it was halted. This is
essentially useful when the wait time for resource stabilization runs into minutes or even hours.

Sample: Amazon Kinesis Data Streams integration

The following resource model is an example integration for a Kinesis Data Streams operation.

{
 "typeName": "AWS::Kinesis::Stream",
 "description": "Resource Type definition for AWS::Kinesis::Stream",
 "definitions": {
 ...
 },
 "properties": {
 "Arn": {
 "type": "string"
 },
 "Name": {
 "type": "string",
 "pattern": "[a-zA-Z0-9_.-]+"
 },
 "RetentionPeriodHours": {
 "type": "integer",
 "minimum": 24,
 "maximum": 168
 },
 "ShardCount": {
 "type": "integer",
 "minimum": 1,
 "maximum": 100000
 },
 "StreamEncryption": {
 "$ref": "#/definitions/AWSKinesisStreamStreamEncryption"
 },
 "Tags": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "$ref": "#/definitions/Tag"
 },
 "maximum": 50
 }

Progress chaining, stabilization, and callback pattern 61

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 }
 ...
}

And a sample CloudFormation template for creating this resource in a stack:

AWSTemplateFormatVersion: '2010-09-09'
Description: AWS MetricFilter
Resources:
 KinesisStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 100
 RetentionPeriodHours: 36
 Tags:
 - Key: '1'
 Value: one
 - Key: '2'
 Value: two
 StreamEncryption:
 EncryptionType: KMS
 KeyId: alias/KinesisEncryption

For Kinesis, the stream must first be created with a name and shard count, then tags can be
applied, followed by encryption. After creating a stream, but before any other configuration can be
applied, the stream must be in an ACTIVE state.

Here is the example of the using the progress-chaining and callback pattern to apply state
consistently. Note that much of the error handling is delegated to the framework. The
CloudFormation CLI provides some error handling on interpreting errors that can be retried after
a delay. The framework provides a fluent API that guides the developer with the right set of calls
with strong typing and code completion capabilities in IDEs.

public class CreateHandler extends BaseKinesisHandler {
 //
 // The handler is provide with a AmazonWebServicesClientProxy that provides
 // the framework for making calls that returns a ProgressEvent,
 // which can then be chained to perform the next task.
 //
 protected ProgressEvent<ResourceModel, CallbackContext>
 handleRequest(final AmazonWebServicesClientProxy proxy,

Progress chaining, stabilization, and callback pattern 62

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 final ResourceHandlerRequest<ResourceModel> request,
 final CallbackContext callbackContext,
 final ProxyClient<KinesisClient> client,
 final Logger logger) {

 ResourceModel model = request.getDesiredResourceState();
 if (model.getName() == null || model.getName().isEmpty()) {
 model.setName(
 IdentifierUtils.generateResourceIdentifier(
 "stream-", request.getClientRequestToken(), 128));
 }
 //
 // 1) initiate the call context, we are making createStream API call
 //
 return proxy.initiate(
 "kinesis:CreateStream", client, model, callbackContext)

 //
 // 2) transform Resource model properties to CreateStreamRequest API
 //
 .request((m) ->
 CreateStreamRequest.builder()
 .streamName(m.getName()).shardCount(m.getShardCount()).build())

 //
 // 3) Make a service call. Handler does not worry about credentials, they
 // are auto injected
 //
 .call((r, c) ->
 c.injectCredentialsAndInvokeV2(r, c.client()::createStream))

 //
 // provide stabilization callback. The callback is provided with
 // the following parameters
 // a. CreateStreamRequest the we transformed in request()
 // b. CreateStreamResponse that the service returned with successful call
 // c. ProxyClient<Kinesis>, we provided in initiate call
 // d. ResourceModel we provided in initiate call
 // f. CallbackContext callback context.
 //
 //
 .stabilize((_request, _response, _client, _model, _context) ->
 isStreamActive(client1, _model, context))

Progress chaining, stabilization, and callback pattern 63

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 //
 // Once ACTIVE return progress
 //
 .progress()

 //
 // we then chain to next state, setting tags on the resource.
 // we receive ProgressEvent object from .progress().
 //
 .then(r -> {
 Set<Tag> tags = model.getTags();
 if (tags != null && !tags.isEmpty()) {
 return setTags(proxy, client, model, callbackContext, false,
 logger);
 }
 return r;
 })

 //
 // we then setRetention...
 //
 .then(r -> {
 Integer retention = model.getRetentionPeriodHours();
 if (retention != null) {
 return handleRetention(proxy, client, model, DEFAULT_RETENTION,
 retention, callbackContext, logger);
 }
 return r;
 })

 ... // other steps

 //
 // finally we wait for Kinesis stream to be ACTIVE
 //
 .then((r) -> waitForActive(proxy, client, model, callbackContext))

 //
 // we then delegate to ReadHandler to read the live state and send
 // back successful response.
 //
 .then((r) -> new ReadHandler()
 .handleRequest(proxy, request, callbackContext, client, logger));
 }

Progress chaining, stabilization, and callback pattern 64

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

}

How to make other calls

The same pattern shown here for CreateStreamRequest is followed with others as well. The
following is handleRetention code:

protected ProgressEvent<ResourceModel, CallbackContext>
 handleRetention(final AmazonWebServicesClientProxy proxy,
 final ProxyClient<KinesisClient> client,
 final ResourceModel model,
 final int previous,
 final int current,
 final CallbackContext callbackContext,
 final Logger logger) {

 if (current > previous) {
 //
 // 1) initiate the call context, we are making IncreaseRetentionPeriod API
 call
 //
 return proxy.initiate(
 "kinesis:IncreaseRetentionPeriod:" + getClass().getSimpleName(),
 client, model, callbackContext)
 //
 // 2) transform Resource model properties to
 IncreaseStreamRetentionPeriodRequest API
 //
 .request((m) ->
 IncreaseStreamRetentionPeriodRequest.builder()
 .retentionPeriodHours(current)
 .streamName(m.getName()).build())
 //
 // 3) Make a service call. Handler does not worry about credentials,
 they
 // are auto injected

 // Add important comments like shown below
 // https://docs.aws.amazon.com/kinesis/latest/APIReference/
API_IncreaseStreamRetentionPeriod.html
 // When applying change if stream is not ACTIVE, we get ResourceInUse.
 // We filter this expection back off and then re-try to set this.

Progress chaining, stabilization, and callback pattern 65

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 //
 // set new retention period
 //
 .call((r, c) -> c.injectCredentialsAndInvokeV2(r,
 c.client()::increaseStreamRetentionPeriod))

 //
 // Filter ResoureceInUse or LimitExceeded.
 // Currently LimitExceeded is issued even for throttles
 //
 .exceptFilter(this::filterException).progress();
 } else {
 return proxy.initiate("kinesis:DecreaseRetentionPeriod:" +
 getClass().getSimpleName(), client, model, callbackContext)
 //
 // convert to API model
 //
 .request(m ->
 DecreaseStreamRetentionPeriodRequest.builder().retentionPeriodHours(current).streamName(m.getName())
 .build())
 ... // snipped for brevity
 .exceptFilter(this::filterException).progress();
 }
}

protected boolean filterException(AwsRequest request,
 Exception e,
 ProxyClient<KinesisClient> client,
 ResourceModel model,
 CallbackContext context) {
 return e instanceof ResourceInUseException ||
 e instanceof LimitExceededException;
}

Walkthrough: Develop a resource type

In this walkthrough, we'll use the CloudFormation CLI to create a sample resource type,
Example::Testing::WordPress. This includes modeling the schema, developing the handlers
to test those handlers, all the way to performing a dry run to get the resource type ready to submit
to the CloudFormation registry. We'll be coding our new resource type in Java, and using the us-
west-2 Region.

Walkthrough: Develop a resource type 66

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Note

This walkthrough may reference sample resources that have been deleted. For a resource
creation workflow, including a walkthrough of an example resource type in Python, see the
Resource Types walkthrough in the AWS CloudFormation Workshop.

Prerequisites

For purposes of this walkthrough, it's assumed you have already set up the CloudFormation CLI and
associated tooling for your Java development environment:

Setting up your environment for developing extensions

Create the resource type development project

Before we can actually design and implement our resource type, we'll need to generate a new
resource type project, and then import it into our IDE.

Note

This walkthrough uses the Community Edition of the IntelliJ IDEA.

Initiate the project

1. Use the init command to create your resource type project and generate the files it requires.

$ cfn init
Initializing new project

2. The init command launches a wizard that walks you through setting up the project, including
specifying the resource name. For this walkthrough, specify Example::Testing::WordPress.

Enter resource type identifier (Organization::Service::Resource):
 Example::Testing::WordPress

The wizard then enables you to select the appropriate language plugin. Currently, the only
language plugin available is for Java:

Prerequisites 67

https://catalog.workshops.aws/cfn101/en-US/advanced/resource-types
https://catalog.workshops.aws/cfn101/en-US/
https://www.jetbrains.com/idea/

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

One language plugin found, defaulting to java

3. Specify the package name. For this walkthrough, use com.example.testing.wordpress

Enter a package name (empty for default 'com.example.testing.wordpress'):
 com.example.testing.wordpress
Initialized a new project in /workplace/tobflem/example-testing-wordpress

Initiating the project includes generating the files needed to develop the resource type. For
example:

$ ls -1
README.md
example-testing-wordpress.json
lombok.config
pom.xml
rpdk.log
src
target
template.yml

Import the project into your IDE

In order to guarantee that any project dependencies are correctly resolved, you must import the
generated project into your IDE with Maven support.

For example, if you are using IntelliJ IDEA, you would need to do the following:

1. From the File menu, choose New, then choose Project From Existing Sources.

2. Navigate to the project directory.

3. In the Import Project dialog box, choose Import project from external model and then choose
Maven.

4. Choose Next and accept any defaults to complete importing the project.

Model the resource type

When you initiate the resource type project, an example resource type schema file is included
to help start you modeling your resource type. This is a JSON file named for your resource, and

Model the resource type 68

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

contains an example of a typical resource type schema. In the case of our example resource, the
schema file is named example-testing-wordpress.json.

1. In your IDE, open example-testing-wordpress.json.

2. Paste the following schema in place of the default example schema currently in the file.

This schema defines a resource, Example::Testing::WordPress, that provisions a WordPress
site. The resource itself contains four properties, only two of which can be set by users: Name,
and SubnetId. The other two properties, InstanceId and PublicIp, are read-only, meaning
they can't be set by users, but will be assigned during resource creation. Both of these properties
also serve as identifiers for the resource when it's provisioned.

As we'll see later in the walkthrough, creating a WordPress site actually requires more
information than represented in our resource model. However, we'll be handling that
information on behalf of the user in the code for the resource create handler.

{
 "typeName": "Example::Testing::WordPress",
 "description": "An example resource that creates a website based on WordPress
 5.2.2.",
 "sourceUrl": "https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/
resource-type-walkthrough.html",
 "properties": {
 "Name": {
 "description": "A name associated with the website.",
 "type": "string",
 "pattern": "^[a-zA-Z0-9]{1,219}\\Z",
 "minLength": 1,
 "maxLength": 219
 },
 "SubnetId": {
 "description": "A subnet in which to host the website.",
 "pattern": "^(subnet-[a-f0-9]{13})|(subnet-[a-f0-9]{8})\\Z",
 "type": "string"
 },
 "InstanceId": {
 "description": "The ID of the instance that backs the WordPress site.",
 "type": "string"
 },
 "PublicIp": {
 "description": "The public IP for the WordPress site.",
 "type": "string"

Model the resource type 69

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 }
 },
 "required": [
 "Name",
 "SubnetId"
],
"handlers": {
 "create": {
 "permissions": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateSecurityGroup",
 "ec2:DeleteSecurityGroup",
 "ec2:DescribeInstances",
 "ec2:DescribeSubnets",
 "ec2:CreateTags",
 "ec2:RunInstances"
]
 },
 "read": {
 "permissions": [
 "ec2:DescribeInstances"
]
 },
 "delete": {
 "permissions": [
 "ec2:DeleteSecurityGroup",
 "ec2:DescribeInstances",
 "ec2:TerminateInstances"
]
 }
 },
 "additionalProperties": false,
 "primaryIdentifier": [
 "/properties/PublicIp",
 "/properties/InstanceId"
],
 "readOnlyProperties": [
 "/properties/PublicIp",
 "/properties/InstanceId"
]
}

3. Update the auto-generated files in the resource type package so that they reflect the changes
we've made to the resource type schema.

Model the resource type 70

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

When we first initiated the resource type project, the CloudFormation CLI generated supporting
files and code for our resource type. Since we've made changes to the resource type schema,
we'll need to regenerate that code to ensure that it reflects the updated schema. To do this, we
use the generate command:

$ cfn generate
Generated files for Example::Testing::WordPress

Note

When using Maven, as part of the build process the generate command is
automatically run before the code is compiled. So your changes will never get out of
sync with the generated code.
Be aware the CloudFormation CLI must be in a location Maven/the system can find. For
more information, see Setting up your environment for developing extensions.

Implement the Resource handler

Now that we have our resource type schema specified, we can start implementing the behavior
we want the resource type to exhibit during each resource operation. To do this, we'll have to
implement the various event handlers, including:

• Adding any necessary dependencies

• Writing code to implement the various resource operation handlers.

Add dependencies

To actually make WordPress handlers that call the associated Amazon EC2 API operations, we need
to declare the Amazon EC2 SDK as a dependency in Maven's pom.xml file. To enable this, we need
to add a dependency on the AWS SDK for Java to the project.

1. In your IDE, open the project's pom.xml file.

2. Add the following dependency in the dependencies section.

<dependency>
 <groupId>com.amazonaws</groupId>

Implement the Resource handler 71

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/ec2/package-summary.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 <artifactId>aws-java-sdk-ec2</artifactId>
 <version>1.11.606</version>
</dependency>

This artifact will be added by Maven from the Maven Repository.

For more information on how to add dependencies, see the Maven documentation.

Note

Depending on your IDE, you may have to take additional steps for your IDE to include the
new dependency.
In IntelliJ IDEA, a dialog should appear to enable you to import these changes. We
recommend allowing automatic importing.

Implement the Create handler

With the necessary dependency specified, we can now start writing the handlers that actually
implement the resource's functionality. For our example resource, we'll implement just the create
and delete operation handlers.

To create a WordPress site, our resource create handler will have to accomplish the following:

• Gather and define inputs that we'll need to create the underlying AWS resources on behalf of the
user. These are details we're managing for them, since this is a very high-level resource type.

• Create an Amazon EC2 instance using a special AMI vended by Bitnami from the AMI Marketplace
that bootstraps WordPress.

