
Developer Guide

Amazon CodeCatalyst

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon CodeCatalyst Developer Guide

Amazon CodeCatalyst: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon CodeCatalyst Developer Guide

Table of Contents

Developing workflow actions for Amazon CodeCatalyst .. 1
Getting started with action development ... 1
Testing and publishing custom actions ... 1

Custom actions concepts ... 2
ADK components .. 2
Action components .. 2

Getting started .. 3
Prerequisites .. 3
Step 1: Set up your project and Dev Environment ... 3
Step 2: Install tools and packages .. 6
Step 3: Initialize your action project .. 8
Step 4: Bootstrap the action code .. 8
Step 5: Build the package locally ... 12
Step 5: Set action results ... 14
Step 6: Test the action ... 15

Adding unit tests .. 15
Testing actions in workflows .. 15

Step 7: Publish the action .. 16
Next steps .. 19

Working with custom actions ... 20
Setting up your project on a local machine ... 20
Testing an action .. 22

Adding unit tests .. 23
Testing actions in workflows .. 24

Publishing an action .. 27
Publishing a new action version ... 31
Deleting an action version ... 34

Examples .. 36
AWS CodeBuild action using ADK .. 36

Prerequisites ... 36
Update the action definition .. 36
Update the action code ... 37
Validate the action within the CodeCatalyst workflow .. 38

Outgoing webhook action using ADK ... 38

iii

Amazon CodeCatalyst Developer Guide

Prerequisites ... 39
Update the action definition .. 39
Update the action code ... 40
Validate the action within the CodeCatalyst workflow .. 42

Configuring custom actions for third-party integrations ... 44
Configure custom action files .. 44
Testing a custom action in a workflow ... 52
Merge changes into default branch and publish action .. 54

Creating secrets ... 55
Example: Creating AWS access key and ID ... 55

Accessing data ... 57
Environment variables ... 57
Action inputs ... 57
Secrets .. 58
Application URLs .. 58

Action reference .. 60
Configuration .. 61
Description ... 61
Required ... 62
Default .. 62
DisplayName .. 62
Type ... 62
SupportedComputeTypes ... 63
Environment .. 63
Connection ... 63
Inputs .. 64
Sources ... 65
Artifacts - input .. 65
Outputs ... 65
Variables - output .. 66
variable-name-1 ... 66
Description ... 66
Runs ... 66
Using ... 67
Main ... 67
Pre .. 67

iv

Amazon CodeCatalyst Developer Guide

Post .. 67
ADK API and CLI reference ... 69

ADK API reference .. 69
ADK CLI commands ... 69

Troubleshooting ... 70
Handling errors ... 70
Running action workflows for third-party repositories .. 70

Contribute .. 71
Document history .. 72

v

Amazon CodeCatalyst Developer Guide

Developing workflow actions for Amazon CodeCatalyst

Amazon CodeCatalyst provides software development teams one place to plan work, collaborate
on code, and build, test, and deploy applications with continuous integration and continuous
delivery (CI/CD) tools. For more information, see What is Amazon CodeCatalyst?

In CodeCatalyst, an action is the main building block of a workflow. The actions you author define
a logical unit of work to perform during a workflow run. This guide provides steps on how to create
custom actions that you can use in workflows and publish to the CodeCatalyst actions catalog for
others to use. By creating actions and workflows, you can automate procedures that describe how
to build, test, and deploy your code as part of a continuous integration and continuous delivery (CI/
CD) system. For more information, see Working with actions.

Getting started with action development

With the Action Development Kit (ADK), you can develop custom actions. This ADK provides tooling
and support to help you develop actions using libraries and frameworks. To learn more about ADK,
see Custom actions concepts.

Testing and publishing custom actions

After creating custom actions with the ADK, you can use the CodeCatalyst console to test the
custom actions before publishing the actions to the CodeCatalyst actions catalog, where other
users can add them to workflows. For more information, see Working with custom actions.

Important

Currently, only verified partners can create custom actions, test unpublished action versions
in workflows, and publish actions to the CodeCatalyst actions catalog.

Getting started with action development 1

https://docs.aws.amazon.com/codecatalyst/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-actions.html

Amazon CodeCatalyst Developer Guide

Custom actions concepts

Here are some concepts to know about as you work with the Action Development Kit (ADK) to
develop custom actions.

ADK components

The ADK has two components:

• ADK command line interface (CLI) – Tool to interact with a set of commands you can use to
create, validate, and test actions.

• ADK software development kit (SDK) – A set of library interfaces you can use to interact with
action metadata and CodeCatalyst resources, including actions, workflows, secrets, logs, input
variables, output variables, artifacts, and reports.

Action components

An action contains two components:

• Action definition – Provides the specification for integration with Amazon CodeCatalyst CI/CD
workflows. It defines the basic configuration for the action such as inputs, outputs, language,
permissions, and run entry point. This action.yml file provides necessary information to a
CodeCatalyst workflow of what the action interface and the execution profile looks like.

• Action code – The actual source code that is run when an action starts on CodeCatalyst. For the
action to succeed, the action code must conform with the runtime profile as defined in the action
definition. The code then runs on the compute provided in the action definition. For example,
a runtime profile can include Node.js and the Amazon Elastic Compute Cloud (Amazon EC2)
compute type.

ADK components 2

Amazon CodeCatalyst Developer Guide

Getting started with the Action Development Kit

Learn how to create your action workspace, bootstrap and develop your action, and then test and
validate it.

Topics

• Prerequisites

• Step 1: Set up your project and Dev Environment

• Step 2: Install tools and packages

• Step 3: Initialize your action project

• Step 4: Bootstrap the action code

• Step 5: Build the package locally

• Step 5: Set action results

• Step 6: Test the action

• Step 7: Publish the action

• Next steps

Prerequisites

To create an action, you must have completed the tasks in Setting up CodeCatalyst.

Important

Currently, only verified partners can create custom actions, test unpublished action versions
in workflows, and publish actions to the CodeCatalyst actions catalog.

Step 1: Set up your project and Dev Environment

Create a Dev Environment to work on code stored in source repositories of your CodeCatalyst
project. For more information, see Dev Environments.

You can also build actions on your local machine and push the code to your CodeCatalyst remote
repository. For more information, see Setting up your project on a local machine.

Prerequisites 3

https://docs.aws.amazon.com/codecatalyst/latest/userguide/setting-up-topnode.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenvironment.html

Amazon CodeCatalyst Developer Guide

To set up your project

1. Create an empty project in CodeCatalyst.

Note

Before you create a project, you must have the Space administrator role, and you must
create or join the space where you want to create the project. For more information,
see Creating a space in CodeCatalyst.

a. Open the CodeCatalyst console at https://codecatalyst.aws/.

b. Navigate to the space where you want to create a project.

c. On the space dashboard, choose Create project.

d. Choose Start from scratch.

e. Under Give a name to your project, enter the name that you want to assign to your
project. The name must be unique within your space.

f. Choose Create project.

2. Create an empty repository in your new project.

Note

Third-party repositories, such as GitHub repositories, aren't supported for developing,
testing, and publishing actions. The actions must be developed in a CodeCatalyst
repository.

a. Navigate to your project.

b. In the navigation pane, choose Code, and then choose Source repositories.

c. Choose Add repository, and then choose Create repository.

d. In Repository name, provide a name for the repository. Repository names must be unique
within a project. For more information about the requirements for repository names, see
Quotas for source repositories in CodeCatalyst.

The action name defaults to the repository name, but it can be changed in CodeCatalyst.

Step 1: Set up your project and Dev Environment 4

https://docs.aws.amazon.com/codecatalyst/latest/userguide/spaces-create.html
https://codecatalyst.aws/
https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html

Amazon CodeCatalyst Developer Guide

e. (Optional) In Description, add a description for the repository that will help other users in
the project understand what the repository is used for.

f. (Optional) Add a .gitignore file for the type of code you plan to push.

g. Choose Create.

Note

CodeCatalyst adds a README.md file to your repository when you create it.
CodeCatalyst also creates an initial commit for the repository in a default branch
named main. You can edit or delete the README.md file, but you can't change or
delete the default branch.

3. Create a new feature branch.

a. In the navigation pane, choose Code, choose Source repositories, and then choose the
empty repository you created.

b. Choose Actions, and then choose Create branch.

c. In the Branch name text input field, enter a feature-action-name.

d. In the Create branch from dropdown menu, ensure main, the source branch you're
creating the new branch from, is selected, and then choose Create.

4. Create a Dev Environment to work on code with a supported integrated development
environment (IDE).

a. In the navigation pane, do one of the following:

i. Choose Overview, and then navigate to the My Dev Environments section.

ii. Choose Code, and then choose Dev Environments.

iii. Choose Code, choose Source repositories and choose the repository for which you
want to create a Dev Environment.

b. Choose Create Dev Environment.

c. Choose a supported IDE from the drop-down menu. See Supported integrated
development environments for Dev Environments for more information.

d. Choose Work in existing branch, and from the Existing branch dropdown menu, choose
the feature branch you created.

Step 1: Set up your project and Dev Environment 5

https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenvironment-create.html#devenvironment-supported-ide
https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenvironment-create.html#devenvironment-supported-ide

Amazon CodeCatalyst Developer Guide

e. (Optional) In the Alias - optional text input field, enter an alias to identify the Dev
Environment.

f. Choose Create. While your Dev Environment is being created, the Dev Environment status
column will display Starting, and the status column will display Running once the Dev
Environment has been created.

After setting up your project, you can create secrets for your custom actions if you're working
with sensitive data that will be used in your action's workflow. For more information, see Creating
secrets.

Step 2: Install tools and packages

The first step in authoring actions is to install the following required tools and packages. To
develop actions, you will need npm and TypeScript.

Note

ADK supports the following versions of tools and packages:

• npm – 8+ (for example, 8.15.0)

• node – 16+ (for example, v16.17.1)

• tsc (TypeScript) – 4+ (for example, Version 4.9.5)

• AWS CLI – aws-cli/2.7.27 Python/3.9.11 Darwin/22.3.0 exe/x86_64 prompt/off
(minimum)

For node 17+, you may run into an error: ERR_OSSL_EVP_UNSUPPORTED. If so, run the
following:

npm audit fix --force

Open a working terminal in your Dev Environment to install the necessary tools and packages.

To navigate to your Dev Environment and open terminal

1. In the navigation pane, choose Code, and then choose Dev Environments.

Step 2: Install tools and packages 6

Amazon CodeCatalyst Developer Guide

2. From the IDE column, choose Resume in (IDE) for the Dev Environment.

• For JetBrains IDEs, choose Open Link to confirm when prompted to Allow this site to open
the JetBrains-gateway link with JetBrains Gateway?.

• For the VS Code IDE, choose Open Link to confirm when prompted to Allow this site to
open the VS Code link with Visual Studio Code?.

Note

Resuming a Dev Environment may take a few minutes.

For more information, see Resuming a Dev Environment.

3. Open a new terminal window in the Dev Environment.

To install npm

Download the latest version of npm. We recommend using a Node version manager like nvm to
install Node.js and npm.

