
User Guide

AWS CodePipeline

API Version 2015-07-09

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS CodePipeline User Guide

AWS CodePipeline: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS CodePipeline User Guide

Table of Contents

What is CodePipeline? ... 1
Continuous delivery and continuous integration ... 1
What can I do with CodePipeline? .. 2
A quick look at CodePipeline ... 2
How do I get started with CodePipeline? ... 3
Concepts ... 4

Pipelines .. 4
Stages .. 4
Actions ... 5
Pipeline executions ... 5
Stage executions ... 6
Action executions .. 7
Action types .. 7
Transitions ... 7
Artifacts ... 8
Source revisions ... 8
Triggers .. 9
Variables .. 9

DevOps pipeline example ... 9
How pipeline executions work .. 11

How pipeline executions are started .. 12
How pipeline executions are stopped .. 12
How executions are processed in SUPERSEDED mode ... 16
How executions are processed in QUEUED mode .. 17
How executions are processed in PARALLEL mode ... 19
Managing Pipeline Flow .. 19

Input and output artifacts ... 22
Pipeline types .. 25
What type of pipeline is right for me? .. 25

Getting started .. 27
Step 1: Create an AWS account and administrative user ... 27

Sign up for an AWS account .. 27
Create an administrative user .. 28

Step 2: Apply a managed policy for administrative access to CodePipeline 29

API Version 2015-07-09 iii

AWS CodePipeline User Guide

Step 3: Install the AWS CLI .. 30
Step 4: Open the console for CodePipeline ... 32
Next steps .. 32

Product and service integrations ... 33
Integrations with CodePipeline action types ... 33

Source action integrations .. 33
Build action integrations ... 41
Test action integrations ... 42
Deploy action integrations .. 44
Approval action integration with Amazon Simple Notification Service 50
Invoke action integrations .. 51

General integrations with CodePipeline .. 52
Examples from the community ... 55

Blog posts ... 55
Tutorials ... 59

Tutorial: Use Git tags to start your pipeline ... 60
Prerequisites ... 61
Step 1: Open CloudShell and clone your repository ... 61
Step 2: Create a pipeline to trigger on Git tags ... 62
Step 3: Tag your commits for release .. 65
Step 4: Release change and view logs ... 67

Tutorial: Filter on branch names for pull requests to start your pipeline 67
Prerequisites ... 67
Step 1: Create a pipeline to start on pull request for specified branches 68
Step 2: Create and merge a pull request in GitHub.com to start your pipeline executions 70

Tutorial: Use pipeline-level variables ... 71
Prerequisites ... 71
Step 1: Create your pipeline and build project .. 72
Step 2: Release change and view logs ... 75

Tutorial: Create a simple pipeline (S3 bucket) ... 75
Create an S3 bucket ... 76
Create Windows Server Amazon EC2 instances and install the CodeDeploy agent 78
Create an application in CodeDeploy ... 80
Create your first pipeline .. 82
Add another stage .. 85
Disable and enable transitions between stages ... 92

API Version 2015-07-09 iv

AWS CodePipeline User Guide

Clean up resources ... 93
Tutorial: Create a simple pipeline (CodeCommit repository) .. 93

Create a CodeCommit repository .. 94
Download, commit, and push your code ... 95
Create an Amazon EC2 Linux instance and install the CodeDeploy agent 98
Create an application in CodeDeploy ... 100
Create your first pipeline .. 101
Update code in your CodeCommit repository .. 104
Clean up resources ... 106
Further reading ... 106

Tutorial: Create a four-stage pipeline ... 107
Complete prerequisites ... 108
Create a pipeline ... 112
Add more stages ... 113
Clean up resources ... 117

Tutorial: Set up a CloudWatch Events rule to receive email notifications for pipeline state
changes .. 118

Set up an email notification using Amazon SNS ... 119
Create a CloudWatch Events notification rule for CodePipeline ... 120
Clean up resources ... 121

Tutorial: Build and test an Android app with AWS Device Farm .. 122
Configure CodePipeline to use your Device Farm tests .. 123

Tutorial: Test an iOS app with AWS Device Farm ... 127
Configure CodePipeline to use your Device Farm tests (Amazon S3 example) 128

Tutorial: Create a pipeline that deploys to Service Catalog .. 133
Option 1: Deploy to Service Catalog without a configuration file ... 133
Option 2: Deploy to Service Catalog using a configuration file .. 138

Tutorial: Create a pipeline with AWS CloudFormation ... 143
Example 1: Create an AWS CodeCommit pipeline with AWS CloudFormation 143
Example 2: Create an Amazon S3 pipeline with AWS CloudFormation 145

Tutorial: Create a pipeline that uses variables from AWS CloudFormation deployment
actions .. 149

Prerequisites: Create an AWS CloudFormation service role and a CodeCommit
repository ... 149
Step 1: Download, edit, and upload the sample AWS CloudFormation template 150
Step 2: Create your pipeline .. 151

API Version 2015-07-09 v

AWS CodePipeline User Guide

Step 3: Add an AWS CloudFormation deployment action to create the change set 153
Step 4: Add a manual approval action .. 154
Step 5: Add a CloudFormation deployment action to execute the change set 155
Step 6: Add a CloudFormation deployment action to delete the stack 156

Tutorial: Amazon ECS Standard Deployment with CodePipeline ... 156
Prerequisites .. 157
Step 1: Add a Build Specification File to Your Source Repository .. 160
Step 2: Creating Your Continuous Deployment Pipeline .. 162
Step 3: Add Amazon ECR Permissions to the CodeBuild Role .. 163
Step 4: Test Your Pipeline .. 164

Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy
deployment ... 164

Prerequisites .. 166
Step 1: Create image and push to an Amazon ECR repository ... 166
Step 2: Create task definition and AppSpec source files and push to a CodeCommit
repository ... 168
Step 3: Create your Application Load Balancer and target groups .. 172
Step 4: Create your Amazon ECS cluster and service ... 174
Step 5: Create your CodeDeploy application and deployment group (ECS compute
platform) .. 177
Step 6: Create your pipeline .. 178
Step 7: Make a change to your pipeline and verify deployment .. 182

Tutorial: Create a pipeline that deploys an Amazon Alexa skill ... 182
Prerequisites .. 182
Step 1: Create an Alexa developer services LWA security profile ... 183
Step 2: Create Alexa skill source files and push to your CodeCommit repository 183
Step 3: Use ASK CLI commands to create a refresh token .. 185
Step 4: Create your pipeline .. 185
Step 5: Make a change to any source file and verify deployment .. 187

Tutorial: Create a pipeline that uses Amazon S3 as a deployment provider 188
Option 1: Deploy static website files to Amazon S3 ... 189
Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket 193

Tutorial: Publish applications to the AWS Serverless Application Repository 198
Before you begin .. 199
Step 1: Create a buildspec.yml file ... 199
Step 2: Create and configure your pipeline .. 200

API Version 2015-07-09 vi

AWS CodePipeline User Guide

Step 3: Deploy the publish application ... 202
Step 4: Create the publish action ... 202

Tutorial: Using variables with Lambda invoke actions ... 203
Prerequisites .. 203
Step 1: Create a Lambda function .. 204
Step 2: Add a Lambda invoke action and manual approval action to your pipeline 207

Tutorial: Use an AWS Step Functions invoke action ... 208
Prerequisite: Create or choose a simple pipeline ... 209
Step 1: Create the sample state machine ... 210
Step 2: Add a Step Functions invoke action to your pipeline ... 210

Tutorial: Create a pipeline that uses AppConfig as a deployment provider 211
Prerequisites .. 212
Step 1: Create your AWS AppConfig resources .. 212
Step 2: Upload files to your S3 source bucket ... 213
Step 3: Create your pipeline .. 213
Step 4: Make a change to any source file and verify deployment .. 215

Tutorial: Use full clone with a GitHub pipeline source .. 215
Prerequisites .. 216
Step 1: Create a README file .. 216
Step 2: Create your pipeline and build project .. 216
Step 3: Update the CodeBuild service role policy to use connections 219
Step 4: View repository commands in build output ... 220

Tutorial: Use full clone with a CodeCommit pipeline source .. 220
Prerequisites .. 221
Step 1: Create a README file .. 221
Step 2: Create your pipeline and build project .. 221
Step 3: Update the CodeBuild service role policy to clone the repository 224
Step 4: View repository commands in build output ... 224

Tutorial: Create a pipeline with AWS CloudFormation StackSets deployment actions 224
Prerequisites .. 225
Step 1: Upload the sample AWS CloudFormation template and parameter file 226
Step 2: Create your pipeline .. 151
Step 3: View initial deployment .. 230
Step 4: Add a CloudFormationStackInstances action ... 230
Step 5: View stack set resources for your deployment .. 231
Step 6: Make an update to your stack set .. 232

API Version 2015-07-09 vii

AWS CodePipeline User Guide

Best practices and use cases ... 233
Examples of how to use CodePipeline .. 233

Use CodePipeline with Amazon S3, AWS CodeCommit, and AWS CodeDeploy 233
Use CodePipeline with third-party action providers (GitHub and Jenkins) 234
Use CodePipeline with AWS CodeStar to build a pipeline in a code project 234
Use CodePipeline to compile, build, and test code with CodeBuild ... 235
Use CodePipeline with Amazon ECS for continuous delivery of container-based
applications to the cloud .. 235
Use CodePipeline with Elastic Beanstalk for continuous delivery of web applications to the
cloud .. 235
Use CodePipeline with AWS Lambda for continuous delivery of Lambda-based and
serverless applications ... 236
Use CodePipeline with AWS CloudFormation templates for continuous delivery to the
cloud .. 236

Tagging resources .. 237
Use CodePipeline with Amazon VPC .. 238

Availability ... 238
Create a VPC endpoint for CodePipeline .. 239
Troubleshooting your VPC setup .. 239

Working with pipelines ... 241
Start a pipeline in CodePipeline ... 242

Source actions and change detection methods ... 243
Start a pipeline manually ... 245
Start a pipeline on a schedule .. 246
Start a pipeline with a source revision override .. 249

Stop a pipeline execution .. 251
Stop a pipeline execution (console) .. 252
Stop an Inbound Execution (Console) .. 256
Stop a pipeline execution (CLI) .. 256
Stop an Inbound Execution (CLI) .. 258

Create a pipeline .. 259
Create a pipeline (console) ... 260
Create a pipeline (CLI) ... 271
Amazon ECR source actions and EventBridge .. 277
Amazon S3 source actions and EventBridge .. 286
Bitbucket Cloud connections .. 307

API Version 2015-07-09 viii

AWS CodePipeline User Guide

CodeCommit source actions and EventBridge ... 313
GitHub connections .. 327
GitHub Enterprise Server connections ... 333
GitLab.com connections .. 341
Connections for GitLab self-managed ... 349

Edit a pipeline .. 356
Edit a pipeline (console) .. 357
Edit a pipeline (AWS CLI) .. 361

View pipelines and details ... 365
View pipelines (console) .. 365
View action details in a pipeline (console) .. 369
View the pipeline ARN and service role ARN (console) .. 373
View pipeline details and history (CLI) .. 374

Delete a pipeline .. 375
Delete a pipeline (console) ... 375
Delete a pipeline (CLI) ... 375

Create a pipeline that uses resources from another account ... 376
Prerequisite: Create an AWS KMS encryption key ... 379
Step 1: Set up account policies and roles ... 379
Step 2: Edit the pipeline ... 387

Migrate polling pipelines to use event-based change detection ... 390
How to migrate polling pipelines ... 390
Viewing polling pipelines in your account .. 392
Migrate polling pipelines with a CodeCommit source .. 397
Migrate polling pipelines with an S3 source enabled for events .. 417
Migrate polling pipelines with an S3 source and CloudTrail trail ... 444
Migrate polling pipelines for a GitHub version 1 source action to connections 478
Migrate polling pipelines for a GitHub version 1 source action to webhooks 482

Create the CodePipeline service role ... 498
Create the CodePipeline service role (console) .. 499
Create the CodePipeline service role (CLI) .. 499

Tag a pipeline ... 503
Tag pipelines (console) .. 504
Tag pipelines (CLI) .. 505

Create a notification rule ... 508
Working with triggers ... 511

API Version 2015-07-09 ix

AWS CodePipeline User Guide

Filter triggers on code push or pull requests .. 511
Considerations for trigger filters ... 514
Examples for trigger filters .. 514
Filtering on push events (console) .. 515
Filtering on pull requests (console) .. 517
Trigger filtering in the pipeline JSON (CLI) ... 518
Trigger filtering in AWS CloudFormation templates ... 522

Manage executions .. 524
View executions .. 524

View pipeline execution history (console) ... 524
View execution status (console) .. 525
View an inbound execution (Console) .. 527
View pipeline execution source revisions (console) ... 528
View action executions (console) .. 530
View action artifacts and artifact store information (console) ... 530
View pipeline details and history (CLI) .. 531

Set the pipeline execution mode ... 542
Set the pipeline execution mode (console) ... 543
Set the pipeline execution mode (CLI) ... 543

Retry a failed stage or failed actions in a stage ... 546
Retry a failed stage (console) .. 548
Retry a failed stage (CLI) .. 549

Working with actions .. 553
Working with action types ... 553

Request an action type ... 555
Add an available action type to a pipeline (console) .. 561
View an action type ... 563
Update an action type .. 564

Create a custom action for a pipeline ... 566
Create a custom action ... 568
Create a job worker for your custom action ... 572
Add a custom action to a pipeline ... 579

Tag a custom action in CodePipeline .. 582
Add tags to a custom action ... 582
View tags for a custom action .. 583
Edit tags for a custom action .. 583

API Version 2015-07-09 x

AWS CodePipeline User Guide

Remove tags from a custom action ... 583
Invoke a Lambda function in a pipeline ... 584

Step 1: Create a pipeline .. 586
Step 2: Create the Lambda function .. 587
Step 3: Add the Lambda function to a pipeline in the CodePipeline console 592
Step 4: Test the pipeline with the Lambda function .. 593
Step 5: Next steps .. 593
Example JSON event ... 594
Additional sample functions .. 596

Retry a failed action in a stage .. 609
Retry failed actions (console) ... 610
Retry failed actions (CLI) ... 611

Manage approval actions in pipelines ... 614
Configuration options for manual approval actions ... 614
Setup and workflow overview for approval actions ... 615
Grant approval permissions to an IAM user in CodePipeline .. 616
Grant Amazon SNS permissions to a service role .. 619
Add a manual approval action .. 621
Approve or reject an approval action .. 625
JSON data format for manual approval notifications .. 629

Add a cross-Region action to a pipeline ... 630
Manage cross-Region actions in a pipeline (console) .. 632
Add a cross-Region action to a pipeline (CLI) .. 634
Add a cross-Region action to a pipeline (AWS CloudFormation) .. 640

Working with variables ... 642
Configure actions for variables .. 643
View output variables .. 648
Example: Use variables in manual approvals ... 650
Example: Use a BranchName variable with CodeBuild environment variables 651

Working with stage transitions .. 654
Disable or enable transitions (console) ... 654
Disable or enable transitions (CLI) ... 656

Monitoring pipelines ... 658
Monitoring CodePipeline events ... 659

Detail types .. 660
Pipeline-level events .. 663

API Version 2015-07-09 xi

AWS CodePipeline User Guide

Stage-level events .. 671
Action-level events ... 675
Create a Rule That Sends a Notification on a Pipeline Event .. 683

Events placeholder bucket reference ... 688
Events placeholder bucket names by Region ... 688

Logging API calls with AWS CloudTrail ... 692
CodePipeline information in CloudTrail ... 692
Understanding CodePipeline log file entries .. 693

Troubleshooting ... 696
Pipeline error: A pipeline configured with AWS Elastic Beanstalk returns an error
message: "Deployment failed. The provided role does not have sufficient permissions:
Service:AmazonElasticLoadBalancing" ... 697
Deployment error: A pipeline configured with an AWS Elastic Beanstalk deploy action hangs
instead of failing if the "DescribeEvents" permission is missing .. 698
Pipeline error: A source action returns the insufficient permissions message: "Could not access
the CodeCommit repository repository-name. Make sure that the pipeline IAM role has
sufficient permissions to access the repository." ... 698
Pipeline error: A Jenkins build or test action runs for a long time and then fails due to lack of
credentials or permissions ... 698
Pipeline error: A pipeline created in one AWS Region using a bucket created in another AWS
Region returns an "InternalError" with the code "JobFailed" .. 699
Deployment error: A ZIP file that contains a WAR file is deployed successfully to AWS Elastic
Beanstalk, but the application URL reports a 404 not found error ... 698
Pipeline artifact folder names appear to be truncated ... 700
Add CodeBuild GitClone permissions for connections to Bitbucket, GitHub, GitHub Enterprise
Server, or GitLab.com ... 700
Add CodeBuild GitClone permissions for CodeCommit source actions .. 702
Pipeline error: A deployment with the CodeDeployToECS action returns an error message:
"Exception while trying to read the task definition artifact file from: <source artifact
name>" ... 703
GitHub version 1 source action: Repository list shows different repositories 703
GitHub version 2 source action: Unable to complete the connection for a repository 704
Amazon S3 error: CodePipeline service role <ARN> is getting S3 access denied for the S3
bucket <BucketName> .. 704
Pipelines with an Amazon S3, Amazon ECR, or CodeCommit source no longer start
automatically .. 707

API Version 2015-07-09 xii

AWS CodePipeline User Guide

Connections error when connecting to GitHub: "A problem occurred, make sure cookies are
enabled in your browser" or "An organization owner must install the GitHub app" 708
Error when the CloudFormationStackSet or CloudFormationStackInstances actions
are not available in a Region .. 709
Pipelines with execution mode changed to QUEUED or PARALLEL mode fails when run limit
reached ... 709
Pipelines in PARALLEL mode have an outdated pipeline definition if edited when changing to
QUEUED or SUPERSEDED mode .. 710
Pipelines changed from PARALLEL mode will display a previous execution mode 710
Pipelines with connections that use trigger filtering by file paths might not start at branch
creation .. 710
Pipelines with connections that use trigger filtering by file paths might not start when file
limit is reached ... 711
Need help with a different issue? .. 711

Security .. 712
Data protection .. 713

Internetwork traffic privacy .. 714
Encryption at rest ... 714
Encryption in transit .. 714
Encryption key management ... 714
Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline 715
Use AWS Secrets Manager to track database passwords or third-party API keys 718

Identity and access management ... 719
Audience ... 719
Authenticating with identities ... 720
Managing access using policies ... 723
How AWS CodePipeline works with IAM ... 725
Identity-based policy examples ... 730
Resource-based policy examples ... 766
Troubleshooting .. 767
CodePipeline permissions reference ... 769
Manage the CodePipeline service role ... 779

Incident response ... 791
Compliance validation .. 792
Resilience ... 793
Infrastructure security ... 793

API Version 2015-07-09 xiii

AWS CodePipeline User Guide

Security best practices .. 794
Command line reference ... 795
Pipeline structure reference ... 796

Valid action types and providers in CodePipeline ... 796
Pipeline and stage structure requirements in CodePipeline ... 800
Action structure requirements in CodePipeline ... 803

Number of input and output artifacts for each action type .. 809
Default settings for the PollForSourceChanges parameter ... 811
Configuration details by provider type .. 813

Action structure reference .. 815
Amazon ECR .. 816

Action type ... 816
Configuration parameters ... 817
Input artifacts .. 817
Output artifacts .. 817
Output variables ... 817
Action declaration (Amazon ECR example) ... 818
See also .. 819

Amazon ECS and CodeDeploy blue-green .. 820
Action type ... 820
Configuration parameters ... 821
Input artifacts .. 822
Output artifacts .. 823
Action declaration .. 824
See also .. 825

Amazon Elastic Container Service .. 826
Action type ... 827
Configuration parameters ... 827
Input artifacts .. 828
Output artifacts .. 828
Action declaration .. 829
See also .. 830

Amazon S3 deploy action .. 830
Action type ... 831
Configuration parameters ... 831
Input artifacts .. 832

API Version 2015-07-09 xiv

AWS CodePipeline User Guide

Output artifacts .. 833
Example action configuration .. 833
See also .. 836

Amazon S3 source action ... 836
Action type ... 837
Configuration parameters ... 837
Input artifacts .. 838
Output artifacts .. 838
Output variables ... 839
Action declaration .. 839
See also .. 840

AWS AppConfig .. 841
Action type ... 841
Configuration parameters ... 841
Input artifacts .. 842
Output artifacts .. 842
Example action configuration .. 842
See also .. 843

AWS CloudFormation .. 844
Action type ... 845
Configuration parameters ... 845
Input artifacts .. 849
Output artifacts .. 850
Output variables ... 850
Action declaration .. 851
See also .. 852

AWS CloudFormation StackSets ... 852
How AWS CloudFormation StackSets actions work .. 854
How to structure StackSets actions in a pipeline .. 855
The CloudFormationStackSet action .. 857
The CloudFormationStackInstances action ... 870
Permissions models for stack set operations ... 879
Template parameter data types .. 880
See also .. 852

AWS CodeBuild ... 882
Action type ... 882

API Version 2015-07-09 xv

AWS CodePipeline User Guide

Configuration parameters ... 882
Input artifacts .. 884
Output artifacts .. 885
Output variables ... 885
Action declaration (CodeBuild example) ... 886
See also .. 887

AWS CodeCommit .. 888
Action type ... 889
Configuration parameters ... 889
Input artifacts .. 890
Output artifacts .. 890
Output variables ... 891
Example action configuration .. 892
See also .. 894

AWS CodeDeploy ... 894
Action type ... 895
Configuration parameters ... 895
Input artifacts .. 895
Output artifacts .. 896
Action declaration .. 896
See also .. 897

CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server,
GitLab.com, and GitLab self-managed actions .. 898

Action type ... 901
Configuration parameters ... 901
Input artifacts .. 903
Output artifacts .. 903
Output variables ... 903
Action declaration .. 904
Installing the installation app and creating a connection ... 906
See also .. 906

AWS Device Farm ... 907
Action type ... 907
Configuration parameters ... 908
Input artifacts .. 912
Output artifacts .. 912

API Version 2015-07-09 xvi

AWS CodePipeline User Guide

Action declaration .. 912
See also .. 913

AWS Lambda ... 914
Action type ... 914
Configuration parameters ... 915
Input artifacts .. 915
Output artifacts .. 915
Output variables ... 915
Example action configuration .. 915
Example JSON event ... 917
See also .. 919

Snyk .. 920
Action type ID ... 920
Input artifacts .. 921
Output artifacts .. 921
See also .. 921

AWS Step Functions .. 921
Action type ... 922
Configuration parameters ... 922
Input artifacts .. 923
Output artifacts .. 923
Output variables ... 924
Example action configuration .. 924
Behavior .. 927
See also .. 843

Integration model reference ... 930
How third-party action types work with the integrator .. 930
Concepts ... 931
Supported integration models .. 932
Lambda integration model .. 934

Update your Lambda function to handle the input from CodePipeline 934
Return the results from your Lambda function to CodePipeline .. 939
Use continuation tokens to wait for results from an asynchronous process 940
Provide CodePipeline the permissions to invoke the integrator Lambda function at
runtime ... 941

Job worker integration model .. 941

API Version 2015-07-09 xvii

AWS CodePipeline User Guide

Choose and configure a permissions management strategy for your job worker 942
Image definitions file reference ... 944

imagedefinitions.json file for Amazon ECS standard deployment actions 944
imageDetail.json file for Amazon ECS blue/green deployment actions 947

Variables ... 951
Concepts ... 952

Variables ... 952
Namespaces ... 953

Use cases for variables ... 954
Configuring variables .. 954

Configuring variables at the pipeline level ... 954
Configuring variables at the action level .. 955

Variable resolution ... 958
Rules for variables ... 958
Variables available for pipeline actions .. 959

Actions with defined variable keys ... 959
Actions with user-configured variable keys .. 963

Working with glob patterns in syntax ... 966
Update polling pipelines to the recommended change detection method 968
Update a GitHub version 1 source action to a GitHub version 2 source action 969

Step 1: Replace your version 1 GitHub action ... 970
Step 2: Create a connection to GitHub ... 971
Step 3: Save your GitHub source action ... 972

Quotas .. 973
Appendix A: GitHub version 1 source actions .. 988

Adding a GitHub version 1 source action ... 989
GitHub version 1 source action structure reference ... 989

Action type ... 990
Configuration parameters ... 990
Input artifacts .. 992
Output artifacts .. 992
Output variables ... 993
Action declaration (GitHub example) ... 994
Connecting to GitHub (OAuth) .. 995
See also .. 995

Document history .. 996

API Version 2015-07-09 xviii

AWS CodePipeline User Guide

Earlier updates ... 1016
AWS Glossary ... 1027

API Version 2015-07-09 xix

AWS CodePipeline User Guide

What is AWS CodePipeline?

AWS CodePipeline is a continuous delivery service you can use to model, visualize, and automate
the steps required to release your software. You can quickly model and configure the different
stages of a software release process. CodePipeline automates the steps required to release your
software changes continuously. For information about pricing for CodePipeline, see Pricing.

Topics

• Continuous delivery and continuous integration

• What can I do with CodePipeline?

• A quick look at CodePipeline

• How do I get started with CodePipeline?

• CodePipeline concepts

• DevOps pipeline example

• How pipeline executions work

• Input and output artifacts

• Pipeline types

• What type of pipeline is right for me?

Continuous delivery and continuous integration

CodePipeline is a continuous delivery service that automates the building, testing, and deployment
of your software into production.

Continuous delivery is a software development methodology where the release process is
automated. Every software change is automatically built, tested, and deployed to production.
Before the final push to production, a person, an automated test, or a business rule decides when
the final push should occur. Although every successful software change can be immediately
released to production with continuous delivery, not all changes need to be released right away.

Continuous integration is a software development practice where members of a team use a version
control system and frequently integrate their work to the same location, such as a main branch.
Each change is built and verified to detect integration errors as quickly as possible. Continuous

Continuous delivery and continuous integration API Version 2015-07-09 1

https://aws.amazon.com/codepipeline/pricing/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-integration/

AWS CodePipeline User Guide

integration is focused on automatically building and testing code, as compared to continuous
delivery, which automates the entire software release process up to production.

For more information, see Practicing Continuous Integration and Continuous Delivery on AWS:
Accelerating Software Delivery with DevOps.

You can use the CodePipeline console, the AWS Command Line Interface (AWS CLI), the AWS SDKs,
or any combination of these to create and manage your pipelines.

What can I do with CodePipeline?

You can use CodePipeline to help you automatically build, test, and deploy your applications in the
cloud. Specifically, you can:

• Automate your release processes: CodePipeline fully automates your release process from
end to end, starting from your source repository through build, test, and deployment. You can
prevent changes from moving through a pipeline by including a manual approval action in
any stage except a Source stage. You can release when you want, in the way you want, on the
systems of your choice, across one instance or multiple instances.

• Establish a consistent release process: Define a consistent set of steps for every code change.
CodePipeline runs each stage of your release according to your criteria.

• Speed up delivery while improving quality: You can automate your release process to allow
your developers to test and release code incrementally and speed up the release of new features
to your customers.

• Use your favorite tools: You can incorporate your existing source, build, and deployment tools
into your pipeline. For a full list of AWS services and third-party tools currently supported by
CodePipeline, see Product and service integrations with CodePipeline.

• View progress at a glance: You can review real-time status of your pipelines, check the details of
any alerts, retry failed stages or actions, view details about the source revisions used in the latest
pipeline execution in each stage, and manually rerun any pipeline.

• View pipeline history details: You can view details about executions of a pipeline, including start
and end times, run duration, and execution IDs.

A quick look at CodePipeline

The following diagram shows an example release process using CodePipeline.

What can I do with CodePipeline? API Version 2015-07-09 2

https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d0.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf

AWS CodePipeline User Guide

In this example, when developers commit changes to a source repository, CodePipeline
automatically detects the changes. Those changes are built, and if any tests are configured, those
tests are run. After the tests are complete, the built code is deployed to staging servers for testing.
From the staging server, CodePipeline runs more tests, such as integration or load tests. Upon the
successful completion of those tests, and after a manual approval action that was added to the
pipeline is approved, CodePipeline deploys the tested and approved code to production instances.

CodePipeline can deploy applications to EC2 instances by using CodeDeploy, AWS Elastic Beanstalk,
or AWS OpsWorks Stacks. CodePipeline can also deploy container-based applications to services by
using Amazon ECS. Developers can also use the integration points provided with CodePipeline to
plug in other tools or services, including build services, test providers, or other deployment targets
or systems.

A pipeline can be as simple or as complex as your release process requires.

How do I get started with CodePipeline?

To get started with CodePipeline:

1. Learn how CodePipeline works by reading the CodePipeline concepts section.

2. Prepare to use CodePipeline by following the steps in Getting started with CodePipeline.

3. Experiment with CodePipeline by following the steps in the CodePipeline tutorials tutorials.

4. Use CodePipeline for your new or existing projects by following the steps in Create a pipeline in
CodePipeline.

How do I get started with CodePipeline? API Version 2015-07-09 3

AWS CodePipeline User Guide

CodePipeline concepts

Modeling and configuring your automated release process is easier if you understand the
concepts and terms used in AWS CodePipeline. Here are some concepts to know about as you use
CodePipeline.

For an example of a DevOps pipeline, see DevOps pipeline example.

The following terms are used in CodePipeline:

Topics

• Pipelines

• Stages

• Actions

• Pipeline executions

• Stage executions

• Action executions

• Action types

• Transitions

• Artifacts

• Source revisions

• Triggers

• Variables

Pipelines

A pipeline is a workflow construct that describes how software changes go through a release
process. Each pipeline is made up of a series of stages.

Stages

A stage is a logical unit you can use to isolate an environment and to limit the number of
concurrent changes in that environment. Each stage contains actions that are performed on the
application artifacts. Your source code is an example of an artifact. A stage might be a build stage,

Concepts API Version 2015-07-09 4

https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts.html#concepts-artifacts

AWS CodePipeline User Guide

where the source code is built and tests are run. It can also be a deployment stage, where code is
deployed to runtime environments. Each stage is made up of a series of serial or parallel actions.

Actions

An action is a set of operations performed on application code and configured so that the actions
run in the pipeline at a specified point. This can include things like a source action from a code
change, an action for deploying the application to instances, and so on. For example, a deployment
stage might contain a deployment action that deploys code to a compute service like Amazon EC2
or AWS Lambda.

Valid CodePipeline action types are source, build, test, deploy, approval, and invoke. For a
list of action providers, see Valid action types and providers in CodePipeline .

Actions can run in series or in parallel. For information about serial and parallel actions in a stage,
see the runOrder information in action structure requirements.

Pipeline executions

An execution is a set of changes released by a pipeline. Each pipeline execution is unique and has
its own ID. An execution corresponds to a set of changes, such as a merged commit or a manual
release of the latest commit. Two executions can release the same set of changes at different
times.

While a pipeline can process multiple executions at the same time, a pipeline stage processes
only one execution at a time. To do this, a stage is locked while it processes an execution. Two
pipeline executions can't occupy the same stage at the same time. The execution waiting to enter
the occupied stage is referred to an inbound execution. An inbound execution can still fail, be
superseded, or be manually stopped. For more information about how inbound executions work,
see How Inbound Executions Work.

Pipeline executions traverse pipeline stages in order. Valid statuses for pipelines are InProgress,
Stopping, Stopped, Succeeded, Superseded, and Failed.

For more information, see PipelineExecution.

Stopped executions

The pipeline execution can be stopped manually so that the in-progress pipeline execution does
not continue through the pipeline. If stopped manually, a pipeline execution shows a Stopping

Actions API Version 2015-07-09 5

https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html#action-requirements
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PipelineExecution.html

AWS CodePipeline User Guide

status until it is completely stopped. Then it shows a Stopped status. A Stopped pipeline
execution can be retried.

There are two ways to stop a pipeline execution:

• Stop and wait

• Stop and abandon

For information about use cases for stopping an execution and sequence details for these options,
see How pipeline executions are stopped.

Failed executions

If an execution fails, it stops and does not completely traverse the pipeline. Its status is FAILED
status and the stage is unlocked. A more recent execution can catch up and enter the unlocked
stage and lock it. You can retry a failed execution unless the failed execution has been superseded
or is not retryable.

Execution modes

To deliver the latest set of changes through a pipeline, newer executions pass and replace less
recent executions already running through the pipeline. When this occurs, the older execution is
superseded by the newer execution. An execution can be superseded by a more recent execution at
a certain point, which is the point between stages. SUPERSEDED is the default execution mode.

In SUPERSEDED mode, if an execution is waiting to enter a locked stage, a more recent execution
might catch up and supersede it. The newer execution now waits for the stage to unlock, and the
superseded execution stops with a SUPERSEDED status. When a pipeline execution is superseded,
the execution is stopped and does not completely traverse the pipeline. You can no longer retry the
superseded execution after it has been replaced at this stage. Other available execution modes are
PARALLEL or QUEUED mode.

For more information about execution modes and locked stages, see How executions are processed
in SUPERSEDED mode.

Stage executions

A stage execution is the process of completing all of the actions within a stage. For information
about how a stage execution works and information about locked stages, see How executions are
processed in SUPERSEDED mode.

Stage executions API Version 2015-07-09 6

AWS CodePipeline User Guide

Valid statuses for stages are InProgress, Stopping, Stopped, Succeeded, and Failed.
You can retry a failed stage unless the failed stage is not retryable. For more information, see
StageExecution.

Action executions

An action execution is the process of completing a configured action that operates on designated
artifacts. These can be input artifacts, output artifacts, or both. For example, a build action might
run build commands on an input artifact, such as compiling application source code. Action
execution details include an action execution ID, the related pipeline execution source trigger, and
the input and output artifacts for the action.

Valid statuses for actions are InProgress, Abandoned, Succeeded, or Failed. For more
information, see ActionExecution.

Action types

Action types are preconfigured actions that are available for selection in CodePipeline. The action
type is defined by its owner, provider, version, and category. The action type provides customized
parameters that are used to complete the action tasks in a pipeline.

For information about the AWS services and third-party products and services you can integrate
into your pipeline based on action type, see Integrations with CodePipeline action types.

For information about the integration models supported for action types in CodePipeline, see
Integration model reference.

For information about how third-party providers can set up and manage action types in
CodePipeline, see Working with action types.

Transitions

A transition is the point where a pipeline execution moves to the next stage in the pipeline. You can
disable a stage's inbound transition to prevent executions from entering that stage, and then you
can enable the transition to allow executions to continue. When more than one execution arrives
at a disabled transition, only the latest execution continues to the next stage when the transition
is enabled. This means that newer executions continue to supersede waiting executions while the
transition is disabled, and then after the transition is enabled, the execution that continues is the
superseding execution.

Action executions API Version 2015-07-09 7

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_StageExecution.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts.html#concepts-artifacts
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ActionExecution.html

AWS CodePipeline User Guide

Artifacts

Artifacts refers to the collection of data, such as application source code, built applications,
dependencies, definitions files, templates, and so on, that is worked on by pipeline actions.
Artifacts are produced by some actions and consumed by others. In a pipeline, artifacts can be the
set of files worked on by an action (input artifacts) or the updated output of a completed action
(output artifacts).

Actions pass output to another action for further processing using the pipeline artifact bucket.
CodePipeline copies artifacts to the artifact store, where the action picks them up. For more
information about artifacts, see Input and output artifacts.

Source revisions

When you make a source code change, a new version is created. A source revision is the version of
a source change that triggers a pipeline execution. An execution processes source revisions. For
GitHub and CodeCommit repositories, this is the commit. For S3 buckets or actions, this is the
object version.

Artifacts API Version 2015-07-09 8

AWS CodePipeline User Guide

You can start a pipeline execution with a source revision, such as a commit, that you specify. The
execution will process the specified revision and override what would have been the revision used
for the execution. For more information, see Start a pipeline with a source revision override.

Triggers

Triggers are events that start your pipeline. Some triggers, such as starting a pipeline manually,
are available for all source action providers in a pipeline. Certain triggers depend on the source
provider for a pipeline. For example, CloudWatch events must be configured with event resources
from Amazon CloudWatch that have the pipeline ARN added as a target in the event rule. Amazon
CloudWatch Events is the recommended triggers for automatic change detection for pipelines
with a CodeCommit or S3 source action. Webhooks are a type of trigger configured for third-
party repository events. For example, WebhookV2 is a trigger type that allows Git tags to be
used to start pipelines with third-party source providers such as GitHub.com, GitHub Enterprise
Server, GitLab.com, GitLab self-managed, or Bitbucket Cloud. In the pipeline configuration, you
can specify a filter for triggers, such as push or pull request. You can filter code push events on Git
tags, branches, or file paths. You can filter pull request events on event (opened, updated, closed),
branches, or file paths.

For more information about triggers, see Start a pipeline in CodePipeline. For a tutorial that walks
you through using Git tags as triggers for your pipeline, see Tutorial: Use Git tags to start your
pipeline.

Variables

A variable is a value that can be used to dynamically configure actions in your pipeline. Variables
can be either declared on the pipeline level, or emitted by actions in the pipeline. Variable values
are resolved at the time of pipeline execution and can be viewed in the execution history. For
variables declared at the pipeline level, you can either define default values in the pipeline
configuration, or override them for a given execution. For variables emitted by an action, the value
is available after an action succesfully completes. For more information, see Variables.

DevOps pipeline example

As an example of a DevOps pipeline, a two-stage pipeline might have a source stage called Source
and a second stage called Prod. In this example, the pipeline is updating the application with the
latest changes and continuously deploying the latest result. Before it deploys the latest application,
the pipeline builds and tests the web application. In this example, a group of developers have set

Triggers API Version 2015-07-09 9

AWS CodePipeline User Guide

up an infrastructure template and the source code for a web application in a GitHub repository
called MyRepository.

DevOps pipeline example API Version 2015-07-09 10

AWS CodePipeline User Guide

For example, a developer pushes a fix to the web application's index page, and the following
occurs:

1. The application source code is maintained in a repository configured as a GitHub source action in
the pipeline. When developers push commits to the repository, CodePipeline detects the pushed
change, and a pipeline execution starts from the Source Stage.

2. The GitHub source action completes successfully (that is, the latest changes have been
downloaded and stored to the artifact bucket unique to that execution). The output artifacts
produced by the GitHub source action, which are the application files from the repository, are
then used as the input artifacts to be worked on by the actions in the next stage.

3. The pipeline execution transitions from the Source Stage to the Prod Stage. The first action
in the Prod Stage runs a build project created in CodeBuild and configured as a build action in
the pipeline. The build task pulls a build environment image and builds the web application in a
virtual container.

4. The next action in the Prod Stage is a unit test project created in CodeBuild and configured as a
test action in the pipeline.

5. The unit tested code is next worked on by a deploy action in the Prod Stage that deploys the
application to a production environment. After the deploy action completes successfully, the
final action in the stage is an integration testing project created in CodeBuild and configured as
a test action in the pipeline. The test action calls to shell scripts that install and run a test tool,
such as a link checker, on the web application. After successful completion, the output is a built
web application and a set of test results.

Developers can add actions to the pipeline that deploy or further test the application after it is
built and tested for each change.

For more information, see How pipeline executions work.

How pipeline executions work

This section provides an overview of the way CodePipeline processes a set of changes.
CodePipeline tracks each pipeline execution that starts when a pipeline is started manually or a
change is made to the source code. CodePipeline uses the following execution modes to handle the
way each execution progresses through the pipeline.

• SUPERSEDED mode: A more recent execution can overtake an older one. This is the default.

How pipeline executions work API Version 2015-07-09 11

AWS CodePipeline User Guide

• QUEUED mode: Executions are processed one by one in the order that they are queued. This
requires pipeline type V2.

• PARALLEL mode: In PARALLEL mode, executions run simultaneously and independently of
one another. Executions don't wait for other runs to complete before starting or finishing. This
requires pipeline type V2.

How pipeline executions are started

You can start an execution when you change your source code or manually start the pipeline. You
can also trigger an execution through an Amazon CloudWatch Events rule that you schedule. For
example, when a source code change is pushed to a repository configured as the pipeline's source
action, the pipeline detects the change and starts an execution.

Note

If a pipeline contains multiple source actions, all of them run again, even if a change is
detected for one source action only.

How pipeline executions are stopped

To use the console to stop a pipeline execution, you can choose Stop execution on the pipeline
visualization page, on the execution history page, or on the detailed history page. To use the
CLI to stop a pipeline execution, you use the stop-pipeline-execution command. For more
information, see Stop a pipeline execution in CodePipeline.

There are two ways to stop a pipeline execution:

• Stop and wait: All in-progress action executions are allowed to complete, and subsequent
actions are not started. The pipeline execution does not continue to subsequent stages. You
cannot use this option on an execution that is already in a Stopping state.

• Stop and abandon: All in-progress action executions are abandoned and do not complete, and
subsequent actions are not started. The pipeline execution does not continue to subsequent
stages. You can use this option on an execution that is already in a Stopping state.

How pipeline executions are started API Version 2015-07-09 12

AWS CodePipeline User Guide

Note

This option can lead to failed tasks or out of sequence tasks.

Each option results in a different sequence of pipeline and action execution phases, as follows.

Option 1: Stop and wait

When you choose to stop and wait, the selected execution continues until in-progress actions are
completed. For example, the following pipeline execution was stopped while the build action was
in progress.

1. In the pipeline view, the success message banner is displayed, and the build action continues
until it is completed. The pipeline execution status is Stopping.

In the history view, the status for in-progress actions, such as the build action, is In progress
until the build action is completed. While actions are in progress, the pipeline execution status is
Stopping.

2. The execution stops when the stopping process is complete. If the build action is completed
successfully, its status is Succeeded, and the pipeline execution shows a status of Stopped.
Subsequent actions do not start. The Retry button is enabled.

In the history view, the execution status is Stopped after the in-progress action is completed.

How pipeline executions are stopped API Version 2015-07-09 13

AWS CodePipeline User Guide

Option 2: Stop and abandon

When you choose to stop and abandon, the selected execution does not wait for in-progress
actions to complete. The actions are abandoned. For example, the following pipeline execution was
stopped and abandoned while the build action was in progress.

1. In the pipeline view, the success banner message is displayed, the build action shows a status of
In progress, and the pipeline execution shows a status of Stopping.