• Create a security group that the instance will belong to so you can access the WordPress site
from your browser.

• Change the security group rules to dictate what the networking rules are for web access to the
WordPress site.

• If something goes wrong with creating the resource, attempt to delete the security group.

Define the CallbackContext

Because our create handler is more complex than simply calling a single API, it takes some time
to complete. However, each handler times out after one minute. To work around this issue, we'll

Implement the Resource handler 72

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-logs
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

write our handlers as state machines. A handler can exit with one of three states: SUCCESS,
IN_PROGRESS, and FAILED. To wait on stabilization of underlying resources, we can return an
IN_PROGRESS state with a CallbackContext. The CallbackContext will hold details about the
current state of the execution. When we return an IN_PROGRESS state and a CallbackContext,
CloudFormation will re-invoke the handler and pass the CallbackContext in with the request. You
can then make decisions based on what is included in the context.

The CallbackContext is modeled as a POJO so you can define what information you want to pass
between state transitions explicitly.

1. In your IDE, open the CallbackContext.java file, located in the src/main/java/com/
example/testing/wordpress folder.

2. Replace the entire contents of the CallbackContext.java file with the following code.

package com.example.testing.wordpress;

import com.amazonaws.services.ec2.model.Instance;

import java.util.List;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;

@Builder(toBuilder = true)
@Data
@NoArgsConstructor
@AllArgsConstructor
public class CallbackContext {
 private Instance instance;
 private Integer stabilizationRetriesRemaining;
 private List<String> instanceSecurityGroups;
}

Code the Create handler

1. In your IDE, open the CreateHandler.java file, located in the src/main/java/com/
example/testing/wordpress/CreateHandler.java folder.

2. Replace the entire contents of the CreateHandler.java file with the following code.

Implement the Resource handler 73

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

package com.example.testing.wordpress;

import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ResourceHandlerRequest;
import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.DescribeSubnetsRequest;
import com.amazonaws.services.ec2.model.DescribeSubnetsResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.InstanceNetworkInterfaceSpecification;
import com.amazonaws.services.ec2.model.IpPermission;
import com.amazonaws.services.ec2.model.IpRange;
import com.amazonaws.services.ec2.model.Reservation;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.Subnet;
import com.amazonaws.services.ec2.model.Tag;
import com.amazonaws.services.ec2.model.TagSpecification;

import java.util.List;
import java.util.UUID;

public class CreateHandler extends BaseHandler<CallbackContext> {
 private static final String SUPPORTED_REGION = "us-west-2";
 private static final String WORDPRESS_AMI_ID = "ami-04fb0368671b6f138";
 private static final String INSTANCE_TYPE = "m4.large";
 private static final String SITE_NAME_TAG_KEY = "Name";
 private static final String AVAILABLE_INSTANCE_STATE = "running";
 private static final int NUMBER_OF_STATE_POLL_RETRIES = 60;
 private static final int POLL_RETRY_DELAY_IN_MS = 5000;
 private static final String TIMED_OUT_MESSAGE = "Timed out waiting for instance
 to become available.";

 private AmazonWebServicesClientProxy clientProxy;
 private AmazonEC2 ec2Client;

Implement the Resource handler 74

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 @Override
 public ProgressEvent<ResourceModel, CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final ResourceHandlerRequest<ResourceModel> request,
 final CallbackContext callbackContext,
 final Logger logger) {

 final ResourceModel model = request.getDesiredResourceState();

 clientProxy = proxy;
 ec2Client =
 AmazonEC2ClientBuilder.standard().withRegion(SUPPORTED_REGION).build();
 final CallbackContext currentContext = callbackContext == null ?

 CallbackContext.builder().stabilizationRetriesRemaining(NUMBER_OF_STATE_POLL_RETRIES).build() :
 callbackContext;

 // This Lambda will continually be re-invoked with the current state of the
 instance, finally succeeding when state stabilizes.
 return createInstanceAndUpdateProgress(model, currentContext);
 }

 private ProgressEvent<ResourceModel, CallbackContext>
 createInstanceAndUpdateProgress(ResourceModel model, CallbackContext
 callbackContext) {
 // This Lambda will continually be re-invoked with the current state of the
 instance, finally succeeding when state stabilizes.
 final Instance instanceStateSoFar = callbackContext.getInstance();

 if (callbackContext.getStabilizationRetriesRemaining() == 0) {
 throw new RuntimeException(TIMED_OUT_MESSAGE);
 }

 if (instanceStateSoFar == null) {
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.IN_PROGRESS)
 .callbackContext(CallbackContext.builder()
 .instance(createEC2Instance(model))

 .stabilizationRetriesRemaining(NUMBER_OF_STATE_POLL_RETRIES)
 .build())
 .build();

Implement the Resource handler 75

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 } else if
 (instanceStateSoFar.getState().getName().equals(AVAILABLE_INSTANCE_STATE)) {
 model.setInstanceId(instanceStateSoFar.getInstanceId());
 model.setPublicIp(instanceStateSoFar.getPublicIpAddress());
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.SUCCESS)
 .build();

 } else {
 try {
 Thread.sleep(POLL_RETRY_DELAY_IN_MS);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.IN_PROGRESS)
 .callbackContext(CallbackContext.builder()

 .instance(updatedInstanceProgress(instanceStateSoFar.getInstanceId()))

 .stabilizationRetriesRemaining(callbackContext.getStabilizationRetriesRemaining() -
 1)
 .build())
 .build();
 }
 }

 private Instance createEC2Instance(ResourceModel model) {
 final String securityGroupId = createSecurityGroupForInstance(model);
 final RunInstancesRequest runInstancesRequest = new RunInstancesRequest()
 .withInstanceType(INSTANCE_TYPE)
 .withImageId(WORDPRESS_AMI_ID)
 .withNetworkInterfaces(new InstanceNetworkInterfaceSpecification()
 .withAssociatePublicIpAddress(true)
 .withDeviceIndex(0)
 .withGroups(securityGroupId)
 .withSubnetId(model.getSubnetId()))
 .withMaxCount(1)
 .withMinCount(1)
 .withTagSpecifications(buildTagFromSiteName(model.getName()));

 try {

Implement the Resource handler 76

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 return clientProxy.injectCredentialsAndInvoke(runInstancesRequest,
 ec2Client::runInstances)
 .getReservation()
 .getInstances()
 .stream()
 .findFirst()
 .orElse(new Instance());
 } catch (Throwable e) {
 attemptToCleanUpSecurityGroup(securityGroupId);
 throw new RuntimeException(e);
 }
 }

 private String createSecurityGroupForInstance(ResourceModel model) {
 String vpcId;
 try {
 vpcId = getVpcIdFromSubnetId(model.getSubnetId());
 } catch (Throwable e) {
 throw new RuntimeException(e);
 }

 final String securityGroupName = model.getName() + "-" +
 UUID.randomUUID().toString();

 final CreateSecurityGroupRequest createSecurityGroupRequest = new
 CreateSecurityGroupRequest()
 .withGroupName(securityGroupName)
 .withDescription("Created for the test WordPress blog: " +
 model.getName())
 .withVpcId(vpcId);

 final String securityGroupId =
 clientProxy.injectCredentialsAndInvoke(createSecurityGroupRequest,
 ec2Client::createSecurityGroup)
 .getGroupId();

 final AuthorizeSecurityGroupIngressRequest
 authorizeSecurityGroupIngressRequest = new AuthorizeSecurityGroupIngressRequest()
 .withGroupId(securityGroupId)
 .withIpPermissions(openHTTP(), openHTTPS());

 clientProxy.injectCredentialsAndInvoke(authorizeSecurityGroupIngressRequest,
 ec2Client::authorizeSecurityGroupIngress);

Implement the Resource handler 77

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 return securityGroupId;
 }

 private String getVpcIdFromSubnetId(String subnetId) throws Throwable {
 final DescribeSubnetsRequest describeSubnetsRequest = new
 DescribeSubnetsRequest()
 .withSubnetIds(subnetId);

 final DescribeSubnetsResult describeSubnetsResult =
 clientProxy.injectCredentialsAndInvoke(describeSubnetsRequest,
 ec2Client::describeSubnets);

 return describeSubnetsResult.getSubnets()
 .stream()
 .map(Subnet::getVpcId)
 .findFirst()
 .orElseThrow(() -> {
 throw new RuntimeException("Subnet " +
 subnetId + " not found");
 });
 }

 private IpPermission openHTTP() {
 return new IpPermission().withIpProtocol("tcp")
 .withFromPort(80)
 .withToPort(80)
 .withIpv4Ranges(new
 IpRange().withCidrIp("0.0.0.0/0"));
 }

 private IpPermission openHTTPS() {
 return new IpPermission().withIpProtocol("tcp")
 .withFromPort(443)
 .withToPort(443)
 .withIpv4Ranges(new
 IpRange().withCidrIp("0.0.0.0/0"));
 }

 private TagSpecification buildTagFromSiteName(String siteName) {
 return new TagSpecification()
 .withResourceType("instance")
 .withTags(new Tag().withKey(SITE_NAME_TAG_KEY).withValue(siteName));
 }

Implement the Resource handler 78

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 private Instance updatedInstanceProgress(String instanceId) {
 DescribeInstancesRequest describeInstancesRequest;
 DescribeInstancesResult describeInstancesResult;

 describeInstancesRequest = new
 DescribeInstancesRequest().withInstanceIds(instanceId);
 describeInstancesResult =
 clientProxy.injectCredentialsAndInvoke(describeInstancesRequest,
 ec2Client::describeInstances);
 return describeInstancesResult.getReservations()
 .stream()
 .map(Reservation::getInstances)
 .flatMap(List::stream)
 .findFirst()
 .orElse(new Instance());
 }

 private void attemptToCleanUpSecurityGroup(String securityGroupId) {
 final DeleteSecurityGroupRequest deleteSecurityGroupRequest = new
 DeleteSecurityGroupRequest().withGroupId(securityGroupId);
 clientProxy.injectCredentialsAndInvoke(deleteSecurityGroupRequest,
 ec2Client::deleteSecurityGroup);
 }
}

Update the Create handler unit test

Because our resource type is a high-level abstraction, a lot of implementation behavior isn't
apparent by the name alone. As such, we'll need to make some additions to our unit tests so that
we're not calling the live API operations that are necessary to create the WordPress site.

1. In your IDE, open the CreateHandlerTest.java file, located in the src/test/java/com/
example/testing/wordpress folder.

2. Replace the entire contents of the CreateHandlerTest.java file with the following code.

package com.example.testing.wordpress;

import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;

Implement the Resource handler 79

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

import software.amazon.cloudformation.proxy.ResourceHandlerRequest;
import com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest;
import com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressResult;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.DescribeSubnetsRequest;
import com.amazonaws.services.ec2.model.DescribeSubnetsResult;
import com.amazonaws.services.ec2.model.GroupIdentifier;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.InstanceState;
import com.amazonaws.services.ec2.model.Reservation;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Subnet;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.doReturn;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class CreateHandlerTest {
 private static String EXPECTED_TIMEOUT_MESSAGE = "Timed out waiting for instance
 to become available.";

 @Mock
 private AmazonWebServicesClientProxy proxy;

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);

Implement the Resource handler 80

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 }

 @Test
 public void testSuccessState() {
 final InstanceState inProgressState = new
 InstanceState().withName("running");
 final GroupIdentifier group = new GroupIdentifier().withGroupId("sg-1234");
 final Instance instance = new
 Instance().withInstanceId("i-1234").withState(inProgressState).withPublicIpAddress("54.0.0.0").withSecurityGroups(group);

 final CreateHandler handler = new CreateHandler();

 final ResourceModel model = ResourceModel.builder()
 .name("MyWordPressSite")
 .subnetId("subnet-1234")
 .build();

 final ResourceModel desiredOutputModel = ResourceModel.builder()
 .instanceId("i-1234")
 .publicIp("54.0.0.0")

 .name("MyWordPressSite")

 .subnetId("subnet-1234")
 .build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(1)
 .instance(instance)
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, context, logger);

 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.SUCCESS);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

Implement the Resource handler 81

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 assertThat(response.getResourceModel()).isEqualTo(desiredOutputModel);
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

 @Test
 public void testInProgressStateInstanceCreationNotInvoked() {
 final InstanceState inProgressState = new InstanceState().withName("in-
progress");
 final GroupIdentifier group = new GroupIdentifier().withGroupId("sg-1234");
 final Instance instance = new
 Instance().withState(inProgressState).withPublicIpAddress("54.0.0.0").withSecurityGroups(group);
 doReturn(new DescribeSubnetsResult().withSubnets(new
 Subnet().withVpcId("vpc-1234"))).when(proxy).injectCredentialsAndInvoke(any(DescribeSubnetsRequest.class),
 any());
 doReturn(new RunInstancesResult().withReservation(new
 Reservation().withInstances(instance))).when(proxy).injectCredentialsAndInvoke(any(RunInstancesRequest.class),
 any());
 doReturn(new
 CreateSecurityGroupResult().withGroupId("sg-1234")).when(proxy).injectCredentialsAndInvoke(any(CreateSecurityGroupRequest.class),
 any());
 doReturn(new
 AuthorizeSecurityGroupIngressResult()).when(proxy).injectCredentialsAndInvoke(any(AuthorizeSecurityGroupIngressRequest.class),
 any());

 final CreateHandler handler = new CreateHandler();

 final ResourceModel model =
 ResourceModel.builder().name("MyWordPressSite").subnetId("subnet-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, null, logger);

 final CallbackContext desiredOutputContext = CallbackContext.builder()

 .stabilizationRetriesRemaining(60)

 .instance(instance)

Implement the Resource handler 82

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 .build();
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.IN_PROGRESS);

 assertThat(response.getCallbackContext()).isEqualToComparingFieldByField(desiredOutputContext);
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

 assertThat(response.getResourceModel()).isEqualTo(request.getDesiredResourceState());
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

 @Test
 public void testInProgressStateInstanceCreationInvoked() {
 final InstanceState inProgressState = new InstanceState().withName("in-
progress");
 final GroupIdentifier group = new GroupIdentifier().withGroupId("sg-1234");
 final Instance instance = new
 Instance().withState(inProgressState).withPublicIpAddress("54.0.0.0").withSecurityGroups(group);
 final DescribeInstancesResult describeInstancesResult =
 new DescribeInstancesResult().withReservations(new
 Reservation().withInstances(instance));

 doReturn(describeInstancesResult).when(proxy).injectCredentialsAndInvoke(any(DescribeInstancesRequest.class),
 any());

 final CreateHandler handler = new CreateHandler();

 final ResourceModel model =
 ResourceModel.builder().name("MyWordPressSite").subnetId("subnet-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(60)
 .instance(instance)
 .build();

Implement the Resource handler 83

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, context, logger);

 final CallbackContext desiredOutputContext = CallbackContext.builder()

 .stabilizationRetriesRemaining(59)

 .instance(instance)
 .build();

 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.IN_PROGRESS);

 assertThat(response.getCallbackContext()).isEqualToComparingFieldByField(desiredOutputContext);
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

 assertThat(response.getResourceModel()).isEqualTo(request.getDesiredResourceState());
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

 @Test
 public void testStabilizationTimeout() {
 final CreateHandler handler = new CreateHandler();

 final ResourceModel model =
 ResourceModel.builder().name("MyWordPressSite").subnetId("subnet-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(0)
 .instance(new
 Instance().withState(new InstanceState().withName("in-progress")))
 .build();

 try {
 handler.handleRequest(proxy, request, context, logger);
 } catch (RuntimeException e) {

Implement the Resource handler 84

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 assertThat(e.getMessage()).isEqualTo(EXPECTED_TIMEOUT_MESSAGE);
 }
 }
}

Implement the Delete handler

We'll also need to implement a delete handler. At a high level, the delete handler needs to
accomplish the following:

1. Find the security groups attached to the Amazon EC2 instance that's hosting the WordPress
page.

2. Delete the instance.

3. Delete the security groups.

Again, we'll implement the delete handler as a state machine.