To install the AWS CLI

Follow the instructions for Installing or updating the latest version of the AWS CLI.

You'll use the TypeScript programming language along with npm to build actions. It's the only
language supported by the ADK.

To install TypeScript

Download tsc through npm. You can also run the following npm command:

npm i typescript

The ADK Command Line Interface (CLI) is necessary to manage and interact with the ADK files.

To install the ADK CLI

1. Run the following npm command to install the ADK CLI package:

Step 2: Install tools and packages 7

https://docs.aws.amazon.com/codecatalyst/latest/userguide/devenvironment-resume.html
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://github.com/nvm-sh/nvm
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.typescriptlang.org/download

Amazon CodeCatalyst Developer Guide

npm install -g @aws/codecatalyst-adk

2. Validate that the ADK is running with the following command:

adk help

Step 3: Initialize your action project

Initializing the action project provides the CodeCatalyst ADK with essential information about
your action such as the development language, action name, and CodeCatalyst metadata. The
initialization creates an action definition file used by CodeCatalyst workflows to integrate the
action within the workflow.

To initialize your action workspace

Run the following command in the feature-action-name branch to create an action definition
YAML file (.codecatalyst/actions/action.yml).

adk init --lang typescript --space [CODECATALYST-SPACE-NAME] --proj [CODECATALYST-
PROJECT-NAME] --repo [CODECATALYST-REPO-NAME] --action [ACTION-NAME]

For example:

adk init --lang typescript --space MySpace --proj HelloWorldProject --repo
 HelloWorldAction --action HelloWorldAction

Ensure your space, project, and repository names are entered correctly.

Step 4: Bootstrap the action code

After the action project is initialized, you must bootstrap the action itself. Bootstrapping provides
all the language-specific tools and libraries preconfigured to build, test, and release the action
project.

To create an action

1. Run the following ADK CLI command in the directory for your remote repository:

Step 3: Initialize your action project 8

Amazon CodeCatalyst Developer Guide

adk bootstrap

(Optional) By default, the adk bootstrap command searches for the action definition file in
.codecatalyst/actions/action.yml. You can use the following argument to specify a
different path to the action definition file:

adk bootstrap -f .codecatalyst/actions/action.yml

Because TypeScript is used to develop the action, the bootstrap command creates TypeScript
code to set up the workspace with all the node- and npm-specific toolchains and libraries. You
should see the following contents:

• .codecatalyst/actions/action.yml – Action definition file that contains interface
and implementation metadata for the action to be ingested into CodeCatalyst. This action
definition file is the interface that is used by CodeCatalyst workflows to integrate the action
within the workflow itself. The file defines inputs, outputs, and resource integrations within
CodeCatalyst.

• .codecatalyst/workflows/actionName-CI-Validation.yml – Workflow definition
file that describes a continuous integration (CI) workflow generated by the ADK bootstrap.

• README.md – Readme file that contains information about what the action does and how to
use the action with CodeCatalyst workflows. It is used for the action documentation.

• package.json – File that records metadata about your project that is necessary before
publishing to npm.

• lib/index.ts – Main file referred to in the package.json file. It is the main entry into the
action.

• test/index.test.ts – Test file for the index.ts file.

• tsconfig.json – TypeScript configuration file that provides configuration options that are
passed on to the tsc command.

• jest.config.js – Jest configuration file that is used during test runs.

• .prettierrc.json – Opinionated code formatter that remove original styling and makes
sure for outputted code conforms to a consistent style.

• .gitignore – Specifies intentionally untracked files that Git should ignore.

• .eslintrc.js – Configuration file for ESLINT tool used to make the code consistent and
avoid bugs.

Step 4: Bootstrap the action code 9

Amazon CodeCatalyst Developer Guide

• LICENSE – Plain text file that supplies required license information.

After your custom action's files are generated, you can configure them to your requirements,
including integrating third-party functionality. To learn about specific files you can configure,
see Configuring custom actions for third-party integrations.

The ADK bootstrapping runs a pre-validation check that verifies if any of the generated files
already exist. If so, the ADK will print an error message and fail. For example:

% adk bootstrap
 Starting action bootstrap based on definition file .codecatalyst/actions/
action.yml
 File 'tsconfig.json' already exists
 File '.prettierrc.json' already exists
 File '.gitignore' already exists
 File '.eslintrc.js' already exists
 File 'jest.config.js' already exists
 File 'LICENSE' already exists
 File 'package.json' already exists
 File 'README.md' already exists
 File 'lib/index.ts' already exists
 File 'test/index.test.ts' already exists
 => Either bootstrap in an empty directory or use 'adk bootstrap -o' to override
 existing files
 Bootstrap pre-validation failed
 Command exit code 1

(Optional) You can give the ADK permission to override existing files by running the following
command:

adk bootstrap -o

Important

Running the adk bootstrap -o command will overwrite any code changes you
make and regenerates the initial code. Any changes that aren't committed will be
overwritten if the command is run.

Step 4: Bootstrap the action code 10

Amazon CodeCatalyst Developer Guide

The action definition generated by the ADK should look something like the following:

SchemaVersion: '1.0'
 Name: 'MyAction'
 Version: '0.0.0'
 Description: 'This Action greets someone and records the time'
 Configuration:
 WhoToGreet:
 Description: 'Who are we greeting here'
 Required: true
 DisplayName: 'Who to greet'
 Type: string
 HowToGreet:
 Description: 'How to greet the person'
 Required: false
 DisplayName: 'How to greet'
 Type: string
 Default: 'Hello there,'
 Inputs:
 Sources:
 Required: true
 Environment:
 Required: false
 Runs:
 Using: 'node16'
 Main: 'dist/index.js'

The CI workflow generated by the ADK should look something like this:

Name: MyAction-CI-Validation
 SchemaVersion: "1.0"
 Triggers:
 - Type: PullRequest
 Events: [open, revision]
 Branches:
 - feature-.*
 Actions:
 ValidateMyAction:
 Identifier: .
 Inputs:
 Sources:

Step 4: Bootstrap the action code 11

Amazon CodeCatalyst Developer Guide

 - WorkflowSource
 Configuration:
 WhoToGreet : 'TEST'
 HowToGreet : 'TEST'

2. After the bootstrapping is complete, run the following commands to commit the changes to
your feature-action-name branch:

git add .

git commit -m "commit message"

You can also use the source control options available in the IDE you’re using for your Dev
Environment.

Step 5: Build the package locally

As an action author, you must build and package the action using npm commands. The ADK only
supports actions implemented in JavaScript (js) and TypeScript (tsc). Building an action will
produce .js files, including source code bundled with dependencies under the dist/ folder. The
bundle must be updated and pushed to the action's repository when changes are made to the
source or dependencies.

To build your package locally

1. Run the following npm command to install all the dependencies. These are the necessary
packages your project depends on to run:

npm install

After running the npm command, you should see the total number of added packages.

2. Run the following command to catch action errors in your action definition YAML file:

adk validate

Step 5: Build the package locally 12

Amazon CodeCatalyst Developer Guide

(Optional) By default, the adk validate command searches for the action definition file in
.codecatalyst/actions/action.yml. You can use the following argument to specify a
different path to the action definition file:

adk validate -f .codecatalyst/actions/action.yml

3. Run the following npm command to run npm scripts:

npm run all

A successful build generates an index.js that contains the action's source code bundled with
dependencies under the dist/ folder. This file is ready to be run by the action runner without
any other dependencies needed. To rebuild the action after making changes to the source
code, run npm run all and commit the updated content of the dist/ folder.

Important

If the size of the bundle (dist/index.js) is more than 10 MB, you will not be able to
publish the action to the CodeCatalyst actions catalog. The bundle grows to 10 MB or
more when an action has many large dependencies . For more information Quotas for
source repositories in CodeCatalyst.

4. After the action is built, run the following commands to commit the changes to your remote
repository:

Important

Make sure the code you're pushing doesn't contain any sensitive information that you
don't want to be shared publicly.

git add .

git commit -m "commit message"

git push

Step 5: Build the package locally 13

https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html

Amazon CodeCatalyst Developer Guide

You can also use the source control options available in the IDE you’re using for your Dev
Environment.

Step 5: Set action results

If you don't set status feedback for your action, the action will succeed by default. You can set an
action failure status and return an error message to troubleshoot the error. Run the workflow to
test your action and view the results, including results, in CodeCatalyst. For more information,
Testing actions in workflows.

We recommend running business logic in a try-catch block to set errors or action feedback. The
ADK provides two APIs to configure error messages and surface them:

• core.setFailed('Action Failed, reason: ${error}); – Logs the error message. The
workflow stops running and any remaining steps are skipped.

• RunSummaries.addRunSummary(Action Failed, reason: ${error},
codecatalystRunSummaries.RunSummaryLevel.ERROR); – Sets the workflow summary
run message. This provides context about the run such as the number of tests that passed or
failed, time to complete, and other relevant information added to the output variable.

The following example shows how you can use a try-catch block for error handling:

export function main(): void {
 try {
 // action business logic
 } catch (error) {
 // the recommended error handling approach
 console.log(`Action Failed, reason: ${error}`);
 RunSummaries.addRunSummary(`${error}`, RunSummaryLevel.ERROR);
 core.setFailed(`Action Failed, reason: ${error}`);
 }
 }

Use setFailed to indicate that a step has failed, and use RunSummaries to provide additional
context when the action fails in the workflow. For more information, see ADK Core's setFailed
details and RunSummaries construct details.

Step 5: Set action results 14

https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.setFailed.html
https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.setFailed.html
https://aws.github.io/actions-dev-kit/modules/_aws_codecatalyst_run_summaries.html

Amazon CodeCatalyst Developer Guide

Step 6: Test the action

Adding unit tests

The ADK CLI bootstraps actions with an empty unit test that you can use as a starting point to
write sophisticated unit tests. For more information, see Adding unit tests.

Testing actions in workflows

Test your custom action before publishing to the CodeCatalyst actions catalog. To make sure your
action works as expected, you can run it within the workflow and view the run's details. For more
information, see Testing actions in workflows.

Important

Currently, only verified partners can test unpublished action versions in workflows.

The ADK generates a continuous integration (CI) workflow that is ready to be used in CodeCatalyst.
By default, a bootstrapped action produces a dist/ folder with an artifact that contains the
dependencies the workflow requires to run successfully in CodeCatalyst. You must build the actions
locally and push the content of the dist/ folder to the action's source repository before testing
the actions in a workflow.

After making changes to your source code following Step 4: Bootstrap the action code, build your
action locally and push your code again to your CodeCatalyst repository before testing the action
in a workflow.

To build and push action source code and the bundle

1. Run the following npm commands to build your action:

npm install

npm run all

2. Run the following commands to commit the changes to your remote repository:

Step 6: Test the action 15

Amazon CodeCatalyst Developer Guide

Important

Make sure the code you're pushing doesn't contain any sensitive information that you
don't want to be shared publicly.

git add .

git commit -m "commit message"

git push

You can also use the source control options available in the IDE you’re using for your Dev
Environment.

The action can now be tested with the ADK-generated workflow. By default, the workflow's name is
ActionName-CI-Validation.