2. After the pipeline execution stops, the build action shows a status of Abandoned, and the
pipeline execution shows a status of Stopped. Subsequent actions do not start. The Retry
button is enabled.

3. In the history view, the execution status is Stopped.

How pipeline executions are stopped API Version 2015-07-09 14

AWS CodePipeline User Guide

Use cases for stopping a pipeline execution

We recommend that you use the stop and wait option to stop a pipeline execution. This option is
safer because it avoids possible failed or out-of-sequence tasks in your pipeline. When an action
is abandoned in CodePipeline, the action provider continues any tasks related to the action. In the
case of an AWS CloudFormation action, the deployment action in the pipeline is abandoned, but
the stack update might continue and result in a failed update.

As an example of abandoned actions that can result in out-of-sequence tasks, if you are deploying
a large file (1GB) through an S3 deployment action, and you choose to stop and abandon the
action while the deployment is already in progress, the action is abandoned in CodePipeline, but
continues in Amazon S3. Amazon S3 does not encounter any instruction to cancel the upload.
Next, if you start a new pipeline execution with a very small file, there are now two deployments
in progress. Because the file size of the new execution is small, the new deployment completes
while the old deployment is still uploading. When the old deployment completes, the new file is
overwritten by the old file.

You might want to use the stop and abandon option in the case where you have a custom action.
For example, you can abandon a custom action with work that does not need to finish before
starting a new execution for a bug fix.

How pipeline executions are stopped API Version 2015-07-09 15

AWS CodePipeline User Guide

How executions are processed in SUPERSEDED mode

The default mode for processing executions is SUPERSEDED mode. An execution consists of a set
of changes picked up and processed by the execution. Pipelines can process multiple executions at
the same time. Each execution is run through the pipeline separately. The pipeline processes each
execution in order and might supersede an earlier execution with a later one. The following rules
are used to process executions in a pipeline for SUPERSEDED mode.

Rule 1: Stages are locked when an execution is being processed

Because each stage can process only one execution at a time, the stage is locked while in progress.
When the execution completes a stage, it transitions to the next stage in the pipeline.

Before: Stage 1 is locked as Execution 1 enters. After: Stage 2 is locked as Execution 1 enters.

Rule 2: Subsequent executions wait for the stage to be unlocked

While a stage is locked, waiting executions are held in front of the locked stage. All actions
configured for a stage must be completed successfully before the stage is considered complete.
A failure releases the lock on the stage. When an execution is stopped, the execution does not
continue in a stage and the stage is unlocked.

Note

Before you stop an execution, we recommend that you disable the transition in front of the
stage. This way, when the stage is unlocked due to the stopped execution, the stage does
not accept a subsequent pipeline execution.

How executions are processed in SUPERSEDED mode API Version 2015-07-09 16

AWS CodePipeline User Guide

Before: Stage 2 is locked as Execution 1 enters. After:
Execution 2 exits Stage 1 and waits between stages.

Rule 3: Waiting executions are superseded by more recent executions

Executions are only superseded in between stages. A locked stage holds one execution at the front
of the stage awaiting the stage to complete. A more recent execution overtakes a waiting execution
and continues to the next stage as soon as the stage is unlocked. The superseded execution does
not continue. In this example, Execution 2 has been superseded by Execution 3 while awaiting the
locked stage. Execution 3 enters the stage next.

Before: execution 2 waits between stages while execution 3 enters stage 1.
after: execution 3 exits stage 1. execution 2 is superseded by execution 3.

How executions are processed in QUEUED mode

For pipelines in QUEUED mode, stages are locked when an execution is being processed; however,
waiting executions do not overtake executions that have already started.

Waiting executions gather at the entry points to locked stages in the order that they reach the
stage, forming a queue of waiting executions. With QUEUED mode, you can have multiple queues
in the same pipeline. When a queued execution enters a stage, the stage is locked and no other

How executions are processed in QUEUED mode API Version 2015-07-09 17

AWS CodePipeline User Guide

executions can enter. This behavior remains the same as SUPERSEDED mode. When the execution
finishes the stage, the stage becomes unlocked and ready for the next execution.

The following diagram shows how stages in a QUEUED mode pipeline process executions. For
example, while the Source stage processes execution 5, the executions for 6 and 7 form Queue #1
and wait at the stage entry point. The next execution in the queue will be processed after the stage
unlocks.

For more information about quotas with execution modes, see Quotas in AWS CodePipeline.

How executions are processed in QUEUED mode API Version 2015-07-09 18

AWS CodePipeline User Guide

How executions are processed in PARALLEL mode

For pipelines in PARALLEL mode, executions are independent of one another and don’t wait for
other executions to complete before starting. There are no queues. To view parallel executions in
the pipeline, use the execution history view.

Use PARALLEL mode in development environments where each feature has its own feature branch
and deploys to targets that are not shared by other users.

For more information about quotas with execution modes, see Quotas in AWS CodePipeline.

Managing Pipeline Flow

The flow of pipeline executions can be controlled by:

• A transition, which controls the flow of executions into the stage. Transitions can be enabled
or disabled. When a transition is disabled, pipeline executions cannot enter the stage. The
pipeline execution waiting to enter a stage where the transition is disabled is called the inbound
execution. After you enable the transition, an inbound execution moves into the stage and locks
it.

Similar to executions awaiting a locked stage, when a transition is disabled, the execution waiting
to enter the stage can still be superseded by a new execution. When a disabled transition is re-
enabled, the latest execution, including any that superseded older executions while the transition
was disabled, enters the stage.

• An approval action, which prevents a pipeline from transitioning to the next action until
permission is granted (for example, through manual approval from an authorized identity). You
might use an approval action when you want to control the time at which a pipeline transitions
to a final Production stage, for example.

Note

A stage with an approval action is locked until the approval action is approved or rejected
or has timed out. A timed-out approval action is processed in the same way as a failed
action.

• A failure, when an action in a stage does not complete successfully. The revision does not
transition to the next action in the stage or the next stage in the pipeline. The following can
occur:

How executions are processed in PARALLEL mode API Version 2015-07-09 19

AWS CodePipeline User Guide

• You manually retry the stage that contains the failed actions. This resumes the execution (it
retries failed actions and, if they succeed, continues in the stage/pipeline).

• Another execution enters the failed stage and supersedes the failed execution. At this point,
the failed execution cannot be retried.

Recommended pipeline structure

When deciding how a code change should flow through your pipeline, it is best to group related
actions within a stage so that, when the stage locks, the actions all process the same execution.
You might create a stage for each application environment, AWS Region, or Availability Zone,
and so on. A pipeline with too many stages (that is, too granular) can allow too many concurrent
changes, while a pipeline with many actions in a large stage (too coarse) can take too long to
release a change.

As an example, a test action after a deployment action in the same stage is guaranteed to test the
same change that was deployed. In this example, a change is deployed to a Test environment and
then tested, and then the latest change from the test environment is deployed to a Production
environment. In the recommended example, the Test environment and the Prod environment are
separate stages.

Managing Pipeline Flow API Version 2015-07-09 20

AWS CodePipeline User Guide

Managing Pipeline Flow API Version 2015-07-09 21

AWS CodePipeline User Guide

Left: related test, deploy, and approval actions grouped together
(recommended). Right: related actions in separate stages (not recommended).

How Inbound Executions Work

An inbound execution is an execution that is waiting for an unavailable stage, transition, or action
to become available before it moves forward. The next stage, transition, or action might be
unavailable because:

• Another execution has already entered the next stage and locked it.

• The transition to enter the next stage is disabled.

You might disable a transition to hold an inbound execution if you want to control whether a
current execution has time to complete in subsequent stages, or if you want to stop all actions at
a certain point. To determine if you have an inbound execution, you can view the pipeline in the
console or view the output from the get-pipeline-state command.

Inbound executions operate with the following considerations:

• As soon as the action, transition, or locked stage becomes available, the in-progress inbound
execution enters the stage and continues through the pipeline.

• While the inbound execution is waiting, it can be manually stopped. An inbound execution can
have an InProgress, Stopped, or Failed state.

• When an inbound execution has been stopped or has failed, it cannot be retried because there
are no failed actions to retry. When an inbound execution has been stopped, and the transition is
enabled, the stopped inbound execution does not continue into the stage.

You can view or stop an inbound execution.

Input and output artifacts

CodePipeline integrates with development tools to check for code changes and then build and
deploy through all of the stages of the continuous delivery process. Artifacts are the files that
are worked on by actions in the pipeline, such as files or folders with application code, index
page files, scripts, and so on. For example, the Amazon S3 source action artifact is a file name
(or file path) where the application source code files are provided for the pipeline source action,
and the files are generally provided as a ZIP file, such as the following example artifact name:

Input and output artifacts API Version 2015-07-09 22

AWS CodePipeline User Guide

SampleApp_Windows.zip. The output artifact for the source action, the application source code
files, are the output artifact from the source action and also are the input artifact for the next
action, such as a build action. As another example, a build action might run build commands that
compile application source code for an input artifact, which is the application source code files
from the source action. See the action configuration reference page for a specific action for details
about artifact parameters, such as AWS CodeBuild for the CodeBuild action.

Actions use input and output artifacts that are stored in the Amazon S3 artifact bucket you
chose when you created the pipeline. CodePipeline zips and transfers the files for input or output
artifacts as appropriate for the action type in the stage.

Note

The artifact bucket is not the same bucket as the bucket used as the source file location for
a pipeline where the chosen source action is S3.

For example:

1. CodePipeline triggers your pipeline to run when there is a commit to the source repository,
providing the output artifact (any files to be built) from the Source stage.

2. The output artifact (any files to be built) from the previous step is ingested as an input artifact
to the Build stage. An output artifact (the built application) from the Build stage can be an
updated application or an updated Docker image built to a container.

3. The output artifact from the previous step (the built application) is ingested as an input artifact
to the Deploy stage, such as staging or production environments in the AWS Cloud. You can
deploy applications to a deployment fleet, or you can deploy container-based applications to
tasks running in ECS clusters.

When you create or edit an action, you designate the input and output artifact or artifacts for the
action. For example, for a two-stage pipeline with a Source and Deploy stage, in Edit Action, you
choose the artifact name of the source action for the input artifact for the deploy action.

• When you use the console to create your first pipeline, CodePipeline creates an Amazon S3
bucket in the same AWS account and AWS Region to store items for all pipelines. Every time you
use the console to create another pipeline in that Region, CodePipeline creates a folder for that
pipeline in the bucket. It uses that folder to store artifacts for your pipeline as the automated

Input and output artifacts API Version 2015-07-09 23

AWS CodePipeline User Guide

release process runs. This bucket is named codepipeline-region-12345EXAMPLE, where region
is the AWS Region in which you created the pipeline, and 12345EXAMPLE is a 12-digit random
number that ensures the bucket name is unique.

Note

If you already have a bucket starting with codepipeline-region- in the Region where you
are creating the pipeline, CodePipeline uses that as the default bucket. It also follows
lexicographical order; for example, codepipeline-region-abcexample is chosen before
codepipeline-region-defexample.

CodePipeline truncates artifact names, which can cause some bucket names to appear similar.
Even though the artifact name appears to be truncated, CodePipeline maps to the artifact
bucket in a way that is not affected by artifacts with truncated names. The pipeline can function
normally. This is not an issue with the folder or artifacts. There is a 100-character limit to
pipeline names. Although the artifact folder name might appear to be shortened, it is still unique
for your pipeline.

When you create or edit a pipeline, you must have an artifact bucket in the pipeline AWS account
and AWS Region, and you must have one artifact bucket per Region where you plan to execute
an action. If you use the console to create a pipeline or cross-Region actions, default artifact
buckets are configured by CodePipeline in the Regions where you have actions.

If you use the AWS CLI to create a pipeline, you can store the artifacts for that pipeline in any
Amazon S3 bucket as long as that bucket is in the same AWS account and AWS Region as the
pipeline. You might do this if you are concerned about exceeding the limits of Amazon S3
buckets allowed for your account. If you use the AWS CLI to create or edit a pipeline, and you add
a cross-Region action (an action with an AWS provider in a Region different from your pipeline),
you must provide an artifact bucket for each additional Region where you plan to execute an
action.

• Every action has a type. Depending on the type, the action might have one or both of the
following:

• An input artifact, which is the artifact it consumes or works on over the course of the action
run.

• An output artifact, which is the output of the action.

Input and output artifacts API Version 2015-07-09 24

AWS CodePipeline User Guide

Every output artifact in the pipeline must have a unique name. Every input artifact for an
action must match the output artifact of an action earlier in the pipeline, whether that action is
immediately before the action in a stage or runs in a stage several stages earlier.

An artifact can be worked on by more than one action.

Pipeline types

CodePipeline provides the following pipeline types, which differ in characteristics and price, so that
you can tailor your pipeline features and cost to the needs of your applications.

• V1 type pipelines have a JSON structure that contains standard pipeline, stage, and action-level
parameters.

• V2 type pipelines have the same structure as a V1 type, along with additional parameters for
release safety and trigger configuration.

For information about pricing for CodePipeline, see Pricing.

See the CodePipeline pipeline structure reference page for details about parameters in each
pipeline type. For information about which type of pipeline to choose, see What type of pipeline is
right for me?.

What type of pipeline is right for me?

The pipeline type is determined by the set of characteristics and features supported by each
pipeline version.

The following is a summary of the use cases and characteristics available for each type of pipeline.

 V1 type V2 type

Characteristics

Use cases • Standard deployments • Deployments with
configuration from passing
pipeline-level variables at
runtime

Pipeline types API Version 2015-07-09 25

https://aws.amazon.com/codepipeline/pricing/

AWS CodePipeline User Guide

 V1 type V2 type

Characteristics

• Deployments where
pipelines are configured to
start on Git tags

Action-level variables Supported Supported

Pipeline-level variables Not supported Supported

Source revision overrides Not supported Supported

Triggers and filtering Git tags,
pull requests, branches, or file
paths

Not supported Supported

PARALLEL and QUEUED
execution modes

Not supported Supported

For information about pricing for CodePipeline, see Pricing.

What type of pipeline is right for me? API Version 2015-07-09 26

https://aws.amazon.com/codepipeline/pricing/

AWS CodePipeline User Guide

Getting started with CodePipeline

If you are new to CodePipeline, you can follow the tutorials in this guide after following the steps
in this chapter to get set up.

The CodePipeline console includes helpful information in a collapsible panel
that you can open from the information icon or any Info link on the page.

().
You can close this panel at any time.

The CodePipeline console also provides a way to quickly search for your resources, such as
repositories, build projects, deployment applications, and pipelines. Choose Go to resource or press
the / key, and then type the name of the resource. Any matches appear in the list. Searches are
case insensitive. You only see resources that you have permissions to view. For more information,
see Viewing resources in the console.

Before you can use AWS CodePipeline for the first time, you must create your AWS account and
create your first administrative user.

Topics

• Step 1: Create an AWS account and administrative user

• Step 2: Apply a managed policy for administrative access to CodePipeline

• Step 3: Install the AWS CLI

• Step 4: Open the console for CodePipeline

• Next steps

Step 1: Create an AWS account and administrative user

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Step 1: Create an AWS account and administrative user API Version 2015-07-09 27

https://portal.aws.amazon.com/billing/signup

AWS CodePipeline User Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

Create an administrative user API Version 2015-07-09 28

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

AWS CodePipeline User Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 2: Apply a managed policy for administrative access to
CodePipeline

You must grant permissions to interact with CodePipeline. The quickest way to do this is to apply
the AWSCodePipeline_FullAccess managed policy to the administrative user.

Note

The AWSCodePipeline_FullAccess policy includes permissions that allow the console
user to pass an IAM role to CodePipeline or other AWS services. This allows the service to
assume the role and perform actions on your behalf. When you attach the policy to a user,
role, or group, the iam:PassRole permissions are applied. Make sure the policy is only
applied to trusted users. When users with these permissions use the console to create or
edit a pipeline, the following choices are available:

• Create a CodePipeline service role or choose an existing one and pass the role to
CodePipeline

• Might choose to create a CloudWatch Events rule for change detection and pass the
CloudWatch Events service role to CloudWatch Events

For more information, see Granting a user permissions to pass a role to an AWS service.

Step 2: Apply a managed policy for administrative access to CodePipeline API Version 2015-07-09 29

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS CodePipeline User Guide

Note

The AWSCodePipeline_FullAccess policy provides access to all CodePipeline actions
and resources that the IAM user has access to, as well as all possible actions when creating
stages in a pipeline, such as creating stages that include CodeDeploy, Elastic Beanstalk, or
Amazon S3. As a best practice, you should grant individuals only the permissions they need
to perform their duties. For more information about how to restrict IAM users to a limited
set of CodePipeline actions and resources, see Remove permissions from the CodePipeline
service role.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Install the AWS CLI

To call CodePipeline commands from the AWS CLI on a local development machine, you must
install the AWS CLI. This step is optional if you intend to get started using only the steps in this
guide for the CodePipeline console.

Step 3: Install the AWS CLI API Version 2015-07-09 30

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS CodePipeline User Guide

To install and configure the AWS CLI

1. On your local machine, download and install the AWS CLI. This will enable you to interact with
CodePipeline from the command line. For more information, see Getting Set Up with the AWS
Command Line Interface.

Note

CodePipeline works only with AWS CLI versions 1.7.38 and later. To determine
which version of the AWS CLI that you may have installed, run the command aws --
version. To upgrade an older version of the AWS CLI to the latest version, follow the
instructions in Uninstalling the AWS CLI, and then follow the instructions in Installing
the AWS Command Line Interface.

2. Configure the AWS CLI with the configure command, as follows:

aws configure

When prompted, specify the AWS access key and AWS secret access key of the IAM user that
you will use with CodePipeline. When prompted for the default region name, specify the
region where you will create the pipeline, such as us-east-2. When prompted for the default
output format, specify json. For example:

AWS Access Key ID [None]: Type your target AWS access key ID here, and then press
 Enter
AWS Secret Access Key [None]: Type your target AWS secret access key here, and then
 press Enter
Default region name [None]: Type us-east-2 here, and then press Enter
Default output format [None]: Type json here, and then press Enter

Note

For more information about IAM, access keys, and secret keys, see Managing Access
Keys for IAM Users and How Do I Get Credentials?.
For more information about the Regions and endpoints available for CodePipeline, see
AWS CodePipeline endpoints and quotas.

Step 3: Install the AWS CLI API Version 2015-07-09 31

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-uninstall.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html#IAM_SecurityCredentials
https://docs.aws.amazon.com/general/latest/gr/codepipeline.html

AWS CodePipeline User Guide

Step 4: Open the console for CodePipeline

• Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

Next steps

You have completed the prerequisites. You can begin using CodePipeline. To start working with
CodePipeline, see the CodePipeline tutorials.

Step 4: Open the console for CodePipeline API Version 2015-07-09 32

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Product and service integrations with CodePipeline

By default, AWS CodePipeline is integrated with a number of AWS services and partner products
and services. Use the information in the following sections to help you configure CodePipeline to
integrate with the products and services you use.

The following related resources can help you as you work with this service.

Topics

• Integrations with CodePipeline action types

• General integrations with CodePipeline

• Examples from the community

Integrations with CodePipeline action types

The integrations information in this topic is organized by CodePipeline action type.

Topics

• Source action integrations

• Build action integrations

• Test action integrations

• Deploy action integrations

• Approval action integration with Amazon Simple Notification Service

• Invoke action integrations

Source action integrations

The following information is organized by CodePipeline action type and can help you configure
CodePipeline to integrate with the following source action providers.

Topics

• Amazon ECR source actions

• Amazon S3 source actions

Integrations with CodePipeline action types API Version 2015-07-09 33

AWS CodePipeline User Guide

• Connections to Bitbucket Cloud, GitHub (version 2), GitHub Enterprise Server, GitLab.com, and
GitLab self-managed

• CodeCommit source actions

• GitHub (version 1) source actions

Amazon ECR source actions

Amazon ECR is an AWS Docker image repository service. You use Docker push and pull commands
to upload Docker images to your repository. An Amazon ECR repository URI and image are used in
Amazon ECS task definitions to reference source image information.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet, see Amazon ECR

• Create a pipeline in CodePipeline

• Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment

Amazon S3 source actions

Amazon S3 is storage for the internet. You can use Amazon S3 to store and retrieve any amount of
data at any time, from anywhere on the web. You can configure CodePipeline to use a versioned
Amazon S3 bucket as the source action for your code.

Note

Amazon S3 can also be included in a pipeline as a deploy action.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet, see Amazon S3 source
action

• Step 1: Create an S3 bucket for your application

• Create a pipeline (CLI)

• CodePipeline uses Amazon EventBridge (previously Amazon CloudWatch Events) to detect
changes in your Amazon S3 source bucket. See General integrations with CodePipeline.

Source action integrations API Version 2015-07-09 34

https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/

AWS CodePipeline User Guide

Connections to Bitbucket Cloud, GitHub (version 2), GitHub Enterprise Server,
GitLab.com, and GitLab self-managed

Connections (CodeStarSourceConnection actions) are used to access your third-party Bitbucket
Cloud, GitHub, GitHub Enterprise Server, GitLab.com, or GitLab self-managed repository.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

Bitbucket Cloud You can configure CodePipeline to use a Bitbucket Cloud repository as the
source for your code. You must have previously created a Bitbucket account
and at least one Bitbucket Cloud repository. You can add a source action for
your Bitbucket Cloud repository by either creating a pipeline or editing an
existing one.

Note

You can create connections to a Bitbucket Cloud repository. Installed
Bitbucket provider types, such as Bitbucket Server, are not supported
.

You can set up resources called connections to allow your pipelines to access
third-party code repositories. When you create a connection, you install the
AWS CodeStar app with your third-party code repository, and then associate
it with your connection.

Source action integrations API Version 2015-07-09 35

AWS CodePipeline User Guide

For Bitbucket Cloud, use the Bitbucket option in the console or the
CodestarSourceConnection action in the CLI. See Bitbucket Cloud
connections.

You can use the Full clone option for this action to reference the repositor
y Git metadata so that downstream actions can perform Git commands
directly. This option can only be used by CodeBuild downstream actions.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet,
see CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

• To view a Getting Started tutorial that creates a pipeline with a Bitbucket
Cloud source, see Getting started with connections.

GitHub
or GitHub
Enterprise
Cloud

You can configure CodePipeline to use a GitHub repository as the source
for your code. You must have previously created a GitHub account and at
least one GitHub repository. You can add a source action for your GitHub
repository by either creating a pipeline or editing an existing one.

You can set up resources called connections to allow your pipelines to access
third-party code repositories. When you create a connection, you install the
AWS CodeStar app with your third-party code repository, and then associate
it with your connection.

Use the GitHub (Version 2) provider option in the console or the
CodestarSourceConnection action in the CLI. See GitHub connectio
ns.

You can use the Full clone option for this action to reference the repositor
y Git metadata so that downstream actions can perform Git commands
directly. This option can only be used by CodeBuild downstream actions.

Learn more:

Source action integrations API Version 2015-07-09 36

https://docs.aws.amazon.com/dtconsole/latest/userguide/getting-started-connections.html

AWS CodePipeline User Guide

• To view configuration parameters and an example JSON/YAML snippet,
see CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions

• For a tutorial that shows you how to connect to a GitHub repository
and use the Full clone option, see Tutorial: Use full clone with a GitHub
pipeline source.

• The current GitHub action is the version 2 source action for GitHub. The
version 1 GitHub action is managed with OAuth token authentication.
While we don’t recommend using the GitHub version 1 action, existing
pipelines with the GitHub version 1 action will continue to work without
any impact. You can now use a CodeStarSourceConnection for Bitbucket
Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and GitLab self-
managed actions source action in your pipeline that manages your GitHub
source action with GitHub apps. If you have a pipeline that uses the
version 1 GitHub action, see the steps to update it to use a version 2
GitHub action in Update a GitHub version 1 source action to a GitHub
version 2 source action.

GitHub
Enterprise
Server

You can configure CodePipeline to use a GitHub Enterprise Server repositor
y as the source for your code. You must have previously created a GitHub
account and at least one GitHub repository. You can add a source action for
your GitHub Enterprise Server repository by either creating a pipeline or
editing an existing one.

You can set up resources called connections to allow your pipelines to access
third-party code repositories. When you create a connection, you install the
AWS CodeStar app with your third-party code repository, and then associate
it with your connection.

Use the GitHub Enterprise Server provider option in the console or the
CodestarSourceConnection action in the CLI. See GitHub Enterprise
Server connections.

Source action integrations API Version 2015-07-09 37

AWS CodePipeline User Guide

Important

AWS CodeStar Connections does not support GitHub Enterpris
e Server version 2.22.0 due to a known issue in the release. To
connect, upgrade to version 2.22.1 or the latest available version.

You can use the Full clone option for this action to reference the repositor
y Git metadata so that downstream actions can perform Git commands
directly. This option can only be used by CodeBuild downstream actions.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet,
see CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions

• For a tutorial that shows you how to connect to a GitHub repository
and use the Full clone option, see Tutorial: Use full clone with a GitHub
pipeline source.

GitLab.com You can configure CodePipeline to use a GitLab.com repository as the source
for your code. You must have previously created a GitLab.com account and
at least one GitLab.com repository. You can add a source action for your
GitLab.com repository by either creating a pipeline or editing an existing
one.

Use the GitLab provider option in the console or the CodestarS
ourceConnection action with the GitLab provider in the CLI. See
GitLab.com connections.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet,
see CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions

Source action integrations API Version 2015-07-09 38

AWS CodePipeline User Guide

GitLab self-
managed

You can configure CodePipeline to use a GitLab self-managed installation as
the source for your code. You must have previously created a GitLab account
and have a subscription for self-managed GitLab (Enterprise Edition or
Community Edition). You can add a source action for your GitLab self-mana
ged repository by either creating a pipeline or editing an existing one.

You can set up resources called connections to allow your pipelines to access
third-party code repositories. When you create a connection, you install the
AWS CodeStar app with your third-party code repository, and then associate
it with your connection.

Use the GitLab self-managed provider option in the console or the
CodestarSourceConnection action in the CLI. See Connections for
GitLab self-managed.

You can use the Full clone option for this action to reference the repositor
y Git metadata so that downstream actions can perform Git commands
directly. This option can only be used by CodeBuild downstream actions.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet,
see CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions

• For the steps to create a connection with this provider type, see Connectio
ns for GitLab self-managed.

CodeCommit source actions

CodeCommit is a version control service that you can use to privately store and manage assets
(such as documents, source code, and binary files) in the cloud. You can configure CodePipeline
to use a branch in a CodeCommit repository as the source for your code. Create the repository
and associate it with a working directory on your local machine. Then you can create a pipeline
that uses the branch as part of a source action in a stage. You can connect to the CodeCommit
repository by either creating a pipeline or editing an existing one.

Source action integrations API Version 2015-07-09 39

https://docs.aws.amazon.com/codecommit/latest/userguide/

AWS CodePipeline User Guide

You can use the Full clone option for this action to reference the repository Git metadata so
that downstream actions can perform Git commands directly. This option can only be used by
CodeBuild downstream actions.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet, see CodeCommit.

• Tutorial: Create a simple pipeline (CodeCommit repository)

• CodePipeline uses Amazon CloudWatch Events to detect changes in CodeCommit repositories
used as a source for a pipeline. Each source action has a corresponding event rule. This event
rule starts your pipeline when a change occurs in the repository. See General integrations with
CodePipeline.

GitHub (version 1) source actions

The GitHub version 1 action is managed with OAuth Apps. In available Regions, you can also use a
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and
GitLab self-managed actions source action in your pipeline that manages your GitHub source action
with GitHub Apps. If you have a pipeline that uses the GitHub version 1 action, see the steps to
update it to use a GitHub version 2 action in Update a GitHub version 1 source action to a GitHub
version 2 source action.

Note

While we don’t recommend using the GitHub version 1 action, existing pipelines with the
GitHub version 1 action will continue to work without any impact.

Learn more:

• For more information about OAuth-based GitHub access in contrast to app-based GitHub access,
see https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-
apps.

• To view an appendix that contains the version 1 GitHub action details, see Appendix A: GitHub
version 1 source actions.

Source action integrations API Version 2015-07-09 40

https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps

AWS CodePipeline User Guide

Build action integrations

The following information is organized by CodePipeline action type and can help you configure
CodePipeline to integrate with the following build action providers.

Topics

• CodeBuild build actions

• CloudBees build actions

• Jenkins build actions

• TeamCity build actions

CodeBuild build actions

CodeBuild is a fully managed build service that compiles your source code, runs unit tests, and
produces artifacts that are ready to deploy.

You can add CodeBuild as a build action to the build stage of a pipeline. For more information, see
the CodePipeline Action Configuration Reference for AWS CodeBuild.

Note

CodeBuild can also be included in a pipeline as a test action, with or without a build output.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet, see AWS CodeBuild.

• What Is CodeBuild?

• CodeBuild – Fully Managed Build Service

CloudBees build actions

You can configure CodePipeline to use CloudBees to build or test your code in one or more actions
in a pipeline.

Learn more:

• re:INVENT 2017: Cloud First with AWS

Build action integrations API Version 2015-07-09 41

http://aws.amazon.com/codebuild/
https://docs.aws.amazon.com/codebuild/latest/userguide/
http://aws.amazon.com/blogs/aws/aws-codebuild-fully-managed-build-service/
http://www.cloudbees.com
https://www.cloudbees.com/blog/reinvent-2017-cloud-first-aws

AWS CodePipeline User Guide

Jenkins build actions

You can configure CodePipeline to use Jenkins CI to build or test your code in one or more actions
in a pipeline. You must have previously created a Jenkins project and installed and configured the
CodePipeline Plugin for Jenkins for that project. You can connect to the Jenkins project by either
creating a new pipeline or editing an existing one.

Access for Jenkins is configured on a per-project basis. You must install the CodePipeline Plugin
for Jenkins on every Jenkins instance you want to use with CodePipeline. You must also configure
CodePipeline access to the Jenkins project. Secure your Jenkins project by configuring it to accept
HTTPS/SSL connections only. If your Jenkins project is installed on an Amazon EC2 instance,
consider providing your AWS credentials by installing the AWS CLI on each instance. Then configure
an AWS profile on those instances with the credentials you want to use for connections. This is an
alternative to adding and storing them through the Jenkins web interface.

Learn more:

• Accessing Jenkins

• Tutorial: Create a four-stage pipeline

TeamCity build actions

You can configure CodePipeline to use TeamCity to build and test your code in one or more actions
in a pipeline.

Learn more:

• TeamCity Plugin for CodePipeline

Test action integrations

The following information is organized by CodePipeline action type and can help you configure
CodePipeline to integrate with the following test action providers.

Topics

• CodeBuild test actions

• AWS Device Farm test actions

• Ghost Inspector test actions

Test action integrations API Version 2015-07-09 42

https://jenkins-ci.org/
https://wiki.jenkins.io/display/JENKINS/Starting+and+Accessing+Jenkins
https://www.jetbrains.com/teamcity/
https://plugins.jetbrains.com/plugin/9213-aws-codepipeline

AWS CodePipeline User Guide

• Micro Focus StormRunner Load test actions

CodeBuild test actions

CodeBuild is a fully managed build service in the cloud. CodeBuild compiles your source code, runs
unit tests, and produces artifacts that are ready to deploy.

You can add CodeBuild to a pipeline as a test action. For more information, see the CodePipeline
Action Configuration Reference for AWS CodeBuild.

Note

CodeBuild can also be included in a pipeline as a build action, with a mandatory build
output artifact.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet, see AWS CodeBuild.

• What Is CodeBuild?

AWS Device Farm test actions

AWS Device Farm is an app testing service that you can use to test and interact with your Android,
iOS, and web applications on real, physical phones and tablets. You can configure CodePipeline
to use AWS Device Farm to test your code in one or more actions in a pipeline. AWS Device Farm
allows you to upload your own tests or use built-in, script-free compatibility tests. Because testing
is performed in parallel, tests on multiple devices begin in minutes. A test report that contains
high-level results, low-level logs, pixel-to-pixel screenshots, and performance data is updated as
tests are completed. AWS Device Farm supports testing of native and hybrid Android, iOS, and Fire
OS apps, including those created with PhoneGap, Titanium, Xamarin, Unity, and other frameworks.
It supports remote access of Android apps, which allows you to interact directly with test devices.

Learn more:

• To view configuration parameters and an example JSON/YAML snippet, see AWS Device Farm.

• What Is AWS Device Farm?

• Using AWS Device Farm in a CodePipeline Test Stage

Test action integrations API Version 2015-07-09 43

http://aws.amazon.com/codebuild/
https://docs.aws.amazon.com/codebuild/latest/userguide/
http://aws.amazon.com/devicefarm/
https://docs.aws.amazon.com/devicefarm/latest/developerguide/
https://docs.aws.amazon.com/devicefarm/latest/developerguide/codepipeline.html

AWS CodePipeline User Guide

Ghost Inspector test actions

You can configure CodePipeline to use Ghost Inspector to test your code in one or more actions in a
pipeline.

Learn more:

• Ghost Inspector documentation for service integration with CodePipeline

Micro Focus StormRunner Load test actions

You can configure CodePipeline to use Micro Focus StormRunner Load in one or more actions in a
pipeline.

Learn more:

• Micro Focus StormRunner Load documentation for integrating with CodePipeline

Deploy action integrations

The following information is organized by CodePipeline action type and can help you configure
CodePipeline to integrate with the following deploy action providers.

Topics

• Amazon S3 deploy actions

• AWS AppConfig deploy actions

• AWS CloudFormation deploy actions

• AWS CloudFormation StackSets deploy actions

• Amazon ECS deploy actions

• Elastic Beanstalk deploy actions

• AWS OpsWorks deploy actions

• Service Catalog deploy actions

• Amazon Alexa deploy actions

• CodeDeploy deploy actions

• XebiaLabs deploy actions

Deploy action integrations API Version 2015-07-09 44

https://ghostinspector.com/
https://ghostinspector.com/docs/integration/aws-codepipeline/
https://software.microfocus.com/en-us/products/stormrunner-load-agile-cloud-testing/overview
https://admhelp.microfocus.com/srl/en/Latest/Content/Storm/LoadTestWithAWSPipeline.htm

AWS CodePipeline User Guide

Amazon S3 deploy actions

Amazon S3 is storage for the internet. You can use Amazon S3 to store and retrieve any amount of
data at any time, from anywhere on the web. You can add an action to a pipeline that uses Amazon
S3 as a deployment provider.

Note

Amazon S3 can also be included in a pipeline as a source action.

Learn more:

• Create a pipeline in CodePipeline

• Tutorial: Create a pipeline that uses Amazon S3 as a deployment provider

AWS AppConfig deploy actions

AWS AppConfig is a capability of AWS Systems Manager to create, manage, and quickly deploy
application configurations. You can use AppConfig with applications hosted on EC2 instances, AWS
Lambda, containers, mobile applications, or IoT devices.

Learn more:

• CodePipeline Action Configuration Reference for AWS AppConfig

• Tutorial: Create a pipeline that uses AWS AppConfig as a deployment provider

AWS CloudFormation deploy actions

AWS CloudFormation gives developers and systems administrators an easy way to create and
manage a collection of related AWS resources, using templates to provision and update those
resources. You can use the service’s sample templates or create your own. Templates describe the
AWS resources and any dependencies or runtime parameters required to run your application.

The AWS Serverless Application Model (AWS SAM) extends AWS CloudFormation to provide a
simplified way to define and deploy serverless applications. AWS SAM supports Amazon API
Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables. You can use CodePipeline
with AWS CloudFormation and the AWS SAM to continuously deliver your serverless applications.

Deploy action integrations API Version 2015-07-09 45

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

AWS CodePipeline User Guide

You can add an action to a pipeline that uses AWS CloudFormation as a deployment provider.
When you use AWS CloudFormation as a deployment provider, you can take action on AWS
CloudFormation stacks and change sets as part of a pipeline execution. AWS CloudFormation
can create, update, replace, and delete stacks and change sets when a pipeline runs. As a result,
AWS and custom resources can be created, provisioned, updated, or terminated during a pipeline
execution according to the specifications you provide in AWS CloudFormation templates and
parameter definitions.

Learn more:

• CodePipeline Action Configuration Reference for AWS CloudFormation

• Continuous Delivery with CodePipeline — Learn how to use CodePipeline to build a continuous
delivery workflow for AWS CloudFormation.

• Automating Deployment of Lambda-based Applications — Learn how to use the AWS Serverless
Application Model and AWS CloudFormation to build a continuous delivery workflow for your
Lambda-based application.

AWS CloudFormation StackSets deploy actions

AWS CloudFormation gives you a way to deploy resources across multiple accounts and AWS
Regions.

Note

The CloudFormationStackSet and CloudFormationStackInstances actions are
not available in the Asia Pacific (Hong Kong), Europe (Zurich), Europe (Milan), Africa (Cape
Town), and Middle East (Bahrain) Regions. To reference other available actions, see Product
and service integrations with CodePipeline.

You can use CodePipeline with AWS CloudFormation to update your stack set definition and deploy
updates to your instances.

You can add the following actions to a pipeline to use AWS CloudFormation StackSets as a
deployment provider.

• CloudFormationStackSet

• CloudFormationStackInstances

Deploy action integrations API Version 2015-07-09 46

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html
https://docs.aws.amazon.com/lambda/latest/dg/automating-deployment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

AWS CodePipeline User Guide

Learn more:

• CodePipeline Action Configuration Reference for AWS CloudFormation StackSets

• Tutorial: Create a pipeline with AWS CloudFormation StackSets deployment actions

Amazon ECS deploy actions

Amazon ECS is a highly scalable, high performance container management service that allows
you to run container-based applications in the AWS Cloud. When you create a pipeline, you can
select Amazon ECS as a deployment provider. A change to code in your source control repository
triggers your pipeline to build a new Docker image, push it to your container registry, and then
deploy the updated image to Amazon ECS. You can also use the ECS (Blue/Green) provider action
in CodePipeline to route and deploy traffic to Amazon ECS with CodeDeploy.

Learn more:

• What Is Amazon ECS?

• Tutorial: Continuous Deployment with CodePipeline

• Create a pipeline in CodePipeline

• Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment

Elastic Beanstalk deploy actions

Elastic Beanstalk is a service for deploying and scaling web applications and services developed
with Java, .NET, PHP, Node.js, Python, Ruby, Go, and Docker on familiar servers such as Apache,
Nginx, Passenger, and IIS. You can configure CodePipeline to use Elastic Beanstalk to deploy your
code. You can create the Elastic Beanstalk application and environment to use in a deploy action in
a stage either before you create the pipeline or when you use the Create Pipeline wizard.

Note

This feature is not available in the Asia Pacific (Hyderabad), Asia Pacific (Melbourne), Middle
East (UAE), Europe (Spain), or Europe (Zurich) Regions. To reference other available actions,
see Product and service integrations with CodePipeline.

Learn more:

Deploy action integrations API Version 2015-07-09 47

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/

AWS CodePipeline User Guide

• Getting started using Elastic Beanstalk

• Create a pipeline in CodePipeline

AWS OpsWorks deploy actions

AWS OpsWorks is a configuration management service that helps you configure and operate
applications of all shapes and sizes using Chef. Using AWS OpsWorks Stacks, you can define the
application’s architecture and the specification of each component including package installation,
software configuration and resources such as storage. You can configure CodePipeline to use AWS
OpsWorks Stacks to deploy your code in conjunction with custom Chef cookbooks and applications
in AWS OpsWorks.

• Custom Chef Cookbooks – AWS OpsWorks uses Chef Cookbooks to handle tasks such as
installing and configuring packages and deploying applications.

• Applications – An AWS OpsWorks applications consists of code that you want to run on an
application server. The application code is stored in a repository, such as an Amazon S3 bucket.

Before you create the pipeline, you create the AWS OpsWorks stack and layer. You can create the
AWS OpsWorks application to use in a deploy action in a stage either before you create the pipeline
or when you use the Create Pipeline wizard.

CodePipeline support for AWS OpsWorks is currently available in the US East (N. Virginia) Region
(us-east-1) only.

Learn more:

• Using CodePipeline with AWS OpsWorks Stacks

• Cookbooks and Recipes

• AWS OpsWorks Apps

Service Catalog deploy actions

Service Catalog enables organizations to create and manage catalogs of products that are
approved for use on AWS.

Deploy action integrations API Version 2015-07-09 48

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted.Walkthrough.html
https://docs.aws.amazon.com/opsworks/latest/userguide/other-services-cp.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workingcookbook.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workingapps.html
https://docs.aws.amazon.com/servicecatalog/latest/dg/

AWS CodePipeline User Guide

Note

This feature is not available in the Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Asia
Pacific (Melbourne), Asia Pacific (Osaka), Middle East (UAE), Europe (Spain), Europe (Zurich),
or Israel (Tel Aviv) Regions. To reference other available actions, see Product and service
integrations with CodePipeline.

You can configure CodePipeline to deploy updates and versions of your product templates to
Service Catalog. You can create the Service Catalog product to use in a deployment action and then
use the Create Pipeline wizard to create the pipeline.

Learn more:

• Tutorial: Create a pipeline that deploys to Service Catalog

• Create a pipeline in CodePipeline

Amazon Alexa deploy actions

Amazon Alexa Skills Kit lets you build and distribute cloud-based skills to users of Alexa-enabled
devices.

Note

This feature is not available in the Asia Pacific (Hong Kong) or Europe (Milan) Region. To use
other deploy actions available in that Region, see Deploy action integrations.

You can add an action to a pipeline that uses Alexa Skills Kit as a deployment provider. Source
changes are detected by your pipeline, and then your pipeline deploys updates to your Alexa skill in
the Alexa service.

Learn more:

• Tutorial: Create a pipeline that deploys an Amazon Alexa skill

Deploy action integrations API Version 2015-07-09 49

https://developer.amazon.com/docs/custom-skills/use-the-alexa-skills-kit-samples.html

AWS CodePipeline User Guide

CodeDeploy deploy actions

CodeDeploy coordinates application deployments to Amazon EC2 instances, on-premises instances,
or both. You can configure CodePipeline to use CodeDeploy to deploy your code. You can create
the CodeDeploy application, deployment, and deployment group to use in a deploy action in a
stage either before you create the pipeline or when you use the Create Pipeline wizard.

Learn more:

• Step 3: Create an application in CodeDeploy

• Tutorial: Create a simple pipeline (CodeCommit repository)

XebiaLabs deploy actions

 You can configure CodePipeline to use XebiaLabs to deploy your code in one or more actions in a
pipeline.