Code the Delete handler

1. In your IDE, open the DeleteHandler.java file, located in the src/main/java/com/
example/testing/wordpress folder.

2. Replace the entire contents of the DeleteHandler.java file with the following code.

package com.example.testing.wordpress;

import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ResourceHandlerRequest;
import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.GroupIdentifier;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;
import com.amazonaws.services.ec2.model.TerminateInstancesRequest;

Implement the Resource handler 85

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

import java.util.List;
import java.util.stream.Collectors;

public class DeleteHandler extends BaseHandler<CallbackContext> {
 private static final String SUPPORTED_REGION = "us-west-2";
 private static final String DELETED_INSTANCE_STATE = "terminated";
 private static final int NUMBER_OF_STATE_POLL_RETRIES = 60;
 private static final int POLL_RETRY_DELAY_IN_MS = 5000;
 private static final String TIMED_OUT_MESSAGE = "Timed out waiting for instance
 to terminate.";

 private AmazonWebServicesClientProxy clientProxy;
 private AmazonEC2 ec2Client;

 @Override
 public ProgressEvent<ResourceModel, CallbackContext> handleRequest (
 final AmazonWebServicesClientProxy proxy,
 final ResourceHandlerRequest<ResourceModel> request,
 final CallbackContext callbackContext,
 final Logger logger) {

 final ResourceModel model = request.getDesiredResourceState();

 clientProxy = proxy;
 ec2Client =
 AmazonEC2ClientBuilder.standard().withRegion(SUPPORTED_REGION).build();
 final CallbackContext currentContext = callbackContext == null ?

 CallbackContext.builder().stabilizationRetriesRemaining(NUMBER_OF_STATE_POLL_RETRIES).build() :
 callbackContext;

 // This Lambda will continually be re-invoked with the current state of the
 instance, finally succeeding when state stabilizes.
 return deleteInstanceAndUpdateProgress(model, currentContext);
 }

 private ProgressEvent<ResourceModel, CallbackContext>
 deleteInstanceAndUpdateProgress(ResourceModel model, CallbackContext
 callbackContext) {

 if (callbackContext.getStabilizationRetriesRemaining() == 0) {
 throw new RuntimeException(TIMED_OUT_MESSAGE);
 }

Implement the Resource handler 86

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 if (callbackContext.getInstanceSecurityGroups() == null) {
 final Instance currentInstanceState =
 currentInstanceState(model.getInstanceId());

 if
 (DELETED_INSTANCE_STATE.equals(currentInstanceState.getState().getName())) {
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NotFound)
 .build();
 }

 final List<String> instanceSecurityGroups = currentInstanceState
 .getSecurityGroups()
 .stream()
 .map(GroupIdentifier::getGroupId)
 .collect(Collectors.toList());

 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.IN_PROGRESS)
 .callbackContext(CallbackContext.builder()

 .stabilizationRetriesRemaining(NUMBER_OF_STATE_POLL_RETRIES)

 .instanceSecurityGroups(instanceSecurityGroups)
 .build())
 .build();
 }

 if (callbackContext.getInstance() == null) {
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.IN_PROGRESS)
 .callbackContext(CallbackContext.builder()

 .instance(deleteInstance(model.getInstanceId()))

 .instanceSecurityGroups(callbackContext.getInstanceSecurityGroups())

 .stabilizationRetriesRemaining(NUMBER_OF_STATE_POLL_RETRIES)
 .build())
 .build();

Implement the Resource handler 87

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 } else if
 (callbackContext.getInstance().getState().getName().equals(DELETED_INSTANCE_STATE))
 {

 callbackContext.getInstanceSecurityGroups().forEach(this::deleteSecurityGroup);
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.SUCCESS)
 .build();
 } else {
 try {
 Thread.sleep(POLL_RETRY_DELAY_IN_MS);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 return ProgressEvent.<ResourceModel, CallbackContext>builder()
 .resourceModel(model)
 .status(OperationStatus.IN_PROGRESS)
 .callbackContext(CallbackContext.builder()

 .instance(currentInstanceState(model.getInstanceId()))

 .instanceSecurityGroups(callbackContext.getInstanceSecurityGroups())

 .stabilizationRetriesRemaining(callbackContext.getStabilizationRetriesRemaining() -
 1)
 .build())
 .build();
 }

 }

 private Instance deleteInstance(String instanceId) {
 final TerminateInstancesRequest terminateInstancesRequest = new
 TerminateInstancesRequest().withInstanceIds(instanceId);
 return clientProxy.injectCredentialsAndInvoke(terminateInstancesRequest,
 ec2Client::terminateInstances)
 .getTerminatingInstances()
 .stream()
 .map(instance -> new
 Instance().withState(instance.getCurrentState()).withInstanceId(instance.getInstanceId()))
 .findFirst()
 .orElse(new Instance());
 }

Implement the Resource handler 88

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 private Instance currentInstanceState(String instanceId) {
 DescribeInstancesRequest describeInstancesRequest;
 DescribeInstancesResult describeInstancesResult;

 describeInstancesRequest = new
 DescribeInstancesRequest().withInstanceIds(instanceId);
 describeInstancesResult =
 clientProxy.injectCredentialsAndInvoke(describeInstancesRequest,
 ec2Client::describeInstances);
 return describeInstancesResult.getReservations()
 .stream()
 .map(Reservation::getInstances)
 .flatMap(List::stream)
 .findFirst()
 .orElse(new Instance());
 }

 private void deleteSecurityGroup(String securityGroupId) {
 final DeleteSecurityGroupRequest deleteSecurityGroupRequest = new
 DeleteSecurityGroupRequest().withGroupId(securityGroupId);
 clientProxy.injectCredentialsAndInvoke(deleteSecurityGroupRequest,
 ec2Client::deleteSecurityGroup);
 }
}

Update the Delete handler unit test

We'll also need to update the unit test for the delete handler.

1. In your IDE, open the DeleteHandlerTest.java file, located in the src/test/java/com/
example/testing/wordpress folder.

2. Replace the entire contents of the DeleteHandlerTest.java file with the following code.

package com.example.testing.wordpress;

import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ResourceHandlerRequest;

Implement the Resource handler 89

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.GroupIdentifier;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.InstanceState;
import com.amazonaws.services.ec2.model.InstanceStateChange;
import com.amazonaws.services.ec2.model.Reservation;
import com.amazonaws.services.ec2.model.TerminateInstancesRequest;
import com.amazonaws.services.ec2.model.TerminateInstancesResult;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;

import java.util.Arrays;

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.doReturn;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class DeleteHandlerTest {
 private static String EXPECTED_TIMEOUT_MESSAGE = "Timed out waiting for instance
 to terminate.";

 @Mock
 private AmazonWebServicesClientProxy proxy;

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test

Implement the Resource handler 90

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 public void testSuccessState() {
 final DeleteSecurityGroupResult deleteSecurityGroupResult = new
 DeleteSecurityGroupResult();

 doReturn(deleteSecurityGroupResult).when(proxy).injectCredentialsAndInvoke(any(DeleteSecurityGroupRequest.class),
 any());

 final DeleteHandler handler = new DeleteHandler();

 final ResourceModel model =
 ResourceModel.builder().instanceId("i-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(1)

 .instanceSecurityGroups(Arrays.asList("sg-1234"))
 .instance(new
 Instance().withState(new InstanceState().withName("terminated")))
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, context, logger);

 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.SUCCESS);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

 assertThat(response.getResourceModel()).isEqualTo(request.getDesiredResourceState());
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

 @Test
 public void testHandlerInvokedWhenInstanceIsAlreadyTerminated() {
 final DescribeInstancesResult describeInstancesResult =

Implement the Resource handler 91

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 new DescribeInstancesResult().withReservations(new
 Reservation().withInstances(new Instance().withState(new
 InstanceState().withName("terminated"))

 .withSecurityGroups(new
 GroupIdentifier().withGroupId("sg-1234"))));

 doReturn(describeInstancesResult).when(proxy).injectCredentialsAndInvoke(any(DescribeInstancesRequest.class),
 any());

 final DeleteHandler handler = new DeleteHandler();

 final ResourceModel model =
 ResourceModel.builder().instanceId("i-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, null, logger);

 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.FAILED);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getResourceModel()).isNull();
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isEqualTo(HandlerErrorCode.NotFound);
 }

 @Test
 public void testInProgressStateSecurityGroupsNotGathered() {
 final DescribeInstancesResult describeInstancesResult =
 new DescribeInstancesResult().withReservations(new
 Reservation().withInstances(new Instance().withState(new
 InstanceState().withName("running"))

 .withSecurityGroups(new
 GroupIdentifier().withGroupId("sg-1234"))));

Implement the Resource handler 92

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 doReturn(describeInstancesResult).when(proxy).injectCredentialsAndInvoke(any(DescribeInstancesRequest.class),
 any());

 final DeleteHandler handler = new DeleteHandler();

 final ResourceModel model =
 ResourceModel.builder().instanceId("i-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, null, logger);

 final CallbackContext desiredOutputContext = CallbackContext.builder()

 .stabilizationRetriesRemaining(60)

 .instanceSecurityGroups(Arrays.asList("sg-1234"))
 .build();
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.IN_PROGRESS);

 assertThat(response.getCallbackContext()).isEqualToComparingFieldByField(desiredOutputContext);
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

 assertThat(response.getResourceModel()).isEqualTo(request.getDesiredResourceState());
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

 @Test
 public void testInProgressStateSecurityGroupsGathered() {
 final InstanceState inProgressState = new InstanceState().withName("in-
progress");
 final TerminateInstancesResult terminateInstancesResult =
 new TerminateInstancesResult().withTerminatingInstances(new
 InstanceStateChange().withCurrentState(inProgressState));

Implement the Resource handler 93

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 doReturn(terminateInstancesResult).when(proxy).injectCredentialsAndInvoke(any(TerminateInstancesRequest.class),
 any());

 final DeleteHandler handler = new DeleteHandler();

 final ResourceModel model =
 ResourceModel.builder().instanceId("i-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(60)

 .instanceSecurityGroups(Arrays.asList("sg-1234"))
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, context, logger);

 final CallbackContext desiredOutputContext = CallbackContext.builder()

 .stabilizationRetriesRemaining(60)

 .instanceSecurityGroups(context.getInstanceSecurityGroups())
 .instance(new
 Instance().withState(inProgressState))
 .build();

 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.IN_PROGRESS);

 assertThat(response.getCallbackContext()).isEqualToComparingFieldByField(desiredOutputContext);
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

 assertThat(response.getResourceModel()).isEqualTo(request.getDesiredResourceState());
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

Implement the Resource handler 94

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 @Test
 public void testInProgressStateInstanceTerminationInvoked() {
 final InstanceState inProgressState = new InstanceState().withName("in-
progress");
 final GroupIdentifier group = new GroupIdentifier().withGroupId("sg-1234");
 final Instance instance = new
 Instance().withState(inProgressState).withSecurityGroups(group);
 final DescribeInstancesResult describeInstancesResult =
 new DescribeInstancesResult().withReservations(new
 Reservation().withInstances(instance));

 doReturn(describeInstancesResult).when(proxy).injectCredentialsAndInvoke(any(DescribeInstancesRequest.class),
 any());

 final DeleteHandler handler = new DeleteHandler();

 final ResourceModel model =
 ResourceModel.builder().instanceId("i-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(60)
 .instance(new
 Instance().withState(inProgressState).withSecurityGroups(group))

 .instanceSecurityGroups(Arrays.asList("sg-1234"))
 .build();

 final ProgressEvent<ResourceModel, CallbackContext> response
 = handler.handleRequest(proxy, request, context, logger);

 final CallbackContext desiredOutputContext = CallbackContext.builder()

 .stabilizationRetriesRemaining(59)

 .instanceSecurityGroups(context.getInstanceSecurityGroups())
 .instance(new
 Instance().withState(inProgressState).withSecurityGroups(group))

Implement the Resource handler 95

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 .build();

 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(OperationStatus.IN_PROGRESS);

 assertThat(response.getCallbackContext()).isEqualToComparingFieldByField(desiredOutputContext);
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);

 assertThat(response.getResourceModel()).isEqualTo(request.getDesiredResourceState());
 assertThat(response.getResourceModels()).isNull();
 assertThat(response.getMessage()).isNull();
 assertThat(response.getErrorCode()).isNull();
 }

 @Test
 public void testStabilizationTimeout() {
 final DeleteHandler handler = new DeleteHandler();

 final ResourceModel model =
 ResourceModel.builder().instanceId("i-1234").build();

 final ResourceHandlerRequest<ResourceModel> request =
 ResourceHandlerRequest.<ResourceModel>builder()
 .desiredResourceState(model)
 .build();

 final CallbackContext context = CallbackContext.builder()

 .stabilizationRetriesRemaining(0)

 .instanceSecurityGroups(Arrays.asList("sg-1234"))
 .instance(new
 Instance().withState(new InstanceState().withName("terminated")))
 .build();

 try {
 handler.handleRequest(proxy, request, context, logger);
 } catch (RuntimeException e) {
 assertThat(e.getMessage()).isEqualTo(EXPECTED_TIMEOUT_MESSAGE);
 }
 }
}

Implement the Resource handler 96

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Test the resource type

Next, we'll use the AWS SAM CLI to test locally that our resource will work as expected once we
submit it to the CloudFormation registry. To do this, we'll need to define tests for the SAM to run
against our create and delete handlers.