To test an action within a ADK-generated CI workflow

1. Navigate to the CodeCatalyst project page.

2. Choose the CI/CD dropdown menu, and then choose Workflows.

3. From the repository and branch dropdown menus, select the repository and feature branch in
which you created the action and its workflow.

4. Choose the workflow you want to test.

5. Choose Run to perform the actions defined in the workflow configuration file and get the
associated logs, artifacts, and variables.

6. View the workflow run status and details. For more information, see Viewing workflow run
status and details.

Step 7: Publish the action

You can publish the actions in your local catalog to the CodeCatalyst actions catalog so that other
CodeCatalyst users can use them.

Step 7: Publish the action 16

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html

Amazon CodeCatalyst Developer Guide

Important

Currently, only verified partners can publish actions to the CodeCatalyst actions catalog.

Important

When your action is published to the CodeCatalyst actions catalog, it is available to all
CodeCatalyst users, so make sure that you want the action to be publicly available. Other
users don't have to be in your space or project to view your published action.

Important

If the size of the bundle (dist/index.js) is more than 10 MB, you will not be able to
publish the action to the CodeCatalyst actions catalog. The bundle grows to 10 MB or more
when an action has many large dependencies. For more information Quotas for source
repositories in CodeCatalyst.

The action can only published from the default branch of the source repository. If you developed
the action on a feature branch, merge your feature branch with the action to the default branch.

To merge your feature branch to the default branch

Create a pull request for other members to review and merge the changes from the feature
branch to the default branch. For more information, see Working with pull requests in Amazon
CodeCatalyst.

After the action information is merged to the default branch, you can publish the action to the
CodeCatalyst actions catalog. Before publishing, you can also edit the metadata details of the
action version.

To edit details and publish the action

1. Navigate to the CodeCatalyst project page

2. In the navigation pane, choose CI/CD, choose Actions, and then choose the action you want to
publish.

3. Choose Edit details to edit the details for your action:

Step 7: Publish the action 17

https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-pull-requests.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-pull-requests.html

Amazon CodeCatalyst Developer Guide

a. (Optional) In the Action display name field, change the action display name. This is the
name that appears in the Actions list before the action is published, as well as in the
CodeCatalyst actions catalog after the action is published.

b. (Optional) In the Action name field, change the action name. This name is combined with
the space name and action version to form the action identifier (for example, test-space/
test-45tzuy@v1.0.0). In your workflow, the action identifier is used to specify the action.

Note

The Action name can't be changed after the action is published.

c. (Optional) In the Description field, change the description. This description appears for
the action in the Actions list and the Amazon CodeCatalyst catalog (after the action is
published).

d. From the Categories dropdown list, choose the type of actions that are part of your
workflow. These categories appear when you or other CodeCatalyst users choose the
action's name from CodeCatalyst catalog while working with workflows.

e. (Optional) In the Support contact field, enter an email other CodeCatalyst users can reach
out to regarding the action you published.

f. Choose Save

4. (Optional) Edit the license file. This file is created when the action is bootstrapped and is
stored at the root of action's source repository.

a. Choose View license file to open the file.

b. Choose Edit and make your changes.

c. Choose Commit, add a message in the Commit message field, and then choose Commit.

5. Choose Publish version to view the publish version details.

6. Choose the Commit dropdown list, and then choose the commit from the default branch you
want to publish.

Note

The commit must meet publishing requirements, including a valid action definition, a
readme file, a license file, and entry files.

Step 7: Publish the action 18

Amazon CodeCatalyst Developer Guide

The Code quality section displays the code quality of your results. Not meeting the quality
results doesn't block you from publishing the action version. The Test details section provides
testing and code coverage results. You can add and run unit tests to meet your requirements
for the action. For more information, see Testing an action.

7. Choose Publish to publish the action to the CodeCatalyst actions catalog. In the Versions
table, the status of the version displays Published once the action version has been
successfully published.

Next steps

After developing your custom action, you can update and publish new action versions to the
CodeCatalyst actions catalog:

• Publishing a new action version

Next steps 19

Amazon CodeCatalyst Developer Guide

Working with custom actions

Using the CodeCatalyst console, you can view and publish custom actions in CodeCatalyst. Before
managing your actions, you can test them by running workflows and viewing the log details of the
run. As a verified partner, you can publish to the CodeCatalyst actions catalog to make the actions
publicly available, or they can remain local in your project. After publishing, you can make changes
and publish the latest versions of your actions. After an action is published, any CodeCatalyst user
can use the action in their workflow.

Topics

• Setting up your project on a local machine

• Testing an action

• Publishing an action

• Publishing a new action version

• Deleting an action version

Setting up your project on a local machine

While it's recommended that you create a Dev Environment and build your action within a
CodeCatalyst-supported IDE, you can also set up your project and build your action on your local
machine. For more information about setting up a Dev Environment, see Step 1: Set up your
project and Dev Environment.

To set up your project

1. Create an empty project in CodeCatalyst.

Note

Before you create a project, you must have the Space administrator role, and you must
create or join the space where you want to create the project. For more information,
see Creating a space in CodeCatalyst.

a. Open the CodeCatalyst console at https://codecatalyst.aws/.

b. Navigate to the space where you want to create a project.

Setting up your project on a local machine 20

https://docs.aws.amazon.com/codecatalyst/latest/userguide/spaces-create.html
https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

c. On the space dashboard, choose Create project.

d. Choose Start from scratch.

e. Under Give a name to your project, enter the name that you want to assign to your
project. The name must be unique within your space.

f. Choose Create project.

2. Create an empty repository in your new project.

Note

Third-party repositories, such as GitHub repositories, aren't supported for developing,
testing, and publishing actions. The actions must be developed in a CodeCatalyst
repository.

a. Navigate to your project.

b. In the navigation pane, choose Code, and then choose Source repositories.

c. Choose Add repository, and then choose Create repository.

d. In Repository name, provide a name for the repository. Repository names must be unique
within a project. For more information about the requirements for repository names, see
Quotas for source repositories in CodeCatalyst.

The action name defaults to the repository name, but it can be changed in CodeCatalyst.

e. (Optional) In Description, add a description for the repository that will help other users in
the project understand what the repository is used for.

f. (Optional) Add a .gitignore file for the type of code you plan to push.

g. Choose Create.

Note

CodeCatalyst adds a README.md file to your repository when you create it.
CodeCatalyst also creates an initial commit for the repository in a default branch
named main. You can edit or delete the README.md file, but you can't change or
delete the default branch.

3. Create a new feature branch and clone the remote repository.
Setting up your project on a local machine 21

https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html

Amazon CodeCatalyst Developer Guide

a. In the navigation pane, choose Code, choose Source repositories, and then choose the
empty repository you created.

b. Choose Actions, and then choose Create branch.

c. In the Branch name text input field, enter a feature-action-name.

d. In the Create branch from dropdown menu, ensure main, the source branch you're
creating the new branch from, is selected.

e. Choose Clone repository and Copy the HTTPS clone URL for the remote repository.

f. Choose Create token for a personal access token (PAT) needed to clone the repository.

g. Choose Copy and save the copied PAT for a later step.

h. From your working terminal, clone the remote repository in a local folder with the
following git command:

git clone https://[CODECATALYST-USER]@[GIT-ENDPOINT]/v1/[CODECATALYST-SPACE-
NAME]/[CODECATALYST-PROJECT-NAME]/[CODECATALYST-REPO-NAME]
 # The url should be available when you visit the repository created.

When prompted for a password, paste the copied PAT as the password and enter it in your
working terminal.

i. Change your directory to the repository you cloned:

cd [CODECATALYST-PROJECT-NAME]

j. Switch to the new branch:

git checkout feature-action-name

After setting up your project, you can continue on to the next step before you can begin
developing your action using the CodeCatalyst ADK. For more information, see Step 2: Install tools
and packages.

Testing an action

Use the following instructions to add unit tests and also test your custom actions in CodeCatalyst
workflows.

Testing an action 22

Amazon CodeCatalyst Developer Guide

Important

Currently, only verified partners can test unpublished action versions in workflows.

Contents

• Adding unit tests

• Testing actions in workflows

Adding unit tests

The ADK CLI bootstraps actions with an empty unit test using Jest's testing framework. You can
use the empty unit test as a starting point to write sophisticated unit tests. The tests are executed
when an action is built, and the action build fails if the tests fail or if the test coverage doesn't
meet the expected percentage. You can configure the Jest configuration file (jest.config.js)
generated by the ADK CLI to incorporate test coverage and reporting, as well as other forms of
testing.

The following JavaScript example uses the Jest testing framework to define a test for an outgoing
webhook action:

// @ts-ignore
import * as core from '@aws/codecatalyst/adk-core';
import { expect, test, describe } from '@jest/globals';
import { getHeadersInput } from '../lib/utils/input-util';
import { WEBHOOK_HEADERS_MALFORMED_MESSAGE } from '../lib/constants';

const SAMPLE_INPUT_URL = 'https://hooks.sample.com';
const SAMPLE_INPUT_BODY = '{"Sample": "BODY"}';

describe('Outgoing Webhook Action', () => {
 test('Raises Validation error if webhook headers aren not JSON format', async () =>
 {
 core.getInput = jest.fn().mockImplementation(inputName => {
 switch (inputName) {
 case 'WebhookRequestURL': {
 return SAMPLE_INPUT_URL;
 }
 case 'WebhookRequestHeaders': {
 return 'invalidHeaders';

Adding unit tests 23

Amazon CodeCatalyst Developer Guide

 }
 case 'WebhookRequestBody': {
 return SAMPLE_INPUT_BODY;
 }
 default: {
 throw new Error('Unknown input provided');
 }
 }
 });
 expect(() => {
 getHeadersInput();
 }).toThrowError(WEBHOOK_HEADERS_MALFORMED_MESSAGE);
 });
});

Testing actions in workflows

To test your action before publishing as a verified partner, you can run it within the workflow
and view the run's details. Your workflow generally runs automatically due to a trigger that can
include one or more events, such as a code push or pull request. If a trigger isn't defined in the
workflow, the workflow can only be started manually. For more information, see Creating, editing,
and deleting a workflow.

The ADK generates a continuous integration (CI) workflow that is ready to be used in CodeCatalyst.
By default, a bootstrapped action produces a dist/ folder with an artifact that contains the
dependencies the workflow requires to run successfully in CodeCatalyst. You must build the actions
locally and push the content of the dist/ folder to the action's source repository before testing
the actions in a workflow.

An action is determined by an action identifier, which consists of the action name and action
version. In the workflow definition file, this information indicates which action and version to
run in the workflow. When an action is not published, . is used as an action identifier in the CI
workflow, which is generated by the ADK, while testing. This can help to reference an action that
is in the same repository as the workflow file (.codecatalyst/workflows/actionName-CI-
Validation.yml).