Learn more:

• Using XL Deploy with CodePipeline

Approval action integration with Amazon Simple Notification Service

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual
messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple
and cost effective to send push notifications to mobile device users, email recipients or even send
messages to other distributed services.

When you create a manual approval request in CodePipeline, you can optionally publish to a topic
in Amazon SNS so that all IAM users subscribed to it are notified that the approval action is ready
to be reviewed.

Learn more:

• What Is Amazon SNS?

• Grant Amazon SNS permissions to a CodePipeline service role

Approval action integration with Amazon Simple Notification Service API Version 2015-07-09 50

https://docs.aws.amazon.com/codedeploy/latest/userguide/
https://xebialabs.com/
https://legacydocs.xebialabs.com/xl-deploy/how-to/using-xl-deploy-with-aws-codepipeline.html
https://docs.aws.amazon.com/sns/latest/gsg/
https://docs.aws.amazon.com/sns/latest/gsg/

AWS CodePipeline User Guide

Invoke action integrations

The following information is organized by CodePipeline action type and can help you configure
CodePipeline to integrate with the following invoke action providers.

Topics

• Lambda invoke actions

• Snyk invoke actions

• Step Functions invoke actions

Lambda invoke actions

Lambda lets you run code without provisioning or managing servers. You can configure
CodePipeline to use Lambda functions to add flexibility and functionality to your pipelines. You can
create the Lambda function to add as an action in a stage either before you create the pipeline or
when you use the Create Pipeline wizard.

Learn more:

• CodePipeline Action Configuration Reference for AWS Lambda

• Invoke an AWS Lambda function in a pipeline in CodePipeline

Snyk invoke actions

You can configure CodePipeline to use Snyk to keep your open source environments secure by
detecting and fixing security vulnerabilities and updating dependencies in your application code
and container images. You can also use the Snyk action in CodePipeline to automate security
testing controls in your pipeline.

Learn more:

• CodePipeline Action Configuration Reference for Snyk action structure reference

• Automate vulnerability scanning in AWS CodePipeline with Snyk

Invoke action integrations API Version 2015-07-09 51

https://docs.aws.amazon.com/lambda/latest/dg/
https://snyk.io/blog/automate-vulnerability-scanning-in-aws-codepipeline-with-snyk/

AWS CodePipeline User Guide

Step Functions invoke actions

Step Functions lets you create and configure state machines. You can configure CodePipeline to use
Step Functions invoke actions to trigger state machine executions.

Note

This feature is not available in the Asia Pacific (Hong Kong) and Europe (Milan) Regions. To
reference other available actions, see Product and service integrations with CodePipeline.

Learn more:

• CodePipeline Action Configuration Reference for AWS Step Functions

• Tutorial: Use an AWS Step Functions invoke action in a pipeline

General integrations with CodePipeline

The following AWS service integrations are not based on CodePipeline action types.

Amazon CloudWatch Amazon CloudWatch monitors your AWS resources.

Learn more:

• What Is Amazon CloudWatch?

Amazon EventBridge Amazon EventBridge is a web service that detects changes in your
AWS services based on rules that you define and invokes an action in
one or more specified AWS services when a change occurs.

• Start a pipeline execution automatically when something
changes — You can configure CodePipeline as a target in rules set
up in Amazon EventBridge. This sets up pipelines to start automatic
ally when another service changes.

Learn more:

• What Is Amazon EventBridge?

• Start a pipeline in CodePipeline.

General integrations with CodePipeline API Version 2015-07-09 52

https://docs.aws.amazon.com/step-functions/latest/dg/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/

AWS CodePipeline User Guide

• CodeCommit source actions and EventBridge

• Receive notifications when a pipeline state changes — You can
set up EventBridge rules to detect and react to changes in execution
state for a pipeline, stage, or action.

Learn more:

• Monitoring CodePipeline events

• Tutorial: Set up a CloudWatch Events rule to receive email
notifications for pipeline state changes

AWS Cloud9 AWS Cloud9 is an online IDE, which you access through your web
browser. The IDE offers a rich code editing experience with support for
several programming languages and runtime debuggers, as well as a
built-in terminal. In the background, an Amazon EC2 instance hosts an
AWS Cloud9 development environment. For more information, see the
AWS Cloud9 User Guide.

Learn more:

• Setting up AWS Cloud9

AWS CloudTrail CloudTrail captures AWS API calls and related events made by or on
behalf of an AWS account and delivers log files to an Amazon S3
bucket that you specify. You can configure CloudTrail to capture API
calls from the CodePipeline console, CodePipeline commands from
the AWS CLI, and from the CodePipeline API.

Learn more:

• Logging CodePipeline API calls with AWS CloudTrail

AWS CodeStar
Notifications

You can set up notifications to make users aware of important
changes, such as when a pipeline starts execution. For more informati
on, see Create a notification rule.

General integrations with CodePipeline API Version 2015-07-09 53

https://docs.aws.amazon.com/cloud9/latest/user-guide/
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide-c9.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS CodePipeline User Guide

AWS Key Managemen
t Service

AWS KMS is a managed service that makes it easy for you to create
and control the encryption keys used to encrypt your data. By default,
CodePipeline uses AWS KMS to encrypt artifacts for pipelines stored
in Amazon S3 buckets.

Learn more:

• To create a pipeline that uses a source bucket, artifact bucket, and
service role from one AWS account and CodeDeploy resources from
a different AWS account, you must create a customer-managed
KMS key, add the key to the pipeline, and set up account policies
and roles to enable cross-account access. For more information, see
Create a pipeline in CodePipeline that uses resources from another
AWS account.

• To create a pipeline from one AWS account that deploys an AWS
CloudFormation stack to another AWS account, you must create a
customer-managed KMS key, add the key to the pipeline, and set
up account policies and roles to deploy the stack to another AWS
account. For more information, see How do I use CodePipeline to
deploy an AWS CloudFormation stack in a different account?

• To configure server-side encryption for your pipeline’s S3 artifact
bucket, you can use the default AWS managed KMS key or create
a customer-managed KMS key and set up the bucket policy to use
the encryption key. For more information, see Configure server-side
encryption for artifacts stored in Amazon S3 for CodePipeline.

For an AWS KMS key, you can use the key ID, the key ARN, or the alias
ARN.

Note

Aliases are recognized only in the account that created the
KMS key. For cross-account actions, you can only use the
key ID or key ARN to identify the key. Cross-account actions
involve using the role from the other account (AccountB), so

General integrations with CodePipeline API Version 2015-07-09 54

https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.amazon.com/premiumsupport/knowledge-center/codepipeline-deploy-cloudformation/
https://aws.amazon.com/premiumsupport/knowledge-center/codepipeline-deploy-cloudformation/

AWS CodePipeline User Guide

specifying the key ID will use the key from the other account
(AccountB).

Examples from the community

The following sections provide links to blog posts, articles, and community-provided examples.

Note

These links are provided for informational purposes only, and should not be considered
either a comprehensive list or an endorsement of the content of the examples. AWS is not
responsible for the content or accuracy of external content.

Topics

• Integration examples: Blog posts

Integration examples: Blog posts

• Tracking the AWS CodePipeline build status from the third-party Git repository

Learn how to set up resources that will display your pipeline and build action status in your third-
party repository, making it easy for the developer to track status without switching context.

Published March 2021

• Complete CI/CD with AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy, and AWS
CodePipeline

Learn how to set up a pipeline that uses the CodeCommit, CodePipeline, CodeBuild, and
CodeDeploy services to compile, build, and install a version-controlled Java application onto a
set of Amazon EC2 Linux instances.

Published September 2020

• How to deploy from GitHub to Amazon EC2 with CodePipeline

Examples from the community API Version 2015-07-09 55

https://aws.amazon.com/blogs/devops/aws-codepipeline-build-status-in-a-third-party-git-repository/
https://aws.amazon.com/blogs/devops/complete-ci-cd-with-aws-codecommit-aws-codebuild-aws-codedeploy-and-aws-codepipeline/
https://aws.amazon.com/blogs/devops/complete-ci-cd-with-aws-codecommit-aws-codebuild-aws-codedeploy-and-aws-codepipeline/
https://seanjziegler.com/deploying-code-from-github-to-aws-ec2-with-codepipeline/

AWS CodePipeline User Guide

Learn how to set up CodePipeline from scratch to deploy dev, test, and prod branches to
separate deployment groups. Learn how to use and configure IAM roles, the CodeDeploy agent,
and CodeDeploy, along with CodePipeline.

Published April 2020

• Testing and creating CI/CD pipelines for AWS Step Functions

Learn how to set up resources that will coordinate your Step Functions state machine and your
pipeline.

Published March 2020

• Implementing DevSecOps Using CodePipeline

Learn how to use a CI/CD pipeline in CodePipeline to automate preventive and detective security
controls. This post covers how to use a pipeline to create a simple security group and perform
security checks during the source, test, and production stages to improve the security posture of
your AWS accounts.

Published March 2017

• Continuous Deployment to Amazon ECS Using CodePipeline, CodeBuild, Amazon ECR, and AWS
CloudFormation

Learn how to create a continuous deployment pipeline to Amazon Elastic Container Service
(Amazon ECS). Applications are delivered as Docker containers using CodePipeline, CodeBuild,
Amazon ECR, and AWS CloudFormation.

• Download a sample AWS CloudFormation template and instructions for using it to create
your own continuous deployment pipeline from the ECS Reference Architecture: Continuous
Deployment repo on GitHub.

Published January 2017

• Continuous Deployment for Serverless Applications

Learn how to use a collection of AWS services to create a continuous deployment pipeline for
your serverless applications. You'll use the Serverless Application Model (SAM) to define the
application and its resources and CodePipeline to orchestrate your application deployment.

• View a sample application written in Go with the Gin framework and an API Gateway proxy
shim.

Blog posts API Version 2015-07-09 56

https://aws.amazon.com/blogs/devops/testing-and-creating-ci-cd-pipelines-for-aws-step-functions-using-aws-codepipeline-and-aws-codebuild/?nc1=b_rp
https://aws.amazon.com/blogs/devops/implementing-devsecops-using-aws-codepipeline/
https://aws.amazon.com/blogs/compute/continuous-deployment-to-amazon-ecs-using-aws-codepipeline-aws-codebuild-amazon-ecr-and-aws-cloudformation/
https://aws.amazon.com/blogs/compute/continuous-deployment-to-amazon-ecs-using-aws-codepipeline-aws-codebuild-amazon-ecr-and-aws-cloudformation/
https://github.com/awslabs/ecs-refarch-continuous-deployment
https://github.com/awslabs/ecs-refarch-continuous-deployment
https://aws.amazon.com/blogs/compute/continuous-deployment-for-serverless-applications/
https://gist.github.com/SAPessi/246b278b6b7502b157a9fbaf3981d103

AWS CodePipeline User Guide

Published December 2016

• Scaling DevOps Deployments with CodePipeline and Dynatrace

Learn how use Dynatrace monitoring solutions to scale pipelines in CodePipeline, automatically
analyze test executions before code is committed, and maintain optimal lead times.

Published November 2016

• Create a Pipeline for AWS Elastic Beanstalk in CodePipeline Using AWS CloudFormation and
CodeCommit

Learn how to implement continuous delivery in a CodePipeline pipeline for an application in
AWS Elastic Beanstalk. All AWS resources are provisioned automatically through the use of an
AWS CloudFormation template. This walkthrough also incorporates CodeCommit and AWS
Identity and Access Management (IAM).

Published May 2016

• Automate CodeCommit and CodePipeline in AWS CloudFormation

Use AWS CloudFormation to automate the provisioning of AWS resources for a continuous
delivery pipeline that uses CodeCommit, CodePipeline, CodeDeploy, and AWS Identity and Access
Management.

Published April 2016

• Create a Cross-Account Pipeline in AWS CodePipeline

Learn how to automate the provisioning of cross-account access to pipelines in AWS
CodePipeline by using AWS Identity and Access Management. Includes examples in an AWS
CloudFormation template.

Published March 2016

• Exploring ASP.NET Core Part 2: Continuous Delivery

Learn how to create a full continuous delivery system for an ASP.NET Core application using
CodeDeploy and AWS CodePipeline.

Published March 2016

• Create a Pipeline Using the AWS CodePipeline Console

Blog posts API Version 2015-07-09 57

https://www.dynatrace.com/blog/scaling-devops-deployments-with-aws-codepipeline-dynatrace/
http://www.stelligent.com/automation/create-a-pipeline-for-elastic-beanstalk-in-codepipeline-using-cloudformation-and-codecommit/
http://www.stelligent.com/automation/create-a-pipeline-for-elastic-beanstalk-in-codepipeline-using-cloudformation-and-codecommit/
http://www.stelligent.com/automation/automate-codecommit-and-codepipeline-in-aws-cloudformation/
http://www.stelligent.com/automation/create-a-cross-account-pipeline-in-aws-cloudformation/
https://blogs.aws.amazon.com/net/post/Tx2EHIJAM9LIW8G/Exploring-ASP-NET-Core-Part-2-Continuous-Delivery
http://www.stelligent.com/cloud/create-a-pipeline-using-the-aws-codepipeline-console/

AWS CodePipeline User Guide

Learn how to use the AWS CodePipeline console to create a two-stage pipeline in a walkthrough
based on the AWS CodePipeline Tutorial: Create a four-stage pipeline.

Published March 2016

• Mocking AWS CodePipeline Pipelines with AWS Lambda

Learn how to invoke a Lambda function that lets you visualize the actions and stages in a
CodePipeline software delivery process as you design it, before the pipeline is operational.
As you design your pipeline structure, you can use the Lambda function to test whether your
pipeline will complete successfully.

Published February 2016

• Running AWS Lambda Functions in CodePipeline Using AWS CloudFormation

Learn how to create an AWS CloudFormation stack that provisions all the AWS resources used in
the user guide task Invoke an AWS Lambda function in a pipeline in CodePipeline.

Published February 2016

• Provisioning Custom CodePipeline Actions in AWS CloudFormation

Learn how to use AWS CloudFormation to provision custom actions in CodePipeline.

Published January 2016

• Provisioning CodePipeline with AWS CloudFormation

Learn how to provision a basic continuous delivery pipeline in CodePipeline using AWS
CloudFormation.

Published December 2015

• Deploying from CodePipeline to AWS OpsWorks Using a Custom Action and AWS Lambda

Learn how to configure your pipeline and the AWS Lambda function to deploy to AWS OpsWorks
using CodePipeline.

Published July 2015

Blog posts API Version 2015-07-09 58

http://www.stelligent.com/automation/mocking-aws-codepipeline-pipelines-with-lambda/
http://www.stelligent.com/automation/aws-lambda-functions-aws-codepipeline-cloudformation/
http://www.stelligent.com/automation/provisioning-custom-codepipeline-actions-in-cloudformation/
http://www.stelligent.com/automation/provisioning-aws-codepipeline-with-cloudformation/
http://hipsterdevblog.com/blog/2015/07/28/deploying-from-codepipeline-to-opsworks-using-a-custom-action-and-lambda/

AWS CodePipeline User Guide

CodePipeline tutorials

After you complete the steps in Getting started with CodePipeline, you can try one of the AWS
CodePipeline tutorials in this user guide:

I want to use the wizard to create a pipeline
that uses CodeDeploy to deploy a sample
application from an Amazon S3 bucket to
Amazon EC2 instances running Amazon Linux.
After using the wizard to create my two-stage
pipeline, I want to add a third stage.

See Tutorial: Create a simple pipeline (S3
bucket).

I want to create a two-stage pipeline that uses
CodeDeploy to deploy a sample application
from a CodeCommit repository to an Amazon
EC2 instance running Amazon Linux.

See Tutorial: Create a simple pipeline
(CodeCommit repository).

I want to add a build stage to the three-stage
pipeline I created in the first tutorial. The new
stage uses Jenkins to build my application.

See Tutorial: Create a four-stage pipeline.

I want to set up a CloudWatch Events rule
that sends notifications whenever there are
changes to the execution state of my pipeline,
stage, or action.

See Tutorial: Set up a CloudWatch Events rule
to receive email notifications for pipeline state
changes.

I want to create a pipeline with a GitHub
source that builds and tests an Android app
with CodeBuild and AWS Device Farm.

See Tutorial: Create a pipeline that builds and
tests your Android app with AWS Device Farm.

I want to create a pipeline with an Amazon S3
source that tests an iOS app with AWS Device
Farm.

See Tutorial: Create a pipeline that tests your
iOS app with AWS Device Farm.

I want to create a pipeline that deploys my
product template to Service Catalog.

See Tutorial: Create a pipeline that deploys to
Service Catalog.

API Version 2015-07-09 59

AWS CodePipeline User Guide

I want to use sample templates to create
a simple pipeline (with an Amazon S3,
CodeCommit, or GitHub source) using the AWS
CloudFormation console.

See Tutorial: Create a pipeline with AWS
CloudFormation.

I want to create a two-stage pipeline that uses
CodeDeploy and Amazon ECS for blue/gree
n deployment of an image from an Amazon
ECR repository to an Amazon ECS cluster and
service.

See Tutorial: Create a pipeline with an
Amazon ECR source and ECS-to-CodeDeploy
deployment.

I want to create a pipeline that continuously
publishes my serverless application to the
AWS Serverless Application Repository.

See Tutorial: Create a pipeline that publishes
your serverless application to the AWS
Serverless Application Repository.

The following tutorials in other user guides provide guidance for integrating other AWS services
into your pipelines:

• Create a pipeline that uses CodeBuild in AWS CodeBuild User Guide

• Using CodePipeline with AWS OpsWorks Stacks in AWS OpsWorks User Guide

• Continuous Delivery with CodePipeline in AWS CloudFormation User Guide

• Getting started using Elastic Beanstalk in AWS Elastic Beanstalk Developer Guide

• Set Up a Continuous Deployment Pipeline Using CodePipeline

Tutorial: Use Git tags to start your pipeline

In this tutorial, you will create a pipeline that connects to your GitHub repository where the source
action is configured for the Git tags trigger type. When a Git tag is created on a commit, your
pipeline starts. This example shows you how to create a pipeline that allows filtering for tags
based on the syntax of the tag name. For more information about filtering with glob patterns, see
Working with glob patterns in syntax.

This tutorial connects to GitHub through the CodeStarSourceConnection action type.

Tutorial: Use Git tags to start your pipeline API Version 2015-07-09 60

https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html#pipelines-create-console
https://docs.aws.amazon.com/codebuild/latest/userguide/
https://docs.aws.amazon.com/opsworks/latest/userguide/other-services-cp.html
https://docs.aws.amazon.com/opsworks/latest/userguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
https://aws.amazon.com/getting-started/tutorials/continuous-deployment-pipeline/

AWS CodePipeline User Guide

Note

This feature is not available in the Asia Pacific (Hong Kong), Africa (Cape Town), Middle East
(Bahrain), or Europe (Zurich) Regions. To reference other available actions, see Product and
service integrations with CodePipeline. For considerations with this action in the Europe
(Milan) Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub,
GitHub Enterprise Server, GitLab.com, and GitLab self-managed actions.

Topics

• Prerequisites

• Step 1: Open CloudShell and clone your repository

• Step 2: Create a pipeline to trigger on Git tags

• Step 3: Tag your commits for release

• Step 4: Release change and view logs

Prerequisites

Before you begin, you must do the following:

• Create a GitHub repository with your GitHub account.

• Have your GitHub credentials ready. When you use the AWS Management Console to set up a
connection, you are asked to sign in with your GitHub credentials.

Step 1: Open CloudShell and clone your repository

You can use a command line interface to clone your repository, make commits, and add tags. This
tutorial launches a CloudShell instance for the command line interface.

1. Sign in to the AWS Management Console.

2. In the top navigation bar, choose the AWS icon. The main page of the AWS Management
Console displays.

3. In the top navigation bar, choose the AWS CloudShell icon. CloudShell opens. Wait while the
CloudShell environment is created.

Prerequisites API Version 2015-07-09 61

AWS CodePipeline User Guide

Note

If you don't see the CloudShell icon, make sure that you're in a Region supported by
CloudShell. This tutorial assumes you are in the US West (Oregon) Region.

4. In GitHub, navigate to your repository. Choose Code, and then choose HTTPS. Copy the path.
The address to clone your Git repository is copied to your clipboard.

5. Run the following command to clone the repository.

git clone https://github.com/<account>/MyGitHubRepo.git

6. Enter your GitHub account Username and Password when prompted. For the Password
entry, you must use a user-created token rather than your account password.

Step 2: Create a pipeline to trigger on Git tags

In this section, you create a pipeline with the following actions:

• A source stage with a connection to your GitHub repository and action.

• A build stage with an AWS CodeBuild build action.

To create a pipeline with the wizard

1. Sign in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyGitHubTagsPipeline.

4. In Pipeline type, keep the default selection at V2. Pipeline types differ in characteristics and
price. For more information, see Pipeline types.

5. In Service role, choose New service role.

Note

If you choose instead to use your existing CodePipeline service role, make sure that
you have added the codestar-connections:UseConnection IAM permission to

Step 2: Create a pipeline to trigger on Git tags API Version 2015-07-09 62

https://docs.aws.amazon.com/cloudshell/latest/userguide/faq-list.html#regions-available
https://docs.aws.amazon.com/cloudshell/latest/userguide/faq-list.html#regions-available
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

your service role policy. For instructions for the CodePipeline service role, see Add
permissions to the the CodePipeline service role.

6. Under Advanced settings, leave the defaults. In Artifact store, choose Default location to use
the default artifact store, such as the Amazon S3 artifact bucket designated as the default, for
your pipeline in the Region you selected for your pipeline.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.

Choose Next.

7. On the Step 2: Add source stage page, add a source stage:

a. In Source provider, choose GitHub (Version 2).

b. Under Connection, choose an existing connection or create a new one. To create or
manage a connection for your GitHub source action, see GitHub connections.

c. In Repository name, choose the name of your GitHub repository.

d. Under Pipeline trigger, choose Git tags.

In the Include field, enter release*.

In Default branch, choose the branch that you want to specify when the pipeline is
started manually or with a source event that is not a Git tag. If the source of the change is
not the trigger or if a pipeline execution was started manually, then the change used will
be the HEAD commit from the default branch.

Important

Pipelines that start with a trigger type of Git tags will be configured for
WebhookV2 events and will not use the Webhook event (change detection on all
push events) to start the pipeline.

Choose Next.

Step 2: Create a pipeline to trigger on Git tags API Version 2015-07-09 63

https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services

AWS CodePipeline User Guide

8. In Add build stage, add a build stage:

a. In Build provider, choose AWS CodeBuild. Allow Region to default to the pipeline Region.

b. Choose Create project.

c. In Project name, enter a name for this build project.

d. In Environment image, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime, choose Standard. For Image, choose aws/codebuild/standard:5.0.

f. For Service role, choose New service role.

Note

Note the name of your CodeBuild service role. You will need the role name for the
final step in this tutorial.

g. Under Buildspec, for Build specifications, choose Insert build commands. Choose Switch
to editor, and paste the following under Build commands.

version: 0.2
#env:
 #variables:
 # key: "value"
 # key: "value"
 #parameter-store:
 # key: "value"
 # key: "value"
 #git-credential-helper: yes
phases:
 install:
 #If you use the Ubuntu standard image 2.0 or later, you must specify
 runtime-versions.
 #If you specify runtime-versions and use an image other than Ubuntu
 standard image 2.0, the build fails.
 runtime-versions:
 nodejs: 12
 #commands:
 # - command
 # - command
 #pre_build:
 #commands:
 # - command

Step 2: Create a pipeline to trigger on Git tags API Version 2015-07-09 64

AWS CodePipeline User Guide

 # - command
 build:
 commands:
 -
 #post_build:
 #commands:
 # - command
 # - command
artifacts:
 files:
 - '*'
 # - location
 name: $(date +%Y-%m-%d)
 #discard-paths: yes
 #base-directory: location
#cache:
 #paths:
 # - paths

h. Choose Continue to CodePipeline. This returns to the CodePipeline console and creates
a CodeBuild project that uses your build commands for configuration. The build project
uses a service role to manage AWS service permissions. This step might take a couple of
minutes.

i. Choose Next.

9. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again. Choose Next.

10. On Step 5: Review, choose Create pipeline.

Step 3: Tag your commits for release

After you create your pipeline and specify Git tags, you can tag commits in your GitHub repository.
In these steps, you will tag a commit with the release-1 tag. Each commit in a Git repository
must have a unique Git tag. When you choose the commit and tag it, this allows you to incorporate
changes from different branches into your pipeline deployment. Note that the tag name release
does not apply to the concept of a release in GitHub.

1. Reference the copied commit IDs you want to tag. To view commits in each branch, in the
CloudShell terminal, enter the following command to capture the commit IDs you want to tag:

Step 3: Tag your commits for release API Version 2015-07-09 65

AWS CodePipeline User Guide

git log

2. In the CloudShell terminal, enter the command to tag your commit and push it to origin. After
you tag your commit, you use the git push command to push the tag to origin. In the following
example, enter the following command to use the release-1 tag for the second commit with
ID 49366bd. This tag will be filtered by the pipeline release* tag filter and will start the
pipeline.

git tag release-1 49366bd

git push origin release-1

Step 3: Tag your commits for release API Version 2015-07-09 66

AWS CodePipeline User Guide

Step 4: Release change and view logs

1. After the pipeline runs successfully, on your successful build stage, choose View log.

Under Logs, view the CodeBuild build output. The commands output the value of the entered
variable.

2. In the History page, view the Triggers column. View the trigger type GitTag : release-1.

Tutorial: Filter on branch names for pull requests to start your
pipeline

In this tutorial, you will create a pipeline that connects to your GitHub.com repository where the
source action is configured to start your pipeline with a trigger configuration that filters on pull
requests. When a specified pull request event occurs for a specified branch, your pipeline starts.
This example shows you how to create a pipeline that allows filtering for branch names. For more
information about working with triggers, see Trigger filtering in the pipeline JSON (CLI). For more
information about filtering with regex patterns in glob format, see Working with glob patterns in
syntax.

This tutorial connects to GitHub.com through the CodeStarSourceConnection action type.

Topics

• Prerequisites

• Step 1: Create a pipeline to start on pull request for specified branches

• Step 2: Create and merge a pull request in GitHub.com to start your pipeline executions

Prerequisites

Before you begin, you must do the following:

• Create a GitHub.com repository with your GitHub.com account.

• Have your GitHub credentials ready. When you use the AWS Management Console to set up a
connection, you are asked to sign in with your GitHub credentials.

Step 4: Release change and view logs API Version 2015-07-09 67

AWS CodePipeline User Guide

Step 1: Create a pipeline to start on pull request for specified branches

In this section, you create a pipeline with the following actions:

• A source stage with a connection to your GitHub.com repository and action.

• A build stage with an AWS CodeBuild build action.

To create a pipeline with the wizard

1. Sign in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyFilterBranchesPipeline.

4. In Pipeline type, keep the default selection at V2. Pipeline types differ in characteristics and
price. For more information, see Pipeline types.

5. In Service role, choose New service role.

Note

If you choose instead to use your existing CodePipeline service role, make sure that
you have added the codestar-connections:UseConnection IAM permission to
your service role policy. For instructions for the CodePipeline service role, see Add
permissions to the the CodePipeline service role.

6. Under Advanced settings, leave the defaults. In Artifact store, choose Default location to use
the default artifact store, such as the Amazon S3 artifact bucket designated as the default, for
your pipeline in the Region you selected for your pipeline.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.

Choose Next.

7. On the Step 2: Add source stage page, add a source stage:

a. In Source provider, choose GitHub (Version 2).

Step 1: Create a pipeline to start on pull request for specified branches API Version 2015-07-09 68

https://console.aws.amazon.com/codepipeline/
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services

AWS CodePipeline User Guide

b. Under Connection, choose an existing connection or create a new one. To create or
manage a connection for your GitHub source action, see GitHub connections.

c. In Repository name, choose the name of your GitHub.com repository.

d. Under Trigger type, choose Specify filter.

Under Event type, choose Pull request. Select all of the events under pull request so that
the event occurs for created, updated, or closed pull requests.

Under Branches, in the Include field, enter main*.

Important

Pipelines that start with this trigger type will be configured for WebhookV2 events
and will not use the Webhook event (change detection on all push events) to start
the pipeline.

Choose Next.

8. In Add build stage, in Build provider, choose AWS CodeBuild. Allow Region to default to the
pipeline Region. Choose or create the build project as instructed in Tutorial: Use Git tags to
start your pipeline. This action will only be used in this tutorial as the second stage needed to
create your pipeline.

9. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again. Choose Next.

Step 1: Create a pipeline to start on pull request for specified branches API Version 2015-07-09 69

AWS CodePipeline User Guide

10. On Step 5: Review, choose Create pipeline.

Step 2: Create and merge a pull request in GitHub.com to start your
pipeline executions

In this section, you create and merge a pull request. This starts your pipeline, with one execution
for the opened pull request and one execution for the closed pull request.

To create a pull request and start your pipeline

1. In GitHub.com, create a pull request by making a change to the README.md on a feature
branch and raising a pull request to the main branch. Commit the change with a message like
Update README.md for PR.

2. The pipeline starts with the source revision showing the Source message for the pull request
as Update README.md for PR.

3. Choose History. In the pipeline execution history, view the CREATED and MERGED pull request
status events that started the pipeline executions.

Step 2: Create and merge a pull request in GitHub.com to start your pipeline executions API Version 2015-07-09 70

AWS CodePipeline User Guide

Tutorial: Use pipeline-level variables

In this tutorial, you will create a pipeline where you add a variable at the pipeline level and run a
CodeBuild build action that outputs your variable value.

Topics

• Prerequisites

• Step 1: Create your pipeline and build project

• Step 2: Release change and view logs

Prerequisites

Before you begin, you must do the following:

• Create a CodeCommit repository.

• Add a .txt file to the repository.

Tutorial: Use pipeline-level variables API Version 2015-07-09 71

AWS CodePipeline User Guide

Step 1: Create your pipeline and build project

In this section, you create a pipeline with the following actions:

• A source stage with a connection to your GitHub repository and action.

• A build stage with an AWS CodeBuild build action.

To create a pipeline with the wizard

1. Sign in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyVariablesPipeline.

4. In Pipeline type, keep the default selection at V2. Pipeline types differ in characteristics and
price. For more information, see Pipeline types.

5. In Service role, choose New service role.

Note

If you choose instead to use your existing CodePipeline service role, make sure that
you have added the codestar-connections:UseConnection IAM permission to
your service role policy. For instructions for the CodePipeline service role, see Add
permissions to the the CodePipeline service role.

6. Under Variables, choose Add variable. In Name, enter timeout. In Default, enter 1000. In
description, enter the following description: Timeout.

This will create a variable where you can declare the value when the pipeline execution starts.
Variable names must match [A-Za-z0-9@\-_]+ and can be anything except an empty string.

7. Under Advanced settings, leave the defaults. In Artifact store, choose Default location to use
the default artifact store, such as the Amazon S3 artifact bucket designated as the default, for
your pipeline in the Region you selected for your pipeline.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.

Step 1: Create your pipeline and build project API Version 2015-07-09 72

https://console.aws.amazon.com/codepipeline/
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services

AWS CodePipeline User Guide

Choose Next.

8. On the Step 2: Add source stage page, add a source stage:

a. In Source provider, choose AWS CodeCommit.

b. In Repository name and Branch name, choose the your repository and branch.

Choose Next.

9. In Add build stage, add a build stage:

a. In Build provider, choose AWS CodeBuild. Allow Region to default to the pipeline Region.

b. Choose Create project.

c. In Project name, enter a name for this build project.

d. In Environment image, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime, choose Standard. For Image, choose aws/codebuild/standard:5.0.

f. For Service role, choose New service role.

Note

Note the name of your CodeBuild service role. You will need the role name for the
final step in this tutorial.

g. Under Buildspec, for Build specifications, choose Insert build commands. Choose Switch
to editor, and paste the following under Build commands. In the buildspec, the customer
variable $CUSTOM_VAR1 will be used to output the pipeline variable in the build log.
You will create the $CUSTOM_VAR1 output variable as an environment variable in the
following step.

version: 0.2
#env:
 #variables:
 # key: "value"
 # key: "value"
 #parameter-store:
 # key: "value"
 # key: "value"
 #git-credential-helper: yes

Step 1: Create your pipeline and build project API Version 2015-07-09 73

AWS CodePipeline User Guide

phases:
 install:
 #If you use the Ubuntu standard image 2.0 or later, you must specify
 runtime-versions.
 #If you specify runtime-versions and use an image other than Ubuntu
 standard image 2.0, the build fails.
 runtime-versions:
 nodejs: 12
 #commands:
 # - command
 # - command
 #pre_build:
 #commands:
 # - command
 # - command
 build:
 commands:
 - echo $CUSTOM_VAR1
 #post_build:
 #commands:
 # - command
 # - command
artifacts:
 files:
 - '*'
 # - location
 name: $(date +%Y-%m-%d)
 #discard-paths: yes
 #base-directory: location
#cache:
 #paths:
 # - paths

h. Choose Continue to CodePipeline. This returns to the CodePipeline console and creates
a CodeBuild project that uses your build commands for configuration. The build project
uses a service role to manage AWS service permissions. This step might take a couple of
minutes.

i. Under Environment variables - optional, to create an environment variable as
an input variable for the build action that will be resolved by the pipeline-level
variable, choose Add environment variable. This will create the variable specified
in the buildspec as $CUSTOM_VAR1. In Name, enter CUSTOM_VAR1. In Value, enter
#{variables.timeout}. In Type, choose Plaintext.

Step 1: Create your pipeline and build project API Version 2015-07-09 74

AWS CodePipeline User Guide

The #{variables.timeout} value for the environment variable is based on the
pipeline-level variable namespace variables and the pipeline-level variable timeout
created for the pipeline in step 5.

j. Choose Next.

10. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again. Choose Next.

11. On Step 5: Review, choose Create pipeline.

Step 2: Release change and view logs

1. After the pipeline runs successfully, on your successful build stage, choose View details.

On the details page, choose the Logs tab. View the CodeBuild build output. The commands
output the value of the entered variable.

2. In the left-hand nav, choose History.

Choose the recent execution, and then choose the Variables tab. View the resolved value for
the pipeline variable.

Tutorial: Create a simple pipeline (S3 bucket)

The easiest way to create a pipeline is to use the Create pipeline wizard in the AWS CodePipeline
console.

In this tutorial, you create a two-stage pipeline that uses a versioned S3 bucket and CodeDeploy to
release a sample application.

Note

When Amazon S3 is the source provider for your pipeline, you may zip your source file or
files into a single .zip and upload the .zip to your source bucket. You may also upload a
single unzipped file; however, downstream actions that expect a .zip file will fail.

After you create this simple pipeline, you add another stage and then disable and enable the
transition between stages.

Step 2: Release change and view logs API Version 2015-07-09 75

AWS CodePipeline User Guide

Important

Many of the actions you add to your pipeline in this procedure involve AWS resources
that you need to create before you create the pipeline. AWS resources for your source
actions must always be created in the same AWS Region where you create your pipeline.
For example, if you create your pipeline in the US East (Ohio) Region, your CodeCommit
repository must be in the US East (Ohio) Region.
You can add cross-region actions when you create your pipeline. AWS resources for cross-
region actions must be in the same AWS Region where you plan to execute the action. For
more information, see Add a cross-Region action in CodePipeline.

Before you begin, you should complete the prerequisites in Getting started with CodePipeline.

Topics

• Step 1: Create an S3 bucket for your application

• Step 2: Create Amazon EC2 Windows instances and install the CodeDeploy agent

• Step 3: Create an application in CodeDeploy

• Step 4: Create your first pipeline in CodePipeline

• (Optional) Step 5: Add another stage to your pipeline

• (Optional) Step 6: Disable and enable transitions between stages in CodePipeline

• Step 7: Clean up resources

Step 1: Create an S3 bucket for your application

You can store your source files or applications in any versioned location. In this tutorial, you create
an S3 bucket for the sample application files and enable versioning on that bucket. After you have
enabled versioning, you copy the sample applications to that bucket.

To create an S3 bucket

1. Sign in to the console at AWS Management Console. Open the S3 console.

2. Choose Create bucket.

3. In Bucket name, enter a name for your bucket (for example, awscodepipeline-
demobucket-example-date).

Create an S3 bucket API Version 2015-07-09 76

AWS CodePipeline User Guide

Note

Because all bucket names in Amazon S3 must be unique, use one of your own, not the
name shown in the example. You can change the example name just by adding the
date to it. Make a note of this name because you need it for the rest of this tutorial.

In Region, choose the Region where you intend to create your pipeline, such as US West
(Oregon), and then choose Create bucket.

4. After the bucket is created, a success banner displays. Choose Go to bucket details.

5. On the Properties tab, choose Versioning. Choose Enable versioning, and then choose Save.

When versioning is enabled, Amazon S3 saves every version of every object in the bucket.

6. On the Permissions tab, leave the defaults. For more information about S3 bucket and object
permissions, see Specifying Permissions in a Policy.

7. Next, download a sample and save it into a folder or directory on your local computer.

a. Choose one of the following. Choose SampleApp_Windows.zip if you want to follow the
steps in this tutorial for Windows Server instances.

• If you want to deploy to Amazon Linux instances using CodeDeploy, download the
sample application here: SampleApp_Linux.zip.

• If you want to deploy to Windows Server instances using CodeDeploy, download the
sample application here: SampleApp_Windows.zip.

The sample application contains the following files for deploying with CodeDeploy:

• appspec.yml – The application specification file (AppSpec file) is a YAML-formatted
file used by CodeDeploy to manage a deployment. For more information about the
AppSpec file, see CodeDeploy AppSpec File reference in the AWS CodeDeploy User Guide.

• index.html – The index file contains the home page for the deployed sample
application.

• LICENSE.txt – The license file contains license information for the sample application.

Create an S3 bucket API Version 2015-07-09 77

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
samples/SampleApp_Linux.zip
samples/SampleApp_Windows.zip
http://www.yaml.org
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html

AWS CodePipeline User Guide

• Files for scripts – The sample application uses scripts to write text files to a location on
your instance. One file is written for each of several CodeDeploy deployment lifecycle
events as follows:

• (Linux sample only) scripts folder – The folder contains the following shell scripts
to install dependencies and start and stop the sample application for the automated
deployment: install_dependencies, start_server, and stop_server.

• (Windows sample only) before-install.bat – This is a batch script for the
BeforeInstall deployment lifecycle event, which will run to remove old files
written during previous deployments of this sample and create a location on your
instance to which to write the new files.

b. Download the compressed (zipped) file. Do not unzip the file.

8. In the Amazon S3 console, for your bucket, upload the file:

a. Choose Upload.

b. Drag and drop the file or choose Add files and browse for the file.

c. Choose Upload.

Step 2: Create Amazon EC2 Windows instances and install the
CodeDeploy agent

Note

This tutorial provides sample steps for creating Amazon EC2 Windows instances. For
sample steps to create Amazon EC2 Linux instances, see Step 3: Create an Amazon EC2
Linux instance and install the CodeDeploy agent. When prompted for the number of
instances to create, specify 2 instances.

In this step, you create the Windows Server Amazon EC2 instances to which you will deploy a
sample application. As part of this process, you create an instance role with policies that allow
install and management of the CodeDeploy agent on the instances. The CodeDeploy agent is
a software package that enables an instance to be used in CodeDeploy deployments. You also
attach policies that allow the instance to fetch files that the CodeDeploy agent uses to deploy your
application and to allow the instance to be managed by SSM.

Create Windows Server Amazon EC2 instances and install the CodeDeploy agent API Version 2015-07-09 78

AWS CodePipeline User Guide

To create an instance role

1. Open the IAM console at https://console.aws.amazon.com/iam/).

2. From the console dashboard, choose Roles.

3. Choose Create role.

4. Under Select type of trusted entity, select AWS service. Under Choose a use case, select EC2,
and then choose Next: Permissions.

5. Search for and select the policy named AmazonEC2RoleforAWSCodeDeploy.

6. Search for and select the policy named AmazonSSMManagedInstanceCore. Choose Next:
Tags.

7. Choose Next: Review. Enter a name for the role (for example, EC2InstanceRole).

Note

Make a note of your role name for the next step. You choose this role when you are
creating your instance.

Choose Create role.

To launch instances

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the side navigation, choose Instances, and select Launch instances from the top of the
page.

3. Under Name and tags, in Name, enter MyCodePipelineDemo. This assigns the instances a
tag Key of Name and a tag Value of MyCodePipelineDemo. Later, you create a CodeDeploy
application that deploys the sample application to the instances. CodeDeploy selects instances
to deploy based on the tags.

4. Under Application and OS Images (Amazon Machine Image), choose the Windows option.
(This AMI is described as the Microsoft Windows Server 2019 Base and is labeled "Free tier
eligible" and can be found under Quick Start..)

5. Under Instance type, choose the free tier eligible t2.micro type as the hardware
configuration for your instance.

6. Under Key pair (login), choose a key pair or create one.

Create Windows Server Amazon EC2 instances and install the CodeDeploy agent API Version 2015-07-09 79

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/ec2/

AWS CodePipeline User Guide

You can also choose Proceed without a key pair.

Note

For the purposes of this tutorial, you can proceed without a key pair. To use SSH to
connect to your instances, create or use a key pair.

7. Under Network settings, do the following.

In Auto-assign Public IP, make sure the status is Enable.

• Next to Assign a security group, choose Create a new security group.

• In the row for SSH, under Source type, choose My IP.

• Choose Add security group, choose HTTP, and then under Source type, choose My IP.

8. Expand Advanced details. In IAM instance profile, choose the IAM role you created in the
previous procedure (for example, EC2InstanceRole).

9. Under Summary, under Number of instances, enter 2..

10. Choose Launch instance.

11. Choose View all instances to close the confirmation page and return to the console.

12. You can view the status of the launch on the Instances page. When you launch an instance, its
initial state is pending. After the instance starts, its state changes to running, and it receives
a public DNS name. (If the Public DNS column is not displayed, choose the Show/Hide icon,
and then select Public DNS.)

13. It can take a few minutes for the instance to be ready for you to connect to it. Check that
your instance has passed its status checks. You can view this information in the Status Checks
column.