Create the SAM test files

1. Create two files:

• package-root/sam-tests/create.json

• package-root/sam-tests/delete.json

Where package-root is the root of the resource project. For our walkthrough example, the
files would be:

• example-testing-wordpress/sam-tests/create.json

• example-testing-wordpress/sam-tests/delete.json

2. In example-testing-wordpress/sam-tests/create.json, paste the following test.

Note

Add the necessary information, such as credentials and log group name, and remove any
comments in the file before testing.
To generate temporary credentials, you can use aws sts get-session-token.
For credentials, use temporary credentials of your personal AWS account. For best
practices, see Set default credentials and Region in the AWS SDK for Java Developer
Guide.
You will need the accessKeyId, secretAccessKey, and sessionToken with their
corresponding values.

{
 "action": "CREATE",
 "request": {
 "clientRequestToken": "4b90a7e4-b790-456b-a937-0cfdfa211dfe", # Can be any
 UUID.
 "desiredResourceState": {
 "Name": "MyBlog",

Test the resource type 97

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "SubnetId": "subnet-0bc6136e" # This should be a real subnet that exists
 in the account you're testing against.
 },
 "logicalResourceIdentifier": "MyResource"
 },
 "callbackContext": null
}

3. In example-testing-wordpress/sam-tests/delete.json, paste the following test.

Note

Add the necessary information, such as credentials and log group name, and remove any
comments in the file before testing.
To generate temporary credentials, you can use aws sts get-session-token.
For credentials, use temporary credentials of your personal AWS account. For best
practices, see Set default credentials and Region in the AWS SDK for Java Developer
Guide.
You will need the accessKeyId, secretAccessKey, and sessionToken with their
corresponding values.

{
 "action": "DELETE",
 "request": {
 "clientRequestToken": "4b90a7e4-b790-456b-a937-0cfdfa211dfe", # Can be any
 UUID.
 "desiredResourceState": {
 "Name": "MyBlog",
 "InstanceId": "i-0167b19dd4c1efbf3", # This should be the instance ID
 that was created in the "create.json" test.
 "SubnetId": "subnet-0bc6136e" # This should be a real subnet that exists
 in the account you're testing against.
 },
 "logicalResourceIdentifier": "MyResource"
 },
 "callbackContext": null
}

Test the resource type 98

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Test the Create handler

Once you've created the example-testing-wordpress/sam-tests/create.json test file,
you can use it to test your create handler.

Ensure Docker is running on your computer.

1. Invoke the SAM function from the resource package root directory using the following
commands.

$ sam local invoke TestEntrypoint --event sam-tests/create.json

Note

Occasionally these tests will fail with a retry-able error. In such a case, run the tests again
to determine whether the issue was transient.

Because the create handler was written as a state machine, invoking the tests will return an
output that represents a state. For example:

{
 "callbackDelaySeconds": 0,
 "resourceModel": {
 "SubnetId": "subnet-0bc6136e",
 "Name": "MyBlog"
 },
 "callbackContext": {
 "instance": {
 "subnetId": "subnet-0bc6136e",
 "virtualizationType": "hvm",
 "capacityReservationSpecification": {
 "capacityReservationPreference": "open"
 },
 "amiLaunchIndex": 0,
 "elasticInferenceAcceleratorAssociations": [],
 "sourceDestCheck": true,
 "stateReason": {
 "code": "pending",
 "message": "pending"
 },

Test the resource type 99

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "instanceId": "i-0b6978477c0e9d358",
 "vpcId": "vpc-eb80788e",
 "hypervisor": "xen",
 "rootDeviceName": "/dev/sda1",
 "productCodes": [],
 "state": {
 "code": 0,
 "name": "pending"
 },
 "architecture": "x86_64",
 "ebsOptimized": false,
 "imageId": "ami-04fb0368671b6f138",
 "blockDeviceMappings": [],
 "stateTransitionReason": "",
 "clientToken": "207dc686-e95c-4df9-8fcb-ee22bbdde963",
 "instanceType": "m4.large",
 "cpuOptions": {
 "threadsPerCore": 2,
 "coreCount": 1
 },
 "monitoring": {
 "state": "disabled"
 },
 "publicDnsName": "",
 "privateIpAddress": "172.0.0.133",
 "rootDeviceType": "ebs",
 "tags": [
 {
 "value": "MyBlog",
 "key": "Name"
 }
],
 "launchTime": 1567718644000,
 "elasticGpuAssociations": [],
 "licenses": [],
 "networkInterfaces": [
 {
 "networkInterfaceId": "eni-0e450b35a159b60fe",
 "privateIpAddresses": [
 {
 "privateIpAddress": "172.0.0.133",
 "primary": true
 }
],

Test the resource type 100

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "subnetId": "subnet-0bc6136e",
 "description": "",
 "groups": [
 {
 "groupName": "MyBlog-cbb70fca-4704-430b-
b67b-7d6d550e0592",
 "groupId": "sg-063679dc7681610c3"
 }
],
 "ipv6Addresses": [],
 "ownerId": "671472782477",
 "sourceDestCheck": true,
 "privateIpAddress": "172.0.0.133",
 "interfaceType": "interface",
 "macAddress": "02:e1:4b:d1:f7:40",
 "attachment": {
 "attachmentId": "eni-attach-0a01c63e4b45c4a5d",
 "deleteOnTermination": true,
 "deviceIndex": 0,
 "attachTime": 1567718644000,
 "status": "attaching"
 },
 "vpcId": "vpc-eb80788e",
 "status": "in-use"
 }
],
 "privateDnsName": "ip-172-0-0-133.us-west-2.compute.internal",
 "securityGroups": [
 {
 "groupName": "MyBlog-cbb70fca-4704-430b-b67b-7d6d550e0592",
 "groupId": "sg-063679dc7681610c3"
 }
],
 "placement": {
 "groupName": "",
 "tenancy": "default",
 "availabilityZone": "us-west-2b"
 }
 },
 "stabilizationRetriesRemaining": 60
 },
 "status": "IN_PROGRESS"
}

Test the resource type 101

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

2. From the test response, copy the contents of the callbackContext, and paste it into
the callbackContext section of the example-testing-wordpress/sam-tests/
create.json file.

3. Invoke the TestEntrypoint function again.

$ sam local invoke TestEntrypoint --event sam-tests/create.json

If the resource has yet to complete provisioning, the test returns a response with a status of
IN_PROGRESS. Once the resource has completed provisioning, the test returns a response with a
status of SUCCESS. For example:

{
 "callbackDelaySeconds": 0,
 "resourceModel": {
 "InstanceId": "i-0b6978477c0e9d358",
 "PublicIp": "34.211.69.121",
 "SubnetId": "subnet-0bc6136e",
 "Name": "MyBlog"
 },
 "status": "SUCCESS"
}

4. Repeat the previous two steps until the resource has completed.

When the resource completes provisioning, the test response contains both its PublicIp and
InstanceId:

• You can use the PublicIp value to navigate to the WordPress site.

• You can use the InstanceId value to test the delete handler, as described below.

Test the Delete handler

Once you've created the example-testing-wordpress/sam-tests/delete.json test file,
you can use it to test your delete handler.

Ensure Docker is running on your computer.

1. Invoke the TestEntrypoint function from the resource package root directory using the
following commands.

Test the resource type 102

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

$ sam local invoke TestEntrypoint --event sam-tests/delete.json

Note

Occasionally these tests will fail with a retriable error. In such a case, run the tests again
to determine whether the issue was transient.

As with the create handler, the delete handler was written as a state machine, so invoking the
test will return an output that represents a state.

2. From the test response, copy the contents of the callbackContext, and paste it into
the callbackContext section of the example-testing-wordpress/sam-tests/
delete.json file.

3. Invoke the TestEntrypoint function again.

$ sam local invoke TestEntrypoint --event sam-tests/delete.json

If the resource has yet to complete provisioning, the test returns a response with a status of
IN_PROGRESS. Once the resource has completed provisioning, the test returns a response with a
status of SUCCESS.

4. Repeat the previous two steps until the resource has completed.

Performing resource contract tests

Resource contract tests verify that the resource type schema you've defined properly catches
property values that will fail when passed to the underlying APIs called from within your resource
handlers. This provides a way of validating user input before passing it to the resource handlers.
For example, in the Example::Testing::WordPress resource type provide schema (in the
example-testing-wordpress.json file), we specified regex patterns for the Name and
SubnetId properties, and set the maximum length of Name as 219 characters. Contract tests are
intended to stress and validate those input definitions.

Specify resource contract test override values

The CloudFormation CLI performs resource contract tests using input that's generated from
the patterns you define in your resource's property definitions. However, some inputs can't be

Test the resource type 103

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

randomly generated. For example, the Example::Testing::WordPress resource requires an
actual subnet ID for testing, not just a string that matches the appearance of a subnet ID. To test
this property, we need to include a file with actual values for the resource contract tests to use
overrides.json at the root of our project that looks like this:

1. Navigate to the root of your project.

2. Create a file named overrides.json.

3. Include the following override, specifying an actual subnet ID to use when performing resource
contract tests.

{
 "CREATE": {
 "/SubnetId": "subnet-0bc6136e" # This should be a real subnet that exists in
 the account you're testing against.
 }
}

Run the resource contract tests

To run resource contract tests, you'll need two shell sessions.

1. In a new session, run the following command:

$ sam local start-lambda

2. From the resource package root directory, in a session that's aware of the CloudFormation CLI,
run the test command:

$ cfn test

The session that's running sam local start-lambda will display information about the
status of your tests.

Submit the resource type

Once you have completed implementing and testing your resource provided, the final step is to
submit it to the CloudFormation registry. This makes it available for use in stack operations in the
account and region in which it was submitted.

Submit the resource type 104

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• In a terminal, run the submit command to register the resource type in the us-west-2 region.

$ cfn submit -v --region us-west-2

The CloudFormation CLI validates the included resource type schema, packages your resource
provide project and uploads it to the CloudFormation registry, and then returns a registration
token.

Validating your resource specification...
Packaging Java project
Creating managed upload infrastructure stack
Managed upload infrastructure stack was successfully created
Registration in progress with token: 3c27b9e6-dca4-4892-ba4e-3c0example

Resource type registration is an asynchronous operation. You can use the supplied registration
token to track the progress of your type registration request using the DescribeTypeRegistration
action of the CloudFormation API.

Note

If you update your resource type, you can submit a new version of that resource type.
Every time you submit your resource type, CloudFormation generates a new version of that
resource type.
To set the default version of a resource type, use set-type-default-version. For
example:

$ aws cloudformation set-type-default-version \
 --type "RESOURCE" \
 --type-name "Example::Testing::WordPress" \
 --version-id "00000002"

To retrieve information about the versions of a resource type, use list-type-versions.
For example:

$ aws cloudformation list-type-versions \
 --type "RESOURCE" \
 --type-name "Example::Testing::WordPress"

Submit the resource type 105

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeTypeRegistration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-default-version.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-type-versions.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Provision the resource in a CloudFormation stack

Once the registration request for your resource type has completed successfully, you can create a
stack including resources of that type.

Note

Use DescribeTypeRegistration to determine when your resource type is successfully
registration registered with a status of COMPLETE. You should also see your new resource
type listed in the CloudFormation console.

1. Save the following JSON as a stack template, with the name stack.json.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "WordPress stack",
 "Resources": {
 "MyWordPressSite": {
 "Type": "Example::Testing::WordPress",
 "Properties": {
 "SubnetId": "subnet-0bc6136e", ## Note that this should be replaced
 with a subnet that exists in your account.
 "Name": "MyWebsite"
 }
 }
 }
}

2. Use the template to create a stack.

Note

This resource uses an official WordPress image on AWS Marketplace. In order to create
the stack, you'll first need to visit the AWS Marketplace and accept the terms and
subscribe.

Navigate to the folder in which you saved the stack.json file, and create a stack named
wordpress.

Provision the resource in a CloudFormation stack 106

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeTypeRegistration.html
https://aws.amazon.com/marketplace/pp?sku=7eyp7o9i35afqvpvvh5gujt8w

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

$ aws cloudformation create-stack
 --region us-west-2 \
 --template-body "file://stack.json" \
 --stack-name "wordpress"

As CloudFormation creates the stack, it should invoke your resource type create handler to
provision a resource of type Example::Testing::WordPress as part of the wordpress
stack.

As a final test of the resource type delete handler, you can delete the wordpress stack.

$ aws cloudformation delete-stack \
 --region us-west-2 \
 --stack-name wordpress

Resource type FAQ

Below are some Frequently Asked Questions about resource type development.

Updates

• Q: My service API implements Update actions as an Upsert, can I implement my
CloudFormation resource type in this way?

A: No, CloudFormation requires that update actions to a non-existing resource always throw a
ResourceNotFoundException.

Schema development

• Q: How can I re-use existing schemas, or establish relationships to other resource types in my
schema?

A: Relationships and re-use are established using JSON Pointers. These are implemented using
the $ref keyword in your resource type schema. Refer to Modeling resource types for use in
AWS CloudFormation for more information.

Resource type FAQ 107

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Permissions and authorization

• Q: Why am I getting an AccessDeniedException for my AWS API calls?

A: If you are seeing errors in your logs related to AccessDeniedException for a Lambda Execution
Role like:

A downstream service error occurred in a CREATE action on a
AWS::MyService::MyResource:
com.amazonaws.services.logs.model.AWSLogsException: User:
arn:aws:sts::111122223333:assumed-role/
UluruResourceHandlerLambdaExecutionRole-123456789012pdx/AWS-MYService-
MyResource-Handler-1h344teffe is not authorized to perform: some:ApiCall
on resource: some-resource (Service: AWSLogs; Status Code: 400; Error
Code: AccessDeniedException; Request ID: 36af0cec-a96a-11e9-b204-
ddabexample)

This is an indication that you are attempting to create and invoke AWS APIs using the default
client, which is injected with environment credentials.

For resource types, you should use the passed-in AmazonWebServicesClientProxy object to
make AWS API calls, as in the following example.

SesClient client = ClientBuilder.getClient();
final CreateConfigurationSetRequest createConfigurationSetRequest =
 CreateConfigurationSetRequest.builder()
 .configurationSet(ConfigurationSet.builder()
 .name(model.getName())
 .build())
 .build();
proxy.injectCredentialsAndInvokeV2(createConfigurationSetRequest,
 client::createConfigurationSet);

• Q: How do I specify credentials for non-AWS API calls?

A: For non-AWS API calls which require authentication and authorization, you should create
properties in your resource type which contain the credentials. Define these properties in the
resource type schema as writeOnlyProperties.