Name: MyAction-CI-Validation
SchemaVersion: "1.0"
Triggers:
 - Type: PullRequest
 Events: [open, revision]

Testing actions in workflows 24

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-create-edit-delete-workflow.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-create-edit-delete-workflow.html

Amazon CodeCatalyst Developer Guide

 Branches:
 - feature-.*
Actions:
 ValidateMyAction:
 Identifier: .
 Inputs:
 Sources:
 - WorkflowSource
 Configuration:
 WhoToGreet : 'TEST'
 HowToGreet : 'TEST'

After making any changes to your source code, build your action locally and push your code again
to your CodeCatalyst repository before testing the action in a workflow.

To build and push action source code and the bundle

1. Run the following npm commands to build your action:

npm install

npm run all

2. Run the following commands to commit the changes to your remote repository:

Important

Make sure the code you're pushing doesn't contain any sensitive information that you
don't want to be shared publicly.

git add .

git commit -m "commit message"

git push

If you're making changes using a Dev Environment with a supported IDE, you can also use the
source control options available in the IDE.

Testing actions in workflows 25

Amazon CodeCatalyst Developer Guide

The action can now be tested with the ADK-generated workflow. By default, the workflow's name is
ActionName-CI-Validation.

To test an action within a ADK-generated workflow

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. From the repository and branch dropdown menus, select the repository and feature branch in
which you created the action and its workflow.

5. Choose the workflow you want to test.

6. Choose Run to perform the actions defined in the workflow configuration file and get the
associated logs, artifacts, and variables.

7. View the workflow run status and details. For more information, see Viewing workflow run
status and details.

To test an action in a new workflow

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. From the repository and branch dropdown menus, select the repository and feature branch in
which you created the action.

5. Choose Create workflow, confirm the repository and feature branch in which you created the
action, and then choose Create.

6. Choose + Actions, choose the Actions dropdown menu, and then choose Local to view your
custom action.

7. (Optional) Choose the name of the custom action to view the action's details, including the
description, documentation information, YAML preview, and license file.

8. Choose + to add your custom action to the workflow and configure the workflow to meet your
requirements using the YAML editor or the visual editor. For more information, see Build, test,
and deploy with workflows in CodeCatalyst.

9. (Optional) Choose Validate to validate the workflow's YAML code before committing.

Testing actions in workflows 26

https://codecatalyst.aws/
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://codecatalyst.aws/
https://docs.aws.amazon.com/codecatalyst/latest/userguide/flows.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/flows.html

Amazon CodeCatalyst Developer Guide

10. Choose Commit, and on the Commit workflow dialog box, do the following:

a. For Workflow file name, leave the default name or enter your own.

b. For Commit message, leave the default message or enter your own.

c. For Repository and Branch, choose the source repository and branch for the workflow
definition file. These fields should be set to the repository and branch that you specified
earlier in the Create workflow dialog box. You can change the repository and branch now,
if you'd like.

Note

After committing your workflow definition file, it cannot be associated with
another repository or branch, so make sure to choose them carefully.

d. Choose Commit to commit the workflow definition file.

11. View the workflow run status and details. For more information, see Viewing workflow run
status and details.

Publishing an action

In CodeCatalyst, you can publish multiple versions of an action, retrieve action metadata, and
manage your actions. You can publish the actions in your local catalog to the CodeCatalyst actions
catalog so that other CodeCatalyst users can use them.

Important

Currently, only verified partners can publish actions to the CodeCatalyst actions catalog.

Important

When your action is published to the CodeCatalyst actions catalog, it is available to all
CodeCatalyst users, so make sure that you want the action to be publicly available. Other
users don't have to be in your space or project to view your published action. The action's
source code, including the workflow YAML file and git history, become visible after the
action is published.

Publishing an action 27

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html

Amazon CodeCatalyst Developer Guide

Important

If the size of the bundle (dist/index.js) is more than 10 megabyte (MB), you will not be
able to publish the action to the CodeCatalyst actions catalog. The bundle grows to 10 MB
or more when an action has many large dependencies.

The action can only published from the default branch of the source repository. If you developed
the action on a feature branch, merge your feature branch with the action to the default branch.

To merge your feature branch to the default branch

Create a pull request for other members to review and merge the changes from the feature
branch to the default branch. For more information, see Working with pull requests in Amazon
CodeCatalyst.

After merging the feature branch with the action information to the default branch, the action
details can be configured before publishing the action to the CodeCatalyst actions catalog. The
following details can be edited:

• Action display name – The name that appears in the Actions list and the Amazon CodeCatalyst
catalog (after the action is published). This is initially set in the action definition file
action.yml.

• Action name – The name is derived from the space name and action version to form the action
identifier (for example, test-space/nad-test-45tzuy@v1.0.0). In your workflow, the action
identifier is used to specify the action. After publishing the action, this name can't be changed.

• Description – The description that appears for the action in the Actions list and the Amazon
CodeCatalyst catalog (after the action is published).

• Categories – The catgories that best describe the action. These categories appear when you or
other CodeCatalyst users choose the action's name from CodeCatalyst catalog while working
with workflows. This category is initially empty, and at least one category is required before you
can publish an action.

• Support contact – The email other CodeCatalyst users can reach out to regarding the action you
published. This detail is initially empty and not required to publish your action.

• License – A plain text file that supplies required license information. This file is created when the
action is bootstrapped and is stored at the root of action's source repository.

Publishing an action 28

https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-pull-requests.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-pull-requests.html

Amazon CodeCatalyst Developer Guide

To edit action details

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page

3. In the navigation pane, choose CI/CD, choose Actions, and then choose the action you want to
publish.

4. Choose Edit details to edit the details for your action:

a. (Optional) In the Action display name field, change the action display name.

b. (Optional) In the Action name field, change the action name.

Note

The Action name can't be changed after the action is published.

c. (Optional) In the Description field, change the description.

d. From the Categories dropdown list, choose the type of actions that are part of your
workflow. This field is initially empty and requires at least one category before you can
publish the action.

e. (Optional) In the Support contact field, enter an email.

f. Choose Save

5. (Optional) Edit the license file.

a. Choose View license file to open the file.

b. Choose Edit and make your changes.

c. Choose Commit, add a message in the Commit message field, and then choose Commit.

After configuring the action details to meet all the requirements to publish, you can choose the
action version you want to publish to the Amazon CodeCatalyst actions catalog.

To publish your custom action

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, choose Actions, and then choose the action you want to
publish.

Publishing an action 29

https://codecatalyst.aws/
https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

4. Choose Publish version to view the publish version details.

5. Choose the Commit dropdown list, and then choose the commit from the default branch you
want to publish.

Note

The commit must meet publishing requirements, including a valid action definition, a
readme file, a license file, and entry files.

The Code quality section displays the code quality of your results. Not meeting the quality
results doesn't block you from publishing the action version. The Test details section provides
testing and code coverage results. You can add and run unit tests to meet your requirements
for the action. For more information, see Testing an action.

6. Choose Publish to publish the action to the Amazon CodeCatalyst actions catalog. In the
Versions table, the status of the version displays Published once the action version has been
successfully published.

Optionally, you can view and test the action version you published to the Amazon CodeCatalyst
actions catalog to ensure it works as expected.

(Optional) To view and use your published action

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. From the repository and branch dropdown menus, select the repository and feature branch in
which you want to test the published action.

5. Choose Create workflow, confirm the repository and feature branch in which you want to test
the published action, and then choose Create.

6. Choose + Actions, and then search for your custom action that you published. You can search
the name of your action by entering it in the Search for actions field.

7. (Optional) Choose the name of the published action to view the action's details, including the
description, documentation information, YAML preview, and license file.

Publishing an action 30

https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

8. Add the action to the workflow, choose the visual editor, and then choose the action to view
the Inputs, Configuration, and Outputs fields.

Note

The action now contains the identifier (for example, test-space/test-45tzuy@v1.0.0),
which is not available for the action when initially created before publishing.

9. Choose Commit, and on the Commit workflow dialog box, do the following:

a. For Workflow file name, leave the default name or enter your own.

b. For Commit message, leave the default message or enter your own.

c. For Repository and Branch, choose the source repository and branch for the workflow
definition file. These fields should be set to the repository and branch that you specified
earlier in the Create workflow dialog box. You can change the repository and branch now,
if you'd like.

Note

After committing your workflow definition file, it cannot be associated with
another repository or branch, so make sure to choose them carefully.

d. Choose Commit to commit the workflow definition file.

10. View the workflow run status and details. For more information, see Viewing workflow run
status and details.

Publishing a new action version

After publishing your initial action version, you can update your action definition and publish a new
version to the Amazon CodeCatalyst actions catalog. Unlike publishing an action initially, you can't
change the Action name when editing details for later versions.

Consider following Semantic Versioning (SemVar) standards when working with updated versions
of your actions. SemVar provides a standardized way to assign and increment version numbers
for software packages. When dependencies become complex as your system grows and more
packages are integrated into a software, a clear and precise way to convey meaning about changes

Publishing a new action version 31

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html

Amazon CodeCatalyst Developer Guide

can help other CodeCatalyst users understand the intentions while you make flexible and reliable
specifications. For more information, see Semantic Versioning 2.0.0.

The Conventional Commits specification provides a lightweight convention for structing commit
messages, which gives you the ability create an explicit commit history and write automateed tools
on top of it. This convention fits with SemVar by describing features, fixes, and beaking changes
made in commit messages, including guidelines on how commit messages should be structured.
For more information, see Conventional Commits.

To publish your new action version

1. Navigate to your project that was cloned in a local folder, and make your changes in your
existing feature-action-name branch that was created in Step 1: Set up your project and
Dev Environment. You can also create a new feature branch from your default branch and
make changes in the new branch.

2. Build the package locally and push the source code and bundle:

a. Run the following npm commands to build your action:

npm install

npm run all

b. Run the following commands to commit the changes to your remote repository:

Important

Make sure the code you're pushing doesn't contain any sensitive information that
you don't want to be shared publicly.

git add .

git commit -m "commit message"

git push

Publishing a new action version 32

https://semver.org/
https://www.conventionalcommits.org/en/v1.0.0/

Amazon CodeCatalyst Developer Guide

You can also use the source control options available in the IDE you’re using for your Dev
Environment.

3. Create a pull request and merge your feature branch to the default branch, and then publish
your new action version to the CodeCatalyst actions catalog. For more information, see
Publishing an action.

Optionally, you can view and test the action version you published to the Amazon CodeCatalyst
actions catalog to ensure it works as expected.

(Optional) To view and use your published action

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. From the repository and branch dropdown menus, select the repository and feature branch in
which you want to test the published action.

5. Choose Create workflow, confirm the repository and feature branch in which you want to test
the published action, and then choose Create.

6. Choose + Actions, and then search for your custom action that you published. You can search
the name of your action by entering it in the Search for actions field.

7. (Optional) Choose the name of the published action to view the action's details, including the
description, documentation information, YAML preview, and license file.

8. Add the action to the workflow, choose the visual editor, and then choose the action to view
and configure the Inputs, Configuration, and Outputs fields.

Note

The published action contains the identifier (for example, test-space/
test-45tzuy@v1.0.0), which is not available for the action when initially created and
not published.

9. (Optional) Choose Validate to validate the workflow's YAML code before committing.