Step 3: Create an application in CodeDeploy

In CodeDeploy, an application is an identifier, in the form of a name, for the code you want to
deploy. CodeDeploy uses this name to ensure the correct combination of revision, deployment
configuration, and deployment group are referenced during a deployment. You select the name
of the CodeDeploy application you create in this step when you create your pipeline later in this
tutorial.

Create an application in CodeDeploy API Version 2015-07-09 80

AWS CodePipeline User Guide

You first create a service role for CodeDeploy to use. If you have already created a service role, you
do not need to create another one.

To create a CodeDeploy service role

1. Open the IAM console at https://console.aws.amazon.com/iam/).

2. From the console dashboard, choose Roles.

3. Choose Create role.

4. Under Select trusted entity, choose AWS service. Under Use case, choose CodeDeploy.
Choose CodeDeploy from the options listed. Choose Next. The AWSCodeDeployRole
managed policy is already attached to the role.

5. Choose Next.

6. Enter a name for the role (for example, CodeDeployRole), and then choose Create role.

To create an application in CodeDeploy

1. Open the CodeDeploy console at https://console.aws.amazon.com/codedeploy.

2. If the Applications page does not appear, on the AWS CodeDeploy menu, choose
Applications.

3. Choose Create application.

4. In Application name, enter MyDemoApplication.

5. In Compute Platform, choose EC2/On-premises.

6. Choose Create application.

To create a deployment group in CodeDeploy

1. On the page that displays your application, choose Create deployment group.

2. In Deployment group name, enter MyDemoDeploymentGroup.

3. In Service role, choose the service role you created earlier. You must use a service role that
trusts AWS CodeDeploy with, at minimum, the trust and permissions described in Create
a Service Role for CodeDeploy. To get the service role ARN, see Get the Service Role ARN
(Console).

4. Under Deployment type, choose In-place.

Create an application in CodeDeploy API Version 2015-07-09 81

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/codedeploy
https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-service-role.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-service-role.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-service-role.html#getting-started-get-service-role-console
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-service-role.html#getting-started-get-service-role-console

AWS CodePipeline User Guide

5. Under Environment configuration, choose Amazon EC2 Instances. Choose Name in the Key
field, and in the Value field, enter MyCodePipelineDemo.

Important

You must choose the same value for the Name key here that you assigned to your EC2
instances when you created them. If you tagged your instances with something other
than MyCodePipelineDemo, be sure to use it here.

6. Under Agent configuration with AWS Systems Manager, choose Now and schedule updates.
This installs the agent on the instance. The Windows instance is already configured with the
SSM agent and will now be updated with the CodeDeploy agent.

7. Under Deployment settings, choose CodeDeployDefault.OneAtaTime.

8. Under Load Balancer, make sure the Enable load balancing box is not selected. You do not
need to set up a load balancer or choose a target group for this example. After you de-select
the checkbox, the load balancer options do not display.

9. In the Advanced section, leave the defaults.

10. Choose Create deployment group.

Step 4: Create your first pipeline in CodePipeline

In this part of the tutorial, you create the pipeline. The sample runs automatically through the
pipeline.

To create a CodePipeline automated release process

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or the Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyFirstPipeline.

Note

If you choose another name for your pipeline, be sure to use that name instead of
MyFirstPipeline for the rest of this tutorial. After you create a pipeline, you cannot

Create your first pipeline API Version 2015-07-09 82

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

change its name. Pipeline names are subject to some limitations. For more information,
see Quotas in AWS CodePipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, do one of the following:

• Choose New service role to allow CodePipeline to create a new service role in IAM.

• Choose Existing service role to use a service role already created in IAM. In Role name,
choose your service role from the list.

6. Leave the settings under Advanced settings at their defaults, and then choose Next.

7. In Step 2: Add source stage, in Source provider, choose Amazon S3. In Bucket, enter the
name of the S3 bucket you created in Step 1: Create an S3 bucket for your application. In S3
object key, enter the object key with or without a file path, and remember to include the file
extension. For example, for SampleApp_Windows.zip, enter the sample file name as shown
in this example:

SampleApp_Windows.zip

Choose Next step.

Under Change detection options, leave the defaults. This allows CodePipeline to use Amazon
CloudWatch Events to detect changes in your source bucket.

Choose Next.

8. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again. Choose Next.

9. In Step 4: Add deploy stage, in Deploy provider, choose CodeDeploy . The Region
field defaults to the same AWS Region as your pipeline. In Application name, enter
MyDemoApplication, or choose the Refresh button, and then choose the application name
from the list. In Deployment group, enter MyDemoDeploymentGroup, or choose it from the
list, and then choose Next.

Create your first pipeline API Version 2015-07-09 83

AWS CodePipeline User Guide

Note

The name Deploy is the name given by default to the stage created in the Step 4: Add
deploy stage step, just as Source is the name given to the first stage of the pipeline.

10. In Step 5: Review, review the information, and then choose Create pipeline.

11. The pipeline starts to run. You can view progress and success and failure messages as
the CodePipeline sample deploys a webpage to each of the Amazon EC2 instances in the
CodeDeploy deployment.

Congratulations! You just created a simple pipeline in CodePipeline. The pipeline has two stages:

• A source stage named Source, which detects changes in the versioned sample application stored
in the S3 bucket and pulls those changes into the pipeline.

• A Deploy stage that deploys those changes to EC2 instances with CodeDeploy.

Now, verify the results.

To verify your pipeline ran successfully

1. View the initial progress of the pipeline. The status of each stage changes from No executions
yet to In Progress, and then to either Succeeded or Failed. The pipeline should complete the
first run within a few minutes.

2. After Succeeded is displayed for the action status, in the status area for the Deploy stage,
choose Details. This opens the CodeDeploy console.

3. In the Deployment group tab, under Deployment lifecycle events, choose an instance ID. This
opens the EC2 console.

4. On the Description tab, in Public DNS, copy the address, and then paste it into the address bar
of your web browser. View the index page for the sample application you uploaded to your S3
bucket.

The web page displays for the sample application you uploaded to your S3 bucket.

For more information about stages, actions, and how pipelines work, see CodePipeline concepts.

Create your first pipeline API Version 2015-07-09 84

AWS CodePipeline User Guide

(Optional) Step 5: Add another stage to your pipeline

Now add another stage in the pipeline to deploy from staging servers to production servers using
CodeDeploy. First, you create another deployment group in the CodePipelineDemoApplication in
CodeDeploy. Then you add a stage that includes an action that uses this deployment group. To add
another stage, you use the CodePipeline console or the AWS CLI to retrieve and manually edit the
structure of the pipeline in a JSON file, and then run the update-pipeline command to update the
pipeline with your changes.

Topics

• Create a second deployment group in CodeDeploy

• Add the deployment group as another stage in your pipeline

Create a second deployment group in CodeDeploy

Note

In this part of the tutorial, you create a second deployment group, but deploy to the same
Amazon EC2 instances as before. This is for demonstration purposes only. It is purposely
designed to fail to show you how errors are displayed in CodePipeline.

To create a second deployment group in CodeDeploy

1. Open the CodeDeploy console at https://console.aws.amazon.com/codedeploy.

2. Choose Applications, and in the list of applications, choose MyDemoApplication.

3. Choose the Deployment groups tab, and then choose Create deployment group.

4. On the Create deployment group page, in Deployment group name, enter a name for the
second deployment group (for example, CodePipelineProductionFleet).

5. In Service Role, choose the same CodeDeploy service role you used for the initial deployment
(not the CodePipeline service role).

6. Under Deployment type, choose In-place.

7. Under Environment configuration, choose Amazon EC2 Instances. Choose Name in the Key
box, and in the Value box, choose MyCodePipelineDemo from the list. Leave the default
configuration for Deployment settings.

Add another stage API Version 2015-07-09 85

https://console.aws.amazon.com/codedeploy

AWS CodePipeline User Guide

8. Under Deployment configuration, choose CodeDeployDefault.OneAtaTime.

9. Under Load Balancer, clear Enable load balancing.

10. Choose Create deployment group.

Add the deployment group as another stage in your pipeline

Now that you have another deployment group, you can add a stage that uses this deployment
group to deploy to the same EC2 instances you used earlier. You can use the CodePipeline console
or the AWS CLI to add this stage.

Topics

• Create a third stage (console)

• Create a third stage (CLI)

Create a third stage (console)

You can use the CodePipeline console to add a new stage that uses the new deployment group.
Because this deployment group is deploying to the EC2 instances you've already used, the deploy
action in this stage fails.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. In Name, choose the name of the pipeline you created, MyFirstPipeline.

3. On the pipeline details page, choose Edit.

4. On the Edit page, choose + Add stage to add a stage immediately after the Deploy stage.

Add another stage API Version 2015-07-09 86

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

5. In Add stage, in Stage name, enter Production. Choose Add stage.

6. In the new stage, choose + Add action group.

7. In Edit action, in Action name, enter Deploy-Second-Deployment. In Action provider,
under Deploy, choose CodeDeploy.

8. In the CodeDeploy section, in Application name, choose MyDemoApplication from the
drop-down list, as you did when you created the pipeline. In Deployment group, choose the
deployment group you just created, CodePipelineProductionFleet. In Input artifacts,
choose the input artifact from the source action. Choose Save.

9. On the Edit page, choose Save. In Save pipeline changes, choose Save.

10. Although the new stage has been added to your pipeline, a status of No executions yet is
displayed because no changes have triggered another run of the pipeline. You must manually
rerun the last revision to see how the edited pipeline runs. On the pipeline details page, choose
Release change, and then choose Release when prompted. This runs the most recent revision
available in each source location specified in a source action through the pipeline.

Alternatively, to use the AWS CLI to rerun the pipeline, from a terminal on your local Linux,
macOS, or Unix machine, or a command prompt on your local Windows machine, run the
start-pipeline-execution command, specifying the name of the pipeline. This runs the
application in your source bucket through the pipeline for a second time.

Add another stage API Version 2015-07-09 87

AWS CodePipeline User Guide

aws codepipeline start-pipeline-execution --name MyFirstPipeline

This command returns a pipelineExecutionId object.

11. Return to the CodePipeline console and in the list of pipelines, choose MyFirstPipeline to open
the view page.

The pipeline shows three stages and the state of the artifact running through those three
stages. It might take up to five minutes for the pipeline to run through all stages. You see the
deployment succeeds on the first two stages, just as before, but the Production stage shows
the Deploy-Second-Deployment action failed.

12. In the Deploy-Second-Deployment action, choose Details. You are redirected to the page for
the CodeDeploy deployment. In this case, the failure is the result of the first instance group
deploying to all of the EC2 instances, leaving no instances for the second deployment group.

Note

This failure is by design, to demonstrate what happens when there is a failure in a
pipeline stage.

Create a third stage (CLI)

Although using the AWS CLI to add a stage to your pipeline is more complex than using the
console, it provides more visibility into the structure of the pipeline.

To create a third stage for your pipeline

1. Open a terminal session on your local Linux, macOS, or Unix machine, or a command prompt
on your local Windows machine, and run the get-pipeline command to display the structure of
the pipeline you just created. For MyFirstPipeline, you would type the following command:

aws codepipeline get-pipeline --name "MyFirstPipeline"

This command returns the structure of MyFirstPipeline. The first part of the output should look
similar to the following:

{

Add another stage API Version 2015-07-09 88

AWS CodePipeline User Guide

 "pipeline": {
 "roleArn": "arn:aws:iam::80398EXAMPLE:role/AWS-CodePipeline-Service",
 "stages": [
 ...

The final part of the output includes the pipeline metadata and should look similar to the
following:

 ...
],
 "artifactStore": {
 "type": "S3"
 "location": "codepipeline-us-east-2-250656481468",
 },
 "name": "MyFirstPipeline",
 "version": 4
 },
 "metadata": {
 "pipelineArn": "arn:aws:codepipeline:us-
east-2:80398EXAMPLE:MyFirstPipeline",
 "updated": 1501626591.112,
 "created": 1501626591.112
 }
}

2. Copy and paste this structure into a plain-text editor, and save the file as pipeline.json.
For convenience, save this file in the same directory where you run the aws codepipeline
commands.

Note

You can pipe the JSON directly into a file with the get-pipeline command as follows:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

3. Copy the Deploy stage section and paste it after the first two stages. Because it is a deploy
stage, just like the Deploy stage, you use it as a template for the third stage.

4. Change the name of the stage and the deployment group details.

Add another stage API Version 2015-07-09 89

AWS CodePipeline User Guide

The following example shows the JSON you add to the pipeline.json file after the Deploy
stage. Edit the emphasized elements with new values. Remember to include a comma to
separate the Deploy and Production stage definitions.

,
{
 "name": "Production",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyApp"
 }
],
 "name": "Deploy-Second-Deployment",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "CodePipelineDemoApplication",
 "DeploymentGroupName": "CodePipelineProductionFleet"
 },
 "runOrder": 1
 }
]
}

5. If you are working with the pipeline structure retrieved using the get-pipeline command,
you must remove the metadata lines from the JSON file. Otherwise, the update-pipeline
command cannot use it. Remove the "metadata": { } lines and the "created",
"pipelineARN", and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",

Add another stage API Version 2015-07-09 90

AWS CodePipeline User Guide

 "updated": "date"
 }

Save the file.

6. Run the update-pipeline command, specifying the pipeline JSON file, similar to the following:

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the updated pipeline.

Important

Be sure to include file:// before the file name. It is required in this command.

7. Run the start-pipeline-execution command, specifying the name of the pipeline. This runs the
application in your source bucket through the pipeline for a second time.

aws codepipeline start-pipeline-execution --name MyFirstPipeline

This command returns a pipelineExecutionId object.

8. Open the CodePipeline console and choose MyFirstPipeline from the list of pipelines.

The pipeline shows three stages and the state of the artifact running through those three
stages. It might take up to five minutes for the pipeline to run through all stages. Although the
deployment succeeds on the first two stages, just as before, the Production stage shows that
the Deploy-Second-Deployment action failed.

9. In the Deploy-Second-Deployment action, choose Details to see details of the failure. You are
redirected to the details page for the CodeDeploy deployment. In this case, the failure is the
result of the first instance group deploying to all of the EC2 instances, leaving no instances for
the second deployment group.

Note

This failure is by design, to demonstrate what happens when there is a failure in a
pipeline stage.

Add another stage API Version 2015-07-09 91

AWS CodePipeline User Guide

(Optional) Step 6: Disable and enable transitions between stages in
CodePipeline

You can enable or disable the transition between stages in a pipeline. Disabling the transition
between stages allows you to manually control transitions between one stage and another. For
example, you might want to run the first two stages of a pipeline, but disable transitions to the
third stage until you are ready to deploy to production, or while you troubleshoot a problem or
failure with that stage.

To disable and enable transitions between stages in a CodePipeline pipeline

1. Open the CodePipeline console and choose MyFirstPipeline from the list of pipelines.

2. On the details page for the pipeline, choose the Disable transition button between the second
stage (Deploy) and the third stage that you added in the previous section (Production).

3. In Disable transition, enter a reason for disabling the transition between the stages, and then
choose Disable.

The arrow between stages displays an icon and color change, and the Enable transition
button.

4. Upload your sample again to the S3 bucket. Because the bucket is versioned, this change starts
the pipeline.

5. Return to the details page for your pipeline and watch the status of the stages. The pipeline
view changes to show progress and success on the first two stages, but no changes occur on
the third stage. This process might take a few minutes.

6. Enable the transition by choosing the Enable transition button between the two stages. In the
Enable transition dialog box, choose Enable. The stage starts running in a few minutes and
attempts to process the artifact that has already been run through the first two stages of the
pipeline.

Disable and enable transitions between stages API Version 2015-07-09 92

AWS CodePipeline User Guide

Note

If you want this third stage to succeed, edit the CodePipelineProductionFleet
deployment group before you enable the transition, and specify a different set of EC2
instances where the application is deployed. For more information about how to do
this, see Change deployment group settings. If you create more EC2 instances, you
might incur additional costs.

Step 7: Clean up resources

You can use some of the resources you created in this tutorial for the Tutorial: Create a four-
stage pipeline. For example, you can reuse the CodeDeploy application and deployment. You can
configure a build action with a provider such as CodeBuild, which is a fully managed build service in
the cloud. You can also configure a build action that uses a provider with a build server or system,
such as Jenkins.

However, after you complete this and any other tutorials, you should delete the pipeline and the
resources it uses, so that you are not charged for the continued use of those resources. First, delete
the pipeline, then the CodeDeploy application and its associated Amazon EC2 instances, and finally,
the S3 bucket.

To clean up the resources used in this tutorial

1. To clean up your CodePipeline resources, follow the instructions in Delete a pipeline in AWS
CodePipeline.

2. To clean up your CodeDeploy resources, follow the instructions in To clean up resources
(console).

3. To delete the S3 bucket, follow the instructions in Deleting or emptying a bucket. If you do
not intend to create more pipelines, delete the S3 bucket created for storing your pipeline
artifacts. For more information about this bucket, see CodePipeline concepts.

Tutorial: Create a simple pipeline (CodeCommit repository)

In this tutorial, you use CodePipeline to deploy code maintained in a CodeCommit repository
to a single Amazon EC2 instance. Your pipeline is triggered when you push a change to the

Clean up resources API Version 2015-07-09 93

http://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-change-deployment-group-settings.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorials-wordpress-clean-up.html#tutorials-wordpress-clean-up-console
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorials-wordpress-clean-up.html#tutorials-wordpress-clean-up-console
https://docs.aws.amazon.com/AmazonS3/latest/dev/delete-or-empty-bucket.html

AWS CodePipeline User Guide

CodeCommit repository. The pipeline deploys your changes to an Amazon EC2 instance using
CodeDeploy as the deployment service.

The pipeline has two stages:

• A source stage (Source) for your CodeCommit source action.

• A deployment stage (Deploy) for your CodeDeploy deployment action.

The easiest way to get started with AWS CodePipeline is to use the Create Pipeline wizard in the
CodePipeline console.

Note

Before you begin, make sure you've set up your Git client to work with CodeCommit. For
instructions, see Setting up for CodeCommit.

Step 1: Create a CodeCommit repository

First, you create a repository in CodeCommit. Your pipeline gets source code from this repository
when it runs. You also create a local repository where you maintain and update code before you
push it to the CodeCommit repository.

To create a CodeCommit repository

1. Open the CodeCommit console at https://console.aws.amazon.com/codecommit/.

2. In the Region selector, choose the AWS Region where you want to create the repository and
pipeline. For more information, see AWS Regions and Endpoints.

3. On the Repositories page, choose Create repository.

4. On the Create repository page, in Repository name, enter a name for your repository (for
example, MyDemoRepo).

5. Choose Create.

Create a CodeCommit repository API Version 2015-07-09 94

https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up.html
https://console.aws.amazon.com/codecommit/
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS CodePipeline User Guide

Note

The remaining steps in this tutorial use MyDemoRepo for the name of your CodeCommit
repository. If you choose a different name, be sure to use it throughout this tutorial.

To set up a local repository

In this step, you set up a local repository to connect to your remote CodeCommit repository.

Note

You are not required to set up a local repository. You can also use the console to upload
files as described in Step 2: Add sample code to your CodeCommit repository.

1. With your new repository open in the console, choose Clone URL on the top right of the
page, and then choose Clone SSH. The address to clone your Git repository is copied to your
clipboard.

2. In your terminal or command line, navigate to a local directory where you'd like your local
repository to be stored. In this tutorial, we use /tmp.

3. Run the following command to clone the repository, replacing the SSH address with the one
you copied in the previous step. This command creates a directory called MyDemoRepo. You
copy a sample application to this directory.

git clone ssh://git-codecommit.us-west-2.amazonaws.com/v1/repos/MyDemoRepo

Step 2: Add sample code to your CodeCommit repository

In this step, you download code for a sample application that was created for a CodeDeploy sample
walkthrough, and add it to your CodeCommit repository.

1. Next, download a sample and save it into a folder or directory on your local computer.

a. Choose one of the following. Choose SampleApp_Linux.zip if you want to follow the
steps in this tutorial for Linux instances.

Download, commit, and push your code API Version 2015-07-09 95

AWS CodePipeline User Guide

• If you want to deploy to Amazon Linux instances using CodeDeploy, download the
sample application here: SampleApp_Linux.zip.

• If you want to deploy to Windows Server instances using CodeDeploy, download the
sample application here: SampleApp_Windows.zip.

The sample application contains the following files for deploying with CodeDeploy:

• appspec.yml – The application specification file (AppSpec file) is a YAML-formatted
file used by CodeDeploy to manage a deployment. For more information about the
AppSpec file, see CodeDeploy AppSpec File reference in the AWS CodeDeploy User Guide.

• index.html – The index file contains the home page for the deployed sample
application.

• LICENSE.txt – The license file contains license information for the sample application.

• Files for scripts – The sample application uses scripts to write text files to a location on
your instance. One file is written for each of several CodeDeploy deployment lifecycle
events as follows:

• (Linux sample only) scripts folder – The folder contains the following shell scripts
to install dependencies and start and stop the sample application for the automated
deployment: install_dependencies, start_server, and stop_server.

• (Windows sample only) before-install.bat – This is a batch script for the
BeforeInstall deployment lifecycle event, which will run to remove old files
written during previous deployments of this sample and create a location on your
instance to which to write the new files.

b. Download the compressed (zipped) file.

2. Unzip the files from SampleApp_Linux.zip into the local directory you created earlier (for
example, /tmp/MyDemoRepo or c:\temp\MyDemoRepo).

Be sure to place the files directly into your local repository. Do not include a
SampleApp_Linux folder. On your local Linux, macOS, or Unix machine, for example, your
directory and file hierarchy should look like this:

/tmp
 #-- MyDemoRepo
 #-- appspec.yml
 #-- index.html

Download, commit, and push your code API Version 2015-07-09 96

samples/SampleApp_Linux.zip
samples/SampleApp_Windows.zip
http://www.yaml.org
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
samples/SampleApp_Linux.zip

AWS CodePipeline User Guide

 #-- LICENSE.txt
 #-- scripts
 #-- install_dependencies
 #-- start_server
 #-- stop_server

3. To upload files to your repository, use one of the following methods.

a. To use the CodeCommit console to upload your files:

i. Open the CodeCommit console, and choose your repository from the Repositories
list.

ii. Choose Add file, and then choose Upload file.

iii. Select Choose file, and then browse for your file. To add a file under a folder, choose
Create file and then enter the folder name with the file name, such as scripts/
install_dependencies. Paste the file contents into the new file.

Commit the change by entering your user name and email address.

Choose Commit changes.

iv. Repeat this step for each file.

Your repository contents should look like this:

 #-- appspec.yml
 #-- index.html
 #-- LICENSE.txt
 #-- scripts
 #-- install_dependencies
 #-- start_server
 #-- stop_server

b. To use git commands to upload your files:

i. Change directories to your local repo:

(For Linux, macOS, or Unix) cd /tmp/MyDemoRepo
(For Windows) cd c:\temp\MyDemoRepo

ii. Run the following command to stage all of your files at once:

Download, commit, and push your code API Version 2015-07-09 97

AWS CodePipeline User Guide

git add -A

iii. Run the following command to commit the files with a commit message:

git commit -m "Add sample application files"

iv. Run the following command to push the files from your local repo to your
CodeCommit repository:

git push

4. The files you downloaded and added to your local repo have now been added to the main
branch in your CodeCommit MyDemoRepo repository and are ready to be included in a
pipeline.

Step 3: Create an Amazon EC2 Linux instance and install the
CodeDeploy agent

In this step, you create the Amazon EC2 instance where you deploy a sample application. As part of
this process, create an instance role that allows install and management of the CodeDeploy agent
on the instance. The CodeDeploy agent is a software package that enables an instance to be used
in CodeDeploy deployments. You also attach policies that allow the instance to fetch files that the
CodeDeploy agent uses to deploy your application and to allow the instance to be managed by
SSM.

To create an instance role

1. Open the IAM console at https://console.aws.amazon.com/iam/).

2. From the console dashboard, choose Roles.

3. Choose Create role.

4. Under Select type of trusted entity, select AWS service. Under Choose a use case, select EC2.
Under Select your use case, choose EC2. Choose Next: Permissions.

5. Search for and select the policy named AmazonEC2RoleforAWSCodeDeploy.

6. Search for and select the policy named AmazonSSMManagedInstanceCore. Choose Next:
Tags.

7. Choose Next: Review. Enter a name for the role (for example, EC2InstanceRole).

Create an Amazon EC2 Linux instance and install the CodeDeploy agent API Version 2015-07-09 98

https://console.aws.amazon.com/iam/

AWS CodePipeline User Guide

Note

Make a note of your role name for the next step. You choose this role when you are
creating your instance.

Choose Create role.

To launch an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the side navigation, choose Instances, and select Launch instances from the top of the
page.

3. In Name, enter MyCodePipelineDemo. This assigns the instance a tag Key of Name and a tag
Value of MyCodePipelineDemo. Later, you create a CodeDeploy application that deploys the
sample application to this instance. CodeDeploy selects instances to deploy based on the tags.

4. Under Application and OS Images (Amazon Machine Image), locate the Amazon Linux AMI
option with the AWS logo, and make sure it is selected. (This AMI is described as the Amazon
Linux 2 AMI (HVM) and is labeled "Free tier eligible".)

5. Under Instance type, choose the free tier eligible t2.micro type as the hardware
configuration for your instance.

6. Under Key pair (login), choose a key pair or create one.

You can also choose Proceed without a key pair.

Note

For the purposes of this tutorial, you can proceed without a key pair. To use SSH to
connect to your instances, create or use a key pair.

7. Under Network settings, do the following.

In Auto-assign Public IP, make sure the status is Enable.

• Next to Assign a security group, choose Create a new security group.

• In the row for SSH, under Source type, choose My IP.

Create an Amazon EC2 Linux instance and install the CodeDeploy agent API Version 2015-07-09 99

https://console.aws.amazon.com/ec2/

AWS CodePipeline User Guide

• Choose Add security group, choose HTTP, and then under Source type, choose My IP.

8. Expand Advanced details. In IAM instance profile, choose the IAM role you created in the
previous procedure (for example, EC2InstanceRole).

9. Under Summary, under Number of instances, enter 1..

10. Choose Launch instance.

11. You can view the status of the launch on the Instances page. When you launch an instance, its
initial state is pending. After the instance starts, its state changes to running, and it receives
a public DNS name. (If the Public DNS column is not displayed, choose the Show/Hide icon,
and then select Public DNS.)

Step 4: Create an application in CodeDeploy

In CodeDeploy, an application is a resource that contains the software application you want to
deploy. Later, you use this application with CodePipeline to automate deployments of the sample
application to your Amazon EC2 instance.

First, you create a role that allows CodeDeploy to perform deployments. Then, you create a
CodeDeploy application.

To create a CodeDeploy service role

1. Open the IAM console at https://console.aws.amazon.com/iam/).

2. From the console dashboard, choose Roles.

3. Choose Create role.

4. Under Select trusted entity, choose AWS service. Under Use case, choose CodeDeploy.
Choose CodeDeploy from the options listed. Choose Next. The AWSCodeDeployRole
managed policy is already attached to the role.

5. Choose Next.

6. Enter a name for the role (for example, CodeDeployRole), and then choose Create role.

To create an application in CodeDeploy

1. Open the CodeDeploy console at https://console.aws.amazon.com/codedeploy.

2. If the Applications page does not appear, on the menu, choose Applications.

Create an application in CodeDeploy API Version 2015-07-09 100

https://docs.aws.amazon.com/codedeploy/latest/userguide/applications.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/codedeploy

AWS CodePipeline User Guide

3. Choose Create application.

4. In Application name, enter MyDemoApplication.

5. In Compute Platform, choose EC2/On-premises.

6. Choose Create application.

To create a deployment group in CodeDeploy

A deployment group is a resource that defines deployment-related settings like which instances to
deploy to and how fast to deploy them.

1. On the page that displays your application, choose Create deployment group.

2. In Deployment group name, enter MyDemoDeploymentGroup.

3. In Service role, choose the ARN of the service role you created earlier (for example,
arn:aws:iam::account_ID:role/CodeDeployRole).

4. Under Deployment type, choose In-place.

5. Under Environment configuration, choose Amazon EC2 Instances. In the Key field,
enter Name. In the Value field, enter the name you used to tag the instance (for example,
MyCodePipelineDemo).

6. Under Agent configuration with AWS Systems Manager, choose Now and schedule updates.
This installs the agent on the instance. The Linux instance is already configured with the SSM
agent and will now be updated with the CodeDeploy agent.

7. Under Deployment configuration, choose CodeDeployDefault.OneAtaTime.

8. Under Load Balancer, make sure Enable load balancing is not selected. You do not need to
set up a load balancer or choose a target group for this example.

9. Choose Create deployment group.

Step 5: Create your first pipeline in CodePipeline

You're now ready to create and run your first pipeline. In this step, you create a pipeline that runs
automatically when code is pushed to your CodeCommit repository.

To create a CodePipeline pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

Create your first pipeline API Version 2015-07-09 101

https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. Choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyFirstPipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

6. Leave the settings under Advanced settings at their defaults, and then choose Next.

7. In Step 2: Add source stage, in Source provider, choose CodeCommit. In Repository name,
choose the name of the CodeCommit repository you created in Step 1: Create a CodeCommit
repository. In Branch name, choose main, and then choose Next step.

After you select the repository name and branch, a message displays the Amazon CloudWatch
Events rule to be created for this pipeline.

Under Change detection options, leave the defaults. This allows CodePipeline to use Amazon
CloudWatch Events to detect changes in your source repository.

Choose Next.

8. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again. Choose Next.

Note

In this tutorial, you are deploying code that requires no build service, so you can
skip this step. However, if your source code needs to be built before it is deployed to
instances, you can configure CodeBuild in this step.

9. In Step 4: Add deploy stage, in Deploy provider, choose CodeDeploy. In Application name,
choose MyDemoApplication. In Deployment group, choose MyDemoDeploymentGroup, and
then choose Next step.

10. In Step 5: Review, review the information, and then choose Create pipeline.

11. The pipeline starts running after it is created. It downloads the code from your CodeCommit
repository and creates a CodeDeploy deployment to your EC2 instance. You can view progress

Create your first pipeline API Version 2015-07-09 102

https://console.aws.amazon.com/codepipeline/
http://aws.amazon.com/codebuild/

AWS CodePipeline User Guide

and success and failure messages as the CodePipeline sample deploys the webpage to the
Amazon EC2 instance in the CodeDeploy deployment.

Congratulations! You just created a simple pipeline in CodePipeline.

Next, you verify the results.

To verify that your pipeline ran successfully

1. View the initial progress of the pipeline. The status of each stage changes from No executions
yet to In Progress, and then to either Succeeded or Failed. The pipeline should complete the
first run within a few minutes.

2. After Succeeded is displayed for the pipeline status, in the status area for the Deploy stage,
choose CodeDeploy. This opens the CodeDeploy console. If Succeeded is not displayed see
Troubleshooting CodePipeline.

3. On the Deployments tab, choose the deployment ID. On the page for the deployment, under
Deployment lifecycle events, choose the instance ID. This opens the EC2 console.

Create your first pipeline API Version 2015-07-09 103

AWS CodePipeline User Guide

4. On the Description tab, in Public DNS, copy the address (for example, ec2-192-0-2-1.us-
west-2.compute.amazonaws.com), and then paste it into the address bar of your web
browser.

The web page displays for the sample application you downloaded and pushed to your
CodeCommit repository.

For more information about stages, actions, and how pipelines work, see CodePipeline concepts.

Step 6: Modify code in your CodeCommit repository

Your pipeline is configured to run whenever code changes are made to your CodeCommit
repository. In this step, you make changes to the HTML file that is part of the sample CodeDeploy
application in the CodeCommit repository. When you push these changes, your pipeline runs again,
and the changes you make are visible at the web address you accessed earlier.

1. Change directories to your local repo:

(For Linux, macOS, or Unix) cd /tmp/MyDemoRepo
(For Windows) cd c:\temp\MyDemoRepo

2. Use a text editor to modify the index.html file:

(For Linux or Unix)gedit index.html
(For OS X)open –e index.html
(For Windows)notepad index.html

3. Revise the contents of the index.html file to change the background color and some of the
text on the webpage, and then save the file.

<!DOCTYPE html>
<html>
<head>
 <title>Updated Sample Deployment</title>
 <style>
 body {
 color: #000000;
 background-color: #CCFFCC;
 font-family: Arial, sans-serif;
 font-size:14px;
 }

Update code in your CodeCommit repository API Version 2015-07-09 104

AWS CodePipeline User Guide

 h1 {
 font-size: 250%;
 font-weight: normal;
 margin-bottom: 0;
 }

 h2 {
 font-size: 175%;
 font-weight: normal;
 margin-bottom: 0;
 }
 </style>
</head>
<body>
 <div align="center"><h1>Updated Sample Deployment</h1></div>
 <div align="center"><h2>This application was updated using CodePipeline,
 CodeCommit, and CodeDeploy.</h2></div>
 <div align="center">
 <p>Learn more:</p>
 <p><a href="https://docs.aws.amazon.com/codepipeline/latest/
userguide/">CodePipeline User Guide</p>
 <p><a href="https://docs.aws.amazon.com/codecommit/latest/
userguide/">CodeCommit User Guide</p>
 <p><a href="https://docs.aws.amazon.com/codedeploy/latest/
userguide/">CodeDeploy User Guide</p>
 </div>
</body>
</html>

4. Commit and push your changes to your CodeCommit repository by running the following
commands, one at a time:

git commit -am "Updated sample application files"

git push

Update code in your CodeCommit repository API Version 2015-07-09 105

AWS CodePipeline User Guide

To verify your pipeline ran successfully

1. View the initial progress of the pipeline. The status of each stage changes from No executions
yet to In Progress, and then to either Succeeded or Failed. The running of the pipeline should
be complete within a few minutes.

2. After Succeeded is displayed for the action status, refresh the demo page you accessed earlier
in your browser.

The updated webpage is displayed.

Step 7: Clean up resources

You can use some of the resources you created in this tutorial for other tutorials in this guide.
For example, you can reuse the CodeDeploy application and deployment. However, after you
complete this and any other tutorials, you should delete the pipeline and the resources it uses so
that you are not charged for the continued use of those resources. First, delete the pipeline, then
the CodeDeploy application and its associated Amazon EC2 instance, and finally, the CodeCommit
repository.

To clean up the resources used in this tutorial

1. To clean up your CodePipeline resources, follow the instructions in Delete a pipeline in AWS
CodePipeline.

2. To clean up your CodeDeploy resources, follow the instructions in Clean Up Deployment
Walkthrough Resources.

3. To delete the CodeCommit repository, follow the instructions in Delete a CodeCommit
repository.

Step 8: Further reading

Learn more about how CodePipeline works:

• For more information about stages, actions, and how pipelines work, see CodePipeline concepts.

• For information about the actions you can perform using CodePipeline, see Integrations with
CodePipeline action types.

• Try this more advanced tutorial, Tutorial: Create a four-stage pipeline. It creates a multi-stage
pipeline that includes a step that builds code before it's deployed.

Clean up resources API Version 2015-07-09 106

https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorials-simple-s3alkthrough.html#tutorials-simple-s3alkthrough-clean-up
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorials-simple-s3alkthrough.html#tutorials-simple-s3alkthrough-clean-up
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-delete-repository.html
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-delete-repository.html

AWS CodePipeline User Guide

Tutorial: Create a four-stage pipeline

Now that you've created your first pipeline in Tutorial: Create a simple pipeline (S3 bucket) or
Tutorial: Create a simple pipeline (CodeCommit repository), you can start creating more complex
pipelines. This tutorial will walk you through the creation of a four-stage pipeline that uses a
GitHub repository for your source, a Jenkins build server to build the project, and a CodeDeploy
application to deploy the built code to a staging server. The following diagram shows the initial
three-stage pipeline.

After the pipeline is created, you will edit it to add a stage with a test action to test the code, also
using Jenkins.

Before you can create this pipeline, you must configure the required resources. For example, if you
want to use a GitHub repository for your source code, you must create the repository before you
can add it to a pipeline. As part of setting up, this tutorial walks you through setting up Jenkins on
an EC2 instance for demonstration purposes.

Important

Many of the actions you add to your pipeline in this procedure involve AWS resources
that you need to create before you create the pipeline. AWS resources for your source
actions must always be created in the same AWS Region where you create your pipeline.

Tutorial: Create a four-stage pipeline API Version 2015-07-09 107

AWS CodePipeline User Guide

For example, if you create your pipeline in the US East (Ohio) Region, your CodeCommit
repository must be in the US East (Ohio) Region.
You can add cross-region actions when you create your pipeline. AWS resources for cross-
region actions must be in the same AWS Region where you plan to execute the action. For
more information, see Add a cross-Region action in CodePipeline.

Before you begin this tutorial, you should have already completed the general prerequisites in
Getting started with CodePipeline.

Topics

• Step 1: Complete prerequisites

• Step 2: Create a pipeline in CodePipeline

• Step 3: Add another stage to your pipeline

• Step 4: Clean up resources

Step 1: Complete prerequisites

To integrate with Jenkins, AWS CodePipeline requires you to install the CodePipeline Plugin for
Jenkins on any instance of Jenkins you want to use with CodePipeline. You should also configure a
dedicated IAM user or role to use for permissions between your Jenkins project and CodePipeline.
The easiest way to integrate Jenkins and CodePipeline is to install Jenkins on an EC2 instance that
uses an IAM instance role that you create for Jenkins integration. In order for links in the pipeline
for Jenkins actions to successfully connect, you must configure proxy and firewall settings on the
server or EC2 instance to allow inbound connections to the port used by your Jenkins project. Make
sure you have configured Jenkins to authenticate users and enforce access control before you allow
connections on those ports (for example, 443 and 8443 if you have secured Jenkins to only use
HTTPS connections, or 80 and 8080 if you allow HTTP connections). For more information, see
Securing Jenkins.

Note

This tutorial uses a code sample and configures build steps that convert the sample
from Haml to HTML. You can download the open-source sample code from the GitHub
repository by following the steps in Copy or clone the sample into a GitHub repository. You
will need the entire sample in your GitHub repository, not just the .zip file.

Complete prerequisites API Version 2015-07-09 108

https://wiki.jenkins.io/display/JENKINS/Securing+Jenkins

AWS CodePipeline User Guide

This tutorial also assumes that:

• You are familiar with installing and administering Jenkins and creating Jenkins projects.

• You have installed Rake and the Haml gem for Ruby on the same computer or instance
that hosts your Jenkins project.

• You have set the required system environment variables so that Rake commands can be
run from the terminal or command line (for example, on Windows systems, modifying
the PATH variable to include the directory where you installed Rake).

Topics

• Copy or clone the sample into a GitHub repository

• Create an IAM role to use for Jenkins integration

• Install and configure Jenkins and the CodePipeline Plugin for Jenkins

Copy or clone the sample into a GitHub repository

To clone the sample and push to a GitHub repository

1. Download the sample code from the GitHub repository, or clone the repositories to your local
computer. There are two sample packages:

• If you will be deploying your sample to Amazon Linux, RHEL, or Ubuntu Server instances,
choose codepipeline-jenkins-aws-codedeploy_linux.zip.

• If you will be deploying your sample to Windows Server instances, choose CodePipeline-
Jenkins-AWSCodeDeploy_Windows.zip.

2. From the repository, choose Fork to clone the sample repo into a repo in your Github account.
For more information, see the GitHub documentation.

Create an IAM role to use for Jenkins integration

As a best practice, consider launching an EC2 instance to host your Jenkins server and using an IAM
role to grant the instance the required permissions for interacting with CodePipeline.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Complete prerequisites API Version 2015-07-09 109

https://github.com/awslabs/aws-codepipeline-jenkins-aws-codedeploy_linux
https://github.com/awslabs/AWSCodePipeline-Jenkins-AWSCodeDeploy_windows
https://github.com/awslabs/AWSCodePipeline-Jenkins-AWSCodeDeploy_windows
https://help.github.com/articles/create-a-repo/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS CodePipeline User Guide

2. In the IAM console, in the navigation pane, choose Roles, and then choose Create role.

3. Under Select type of trusted entity, choose AWS service. Under Choose the service that will
use this role, choose EC2. Under Select your use case, choose EC2.

4. Choose Next: Permissions. On the Attach permissions policies page, select the
AWSCodePipelineCustomActionAccess managed policy, and then choose Next: Tags.
Choose Next: Review.

5. On the Review page, in Role name, enter the name of the role to create specifically for Jenkins
integration (for example, JenkinsAccess), and then choose Create role.

When you create the EC2 instance where you will install Jenkins, in Step 3: Configure Instance
Details, make sure you choose the instance role (for example, JenkinsAccess).

For more information about instance roles and Amazon EC2, see IAM roles for Amazon EC2, Using
IAM Roles to Grant Permissions to Applications Running on Amazon EC2 Instances, and Creating a
role to delegate permissions to an AWS service.

Install and configure Jenkins and the CodePipeline Plugin for Jenkins

To install Jenkins and the CodePipeline Plugin for Jenkins

1. Create an EC2 instance where you will install Jenkins, and in Step 3: Configure Instance
Details, make sure you choose the instance role you created (for example, JenkinsAccess).
For more information about creating EC2 instances, see Launch an Amazon EC2 instance in the
Amazon EC2 User Guide.

Note

If you already have Jenkins resources you want to use, you can do so, but you must
create a special IAM user, apply the AWSCodePipelineCustomActionAccess
managed policy to that user, and then configure and use the access credentials
for that user on your Jenkins resource. If you want to use the Jenkins UI to supply
the credentials, configure Jenkins to only allow HTTPS. For more information, see
Troubleshooting CodePipeline.

2. Install Jenkins on the EC2 instance. For more information, see the Jenkins documentation for
installing Jenkins and starting and accessing Jenkins, as well as details of integration with
Jenkins in Product and service integrations with CodePipeline.

Complete prerequisites API Version 2015-07-09 110

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-usingrole-ec2instance.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-usingrole-ec2instance.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance_linux.html
https://www.jenkins.io/doc/book/installing/linux/
https://wiki.jenkins.io/JENKINS/Starting-and-Accessing-Jenkins.html

AWS CodePipeline User Guide

3. Launch Jenkins, and on the home page, choose Manage Jenkins.

4. On the Manage Jenkins page, choose Manage Plugins.

5. Choose the Available tab, and in the Filter search box, enter AWS CodePipeline. Choose
CodePipeline Plugin for Jenkins from the list and choose Download now and install after
restart.