Permissions and authorization 108

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Users can then provide their own credentials through their CloudFormation templates. We
encourage the use of dynamic references in CloudFormation templates, which can use AWS
Secrets Manager to fetch credentials at runtime.

Resource type development

• Q: Can I share functionality between resource by adding common functionality to the
BaseHandler?

A: Because the BaseHandler is code-generated, it cannot be edited.

• Q: For Java development, is there a way to include multiple resources in a single maven
project?

A: Not currently. For security and manageability, the CloudFormation Registry registers each
resource type as a separate, versioned, type. You could still share code through a shared package.
Ideally, the wrapper layer does most of the boilerplate. If you see a need for more boilerplate,
we would like to know how we can improve for that use case rather than combine types in a
package, so please reach out to the team.

• Q: Will software.amazon.cloudformation.proxy.Logger have debug/info/warning/
error levels/?

A: Currently, all log messages are emitted to CloudWatch, which has no built-in concept of log
levels.

• Q: Does CloudFormation have a sandbox environment I can use to test and experiment with
my extensions?

A: Using extensions from your private registry in stacks created in your account is the same as
using a sandbox environment.

Testing

• Q: For testing, when should I use sam local invoke, cfn test and mvn test?

A: Use the various test capabilities for the test scenarios described below.

• sam local invoke: Creating custom integration test by passing in custom CloudFormation
payloads and isolate specific handlers.

Resource type development 109

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• cfn test: Contract tests meant to cycle through CRUDL actions and ideally leave in a clean
state (if tests pass).

• mvn test: Used for Unit testing. The goal is to confirm that each method or unit of the
resource performs as intended. It also helps to ensure that you have enough code coverage.
We expect unit tests to mock dependencies and not create real resources.

• Q: How do I get the latest changes for a contract test?

A: Run pip install cloudformation-cli cloudformation-cli-<language>-plugin
--upgrade.

• Q: Where can I find the code for contract tests?

A: You can find the code for the test suite at https://github.com/aws-cloudformation/
cloudformation-cli/tree/master/src/rpdk/core/contract/suite.

• Q: How do I check which version of contract tests I’m running?

A: Run pip freeze. The output shows the CloudFormation CLI version. The list of all
releases for the CloudFormation CLI can be found at https://github.com/aws-cloudformation/
cloudformation-cli/releases.

• Q: I found a bug in the contract tests. How do I report it?

A: File an issue at https://github.com/aws-cloudformation/cloudformation-cli/issues.

• Q: How can I contribute to the development of contract tests?

A: Follow these steps to install a virtual development environment on your local machine.

• Q: Contract tests time out on my local machine. How do I resolve this issue?

A: Contract tests assert that create, update, and delete handlers return progress events
every 60 seconds, and that read and list handlers complete in 30 seconds. If you see errors
for tests timing out, you can increase the timeout by running contract tests with the following
argument: cfn test --enforce-timeout <value>. The value specified is the new timeout
threshold for the read and list handlers. The new threshold for the create, update, and
delete handlers is double the value specified.

• Q: How do I run one contract test at a time?

A: You can run one contract test by running the following command: cfn test -- -k <test-
name>.

• Q: How do I define input files for contract tests?

Testing 110

https://github.com/aws-cloudformation/cloudformation-cli/tree/master/src/rpdk/core/contract/suite
https://github.com/aws-cloudformation/cloudformation-cli/tree/master/src/rpdk/core/contract/suite
https://github.com/aws-cloudformation/cloudformation-cli/releases
https://github.com/aws-cloudformation/cloudformation-cli/releases
https://github.com/aws-cloudformation/cloudformation-cli/issues
https://github.com/aws-cloudformation/cloudformation-cli#development

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

A: Specifying input data for use in contract tests describes how to pass an input for contract tests
and what each file should contain.

• Q: How do I fix the json.decoder.JSONDecodeError: Expecting value: line 1
column 1 (char 0) error?

A: This exception message indicates that you might be running out of memory or time. Add the
following lines under Globals in the template.yaml file in your code package.

Globals:
 Function:
 Timeout: 180
 MemorySize: 256

• Q: Why do create operations fail when the primaryIdentifier is null?

A: The create handler should return the primaryIdentifier in the model. If the
primaryIdentifier for your resource is a read-only property, you can update the returned
model with the property or invoke the read handler in your create handler.

• Q: Some tests fail because the input is not equal to the output. How do I fix this?

A: Input-output comparisons check that all properties are exactly equal, except for read-only
properties, write-only properties, defaults, insertionOrder, and uniqueItems.

• Q: Can the update handler update create-only properties?

A: No. The update handler cannot update create-only properties. These properties should
remain the same in update models.

• Q: Why does my delete/read handler fail with a NotFound or InvalidRequest error code?

A:Ensure that your input to these handlers is correct. The delete and read handlers should be
successfully invoked with just the primaryIdentifier. The read handler can also be invoked
with additionalIdentifiers.

• Q: Why do delete operations fail when resourceModel isn't null?

A: The delete handler shouldn't return a model when successful. You need to redact the model
from the returned progress event.

• Q: All of my properties are marked as create-only properties. Why do the update contract
tests keep running and failing?

Testing 111

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

A: Remove the update block from the handlers section in your schema file.

• Q: How do I fix permission issues during test execution?

A:Check the exception message to see which permissions are missing. Add these permissions to
ExecutionRole in the resource-role.yaml file in your code package.

Deployment

• Q: Is the resource type interface guaranteed to be stable?

A: The communication protocol between CloudFormation and your resource type package
is subject to change. However this will be done in a backwards-compatible way, using
versioned interfaces. This will be invisible to you as a developer and is managed as part of the
CloudFormation managed platform.

The interface that your handlers implement inside your package is expected to be stable. We
may introduce improvements, such as security fixes or other changes to the package, but these
will be done with versioned dependency or CloudFormation CLI updates. You aren't required to
upgrade your packages to publish them, only to incorporate these improvements.

Deployment 112

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Developing modules

Modules are a way for you to package resource configurations for inclusion across stack templates,
in a transparent, manageable, and repeatable way. Use modules to encapsulate common service
configurations and best practices as modular, customizable building blocks that users can then
take and include in their stack templates. Modules enable you to capture and disseminate resource
configurations that incorporate best practices, expert domain knowledge, and accepted guidelines
(for areas such as security, compliance, governance, and industry regulations). Users can then
include the module in their template without having to acquire deep knowledge of the intricacies
of the resource implementation.

For example, a domain expert in networking could create a module that contains built-in security
groups and ingress/egress rules that adhere to security guidelines. A user could then include that
module in their template to provision secure networking infrastructure in their stack, without
having to spend time figuring out how VPCs, subnets, security groups, and gateways work. And
because modules are versioned, if security guidelines change over time, the module author can
create a new version of the module that incorporates those changes.

A module can contain:

• Template sections, including resources to be provisioned from the module, along with any
associated data, such as outputs or conditions. Modules can also contain other modules.

• Any module parameters, which enable you to specify custom values whenever the module is
used.

Characteristics of modules include:

• Predictability: Because a module must adhere to its schema, the resources and other outputs
provisioned from the module are predictable.

• Reusability: Develop a module once, then reuse it across multiple templates and accounts.

• Traceability: CloudFormation retains knowledge of which resources in a stack were provisioned
from a module, enabling users to trace the source of resource changes.

• Manageability: Once you've registered a module, you can manage it through the CloudFormation
registry, including versioning and account and region availability.

113

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Users are able to register modules as private types in the CloudFormation registry for use in their
accounts.

To use a module, users include it in their template as they would an individual resource, including
specifying any necessary parameters for the module. When users initiate a stack operation,
CloudFormation generates a processed template that resolves any included modules into the
appropriate resources.

Users can use change sets to preview the resources to be added or updated before initiating the
stack operation.

For more information about using a module in a template, see Using modules to encapsulate and
reuse resource configurations in the CloudFormation User Guide.

Module structure

A module consists of two main pieces:

• A template fragment, which defines the resources and associated information you want to
provision through use of the module, including any module parameters you define.

• A module schema that you generate based on the template fragment. The module schema
declares the contract you defined in the template fragment, and is viewable to users in the
CloudFormation registry.

Creating the module template fragment

The starting point for developing a module is the template fragment. The template fragment is
a file that contains the information that defines the resources for CloudFormation to provision
during stack operations, including:

• A Resources section that defines the resources to be provisioned.

The Resources section is required.

• Additional other template sections related for the provisioning of the resources as necessary,
such as Outputs and Conditions.

• A Parameters section for any optional module-level parameters you want to define.

Module structure 114

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-changesets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resources-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Much like template parameters, module parameters enable the user to input custom values to a
module from the template (or module) that contains it. The module can then use these values to
set properties of the resources it contains.

Currently, CloudFormation supports template fragments written in JSON or YAML.

For example, the following template fragment creates an S3 bucket resource, and sets the
AccessControl property to Private and the resource DeletionPolicy to Retain. In addition,
the template fragment defines a module-level parameter, VersioningConfigurationParam,
whose values is used to set the VersioningConfiguration status of the S3 bucket.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "A sample S3 Bucket module (AWS::SampleS3::Bucket::MODULE)",
 "Parameters": {
 "VersioningConfigurationParam": {
 "Description": "Versioning configuration",
 "Type": "String"
 }
 },
 "Resources": {
 "S3BucketName": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "AccessControl": "Private",
 "VersioningConfiguration": {
 "Status": {
 "Ref": "VersioningConfigurationParam"
 }
 }
 },
 "DeletionPolicy": "Retain"
 }
 }
}

You can author template fragments manually, or use any tool that generates CloudFormation
templates. For example, you can use the AWS Cloud Development Kit (AWS CDK) to synthesize one
or more AWS CDK constructs to produce a CloudFormation template, and then use that template

Creating the template fragment 115

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

as the basis for a module. For more information about the CDK, see the AWS Cloud Development Kit
(AWS CDK).

Note

Be aware that regardless of the method you use to create a module's template fragment,
it must adhere to the restrictions on what can be included in a template fragment for a
module.

Considerations when authoring the template fragment

Keep in mind the following considerations when developing modules:

• Modules are, by design, predictable, and transparent. Because of this, you can't include features
which can potentially result in external information or resources being imported into the
module. These features include:

• Importing stack values, using Fn::ImportValue intrinsic function.

• Exporting stack values, using the Export field in the Outputs template section. (Use of the
Outputs section is supported.)

• Macros, including use of the Transform template section or the Fn::Transform function.

This includes transforms provided by CloudFormation, such as AWS::Include and
AWS::Serverless.

• Nested stacks, which are represented in the template by the AWS::CloudFormation::Stack
resource.

• Stack sets, which are represented in the template by the AWS::CloudFormation::StackSet
resource.

• Tags can't be specified at the module level. However:

• You can assign tags to individual resources within the module, as you would assign tags to any
resource.

• You can use module parameters to set tag values.

Create the module parameter, and then have the tag you've assigned to individual resources
within the module reference that module parameter. For more information, see Using
parameters to specify module values in the CloudFormation User Guide.

Creating the template fragment 116

https://docs.aws.amazon.com/cdk/latest/guide/home.html
https://docs.aws.amazon.com/cdk/latest/guide/home.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-imports.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-exports.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-macros.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-transform.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/create-reusable-transform-function-snippets-and-add-to-your-template-with-aws-include-transform.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-aws-serverless.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudformation-stackset.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html#module-using-params
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html#module-using-params

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• Tags you specify at the stack level are assigned to the individual resources derived from the
module.

• Helper scripts specified at the module level don't propagate to the individual resources
contained in the module when CloudFormation processes the template.

• Outputs specified in the module are propagated to outputs at the template level.

Each output will be assigned a logical ID that's a concatenation of the module logical name and
the output name as defined in the module. For more information about outputs, see Outputs in
the CloudFormation User Guide.

• Parameters specified in the module Aren't propagated to parameters at the template level.

However, you can create template-level parameters that reference module-level parameters. For
more information, see Using parameters to specify module values in the CloudFormation User
Guide.

Nesting modules

Modules can contain other modules. You can nest modules up to three levels deep. To include a
module in your module, reference it in the Resources section of your template fragment, as you
would any other resource. For an example, see Specifying properties on resources in a child module
from the parent module in the CloudFormation User Guide.

Macros and modules

CloudFormation doesn't support inclusion of modules in macros. A module can't contain a macro.

For more information on macros, see Using macros to perform custom processing in the
CloudFormation User Guide.

Defining parameters in a module

Much like template parameters, module parameters enable the user to input custom values to a
module from the template (or module) that contains it. The module can then use these values to
set properties of the resources it contains.

You define a module parameter as you would a template parameter. For detailed information
about parameter requirements and definition, see Parameters in the CloudFormation User Guide.

Creating the template fragment 117

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/module-using-params.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html#module-using-params-example-2
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html#module-using-params-example-2
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-macros.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Dynamic references aren't resolved when the module is processed by CloudFormation, but when
the individual resources are created or updated during stack operations.

Module parameters don't count toward the parameter maximum for template parameters. For
information on template parameters and their limits, see Parameters in the CloudFormation User
Guide.

Parameters specified in the module are not propagated to parameters at the template level.
However, you can create template-level parameters that reference module-level parameters.

For information on how users can specify parameter values in modules, see Using parameters to
specify module values in the CloudFormation User Guide.

Specifying constraints for module parameters

Module parameters don't support Constraint enforcement. To perform constraint checking on a
module parameter, create a template parameter with the desired constraints, then reference that
template parameter in your module parameter.

Specifying policies on resources contained in a module

If you specify the following resource policy attributes at the module level, CloudFormation applies
the policy attribute to all resources contained in the module:

• DeletionPolicy

• UpdateReplacePolicy

This doesn't include specifying the Snapshot option for UpdateReplacePolicy. Specify this
option on the resource directly.

Policy attributes specified at a resource level override any specified at the module level.

You can't specify the following resource policy attributes at the module level:

• CreationPolicy

• UpdatePolicy

If you use a DependsOn attribute to specify that a resource in your template depends on a module,
CloudFormation will finish provisioning all resources in the module before provisioning the
dependent resource.

Creating the template fragment 118

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html#module-using-params
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html#module-using-params
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html#parameters-section-structure-properties

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

For more information on resource policies, see Resource attribute reference in the CloudFormation
User Guide.

Generating the module schema

The module schema is generated from the template fragment, and defines the contract to which
the module adheres, including defining the input it accepts and the possible resources it resolves to
when included in a template.

To generate the module schema, use the validate command once you've authored your template
fragment.