10. Choose Commit, and on the Commit workflow dialog box, do the following:

a. For Workflow file name, leave the default name or enter your own.

Publishing a new action version 33

https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

b. For Commit message, leave the default message or enter your own.

c. For Repository and Branch, choose the source repository and branch for the workflow
definition file. These fields should be set to the repository and branch that you specified
earlier in the Create workflow dialog box. You can change the repository and branch now,
if you'd like.

Note

After committing your workflow definition file, it cannot be associated with
another repository or branch, so make sure to choose them carefully.

d. Choose Commit to commit the workflow definition file.

11. View the workflow run status and details. For more information, see Viewing workflow run
status and details.

Deleting an action version

Use the following instructions to delete a published version of an action. Deleting a version
removes it from the action catalog so that it is no longer available for use in workflows. Any
workflows that currently use the deleted version will stop working.

Important

To avoid disruption to those who are currently using your action in their workflows, only
delete an action version if you've reached the version limit, or if the version contains
security vulnerabilities or other critical issues that are impossible to solve with a new
version.

To delete an action version

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Actions.

Your custom actions appear.

4. Choose the name of the action whose version you want to delete.

Deleting an action version 34

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

5. Choose the radio button next to the version.

6. Choose Delete.

Note

If there is only one version available, it cannot be deleted.

Deleting an action version 35

Amazon CodeCatalyst Developer Guide

Examples

You can use the following examples to develop actions:

• AWS CodeBuild action using ADK

• Outgoing webhook action using ADK

AWS CodeBuild action using ADK

The following example action initiates a build in AWS CodeBuild. CodeBuild is an AWS service that
compiles source code, runs tests, and packages the code into artifacts. For more information, see
the AWS CodeBuild Documentation.

This action invokes the AWS Command Line Interface (AWS CLI), which is preinstalled on the
action's runtime environment image within CodeCatalyst. The output of the CLI command is
streamed to the console using stdout. For more information about what tools are installed on the
runtime image, see Curated images.

Topics

• Prerequisites

• Update the action definition

• Update the action code

• Validate the action within the CodeCatalyst workflow

Prerequisites

Complete all of the steps in Getting started with the Action Development Kit before moving on
with developing the action.

Languages and toolchains

In this example, we'll develop an action using npm and TypeScript.

Update the action definition

Update the action definition (action.yml) that was generated in Step 3: Initialize your action
project with the following AWSCodeBuildProject and AWSRegion input parameters:

AWS CodeBuild action using ADK 36

https://docs.aws.amazon.com/codebuild/index.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/build-images.html#build-curated-images

Amazon CodeCatalyst Developer Guide

SchemaVersion: '1.0'
 Name: 'AWSCodeBuildAction Action'
 Version: '0.0.0'
 Description: 'This Action starts a build in CodeBuild'
 Configuration:
 AWSCodeBuildProject:
 Description: 'Project name for AWS CodeBuild project'
 Required: true
 DisplayName: 'AWSCodeBuildProject'
 Type: string
 AWSRegion:
 Description: 'AWS Region'
 Required: false
 DisplayName: 'AWSRegion'
 Type: string
 Environment:
 Required: true
 Runs:
 Using: 'node16'
 Main: 'dist/index.js'

Update the action code

Update the entry point code in the lib/index.ts file that was generated in Step 4: Bootstrap the
action code:

// @ts-ignore
 import * as core from '@aws/codecatalyst-adk-core';
 // @ts-ignore
 import * as codecatalystProject from '@aws/codecatalyst-project';
 // @ts-ignore
 import * as codecatalystSpace from '@aws/codecatalyst-space';

 try {
 // Get inputs from the action
 const input_AWSCodeBuildProject = core.getInput('AWSCodeBuildProject'); // Project
 name for AWS CodeBuild project
 console.log(input_AWSCodeBuildProject);
 const input_AWSRegion = core.getInput('AWSRegion'); // AWS Region
 console.log(input_AWSRegion);

 // Interact with codecatalyst entities

Update the action code 37

Amazon CodeCatalyst Developer Guide

 console.log(`Current CodeCatalyst space ${codecatalystSpace.getSpace().name}`);
 console.log(`Current codecatalyst project
 ${codecatalystProject.getProject().name}`);
 console.log(`AWS Region ${input_AWSRegion}`);

 // Action Code start

 console.log(core.command(`aws codebuild start-build --project-name
 ${input_AWSCodeBuildProject}`));
 // Set outputs of the action

 } catch(error) {
 core.setFailed(`Action Failed, reason: ${error}`);
 }

After bootstrapping and updating the action code, continue with Step 4: Bootstrap the action code
to complete the local build.

Validate the action within the CodeCatalyst workflow

After Testing an action, validate the action.

To validate the action

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to your project.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. Choose the workflow with the action that you want to validate, then view Logs to confirm a
successful run.

Outgoing webhook action using ADK

The outgoing webhook action can initiate an outgoing webhook (OW) and make a POST request to
a provided URL. With the action, you can bridge Amazon CodeCatalyst workflows with predefined
web services like status reporting and sharing artifacts.

Topics

• Prerequisites

• Update the action definition

Validate the action within the CodeCatalyst workflow 38

https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

• Update the action code

• Validate the action within the CodeCatalyst workflow

Prerequisites

Complete all of the steps in Getting started with the Action Development Kit before moving on
with developing the action.

Languages and toolchains

In this example, we'll develop an action using npm and TypeScript.

Update the action definition

Update the action definition (action.yml) that was generated in Step 3: Initialize your action
project with the following WebhookRequestURL and WebhookRequestHeaders input
parameters, in addition to WebhookRequestBody (optional):

SchemaVersion: '1.0'
 Name: 'OutgoingWebhookAction'
 Version: '0.1.0'
 Description: 'Outgoing Webhook Action allows user to send messages within workflow
 to an arbitrary web server using HTTP request'
 Configuration:
 WebhookRequestURL:
 Description: 'Outgoing webhook URL from an arbitrary web server'
 Required: true
 DisplayName: 'Request URL'
 Type: string
 WebhookRequestHeaders:
 Description: 'The JSON that you want to provide to add HTTP request headers. '
 Required: false
 DisplayName: 'Request Headers'
 Type: string
 Default: false
 WebhookRequestBody:
 Description: 'The JSON that you want to provide to add HTTP request body. '
 Required: false
 DisplayName: 'Request Body'
 Type: string
 Default: false

Prerequisites 39

Amazon CodeCatalyst Developer Guide

 Environment:
 Required: false
 Runs:
 Using: 'node16'
 Main: 'dist/index.js'

This action invokes the AWS Command Line Interface (AWS CLI), which is preinstalled on the
action's runtime environment image within CodeCatalyst. The output of the CLI command is
streamed to the console using stdout.

Update the action code

The outgoing webhook action contains several source files under the lib/ folder. This example
code provides configuration of the entry point and the action itself. Update the entry point code in
the lib/index.ts file that was generated in Step 4: Bootstrap the action code.

While building your action, you can also catch errors by setting summary run messages. For more
information, see Handling errors.

// @ts-ignore
 import * as core from '@aws/codecatalyst-adk-core';
 // @ts-ignore
 import { RunSummaryLevel, RunSummaries } from '@aws/codecatalyst-run-summaries';
 import { runOutgoingWebhookAction } from './action';
 import { OutgoingWebhookInput } from './constants/types';
 import { getBodyInput, getHeadersInput } from './utils/input-util';

 export function main(): void {
 try {
 // Get inputs from the action
 const webhookUrl: string = core.getInput('WebhookRequestURL'); // Outgoing
 webhook URL from an arbitrary web server
 const headers: Map<string, string> | undefined = getHeadersInput(); // The
 JSON that you want to provide to add HTTP request headers.
 const body: string | undefined = getBodyInput(); // The JSON that you want
 to provide to add HTTP request body.

 const actionInput: OutgoingWebhookInput = {
 webhookUrl,
 headers,
 body
 };

Update the action code 40

Amazon CodeCatalyst Developer Guide

 // Run the webhook action
 runOutgoingWebhookAction(actionInput);
 } catch (error) {
 console.log(`Action Failed, reason: ${error}`);
 RunSummaries.addRunSummary(`${error}`, RunSummaryLevel.ERROR);
 core.setFailed(`Action Failed, reason: ${error}`);
 }
 }

 if (require.main === module) {
 main();
 }

The action first gets the inputs using the core.getInput() ADK API to initialize required
and optional variables. The action then calls the runOutgoingWebhookAction() function
to send the HTTP POST request with the earlier provided input. The source code of the
runOutgoingWebhookAction() function is implemented in the action.ts source file. The
following code example validates user input, constructs an executable shell command using
code.command(), and logs the result:

// @ts-ignore
 import * as core from '@aws/codecatalyst-adk-core';
 import { OUTGOING_WEBHOOK_ERROR } from './constants';
 import { OutgoingWebhookInput } from './constants/types';
 import { validateActionInputs } from './validation/validation';

 export function runOutgoingWebhookAction(input: OutgoingWebhookInput): void {
 validateActionInputs(input);
 const shell_command = webhookRequestCommand(input);
 const { code, stderr } = core.command(shell_command);
 console.log(`shell command: ${shell_command}`);
 if (code !== 0) {
 console.log(stderr);
 throw new Error(OUTGOING_WEBHOOK_ERROR);
 }

 console.log('Outgoing Webhook command was successful');
 }

 export function webhookRequestCommand(input: OutgoingWebhookInput): string {
 const headersCommand = constructHeadersCommand(input.headers);

Update the action code 41

Amazon CodeCatalyst Developer Guide

 const bodyCommand = input.body === undefined ? undefined : `-d '${input.body}'
 `;
 return constructRequestCommand(input.webhookUrl, headersCommand, bodyCommand);
 }

 export function constructRequestCommand(url: string, headerCommand: string |
 undefined, bodyCommand: string | undefined): string {
 let command = 'curl -X POST ';
 if (headerCommand) {
 command += headerCommand;
 }
 if (bodyCommand) {
 command += bodyCommand;
 }
 command += url;
 return command;
 }

 export function constructHeadersCommand(headers: Map<string, string> | undefined |
 string): string | undefined {
 let headerCommand = '';
 if (headers == undefined) return undefined;
 for (const [key, value] of headers) {
 headerCommand += `-H "${key}: ${value}" `;
 }
 return headerCommand;
 }

This action invokes the AWS Command Line Interface (AWS CLI), which is preinstalled on the
action's runtime environment image within CodeCatalyst. The output of the CLI command is
streamed to the console using stdout.

After bootstrapping and updating the action code, continue with Step 4: Bootstrap the action code
to complete the local build.

Validate the action within the CodeCatalyst workflow

After Testing an action, validate the action.

To validate the action

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to your project.

Validate the action within the CodeCatalyst workflow 42

https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. Choose the workflow with the action that you want to validate, then view Logs to confirm a
successful run.

Validate the action within the CodeCatalyst workflow 43

Amazon CodeCatalyst Developer Guide

Configuring custom actions for third-party integrations

This section details how to develop a custom action with source code that can be used by AWS
partners to integrate third-party capabilities and publish to the CodeCatalyst actions catalog.