6. On the Installing Plugins/Upgrades page, select Restart Jenkins when installation is
complete and no jobs are running.

7. Choose Back to Dashboard.

8. On the main page, choose New Item.

9. In Item Name, enter a name for the Jenkins project (for example, MyDemoProject). Choose
Freestyle project, and then choose OK.

Note

Make sure that the name for your project meets the requirements for CodePipeline. For
more information, see Quotas in AWS CodePipeline.

10. On the configuration page for the project, select the Execute concurrent builds if necessary
check box. In Source Code Management, choose AWS CodePipeline. If you have installed
Jenkins on an EC2 instance and configured the AWS CLI with the profile for the IAM user you
created for integration between CodePipeline and Jenkins, leave all of the other fields empty.

11. Choose Advanced, and in Provider, enter a name for the provider of the action as it will
appear in CodePipeline (for example, MyJenkinsProviderName). Make sure that this name
is unique and easy to remember. You will use it when you add a build action to your pipeline
later in this tutorial, and again when you add a test action.

Note

This action name must meet the naming requirements for actions in CodePipeline. For
more information, see Quotas in AWS CodePipeline.

12. In Build Triggers, clear any check boxes, and then select Poll SCM. In Schedule, enter five
asterisks separated by spaces, as follows:

* * * * *

Complete prerequisites API Version 2015-07-09 111

AWS CodePipeline User Guide

This polls CodePipeline every minute.

13. In Build, choose Add build step. Choose Execute shell (Amazon Linux, RHEL, or Ubuntu
Server) Execute batch command (Windows Server), and then enter the following:

rake

Note

Make sure that your environment is configured with the variables and settings required
to run rake; otherwise, the build will fail.

14. Choose Add post-build action, and then choose AWS CodePipeline Publisher. Choose Add,
and in Build Output Locations, leave the location blank. This configuration is the default. It
will create a compressed file at the end of the build process.

15. Choose Save to save your Jenkins project.

Step 2: Create a pipeline in CodePipeline

In this part of the tutorial, you create the pipeline using the Create Pipeline wizard.

To create a CodePipeline automated release process

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. If necessary, use the Region selector to change the Region to the one where your pipeline
resources are located. For example, if you created resources for the previous tutorial in us-
east-2, make sure that the Region selector is set to US East (Ohio).

For more information about the Regions and endpoints available for CodePipeline, see AWS
CodePipeline endpoints and quotas.

3. On the Welcome page, Getting started page, or the Pipelines page, choose Create pipeline.

4. On the Step 1: Choose pipeline settings page, in Pipeline name, enter the name for your
pipeline.

5. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

Create a pipeline API Version 2015-07-09 112

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
https://docs.aws.amazon.com/general/latest/gr/codepipeline.html
https://docs.aws.amazon.com/general/latest/gr/codepipeline.html

AWS CodePipeline User Guide

6. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

7. Leave the settings under Advanced settings at their defaults, and choose Next.

8. On the Step 2: Add source stage page, in Source provider, choose GitHub.

9. Under Connection, choose an existing connection or create a new one. To create or manage a
connection for your GitHub source action, see GitHub connections.

10. In Step 3: Add build stage, choose Add Jenkins. In Provider name, enter the name
of the action you provided in the CodePipeline Plugin for Jenkins (for example
MyJenkinsProviderName). This name must exactly match the name in the CodePipeline
Plugin for Jenkins. In Server URL, enter the URL of the EC2 instance where Jenkins is
installed. In Project name, enter the name of the project you created in Jenkins, such as
MyDemoProject, and then choose Next.

11. In Step 4: Add deploy stage, reuse the CodeDeploy application and deployment group
you created in Tutorial: Create a simple pipeline (S3 bucket). In Deploy provider, choose
CodeDeploy. In Application name, enter CodePipelineDemoApplication, or choose the
refresh button, and then choose the application name from the list. In Deployment group,
enter CodePipelineDemoFleet, or choose it from the list, and then choose Next.

Note

You can use your own CodeDeploy resources or create new ones, but you might incur
additional costs.

12. In Step 5: Review, review the information, and then choose Create pipeline.

13. The pipeline automatically starts and runs the sample through the pipeline. You can view
progress and success and failure messages as the pipeline builds the Haml sample to
HTML and deploys it a webpage to each of the Amazon EC2 instances in the CodeDeploy
deployment.

Step 3: Add another stage to your pipeline

Now you will add a test stage and then a test action to that stage that uses the Jenkins test
included in the sample to determine whether the webpage has any content. This test is for
demonstration purposes only.

Add more stages API Version 2015-07-09 113

AWS CodePipeline User Guide

Note

If you did not want to add another stage to your pipeline, you could add a test action to the
Staging stage of the pipeline, before or after the deployment action.

Add a test stage to your pipeline

Topics

• Look up the IP address of an instance

• Create a Jenkins project for testing the deployment

• Create a fourth stage

Look up the IP address of an instance

To verify the IP address of an instance where you deployed your code

1. After Succeeded is displayed for the pipeline status, in the status area for the Staging stage,
choose Details.

2. In the Deployment Details section, in Instance ID, choose the instance ID of one of the
successfully deployed instances.

3. Copy the IP address of the instance (for example, 192.168.0.4). You will use this IP address
in your Jenkins test.

Create a Jenkins project for testing the deployment

To create the Jenkins project

1. On the instance where you installed Jenkins, open Jenkins and from the main page, choose
New Item.

2. In Item Name, enter a name for the Jenkins project (for example, MyTestProject). Choose
Freestyle project, and then choose OK.

Add more stages API Version 2015-07-09 114

AWS CodePipeline User Guide

Note

Make sure that the name for your project meets the CodePipeline requirements. For
more information, see Quotas in AWS CodePipeline.

3. On the configuration page for the project, select the Execute concurrent builds if necessary
check box. In Source Code Management, choose AWS CodePipeline. If you have installed
Jenkins on an EC2 instance and configured the AWS CLI with the profile for the IAM user you
created for integration between CodePipeline and Jenkins, leave all the other fields empty.

Important

If you are configuring a Jenkins project and it is not installed on an Amazon EC2
instance, or it is installed on an EC2 instance that is running a Windows operating
system, complete the fields as required by your proxy host and port settings, and
provide the credentials of the IAM user or role you configured for integration between
Jenkins and CodePipeline.

4. Choose Advanced, and in Category, choose Test.

5. In Provider, enter the same name you used for the build project (for example,
MyJenkinsProviderName). You will use this name when you add the test action to your
pipeline later in this tutorial.

Note

This name must meet the CodePipeline naming requirements for actions. For more
information, see Quotas in AWS CodePipeline.

6. In Build Triggers, clear any check boxes, and then select Poll SCM. In Schedule, enter five
asterisks separated by spaces, as follows:

* * * * *

This polls CodePipeline every minute.

Add more stages API Version 2015-07-09 115

AWS CodePipeline User Guide

7. In Build, choose Add build step. If you are deploying to Amazon Linux, RHEL, or Ubuntu
Server instances, choose Execute shell . Then enter the following, where the IP address is the
address of the EC2 instance you copied earlier:

TEST_IP_ADDRESS=192.168.0.4 rake test

If you are deploying to Windows Server instances, choose Execute batch command, and then
enter the following, where the IP address is the address of the EC2 instance you copied earlier:

set TEST_IP_ADDRESS=192.168.0.4 rake test

Note

The test assumes a default port of 80. If you want to specify a different port, add a test
port statement, as follows:

TEST_IP_ADDRESS=192.168.0.4 TEST_PORT=8000 rake test

8. Choose Add post-build action, and then choose AWS CodePipeline Publisher. Do not choose
Add.

9. Choose Save to save your Jenkins project.

Create a fourth stage

To add a stage to your pipeline that includes the Jenkins test action

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. In Name, choose the name of the pipeline you created, MySecondPipeline.

3. On the pipeline details page, choose Edit.

4. On the Edit page, choose + Stage to add a stage immediately after the Build stage.

5. In the name field for the new stage, enter a name (for example, Testing), and then choose +
Add action group.

6. In Action name, enter MyJenkinsTest-Action. In Test provider, choose the provider name
you specified in Jenkins (for example, MyJenkinsProviderName). In Project name, enter the

Add more stages API Version 2015-07-09 116

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

name of the project you created in Jenkins (for example, MyTestProject). In Input artifacts,
choose the artifact from the Jenkins build whose default name is BuildArtifact, and then
choose Done.

Note

Because the Jenkins test action operates on the application built in the Jenkins build
step, use the build artifact for the input artifact to the test action.

For more information about input and output artifacts and the structure of pipelines, see
CodePipeline pipeline structure reference.

7. On the Edit page, choose Save pipeline changes. In the Save pipeline changes dialog box,
choose Save and continue.

8. Although the new stage has been added to your pipeline, a status of No executions yet is
displayed for that stage because no changes have triggered another run of the pipeline. To run
the sample through the revised pipeline, on the pipeline details page, choose Release change.

The pipeline view shows the stages and actions in your pipeline and the state of the revision
running through those four stages. The time it takes for the pipeline to run through all stages
will depend on the size of the artifacts, the complexity of your build and test actions, and
other factors.

Step 4: Clean up resources

After you complete this tutorial, you should delete the pipeline and the resources it uses so you
will not be charged for continued use of those resources. If you do not intend to keep using
CodePipeline, delete the pipeline, then the CodeDeploy application and its associated Amazon
EC2 instances, and finally, the Amazon S3 bucket used to store artifacts. You should also consider
whether to delete other resources, such as the GitHub repository, if you do not intend to keep
using them.

To clean up the resources used in this tutorial

1. Open a terminal session on your local Linux, macOS, or Unix machine, or a command prompt
on your local Windows machine, and run the delete-pipeline command to delete the pipeline
you created. For MySecondPipeline, you would enter the following command:

Clean up resources API Version 2015-07-09 117

AWS CodePipeline User Guide

aws codepipeline delete-pipeline --name "MySecondPipeline"

This command returns nothing.

2. To clean up your CodeDeploy resources, follow the instructions in Cleaning Up.

3. To clean up your instance resources, delete the EC2 instance where you installed Jenkins. For
more information, see Clean up your instance.

4. If you do not intend to create more pipelines or use CodePipeline again, delete the Amazon S3
bucket used to store artifacts for your pipeline. To delete the bucket, follow the instructions in
Deleting a bucket.

5. If you do not intend to use the other resources for this pipeline again, consider deleting them
by following the guidance for that particular resource. For example, if you want to delete the
GitHub repository, follow the instructions in Deleting a repository on the GitHub website.

Tutorial: Set up a CloudWatch Events rule to receive email
notifications for pipeline state changes

After you set up a pipeline in AWS CodePipeline, you can set up a CloudWatch Events rule to
send notifications whenever there are changes to the execution state of your pipelines, or in the
stages or actions in your pipelines. For more information on using CloudWatch Events to set up
notifications for pipeline state changes, see Monitoring CodePipeline events.

In this tutorial, you configure a notification to send an email when a pipeline's state changes to
FAILED. This tutorial uses an input transformer method when creating the CloudWatch Events rule.
It transforms the message schema details to deliver the message in human-readable text.

Note

As you create the resources for this tutorial, such as the Amazon SNS notification and the
CloudWatch Events rule, make sure the resources are created in the same AWS Region as
your pipeline.

Topics

• Step 1: Set up an email notification using Amazon SNS

Tutorial: Set up a CloudWatch Events rule to receive email notifications for pipeline state changes API Version 2015-07-09 118

http://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-walkthrough.html#getting-started-walkthrough-clean-up
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-clean-up-your-instance.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/DeletingaBucket.html
https://help.github.com/articles/deleting-a-repository/

AWS CodePipeline User Guide

• Step 2: Create a rule and add the SNS topic as the target

• Step 3: Clean up resources

Step 1: Set up an email notification using Amazon SNS

Amazon SNS coordinates use of topics to deliver messages to subscribing endpoints or clients.
Use Amazon SNS to create a notification topic and then subscribe to the topic using your email
address. The Amazon SNS topic will be added as a target to your CloudWatch Events rule. For more
information, see the Amazon Simple Notification Service Developer Guide .

Create or identify a topic in Amazon SNS. CodePipeline will use CloudWatch Events to send
notifications to this topic through Amazon SNS. To create a topic:

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns.

2. Choose Create topic.

3. In the Create new topic dialog box, for Topic name, type a name for the topic (for example,
PipelineNotificationTopic).

4. Choose Create topic.

For more information, see Create a Topic in the Amazon SNS Developer Guide.

Subscribe one or more recipients to the topic to receive email notifications. To subscribe a recipient
to a topic:

1. In the Amazon SNS console, from the Topics list, select the check box next to your new topic.
Choose Actions, Subscribe to topic.

2. In the Create subscription dialog box, verify that an ARN appears in Topic ARN.

3. For Protocol, choose Email.

Set up an email notification using Amazon SNS API Version 2015-07-09 119

https://docs.aws.amazon.com/sns/latest/dg/
https://console.aws.amazon.com/sns
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

AWS CodePipeline User Guide

4. For Endpoint, type the recipient's full email address.

5. Choose Create Subscription.

6. Amazon SNS sends a subscription confirmation email to the recipient. To receive email
notifications, the recipient must choose the Confirm subscription link in this email. After
the recipient clicks the link, if successfully subscribed, Amazon SNS displays a confirmation
message in the recipient's web browser.

For more information, see Subscribe to a Topic in the Amazon SNS Developer Guide.

Step 2: Create a rule and add the SNS topic as the target

Create a CloudWatch Events notification rule with CodePipeline as the event source.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Events.

3. Choose Create rule. Under Event source, choose AWS CodePipeline. For Event Type, choose
Pipeline Execution State Change.

4. Choose Specific state(s), and choose FAILED.

5. Choose Edit to open the JSON editor for the Event Pattern Preview pane. Add the pipeline
parameter with the name of your pipeline as shown in the following example for a pipeline
named "myPipeline."

You can copy the event pattern here and paste it into the console:

{
 "source": [
 "aws.codepipeline"
],
 "detail-type": [
 "CodePipeline Pipeline Execution State Change"
],
 "detail": {
 "state": [
 "FAILED"
],
 "pipeline": [
 "myPipeline"
]

Create a CloudWatch Events notification rule for CodePipeline API Version 2015-07-09 120

https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html
https://console.aws.amazon.com/cloudwatch/

AWS CodePipeline User Guide

 }
}

6. For Targets, choose Add target.

7. In the list of targets, choose SNS topic. For Topic, enter the topic you created.

8. Expand Configure input, and then choose Input Transformer.

9. In the Input Path box, type the following key-value pairs.

{ "pipeline" : "$.detail.pipeline" }

In the Input Template box, type the following:

"The Pipeline <pipeline> has failed."

10. Choose Configure details.

11. On the Configure rule details page, type a name and an optional description. For State, leave
the Enabled box selected.

12. Choose Create rule.

13. Confirm that CodePipeline is now sending build notifications. For example, check to see if the
build notification emails are now in your inbox.

14. To change a rule's behavior, in the CloudWatch console, choose the rule, and then choose
Actions, Edit. Edit the rule, choose Configure details, and then choose Update rule.

To stop using a rule to send build notifications, in the CloudWatch console, choose the rule,
and then choose Actions, Disable.

To delete a rule, in the CloudWatch console, choose the rule, and then choose Actions, Delete.

Step 3: Clean up resources

After you complete this tutorial, you should delete the pipeline and the resources it uses so you will
not be charged for continued use of those resources.

For information about how to clean up the SNS notification and delete the Amazon CloudWatch
Events rule, see Clean Up (Unsubscribe from an Amazon SNS Topic) and reference DeleteRule in
the Amazon CloudWatch Events API Reference.

Clean up resources API Version 2015-07-09 121

http://docs.aws.amazon.com/sns/latest/dg/CleanUp.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/

AWS CodePipeline User Guide

Tutorial: Create a pipeline that builds and tests your Android
app with AWS Device Farm

You can use AWS CodePipeline to configure a continuous integration flow in which your app is
built and tested each time a commit is pushed. This tutorial shows how to create and configure a
pipeline to build and test your Android app with source code in a GitHub repository. The pipeline
detects the arrival of a new GitHub commit and then uses CodeBuild to build the app and Device
Farm to test it.

Important

Many of the actions you add to your pipeline in this procedure involve AWS resources
that you need to create before you create the pipeline. AWS resources for your source
actions must always be created in the same AWS Region where you create your pipeline.
For example, if you create your pipeline in the US East (Ohio) Region, your CodeCommit
repository must be in the US East (Ohio) Region.
You can add cross-region actions when you create your pipeline. AWS resources for cross-
region actions must be in the same AWS Region where you plan to execute the action. For
more information, see Add a cross-Region action in CodePipeline.

You can try this out using your existing Android app and test definitions, or you can use the sample
app and test definitions provided by Device Farm.

Note

Before you begin

1. Sign in to the AWS Device Farm console and choose Create a new project.

2. Choose your project. In the browser, copy the URL of your new project. The URL contains the
project ID.

3. Copy and retain this project ID. You use it when you create your pipeline in CodePipeline.

Here is an example URL for a project. To extract the project ID, copy the value after projects/.
In this example, the project ID is eec4905f-98f8-40aa-9afc-4c1cfexample.

Tutorial: Build and test an Android app with AWS Device Farm API Version 2015-07-09 122

https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/welcome.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/welcome.html
https://github.com/aws-samples/aws-device-farm-sample-app-for-android
https://github.com/aws-samples/aws-device-farm-sample-app-for-android

AWS CodePipeline User Guide

https://<region-URL>/devicefarm/home?region=us-west-2#/projects/
eec4905f-98f8-40aa-9afc-4c1cfexample/runs

Configure CodePipeline to use your Device Farm tests

1.
Add and commit a file called buildspec.yml in the root of your app code, and push it to your
repository. CodeBuild uses this file to perform commands and access artifacts required to build
your app.

version: 0.2

phases:
 build:
 commands:
 - chmod +x ./gradlew
 - ./gradlew assembleDebug
artifacts:
 files:
 - './android/app/build/outputs/**/*.apk'
 discard-paths: yes

2. (Optional) If you use Calabash or Appium to test your app, add the test definition file to your
repository. In a later step, you can configure Device Farm to use the definitions to carry out
your test suite.

If you use Device Farm built-in tests, you can skip this step.

3. To create your pipeline and add a source stage, do the following:

a. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

b. Choose Create pipeline. On the Step 1: Choose pipeline settings page, in Pipeline name,
enter the name for your pipeline.

c. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2;
however, note that pipeline types differ in characteristics and price. For more information,
see Pipeline types.

Configure CodePipeline to use your Device Farm tests API Version 2015-07-09 123

https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types-intro.html
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

d. In Service role, leave New service role selected, and leave Role name unchanged. You can
also choose to use an existing service role, if you have one.

Note

If you use a CodePipeline service role that was created before July 2018, you
need to add permissions for Device Farm. To do this, open the IAM console, find
the role, and then add the following permissions to the role's policy. For more
information, see Add permissions to the CodePipeline service role.

{
 "Effect": "Allow",
 "Action": [
 "devicefarm:ListProjects",
 "devicefarm:ListDevicePools",
 "devicefarm:GetRun",
 "devicefarm:GetUpload",
 "devicefarm:CreateUpload",
 "devicefarm:ScheduleRun"
],
 "Resource": "*"
}

e. Leave the settings under Advanced settings at their defaults, and then choose Next.

f. On the Step 2: Add source stage page, in Source provider, choose GitHub.

g. Under Connection, choose an existing connection or create a new one. To create or
manage a connection for your GitHub source action, see GitHub connections.

h. In Repository, choose the source repository.

i. In Branch, choose the branch that you want to use.

j. Leave the remaining defaults for the source action. Choose Next.

4. In Add build stage, add a build stage:

a. In Build provider, choose AWS CodeBuild. Allow Region to default to the pipeline Region.

b. Choose Create project.

c. In Project name, enter a name for this build project.

d. In Environment image, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime, choose Standard. For Image, choose aws/codebuild/standard:5.0.
Configure CodePipeline to use your Device Farm tests API Version 2015-07-09 124

AWS CodePipeline User Guide

CodeBuild uses this OS image, which has Android Studio installed, to build your app.

f. For Service role, choose your existing CodeBuild service role or create a new one.

g. For Build specifications, choose Use a buildspec file.

h. Choose Continue to CodePipeline. This returns to the CodePipeline console and creates a
CodeBuild project that uses the buildspec.yml in your repository for configuration. The
build project uses a service role to manage AWS service permissions. This step might take
a couple of minutes.

i. Choose Next.

5. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again. Choose Next.

6. On Step 5: Review, choose Create pipeline. You should see a diagram that shows the source
and build stages.

7. Add a Device Farm test action to your pipeline:

a. In the upper right, choose Edit.

b. At the bottom of the diagram, choose + Add stage. In Stage name, enter a name, such as
Test.

c. Choose + Add action group.

d. In Action name, enter a name.

e. In Action provider, choose AWS Device Farm. Allow Region to default to the pipeline
Region.

f. In Input artifacts, choose the input artifact that matches the output artifact of the stage
that comes before the test stage, such as BuildArtifact.

In the AWS CodePipeline console, you can find the name of the output artifact for each
stage by hovering over the information icon in the pipeline diagram. If your pipeline tests
your app directly from the Source stage, choose SourceArtifact. If the pipeline includes a
Build stage, choose BuildArtifact.

g. In ProjectId, enter your Device Farm project ID. Use the steps at the start of this tutorial to
retrieve your project ID.

h. In DevicePoolArn, enter the ARN for the device pool. To get the available device pool
ARNs for the project, including the ARN for Top Devices, use the AWS CLI to enter the
following command:

Configure CodePipeline to use your Device Farm tests API Version 2015-07-09 125

AWS CodePipeline User Guide

aws devicefarm list-device-pools --arn arn:aws:devicefarm:us-
west-2:account_ID:project:project_ID

i. In AppType, enter Android.

The following is a list of valid values for AppType:

• iOS

• Android

• Web

j. In App, enter the path of the compiled app package. The path is relative to the root of the
input artifact for the test stage. Typically, this path is similar to app-release.apk.

k. In TestType, enter your type of test, and then in Test, enter the path of the test definition
file. The path is relative to the root of the input artifact for your test.

The following is a list of valid values for TestType:

• APPIUM_JAVA_JUNIT

• APPIUM_JAVA_TESTNG

• APPIUM_NODE

• APPIUM_RUBY

• APPIUM_PYTHON

• APPIUM_WEB_JAVA_JUNIT

• APPIUM_WEB_JAVA_TESTNG

• APPIUM_WEB_NODE

• APPIUM_WEB_RUBY

• APPIUM_WEB_PYTHON

• BUILTIN_FUZZ

• INSTRUMENTATION

• XCTEST

• XCTEST_UI

Configure CodePipeline to use your Device Farm tests API Version 2015-07-09 126

AWS CodePipeline User Guide

Note

Custom environment nodes are not supported.

l. In the remaining fields, provide the configuration that is appropriate for your test and
application type.

m. (Optional) In Advanced, provide configuration information for your test run.

n. Choose Save.

o. On the stage you are editing, choose Done. In the AWS CodePipeline pane, choose Save,
and then choose Save on the warning message.

p. To submit your changes and start a pipeline build, choose Release change, and then
choose Release.

Tutorial: Create a pipeline that tests your iOS app with AWS
Device Farm

You can use AWS CodePipeline to easily configure a continuous integration flow in which your
app is tested each time the source bucket changes. This tutorial shows you how to create and
configure a pipeline to test your built iOS app from an S3 bucket. The pipeline detects the arrival
of a saved change through Amazon CloudWatch Events, and then uses Device Farm to test the built
application.

Important

Many of the actions you add to your pipeline in this procedure involve AWS resources
that you need to create before you create the pipeline. AWS resources for your source
actions must always be created in the same AWS Region where you create your pipeline.
For example, if you create your pipeline in the US East (Ohio) Region, your CodeCommit
repository must be in the US East (Ohio) Region.
You can add cross-region actions when you create your pipeline. AWS resources for cross-
region actions must be in the same AWS Region where you plan to execute the action. For
more information, see Add a cross-Region action in CodePipeline.

Tutorial: Test an iOS app with AWS Device Farm API Version 2015-07-09 127

https://docs.aws.amazon.com/devicefarm/latest/developerguide/welcome.html

AWS CodePipeline User Guide

You can try this out using your existing iOS app, or you can use the sample iOS app.

Note

Before you begin

1. Sign in to the AWS Device Farm console and choose Create a new project.

2. Choose your project. In the browser, copy the URL of your new project. The URL contains the
project ID.

3. Copy and retain this project ID. You use it when you create your pipeline in CodePipeline.

Here is an example URL for a project. To extract the project ID, copy the value after projects/.
In this example, the project ID is eec4905f-98f8-40aa-9afc-4c1cfexample.

https://<region-URL>/devicefarm/home?region=us-west-2#/projects/
eec4905f-98f8-40aa-9afc-4c1cfexample/runs

Configure CodePipeline to use your Device Farm tests (Amazon S3
example)

1. Create or use an S3 bucket with versioning enabled. Follow the instructions in Step 1: Create
an S3 bucket for your application to create an S3 bucket.

2. In the Amazon S3 console for your bucket, choose Upload, and follow the instructions to
upload your .zip file.

Your sample application must be packaged in a .zip file.

3. To create your pipeline and add a source stage, do the following:

a. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

b. Choose Create pipeline. On the Step 1: Choose pipeline settings page, in Pipeline name,
enter the name for your pipeline.

Configure CodePipeline to use your Device Farm tests (Amazon S3 example) API Version 2015-07-09 128

samples/s3-ios-test-1.zip
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

c. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2;
however, note that pipeline types differ in characteristics and price. For more information,
see Pipeline types.

d. In Service role, leave New service role selected, and leave Role name unchanged. You can
also choose to use an existing service role, if you have one.

Note

If you use a CodePipeline service role that was created before July 2018, you must
add permissions for Device Farm. To do this, open the IAM console, find the role,
and then add the following permissions to the role's policy. For more information,
see Add permissions to the CodePipeline service role.

{
 "Effect": "Allow",
 "Action": [
 "devicefarm:ListProjects",
 "devicefarm:ListDevicePools",
 "devicefarm:GetRun",
 "devicefarm:GetUpload",
 "devicefarm:CreateUpload",
 "devicefarm:ScheduleRun"
],
 "Resource": "*"
}

e. Leave the settings under Advanced settings at their defaults, and then choose Next.

f. On the Step 2: Add source stage page, in Source provider, choose Amazon S3.

g. In Amazon S3 location, enter the bucket, such as my-storage-bucket, and object key,
such as s3-ios-test-1.zip for your .zip file.

h. Choose Next.

4. In Build, create a placeholder build stage for your pipeline. This allows you to create the
pipeline in the wizard. After you use the wizard to create your two-stage pipeline, you no
longer need this placeholder build stage. After the pipeline is completed, this second stage is
deleted and the new test stage is added in step 5.

a. In Build provider, choose Add Jenkins. This build selection is a placeholder. It is not used.

Configure CodePipeline to use your Device Farm tests (Amazon S3 example) API Version 2015-07-09 129

AWS CodePipeline User Guide

b. In Provider name, enter a name. The name is a placeholder. It is not used.

c. In Server URL, enter text. The text is a placeholder. It is not used.

d. In Project name, enter a name. The name is a placeholder. It is not used.

e. Choose Next.

f. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again.

g. On Step 5: Review, choose Create pipeline. You should see a diagram that shows the
source and build stages.

5. Add a Device Farm test action to your pipeline as follows:

a. In the upper right, choose Edit.

b. Choose Edit stage. Choose Delete. This deletes the placeholder stage now that you no
longer need it for pipeline creation.

c. At the bottom of the diagram, choose + Add stage.

d. In Stage name, enter a name for the stage, such as Test, and then choose Add stage.

e. Choose + Add action group.

f. In Action name, enter a name, such as DeviceFarmTest.

Configure CodePipeline to use your Device Farm tests (Amazon S3 example) API Version 2015-07-09 130

AWS CodePipeline User Guide

g. In Action provider, choose AWS Device Farm. Allow Region to default to the pipeline
Region.

h. In Input artifacts, choose the input artifact that matches the output artifact of the stage
that comes before the test stage, such as SourceArtifact.

In the AWS CodePipeline console, you can find the name of the output artifact for each
stage by hovering over the information icon in the pipeline diagram. If your pipeline tests
your app directly from the Source stage, choose SourceArtifact. If the pipeline includes a
Build stage, choose BuildArtifact.

i. In ProjectId, choose your Device Farm project ID. Use the steps at the start of this tutorial
to retrieve your project ID.

j. In DevicePoolArn, enter the ARN for the device pool. To get the available device pool
ARNs for the project, including the ARN for Top Devices, use the AWS CLI to enter the
following command:

aws devicefarm list-device-pools --arn arn:aws:devicefarm:us-
west-2:account_ID:project:project_ID

k. In AppType, enter iOS.

The following is a list of valid values for AppType:

• iOS

• Android

• Web

l. In App, enter the path of the compiled app package. The path is relative to the root of the
input artifact for the test stage. Typically, this path is similar to ios-test.ipa.

m. In TestType, enter your type of test, and then in Test, enter the path of the test definition
file. The path is relative to the root of the input artifact for your test.

If you're using one of the built-in Device Farm tests, enter the type of test configured
in your Device Farm project, such as BUILTIN_FUZZ. In FuzzEventCount, enter a time in
milliseconds, such as 6000. In FuzzEventThrottle, enter a time in milliseconds, such as 50.

If you aren't using one of the built-in Device Farm tests, enter your type of test, and then
in Test, enter the path of the test definition file. The path is relative to the root of the
input artifact for your test.

Configure CodePipeline to use your Device Farm tests (Amazon S3 example) API Version 2015-07-09 131

AWS CodePipeline User Guide

The following is a list of valid values for TestType:

• APPIUM_JAVA_JUNIT

• APPIUM_JAVA_TESTNG

• APPIUM_NODE

• APPIUM_RUBY

• APPIUM_PYTHON

• APPIUM_WEB_JAVA_JUNIT

• APPIUM_WEB_JAVA_TESTNG

• APPIUM_WEB_NODE

• APPIUM_WEB_RUBY

• APPIUM_WEB_PYTHON

• BUILTIN_FUZZ

• INSTRUMENTATION

• XCTEST

• XCTEST_UI

Note

Custom environment nodes are not supported.

n. In the remaining fields, provide the configuration that is appropriate for your test and
application type.

o. (Optional) In Advanced, provide configuration information for your test run.

p. Choose Save.

q. On the stage you are editing, choose Done. In the AWS CodePipeline pane, choose Save,
and then choose Save on the warning message.

r. To submit your changes and start a pipeline execution, choose Release change, and then
choose Release.

Configure CodePipeline to use your Device Farm tests (Amazon S3 example) API Version 2015-07-09 132

AWS CodePipeline User Guide

Tutorial: Create a pipeline that deploys to Service Catalog

Service Catalog enables you to create and provision products based on AWS CloudFormation
templates. This tutorial shows you how to create and configure a pipeline to deploy your product
template to Service Catalog and deliver changes you have made in your source repository (already
created in GitHub, CodeCommit, or Amazon S3).

Note

When Amazon S3 is the source provider for your pipeline, you must upload to your bucket
all source files packaged as a single .zip file. Otherwise, the source action fails.

First, you create a product in Service Catalog, and then you create a pipeline in AWS CodePipeline.
This tutorial provides two options for setting up the deployment configuration:

• Create a product in Service Catalog and upload a template file to your source repository. Provide
product version and deployment configuration in the CodePipeline console (without a separate
configuration file). See Option 1: Deploy to Service Catalog without a configuration file.

Note

The template file can be created in YAML or JSON format.

• Create a product in Service Catalog and upload a template file to your source repository. Provide
product version and deployment configuration in a separate configuration file. See Option 2:
Deploy to Service Catalog using a configuration file.

Option 1: Deploy to Service Catalog without a configuration file

In this example, you upload the sample AWS CloudFormation template file for an S3 bucket, and
then create your product in Service Catalog. Next, you create your pipeline and specify deployment
configuration in the CodePipeline console.

Step 1: Upload sample template file to source repository

1. Open a text editor. Create a sample template by pasting the following into the file. Save the
file as S3_template.json.

Tutorial: Create a pipeline that deploys to Service Catalog API Version 2015-07-09 133

AWS CodePipeline User Guide

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "CloudFormation Sample Template S3_Bucket: Sample template showing
 how to create a privately accessible S3 bucket. **WARNING** This template creates
 an S3 bucket. You will be billed for the resources used if you create a stack from
 this template.",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {}
 }
 },
 "Outputs": {
 "BucketName": {
 "Value": {
 "Ref": "S3Bucket"
 },
 "Description": "Name of Amazon S3 bucket to hold website content"
 }
 }
}

This template allows AWS CloudFormation to create an S3 bucket that can be used by Service
Catalog.

2. Upload the S3_template.json file to your AWS CodeCommit repository.

Step 2: Create a product in Service Catalog

1. As an IT administrator, sign in to the Service Catalog console, go to the Products page, and
then choose Upload new product.

2. On the Upload new product page, complete the following:

a. In Product name, enter the name you want to use for your new product.

b. In Description, enter the product catalog description. This description is shown in the
product listing to help the user choose the correct product.

c. In Provided by, enter the name of your IT department or administrator.

d. Choose Next.

Option 1: Deploy to Service Catalog without a configuration file API Version 2015-07-09 134

AWS CodePipeline User Guide

3. (Optional) In Enter support details, enter contact information for product support, and choose
Next.

4. In Version details, complete the following:

a. Choose Upload a template file. Browse for your S3_template.json file and upload it.

b. In Version title, enter the name of the product version (for example, devops S3 v2).

c. In Description, enter details that distinguish this version from other versions.

d. Choose Next.

5. On the Review page, verify that the information is correct, and then choose Create.

6. On the Products page, in the browser, copy the URL of your new product. This contains
the product ID. Copy and retain this product ID. You use it when you create your pipeline in
CodePipeline.

Here is the URL for a product named my-product. To extract the product ID, copy the value
between the equals sign (=) and the ampersand (&). In this example, the product ID is prod-
example123456.

https://<region-URL>/servicecatalog/home?region=<region>#/admin-products?
productCreated=prod-example123456&createdProductTitle=my-product

Note

Copy the URL for your product before you navigate away from the page. Once you
navigate away from this page, you must use the CLI to obtain your product ID.

After a few seconds, your product appears on the Products page. You might need to refresh
your browser to see the product in the list.

Step 3: Create your pipeline

1. To name your pipeline and select parameters for your pipeline, do the following:

a. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

b. Choose Getting started. Choose Create pipeline, and then enter a name for your pipeline.
Option 1: Deploy to Service Catalog without a configuration file API Version 2015-07-09 135

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

c. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2;
however, note that pipeline types differ in characteristics and price. For more information,
see Pipeline types.

d. In Service role, choose New service role to allow CodePipeline to create a service role in
IAM.

e. Leave the settings under Advanced settings at their defaults, and then choose Next.

2. To add a source stage, do the following:

a. In Source provider, choose AWS CodeCommit.

b. In Repository name and Branch name, enter the repository and branch you want to use
for your source action.

c. Choose Next.

3. In Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

4. In Add deploy stage, complete the following:

a. In Deploy provider, choose AWS Service Catalog.

b. For deployment configuration, choose Enter deployment configuration.

c. In Product ID, paste the product ID you copied from the Service Catalog console.

d. In Template file path, enter the relative path where the template file is stored.

e. In Product type, choose AWS CloudFormation template.

f. In Product version name, enter the name of the product version you specified in Service
Catalog. If you want to have the template change deployed to a new product version,
enter a product version name that has not been used for any previous product version in
the same product.

g. For Input artifact, choose the source input artifact.

h. Choose Next.

5. In Review, review your pipeline settings, and then choose Create.

6. After your pipeline runs successfully, on the deployment stage, choose Details. This opens your
product in Service Catalog.

Option 1: Deploy to Service Catalog without a configuration file API Version 2015-07-09 136

AWS CodePipeline User Guide

7. Under your product information, choose your version name to open the product template.
View the template deployment.

Step 4: Push a change and verify your product in Service Catalog

1. View your pipeline in the CodePipeline console, and on your source stage, choose Details. Your
source AWS CodeCommit repository opens in the console. Choose Edit, and make a change in
the file (for example, to the description).

"Description": "Name of Amazon S3 bucket to hold and version website content"

2. Commit and push your change. Your pipeline starts after you push the change. When the run
of the pipeline is complete, on the deployment stage, choose Details to open your product in
Service Catalog.

3. Under your product information, choose the new version name to open the product template.
View the deployed template change.

Option 1: Deploy to Service Catalog without a configuration file API Version 2015-07-09 137

AWS CodePipeline User Guide

Option 2: Deploy to Service Catalog using a configuration file

In this example, you upload the sample AWS CloudFormation template file for an S3 bucket, and
then create your product in Service Catalog. You also upload a separate configuration file that
specifies your deployment configuration. Next, you create your pipeline and specify the location of
your configuration file.

Step 1: Upload sample template file to source repository

1. Open a text editor. Create a sample template by pasting the following into the file. Save the
file as S3_template.json.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "CloudFormation Sample Template S3_Bucket: Sample template showing
 how to create a privately accessible S3 bucket. **WARNING** This template creates
 an S3 bucket. You will be billed for the resources used if you create a stack from
 this template.",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {}
 }
 },
 "Outputs": {
 "BucketName": {
 "Value": {
 "Ref": "S3Bucket"
 },
 "Description": "Name of Amazon S3 bucket to hold website content"
 }
 }
}

This template allows AWS CloudFormation to create an S3 bucket that can be used by Service
Catalog.

2. Upload the S3_template.json file to your AWS CodeCommit repository.

Option 2: Deploy to Service Catalog using a configuration file API Version 2015-07-09 138

AWS CodePipeline User Guide

Step 2: Create your product deployment configuration file

1. Open a text editor. Create the configuration file for your product. The configuration file is used
to define your Service Catalog deployment parameters/preferences. You use this file when you
create your pipeline.

This sample provides a ProductVersionName of "devops S3 v2" and a
ProductVersionDescription of MyProductVersionDescription. If you want to have
the template change deployed to a new product version, just enter a product version name
that has not been used for any previous product version in the same product.

Save the file as sample_config.json.

{
 "SchemaVersion": "1.0",
 "ProductVersionName": "devops S3 v2",
 "ProductVersionDescription": "MyProductVersionDescription",
 "ProductType": "CLOUD_FORMATION_TEMPLATE",
 "Properties": {
 "TemplateFilePath": "/S3_template.json"
 }
}

This file creates the product version information for you each time your pipeline runs.

2. Upload the sample_config.json file to your AWS CodeCommit repository. Make sure you
upload this file to your source repository.

Step 3: Create a product in Service Catalog

1. As an IT administrator, sign in to the Service Catalog console, go to the Products page, and
then choose Upload new product.

2. On the Upload new product page, complete the following:

a. In Product name, enter the name you want to use for your new product.

b. In Description, enter the product catalog description. This description appears in the
product listing to help the user choose the correct product.

c. In Provided by, enter the name of your IT department or administrator.

d. Choose Next.
Option 2: Deploy to Service Catalog using a configuration file API Version 2015-07-09 139

AWS CodePipeline User Guide

3. (Optional) In Enter support details, enter product support contact information, and then
choose Next.

4. In Version details, complete the following:

a. Choose Upload a template file. Browse for your S3_template.json file and upload it.

b. In Version title, enter the name of the product version (for example, "devops S3 v2").

c. In Description, enter details that distinguish this version from other versions.

d. Choose Next.

5. On the Review page, verify that the information is correct, and then choose Confirm and
upload.

6. On the Products page, in the browser, copy the URL of your new product. This contains
the product ID. Copy and retain this product ID. You use when you create your pipeline in
CodePipeline.

Here is the URL for a product named my-product. To extract the product ID, copy the value
between the equals sign (=) and the ampersand (&). In this example, the product ID is prod-
example123456.

https://<region-URL>/servicecatalog/home?region=<region>#/admin-products?
productCreated=prod-example123456&createdProductTitle=my-product

Note

Copy the URL for your product before you navigate away from the page. Once you
navigate away from this page, you must use the CLI to obtain your product ID.

After a few seconds, your product appears on the Products page. You might need to refresh
your browser to see the product in the list.

Step 4: Create your pipeline

1. To name your pipeline and select parameters for your pipeline, do the following:

a. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

Option 2: Deploy to Service Catalog using a configuration file API Version 2015-07-09 140

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

b. Choose Getting started. Choose Create pipeline, and then enter a name for your pipeline.

c. In Service role, choose New service role to allow CodePipeline to create a service role in
IAM.

d. Leave the settings under Advanced settings at their defaults, and then choose Next.

2. To add a source stage, do the following:

a. In Source provider, choose AWS CodeCommit.

b. In Repository name and Branch name, enter the repository and branch you want to use
for your source action.

c. Choose Next.

3. In Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

4. In Add deploy stage, complete the following:

a. In Deploy provider, choose AWS Service Catalog.

b. Choose Use configuration file.

c. In Product ID, paste the product ID you copied from the Service Catalog console.

d. In Configuration file path, enter the file path of the configuration file in your repository.

e. Choose Next.

5. In Review, review your pipeline settings, and then choose Create.

6. After your pipeline runs successfully, on your deployment stage, choose Details to open your
product in Service Catalog.

Option 2: Deploy to Service Catalog using a configuration file API Version 2015-07-09 141

AWS CodePipeline User Guide

7. Under your product information, choose your version name to open the product template.
View the template deployment.

Step 5: Push a change and verify your product in Service Catalog

1. View your pipeline in the CodePipeline console, and on the source stage, choose Details. Your
source AWS CodeCommit repository opens in the console. Choose Edit, and then make a
change in the file (for example, to the description).

"Description": "Name of Amazon S3 bucket to hold and version website content"

2. Commit and push your change. Your pipeline starts after you push the change. When the run
of the pipeline is complete, on the deployment stage, choose Details to open your product in
Service Catalog.

3. Under your product information, choose the new version name to open the product template.
View the deployed template change.