For example, suppose you created a module package and used the template fragment above. The
validate command would result in the following module schema:

{
 "typeName": "AWS::SampleS3::Bucket::MODULE",
 "properties": {
 "VersioningConfigurationParam": {
 "description": "Version Configuration",
 "type": "string"
 }
 },
 "resources": {
 "type": "object",
 "properties": {
 "S3Bucket": {
 "$ref": "aws-s3-bucket.json"
 }
 },
 "additionalProperties": false
 }
}

For more information, see Develop a module.

Model requirements for publishing a public module

If you want to make your module publicly available to all CloudFormation users, you can publish it
to the CloudFormation registry. In order to publish your module, it must meet the following model
requirements. Before publishing, use TestType to confirm your module meets these requirements.

Generating the module schema 119

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-product-attribute-reference.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-validate.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/modules-develop.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_TestType.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

For more information on publishing public extensions, see Publishing extensions to make them
available for public use.

• Public modules can contain other public modules as child modules, to a level of three deep.

• Public modules can't include circular dependencies on child modules, or vice versa.

• Custom resources aren't supported in public modules.

• Only public resources are supported in public modules. The public resources can be published by
Amazon or third-parties.

• Any third-party public resources included in the module must include the necessary publisher
information, as detailed in Specifying publisher metadata for public third-party resources.

• The supported major versions listed in the module for a resource type must be subset of the
supported major versions specified for the resource type in any child modules.

Specifying publisher metadata for public third-party resources

For any third-party public resources you include in your public module, you must specify additional
publisher information. This enables CloudFormation to determine the resource type specified,
and which versions of that resource the module supports. Specify the following properties in a
Metadata element in your resource definition:

• PublisherId

The publisher ID of the resource type publisher.

• RegionalPublisherId

An array listing the regions in which the publisher is registered, with the publisher ID in each
region.

• OrignalTypeName

The original type name of the resource type, as specified by the publisher.

• SupportMajorVersions

An array listing the major versions of the resource this module supports.

For example, the following module snippet adds a resource to the module. The module uses a
type alias, Module::DDB::Table, for the resource type, but also includes the original type name,

Publishing requirements 120

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html#publish-extension-publishing
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html#publish-extension-publishing
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/modules-structure.html#modules-structure-publishing-3p-info
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Mongodb::DDB::Table, so that CloudFormation can determine if the resource type is enabled in
the user's account. The snippet also includes publisher ID information, in case multiple publishers
have published public resource types of the same name, in addition to which major versions of the
resource type that the module supports.

Resources:
 SampleDDB:
 Type: Module::DDB::Table
 Properties:
 TableName: xx
 IndexName: xxx
 Metadata:
 PublisherId: dfdxfdfwed
 RegionalPublisherId:
 us-east-1: c34ntbnrb1
 us-west-2: eer332gfdf
 OrignalTypeName:
 Mongodb::DDB::Table
 SupportMajorVersions: [1, 2, 3]

Develop a module using the CFN-CLI

Follow these basic steps to develop and register a module project.

1. In the CFN-CLI, use the init command to create a new project. The init command creates a
fragments folder containing a sample fragment file named sample.json.

Follow the prompts. Specify that you want to create a module(m), and enter the module
name.

$ cfn init
Initializing new project
Do you want to develop a new resource(r) a module(m) or a hook(h)?
>> m
What is the name of your module type?
(<Organization>::<Service>::<Name>::MODULE)
>> My::Sample::SampleBucket::MODULE

2. Include your template fragment in the project.

Develop a module 121

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-init.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

In the fragments folder in the project, you should find a file named sample.json. This is the
template fragment file. Author your template fragment in this file and save.

You can rename this file as necessary. The folder can only contain a single file.

For more information, see Creating a module template fragment.

3. Use validate to validate your project. Fix any issues reported.

The validate command regenerates the module schema, based on the template fragment
you included in the fragments folder. The module schema is located in the root folder, and
named schema.json.

4. Use submit to register the module with CloudFormation, in the specified region. Registering a
module makes it available for inclusion in CloudFormation templates.

Note

When you register your module using submit, CloudFormation regenerates your
module schema based on the template fragment in your project. You can't specify a
schema file directly. To specify a module schema file when registering a module, use
RegisterType in the CloudFormation API.

For information about using modules in CloudFormation templates, see Using modules in the
CloudFormation Users Guide.

Develop a module 122

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/modules-structure.html#modules-template-fragment
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-validate.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_RegisterType.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/modules.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

AWS CloudFormation Hooks User Guide

For information on developing and using Hooks to proactively inspect AWS CloudFormation
resources, visit the CloudFormation Hooks User Guide.

123

https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/what-is-cloudformation-hooks.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Updating Lambda runtimes for resource types and hooks

AWS CloudFormation resource types and hooks are developed using CloudFormation CLI language
plug-ins available for Go, Java, Python, and TypeScript. The language plug-ins eventually need to
be updated in order to maintain compatibility.

You can update your runtime by modifying parameters in the .rpdk-config and template.yml
files. These files are found in your resource provider or hooks package. We recommend that your
CloudFormation resource types and hooks use supported Lambda runtimes.

Upgrading the Java runtime

Steps to upgrade to Java 17

1. In the .rpdk-config file, change the runtime parameter to java17.

The following is an example .rpdk-config using the java17 runtime:

{
 "typeName": "AWS::DirectoryService::SimpleAD",
 "language": "java",
 "runtime": "java17",
 "entrypoint":
 "software.amazon.directoryservice.simplead.HandlerWrapper::handleRequest",
 "testEntrypoint":
 "software.amazon.directoryservice.simplead.HandlerWrapper::testEntrypoint",
 "settings": {
 "namespace": [
 "software",
 "amazon",
 "directoryservice",
 "simplead"
],
 "protocolVersion": "2.0.0"
 }
}

2. In the template.yml file:

• In TypeFunction and TestEntrypoint, change the Runtime parameters to java17.

Upgrading the Java runtime 124

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

The following is an example template.yml file using the java17 runtime:

AWSTemplateFormatVersion: "2010-09-09"
Transform: AWS::Serverless-2016-10-31
Description: AWS SAM template for the AWS::DirectoryService::SimpleAD resource type

Globals:
 Function:
 Timeout: 180 # docker start-up times can be long for SAM CLI
 MemorySize: 1024

Resources:
 TypeFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler:
 software.amazon.directoryservice.simplead.HandlerWrapper::handleRequest
 Runtime: java17
 CodeUri: ./target/aws-directoryservice-simplead-handler-1.0-SNAPSHOT.jar

 TestEntrypoint:
 Type: AWS::Serverless::Function
 Properties:
 Handler:
 software.amazon.directoryservice.simplead.HandlerWrapper::testEntrypoint
 Runtime: java17
 CodeUri: ./target/aws-directoryservice-simplead-handler-1.0-SNAPSHOT.jar

Upgrading the Go runtime

Steps to upgrade to provided.al2

1. In the .rpdk-config file:

• Change the runtime parameter to porovided.al2.

• Change entrypoint and testEntrypoint paramters to bootstrap.

The following is an example .rpdk-config file using the provided.al2 runtime:

Upgrading the Go runtime 125

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

{
 "typeName": "Example::GitHub::Repo",
 "language": "go",
 "runtime": "provided.al2",
 "entrypoint": "bootstrap",
 "testEntrypoint": "bootstrap",
 "settings": {
 "import_path": "github.com/aws-cloudformation/cloudformation-cli-go-plugin/
examples/github-repo",
 "protocolVersion": "2.0.0",
 "pluginVersion": "2.0.0"
 }
}

2. In the template.yml file:

• In TypeFunction and TestEntrypoint, change the Runtime parameters to
provided.al2.

• In TypeFunction and TestEntrypoint, change the Handler parameters to bootstrap.

• In TypeFunction and TestEntrypoint, add x86_64 to the Architecture parameter.

The following is an example template.yml file using the provided.al2 runtime:

AWSTemplateFormatVersion: "2010-09-09"
Transform: AWS::Serverless-2016-10-31
Description: AWS SAM template for the Example::GitHub::Repo resource type

Globals:
 Function:
 Timeout: 60 # docker start-up times can be long for SAM CLI

Resources:
 TypeFunction:
 Type: AWS::Serverless::Function
 Metadata:
 BuildMethod: go1.x
 Properties:
 Handler: bootstrap
 Runtime: provided.al2
 Architectures:

Upgrading the Go runtime 126

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 - x86_64
 CodeUri: bin/
 # Uncomment to test with AWS resources
 # Environment:
 # Variables:
 # AWS_FORCE_INTEGRATIONS: "true"

 TestEntrypoint:
 Type: AWS::Serverless::Function
 Metadata:
 BuildMethod: go1.x
 Properties:
 Handler: bootstrap
 Runtime: provided.al2
 Architectures:
 - x86_64
 CodeUri: bin/

Upgrading the Python runtime

Steps to upgrade to Python 3.11

1. In the .rpdk-config file:

• Change the runtime parameter to python3.11.

• Change the language parameter to python311.

The following is an example .rpdk-config file using the python3.11 runtime:

{
 "artifact_type": "RESOURCE",
 "typeName": "AWS::EC2::Instance",
 "language": "python311",
 "runtime": "python3.11",
 "entrypoint": "aws_ec2_instance.handlers.resource",
 "testEntrypoint": "aws_ec2_instance.handlers.test_entrypoint",
 "settings": {
 "version": false,
 "subparser_name": null,
 "verbose": 0,

Upgrading the Python runtime 127

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 "force": false,
 "type_name": null,
 "artifact_type": null,
 "endpoint_url": null,
 "region": null,
 "target_schemas": [],
 "profile": null,
 "use_docker": true,
 "no_docker": false,
 "protocolVersion": "2.0.0"
 }
}

2. In the template.yml file:

• In TypeFunction and TestEntrypoint, change the Runtime parameters to
python3.11.

The following is an example template.yml file using the python3.11 runtime:

AWSTemplateFormatVersion: "2010-09-09"
Transform: AWS::Serverless-2016-10-31
Description: AWS SAM template for the AWS::EC2::Instance resource type

Globals:
 Function:
 Timeout: 180 # docker start-up times can be long for SAM CLI
 MemorySize: 256

Resources:
 TypeFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: aws_ec2_instance.handlers.resource
 Runtime: python3.11
 CodeUri: build/

 TestEntrypoint:
 Type: AWS::Serverless::Function
 Properties:
 Handler: aws_ec2_instance.handlers.test_entrypoint
 Runtime: python3.11

Upgrading the Python runtime 128

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 CodeUri: build/

Upgrading the Node.js runtime

Steps to upgrade to Node.js 18

1. In the .rpdk-config file, change the runtime parameter to nodejs18.x.

{
 "artifact_type": "RESOURCE",
 "typeName": "Dynatrace::Environment::Metric",
 "language": "typescript",
 "runtime": "nodejs18.x",
 "entrypoint": "dist/Dynatrace-Environment-Metric/src/handlers.entrypoint",
 "testEntrypoint": "dist/Dynatrace-Environment-Metric/src/
handlers.testEntrypoint",
 "settings": {
 "version": false,
 "subparser_name": null,
 "verbose": 0,
 "force": false,
 "type_name": null,
 "artifact_type": null,
 "endpoint_url": null,
 "region": null,
 "target_schemas": [],
 "useDocker": false,
 "protocolVersion": "2.0.0"
 },
 "contractSettings":{
 "typeConfiguration": {
 "configuration": {
 "DynatraceAccess": {
 "Token": "{{resolve:ssm-secure:/cfn/dynatrace/token:1}}",
 "Endpoint": "{{resolve:ssm-secure:/cfn/dynatrace/endpoint:1}}"
 }
 },
 "configurationAlias": "default"
 }
 }
}

Upgrading the Node.js runtime 129

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

2. In the template.yml file:

• In TestEntrypoint and TypeFunction, change the Runtime parameters to
nodejs18.x.

The following is an example template.yml file using the nodejs18.x runtime:

AWSTemplateFormatVersion: "2010-09-09"
Transform: AWS::Serverless-2016-10-31
Description: AWS SAM template for the Dynatrace::Environment::Metric resource type

Globals:
 Function:
 Timeout: 180 # docker start-up times can be long for SAM CLI
 MemorySize: 256

Resources:
 TestEntrypoint:
 Type: AWS::Serverless::Function
 Properties:
 Handler: dist/Dynatrace-Environment-Metric/src/handlers.testEntrypoint
 Runtime: nodejs18.x
 CodeUri: ./

 TypeFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: dist/Dynatrace-Environment-Metric/src/handlers.entrypoint
 Runtime: nodejs18.x
 CodeUri: ./

Upgrading the Node.js runtime 130

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Registering extensions for use in the CloudFormation
registry

Once you've completed developing your extension, you'll need to register it with CloudFormation
to make it available for use in the CloudFormation registry. From the CloudFormation CLI, use
the submit command to register your extension with CloudFormation. You can also register your
resource directly using the register-type operation.

For detailed information about registering private extensions, see Using private extensions in the
AWS CloudFormation User Guide.

Registering extensions using the submit command

In general, the submit command does the following:

• Validates the extension schema.

• Packages up the extension project files and uploads them to CloudFormation.

• This includes any source code, such as resource handlers for resource type extensions.

• Extension source code, such as resource handlers runs within the CloudFormation service
account.

• Runs the unit and contract tests defined in the extension project.

• For resource type extensions, determines which handlers have been specified for the resource, to
determine how CloudFormation provisions the resource.

• Returns a registration token that you can use with the describe-type-registration operation to
track the status of the registration request.

To validate and package your extension project, but not register it with CloudFormation, use the --
dry-run option for the submit command.

You must register your extension in each AWS Region in which you want to use it.

Use the list-types operation for summary information about types that have been registered with
CloudFormation, and the describe-type operation for detailed information about specific registered
resource type or resource type version.

Registering extensions using the submit command 131

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/register-type.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-private.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type-registration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

To enable activated Hooks

After you've registered and enabled your Hook, you must set the TargetStacks to ALL
in the HookConfiguration section. For example, the following command uses the set-
type-configuration operation and lists the TargetStacks as ALL. You may specify the
FailureMode as FAIL or WARN and add additional properties.

$ aws cloudformation --region us-west-2 set-type-configuration \
 --configuration '{"CloudFormationConfiguration":{"HookConfiguration":
 {"TargetStacks":"ALL", "FailureMode": "FAIL", "Properties":{}}}}' \
 --type-arn $HOOK_TYPE_ARN

Resource type provisioning

During registration, CloudFormation examines which resource handlers have been implemented
for the resource. The handlers implemented determine what provisioning actions CloudFormation
takes with respect to the resource during various stack operations.

• If the resource type doesn't contain create, read, and delete handlers, CloudFormation can't
actually provision the resource.