Important

Currently, only verified AWS partners with approved and allowlisted CodeCatalyst spaces
can create custom actions, test unpublished action versions in workflows, and publish
actions to the CodeCatalyst actions catalog. To be allowlisted, reach out to your AWS
Account Manager or Partner Development Manager.

Important

As a third-party provider, you're responsible for testing the custom action, making updates,
and publishing the action.

Before you can configure files for third-party capabilities, you must complete the prerequisites and
the first four steps from the Getting started with the Action Development Kit walkthrough:

• Prerequisites

• Step 1: Set up your project and Dev Environment

• Step 2: Install tools and packages

• Step 3: Initialize your action project

• Step 4: Bootstrap the action code

Configure custom action files

You can configure the generated files to incorporate secrets, include installation, setup instructions,
and descriptions. The following steps provide a walkthrough, including examples, on how you can
configure your custom action's files:

To configure an action's source files

Configure custom action files 44

Amazon CodeCatalyst Developer Guide

1. Configure the .codecatalyst/actions/action.yml file to update the Description of
your custom action. Additionally, you can add code to accept secrets as user inputs, or use the
Default value from the CodeCatalyst secrets to access secrets. You can also add your own
secrets. For more information, Creating secrets.

Example:

SchemaVersion: '1.0'
Name: 'custom-action'
Version: '0.0.0'
Description: 'This Action creates custom Actions source code'
Configuration:
 AwsAccessKeyId:
 Description: 'AWS Access Key ID'
 Required: true
 DisplayName: 'AWS_ACCESS_KEY_ID'
 Type: string
 Default: ${Secrets.AWS_ACCESS_KEY_ID}
 AwsSecretAccessKey:
 Description: 'AWS Secret Access Key'
 Required: true
 DisplayName: 'AWS_SECRET_ACCESS_KEY'
 Type: string
 Default: ${Secrets.AWS_SECRET_ACCESS_KEY}
Inputs:
 Sources:
 Required: true
Environment:
 Required: false
Runs:
 Using: 'node16'
 Main: 'dist/index.js'

2. Configure the .codecatalyst/workflows/custom-action-CI-Validation.yaml file to
pass data like secrets.

Example:

Name: custom-action-CI-Validation
SchemaVersion: "1.0"
Triggers:
 - Type: PullRequest

Configure custom action files 45

Amazon CodeCatalyst Developer Guide

 Events: [open, revision]
 Branches:
 - feature-.*
Actions:
 Validatecustom-action:
 Identifier: .
 Inputs:
 Sources:
 - WorkflowSource
 Configuration:
 AwsAccessKeyId : ${Secrets.AWS_ACCESS_KEY_ID}
 AwsSecretAccessKey : ${Secrets.AWS_SECRET_ACCESS_KEY}

3. Configure the lib/index.ts file to describe the CodeCatalyst action, and identify the
installation and setup instructions for the solutions or offerings. For example, this tutorial
installs AWS CLI, sets up the secrets created, and then installs the Amazon CloudWatch agent.
Such a setup can be done by running CLI commands like curl, unzip, sudo, and yum. Since
such commands can be run by CLI, the @aws/codecatalyst-adk-core can be used to write
the commands. You can also add your own code.

Example:

// @ts-ignore
import * as core from '@aws/codecatalyst-adk-core';
// @ts-ignore
import * as project from '@aws/codecatalyst-project';
// @ts-ignore
import * as runSummaries from '@aws/codecatalyst-run-summaries';
// @ts-ignore
import * as space from '@aws/codecatalyst-space';

try {
 // Get inputs from the action
 const input_AwsAccessKeyId = core.getInput('AwsAccessKeyId');
 console.log(input_AwsAccessKeyId);
 const input_AwsSecretAccessKey = core.getInput('AwsSecretAccessKey');
 console.log(input_AwsSecretAccessKey);

 // Interact with CodeCatalyst entities
 console.log(`Current CodeCatalyst space ${space.getSpace().name}`);
 console.log(`Current CodeCatalyst project ${project.getProject().name}`);

 // Action Code start

Configure custom action files 46

Amazon CodeCatalyst Developer Guide

 //aws cli install
 core.command('curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -
o "awscliv2.zip"');
 core.command('unzip awscliv2.zip');
 core.command('sudo ./aws/install --update');
 core.command(`aws configure set aws_access_key_id '${input_AwsAccessKeyId}'`);
 core.command(`aws configure set aws_secret_access_key
 '${input_AwsSecretAccessKey}'`);

 //Amazon CloudWatch install
 core.command('wget https://amazoncloudwatch-agent.s3.amazonaws.com/
amazon_linux/amd64/latest/amazon-cloudwatch-agent.rpm');

 // Set outputs of the action
} catch (error) {
 core.setFailed(`Action Failed, reason: ${error}`);
}

4. Configure the package.json file to add a description for the custom action.

Example:

"description": "This Action creates Actions source code",

5. Configure the README.md file to add necessary content and procedures for the action. This
documentation should commmunicate the information to successfully work with the action.

6. (Optional) Navigate to the custom action's directory, and use the print working directory (pwd)
command to list the directory's contents.

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ pwd
/projects/custom-action-repo[mde-user@ip-10-4-87-5 custom-action-repo]$ ls -ltr
total 456
-rw-rw-r-- 1 mde-user mde-user 497 Sep 25 02:37 tsconfig.json
-rw-rw-r-- 1 mde-user mde-user 808 Sep 25 02:37 jest.config.js
-rw-r--r-- 1 mde-user root 5923 Sep 25 02:37 README.md
-rw-rw-r-- 1 mde-user mde-user 1051 Sep 25 02:37 LICENSE
-rw-rw-r-- 1 mde-user mde-user 413245 Sep 25 02:40 package-lock.json
drwxrwxr-x 2 mde-user mde-user 4096 Sep 25 02:41 lib
drwxrwxr-x 2 mde-user mde-user 4096 Sep 25 02:41 test
drwxrwxr-x 352 mde-user mde-user 12288 Sep 25 02:41 node_modules

Configure custom action files 47

Amazon CodeCatalyst Developer Guide

drwxrwxr-x 3 mde-user mde-user 4096 Sep 25 02:41 coverage
drwxrwxr-x 2 mde-user mde-user 4096 Sep 25 02:41 dist
-rw-rw-r-- 1 mde-user mde-user 1157 Sep 27 02:28 package.json
[mde-user@ip-10-4-87-5 custom-action-repo]$

7. Continue with Step 5: Build the package locally. The following steps provide examples of
possible outputs.

a. Run the following npm command to install all the dependencies. These are the necessary
packages your project depends on to run:

npm install

After running the npm command, you should see the total number of added packages.

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ npm install

up to date, audited 492 packages in 3s

113 packages are looking for funding
 run `npm fund` for details

found 0 vulnerabilities

b. Run the following command to catch action errors in your action definition YAML file:

adk validate

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ adk validate
Starting action validation
Command exit code 0

c. Run the following npm command to run npm scripts:

npm run all

Configure custom action files 48

Amazon CodeCatalyst Developer Guide

A successful build generates an index.js that contains the action's source code bundled
with dependencies under the dist/ folder. This file is ready to be run by the action
runner without any other dependencies needed. To rebuild the action after making
changes to the source code, run npm run all and commit the updated content of the
dist/ folder.

Important

If the size of the bundle (dist/index.js) is more than 10 MB, you will not
be able to publish the action to the CodeCatalyst actions catalog. The bundle
grows to 10 MB or more when an action has many large dependencies . For more
information Quotas for source repositories in CodeCatalyst.

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ npm run all

> custom-action@1.0.0 all
> npm run build && npm run format && npm run lint && npm run package

> custom-action@1.0.0 build
> tsc

> custom-action@1.0.0 format
> prettier --write '**/*.ts'

lib/index.ts 541ms
test/index.test.ts 14ms

> custom-action@1.0.0 lint
> eslint **/*.ts

=============

WARNING: You are currently running a version of TypeScript which is not
 officially supported by @typescript-eslint/typescript-estree.

Configure custom action files 49

https://docs.aws.amazon.com/codecatalyst/latest/userguide/source-quotas.html

Amazon CodeCatalyst Developer Guide

You may find that it works just fine, or you may not.

SUPPORTED TYPESCRIPT VERSIONS: >=3.3.1 <5.2.0

YOUR TYPESCRIPT VERSION: 5.2.2

Please only submit bug reports when using the officially supported version.

=============

> custom-action@1.0.0 package
> tsc && jest && ncc build -o dist

 PASS test/index.test.js
 CodeCatalyst action custom-action
 # should test the action (1 ms)

=============================== Coverage summary
 ===============================
Statements : Unknown% (0/0)
Branches : Unknown% (0/0)
Functions : Unknown% (0/0)
Lines : Unknown% (0/0)
==
Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 0.943 s
Ran all test suites.
ncc: Version 0.36.1
ncc: Compiling file index.js into CJS
 1kB dist/exec-child.js
211kB dist/index.js
212kB [2403ms] - ncc 0.36.1

d. After the action is built, run the following commands to commit the changes to your
remote repository:

Configure custom action files 50

Amazon CodeCatalyst Developer Guide

Important

Make sure the code you're pushing doesn't contain any sensitive information that
you don't want to be shared publicly.

(Optional) You can view the changes that took place, as well as new files generated. Use
the git status command to view the updates.

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ git status
On branch feature-custom-action
Your branch is up to date with 'origin/feature-custom-action'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: .codecatalyst/actions/action.yml
 modified: .codecatalyst/workflows/custom-action-CI-Validation.yaml
 modified: dist/index.js
 modified: lib/index.ts
 modified: package.json

no changes added to commit (use "git add" and/or "git commit -a")

git add .

git commit -m "commit message"

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ git commit -m "added changes and
 generated files"
[feature-custom-action c5adf30] added changes and generated files
 5 files changed, 40 insertions(+), 20 deletions(-)

git push

Configure custom action files 51

Amazon CodeCatalyst Developer Guide

Example:

[mde-user@ip-10-4-87-5 custom-action-repo]$ git push
Enumerating objects: 23, done.
Counting objects: 100% (23/23), done.
Delta compression using up to 2 threads
Compressing objects: 100% (10/10), done.
Writing objects: 100% (12/12), 2.04 KiB | 94.00 KiB/s, done.
Total 12 (delta 4), reused 0 (delta 0), pack-reused 0
remote: Validating objects: 100%
 0564729..c5adf30 feature-custom-action -> feature-custom-action

You can also use the source control options available in the IDE you’re using for your Dev
Environment.

Testing a custom action in a workflow

The action can now be tested with the ADK-generated workflow. By default, the workflow's name is
ActionName-CI-Validation.

To test an action within a ADK-generated workflow

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. From the repository and branch dropdown menus, select the repository and feature branch in
which you created the action and its workflow.

5. Choose the ActionName-CI-Validation workflow, and then choose Definition to view the
YAML code for the workflow.

6. Choose Run to perform the actions defined in the workflow configuration file and get the
associated logs, artifacts, and variables.