Option 2: Deploy to Service Catalog using a configuration file API Version 2015-07-09 142

AWS CodePipeline User Guide

Tutorial: Create a pipeline with AWS CloudFormation

The examples provide sample templates that allow you to use AWS CloudFormation to create a
pipeline that deploys your application to your instances each time the source code changes. The
sample template creates a pipeline that you can view in AWS CodePipeline. The pipeline detects
the arrival of a saved change through Amazon CloudWatch Events.

Topics

• Example 1: Create an AWS CodeCommit pipeline with AWS CloudFormation

• Example 2: Create an Amazon S3 pipeline with AWS CloudFormation

Example 1: Create an AWS CodeCommit pipeline with AWS
CloudFormation

This walkthrough shows you how to use the AWS CloudFormation console to create infrastructure
that includes a pipeline connected to a CodeCommit source repository. In this tutorial, you use the
provided sample template file to create your resource stack, which includes your artifact store,
pipeline, and change-detection resources, such as your Amazon CloudWatch Events rule. After
you create your resource stack in AWS CloudFormation, you can view your pipeline in the AWS
CodePipeline console. The pipeline is a two-stage pipeline with a CodeCommit source stage and a
CodeDeploy deployment stage.

Prerequisites:

You must have created the following resources to use with the AWS CloudFormation sample
template:

• You must have created a source repository. You can use the AWS CodeCommit repository you
created in Tutorial: Create a simple pipeline (CodeCommit repository).

• You must have created a CodeDeploy application and deployment group. You can use the
CodeDeploy resources you created in Tutorial: Create a simple pipeline (CodeCommit repository).

• Choose one of these links to download the sample AWS CloudFormation template file for
creating a pipeline: YAML | JSON

Unzip the file and place it on your local computer.

• Download the SampleApp_Linux.zip sample application file.

Tutorial: Create a pipeline with AWS CloudFormation API Version 2015-07-09 143

samples/codepipeline-codecommit-events-yaml.zip
samples/codepipeline-codecommit-events-json.zip
samples/SampleApp_Linux.zip

AWS CodePipeline User Guide

Create your pipeline in AWS CloudFormation

1. Unzip the files from SampleApp_Linux.zip and upload the files to your AWS CodeCommit
repository. You must upload the unzipped files to the root directory of your repository. You
can follow the instructions in Step 2: Add sample code to your CodeCommit repository to push
the files to your repository.

2. Open the AWS CloudFormation console and choose Create Stack. Choose With new resources
(standard).

3. Under Specify template, choose Upload a template. Select Choose file and then choose the
template file from your local computer. Choose Next.

4. In Stack name, enter a name for your pipeline. Parameters specified by the sample template
are displayed. Enter the following parameters:

a. In ApplicationName, enter the name of your CodeDeploy application.

b. In BetaFleet, enter the name of your CodeDeploy deployment group.

c. In BranchName, enter the repository branch you want to use.

d. In RepositoryName, enter the name of your CodeCommit source repository.

5. Choose Next. Accept the defaults on the following page, and then choose Next.

6. In Capabilities, select I acknowledge that AWS CloudFormation might create IAM resources,
and then choose Create stack.

7. After your stack creation is complete, view the event list to check for any errors.

Troubleshooting

The IAM user who is creating the pipeline in AWS CloudFormation might require additional
permissions to create resources for the pipeline. The following permissions are required in
the policy to allow AWS CloudFormation to create the required Amazon CloudWatch Events
resources for the CodeCommit pipeline:

{
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:PutEvents",
 "events:PutTargets",
 "events:DeleteRule",
 "events:RemoveTargets",

Example 1: Create an AWS CodeCommit pipeline with AWS CloudFormation API Version 2015-07-09 144

samples/SampleApp_Linux.zip

AWS CodePipeline User Guide

 "events:DescribeRule"
],
 "Resource": "resource_ARN"
}

8. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

Under Pipelines, choose your pipeline and choose View. The diagram shows your pipeline
source and deployment stages.

Note

To view the pipeline that was created, find the Logical ID column under the Resources
tab for your stack in AWS CloudFormation. Note the name in the Physical ID column
for the pipeline. In CodePipeline, you can view the pipeline with the same Physical ID
(pipeline name) in the Region where you created your stack.

9. In your source repository, commit and push a change. Your change-detection resources pick up
the change, and your pipeline starts.

Example 2: Create an Amazon S3 pipeline with AWS CloudFormation

This walkthrough shows you how to use the AWS CloudFormation console to create infrastructure
that includes a pipeline connected to an Amazon S3 source bucket. In this tutorial, you use the
provided sample template file to create your resource stack, which includes your source bucket,
artifact store, pipeline, and change-detection resources, such as your Amazon CloudWatch Events
rule and CloudTrail trail. After you create your resource stack in AWS CloudFormation, you can
view your pipeline in the AWS CodePipeline console. The pipeline is a two-stage pipeline with an
Amazon S3 source stage and a CodeDeploy deployment stage.

Prerequisites:

You must have the following resources to use with the AWS CloudFormation sample template:

• You must have created the Amazon EC2 instances, where you installed the CodeDeploy agent
on the instances. You must have created a CodeDeploy application and deployment group. Use
the Amazon EC2 and CodeDeploy resources you created in Tutorial: Create a simple pipeline
(CodeCommit repository).

Example 2: Create an Amazon S3 pipeline with AWS CloudFormation API Version 2015-07-09 145

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

• Choose the following links to download the sample AWS CloudFormation template files for
creating a pipeline with an Amazon S3 source:

• Download the sample template for your pipeline: YAML | JSON

• Download the sample template for your CloudTrail bucket and trail: YAML | JSON

• Unzip the files and place them on your local computer.

• Download the sample application from SampleApp_Linux.zip.

Save the .zip file on your local computer. You upload the .zip file after the stack is created.

Create your pipeline in AWS CloudFormation

1. Open the AWS CloudFormation console, and choose Create Stack. Choose With new resources
(standard).

2. In Choose a template, choose Upload a template. Select Choose file, and then choose the
template file from your local computer. Choose Next.

3. In Stack name, enter a name for your pipeline. Parameters specified by the sample template
are displayed. Enter the following parameters:

a. In ApplicationName, enter the name of your CodeDeploy application. You can replace the
DemoApplication default name.

b. In BetaFleet, enter the name of your CodeDeploy deployment group. You can replace the
DemoFleet default name.

c. In SourceObjectKey, enter SampleApp_Linux.zip. You upload this file to your bucket
after the template creates the bucket and pipeline.

4. Choose Next. Accept the defaults on the following page, and then choose Next.

5. In Capabilities, select I acknowledge that AWS CloudFormation might create IAM resources,
and then choose Create stack.

6. After your stack creation is complete, view the event list to check for any errors.

Troubleshooting

The IAM userwho is creating the pipeline in AWS CloudFormation might require additional
permissions to create resources for the pipeline. The following permissions are required in
the policy to allow AWS CloudFormation to create the required Amazon CloudWatch Events
resources for the Amazon S3 pipeline:

Example 2: Create an Amazon S3 pipeline with AWS CloudFormation API Version 2015-07-09 146

samples/codepipeline-s3-events-yaml.zip
samples/codepipeline-s3-events-json.zip
samples/codepipeline-s3-cloudtrail-yaml.zip
samples/codepipeline-s3-cloudtrail-json.zip
samples/SampleApp_Linux.zip

AWS CodePipeline User Guide

{
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:PutEvents",
 "events:PutTargets",
 "events:DeleteRule",
 "events:RemoveTargets",
 "events:DescribeRule"
],
 "Resource": "resource_ARN"
}

7. In AWS CloudFormation, in the Resources tab for your stack, view the resources that were
created for your stack.

Note

To view the pipeline that was created, find the Logical ID column under the Resources
tab for your stack in AWS CloudFormation. Note the name in the Physical ID column
for the pipeline. In CodePipeline, you can view the pipeline with the same Physical ID
(pipeline name) in the Region where you created your stack.

Choose the S3 bucket with a sourcebucket label in the name, such as s3-cfn-
codepipeline-sourcebucket-y04EXAMPLE. Do not choose the pipeline artifact bucket.

The source bucket is empty because the resource is newly created by AWS CloudFormation.
Open the Amazon S3 console and locate your sourcebucket bucket. Choose Upload, and
follow the instructions to upload your SampleApp_Linux.zip .zip file.

Note

When Amazon S3 is the source provider for your pipeline, you must upload to your
bucket all source files packaged as a single .zip file. Otherwise, the source action fails.

8. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

Example 2: Create an Amazon S3 pipeline with AWS CloudFormation API Version 2015-07-09 147

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

Under Pipelines, choose your pipeline, and then choose View. The diagram shows your
pipeline source and deployment stages.

9. Complete the steps in the following procedure to create your AWS CloudTrail resources.

Create your AWS CloudTrail resources in AWS CloudFormation

1. Open the AWS CloudFormation console, and choose Create Stack.

2. In Choose a template, choose Upload a template to Amazon S3. Choose Browse, and then
select the template file for the AWS CloudTrail resources from your local computer. Choose
Next.

3. In Stack name, enter a name for your resource stack. Parameters specified by the sample
template are displayed. Enter the following parameters:

• In SourceObjectKey, accept the default for the sample application's zip file.

4. Choose Next. Accept the defaults on the following page, and then choose Next.

5. In Capabilities, select I acknowledge that AWS CloudFormation might create IAM resources,
and then choose Create.

6. After your stack creation is complete, view the event list to check for any errors.

The following permissions are required in the policy to allow AWS CloudFormation to create
the required CloudTrail resources for the Amazon S3 pipeline:

{
 "Effect": "Allow",
 "Action": [
 "cloudtrail:CreateTrail",
 "cloudtrail:DeleteTrail",
 "cloudtrail:StartLogging",
 "cloudtrail:StopLogging",
 "cloudtrail:PutEventSelectors"
],
 "Resource": "resource_ARN"
}

7. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

Example 2: Create an Amazon S3 pipeline with AWS CloudFormation API Version 2015-07-09 148

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

Under Pipelines, choose your pipeline, and then choose View. The diagram shows your
pipeline source and deployment stages.

8. In your source bucket, commit and push a change. Your change-detection resources pick up the
change and your pipeline starts.

Tutorial: Create a pipeline that uses variables from AWS
CloudFormation deployment actions

In this tutorial, you use the AWS CodePipeline console to create a pipeline with a deployment
action. When the pipeline runs, the template creates a stack and also creates an outputs file.
Outputs generated by the stack template are the variables generated by the AWS CloudFormation
action in CodePipeline.

In the action where you create the stack from the template, you designate a variable namespace.
The variables produced by the outputs file can then be consumed by subsequent actions. In
this example, you create a change set based on the StackName variable produced by the AWS
CloudFormation action. After a manual approval, you execute the change set and then create a
delete stack action that deletes the stack based on the StackName variable.

Topics

• Prerequisites: Create an AWS CloudFormation service role and a CodeCommit repository

• Step 1: Download, edit, and upload the sample AWS CloudFormation template

• Step 2: Create your pipeline

• Step 3: Add an AWS CloudFormation deployment action to create the change set

• Step 4: Add a manual approval action

• Step 5: Add a CloudFormation deployment action to execute the change set

• Step 6: Add a CloudFormation deployment action to delete the stack

Prerequisites: Create an AWS CloudFormation service role and a
CodeCommit repository

You must already have the following:

Tutorial: Create a pipeline that uses variables from AWS CloudFormation deployment actions API Version 2015-07-09 149

AWS CodePipeline User Guide

• A CodeCommit repository. You can use the AWS CodeCommit repository you created in Tutorial:
Create a simple pipeline (CodeCommit repository).

• This example creates an Amazon DocumentDB stack from a template. You must use AWS Identity
and Access Management (IAM) to create an AWS CloudFormation service role with the following
permissions for Amazon DocumentDB.

"rds:DescribeDBClusters",
"rds:CreateDBCluster",
"rds:DeleteDBCluster",
"rds:CreateDBInstance"

Step 1: Download, edit, and upload the sample AWS CloudFormation
template

Download the sample AWS CloudFormation template file and upload it to your CodeCommit
repository.

1. Navigate to the sample template page for your Region. For example, the page for us-west-2 is
at https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-
services-us-west-2.html. Under Amazon DocumentDB, download the template for an Amazon
DocumentDB Cluster. The file name is documentdb_full_stack.yaml.

2. Unzip the documentdb_full_stack.yaml file, and open it in a text editor. Make the
following changes.

a. For this example, add the following Purpose: parameter to your Parameters section in
the template.

 Purpose:
 Type: String
 Default: testing
 AllowedValues:
 - testing
 - production
 Description: The purpose of this instance.

b. For this example, add the following StackName output to your Outputs: section in the
template.

Step 1: Download, edit, and upload the sample AWS CloudFormation template API Version 2015-07-09 150

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-services-us-west-2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/sample-templates-services-us-west-2.html

AWS CodePipeline User Guide

 StackName:
 Value: !Ref AWS::StackName

3. Upload the template file to your AWS CodeCommit repository. You must upload the unzipped
and edited template file to the root directory of your repository.

To use the CodeCommit console to upload your files:

a. Open the CodeCommit console, and choose your repository from the Repositories list.

b. Choose Add file, and then choose Upload file.

c. Select Choose file, and then browse for your file. Commit the change by entering your
user name and email address. Choose Commit changes.

Your file should look like this at the root level in your repository:

documentdb_full_stack.yaml

Step 2: Create your pipeline

In this section, you create a pipeline with the following actions:

• A source stage with a CodeCommit action where the source artifact is your template file.

• A deployment stage with an AWS CloudFormation deployment action.

Each action in the source and deployment stages created by the wizard is assigned a variable
namespace, SourceVariables and DeployVariables, respectively. Because the actions have a
namespace assigned, the variables configured in this example are available to downstream actions.
For more information, see Variables.

To create a pipeline with the wizard

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyCFNDeployPipeline.

Step 2: Create your pipeline API Version 2015-07-09 151

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, do one of the following:

• Choose New service role to allow CodePipeline to create a service role in IAM.

• Choose Existing service role. In Role name, choose your service role from the list.

6. In Artifact store:

a. Choose Default location to use the default artifact store, such as the Amazon S3 artifact
bucket designated as the default, for your pipeline in the Region you selected for your
pipeline.

b. Choose Custom location if you already have an artifact store, such as an Amazon S3
artifact bucket, in the same Region as your pipeline.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.
When you create or edit a pipeline, you must have an artifact bucket in the pipeline
Region and one artifact bucket per AWS Region where you are running an action.
For more information, see Input and output artifacts and CodePipeline pipeline
structure reference.

Choose Next.

7. In Step 2: Add source stage:

a. In Source provider, choose AWS CodeCommit.

b. In Repository name, choose the name of the CodeCommit repository that you created in
Step 1: Create a CodeCommit repository.

c. In Branch name, choose the name of the branch that contains your latest code update.

After you select the repository name and branch, the Amazon CloudWatch Events rule to be
created for this pipeline is displayed.

Step 2: Create your pipeline API Version 2015-07-09 152

AWS CodePipeline User Guide

Choose Next.

8. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

Choose Next.

9. In Step 4: Add deploy stage:

a. In Action name, choose Deploy. In Deploy provider, choose CloudFormation.

b. In Action mode, choose Create or update a stack.

c. In Stack name, enter a name for the stack. This is the name of the stack that the template
will create.

d. In Output file name, enter a name for the outputs file, such as outputs. This is the name
of the file that will be created by the action after the stack is created.

e. Expand Advanced. Under Parameter overrides, enter your template overrides as key-
value pairs. For example, this template requires the following overrides.

{
"DBClusterName": "MyDBCluster",
"DBInstanceName": "MyDBInstance",
"MasterUser": "UserName",
"MasterPassword": "Password",
"DBInstanceClass": "db.r4.large",
"Purpose": "testing"}

If you don't enter overrides, the template creates a stack with default values.

f. Choose Next.

g. Choose Create pipeline. Allow your pipeline to run. Your two-stage pipeline is complete
and ready for the additional stages to be added.

Step 3: Add an AWS CloudFormation deployment action to create the
change set

Create a next action in your pipeline that will allow AWS CloudFormation to create the change set
before the manual approval action.

Step 3: Add an AWS CloudFormation deployment action to create the change set API Version 2015-07-09 153

AWS CodePipeline User Guide

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

Under Pipelines, choose your pipeline and choose View. The diagram shows your pipeline
source and deployment stages.

2. Choose to edit the pipeline, or continue to display the pipeline in Edit mode.

3. Choose to edit the Deploy stage.

4. Add a deployment action that will create a change set for the stack that was created in the
previous action. You add this action after the existing action in the stage.

a. In Action name, enter Change_Set. In Action provider, choose AWS CloudFormation .

b. In Input artifact, choose SourceArtifact.

c. In Action mode, choose Create or replace a change set.

d. In Stack name, enter the variable syntax as shown. This is the name of the stack that the
change set is created for, where the default namespace DeployVariables is assigned to
the action.

#{DeployVariables.StackName}

e. In Change set name, enter the name of the change set.

my-changeset

f. In Parameter Overrides, change the Purpose parameter from testing to production.

{
"DBClusterName": "MyDBCluster",
"DBInstanceName": "MyDBInstance",
"MasterUser": "UserName",
"MasterPassword": "Password",
"DBInstanceClass": "db.r4.large",
"Purpose": "production"}

g. Choose Done to save the action.

Step 4: Add a manual approval action

Create a manual approval action in your pipeline.

Step 4: Add a manual approval action API Version 2015-07-09 154

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

1. Choose to edit the pipeline, or continue to display the pipeline in Edit mode.

2. Choose to edit the Deploy stage.

3. Add a manual approval action after the deploy action that creates the change set. This action
allows you to verify the created resource change set in AWS CloudFormation before the
pipeline executes the change set.

Step 5: Add a CloudFormation deployment action to execute the
change set

Create a next action in your pipeline that allows AWS CloudFormation to execute the change set
after the manual approval action.

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

Under Pipelines, choose your pipeline and choose View. The diagram shows your pipeline
source and deployment stages.

2. Choose to edit the pipeline, or continue to display the pipeline in Edit mode.

3. Choose to edit the Deploy stage.

4. Add a deployment action that will execute the change set that was approved in the previous
manual action:

a. In Action name, enter Execute_Change_Set. In Action provider, choose AWS
CloudFormation.

b. In Input artifact, choose SourceArtifact.

c. In Action mode, choose Execute a change set.

d. In Stack name, enter the variable syntax as shown. This is the name of the stack that the
change set is created for.

#{DeployVariables.StackName}

e. In Change set name, enter the name of the change set you created in the previous action.

my-changeset

f. Choose Done to save the action.

g. Continue the pipeline run.

Step 5: Add a CloudFormation deployment action to execute the change set API Version 2015-07-09 155

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

Step 6: Add a CloudFormation deployment action to delete the stack

Create a final action in your pipeline that allows AWS CloudFormation to get the stack name from
the variable in the outputs file and delete the stack.

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

Under Pipelines, choose your pipeline and choose View. The diagram shows your pipeline
source and deployment stages.

2. Choose to edit the pipeline.

3. Choose to edit the Deploy stage.

4. Add a deployment action that will delete the stack:

a. In Action name, choose DeleteStack. In Deploy provider, choose CloudFormation.

b. In Action mode, choose Delete a stack.

c. In Stack name, enter the variable syntax as shown. This is the name of the stack that the
action will delete.

d. Choose Done to save the action.

e. Choose Save to save the pipeline.

The pipeline runs when it is saved.

Tutorial: Amazon ECS Standard Deployment with CodePipeline

This tutorial helps you to create a complete, end-to-end continuous deployment (CD) pipeline with
Amazon ECS with CodePipeline.

Note

This tutorial is for the Amazon ECS standard deployment action for CodePipeline. For
a tutorial that uses the Amazon ECS to CodeDeploy blue/green deployment action in
CodePipeline, see Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-
CodeDeploy deployment.

Step 6: Add a CloudFormation deployment action to delete the stack API Version 2015-07-09 156

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

Prerequisites

There are a few resources that you must have in place before you can use this tutorial to create
your CD pipeline. Here are the things you need to get started:

Note

All of these resources should be created within the same AWS Region.

• A source control repository (this tutorial uses CodeCommit) with your Dockerfile and application
source. For more information, see Create a CodeCommit Repository in the AWS CodeCommit User
Guide.

• A Docker image repository (this tutorial uses Amazon ECR) that contains an image you have built
from your Dockerfile and application source. For more information, see Creating a Repository
and Pushing an Image in the Amazon Elastic Container Registry User Guide.

• An Amazon ECS task definition that references the Docker image hosted in your image
repository. For more information, see Creating a Task Definition in the Amazon Elastic Container
Service Developer Guide.

Important

The Amazon ECS standard deployment action for CodePipeline creates its own revision
of the task definition based on the the revision used by the Amazon ECS service. If you
create new revisions for the task definition without updating the Amazon ECS service,
the deployment action will ignore those revisions.

Below is a sample task definition used for this tutorial. The value you use for name and family
will be used in the next step for your build specification file.

{
 "ipcMode": null,
 "executionRoleArn": "role_ARN",
 "containerDefinitions": [
 {
 "dnsSearchDomains": null,
 "environmentFiles": null,

Prerequisites API Version 2015-07-09 157

https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-create-repository.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html

AWS CodePipeline User Guide

 "logConfiguration": {
 "logDriver": "awslogs",
 "secretOptions": null,
 "options": {
 "awslogs-group": "/ecs/hello-world",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "entryPoint": null,
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "command": null,
 "linuxParameters": null,
 "cpu": 0,
 "environment": [],
 "resourceRequirements": null,
 "ulimits": null,
 "dnsServers": null,
 "mountPoints": [],
 "workingDirectory": null,
 "secrets": null,
 "dockerSecurityOptions": null,
 "memory": null,
 "memoryReservation": 128,
 "volumesFrom": [],
 "stopTimeout": null,
 "image": "image_name",
 "startTimeout": null,
 "firelensConfiguration": null,
 "dependsOn": null,
 "disableNetworking": null,
 "interactive": null,
 "healthCheck": null,
 "essential": true,
 "links": null,
 "hostname": null,
 "extraHosts": null,
 "pseudoTerminal": null,

Prerequisites API Version 2015-07-09 158

AWS CodePipeline User Guide

 "user": null,
 "readonlyRootFilesystem": null,
 "dockerLabels": null,
 "systemControls": null,
 "privileged": null,
 "name": "hello-world"
 }
],
 "placementConstraints": [],
 "memory": "2048",
 "taskRoleArn": null,
 "compatibilities": [
 "EC2",
 "FARGATE"
],
 "taskDefinitionArn": "ARN",
 "family": "hello-world",
 "requiresAttributes": [],
 "pidMode": null,
 "requiresCompatibilities": [
 "FARGATE"
],
 "networkMode": "awsvpc",
 "cpu": "1024",
 "revision": 1,
 "status": "ACTIVE",
 "inferenceAccelerators": null,
 "proxyConfiguration": null,
 "volumes": []
}

• An Amazon ECS cluster that is running a service that uses your previously mentioned task
definition. For more information, see Creating a Cluster and Creating a Service in the Amazon
Elastic Container Service Developer Guide.

After you have satisfied these prerequisites, you can proceed with the tutorial and create your CD
pipeline.

Prerequisites API Version 2015-07-09 159

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service.html

AWS CodePipeline User Guide

Step 1: Add a Build Specification File to Your Source Repository

This tutorial uses CodeBuild to build your Docker image and push the image to Amazon ECR. Add a
buildspec.yml file to your source code repository to tell CodeBuild how to do that. The example
build specification below does the following:

• Pre-build stage:

• Log in to Amazon ECR.

• Set the repository URI to your ECR image and add an image tag with the first seven characters
of the Git commit ID of the source.

• Build stage:

• Build the Docker image and tag the image both as latest and with the Git commit ID.

• Post-build stage:

• Push the image to your ECR repository with both tags.

• Write a file called imagedefinitions.json in the build root that has your Amazon ECS
service's container name and the image and tag. The deployment stage of your CD pipeline
uses this information to create a new revision of your service's task definition, and then it
updates the service to use the new task definition. The imagedefinitions.json file is
required for the ECS job worker.

Paste this sample text to create your buildspec.yml file, and replace the values for your image
and task definition. This text uses the example account ID 111122223333.

version: 0.2

phases:
 pre_build:
 commands:
 - echo Logging in to Amazon ECR...
 - aws --version
 - aws ecr get-login-password --region $AWS_DEFAULT_REGION | docker login --
username AWS --password-stdin 111122223333.dkr.ecr.us-west-2.amazonaws.com
 - REPOSITORY_URI=012345678910.dkr.ecr.us-west-2.amazonaws.com/hello-world
 - COMMIT_HASH=$(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | cut -c 1-7)
 - IMAGE_TAG=${COMMIT_HASH:=latest}
 build:
 commands:
 - echo Build started on `date`

Step 1: Add a Build Specification File to Your Source Repository API Version 2015-07-09 160

AWS CodePipeline User Guide

 - echo Building the Docker image...
 - docker build -t $REPOSITORY_URI:latest .
 - docker tag $REPOSITORY_URI:latest $REPOSITORY_URI:$IMAGE_TAG
 post_build:
 commands:
 - echo Build completed on `date`
 - echo Pushing the Docker images...
 - docker push $REPOSITORY_URI:latest
 - docker push $REPOSITORY_URI:$IMAGE_TAG
 - echo Writing image definitions file...
 - printf '[{"name":"hello-world","imageUri":"%s"}]' $REPOSITORY_URI:$IMAGE_TAG >
 imagedefinitions.json
artifacts:
 files: imagedefinitions.json

The build specification was written for the sample task definition that was provided in
Prerequisites, used by the Amazon ECS service for this tutorial. The REPOSITORY_URI value
corresponds to the image repository (without any image tag), and the hello-world value near
the end of the file corresponds to the container name in the service's task definition.

To add a buildspec.yml file to your source repository

1. Open a text editor and then copy and paste the build specification above into a new file.

2. Replace the REPOSITORY_URI value (012345678910.dkr.ecr.us-
west-2.amazonaws.com/hello-world) with your Amazon ECR repository URI (without
any image tag) for your Docker image. Replace hello-world with the container name in your
service's task definition that references your Docker image.

3. Commit and push your buildspec.yml file to your source repository.

a. Add the file.

git add .

b. Commit the change.

git commit -m "Adding build specification."

c. Push the commit.

git push

Step 1: Add a Build Specification File to Your Source Repository API Version 2015-07-09 161

AWS CodePipeline User Guide

Step 2: Creating Your Continuous Deployment Pipeline

Use the CodePipeline wizard to create your pipeline stages and connect your source repository to
your ECS service.

To create your pipeline

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the Welcome page, choose Create pipeline.

If this is your first time using CodePipeline, an introductory page appears instead of Welcome.
Choose Get Started Now.

3. On the Step 1: Name page, for Pipeline name, type the name for your pipeline. For this
tutorial, the pipeline name is hello-world.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types. Choose Next.

5. On the Step 2: Add source stage page, for Source provider, choose AWS CodeCommit.

a. For Repository name, choose the name of the CodeCommit repository to use as the
source location for your pipeline.

b. For Branch name, choose the branch to use and choose Next.

6. On the Step 3: Add build stage page, for Build provider choose AWS CodeBuild, and then
choose Create project.

a. For Project name, choose a unique name for your build project. For this tutorial, the
project name is hello-world.

b. For Environment image, choose Managed image.

c. For Operating system, choose Amazon Linux 2.

d. For Runtime(s), choose Standard.

e. For Image, choose aws/codebuild/amazonlinux2-x86_64-standard:3.0.

f. For Image version and Environment type, use the default values.

g. Select Enable this flag if you want to build Docker images or want your builds to get
elevated privileges.

h. Deselect CloudWatch logs. You might need to expand Advanced.
Step 2: Creating Your Continuous Deployment Pipeline API Version 2015-07-09 162

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

i. Choose Continue to CodePipeline.

j. Choose Next.

Note

The wizard creates a CodeBuild service role for your build project, called
codebuild-build-project-name-service-role. Note this role name, as you add
Amazon ECR permissions to it later.

7. On the Step 4: Add deploy stage page, for Deployment provider, choose Amazon ECS.

a. For Cluster name, choose the Amazon ECS cluster in which your service is running. For this
tutorial, the cluster is default.

b. For Service name, choose the service to update and choose Next. For this tutorial, the
service name is hello-world.

8. On the Step 5: Review page, review your pipeline configuration and choose Create pipeline to
create the pipeline.

Note

Now that the pipeline has been created, it attempts to run through the different
pipeline stages. However, the default CodeBuild role created by the wizard does not
have permissions to execute all of the commands contained in the buildspec.yml
file, so the build stage fails. The next section adds the permissions for the build stage.

Step 3: Add Amazon ECR Permissions to the CodeBuild Role

The CodePipeline wizard created an IAM role for the CodeBuild build project, called
codebuild-build-project-name-service-role. For this tutorial, the name is codebuild-hello-
world-service-role. Because the buildspec.yml file makes calls to Amazon ECR API operations,
the role must have a policy that allows permissions to make these Amazon ECR calls. The following
procedure helps you attach the proper permissions to the role.

To add Amazon ECR permissions to the CodeBuild role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

Step 3: Add Amazon ECR Permissions to the CodeBuild Role API Version 2015-07-09 163

https://console.aws.amazon.com/iam/

AWS CodePipeline User Guide

2. In the left navigation pane, choose Roles.

3. In the search box, type codebuild- and choose the role that was created by the CodePipeline
wizard. For this tutorial, the role name is codebuild-hello-world-service-role.

4. On the Summary page, choose Attach policies.

5. Select the box to the left of the AmazonEC2ContainerRegistryPowerUser policy, and choose
Attach policy.

Step 4: Test Your Pipeline

Your pipeline should have everything for running an end-to-end native AWS continuous
deployment. Now, test its functionality by pushing a code change to your source repository.

To test your pipeline

1. Make a code change to your configured source repository, commit, and push the change.

2. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

3. Choose your pipeline from the list.

4. Watch the pipeline progress through its stages. Your pipeline should complete and your
Amazon ECS service runs the Docker image that was created from your code change.

Tutorial: Create a pipeline with an Amazon ECR source and ECS-
to-CodeDeploy deployment

In this tutorial, you configure a pipeline in AWS CodePipeline that deploys container applications
using a blue/green deployment that supports Docker images. In a blue/green deployment, you
can launch the new version of your application alongside the old version and test the new version
before you reroute traffic. You can also monitor the deployment process and rapidly roll back if
there is an issue.

Note

This tutorial is for the Amazon ECS to CodeDeploy blue/green deployment action for
CodePipeline. For a tutorial that uses the Amazon ECS standard deployment action in
CodePipeline, see Tutorial: Amazon ECS Standard Deployment with CodePipeline.

Step 4: Test Your Pipeline API Version 2015-07-09 164

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

The completed pipeline detects changes to your image, which is stored in an image repository such
as Amazon ECR, and uses CodeDeploy to route and deploy traffic to an Amazon ECS cluster and
load balancer. CodeDeploy uses a listener to reroute traffic to the port of the updated container
specified in the AppSpec file. For information about how the load balancer, production listener,
target groups, and your Amazon ECS application are used in a blue/green deployment, see Tutorial:
Deploy an Amazon ECS Service.

The pipeline is also configured to use a source location, such as CodeCommit, where your Amazon
ECS task definition is stored. In this tutorial, you configure each of these AWS resources and then
create your pipeline with stages that contain actions for each resource.

Your continuous delivery pipeline will automatically build and deploy container images whenever
source code is changed or a new base image is uploaded to Amazon ECR.

This flow uses the following artifacts:

• A Docker image file that specifies the container name and repository URI of your Amazon ECR
image repository.

• An Amazon ECS task definition that lists your Docker image name, container name, Amazon ECS
service name, and load balancer configuration.

• A CodeDeploy AppSpec file that specifies the name of the Amazon ECS task definition file, the
name of the updated application's container, and the container port where CodeDeploy reroutes
production traffic. It can also specify optional network configuration and Lambda functions you
can run during deployment lifecycle event hooks.

Note

When you commit a change to your Amazon ECR image repository, the pipeline source
action creates an imageDetail.json file for that commit. For information about the
imageDetail.json file, see imageDetail.json file for Amazon ECS blue/green deployment
actions.

When you create or edit your pipeline and update or specify source artifacts for your deployment
stage, make sure to point to the source artifacts with the latest name and version you want to use.
After you set up your pipeline, as you make changes to your image or task definition, you might
need to update your source artifact files in your repositories and then edit the deployment stage in
your pipeline.

Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment API Version 2015-07-09 165

https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-ecs-deployment.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-ecs-deployment.html

AWS CodePipeline User Guide

Topics

• Prerequisites

• Step 1: Create image and push to an Amazon ECR repository

• Step 2: Create task definition and AppSpec source files and push to a CodeCommit repository

• Step 3: Create your Application Load Balancer and target groups

• Step 4: Create your Amazon ECS cluster and service

• Step 5: Create your CodeDeploy application and deployment group (ECS compute platform)

• Step 6: Create your pipeline

• Step 7: Make a change to your pipeline and verify deployment

Prerequisites

You must have already created the following resources:

• A CodeCommit repository. You can use the AWS CodeCommit repository you created in Tutorial:
Create a simple pipeline (CodeCommit repository).

• Launch an Amazon EC2 Linux instance and install Docker to create an image as shown in this
tutorial. If you already have an image you want to use, you can skip this prerequisite.

Step 1: Create image and push to an Amazon ECR repository

In this section, you use Docker to create an image and then use the AWS CLI to create an Amazon
ECR repository and push the image to the repository.

Note

If you already have an image you want to use, you can skip this step.

To create an image

1. Sign in to your Linux instance where you have Docker installed.

Pull down an image for nginx. This command provides the nginx:latest image:

docker pull nginx

Prerequisites API Version 2015-07-09 166

AWS CodePipeline User Guide

2. Run docker images. You should see the image in the list.

docker images

To create an Amazon ECR repository and push your image

1. Create an Amazon ECR repository to store your image. Make a note of the repositoryUri in
the output.

aws ecr create-repository --repository-name nginx

Output:

{
 "repository": {
 "registryId": "aws_account_id",
 "repositoryName": "nginx",
 "repositoryArn": "arn:aws:ecr:us-east-1:aws_account_id:repository/nginx",
 "createdAt": 1505337806.0,
 "repositoryUri": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/nginx"
 }
}

2. Tag the image with the repositoryUri value from the previous step.

docker tag nginx:latest aws_account_id.dkr.ecr.us-east-1.amazonaws.com/nginx:latest

3. Run the aws ecr get-login-password command, as shown in this example for the us-west-2
Region and the 111122223333 account ID.

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-west-2.amazonaws.com/nginx

4. Push the image to Amazon ECR using the repositoryUri from the earlier step.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/nginx:latest

Step 1: Create image and push to an Amazon ECR repository API Version 2015-07-09 167

AWS CodePipeline User Guide

Step 2: Create task definition and AppSpec source files and push to a
CodeCommit repository

In this section, you create a task definition JSON file and register it with Amazon ECS. You
then create an AppSpec file for CodeDeploy and use your Git client to push the files to your
CodeCommit repository.

To create a task definition for your image

1. Create a file named taskdef.json with the following contents. For image, enter your image
name, such as nginx. This value is updated when your pipeline runs.

Note

Make sure that the execution role specified in the task definition contains the
AmazonECSTaskExecutionRolePolicy. For more information, see Amazon ECS
Task Execution IAM Role in the Amazon ECS Developer Guide.

{
 "executionRoleArn": "arn:aws:iam::account_ID:role/ecsTaskExecutionRole",
 "containerDefinitions": [
 {
 "name": "sample-website",
 "image": "nginx",
 "essential": true,
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 }
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "networkMode": "awsvpc",
 "cpu": "256",

Step 2: Create task definition and AppSpec source files and push to a CodeCommit repository API Version 2015-07-09 168

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html

AWS CodePipeline User Guide

 "memory": "512",
 "family": "ecs-demo"
}

2. Register your task definition with the taskdef.json file.

aws ecs register-task-definition --cli-input-json file://taskdef.json

3. After the task definition is registered, edit your file to remove the image name and include the
<IMAGE1_NAME> placeholder text in the image field.

{
 "executionRoleArn": "arn:aws:iam::account_ID:role/ecsTaskExecutionRole",
 "containerDefinitions": [
 {
 "name": "sample-website",
 "image": "<IMAGE1_NAME>",
 "essential": true,
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 }
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "networkMode": "awsvpc",
 "cpu": "256",
 "memory": "512",
 "family": "ecs-demo"
}

To create an AppSpec file

• The AppSpec file is used for CodeDeploy deployments. The file, which includes optional fields,
uses this format:

Step 2: Create task definition and AppSpec source files and push to a CodeCommit repository API Version 2015-07-09 169

AWS CodePipeline User Guide

version: 0.0
Resources:
 - TargetService:
 Type: AWS::ECS::Service
 Properties:
 TaskDefinition: "task-definition-ARN"
 LoadBalancerInfo:
 ContainerName: "container-name"
 ContainerPort: container-port-number
Optional properties
 PlatformVersion: "LATEST"
 NetworkConfiguration:
 AwsvpcConfiguration:
 Subnets: ["subnet-name-1", "subnet-name-2"]
 SecurityGroups: ["security-group"]
 AssignPublicIp: "ENABLED"
Hooks:
- BeforeInstall: "BeforeInstallHookFunctionName"
- AfterInstall: "AfterInstallHookFunctionName"
- AfterAllowTestTraffic: "AfterAllowTestTrafficHookFunctionName"
- BeforeAllowTraffic: "BeforeAllowTrafficHookFunctionName"
- AfterAllowTraffic: "AfterAllowTrafficHookFunctionName"

For more information about the AppSpec file, including examples, see CodeDeploy AppSpec
File Reference.

Create a file named appspec.yaml with the following contents. For TaskDefinition, do
not change the <TASK_DEFINITION> placeholder text. This value is updated when your
pipeline runs.

version: 0.0
Resources:
 - TargetService:
 Type: AWS::ECS::Service
 Properties:
 TaskDefinition: <TASK_DEFINITION>
 LoadBalancerInfo:
 ContainerName: "sample-website"
 ContainerPort: 80

Step 2: Create task definition and AppSpec source files and push to a CodeCommit repository API Version 2015-07-09 170

https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html

AWS CodePipeline User Guide

To push files to your CodeCommit repository

1. Push or upload the files to your CodeCommit repository. These files are the source artifact
created by the Create pipeline wizard for your deployment action in CodePipeline. Your files
should look like this in your local directory:

/tmp
 |my-demo-repo
 |-- appspec.yaml
 |-- taskdef.json

2. Choose the method you want to use to upload your files:

a. To use your git command line from a cloned repository on your local computer:

i. Change directories to your local repository:

(For Linux, macOS, or Unix) cd /tmp/my-demo-repo
(For Windows) cd c:\temp\my-demo-repo

ii. Run the following command to stage all of your files at once:

git add -A

iii. Run the following command to commit the files with a commit message:

git commit -m "Added task definition files"

iv. Run the following command to push the files from your local repo to your
CodeCommit repository:

git push

b. To use the CodeCommit console to upload your files:

i. Open the CodeCommit console, and choose your repository from the Repositories
list.

ii. Choose Add file, and then choose Upload file.

iii. Choose Choose file, and then browse for your file. Commit the change by entering
your user name and email address. Choose Commit changes.

Step 2: Create task definition and AppSpec source files and push to a CodeCommit repository API Version 2015-07-09 171

AWS CodePipeline User Guide

iv. Repeat this step for each file you want to upload.

Step 3: Create your Application Load Balancer and target groups

In this section, you create an Amazon EC2 Application Load Balancer. You use the subnet names
and target group values you create with your load balancer later, when you create your Amazon
ECS service. You can create an Application Load Balancer or a Network Load Balancer. The load
balancer must use a VPC with two public subnets in different Availability Zones. In these steps, you
confirm your default VPC, create a load balancer, and then create two target groups for your load
balancer. For more information, see Target Groups for Your Network Load Balancers.

To verify your default VPC and public subnets

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. Verify the default VPC to use. In the navigation pane, choose Your VPCs. Note which VPC
shows Yes in the Default VPC column. This is the default VPC. It contains default subnets for
you to select.

3. Choose Subnets. Choose two subnets that show Yes in the Default subnet column.

Note

Make a note of your subnet IDs. You need them later in this tutorial.

4. Choose the subnets, and then choose the Description tab. Verify that the subnets you want to
use are in different Availability Zones.

5. Choose the subnets, and then choose the Route Table tab. To verify that each subnet you
want to use is a public subnet, confirm that a gateway row is included in the route table.

To create an Amazon EC2 Application Load Balancer

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Load Balancers.

3. Choose Create Load Balancer.

4. Choose Application Load Balancer, and then choose Create.

Step 3: Create your Application Load Balancer and target groups API Version 2015-07-09 172

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS CodePipeline User Guide

5. In Name, enter the name of your load balancer.

6. In Scheme, choose internet-facing.

7. In IP address type, choose ipv4.

8. Configure two listener ports for your load balancer:

a. Under Load Balancer Protocol, choose HTTP. Under Load Balancer Port, enter 80.

b. Choose Add listener.

c. Under Load Balancer Protocol for the second listener, choose HTTP. Under Load Balancer
Port, enter 8080.

9. Under Availability Zones, in VPC, choose the default VPC. Next, choose the two default
subnets you want to use.

10. Choose Next: Configure Security Settings.

11. Choose Next: Configure Security Groups.

12. Choose Select an existing security group, and make a note of the security group ID.

13. Choose Next: Configure Routing.

14. In Target group, choose New target group and configure your first target group:

a. In Name, enter a target group name (for example, target-group-1).

b. In Target type, choose IP.

c. In Protocol choose HTTP. In Port, enter 80.

d. Choose Next: Register Targets.

15. Choose Next: Review, and then choose Create.

To create a second target group for your load balancer

1. After your load balancer is provisioned, open the Amazon EC2 console. In the navigation pane,
choose Target Groups.

2. Choose Create target group.

3. In Name, enter a target group name (for example, target-group-2).

4. In Target type, choose IP.

5. In Protocol choose HTTP. In Port, enter 8080.

6. In VPC, choose the default VPC.

Step 3: Create your Application Load Balancer and target groups API Version 2015-07-09 173

AWS CodePipeline User Guide

7. Choose Create.

Note

You must have two target groups created for your load balancer in order for your
deployment to run. You only need to make a note of the ARN of your first target
group. This ARN is used in the create-service JSON file in the next step.