• If the resource type doesn't contain an update handler, CloudFormation can't update the
resource during stack update operations, and will instead replace it.

Extension versions and scope

When you register an extension, you are actually registering a specific version of that extension.
You can register multiple versions of an extension, and specify which version you want to use.
Use the SetTypeDefaultVersion action to specify the default version of an extension. The default
version of an extension will be used in CloudFormation operations.

Any extension you register is only visible and usable within the account(s) in which you register it.

Deregistering extensions and extension versions

To remove an extension or extension version from active use in CloudFormation, you must
deregister it using the DeregisterType action. If an extension or extension version is deregistered, it
can no longer be used in CloudFormation operations.

To enable activated Hooks 132

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeDefaultVersion.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DeregisterType.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

You can deregister a specific extension version, or the extension as a whole. To deregister an
extension, you must individually deregister all registered versions of that extension. If an extension
has only a single registered version, deregistering that version results in the extension itself being
deregistered. You can't deregister the default version of an extension, unless it's the only registered
version of that extension, in which case the extension itself is deregistered as well.

You can't deregister an extension using the CloudFormation console.

Deregistering extensions and extension versions 133

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Publishing extensions to make them available for public
use

After you've developed and registered a private extension, you can make it publicly available to
general CloudFormation users by publishing it to the CloudFormation registry, as a third-party
public extension.

Public third-party extensions enable you to offer CloudFormation users ways to model,
provision, and configure environments containing AWS and third-party resources. As with private
extensions, public extensions are treated the same as any resource published by Amazon within
CloudFormation; users can use CloudFormation capabilities to create, provision, and manage the
extensions you provide in a safe and repeatable manner, just as they would any AWS resource.
This includes CloudFormation management capabilities such as change sets, drift detection, and
resource import.

Extensions published to the registry are visible by all CloudFormation users in the Regions in which
they're published. Users can then activate your extension in their account, which makes it available
for use in their templates. For more information, see Using public extensions in CloudFormation in
the CloudFormation User Guide.

Note

If your public extension implements event handlers, users of the extension may incur
charges to their account. For example, suppose your public extension is a resource type
with create, read, update, list, and delete handlers. Users using your extension in their
stacks would incur charges when your handler code executes during the various resource
create, read, update, list, and delete stack operations. This is in addition to any charges
incurred for the resources themselves running.
For more information, see AWS CloudFormation pricing.

Developing a public extension for CloudFormation

To develop a public third-party extension, develop your extension as a private extension. Then, in
each Region in which you want to make the extension publicly available:

1. Register your extension as a private extension in the CloudFormation registry.

Developing a public extension 134

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-public.html
https://aws.amazon.com/cloudformation/pricing/
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-register.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

2. Test your extension to make sure it meets all necessary requirements for being published in the
CloudFormation registry.

3. Publish your extension to the CloudFormation registry.

Note

Before you publish any extension in a given Region, you must first register as an
extension publisher in that Region.
To complete this in multiple Regions simultaneously, see Publishing your extension in
multiple Regions using StackSets.

Prerequisite: Registering your account to publish
CloudFormation extensions

To publish third-party extensions, register your extension publisher with CloudFormation. To do so,
you must have an account with one of the following services. CloudFormation uses these services
to verify your public identity as a publisher:

• AWS Marketplace

• Bitbucket

• GitHub

Note

CloudFormation doesn't currently support GitHub Enterprise Cloud or GitHub Enterprise
Server accounts for identity verification.

If you use your Bitbucket or GitHub account, you must create a connection between that account
and the AWS account which you want to register as a publisher. For more information, see the
following topics in the Developer Tools Console User Guide:

• Create a connection to Bitbucket

• Create a connection to GitHub

Registering as a publisher 135

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html#publish-extension-testing
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html#publish-extension-publishing
https://aws.amazon.com/marketplace/management/tour?ref_=header_modules_sell_in_aws
https://bitbucket.org/
https://github.com/
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create-bitbucket.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create-github.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Use RegisterPublisher to register your account to publish extensions. As part of registering as
a publisher, you must accept the Terms and Conditions for extension publishers. If you use a
Bitbucket or GitHub account for identity verification, you'll need to supply CloudFormation the
Amazon Resource Name (ARN) for your connection to that account.

In addition, you'll need the following permissions:

• codestar-connections:GetConnection

• codestar-connections:UseConnection

For more information, see AWS CodeStar Connections permissions reference in the Developer Tools
console User Guide.

When you register, CloudFormation assigns your account a publisher ID under which your
extensions will be published. This publisher ID applies across all AWS Regions.

Testing your public extension before publishing

To publish your public extension, it must pass all test requirements defined for it:

• For resource types, this includes passing all contracts tests defined for the type. For more
information about testing resource types, see Testing resource types using contract tests.

• For modules, this includes determining if the module's model meets all necessary requirements.
For information about publication requirements for modules, see Requirements for publishing a
public module.

• For Hooks, this includes determining if the Hook meets all the necessary requirements. For
information about publication requirements for Hooks, see Testing registered Hooks.

Use TestType to have CloudFormation perform the required tests on an extension. After running
the test, CloudFormation assigns a test status to the extension. An extension must have a test
status of PASSED in a given Region before it can be published there.

If you don't specify a version, CloudFormation uses the default version of the extension in your
account and Region for testing.

Because testing may take some time, TestType is an asynchronous operation. Once you've
initiated testing on an extension using TestType, you can use DescribeType to monitor the current
test status and test status description for the extension.

Testing your public extension 136

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_RegisterPublisher.html
https://cloudformation-registry-documents.s3.amazonaws.com/Terms_and_Conditions_for_AWS_CloudFormation_Registry_Publishers.pdf
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam.html#permissions-reference-connections
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-test.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/modules-structure.html#modules-structure-publishing-prereqs
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/modules-structure.html#modules-structure-publishing-prereqs
https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/hooks-publishing.html#hooks-testing-registered-hooks
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_TestType.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeType.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

The tests that CloudFormation runs against your extension are non-exhaustive and generic, which
means that you should also thoroughly test your extension to ensure that it performs as expected.
Using your privately registered extension in stack templates is the CloudFormation equivalent of
testing your extension in a sandbox environment. Publishing your extension doesn't change any
provisioning behavior of your extension; it only makes it available to all customers in the Region in
which the extension is published.

Publishing your public extension to the CloudFormation
registry

After your extension has passed all necessary test requirements, you can publish it to make it
publicly available for use through the CloudFormation registry. Publishing your extension makes it
available in all AWS accounts in the Region. Use PublishType to publish your extension in each
desired Region.

Versioning your public extension

When publishing your extension, you can specify a public version number. This is separate and
distinct from the private extension version that CloudFormation assigns to a private extension
when you register it. If you don't specify a version number, CloudFormation increments the version
number by one minor version release.

Use the following format, and adhere to semantic versioning when assigning a version number to
your extension:

MAJOR.MINOR.PATCH

For more information, see Semantic Versioning 2.0.0.

Versioning and updating activated public extensions

When a user activates a public extension for use in their account, they have the option to have
CloudFormation automatically update to using a new minor version whenever one is released by
the extension publisher. This only applies to minor version changes, including patches. For major
version changes, users are required to manually update to a new major version of an extension.

Increment to a new major version if the new version possibly contains breaking changes.

Publishing your public extension 137

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_PublishType.html
https://semver.org/

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Open-sourcing your public extension project

It's considered a best practice to open-source your public extensions.

Publishing your extension in multiple Regions using AWS
CloudFormation StackSets

Because CloudFormation is a regional service, you must repeat each required step to publish your
extension to the public registry in all Regions you would like your extension to be available in.
However, with the use of CloudFormation resources, you can use AWS CloudFormation StackSets to
publish your extensions globally in fewer steps.

For more information about AWS CloudFormation StackSets, see Working with AWS
CloudFormation StackSets in the AWS CloudFormation User Guide.

Important

While AWS CloudFormation is available in many Regions worldwide, our public registry is
not supported in China (cn-north-1 and cn-northwest-1) or GovCloud (us-gov-east-1 and
us-gov-west-1) Regions. Any stack instances created using StackSets should only target the
supported Regions.

Prerequisites for using AWS CloudFormation StackSets

Before using StackSets, you must complete prerequisites depending on which management policy
you want to use for your stack sets.

• Stack sets with self-managed permissions require that you create IAM roles in the necessary
admin and target accounts. If you intend to publish a type across multiple Regions from the
same publisher account, you should create the roles in the same account.

• Stack sets with service-managed permissions make use of AWS Organizations and thus require
that you enable trusted access to AWS Organizations.

For detailed instructions to set up the required permissions, see Prerequisites for stack set
operations.

Open-sourcing your public extension project 138

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Using StackSets to publish in multiple Regions for the first time

The example templates in this section publish extensions for the first time to the public registry.
They contain the following CloudFormation resource types to mimic the workflow of publishing an
extension in a single Region:

• AWS::CloudFormation::ResourceVersion or AWS::CloudFormation::ModuleVersion
– Registers a new version for a private type.

• AWS::CloudFormation::ResourceDefaultVersion or
AWS::CloudFormation::ModuleDefaultVersion – Sets the new version to the type’s
default version. The default version is used for publishing.

• AWS::CloudFormation::Publisher – Registers the calling account as a publisher with
AWS Marketplace. This functionality is idempotent, meaning that once you’ve registered as a
publisher, this resource doesn't get updated.

• AWS::CloudFormation::PublicTypeVersion – Tests the new version and publishes it to the
public registry.

For more details about each type, including settings you can modify, see the AWS CloudFormation
resource type reference in the AWS CloudFormation User Guide.

Note

The same publishing restrictions apply when you use StackSets to publish extensions
globally, including agreeing to the Terms and Conditions for AWS CloudFormation Registry
Publishers before registering as a publisher and ensuring your extension passes all test
requirements before successfully publishing.

The following example template publishes a resource type across Regions with StackSets.

AWSTemplateFormatVersion: "2010-09-09"
Description: Registers and sets a new default resource version, registers the account
 as a publisher, and publishes the resource to the public registry.
Parameters:
 SchemaPackageURL:
 Description: URL to S3::Bucket that contains the resource project package
 Type: String
Resources:

Using StackSets to publish in multiple Regions for the first time 139

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_CloudFormation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_CloudFormation.html
https://cloudformation-registry-documents.s3.amazonaws.com/Terms_and_Conditions_for_AWS_CloudFormation_Registry_Publishers.pdf
https://cloudformation-registry-documents.s3.amazonaws.com/Terms_and_Conditions_for_AWS_CloudFormation_Registry_Publishers.pdf

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

 PrivateResourceVersion:
 Type: AWS::CloudFormation::ResourceVersion
 Properties:
 SchemaHandlerPackage: !Ref SchemaPackageURL
 TypeName: MyOrg::MyService::MyType
 ResourceDefaultVersion:
 Type: AWS::CloudFormation::ResourceDefaultVersion
 DependsOn: PrivateResourceVersion
 Properties:
 TypeVersionArn: !Ref PrivateResourceVersion
 Publisher:
 Type: AWS::CloudFormation::Publisher
 DependsOn: ResourceDefaultVersion
 Properties:
 AcceptTermsAndConditions: true
 PublishedResource:
 Type: AWS::CloudFormation::PublicTypeVersion
 DependsOn: Publisher
 Properties:
 Type: RESOURCE
 TypeName: MyOrg::MyService::MyType

The following example template publishes a module across Regions with StackSets.

AWSTemplateFormatVersion: "2010-09-09"
Description: Registers and sets a new default module version, registers the account as
 a publisher, and publishes the module to the public registry with the given public
 version.
Parameters:
 VersionToPublish:
 Description: Version number for published version, e.g. 1.2.3
 Type: String
 Default: AWS::NoValue
 FirstTimePublishing:
 Description: Indicate if this is the first time publishing this extension in the
 targeted region.
 Type: String
 AllowedValues:
 - true
 - false
 SchemaPackageURL:
 Description: URL to S3::Bucket that contains the resource project package
 Type: String

Using StackSets to publish in multiple Regions for the first time 140

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Conditions:
 IsFirstTimePublishing: !Equals
 - !Ref FirstTimePublishing
 - true
Resources:
 PrivateModuleVersion:
 Type: AWS::CloudFormation::ModuleVersion
 Properties:
 ModulePackage: !Ref SchemaPackageURL
 ModuleName: MyOrg::MyService::MyType::MODULE
 ModuleDefaultVersion:
 Type: AWS::CloudFormation::ModuleDefaultVersion
 DependsOn: PrivateModuleVersion
 Properties:
 Arn: !Ref PrivateModuleVersion
 Publisher:
 Type: AWS::CloudFormation::Publisher
 DependsOn: ModuleDefaultVersion
 Properties:
 AcceptTermsAndConditions: true
 PublishedModule:
 Type: AWS::CloudFormation::PublicTypeVersion
 DependsOn: Publisher
 Properties:
 Type: MODULE
 TypeName: MyOrg::MyService::MyType::MODULE
 PublicVersionNumber:
 Fn::If:
 - IsFirstTimePublishing
 - Ref: AWS::NoValue
 - Ref: VersionToPublish

Note that for AWS::CloudFormation::PublicTypeVersion resources,
PublicVersionNumber can't be specified upon creation. CloudFormation automatically publishes
the first version of the extension with version number 1.0.0.

As a publisher, you can choose to provide version numbers for new versions. The second template
above requires you to input whether it's your first time publishing the extension. You can
subsequently modify this by overriding parameters when updating the stack set.

If you instead choose to omit the PublicVersionNumber property (as shown in the first template
above), all publishing updates increment the minor version by 1. For example, version 1.0.0

Using StackSets to publish in multiple Regions for the first time 141

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

increments to version 1.1.0. To publish a new patch or major version, you must explicitly specify a
new version number.

Once your template is created and validated, you can create a stack set and new stack instances for
each Region you want to publish your extension in. For more information about how to use AWS
CloudFormation StackSets in the AWS CLI and AWS Management Console, see Create a stack set in
the AWS CloudFormation User Guide.

Using StackSets to update already published extensions

AWS CloudFormation StackSets allows you to customize each stack instance, meaning that you can
use the same stack set to continuously update and maintain your published extensions. If you’ve
already published extensions to the public registry and want to use StackSets to manage all future
updates, you can bring them directly into the stack set without publishing a new version.

• If the extensions were registered, tested, and published using CloudFormation APIs, they first
need to be imported into stacks. For information about using resource import, see Bringing
existing resources into CloudFormation management.

• If the extensions were managed in individual stacks or you’ve successfully imported them into
stacks, the stacks need to be imported into the stack set. For instructions, see Importing a stack
into AWS CloudFormation StackSets.