7. View the workflow run status and details.

To view the status and details of the run

a. Choose View Run-ID from the alert message that appears.

b. In the workflow diagram, choose the Validateaction-vs-code action to view the logs.

Testing a custom action in a workflow 52

https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

c. Choose the Logs tab and expand the sections to reveal the log messages, including
possible errors.

Example:

691
You can now run: /usr/local/bin/aws --version
692--2023-09-30 20:15:56-- https://amazoncloudwatch-agent.s3.amazonaws.com/
amazon_linux/amd64/latest/amazon-cloudwatch-agent.rpm
693Resolving amazoncloudwatch-agent.s3.amazonaws.com (amazoncloudwatch-
agent.s3.amazonaws.com)... 54.231.165.137, 52.217.165.169, 3.5.25.69, ...
694Connecting to amazoncloudwatch-agent.s3.amazonaws.com (amazoncloudwatch-
agent.s3.amazonaws.com)|54.231.165.137|:443... connected.
695HTTP request sent, awaiting response... 200 OK
696Length: 66425644 (63M) [application/octet-stream]
697Saving to: 'amazon-cloudwatch-agent.rpm'

1998
2023-09-30 20:15:58 (35.8 MB/s) - 'amazon-cloudwatch-agent.rpm' saved
 [66425644/66425644]
1999

For more information, see Viewing workflow run status and details and Viewing the
deployment logs.

To test an action in a new workflow

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. Navigate to the CodeCatalyst project page.

3. In the navigation pane, choose CI/CD, and then choose Workflows.

4. From the repository and branch dropdown menus, select the repository and feature branch in
which you created the action.

5. Choose Create workflow, confirm the repository and feature branch in which you created the
action, and then choose Create.

6. Choose + Actions, choose the Actions dropdown menu, and then choose Local to view your
custom action.

Testing a custom action in a workflow 53

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-consumption-deployment-logs.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-consumption-deployment-logs.html
https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

7. (Optional) Choose the name of the custom action to view the action's details, including the
description, documentation information, YAML preview, and license file.

8. Choose + to add your custom action to the workflow and configure the workflow to meet your
requirements using the YAML editor or the visual editor. For more information, see Build, test,
and deploy with workflows in CodeCatalyst.

9. (Optional) Choose Validate to validate the workflow's YAML code before committing.

10. Choose Commit, and on the Commit workflow dialog box, do the following:

a. For Workflow file name, leave the default name or enter your own.

b. For Commit message, leave the default message or enter your own.

c. For Repository and Branch, choose the source repository and branch for the workflow
definition file. These fields should be set to the repository and branch that you specified
earlier in the Create workflow dialog box. You can change the repository and branch now,
if you'd like.

Note

After committing your workflow definition file, it cannot be associated with
another repository or branch, so make sure to choose them carefully.

d. Choose Commit to commit the workflow definition file.

11. View the workflow run status and details. For more information, see Viewing workflow run
status and details.

Merge changes into default branch and publish action

After a successful workflow run, merge the feature branch to the default branch in order to publish
the action to the CodeCatalyst actions catalog. For more information, see Publishing an action.

Merge changes into default branch and publish action 54

https://docs.aws.amazon.com/codecatalyst/latest/userguide/flows.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/flows.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-view-run.html

Amazon CodeCatalyst Developer Guide

Creating secrets

As a developer, you might have API keys, secrets, or tokens. You can create secrets to use sensitive
data in your workflows. The action is the main building block of a CodeCatalyst workflow and
used by the workflow to integrate the action within the workflow itself. values shouldn't be used
directly in any workflow definitions because they will be visible as files in your repository. With
CodeCatalyst, you can protect these values by adding a secret to your project, and then referencing
the secret in your workflow definition file. For more information, see Creating a secret. To learn
more about workflows and actions, see Working with workflows and Working with actions.

Example: Creating AWS access key and ID

In this example, two secrets are created: AWS access key ID and an AWS secret access key that will
be passed to the action.

To create secrets

1. Open the CodeCatalyst console at https://codecatalyst.aws/.

2. In the navigation pane, choose CI/CD, and then choose Secrets.

3. Choose Create secret.

4. Enter the following information:

For Name, enter AWS_ACCESS_KEY_ID. This is the name for your secret.

For Value, enter AWS Access Key ID. Enter the value for the secret. This is the sensitive
information that you want to hide from view. By default, the value is not displayed. To display
the value, choose Show value.

(Optional) For Description, enter a description for your secret.

5. Choose Create. The secret can later be accessed using the reference ID
($(Secrets.AWS_SECRET_ACCESS_KEY)).

6. Choose Create secret to create a second secret.

7. Enter the following information:

For Name, enter AWS_ACCESS_KEY. This is the name for your secret.

Example: Creating AWS access key and ID 55

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-secrets.html#workflows-secrets.creating
https://docs.aws.amazon.com/codecatalyst/latest/userguide/working-with-workflows.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-actions.html
https://codecatalyst.aws/

Amazon CodeCatalyst Developer Guide

For Value, enter AWS Secrets Access Key. Enter the value for the secret. This is the sensitive
information that you want to hide from view. By default, the value is not displayed. To display
the value, choose Show value.

(Optional) For Description, enter a description for your secret.

8. Choose Create. The secret can later be accessed using the reference ID
($(Secrets.AWS_SECRET_ACCESS_KEY)).

Example: Creating AWS access key and ID 56

Amazon CodeCatalyst Developer Guide

Accessing data

Using ADK APIs, you can access data that is set on the actions. Here is some of the data you can
access.

Topics

• Environment variables

• Action inputs

• Secrets

• Application URLs

Environment variables

CodeCatalyst sets environment variables available at the action runtime. An action can be
configured with input variables and pre-defined variables that can be accessed by the action. The
variables can be accessed for auditing purposes, metrics, access tokens, and other information.
The following ADK API can be used to get both input variables and pre-defined variables:
code.getEnvironmentVariable('variableName');. For more information, see ADK Core's
getEnvironmentVariable details.

Identifier: my_org/my_action
 Configuration:
 MyEnvironment: 'MY_PROJECT'

const projectName = core.getEnvironmentVariable('MyEnvironment')

Action inputs

Action inputs are values passed into an action at runtime. These inputs are defined in the action
definition file (action.yml) and can be used to specify parameters. You can access and configure
the action inputs in order to customize the behavior of the action based on a specific use case. The
following ADK API can be used to get the action inputs: core.getInput(`${inputName}`). For
more information, see ADK Core's getInput details.

Identifier: my_org/my_action

Environment variables 57

https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.getEnvironmentVariable.html
https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.getEnvironmentVariable.html
https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.getInput.html

Amazon CodeCatalyst Developer Guide

 Configuration:
 MyInput: 'MY_ACTION_INPUT'

const actionInput = core.getInput('MyInput')

Secrets

Sensitive data like authentication credentials and other values can be stored and protected in
secrets with CodeCatalyst. You can then reference the secrets in your workflow definition file. For
more information, see Working with secrets.

In the following workflow, the value of the core.getInput(`${StackName}`) secret is
assigned to the StackName action input at runtime. For more information, see ADK Core's getInput
details.

Actions:
 ACTIONNAME:
 Identifier: aws/cdk-deploy@v2
 Environment:
 Name: codecatalyst-cdk-deploy-environment
 Connections:
 - Name: codecatalyst-account-connection
 Role: codecatalyst-cdk-deploy-role
 Inputs:
 Sources:
 - WorkflowSource
 Configuration:
 StackName: ${Secrets.MY_SECRET_STACK_NAME}
 Region: ${Secrets.MY_REGION}

const stackName = core.getInput('StackName')

const region = core.getInput('Region')

Application URLs

Your workflow that deploys an application can display a URL in the workflow diagram. The
clickable URL in the CodeCatalyst console can help to quickly verify your application. For more
information, see Surfacing the URL of the deployed application.

Secrets 58

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-secrets.html
https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.getInput.html
https://aws.github.io/actions-dev-kit/functions/_aws_codecatalyst_adk_core.getInput.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-consumption-surface-app-url.html

Amazon CodeCatalyst Developer Guide

You can also configure action source code with an output variable to get a URL link for your
application. In the following code, the URL is first defined so the variable holds the URL you want
to set as the output value. The output variable is named AppUrl in code.setOutput('AppUrl,
url); with the value of the url variable. The output variable can then be accessed in a workflow.
For more information, see Working with variables.

const url = "https://mycompany.myapp.com";

core.setOutput('AppUrl', url);

Application URLs 59

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-working-with-variables.html

Amazon CodeCatalyst Developer Guide

Action reference

The following is the action definition YAML reference for your custom actions. You can define
inputs, outputs, and resource integrations in the action definition YAML file. Once the action is
defined, it can be referenced in your CI workflow file.

Choose a YAML property in the following code to see a description of it.

Note

Most of the YAML properties that follow have corresponding UI elements in the visual
editor. To look up a UI element, use Ctrl+F. The element will be listed with its associated
YAML property.

SchemaVersion: 1.0
Name: MyAction # Name of the action - string
Id: my-action # String
Description: This is my action. # String
Version: 1.0.0 # SEMVER

Configuration:
 Param1:
 Description: 'First parameter'
 Required: true | false
 DisplayName: 'Param1'
 Type: number | boolean | string
 Param2:
 Description: 'Second parameter'
 Required: true | false
 Default: 'Second value'
 DisplayName: 'Param with space'
 Type: number | boolean | string

SupportedComputeType:
 - 'EC2'
 - 'LAMBDA'

Whether the action requires an environment
Automatically pulls in the connection/role fields
Environment:

60

Amazon CodeCatalyst Developer Guide

 Required: true | false
 Connection:
 Required: true | false

Whether the action requires any input sources/artifacts
If required is true, then action expects at least one Inputs -> Sources
or Inputs -> Artifacts

Inputs:
 Sources:
 Required: true | false
 Artifacts:
 Required: true | false
Outputs: # Top 10 variables selected (if more than 10 produced)
 Variables:
 variable-name-1:
 Description: 'Output variable description.'
Runs:
 # Node
 Using: 'node16' | 'node18'
 Main: 'index.js'
 Pre: 'setup.js'
 Post: 'cleanup.js'

Configuration

(Configuration)

(Required) A section where you can define the configuration properties of the action.

Corresponding UI: Configuration tab

Description

(Configuration/Param/Description)

(Required)

Provide a description of the action.

Corresponding UI: none

Configuration 61

Amazon CodeCatalyst Developer Guide

Required

(Configuration/Param/Required)

(Required)

Specify whether the parameter is required. Set to true or false.

Corresponding UI: none

Default

(Configuration/Param/Default)

(Optional)

Specify the default value of the parameter.

Corresponding UI: none

DisplayName

(Configuration/Param/DisplayName)

(Optional)

Set the display name of the parameter.

Corresponding UI: none

Type

(Configuration/Param/Type)

(Optional)

The type of parameter. You can use one of the following values (default is string):

• Number (whole number)

• Boolean (TRUE or FALSE)

• String

Required 62

Amazon CodeCatalyst Developer Guide

Corresponding UI: none

SupportedComputeTypes

(SupportedComputeType)

(Optional)

Specify the compute types to use for the action. You can specify the following types:

• EC2

• Lambda

If you don't define SupportedComputeTypes, the corresponding UI will show all available options
(EC2 and Lambda). Otherwise, the UI will display the specified compute types.