To update your load balancer to include your second target group

1. Open the Amazon EC2 console. In the navigation pane, choose Load Balancers.

2. Choose your load balancer, and then choose the Listeners tab. Choose the listener with port
8080, and then choose Edit.

3. Choose the pencil icon next to Forward to. Choose your second target group, and then choose
the check mark. Choose Update to save the updates.

Step 4: Create your Amazon ECS cluster and service

In this section, you create an Amazon ECS cluster and service where CodeDeploy routes traffic
during deployment (to an Amazon ECS cluster rather than EC2 instances). To create your Amazon
ECS service, you must use the subnet names, security group, and target group value you created
with your load balancer to create your service.

Note

When you use these steps to create your Amazon ECS cluster, you use the Networking only
cluster template, which provisions AWS Fargate containers. AWS Fargate is a technology
that manages your container instance infrastructure for you. You do not need to choose or
manually create Amazon EC2 instances for your Amazon ECS cluster.

To create an Amazon ECS cluster

1. Open the Amazon ECS classic console at https://console.aws.amazon.com/ecs/.

2. In the navigation pane, choose Clusters.

3. Choose Create cluster.

Step 4: Create your Amazon ECS cluster and service API Version 2015-07-09 174

https://console.aws.amazon.com/ecs/

AWS CodePipeline User Guide

4. Choose the Networking only cluster template that uses AWS Fargate, and then choose Next
step.

5. Enter a cluster name on the Configure cluster page. You can add an optional tag for your
resource. Choose Create.

To create an Amazon ECS service

Use the AWS CLI to create your service in Amazon ECS.

1. Create a JSON file and name it create-service.json. Paste the following into the JSON
file.

For the taskDefinition field, when you register a task definition in Amazon ECS, you give
it a family. This is similar to a name for multiple versions of the task definition, specified with
a revision number. In this example, use "ecs-demo:1" for the family and revision number in
your file. Use the subnet names, security group, and target group value you created with your
load balancer in Step 3: Create your Application Load Balancer and target groups .

Note

You need to include your target group ARN in this file. Open the Amazon EC2 console
and from the navigation pane, under LOAD BALANCING, choose Target Groups.
Choose your first target group. Copy your ARN from the Description tab.

{
 "taskDefinition": "family:revision-number",
 "cluster": "my-cluster",
 "loadBalancers": [
 {
 "targetGroupArn": "target-group-arn",
 "containerName": "sample-website",
 "containerPort": 80
 }
],
 "desiredCount": 1,
 "launchType": "FARGATE",
 "schedulingStrategy": "REPLICA",
 "deploymentController": {

Step 4: Create your Amazon ECS cluster and service API Version 2015-07-09 175

AWS CodePipeline User Guide

 "type": "CODE_DEPLOY"
 },
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-1",
 "subnet-2"
],
 "securityGroups": [
 "security-group"
],
 "assignPublicIp": "ENABLED"
 }
 }
}

2. Run the create-service command, specifying the JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

This example creates a service named my-service.

Note

This example command creates a service named my-service. If you already have a
service with this name, the command returns an error.

aws ecs create-service --service-name my-service --cli-input-json file://create-
service.json

The output returns the description fields for your service.

3. Run the describe-services command to verify that your service was created.

aws ecs describe-services --cluster cluster-name --services service-name

Step 4: Create your Amazon ECS cluster and service API Version 2015-07-09 176

AWS CodePipeline User Guide

Step 5: Create your CodeDeploy application and deployment group
(ECS compute platform)

When you create a CodeDeploy application and deployment group for the Amazon ECS compute
platform, the application is used during a deployment to reference the correct deployment group,
target groups, listeners, and traffic rerouting behavior.

To create a CodeDeploy application

1. Open the CodeDeploy console and choose Create application.

2. In Application name, enter the name you want to use.

3. In Compute platform, choose Amazon ECS.

4. Choose Create application.

To create a CodeDeploy deployment group

1. On your application page's Deployment groups tab, choose Create deployment group.

2. In Deployment group name, enter a name that describes the deployment group.

3. In Service role, choose a service role that grants CodeDeploy access to Amazon ECS. To create
a new service role, follow these steps:

a. Open the IAM console at https://console.aws.amazon.com/iam/).

b. From the console dashboard, choose Roles.

c. Choose Create role.

d. Under Select type of trusted entity, select AWS service. Under Choose a use case,
select CodeDeploy. Under Select your use case, select CodeDeploy - ECS. Choose Next:
Permissions. The AWSCodeDeployRoleForECS managed policy is already attached to
the role.

e. Choose Next: Tags, and Next: Review.

f. Enter a name for the role (for example, CodeDeployECSRole), and then choose Create
role.

4. In Environment configuration, choose your Amazon ECS cluster name and service name.

5. From Load balancers, choose the name of the load balancer that serves traffic to your Amazon
ECS service.

Step 5: Create your CodeDeploy application and deployment group (ECS compute platform) API Version 2015-07-09 177

https://console.aws.amazon.com/iam/

AWS CodePipeline User Guide

6. From Production listener port, choose the port and protocol for the listener that serves
production traffic to your Amazon ECS service. From Test listener port, choose the port and
protocol for the test listener.

7. From Target group 1 name and Target group 2 name, choose the target groups used to route
traffic during your deployment. Make sure that these are the target groups you created for
your load balancer.

8. Choose Reroute traffic immediately to determine how long after a successful deployment to
reroute traffic to your updated Amazon ECS task.

9. Choose Create deployment group.

Step 6: Create your pipeline

In this section, you create a pipeline with the following actions:

• A CodeCommit action where the source artifacts are the task definition and the AppSpec file.

• A source stage with an Amazon ECR source action where the source artifact is the image file.

• A deployment stage with an Amazon ECS deploy action where the deployment runs with a
CodeDeploy application and deployment group.

To create a two-stage pipeline with the wizard

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or the Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyImagePipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

6. Leave the settings under Advanced settings at their defaults, and then choose Next.

7. In Step 2: Add source stage, in Source provider, choose AWS CodeCommit. In Repository
name, choose the name of the CodeCommit repository you created in Step 1: Create a
CodeCommit repository. In Branch name, choose the name of the branch that contains your
latest code update.

Step 6: Create your pipeline API Version 2015-07-09 178

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Choose Next.

8. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again. Choose Next.

9. In Step 4: Add deploy stage:

a. In Deploy provider, choose Amazon ECS (Blue/Green). In Application name,
enter or choose the application name from the list, such as codedeployapp. In
Deployment group, enter or choose the deployment group name from the list, such as
codedeploydeplgroup.

Note

The name "Deploy" is the name given by default to the stage created in the Step
4: Deploy step, just as "Source" is the name given to the first stage of the pipeline.

b. Under Amazon ECS task definition, choose SourceArtifact. In the field, enter
taskdef.json.

c. Under AWS CodeDeploy AppSpec file, choose SourceArtifact. In the field, enter
appspec.yaml.

Note

At this point, do not fill in any information under Dynamically update task
definition image.

d. Choose Next.

10. In Step 5: Review, review the information, and then choose Create pipeline.

To add an Amazon ECR source action to your pipeline

View your pipeline and add an Amazon ECR source action to your pipeline.

1. Choose your pipeline. In the upper left, choose Edit.

2. In the source stage, choose Edit stage.

3. Add a parallel action by choosing + Add action next to your CodeCommit source action.

Step 6: Create your pipeline API Version 2015-07-09 179

AWS CodePipeline User Guide

4. In Action name, enter a name (for example, Image).

5. In Action provider, choose Amazon ECR.

6. In Repository name, choose the name of your Amazon ECR repository.

7. In Image tag, specify the image name and version, if different from latest.

8. In Output artifacts, choose the output artifact default (for example, MyImage) that contains
the image name and repository URI information you want the next stage to use.

9. Choose Save on the action screen. Choose Done on the stage screen. Choose Save on the
pipeline. A message shows the Amazon CloudWatch Events rule to be created for the Amazon
ECR source action.

To wire your source artifacts to the deploy action

1. Choose Edit on your Deploy stage and choose the icon to edit the Amazon ECS (Blue/Green)
action.

Step 6: Create your pipeline API Version 2015-07-09 180

AWS CodePipeline User Guide

2. Scroll to the bottom of the pane. In Input artifacts, choose Add. Add the source artifact from
your new Amazon ECR repository (for example, MyImage).

3. In Task Definition, choose SourceArtifact, and then verify taskdef.json is entered.

4. In AWS CodeDeploy AppSpec File, choose SourceArtifact, and then verify appspec.yaml is
entered.

5. In Dynamically update task definition image, in Input Artifact with Image URI, choose
MyImage, and then enter the placeholder text that is used in the taskdef.json file:
IMAGE1_NAME. Choose Save.

6. In the AWS CodePipeline pane, choose Save pipeline change, and then choose Save change.
View your updated pipeline.

After this example pipeline is created, the action configuration for the console entries appears
in the pipeline structure as follows:

"configuration": {
 "AppSpecTemplateArtifact": "SourceArtifact",
 "AppSpecTemplatePath": "appspec.yaml",
 "TaskDefinitionTemplateArtifact": "SourceArtifact",
 "TaskDefinitionTemplatePath": "taskdef.json",
 "ApplicationName": "codedeployapp",
 "DeploymentGroupName": "codedeploydeplgroup",
 "Image1ArtifactName": "MyImage",
 "Image1ContainerName": "IMAGE1_NAME"
},

7. To submit your changes and start a pipeline build, choose Release change, and then choose
Release.

8. Choose the deployment action to view it in CodeDeploy and see the progress of the traffic
shifting.

Note

You might see a deployment step that shows an optional wait time. By default,
CodeDeploy waits one hour after a successful deployment before it terminates the
original task set. You can use this time to roll back or terminate the task, but your
deployment otherwise completes when the task set is terminated.

Step 6: Create your pipeline API Version 2015-07-09 181

AWS CodePipeline User Guide

Step 7: Make a change to your pipeline and verify deployment

Make a change to your image and then push the change to your Amazon ECR repository. This
triggers your pipeline to run. Verify that your image source change is deployed.

Tutorial: Create a pipeline that deploys an Amazon Alexa skill

In this tutorial, you configure a pipeline that continuously delivers your Alexa skill using the Alexa
Skills Kit as the deployment provider in your deployment stage. The completed pipeline detects
changes to your skill when you make a change to the source files in your source repository. The
pipeline then uses the Alexa Skills Kit to deploy to the Alexa skill development stage.

Note

This feature is not available in the Asia Pacific (Hong Kong) or Europe (Milan) Region. To use
other deploy actions available in that Region, see Deploy action integrations.

To create your custom skill as a Lambda function, see Host a Custom Skill as an AWS Lambda
Function. You can also create a pipeline that uses Lambda source files and a CodeBuild project to
deploy changes to Lambda for your skill. For example, to create a new skill and related Lambda
function, you can create an AWS CodeStar project. See Create an Alexa Skill Project in AWS
CodeStar. For that option, the pipeline includes a third build stage with an CodeBuild action and an
action in the Deploy stage for AWS CloudFormation.

Prerequisites

You must already have the following:

• A CodeCommit repository. You can use the AWS CodeCommit repository you created in Tutorial:
Create a simple pipeline (CodeCommit repository).

• An Amazon developer account. This is the account that owns your Alexa skills. You can create an
account for free at Alexa Skills Kit.

• An Alexa skill. You can create a sample skill using the Get Custom Skill Sample Code tutorial.

• Install the ASK CLI and configure it using ask init with your AWS credentials. See Install and
initialize ASK CLI.

Step 7: Make a change to your pipeline and verify deployment API Version 2015-07-09 182

https://developer.amazon.com/docs/custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html
https://developer.amazon.com/docs/custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html
https://docs.aws.amazon.com/codestar/latest/userguide/alexa-tutorial.html
https://docs.aws.amazon.com/codestar/latest/userguide/alexa-tutorial.html
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/docs/custom-skills/use-the-alexa-skills-kit-samples.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html#install-initialize
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html#install-initialize

AWS CodePipeline User Guide

Step 1: Create an Alexa developer services LWA security profile

In this section, you create a security profile to use with Login with Amazon (LWA). If you already
have a profile, you can skip this step.

• Use the steps in generate-lwa-tokens to create a Security Profile.

• After you create the profile, make a note of the Client ID and Client Secret.

• Make sure you enter the Allowed Return URLs as provided in the instructions. The URLs allow
the ASK CLI command to redirect refresh token requests.

Step 2: Create Alexa skill source files and push to your CodeCommit
repository

In this section, you create and push your Alexa skill source files to the repository that the pipeline
uses for your source stage. For the skill you have created in the Amazon developer console, you
produce and push the following:

• A skill.json file.

• An interactionModel/custom folder.

Note

This directory structure complies with Alexa Skills Kit skill package format requirements,
as outlined in Skill package format. If your directory structure does not use the correct
skill package format, changes do not successfully deploy to the Alexa Skills Kit console.

To create source files for your skill

1. Retrieve your skill ID from the Alexa Skills Kit developer console. Use this command:

ask api list-skills

Locate your skill by name and then copy the associated ID in the skillId field.

2. Generate a skill.json file that contains your skill details. Use this command:

Step 1: Create an Alexa developer services LWA security profile API Version 2015-07-09 183

https://developer.amazon.com/docs/smapi/ask-cli-command-reference.html#generate-lwa-tokens
https://developer.amazon.com/docs/smapi/skill-package-api-reference.html#skill-package-format

AWS CodePipeline User Guide

ask api get-skill -s skill-ID > skill.json

3. (Optional) Create an interactionModel/custom folder.

Use this command to generate the interaction model file within the folder. For locale, this
tutorial uses en-US as the locale in the file name.

ask api get-model --skill-id skill-ID --locale locale >
 ./interactionModel/custom/locale.json

To push files to your CodeCommit repository

1. Push or upload the files to your CodeCommit repository. These files are the source artifact
created by the Create Pipeline wizard for your deployment action in AWS CodePipeline. Your
files should look like this in your local directory:

skill.json
/interactionModel
 /custom
 |en-US.json

2. Choose the method you want to use to upload your files:

a. To use the Git command line from a cloned repository on your local computer:

i. Run the following command to stage all of your files at once:

git add -A

ii. Run the following command to commit the files with a commit message:

git commit -m "Added Alexa skill files"

iii. Run the following command to push the files from your local repo to your
CodeCommit repository:

git push

b. To use the CodeCommit console to upload your files:

Step 2: Create Alexa skill source files and push to your CodeCommit repository API Version 2015-07-09 184

AWS CodePipeline User Guide

i. Open the CodeCommit console, and choose your repository from the Repositories
list.

ii. Choose Add file, and then choose Upload file.

iii. Choose Choose file, and then browse for your file. Commit the change by entering
your user name and email address. Choose Commit changes.

iv. Repeat this step for each file you want to upload.

Step 3: Use ASK CLI commands to create a refresh token

CodePipeline uses a refresh token based on the client ID and secret in your Amazon developer
account to authorize actions it performs on your behalf. In this section, you use the ASK CLI to
create the token. You use these credentials when you use the Create Pipeline wizard.

To create a refresh token with your Amazon developer account credentials

1. Use the following command:

ask util generate-lwa-tokens

2. When prompted, enter your client ID and secret as shown in this example:

? Please type in the client ID:
amzn1.application-client.example112233445566
? Please type in the client secret:
example112233445566

3. The sign-in browser page displays. Sign in with your Amazon developer account credentials.

4. Return to the command line screen. The access token and refresh token are generated in the
output. Copy the refresh token returned in the output.

Step 4: Create your pipeline

In this section, you create a pipeline with the following actions:

• A source stage with a CodeCommit action where the source artifacts are the Alexa skill files that
support your skill.

• A deployment stage with an Alexa Skills Kit deploy action.

Step 3: Use ASK CLI commands to create a refresh token API Version 2015-07-09 185

AWS CodePipeline User Guide

To create a pipeline with the wizard

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. Choose the AWS Region where you want to create the project and its resources. The Alexa skill
runtime is available only in the following Regions:

• Asia Pacific (Tokyo)

• Europe (Ireland)

• US East (N. Virginia)

• US West (Oregon)

3. On the Welcome page, Getting started page, or the Pipelines page, choose Create pipeline.

4. In Step 1: Choose pipeline settings, in Pipeline name, enter MyAlexaPipeline.

5. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

6. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

7. Leave the settings under Advanced settings at their defaults, and then choose Next.

8. In Step 2: Add source stage, in Source provider, choose AWS CodeCommit. In Repository
name, choose the name of the CodeCommit repository you created in Step 1: Create a
CodeCommit repository. In Branch name, choose the name of the branch that contains your
latest code update.

After you select the repository name and branch, a message shows the Amazon CloudWatch
Events rule to be created for this pipeline.

Choose Next.

9. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

Choose Next.

10. In Step 4: Add deploy stage:

a. In Deploy provider, choose Alexa Skills Kit.

b. In Alexa skill ID, enter the skill ID assigned to your skill in the Alexa Skills Kit developer
console.

Step 4: Create your pipeline API Version 2015-07-09 186

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

c. In Client ID, enter the ID of the application you registered.

d. In Client secret, enter the secret you chose when you registered.

e. In Refresh token, enter the token you generated in step 3.

f. Choose Next.

11. In Step 5: Review, review the information, and then choose Create pipeline.

Step 5: Make a change to any source file and verify deployment

Make a change to your skill and then push the change to your repository. This triggers your
pipeline to run. Verify that your skill is updated in the Alexa Skills Kit developer console.

Step 5: Make a change to any source file and verify deployment API Version 2015-07-09 187

https://developer.amazon.com/alexa/console/ask

AWS CodePipeline User Guide

Tutorial: Create a pipeline that uses Amazon S3 as a
deployment provider

In this tutorial, you configure a pipeline that continuously delivers files using Amazon S3 as the
deployment action provider in your deployment stage. The completed pipeline detects changes
when you make a change to the source files in your source repository. The pipeline then uses
Amazon S3 to deploy the files to your bucket. Each time you modify or add your website files in
your source location, the deployment creates the website with your latest files.

Note

Even if you delete files from the source repository, the S3 deploy action does not delete S3
objects corresponding to deleted files.

This tutorial provides two options:

• Create a pipeline that deploys a static website to your S3 public bucket. This example creates
a pipeline with an AWS CodeCommit source action and an Amazon S3 deployment action. See
Option 1: Deploy static website files to Amazon S3.

• Create a pipeline that compiles sample TypeScript code into JavaScript and deploys the
CodeBuild output artifact to your S3 bucket for archive. This example creates a pipeline with an
Amazon S3 source action, a CodeBuild build action, and an Amazon S3 deployment action. See
Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket.

Important

Many of the actions you add to your pipeline in this procedure involve AWS resources
that you need to create before you create the pipeline. AWS resources for your source
actions must always be created in the same AWS Region where you create your pipeline.
For example, if you create your pipeline in the US East (Ohio) Region, your CodeCommit
repository must be in the US East (Ohio) Region.
You can add cross-region actions when you create your pipeline. AWS resources for cross-
region actions must be in the same AWS Region where you plan to execute the action. For
more information, see Add a cross-Region action in CodePipeline.

Tutorial: Create a pipeline that uses Amazon S3 as a deployment provider API Version 2015-07-09 188

AWS CodePipeline User Guide

Option 1: Deploy static website files to Amazon S3

In this example, you download the sample static website template file, upload the files to your
AWS CodeCommit repository, create your bucket, and configure it for hosting. Next, you use
the AWS CodePipeline console to create your pipeline and specify an Amazon S3 deployment
configuration.

Prerequisites

You must already have the following:

• A CodeCommit repository. You can use the AWS CodeCommit repository you created in Tutorial:
Create a simple pipeline (CodeCommit repository).

• Source files for your static website. Use this link to download a sample static website. The
sample-website.zip download produces the following files:

• An index.html file

• A main.css file

• A graphic.jpg file

• An S3 bucket configured for website hosting. See Hosting a static website on Amazon S3. Make
sure you create your bucket in the same Region as the pipeline.

Note

To host a website, your bucket must have public read access, which gives everyone
read access. With the exception of website hosting, you should keep the default access
settings that block public access to S3 buckets.

Step 1: Push source files to your CodeCommit repository

In this section, push your source files to the repository that the pipeline uses for your source stage.

To push files to your CodeCommit repository

1. Extract the downloaded sample files. Do not upload the ZIP file to your repository.

2. Push or upload the files to your CodeCommit repository. These files are the source artifact
created by the Create Pipeline wizard for your deployment action in CodePipeline. Your files
should look like this in your local directory:

Option 1: Deploy static website files to Amazon S3 API Version 2015-07-09 189

samples/sample-website.zip
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html

AWS CodePipeline User Guide

index.html
main.css
graphic.jpg

3. You can use Git or the CodeCommit console to upload your files:

a. To use the Git command line from a cloned repository on your local computer:

i. Run the following command to stage all of your files at once:

git add -A

ii. Run the following command to commit the files with a commit message:

git commit -m "Added static website files"

iii. Run the following command to push the files from your local repo to your
CodeCommit repository:

git push

b. To use the CodeCommit console to upload your files:

i. Open the CodeCommit console, and choose your repository from the Repositories
list.

ii. Choose Add file, and then choose Upload file.

iii. Select Choose file, and then browse for your file. Commit the change by entering
your user name and email address. Choose Commit changes.

iv. Repeat this step for each file you want to upload.

Step 2: Create your pipeline

In this section, you create a pipeline with the following actions:

• A source stage with a CodeCommit action where the source artifacts are the files for your
website.

• A deployment stage with an Amazon S3 deployment action.

Option 1: Deploy static website files to Amazon S3 API Version 2015-07-09 190

AWS CodePipeline User Guide

To create a pipeline with the wizard

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyS3DeployPipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

6. Leave the settings under Advanced settings at their defaults, and then choose Next.

7. In Step 2: Add source stage, in Source provider, choose AWS CodeCommit. In Repository
name, choose the name of the CodeCommit repository you created in Step 1: Create a
CodeCommit repository. In Branch name, choose the name of the branch that contains your
latest code update. Unless you created a different branch on your own, only main is available.

After you select the repository name and branch, the Amazon CloudWatch Events rule to be
created for this pipeline is displayed.

Choose Next.

8. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

Choose Next.

9. In Step 4: Add deploy stage:

a. In Deploy provider, choose Amazon S3.

b. In Bucket, enter the name of your public bucket.

c. Select Extract file before deploy.

Note

The deployment fails if you do not select Extract file before deploy. This is
because the AWS CodeCommit action in your pipeline zips source artifacts and
your file is a ZIP file.

Option 1: Deploy static website files to Amazon S3 API Version 2015-07-09 191

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

When Extract file before deploy is selected, Deployment path is displayed. Enter the
name of the path you want to use. This creates a folder structure in Amazon S3 to which
the files are extracted. For this tutorial, leave this field blank.

d. (Optional) In Canned ACL, you can apply a set of predefined grants, known as a canned
ACL, to the uploaded artifacts.

e. (Optional) In Cache control, enter the caching parameters. You can set this to control
caching behavior for requests/responses. For valid values, see the Cache-Control
header field for HTTP operations.

f. Choose Next.

10. In Step 5: Review, review the information, and then choose Create pipeline.

11. After your pipeline runs successfully, open the Amazon S3 console and verify that your files
appear in your public bucket as shown:

index.html
main.css
graphic.jpg

12. Access your endpoint to test the website. Your endpoint follows this format:
http://bucket-name.s3-website-region.amazonaws.com/.

Option 1: Deploy static website files to Amazon S3 API Version 2015-07-09 192

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

AWS CodePipeline User Guide

Example endpoint: http://my-bucket.s3-website-us-west-2.amazonaws.com/.

The sample web page appears.

Step 3: Make a change to any source file and verify deployment

Make a change to your source files and then push the change to your repository. This triggers your
pipeline to run. Verify that your website is updated.

Option 2: Deploy built archive files to Amazon S3 from an S3 source
bucket

In this option, the build commands in your build stage compile TypeScript code into JavaScript
code and deploy the output to your S3 target bucket under a separate timestamped folder. First,
you create TypeScript code and a buildspec.yml file. After you combine the source files in a ZIP file,
you upload the source ZIP file to your S3 source bucket, and use a CodeBuild stage to deploy a built
application ZIP file to your S3 target bucket. The compiled code is retained as an archive in your
target bucket.

Prerequisites

You must already have the following:

• An S3 source bucket. You can use the bucket you created in Tutorial: Create a simple pipeline (S3
bucket).

• An S3 target bucket. See Hosting a static website on Amazon S3. Make sure you create your
bucket in the same AWS Region as the pipeline you want to create.

Note

This example demonstrates deploying files to a private bucket. Do not enable your target
bucket for website hosting or attach any policies that make the bucket public.

Step 1: Create and upload source files to your S3 source bucket

In this section, you create and upload your source files to the bucket that the pipeline uses for your
source stage. This section provides instructions for creating the following source files:

Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket API Version 2015-07-09 193

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html

AWS CodePipeline User Guide

• A buildspec.yml file, which is used for CodeBuild build projects.

• An index.ts file.

To create a buildspec.yml file

• Create a file named buildspec.yml with the following contents. These build commands
install TypeScript and use the TypeScript compiler to rewrite the code in index.ts to
JavaScript code.

version: 0.2

phases:
 install:
 commands:
 - npm install -g typescript
 build:
 commands:
 - tsc index.ts
artifacts:
 files:
 - index.js

To create an index.ts file

• Create a file named index.ts with the following contents.

interface Greeting {
 message: string;
}

class HelloGreeting implements Greeting {
 message = "Hello!";
}

function greet(greeting: Greeting) {
 console.log(greeting.message);
}

let greeting = new HelloGreeting();

Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket API Version 2015-07-09 194

AWS CodePipeline User Guide

greet(greeting);

To upload files to your S3 source bucket

1. Your files should look like this in your local directory:

buildspec.yml
index.ts

Zip the files and name the file source.zip.

2. In the Amazon S3 console, for your source bucket, choose Upload. Choose Add files, and then
browse for the ZIP file you created.

3. Choose Upload. These files are the source artifact created by the Create Pipeline wizard for
your deployment action in CodePipeline. Your file should look like this in your bucket:

source.zip

Step 2: Create your pipeline

In this section, you create a pipeline with the following actions:

• A source stage with an Amazon S3 action where the source artifacts are the files for your
downloadable application.

• A deployment stage with an Amazon S3 deployment action.

To create a pipeline with the wizard

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyS3DeployPipeline.

4. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

5. Leave the settings under Advanced settings at their defaults, and then choose Next.

Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket API Version 2015-07-09 195

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

6. In Step 2: Add source stage, in Source provider, choose Amazon S3. In Bucket, choose the
name of your source bucket. In S3 object key, enter the name of your source ZIP file. Make
sure you include the .zip file extension.

Choose Next.

7. In Step 3: Add build stage:

a. In Build provider, choose CodeBuild.

b. Choose Create build project. On the Create project page:

c. In Project name, enter a name for this build project.

d. In Environment, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime, choose Standard. For Runtime version, choose aws/codebuild/
standard:1.0.

f. In Image version, choose Always use the latest image for this runtime version.

g. For Service role, choose your CodeBuild service role, or create one.

h. For Build specifications, choose Use a buildspec file.

i. Choose Continue to CodePipeline. A message is displayed if the project was created
successfully.

j. Choose Next.

8. In Step 4: Add deploy stage:

a. In Deploy provider, choose Amazon S3.

b. In Bucket, enter the name of your S3 target bucket.

c. Make sure that Extract file before deploy is cleared.

When Extract file before deploy is cleared, S3 object key is displayed. Enter the name of
the path you want to use: js-application/{datetime}.zip.

This creates a js-application folder in Amazon S3 to which the files are extracted. In
this folder, the {datetime} variable creates a timestamp on each output file when your
pipeline runs.

Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket API Version 2015-07-09 196

AWS CodePipeline User Guide

d. (Optional) In Canned ACL, you can apply a set of predefined grants, known as a canned
ACL, to the uploaded artifacts.

e. (Optional) In Cache control, enter the caching parameters. You can set this to control
caching behavior for requests/responses. For valid values, see the Cache-Control
header field for HTTP operations.

f. Choose Next.

9. In Step 5: Review, review the information, and then choose Create pipeline.

10. After your pipeline runs successfully, view your bucket in the Amazon S3 console. Verify that
your deployed ZIP file is displayed in your target bucket under the js-application folder.
The JavaScript file contained in the ZIP file should be index.js. The index.js file contains
the following output:

var HelloGreeting = /** @class */ (function () {
 function HelloGreeting() {
 this.message = "Hello!";
 }
 return HelloGreeting;
}());
function greet(greeting) {

Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket API Version 2015-07-09 197

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

AWS CodePipeline User Guide

 console.log(greeting.message);
}
var greeting = new HelloGreeting();
greet(greeting);

Step 3: Make a change to any source file and verify deployment

Make a change to your source files and then upload them to your source bucket. This triggers your
pipeline to run. View your target bucket and verify that the deployed output files are available in
the js-application folder as shown:

Tutorial: Create a pipeline that publishes your serverless
application to the AWS Serverless Application Repository

You can use AWS CodePipeline to continuously deliver your AWS SAM serverless application to the
AWS Serverless Application Repository.

This tutorial shows how to create and configure a pipeline to build your serverless application that
is hosted in GitHub and publish it to the AWS Serverless Application Repository automatically. The
pipeline uses GitHub as the source provider and CodeBuild as the build provider. To publish your

Tutorial: Publish applications to the AWS Serverless Application Repository API Version 2015-07-09 198

AWS CodePipeline User Guide

serverless application to the AWS Serverless Application Repository, you deploy an application
(from the AWS Serverless Application Repository) and associate the Lambda function created by
that application as an Invoke action provider in your pipeline. Then you can continuously deliver
application updates to the AWS Serverless Application Repository, without writing any code.

Important

Many of the actions you add to your pipeline in this procedure involve AWS resources
that you need to create before you create the pipeline. AWS resources for your source
actions must always be created in the same AWS Region where you create your pipeline.
For example, if you create your pipeline in the US East (Ohio) Region, your CodeCommit
repository must be in the US East (Ohio) Region.
You can add cross-region actions when you create your pipeline. AWS resources for cross-
region actions must be in the same AWS Region where you plan to execute the action. For
more information, see Add a cross-Region action in CodePipeline.

Before you begin

In this tutorial, we assume the following.

• You are familiar with AWS Serverless Application Model (AWS SAM) and the AWS Serverless
Application Repository.

• You have a serverless application hosted in GitHub that you have published to the AWS
Serverless Application Repository using the AWS SAM CLI. To publish an example application to
the AWS Serverless Application Repository, see Quick Start: Publishing Applications in the AWS
Serverless Application Repository Developer Guide. To publish your own application to the AWS
Serverless Application Repository, see Publishing Applications Using the AWS SAM CLI in the
AWS Serverless Application Model Developer Guide.

Step 1: Create a buildspec.yml file

Create a buildspec.yml file with the following contents, and add it to your serverless
application's GitHub repository. Replace template.yml with your application's AWS SAM template
and bucketname with the S3 bucket where your packaged application is stored.

version: 0.2

Before you begin API Version 2015-07-09 199

https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~aws-serverless-codepipeline-serverlessrepo-publish
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-quick-start.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-publishing-applications.html

AWS CodePipeline User Guide

phases:
 install:
 runtime-versions:
 python: 3.8
 build:
 commands:
 - sam package --template-file template.yml --s3-bucket bucketname --output-
template-file packaged-template.yml
artifacts:
 files:
 - packaged-template.yml

Step 2: Create and configure your pipeline

Follow these steps to create your pipeline in the AWS Region where you want to publish your
serverless application.

1. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

2. If necessary, switch to the AWS Region where you want to publish your serverless application.

3. Choose Create pipeline. On the Choose pipeline settings page, in Pipeline name, enter the
name for your pipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

6. Leave the settings under Advanced settings at their defaults, and then choose Next.

7. On the Add source stage page, in Source provider, choose GitHub.

8. Under Connection, choose an existing connection or create a new one. To create or manage a
connection for your GitHub source action, see GitHub connections.

9. In Repository, choose your GitHub source repository.

10. In Branch, choose your GitHub branch.

11. Leave the remaining defaults for the source action. Choose Next.

12. On the Add build stage page, add a build stage:

a. In Build provider, choose AWS CodeBuild. For Region, use the pipeline Region.

b. Choose Create project.

Step 2: Create and configure your pipeline API Version 2015-07-09 200

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

c. In Project name, enter a name for this build project.

d. In Environment image, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime and Runtime version, choose the runtime and version required for your
serverless application.

f. For Service role, choose New service role.

g. For Build specifications, choose Use a buildspec file.

h. Choose Continue to CodePipeline. This opens the CodePipeline console and creates a
CodeBuild project that uses the buildspec.yml in your repository for configuration. The
build project uses a service role to manage AWS service permissions. This step might take
a couple of minutes.

i. Choose Next.

13. On the Add deploy stage page, choose Skip deploy stage, and then accept the warning
message by choosing Skip again. Choose Next.

14. Choose Create pipeline. You should see a diagram that shows the source and build stages.

15. Grant the CodeBuild service role permission to access the S3 bucket where your packaged
application is stored.

a. In the Build stage of your new pipeline, choose CodeBuild.

b. Choose the Build details tab.

c. In Environment, choose the CodeBuild service role to open the IAM console.

d. Expand the selection for CodeBuildBasePolicy, and choose Edit policy.

e. Choose JSON.

f. Add a new policy statement with the following contents. The statement allows CodeBuild
to put objects into the S3 bucket where your packaged application is stored. Replace
bucketname with the name of your S3 bucket.

 {
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::bucketname/*"
],
 "Action": [
 "s3:PutObject"
]
 }

Step 2: Create and configure your pipeline API Version 2015-07-09 201

AWS CodePipeline User Guide

g. Choose Review policy.

h. Choose Save changes.

Step 3: Deploy the publish application

Follow these steps to deploy the application that contains the Lambda function that performs
the publish to the AWS Serverless Application Repository. This application is aws-serverless-
codepipeline-serverlessrepo-publish.

Note

You must deploy the application to the same AWS Region as your pipeline.

1. Go to the application page, and choose Deploy.

2. Select I acknowledge that this app creates custom IAM roles.

3. Choose Deploy.

4. Choose View AWS CloudFormation Stack to open the AWS CloudFormation console.

5. Expand the Resources section. You see ServerlessRepoPublish, which is of the type
AWS::Lambda::Function. Make a note of the physical ID of this resource for the next step. You
use this physical ID when you create the new publish action in CodePipeline.

Step 4: Create the publish action

Follow these steps to create the publish action in your pipeline.

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. In the left navigation section, choose the pipeline that you want to edit.

3. Choose Edit.

4. After the last stage of your current pipeline, choose + Add stage. In Stage name enter a name,
such as Publish, and choose Add stage.

5. In the new stage, choose + Add action group.

6. Enter an action name. From Action provider, in Invoke, choose AWS Lambda.

7. From Input artifacts, choose BuildArtifact.

Step 3: Deploy the publish application API Version 2015-07-09 202

https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~aws-serverless-codepipeline-serverlessrepo-publish
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

8. From Function name, choose the physical ID of the Lambda function that you noted in the
previous step.

9. Choose Save for the action.

10. Choose Done for the stage.

11. In the upper right, choose Save.

12. To verify your pipeline, make a change to your application in GitHub. For example, change the
application's description in the Metadata section of your AWS SAM template file. Commit
the change and push it to your GitHub branch. This triggers your pipeline to run. When the
pipeline is complete, check that your application has been updated with your change in the
AWS Serverless Application Repository.

Tutorial: Using variables with Lambda invoke actions

A Lambda invoke action can use variables from another action as part of its input and return new
variables along with its output. For information about variables for actions in CodePipeline, see
Variables.

At the end of this tutorial, you will have:

• A Lambda invoke action that:

• Consumes the CommitId variable from a CodeCommit source action

• Outputs three new variables: dateTime, testRunId, and region

• A manual approval action that consumes the new variables from your Lambda invoke action to
provide a test URL and a test run ID

• A pipeline updated with the new actions

Topics

• Prerequisites

• Step 1: Create a Lambda function

• Step 2: Add a Lambda invoke action and manual approval action to your pipeline

Prerequisites

Before you begin, you must have the following:

Tutorial: Using variables with Lambda invoke actions API Version 2015-07-09 203

https://console.aws.amazon.com/serverlessrepo/home

AWS CodePipeline User Guide

• You can create or use the pipeline with the CodeCommit source in Tutorial: Create a simple
pipeline (CodeCommit repository).

• Edit your existing pipeline so that the CodeCommit source action has a namespace. Assign the
namespace SourceVariables to the action.

Step 1: Create a Lambda function

Use the following steps to create a Lambda function and a Lambda execution role. You add the
Lambda action to your pipeline after you create the Lambda function.

To create a Lambda function and execution role

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function. Leave Author from scratch selected.

3. In Function name, enter the name of your function, such as myInvokeFunction. In Runtime,
leave the default option selected.

4. Expand Choose or create an execution role. Choose Create a new role with basic Lambda
permissions.

5. Choose Create function.

6. To use a variable from another action, it will have to be passed to the UserParameters in the
Lambda invoke action configuration. You will be configuring the action in our pipeline later in
the tutorial, but you will add the code assuming the variable will be passed.

const commitId =
event["CodePipeline.job"].data.actionConfiguration.configuration.UserParameters;

To produce new variables, set a property called outputVariables on the input
to putJobSuccessResult. Note that you cannot produce variables as part of a
putJobFailureResult.

const successInput = {
 jobId: jobId,
 outputVariables: {
 testRunId: Math.floor(Math.random() * 1000).toString(),
 dateTime: Date(Date.now()).toString(),
 region: lambdaRegion

Step 1: Create a Lambda function API Version 2015-07-09 204

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS CodePipeline User Guide

 }
};

In your new function, leave Edit code inline selected, and paste the following example code
under index.js.

var AWS = require('aws-sdk');

exports.handler = function(event, context) {
 var codepipeline = new AWS.CodePipeline();

 // Retrieve the Job ID from the Lambda action
 var jobId = event["CodePipeline.job"].id;

 // Retrieve the value of UserParameters from the Lambda action configuration in
 CodePipeline,
 // in this case it is the Commit ID of the latest change of the pipeline.
 var params =
 event["CodePipeline.job"].data.actionConfiguration.configuration.UserParameters;

 // The region from where the lambda function is being executed.
 var lambdaRegion = process.env.AWS_REGION;

 // Notify CodePipeline of a successful job
 var putJobSuccess = function(message) {
 var params = {
 jobId: jobId,
 outputVariables: {
 testRunId: Math.floor(Math.random() * 1000).toString(),
 dateTime: Date(Date.now()).toString(),
 region: lambdaRegion
 }
 };
 codepipeline.putJobSuccessResult(params, function(err, data) {
 if(err) {
 context.fail(err);
 } else {
 context.succeed(message);
 }
 });
 };

 // Notify CodePipeline of a failed job

Step 1: Create a Lambda function API Version 2015-07-09 205

AWS CodePipeline User Guide

 var putJobFailure = function(message) {
 var params = {
 jobId: jobId,
 failureDetails: {
 message: JSON.stringify(message),
 type: 'JobFailed',
 externalExecutionId: context.invokeid
 }
 };
 codepipeline.putJobFailureResult(params, function(err, data) {
 context.fail(message);
 });
 };

 var sendResult = function() {
 try {
 console.log("Testing commit - " + params);

 // Your tests here

 // Succeed the job
 putJobSuccess("Tests passed.");
 } catch (ex) {
 // If any of the assertions failed then fail the job
 putJobFailure(ex);
 }
 };

 sendResult();
};

7. Choose Save.

8. Copy the Amazon Resource Name (ARN) at the top of the screen.

9. As a last step, open the AWS Identity and Access Management (IAM) console at https://
console.aws.amazon.com/iam/. Modify the Lambda execution role to add the following policy:
AWSCodePipelineCustomActionAccess. For the steps to create a Lambda execution role or
modify the role policy, see Step 2: Create the Lambda function .

Step 1: Create a Lambda function API Version 2015-07-09 206

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAWSCodePipelineCustomActionAccess

AWS CodePipeline User Guide

Step 2: Add a Lambda invoke action and manual approval action to
your pipeline

In this step, you add a Lambda invoke action to your pipeline. You add the action as part of a stage
named Test. The action type is an invoke action. You then add a manual approval action after the
invoke action.

To add a Lambda action and a manual approval action to the pipeline

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

The names of all pipelines that are associated with your AWS account are displayed. Choose
the pipeline where you want to add the action.

2. Add the Lambda test action to your pipeline.

a. To edit your pipeline, choose Edit. Add a stage after the source action in the existing
pipeline. Enter a name for the stage, such as Test.

b. In the new stage, choose the icon to add an action. In Action name, enter the name of the
invoke action, such as Test_Commit.

c. In Action provider, choose AWS Lambda.

d. In Input artifacts, choose the name of your source action's output artifact, such as
SourceArtifact.

e. In Function name, choose the name of the Lambda function that you created.

f. In User parameters, enter the variable syntax for the CodeCommit commit ID. This creates
the output variable that resolves to the commit to be reviewed and approved each time
the pipeline is run.

#{SourceVariables.CommitId}

g. In Variable namespace, add the namespace name, such as TestVariables.

h. Choose Done.

3. Add the manual approval action to your pipeline.

a. With your pipeline still in editing mode, add a stage after the invoke action. Enter a name
for the stage, such as Approval.

b. In the new stage, choose the icon to add an action. In Action name, enter the name of the
approval action, such as Change_Approval.

Step 2: Add a Lambda invoke action and manual approval action to your pipeline API Version 2015-07-09 207

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

c. In Action provider, choose Manual approval.

d. In URL for review, construct the URL by adding the variable syntax for the region
variable and the CommitId variable. Make sure that you use the namespaces assigned to
the actions that provide the output variables.

For this example, the URL with the variable syntax for a CodeCommit action has the
default namespace SourceVariables. The Lambda region output variable has the
TestVariables namespace. The URL looks like the following.

https://#{TestVariables.region}.console.aws.amazon.com/codesuite/codecommit/
repositories/MyDemoRepo/commit/#{SourceVariables.CommitId}

In Comments, construct the approval message text by adding the variable syntax for the
testRunId variable. For this example, the URL with the variable syntax for the Lambda
testRunId output variable has the TestVariables namespace. Enter the following
message.