You can use the following StackSets actions to update your published extensions:

• Adding stack instances to your stack set publishes your extensions in additional Regions. If you
add a stack instance in a Region you’ve already independently published to (not using StackSets),
this brings the published extension into the stack set’s management.

• Overriding parameters on existing stack instances allows you to update and publish new versions
for your already published extensions at an individual level. This can be used when you want to
specify new version numbers when performing updates.

• Updating your stack set can be used to modify the existing template, add new stack instances,
modify parameters, and perform other edits. You can do this if you choose not to specify version
numbers in your template, but later decide you want to provide them.

For more information about how to use AWS CloudFormation StackSets, see Working with AWS
CloudFormation StackSets in the AWS CloudFormation User Guide.

Using StackSets to update already published extensions 142

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-getting-started-create.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-import.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-import.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stackinstances-create.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stackinstances-override.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-update.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

CloudFormation CLI command reference

The following commands are available through the CloudFormation Command Line Interface (CLI).

Topics

• Global parameters

• init

• generate

• validate

• invoke

• test

• submit

Global parameters

The following parameters can be used with any CloudFormation CLI command.

-h, --help

Shows the help message and exits.

-v, --verbose

Increase the output verbosity and can specify multiple times.

init

Description

The init command launches a wizard that walks you through setting up your project. Once your
project is specified, the command generates a new extension project with stub source files.

While the specific folder structure and files generated varies project and by language, in general
the project includes the following:

• Schema file.

• Handler function source files.

Global parameters 143

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

• Unit test files.

• Build files for the specified language.

By default, init generates the extension project in the current directory.

Synopsis

$ cfn init [--force]

Options

--force

Force project files to be overwritten.

Output

The init command launches a wizard that walks you through setting up the project, including
specifying the extension name.

Initializing new project
Do you want to develop a new resource(r) or a module(m) or a hook(h)?

generate

Description

The generate command generates code based on the project and appropriate extension type
schema.

Synopsis

$ cfn generate

Examples

The following command submits the resource to the registry in your CloudFormation account.

Synopsis 144

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

$ cfn generate && cfn submit --set-default --region us-east-1

Output

Generated files for <type_name>

validate

Description

Validates a project's specification against the appropriate extension schema.

Synopsis

$ cfn validate

Examples

The following command validates the extension type project.

$ cfn validate

invoke

Description

Performs contract tests on the specified handler of an extension type.

Synopsis

$ cfn invoke
 [--endpoint <value>]
 [--function-name <value>]
 [--region <value>]
 [--max-reinvoke <value>]
 action
 request

Output 145

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Options

--endpoint <value>

The endpoint at which the type can be invoked. Alternately, you can also specify an actual Lambda
endpoint and function name in your AWS account.

Default: http://127.0.0.1.3001

--function-name <value>

The logical Lambda function name in the AWS SAM template. Alternately, you can also specify an
actual Lambda endpoint and function name in your AWS account.

Default: TypeFunction

--region <value>

The region to configure the client to interact with.

Default: us-east-1

--max-reinvoke <value>

Maximum number of IN_PROGRESS re-invocations allowed before exiting. If not specified, will
continue to re-invoke until terminal status is reached.

action

Which single handler to invoke.

Values: CREATE | READ | UPDATE | DELETE | LIST

request

File path to a JSON file containing the request with which to invoke the function.

test

Description

Performs contract tests on the handlers of an extension type.

Options 146

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Synopsis

$ cfn test
 [--endpoint <value>]
 [--function-name <value>]
 [--region <value>]
 [--role-arn <value>]
 [-- -k <value>]
 [-- --tb=<value>]
 [--enforce-timeout <value>]

Options

--endpoint <value>

The endpoint at which the type can be invoked. Alternately, you can also specify an actual Lambda
endpoint and function name in your AWS account.

Default: http://127.0.0.1.3001

--function-name <value>

The logical Lambda function name in the AWS SAM template. Alternately, you can also specify an
actual Lambda endpoint and function name in your AWS account.

Default: TestEntrypoint

--region <value>

The region to use for temporary credentials.

Default: us-east-1

--role-arn <value>

The Amazon Resource Name (ARN) of the IAM execution role for the contract tests to assume and
use when performing operations.

If you don't specify an execution role, the contract tests use the environment credentials or the
credentials specified in the Boto 3 credentials chain.

-- -k <value>

Synopsis 147

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Runs a single unit test. For more information, see Using -k expr to select tests based on their
name from the pytest documentation.

-- --tb=<value>

Default: auto

The following are valid values for the traceback. For more information, see Modifying Python
traceback printing from the pytest documentation.

• auto – long tracebacks for the first and last entry, but short tracebacks for all other entries.

• long – exhaustive and informative traceback formatting.

• short – shorter traceback format.

• line – only one line per failure.

• native – standard library formatting.

• no – no traceback.

--enforce-timeout <value>

Sets the read and list timeout to 60 seconds and the create, update, and delete handler timeouts to
120 seconds.

Examples

The following command performs contract tests on the handlers of the extension type.

$ cfn test

The following command runs one contract test at a time.

$ cfn test -- -k test-name

The following command increases the timeout time when running contract tests.

$ cfn test --enforce-timeout 60

The following command combines the contract test and timeout time.

Examples 148

https://doc.pytest.org/en/latest/example/markers.html#using-k-expr-to-select-tests-based-on-their-name
https://doc.pytest.org/en/latest/example/markers.html#using-k-expr-to-select-tests-based-on-their-name
https://docs.pytest.org/en/6.2.x/usage.html#modifying-python-traceback-printing
https://docs.pytest.org/en/6.2.x/usage.html#modifying-python-traceback-printing

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

$ cfn test --enforce-timeout 60 -- -k test-name

The following command starts a Lambda service and uses the test command to perform contract
tests.

$ sam local start-lambda
$ cfn test -v --enforce-timeout 90

submit

Description

Registers the extension with CloudFormation, in the specified region. Registering a extension
makes it available for use in CloudFormation operations.

Registering includes:

• Validating the resource schema.

• Packaging up the resource project files and uploading them to CloudFormation.

This includes the source code for your resource handlers. These resource handlers run within the
CloudFormation account.

• Determining which handlers have been specified for the resource, and running the appropriate
contract tests.

• Uploading the resource handlers as functions that CloudFormation calls at the appropriate times
in a resource's lifecycle.

• Returning a registration token that you can use with the DescribeTypeRegistration action to track
the status of the registration request.

Note

The user registering the extension must be able to access the schema handler package
in the Amazon S3 bucket. That is, the user needs to have GetObject permissions for the
schema handler package. For more information, see Actions, Resources, and Condition Keys
for Amazon S3 in the AWS Identity and Access Management User Guide.

submit 149

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeTypeRegistration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Synopsis

$ cfn submit
 [--dry-run]
 [--endpoint-url <value>]
 [--region <value>]
 [--role-arn <value>]
 [--no-role]
 [--set-default]

Options

--dry-run

Validate the schema and package up the project files, but doesn't register the extension with
CloudFormation.

--endpoint-url <value>

The CloudFormation endpoint to use.

--region <value>

The AWS Region in which to register the extension. If no region is specified, the extension is
registered in the default region.

--role-arn <value>

A specific IAM role to use when invoking handler operations.

If you don't specify an IAM role, the CloudFormation CLI attempts to create or update an execution
role based on the execution role template derived from the extension type's schema, and then
passes this execution role to CloudFormation. For more information, see Accessing AWS APIs from
a Resource Type.

You can't specify both --role-arn and --no-role arguments.

--no-role

Prevent the CloudFormation CLI from passing an execution role to CloudFormation.

Synopsis 150

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

If your resource type calls AWS APIs in any of its handlers, you must either specify a role Amazon
Resource Name (ARN), or have the CloudFormation CLI create or update an execution role and
pass that execution role to CloudFormation. For more information, see Accessing AWS APIs from a
Resource Type.

You can't specify both --role-arn and --no-role arguments.

--set-default

Upon successful registration of the type version, sets the current type version as the default
version.

Examples

The following command builds and packages your extension project without registering it.

$ cfn submit --dry-run

The following command registers your extension.

$ cfn submit --set-default

The following command registers your extension in the us-west-2 region.

$ cfn submit --region us-west-2

Output

Extension registration is an asynchronous operation. You can use the supplied registration token
to track the progress of your extension registration request using the DescribeTypeRegistration
operation of the CloudFormation API.

{‘ProgressStatus’: ‘COMPLETE’}

Examples 151

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeTypeRegistration.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Document history for the CloudFormation Command
Line Interface user guide

The following table describes the documentation for this release of the CloudFormation Command
Line Interface.

• Latest documentation update: December 8, 2023.

Change Description Date

Hooks User Guide Information on creating and
using AWS CloudFormation
Hooks has been moved to
a new User Guide. For more
information, see What is AWS
CloudFormation Hooks.

December 8, 2023

Hook target filters Use hook target filters to
configure your hooks to be
invoked only if they match
specific filters. You can
use the new TargetFil
ters property in the hook
configuration schema to
set filters for your hooks.
For more information, see
Developing hooks.

February 23, 2022

Hooks Use hooks to proactively
inspect the configuration of
your AWS resources before
provisioning. For more
information, see Developing
hooks.

February 10, 2022

152

https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/what-is-cloudformation-hooks.html
https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/what-is-cloudformation-hooks.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/hooks-structure.html#hook-configuration-schema-properties
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/hooks.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/hooks.html

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

Drift detection AWS CloudFormation
supports drift detection
operations on an expanded
list of AWS resources, in
addition to private resources
that are defined as provision
able.

October 1, 2021

Public extensions Use public extensions
provided by third-party
publishers, just as you would
extensions from AWS.

June 21, 2021

General availability Initial publication of the
CloudFormation Command
Line Interface documentation.

November 14, 2019

153

Extension Development for CloudFormation AWS CloudFormation Command Line Interface (CLI) User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

154

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Extension Development for CloudFormation
	Table of Contents
	What is the CloudFormation Command Line Interface (CFN-CLI)?
	Setting up your environment for developing extensions
	Setting up your environment
	Prerequisites
	Installing the CloudFormation CLI
	(macOS) Installing CloudFormation CLI

	Installing the CloudFormation CLI and plugins

	Upgrading to CFN-CLI 2.0

	Creating resource types
	Using the CloudFormation CLI to create resource types
	Modeling resource types for use in AWS CloudFormation
	Defining property attributes
	How to define a minimal resource
	Defining the account-level configuration of an extension
	Example: Defining a configuration definition to specify third-party credentials

	Resource type schema
	Syntax
	Properties

	Patterns for modeling your resource types
	How to specify a property as dependent on another
	How to define nested properties
	Advanced: How to encapsulate complex logic

	Preventing false drift detection results for resource types
	Defining a property transform for drift detection operations
	Specifying multiple transforms for a property

	Developing resource types for use in AWS CloudFormation templates
	Implementing resource handlers
	Accessing AWS APIs from a resource type

	Monitoring runtime logging for resource types
	Testing resource types using contract tests
	Testing resource types locally using AWS SAM
	How the CloudFormation CLI constructs and executes contract tests
	Specifying input data for use in contract tests
	Specifying input data using an override file
	Specifying input data using input files

	Viewing contract test logs
	Testing resource types manually
	Resource type handler contract
	Create handlers
	Input assumptions
	Output requirements

	Update handlers
	Input assumptions
	Output requirements

	Delete handlers
	Input assumptions
	Output requirements

	Read handlers
	Input assumptions
	Output requirements

	List handlers
	Additional requirements
	Returned models must conform to the shape of the schema
	Update, create, and delete handlers must satisfy desired-state stabilization
	Create and update handlers
	Eventual consistency in desired-state stabilization
	Examples of desired-state stabilization

	Delete handlers

	Update and create handlers should satisfy runtime-state stabilization
	Examples of run-time stabilization

	Handlers must not leak resources

	Contract tests
	create handler tests
	update handler tests
	delete handler tests

	Handler error codes
	ProgressEvent object schema
	Syntax
	Properties

	Progress chaining, stabilization, and callback pattern
	Sample: Amazon Kinesis Data Streams integration
	How to make other calls

	Walkthrough: Develop a resource type
	Prerequisites
	Create the resource type development project
	Initiate the project
	Import the project into your IDE

	Model the resource type
	Implement the Resource handler
	Add dependencies
	Implement the Create handler
	Define the CallbackContext
	Code the Create handler
	Update the Create handler unit test

	Implement the Delete handler
	Code the Delete handler
	Update the Delete handler unit test

	Test the resource type
	Create the SAM test files
	Test the Create handler
	Test the Delete handler
	Performing resource contract tests
	Specify resource contract test override values
	Run the resource contract tests

	Submit the resource type
	Provision the resource in a CloudFormation stack

	Resource type FAQ
	Updates
	Schema development
	Permissions and authorization
	Resource type development
	Testing
	Deployment

	Developing modules
	Module structure
	Creating the module template fragment
	Considerations when authoring the template fragment
	Nesting modules
	Macros and modules
	Defining parameters in a module
	Specifying constraints for module parameters

	Specifying policies on resources contained in a module

	Generating the module schema
	Model requirements for publishing a public module
	Specifying publisher metadata for public third-party resources

	Develop a module using the CFN-CLI

	AWS CloudFormation Hooks User Guide
	Updating Lambda runtimes for resource types and hooks
	Upgrading the Java runtime
	Upgrading the Go runtime
	Upgrading the Python runtime
	Upgrading the Node.js runtime

	Registering extensions for use in the CloudFormation registry
	Registering extensions using the submit command
	To enable activated Hooks

	Resource type provisioning
	Extension versions and scope
	Deregistering extensions and extension versions

	Publishing extensions to make them available for public use
	Developing a public extension for CloudFormation
	Prerequisite: Registering your account to publish CloudFormation extensions
	Testing your public extension before publishing
	Publishing your public extension to the CloudFormation registry
	Versioning your public extension
	Versioning and updating activated public extensions

	Open-sourcing your public extension project

	Publishing your extension in multiple Regions using AWS CloudFormation StackSets
	Prerequisites for using AWS CloudFormation StackSets
	Using StackSets to publish in multiple Regions for the first time
	Using StackSets to update already published extensions

	CloudFormation CLI command reference
	Global parameters
	init
	Description
	Synopsis
	Options
	Output

	generate
	Description
	Synopsis
	Examples
	Output

	validate
	Description
	Synopsis
	Examples

	invoke
	Description
	Synopsis
	Options

	test
	Description
	Synopsis
	Options
	Examples

	submit
	Description
	Synopsis
	Options
	Examples
	Output

	Document history for the CloudFormation Command Line Interface user guide
	AWS Glossary