Corresponding UI: Configuration tab/Compute type

Environment

(Environment)

(Optional)

Specify the CodeCatalyst environment to use with the action.

For more information about environments, see Working with environments and Environment.

Corresponding UI: Configuration tab/Environment

Connection

(Connection)

(Optional)

If you define the Connection field in your action definition YAML file, action users will be able to
leverage the default connection and role capabilities that come with an environment by specifying
the environment name in the workflow YAML. If you don’t include this connection field in your

SupportedComputeTypes 63

https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-environments.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-environments-creating-environment.html

Amazon CodeCatalyst Developer Guide

action definition YAML file, then the action users will need to specify the connection and the role
they want to use with their environment.

Tip

By defining the Connection field in your action definition YAML file, action users
would only need to set the Environment in the action, and the connection and role
are automatically applied to the action if the Environment is configured with a default
connection and role.

For more information about account connections, see Allowing access to AWS resources with
connected AWS accounts.

For information about how to associate an account connection with your environment, see Creating
an environment.

Corresponding UI: Configuration tab/Environment/What's in my my-environment

Inputs

(Inputs)

(Optional)

The Inputs section defines the data that an action needs during a workflow run.

Note

A maximum of four inputs (one source and three artifacts) are allowed per build action or
test action. Variables don't count towards this total.

If you need to refer to files residing in different inputs (say a source and an artifact), the source
input is the primary input, and the artifact is the secondary input. References to files in secondary
inputs take a special prefix to distiguish them from the primary. For details, see Example:
Referencing files within an artifact.

Corresponding UI: Inputs tab

Inputs 64

https://docs.aws.amazon.com/codecatalyst/latest/userguide/ipa-connect-account.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/ipa-connect-account.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-environments-creating-environment.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-environments-creating-environment.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-working-artifacts.html#workflows-working-artifacts-ex-ref-file
https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-working-artifacts.html#workflows-working-artifacts-ex-ref-file

Amazon CodeCatalyst Developer Guide

Sources

(Inputs/Sources)

(Required)

Specify the labels that represent the source repositories that will be needed by the action.
Currently, the only supported label is WorkflowSource, which represents the source repository
where your workflow definition file is stored.

If you omit a source, then you must specify at least one input artifact under action-name/
Inputs/Artifacts.

For more information, see Working with sources.

Corresponding UI: none

Artifacts - input

(Inputs/Artifacts)

(Optional)

Specify artifacts from previous actions that you want to provide as input to this action. These
artifacts must already be defined as output artifacts in previous actions.

If you do not specify any input artifacts, then you must specify at least one source repository under
action-name/Inputs/Sources.

Corresponding UI: Inputs tab/Artifacts - optional

Outputs

(Outputs)

(Optional)

Defines the data that is output by the action during a workflow run. If more than 10 output
variables are produced, the top 10 variables are selected.

Corresponding UI: Outputs tab

Sources 65

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-sources.html

Amazon CodeCatalyst Developer Guide

Variables - output

(Outputs/Variables)

(Optional)

Specify the variables that you want the action to export so that they are available for use by the
subsequent actions.

For more information about variables, including examples, see Working with variables.

Corresponding UI: Outputs tab/Variables/Add variable

variable-name-1

(Outputs/Variables/variable-name-1)

(Optional)

Specify the name of a variable that you want the action to export.

Corresponding UI: none

Description

(Outputs/Variables/Time/Description)

(Optional)

Provide a description of the output variable.

Corresponding UI: none

Runs

(Runs)

(Required)

Defines the runtime environment and main entry point for the action.

Variables - output 66

https://docs.aws.amazon.com/codecatalyst/latest/userguide/workflows-working-with-variables.html

Amazon CodeCatalyst Developer Guide

Corresponding UI: none

Using

Runs/(Using)

(Required)

Specify the type of runtime environment. Currently, Node 16 and Node 18 are the options.

Corresponding UI: none

Main

Runs/(Main)

(Optional)

Specify the file for the entry point of a Node.js application. This file contains your action code.
Required if Node 16 or Node 18 runtime is specified for Using.

Corresponding UI: none

Pre

Runs/(Pre)

(Optional)

Allows you to run a script at the beginning of the action run. Can be defined if Node 16 or Node 18
runtime is specified for Using.

Corresponding UI: none

Post

Runs/(Post)

(Optional)

Using 67

Amazon CodeCatalyst Developer Guide

Allows your to run a script at the end of the action run. Can be defined if Node 16 or Node 18
runtime is specified for Using.

Corresponding UI: none

Post 68

Amazon CodeCatalyst Developer Guide

ADK API reference and CLI commands

The following information is about the ADK API reference and CLI commands to build an action.

ADK API reference

The ADK API reference provides descriptions of the available operations and data types. You can
work with the ADK API by including the supported objects in your YAML file. For more information,
see Build, test, and deploy with workflows in CodeCatalyst.

ADK CLI commands

The following list contains the ADK CLI commands and information about how to use each
command:

• init – Initializes the ADK project locally and produces required configuration files with specific
language support.

• bootstrap – Bootstraps CodeCatalyst action code by reading the action definition file. The ADK
SDK is used to develop actions.

• validate – Validates the action definition and README file.

• version – Returns the current version of ADK.

• help – Shows the current set of commands.

ADK API reference 69

https://aws.github.io/actions-dev-kit/index.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/flows.html

Amazon CodeCatalyst Developer Guide

Troubleshooting

The following information can help you troubleshoot common issues in the Amazon CodeCatalyst
ADK.

Topics

• Handling errors

• Running action workflows for third-party repositories

Handling errors

Problem: I see "Internal Error" when running my test workflow but I'm not sure what the issue is.

Possible fixes: Your action definition YAML file may have an error. Run the following command to
catch errors in the action.yml file: adk validate.

Running action workflows for third-party repositories

Problem: My workflow run fails with a custom action's source code that is in a third-party
repository (GitHub).

Possible fixes: Your custom action's source code can only be in a Amazon CodeCatalyst source
repository. You can create a new repository in CodeCatalyst, move your source code to that
repository, and run your workflow again with the action. For more information, see Step 1: Set up
your project and Dev Environment.

Handling errors 70

Amazon CodeCatalyst Developer Guide

Contribute

The CodeCatalyst Action Development Guide (ADK) is an open-source library that you can
contribute to. As a contributor, consider the contribution guidelines, feedback, and defects. For
more information, see the ADK GitHub repository.

71

https://github.com/aws/actions-dev-kit

Amazon CodeCatalyst Developer Guide

Document history for the Amazon CodeCatalyst Action
Developer Guide

The following table describes the documentation releases for the CodeCatalyst Action
Development Guide Developer Guide.

Change Description Date

Update content: Action
reference Using field

Updated Action reference
 Using field with Node 18
option.

August 9, 2024

New content: Creating secrets Added Creating secrets topic. January 25, 2024

New content: Configuring
custom actions for third-party
integrations

Added Configuring custom
actions for third-party
integrations topic.

January 25, 2024

Updated content: Step 1:
Set up your project and Dev
Environment

Updated Getting started
section to use Dev Environme
nts to create actions instead
of creating actions on local
machine. Building actions
locally moved to Working
with custom actions section.

August 11, 2023

New content: Deleting an
action version

Added a Deleting an action
version topic.

June 28, 2023

New content: Action reference Added Action reference topic. April 1, 2023

New content Initial publication of the
Amazon CodeCatalyst Action
Development Kit guide.

March 31, 2023

72

https://docs.aws.amazon.com/codecatalyst/latest/adk/action-ref.html#actions.runs.using
https://docs.aws.amazon.com/codecatalyst/latest/adk/action-ref.html#actions.runs.using
https://docs.aws.amazon.com/codecatalyst/latest/adk/action-ref.html#actions.runs.using
https://docs.aws.amazon.com/codecatalyst/latest/adk/action-ref.html#actions.runs.using
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-create-secrets.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-create-secrets.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-configure-third-party.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-configure-third-party.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-configure-third-party.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-configure-third-party.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-configure-third-party.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/adk-configure-third-party.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/getting-started.html#set-up-workspace-first-action
https://docs.aws.amazon.com/codecatalyst/latest/adk/getting-started.html#set-up-workspace-first-action
https://docs.aws.amazon.com/codecatalyst/latest/adk/getting-started.html#set-up-workspace-first-action
https://docs.aws.amazon.com/codecatalyst/latest/adk/getting-started.html#set-up-workspace-first-action
https://docs.aws.amazon.com/codecatalyst/latest/adk/getting-started.html#set-up-workspace-first-action
https://docs.aws.amazon.com/codecatalyst/latest/adk/set-up-workspace-local.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/set-up-workspace-local.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/deleting-action-version.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/deleting-action-version.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/deleting-action-version.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/deleting-action-version.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/action-ref.html
https://docs.aws.amazon.com/codecatalyst/latest/adk/action-ref.html

	Amazon CodeCatalyst
	Table of Contents
	Developing workflow actions for Amazon CodeCatalyst
	Getting started with action development
	Testing and publishing custom actions

	Custom actions concepts
	ADK components
	Action components

	Getting started with the Action Development Kit
	Prerequisites
	Step 1: Set up your project and Dev Environment
	Step 2: Install tools and packages
	Step 3: Initialize your action project
	Step 4: Bootstrap the action code
	Step 5: Build the package locally
	Step 5: Set action results
	Step 6: Test the action
	Adding unit tests
	Testing actions in workflows

	Step 7: Publish the action
	Next steps

	Working with custom actions
	Setting up your project on a local machine
	Testing an action
	Adding unit tests
	Testing actions in workflows

	Publishing an action
	Publishing a new action version
	Deleting an action version

	Examples
	AWS CodeBuild action using ADK
	Prerequisites
	Languages and toolchains

	Update the action definition
	Update the action code
	Validate the action within the CodeCatalyst workflow

	Outgoing webhook action using ADK
	Prerequisites
	Languages and toolchains

	Update the action definition
	Update the action code
	Validate the action within the CodeCatalyst workflow

	Configuring custom actions for third-party integrations
	Configure custom action files
	Testing a custom action in a workflow
	Merge changes into default branch and publish action

	Creating secrets
	Example: Creating AWS access key and ID

	Accessing data
	Environment variables
	Action inputs
	Secrets
	Application URLs

	Action reference
	Configuration
	Description
	Required
	Default
	DisplayName
	Type
	SupportedComputeTypes
	Environment
	Connection
	Inputs
	Sources
	Artifacts - input
	Outputs
	Variables - output
	variable-name-1
	Description
	Runs
	Using
	Main
	Pre
	Post

	ADK API reference and CLI commands
	ADK API reference
	ADK CLI commands

	Troubleshooting
	Handling errors
	Running action workflows for third-party repositories

	Contribute
	Document history for the Amazon CodeCatalyst Action Developer Guide