Make sure to review the code before approving this action. Test Run ID:
 #{TestVariables.testRunId}

4. Choose Done to close the edit screen for the action, and then choose Done to close the edit
screen for the stage. To save the pipeline, choose Done. The completed pipeline now contains
a structure with source, test, approval, and deploy stages.

Choose Release change to run the latest change through the pipeline structure.

5. When the pipeline reaches the manual approval stage, choose Review. The resolved variables
appear as the URL for the commit ID. Your approver can choose the URL to view the commit.

6. After the pipeline runs successfully, you can also view the variable values on the action
execution history page.

Tutorial: Use an AWS Step Functions invoke action in a pipeline

You can use AWS Step Functions to create and configure state machines. This tutorial shows
you how to add an invoke action to a pipeline that activates state machine executions from your
pipeline.

In this tutorial, you do the following tasks:

Tutorial: Use an AWS Step Functions invoke action API Version 2015-07-09 208

AWS CodePipeline User Guide

• Create a standard state machine in AWS Step Functions.

• Enter the state machine input JSON directly. You can also upload the state machine input file to
an Amazon Simple Storage Service (Amazon S3) bucket.

• Update your pipeline by adding the state machine action.

Note

This feature is not available in the Asia Pacific (Hong Kong) and Europe (Milan) Regions. To
reference other available actions, see Product and service integrations with CodePipeline.

Topics

• Prerequisite: Create or choose a simple pipeline

• Step 1: Create the sample state machine

• Step 2: Add a Step Functions invoke action to your pipeline

Prerequisite: Create or choose a simple pipeline

In this tutorial, you add an invoke action to an existing pipeline. You can use the pipeline you
created in Tutorial: Create a simple pipeline (S3 bucket) or Tutorial: Create a simple pipeline
(CodeCommit repository).

You use an existing pipeline with a source action and at least a two-stage structure, but you do not
use source artifacts for this example.

Note

You might need to update the service role used by your pipeline with additional
permissions required to run this action. To do this, open the AWS Identity and Access
Management (IAM) console, find the role, and then add the permissions to the role's policy.
For more information, see Add permissions to the CodePipeline service role.

Prerequisite: Create or choose a simple pipeline API Version 2015-07-09 209

AWS CodePipeline User Guide

Step 1: Create the sample state machine

In the Step Functions console, create a state machine using the HelloWorld sample template. For
instructions, see Create a State Machine in the AWS Step Functions Developer Guide.

Step 2: Add a Step Functions invoke action to your pipeline

Add a Step Functions invoke action to your pipeline as follows:

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit. This opens a detailed view of the
pipeline, including the state of each of the actions in each stage of the pipeline.

3. On the pipeline details page, choose Edit.

4. On the second stage of your simple pipeline, choose Edit stage. Choose Delete. This deletes
the second stage now that you no longer need it.

5. At the bottom of the diagram, choose + Add stage.

6. In Stage name, enter a name for the stage, such as Invoke, and then choose Add stage.

7. Choose + Add action group.

8. In Action name, enter a name, such as Invoke.

9. In Action provider, choose AWS Step Functions. Allow Region to default to the pipeline
Region.

10. In Input artifacts, choose SourceArtifact.

11. In State machine ARN, choose the Amazon Resource Name (ARN) for the state machine that
you created earlier.

12. (Optional) In Execution name prefix, enter a prefix to be added to the state machine execution
ID.

13. In Input type, choose Literal.

14. In Input, enter the input JSON that the HelloWorld sample state machine expects.

Step 1: Create the sample state machine API Version 2015-07-09 210

https://docs.aws.amazon.com/step-functions/latest/dg/getting-started.html#create-state-machine
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Note

The input to the state machine execution is different from the term used in
CodePipeline to describe input artifacts for actions.

For this example, enter the following JSON:

{"IsHelloWorldExample": true}

15. Choose Done.

16. On the stage that you're editing, choose Done. In the AWS CodePipeline pane, choose Save,
and then choose Save on the warning message.

17. To submit your changes and start a pipeline execution, choose Release change, and then
choose Release.

18. On your completed pipeline, choose AWS Step Functions in your invoke action. In the AWS
Step Functions console, view your state machine execution ID. The ID shows your state
machine name HelloWorld and the state machine execution ID with the prefix my-prefix.

arn:aws:states:us-west-2:account-ID:execution:HelloWorld:my-
prefix-0d9a0900-3609-4ebc-925e-83d9618fcca1

Tutorial: Create a pipeline that uses AWS AppConfig as a
deployment provider

In this tutorial, you configure a pipeline that continuously delivers configuration files using AWS
AppConfig as the deployment action provider in your deployment stage.

Topics

• Prerequisites

• Step 1: Create your AWS AppConfig resources

• Step 2: Upload files to your S3 source bucket

• Step 3: Create your pipeline

• Step 4: Make a change to any source file and verify deployment

Tutorial: Create a pipeline that uses AppConfig as a deployment provider API Version 2015-07-09 211

AWS CodePipeline User Guide

Prerequisites

Before you begin, you must complete the following:

• This example uses an S3 source for your pipeline. Create or use an Amazon S3 bucket with
versioning enabled. Follow the instructions in Step 1: Create an S3 bucket for your application to
create an S3 bucket.

Step 1: Create your AWS AppConfig resources

In this section, you create the following resources:

• An application in AWS AppConfig is a logical unit of code that provides capabilities for your
customers.

• An environment in AWS AppConfig is a logical deployment group of AppConfig targets, such as
applications in a beta or production environment.

• A configuration profile is a collection of settings that influence the behavior of your application.
The configuration profile enables AWS AppConfig to access your configuration in its stored
location.

• (Optional) A deployment strategy in AWS AppConfig defines the behavior of a configuration
deployment, such as what percentage of clients should receive the new deployed config at any
given time during a deployment.

To create an application, environment, configuration profile, and deployment strategy

1. Sign in to the AWS Management Console.

2. Use the steps in the following topics to create your resources in AWS AppConfig.

• Create an application.

• Create an environment.

• Create an AWS CodePipeline configuration profile.

• (Optional) Choose a predefined deployment strategy or create your own.

Prerequisites API Version 2015-07-09 212

https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig-creating-application.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig-creating-environment.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig-creating-configuration-and-profile.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig-creating-deployment-strategy.html

AWS CodePipeline User Guide

Step 2: Upload files to your S3 source bucket

In this section, create your configuration file or files. Then zip and push your source files to the
bucket that the pipeline uses for your source stage.

To create configuration files

1. Create a configuration.json file for each configuration in each Region. Include the
following contents:

Hello World!

2. Use the following steps to zip and upload your configuration files.

To zip and upload source files

1. Create a .zip file with your files and name the .zip file configuration-files.zip. As an
example, your .zip file can use the following structure:

.
appconfig-configurations
 ### MyConfigurations
 ### us-east-1
 # ### configuration.json
 ### us-west-2
 ### configuration.json

2. In the Amazon S3 console for your bucket, choose Upload, and follow the instructions to
upload your .zip file.

Step 3: Create your pipeline

In this section, you create a pipeline with the following actions:

• A source stage with an Amazon S3 action where the source artifacts are the files for your
configuration.

• A deployment stage with an AppConfig deployment action.

Step 2: Upload files to your S3 source bucket API Version 2015-07-09 213

AWS CodePipeline User Guide

To create a pipeline with the wizard

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyAppConfigPipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

6. Leave the settings under Advanced settings at their defaults, and then choose Next.

7. In Step 2: Add source stage, in Source provider, choose Amazon S3. In Bucket, choose the
name of your S3 source bucket.

In S3 object key, enter the name of your .zip file: configuration-files.zip.

Choose Next.

8. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

Choose Next.

9. In Step 4: Add deploy stage:

a. In Deploy provider, choose AWS AppConfig.

b. In Application, choose the name of the application you created in AWS AppConfig. The
field shows the ID for your application.

c. In Environment, choose the name of the environment you created in AWS AppConfig. The
field shows the ID for your environment.

d. In Configuration profile, choose the name of the configuration profile you created in AWS
AppConfig. The field shows the ID for your configuration profile.

e. In Deployment strategy, choose the name of your deployment strategy. This can be either
a deployment strategy you created in AppConfig or one you have chosen from predefined
deployment strategies in AppConfig. The field shows the ID for your deployment strategy.

f. In Input artifact configuration path, enter the file path. Make sure that your input
artifact configuration path matches the directory structure in your S3 bucket .zip

Step 3: Create your pipeline API Version 2015-07-09 214

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

file. For this example, enter the following file path: appconfig-configurations/
MyConfigurations/us-west-2/configuration.json.

g. Choose Next.

10. In Step 5: Review, review the information, and then choose Create pipeline.

Step 4: Make a change to any source file and verify deployment

Make a change to your source files and upload the change to your bucket. This triggers your
pipeline to run. Verify that your configuration is available by viewing the version.

Tutorial: Use full clone with a GitHub pipeline source

You can choose the full clone option for your GitHub source action in CodePipeline. Use this option
to run CodeBuild commands for Git metadata in your pipeline build action.

In this tutorial, you will create a pipeline that connects to your GitHub repository, uses the full
clone option for source data, and run a CodeBuild build that clones your repository and performs
Git commands for the repository.

Note

This feature is not available in the Asia Pacific (Hong Kong), Africa (Cape Town), Middle
East (Bahrain), Europe (Zurich), or AWS GovCloud (US-West) Regions. To reference
other available actions, see Product and service integrations with CodePipeline.
For considerations with this action in the Europe (Milan) Region, see the note in
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server,
GitLab.com, and GitLab self-managed actions.

Topics

• Prerequisites

• Step 1: Create a README file

• Step 2: Create your pipeline and build project

• Step 3: Update the CodeBuild service role policy to use connections

• Step 4: View repository commands in build output

Step 4: Make a change to any source file and verify deployment API Version 2015-07-09 215

AWS CodePipeline User Guide

Prerequisites

Before you begin, you must do the following:

• Create a GitHub repository with your GitHub account.

• Have your GitHub credentials ready. When you use the AWS Management Console to set up a
connection, you are asked to sign in with your GitHub credentials.

Step 1: Create a README file

After you create your GitHub repository, use these steps to add a README file.

1. Log in to your GitHub repository and choose your repository.

2. To create a new file, choose Add file > Create new file. Name the file README.md. file and add
the following text.

This is a GitHub repository!

3. Choose Commit changes.

Make sure the README.md file is at the root level of your repository.

Step 2: Create your pipeline and build project

In this section, you create a pipeline with the following actions:

• A source stage with a connection to your GitHub repository and action.

• A build stage with an AWS CodeBuild build action.

To create a pipeline with the wizard

1. Sign in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyGitHubPipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

Prerequisites API Version 2015-07-09 216

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

5. In Service role, choose New service role.

Note

If you choose instead to use your existing CodePipeline service role, make sure that
you have added the codestar-connections:UseConnection IAM permission to
your service role policy. For instructions for the CodePipeline service role, see Add
permissions to the the CodePipeline service role.

6. Under Advanced settings, leave the defaults. In Artifact store, choose Default location to use
the default artifact store, such as the Amazon S3 artifact bucket designated as the default, for
your pipeline in the Region you selected for your pipeline.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.

Choose Next.

7. On the Step 2: Add source stage page, add a source stage:

a. In Source provider, choose GitHub (Version 2).

b. Under Connection, choose an existing connection or create a new one. To create or
manage a connection for your GitHub source action, see GitHub connections.

c. In Repository name, choose the name of your GitHub repository.

d. In Branch name, choose the repository branch you want to use.

e. Make sure the Start the pipeline on source code change option is selected.

f. Under Output artifact format, choose Full clone to enable the Git clone option for the
source repository. Only actions provided by CodeBuild can use the Git clone option. You
will use Step 3: Update the CodeBuild service role policy to use connections in this tutorial
to update the permissions for your CodeBuild project service role to use this option.

Choose Next.

8. In Add build stage, add a build stage:

Step 2: Create your pipeline and build project API Version 2015-07-09 217

https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services

AWS CodePipeline User Guide

a. In Build provider, choose AWS CodeBuild. Allow Region to default to the pipeline Region.

b. Choose Create project.

c. In Project name, enter a name for this build project.

d. In Environment image, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime, choose Standard. For Image, choose aws/codebuild/standard:5.0.

f. For Service role, choose New service role.

Note

Note the name of your CodeBuild service role. You will need the role name for the
final step in this tutorial.

g. Under Buildspec, for Build specifications, choose Insert build commands. Choose Switch
to editor, and paste the following under Build commands.

Note

In the env section of the build spec, make sure the credential helper for git
commands is enabled as shown in this example.

version: 0.2

env:
 git-credential-helper: yes
phases:
 install:
 #If you use the Ubuntu standard image 2.0 or later, you must specify
 runtime-versions.
 #If you specify runtime-versions and use an image other than Ubuntu
 standard image 2.0, the build fails.
 runtime-versions:
 nodejs: 12
 # name: version
 #commands:
 # - command
 # - command
 pre_build:

Step 2: Create your pipeline and build project API Version 2015-07-09 218

AWS CodePipeline User Guide

 commands:
 - ls -lt
 - cat README.md
 build:
 commands:
 - git log | head -100
 - git status
 - ls
 - git archive --format=zip HEAD > application.zip
 #post_build:
 #commands:
 # - command
 # - command
artifacts:
 files:
 - application.zip
 # - location
 #name: $(date +%Y-%m-%d)
 #discard-paths: yes
 #base-directory: location
#cache:
 #paths:
 # - paths

h. Choose Continue to CodePipeline. This returns to the CodePipeline console and creates
a CodeBuild project that uses your build commands for configuration. The build project
uses a service role to manage AWS service permissions. This step might take a couple of
minutes.

i. Choose Next.

9. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again. Choose Next.

10. On Step 5: Review, choose Create pipeline.

Step 3: Update the CodeBuild service role policy to use connections

The initial pipeline run will fail because the CodeBuild service role must be updated with
permissions to use connections. Add the codestar-connections:UseConnection IAM
permission to your service role policy. For instructions to update the policy in the IAM console,
see Add CodeBuild GitClone permissions for connections to Bitbucket, GitHub, GitHub Enterprise
Server, or GitLab.com.

Step 3: Update the CodeBuild service role policy to use connections API Version 2015-07-09 219

AWS CodePipeline User Guide

Step 4: View repository commands in build output

1. When your service role is successfully updated, choose Retry on the failed CodeBuild stage.

2. After the pipeline runs successfully, on your successful build stage, choose View details.

On the details page, choose the Logs tab. View the CodeBuild build output. The commands
output the value of the entered variable.

The commands output the README.md file contents, list the files in the directory, clone the
repository, view the log, and archive the repository as a ZIP file.

Tutorial: Use full clone with a CodeCommit pipeline source

You can choose the full clone option for your CodeCommit source action in CodePipeline. Use this
option to allow CodeBuild to access Git metadata in your pipeline build action.

In this tutorial, you create a pipeline that accesses your CodeCommit repository, uses the full clone
option for source data, and runs a CodeBuild build that clones your repository and performs Git
commands for the repository.

Note

CodeBuild actions are the only downstream actions support use of Git metadata available
with the Git clone option. Also, while your pipeline can contain cross-account actions, the
CodeCommit action and the CodeBuild action must be in the same account for the full
clone option to succeed.

Topics

• Prerequisites

• Step 1: Create a README file

• Step 2: Create your pipeline and build project

• Step 3: Update the CodeBuild service role policy to clone the repository

• Step 4: View repository commands in build output

Step 4: View repository commands in build output API Version 2015-07-09 220

AWS CodePipeline User Guide

Prerequisites

Before you begin, you must create a CodeCommit repository in the same AWS account and Region
as your pipeline.

Step 1: Create a README file

Use these steps to add a README file to your source repository. The README file provides an
example source file for the CodeBuild downstream action to read.

To add a README file

1. Log in to your repository and choose your repository.

2. To create a new file, choose Add file > Create file. Name the file README.md. file and add the
following text.

This is a CodeCommit repository!

3. Choose Commit changes.

Make sure the README.md file is at the root level of your repository.

Step 2: Create your pipeline and build project

In this section, you create a pipeline with the following actions:

• A source stage with a CodeCommit source action.

• A build stage with an AWS CodeBuild build action.

To create a pipeline with the wizard

1. Sign in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyCodeCommitPipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

Prerequisites API Version 2015-07-09 221

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

5. In Service role, do one of the following:

• Choose Existing service role.

• Choose your existing CodePipeline service role. This role must have the
codecommit:GetRepository IAM permission to your service role policy. See Add
permissions to the the CodePipeline service role.

6. Under Advanced settings, leave the defaults. Choose Next.

7. On the Step 2: Add source stage page, do the following:

a. In Source provider, choose CodeCommit.

b. In Repository name, choose the name of your repository.

c. In Branch name, choose your branch name.

d. Make sure the Start the pipeline on source code change option is selected.

e. Under Output artifact format, choose Full clone to enable the Git clone option for the
source repository. Only actions provided by CodeBuild can use the Git clone option.

Choose Next.

8. In Add build stage, do the following:

a. In Build provider, choose AWS CodeBuild. Allow Region to default to the pipeline Region.

b. Choose Create project.

c. In Project name, enter a name for this build project.

d. In Environment image, choose Managed image. For Operating system, choose Ubuntu.

e. For Runtime, choose Standard. For Image, choose aws/codebuild/standard:5.0.

f. For Service role, choose New service role.

Note

Note the name of your CodeBuild service role. You will need the role name for the
final step in this tutorial.

g. Under Buildspec, for Build specifications, choose Insert build commands. Choose Switch
to editor, and then under Build commands paste the following code.

version: 0.2

Step 2: Create your pipeline and build project API Version 2015-07-09 222

https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#how-to-update-role-new-services

AWS CodePipeline User Guide

env:
 git-credential-helper: yes
phases:
 install:
 #If you use the Ubuntu standard image 2.0 or later, you must specify
 runtime-versions.
 #If you specify runtime-versions and use an image other than Ubuntu
 standard image 2.0, the build fails.
 runtime-versions:
 nodejs: 12
 # name: version
 #commands:
 # - command
 # - command
 pre_build:
 commands:
 - ls -lt
 - cat README.md
 build:
 commands:
 - git log | head -100
 - git status
 - ls
 - git describe --all
 #post_build:
 #commands:
 # - command
 # - command
#artifacts:
 #files:
 # - location
 #name: $(date +%Y-%m-%d)
 #discard-paths: yes
 #base-directory: location
#cache:
 #paths:
 # - paths

h. Choose Continue to CodePipeline. This returns you to the CodePipeline console and
creates a CodeBuild project that uses your build commands for configuration. The build
project uses a service role to manage AWS service permissions. This step might take a
couple of minutes.

i. Choose Next.

Step 2: Create your pipeline and build project API Version 2015-07-09 223

AWS CodePipeline User Guide

9. On the Step 4: Add deploy stage page, choose Skip deploy stage, and then accept the
warning message by choosing Skip again. Choose Next.

10. On Step 5: Review, choose Create pipeline.

Step 3: Update the CodeBuild service role policy to clone the repository

The initial pipeline run will fail because you need to update the CodeBuild service role with
permissions to pull from your repository.

Add the codecommit:GitPull IAM permission to your service role policy. For instructions to
update the policy in the IAM console, see Add CodeBuild GitClone permissions for CodeCommit
source actions.

Step 4: View repository commands in build output

To view the build output

1. When your service role is successfully updated, choose Retry on the failed CodeBuild stage.

2. After the pipeline runs successfully, on your successful build stage, choose View details.

On the details page, choose the Logs tab. View the CodeBuild build output. The commands
output the value of the entered variable.

The commands output the README.md file contents, list the files in the directory, clone the
repository, view the log, and run git describe --all.

Tutorial: Create a pipeline with AWS CloudFormation StackSets
deployment actions

In this tutorial, you use the AWS CodePipeline console to create a pipeline with deployment actions
for creating a stack set and creating stack instances. When the pipeline runs, the template creates a
stack set and also creates and updates the instances where the stack set is deployed.

There are two ways to manage permissions for a stack set: self-managed and AWS-managed IAM
roles. This tutorial provides examples with self-managed permissions.

Step 3: Update the CodeBuild service role policy to clone the repository API Version 2015-07-09 224

AWS CodePipeline User Guide

To most effectively use Stacksets in CodePipeline, you should have a clear understanding of the
concepts behind AWS CloudFormation StackSets and how they work. See StackSets concepts in the
AWS CloudFormation User Guide.

Note

The CloudFormationStackSet and CloudFormationStackInstances actions are
not available in the Asia Pacific (Hong Kong), Europe (Zurich), Europe (Milan), Africa (Cape
Town), and Middle East (Bahrain) Regions. To reference other available actions, see Product
and service integrations with CodePipeline.

Topics

• Prerequisites

• Step 1: Upload the sample AWS CloudFormation template and parameter file

• Step 2: Create your pipeline

• Step 3: View initial deployment

• Step 4: Add a CloudFormationStackInstances action

• Step 5: View stack set resources for your deployment

• Step 6: Make an update to your stack set

Prerequisites

For stack set operations, you use two different accounts: an administration account and a target
account. You create stack sets in the administrator account. You create individual stacks that
belong to a stack set in the target account.

To create an administrator role with your administrator account

• Follow the instructions in Set up basic permissions for stack set operations. Your role must be
named AWSCloudFormationStackSetAdministrationRole.

Prerequisites API Version 2015-07-09 225

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs-self-managed.html#stacksets-prereqs-accountsetup

AWS CodePipeline User Guide

To create a service role in the target account

• Create a service role in the target account that trusts the administrator account. Follow the
instructions in Set up basic permissions for stack set operations. Your role must be named
AWSCloudFormationStackSetExecutionRole.

Step 1: Upload the sample AWS CloudFormation template and
parameter file

Create a source bucket for your stack set template and parameters files. Download the sample AWS
CloudFormation template file, set up a parameters file, and then zip the files before upload to your
S3 source bucket.

Note

Make sure to ZIP the source files before you upload to your S3 source bucket, even if the
only source file is the template.

To create an S3 source bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. In Bucket name, enter a name for your bucket.

In Region, choose the Region where you want to create your pipeline. Choose Create bucket.

4. After the bucket is created, a success banner displays. Choose Go to bucket details.

5. On the Properties tab, choose Versioning. Choose Enable versioning, and then choose Save.

To create the AWS CloudFormation template file

1. Download the following sample template file for generating CloudTrail configuration for
stack sets: https://s3.amazonaws.com/cloudformation-stackset-sample-templates-us-east-1/
EnableAWSCloudtrail.yml.

2. Save the file as template.yml.

Step 1: Upload the sample AWS CloudFormation template and parameter file API Version 2015-07-09 226

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs-self-managed.html#stacksets-prereqs-accountsetup
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://s3.amazonaws.com/cloudformation-stackset-sample-templates-us-east-1/EnableAWSCloudtrail.yml
https://s3.amazonaws.com/cloudformation-stackset-sample-templates-us-east-1/EnableAWSCloudtrail.yml

AWS CodePipeline User Guide

To create the parameters.txt file

1. Create a file with the parameters for your deployment. Parameters are values that you want to
update in your stack at runtime. The following sample file updates the template parameters
for your stack set to enable logging validation and global events.

[
 {
 "ParameterKey": "EnableLogFileValidation",
 "ParameterValue": "true"
 },
 {
 "ParameterKey": "IncludeGlobalEvents",
 "ParameterValue": "true"
 }
]

2. Save the file as parameters.txt.

To create the accounts.txt file

1. Create a file with the accounts where you want to create instances, as shown in the following
sample file.

[
 "111111222222","333333444444"
]

2. Save the file as accounts.txt.

To create and upload source files

1. Combine the files into a single ZIP file. Your files should look like this in your ZIP file.

template.yml
parameters.txt
accounts.txt

2. Upload the ZIP file to your S3 bucket. This file is the source artifact created by the Create
Pipeline wizard for your deployment action in CodePipeline.

Step 1: Upload the sample AWS CloudFormation template and parameter file API Version 2015-07-09 227

AWS CodePipeline User Guide

Step 2: Create your pipeline

In this section, you create a pipeline with the following actions:

• A source stage with an S3 source action where the source artifact is your template file and any
supporting source files.

• A deployment stage with an AWS CloudFormation stack set deployment action that creates the
stack set.

• A deployment stage with an AWS CloudFormation stack instances deployment action that
creates the stacks and instances within the target accounts.

To create a pipeline with a CloudFormationStackSet action

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, Getting started page, or Pipelines page, choose Create pipeline.

3. In Step 1: Choose pipeline settings, in Pipeline name, enter MyStackSetsPipeline.

4. In Pipeline type, choose V1 for the purposes of this tutorial. You can also choose V2; however,
note that pipeline types differ in characteristics and price. For more information, see Pipeline
types.

5. In Service role, choose New service role to allow CodePipeline to create a service role in IAM.

6. In Artifact store, leave the defaults.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.
When you create or edit a pipeline, you must have an artifact bucket in the pipeline
Region and one artifact bucket per AWS Region where you are running an action.
For more information, see Input and output artifacts and CodePipeline pipeline
structure reference.

Choose Next.

7. On the Step 2: Add source stage page, in Source provider, choose Amazon S3.

Step 2: Create your pipeline API Version 2015-07-09 228

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

8. In Bucket, enter the S3 source bucket you created for this tutorial, such as BucketName. In S3
object key, enter the file path and file name for your ZIP file, such as MyFiles.zip.

9. Choose Next.

10. In Step 3: Add build stage, choose Skip build stage, and then accept the warning message by
choosing Skip again.

Choose Next.

11. In Step 4: Add deploy stage:

a. In Deploy provider, choose AWS CloudFormation Stack Set.

b. In Stack set name, enter a name for the stack set. This is the name of the stack set that
the template creates.

Note

Make a note of your stack set name. You will use it when you add the second
StackSets deployment action to your pipeline.

c. In Template path, enter the artifact name and file path where you uploaded your
template file. For example, enter the following using the default source artifact name
SourceArtifact.

SourceArtifact::template.yml

d. In Deployment targets, enter the artifact name and file path where you uploaded your
accounts file. For example, enter the following using the default source artifact name
SourceArtifact.

SourceArtifact::accounts.txt

e. In Deployment target AWS Regions, enter one Region for deployment of your initial stack
instance, such as us-east-1.

f. Expand Deployment options. In Parameters, enter the artifact name and file path where
you uploaded your parameters file. For example, enter the following using the default
source artifact name SourceArtifact.

SourceArtifact::parameters.txt

Step 2: Create your pipeline API Version 2015-07-09 229

AWS CodePipeline User Guide

To enter the parameters as a literal input rather than a file path, enter the following:

ParameterKey=EnableLogFileValidation,ParameterValue=true
ParameterKey=IncludeGlobalEvents,ParameterValue=true

g. In Capabilities, choose CAPABILITY_IAM and CAPABILITY_NAMED_IAM.

h. In Permission model, choose SELF_MANAGED.

i. In Failure tolerance percentage, enter 20.

j. In Max concurrent percentage, enter 25.

k. Choose Next.

l. Choose Create pipeline. Your pipeline displays.

m. Allow your pipeline to run.

Step 3: View initial deployment

View the resources and status for your initial deployment. After verifying the deployment
successfully created your stack set, you can add the second action to your Deploy stage.

To view the resources

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. Under Pipelines, choose your pipeline and choose View. The diagram shows your pipeline
source and deployment stages.

3. Choose the AWS CloudFormation action on the CloudFormationStackSet action in your
pipeline. The template, resources, and events for your stack set are shown in the AWS
CloudFormation console.

4. In the left navigation panel, choose StackSets. In the list, choose the new stack set.

5. Choose the Stack instances tab. Verify that one stack instance for each account you provided
was created in the us-east-1 Region. Verify that the status for each stack instance is CURRENT.

Step 4: Add a CloudFormationStackInstances action

Create a next action in your pipeline that will allow AWS CloudFormation StackSets to create the
remainingstack instances.

Step 3: View initial deployment API Version 2015-07-09 230

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

To create a next action in your pipeline

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

Under Pipelines, choose your pipeline and choose View. The diagram shows your pipeline
source and deployment stages.

2. Choose to edit the pipeline. The pipeline displays in Edit mode.

3. On the Deploy stage, choose Edit.

4. Under the AWS CloudFormation Stack Set deploy action, choose Add action group.

5. On the Edit action page, add the action details:

a. In Action name, enter a name for the action.

b. In Action provider, choose AWS CloudFormation Stack Instances.

c. Under Input artifacts, choose SourceArtifact.

d. In Stack set name, enter the name for the stack set. This is the name of the stack set that
you provided in the first action.

e. In Deployment targets, enter the artifact name and file path where you uploaded your
accounts file. For example, enter the following using the default source artifact name
SourceArtifact.

SourceArtifact::accounts.txt

f. In Deployment target AWS Regions, enter the Regions for deployment of your remaining
stack instances, such as us-east-2 and eu-central-1 as follows:

us-east2, eu-central-1

g. In Failure tolerance percentage, enter 20.

h. In Max concurrent percentage, enter 25.

i. Choose Save.

j. .Manually release a change. Your updated pipeline displays with two actions in the Deploy
stage.

Step 5: View stack set resources for your deployment

You can view the resources and status for your stack set deployment.
Step 5: View stack set resources for your deployment API Version 2015-07-09 231

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

To view the resources

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. Under Pipelines, choose your pipeline and then choose View. The diagram shows your pipeline
source and deployment stages.

3. Choose the AWS CloudFormation action on the AWS CloudFormation Stack Instances
action in your pipeline. The template, resources, and events for your stack set are shown in the
AWS CloudFormation console.

4. In the left navigation panel, choose StackSets. In the list, choose your stack set.

5. Choose the Stack instances tab. Verify that all remaining stack instances for each account
you provided were created or updated in the expected Regions. Verify that the status for each
stack instance is CURRENT.

Step 6: Make an update to your stack set

Make an update to your stack set and deploy the update to instances. In this example, you also
make a change to the deployment targets you want to designate for update. The instances that are
not part of the update move to an outdated status.

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. Under Pipelines, choose your pipeline and then choose Edit. On the Deploy stage, choose
Edit.

3. Choose to edit the AWS CloudFormation Stack Set action in your pipeline. In Description,
write over the existing description with a new description for the stack set.

4. Choose to edit the AWS CloudFormation Stack Instances action in your pipeline. In
Deployment target AWS Regions, delete the us-east-2 value that was entered when the
action was created.

5. Save the changes. Choose Release change to run your pipeline.

6. Open your action in AWS CloudFormation. Choose the StackSet info tab. In StackSet
description, verify that the new description is shown.

7. Choose the Stack instances tab. Under Status, verify that the status for the stack instances in
us-east-2 is OUTDATED.

Step 6: Make an update to your stack set API Version 2015-07-09 232

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

CodePipeline best practices and use cases

The following sections describe best practices for CodePipeline.

Topics

• Use cases for CodePipeline

Use cases for CodePipeline

You can create pipelines that integrate with other AWS services. These can be AWS services, such
as Amazon S3, or third-party products, such as GitHub. This section provides examples for using
CodePipeline to automate your code releases using different product integrations. For a full list
of integrations with CodePipeline organized by action type, see CodePipeline pipeline structure
reference.

Topics

• Use CodePipeline with Amazon S3, AWS CodeCommit, and AWS CodeDeploy

• Use CodePipeline with third-party action providers (GitHub and Jenkins)

• Use CodePipeline with AWS CodeStar to build a pipeline in a code project

• Use CodePipeline to compile, build, and test code with CodeBuild

• Use CodePipeline with Amazon ECS for continuous delivery of container-based applications to
the cloud

• Use CodePipeline with Elastic Beanstalk for continuous delivery of web applications to the cloud

• Use CodePipeline with AWS Lambda for continuous delivery of Lambda-based and serverless
applications

• Use CodePipeline with AWS CloudFormation templates for continuous delivery to the cloud

Use CodePipeline with Amazon S3, AWS CodeCommit, and AWS
CodeDeploy

When you create a pipeline, CodePipeline integrates with AWS products and services that act as
action providers in each stage of your pipeline. When you choose stages in the wizard, you must
choose a source stage and at least a build or deploy stage. The wizard creates the stages for you

Examples of how to use CodePipeline API Version 2015-07-09 233

AWS CodePipeline User Guide

with default names that cannot be changed. These are the stage names created when you set up a
full three-stage pipeline in the wizard:

• A source action stage with a default name of “Source.”

• A build action stage with a default name of “Build.”

• A deploy action stage with a default name of “Staging.”

You can use the tutorials in this guide to create pipelines and specify stages:

• The steps in Tutorial: Create a simple pipeline (S3 bucket) help you use the wizard to create a
pipeline with two default stages: “Source” and “Staging”, where your Amazon S3 repository
is the source provider. This tutorial creates a pipeline that uses AWS CodeDeploy to deploy a
sample application from an Amazon S3 bucket to Amazon EC2 instances running Amazon Linux.

• The steps in Tutorial: Create a simple pipeline (CodeCommit repository) help you use the wizard
to create a pipeline with a “Source” stage that uses your AWS CodeCommit repository as the
source provider. This tutorial creates a pipeline that uses AWS CodeDeploy to deploy a sample
application from an AWS CodeCommit repository to an Amazon EC2 instance running Amazon
Linux.

Use CodePipeline with third-party action providers (GitHub and
Jenkins)

You can create pipelines that integrate with third-party products such as GitHub and Jenkins. The
steps in Tutorial: Create a four-stage pipeline show you how to create a pipeline that:

• Gets source code from a GitHub repository,

• Uses Jenkins to build and test the source code,

• Uses AWS CodeDeploy to deploy the built and tested source code to Amazon EC2 instances
running Amazon Linux or Microsoft Windows Server.

Use CodePipeline with AWS CodeStar to build a pipeline in a code
project

AWS CodeStar is a cloud-based service that provides a unified user interface for managing software
development projects on AWS. AWS CodeStar works with CodePipeline to combine AWS resources

Use CodePipeline with third-party action providers (GitHub and Jenkins) API Version 2015-07-09 234

AWS CodePipeline User Guide

into a project development toolchain. You can use your AWS CodeStar dashboard to automatically
create the pipeline, repositories, source code, build spec files, deployment method, and hosting
instances or serverless instances required for a complete code project.

To create your AWS CodeStar project, you choose your coding language and the type of application
you want to deploy. You can create the following project types: a web application, a web service, or
an Alexa skill.

At any time, you can integrate your preferred IDE into your AWS CodeStar dashboard. You can also
add and remove team members and manage permissions for team members on your project. For
a tutorial that shows you how to use AWS CodeStar to create a sample pipeline for a serverless
application, see Tutorial: Creating and Managing a Serverless Project in AWS CodeStar.

Use CodePipeline to compile, build, and test code with CodeBuild

CodeBuild is a managed build service in the cloud that lets you build and test your code without
a server or system. Use CodePipeline with CodeBuild to automate running revisions through the
pipeline for continuous delivery of software builds whenever there is a change to the source
code. For more information, see Use CodePipeline with CodeBuild to test code and run builds.

Use CodePipeline with Amazon ECS for continuous delivery of
container-based applications to the cloud

Amazon ECS is a container management service that lets you deploy container-based applications
to Amazon ECS instances in the cloud. Use CodePipeline with Amazon ECS to automate running
revisions through the pipeline for continuous deployment of container-based applications
whenever there is a change to the source image repository. For more information, see Tutorial:
Continuous Deployment with CodePipeline.

Use CodePipeline with Elastic Beanstalk for continuous delivery of web
applications to the cloud

Elastic Beanstalk is a compute service that lets you deploy web applications and services to web
servers. Use CodePipeline with Elastic Beanstalk for continuous deployment of web applications to
your application environment. You can also use AWS CodeStar to create a pipeline with an Elastic
Beanstalk deploy action.

Use CodePipeline to compile, build, and test code with CodeBuild API Version 2015-07-09 235

https://docs.aws.amazon.com/codestar/latest/userguide/sam-tutorial.html
https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html

AWS CodePipeline User Guide

Use CodePipeline with AWS Lambda for continuous delivery of
Lambda-based and serverless applications

You can use AWS Lambda with CodePipeline for invoking an AWS Lambda function, as described
in Deploying Serverless Applications. You can also use AWS Lambda and AWS CodeStar to create a
pipeline for deploying serverless applications.

Use CodePipeline with AWS CloudFormation templates for continuous
delivery to the cloud

You can use AWS CloudFormation with CodePipeline for continuous delivery and automation. For
more information, see Continuous Delivery with CodePipeline. AWS CloudFormation is also used to
create the templates for pipelines created in AWS CodeStar.

Use CodePipeline with AWS Lambda for continuous delivery of Lambda-based and serverless
applications

API Version 2015-07-09 236

https://docs.aws.amazon.com/lambda/latest/dg/automating-deployment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html

AWS CodePipeline User Guide

Tagging resources

A tag is a custom attribute label that you or AWS assigns to an AWS resource. Each AWS tag has
two parts:

• A tag key (for example, CostCenter, Environment, Project, or Secret). Tag keys are case
sensitive.

• An optional field known as a tag value (for example, 111122223333, Production, or a team
name). Omitting the tag value is the same as using an empty string. Like tag keys, tag values are
case sensitive.

Together these are known as key-value pairs.

Tags help you identify and organize your AWS resources. Many AWS services support tagging, so
you can assign the same tag to resources from different services to indicate that the resources are
related. For example, you can assign the same tag to a pipeline that you assign to an Amazon S3
source bucket.

For tips on using tags, see the AWS Tagging Strategies post on the AWS Answers blog.

You can tag the following resource types in CodePipeline:

• Tag a pipeline in CodePipeline

• Tag a custom action in CodePipeline

You can use the AWS CLI, CodePipeline APIs, or AWS SDKs to:

• Add tags to a pipeline, custom action, or webhook when you create it.

• Add, manage, and remove tags for a pipeline, custom action, or webhook.

You can also use the console to add, manage, and remove tags for a pipeline.

In addition to identifying, organizing, and tracking your resource with tags, you can use tags in IAM
policies to help control who can view and interact with your resource. For examples of tag-based
access policies, see Using tags to control access to CodePipeline resources.

API Version 2015-07-09 237

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

AWS CodePipeline User Guide

Use CodePipeline with Amazon Virtual Private Cloud

AWS CodePipeline now supports Amazon Virtual Private Cloud (Amazon VPC) endpoints powered
by AWS PrivateLink. This means you can connect directly to CodePipeline through a private
endpoint in your VPC, keeping all traffic inside your VPC and the AWS network.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such as:

• IP address range

• Subnets

• Route tables

• Network gateways

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that facilitates
private communication between AWS services using an elastic network interface with private
IP addresses. To connect your VPC to CodePipeline, you define an interface VPC endpoint for
CodePipeline. This type of endpoint makes it possible for you to connect your VPC to AWS services.
The endpoint provides reliable, scalable connectivity to CodePipeline without requiring an internet
gateway, network address translation (NAT) instance, or VPN connection. For information about
setting up a VPC, see the VPC User Guide.

Availability

CodePipeline currently supports VPC endpoints in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)*

Availability API Version 2015-07-09 238

https://aws.amazon.com/vpc/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-aws-privatelink-for-aws-services/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html

AWS CodePipeline User Guide

• Europe (Paris)

• Europe (Stockholm)

• Asia Pacific (Hong Kong)*

• Asia Pacific (Mumbai)

• Asia Pacific (Tokyo)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• South America (São Paulo)

• AWS GovCloud (US-West)

* You must enable this Region before you can use it.

Create a VPC endpoint for CodePipeline

You can use the Amazon VPC console to create the com.amazonaws.region.codepipeline
VPC endpoint. In the console, region is the Region identifier for an AWS Region supported
by CodePipeline, such as us-east-2 for the US East (Ohio) Region. For more information, see
Creating an Interface Endpoint in the Amazon VPC User Guide.

The endpoint is prepopulated with the Region you specified when you signed in to AWS. If you sign
in to another Region, the VPC endpoint is updated with the new Region.

Note

Other AWS services that provide VPC support and integrate with CodePipeline, such as
CodeCommit, might not support using Amazon VPC endpoints for that integration. For
example, traffic between CodePipeline and CodeCommit cannot be restricted to the VPC
subnet range.

Troubleshooting your VPC setup

When troubleshooting VPC issues, use the information that appears in internet connectivity error
messages to help you identify, diagnose, and address issues.

Create a VPC endpoint for CodePipeline API Version 2015-07-09 239

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

AWS CodePipeline User Guide

1. Make sure that your internet gateway is attached to your VPC.

2. Make sure that the route table for your public subnet points to the internet gateway.

3. Make sure that your network ACLs allow traffic to flow.

4. Make sure that your security groups allow traffic to flow.

5. Make sure that the route table for private subnets points to the virtual private gateway.

6. Make sure that the service role used by CodePipeline has the appropriate permissions.
For example, if CodePipeline does not have the Amazon EC2 permissions required to
work with an Amazon VPC, you might receive an error that says, "Unexpected EC2 error:
UnauthorizedOperation."

Troubleshooting your VPC setup API Version 2015-07-09 240

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Attach_Gateway
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html#route-tables-internet-gateway
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ACLs.html#ACLRules
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html#route-tables-nat

AWS CodePipeline User Guide

Working with pipelines in CodePipeline

To define an automated release process in AWS CodePipeline, you create a pipeline, which is a
workflow construct that describes how software changes go through a release process. A pipeline is
composed of stages and actions that you configure.

Note

When you add Build, Deploy, Test, or Invoke stages, in addition to the default options
provided with CodePipeline, you can choose custom actions that you have already created
for use with your pipelines. Custom actions can be used for tasks such as running an
internally developed build process or a test suite. Version identifiers are included to help
you distinguish among different versions of a custom action in the provider lists. For more
information, see Create and add a custom action in CodePipeline.

Before you can create a pipeline, you must first complete the steps in Getting started with
CodePipeline.

For more information about pipelines, see CodePipeline concepts, CodePipeline tutorials, and, if
you want to use the AWS CLI to create a pipeline, CodePipeline pipeline structure reference. To
view a list of pipelines, see View pipelines and details in CodePipeline.

Topics

• Start a pipeline in CodePipeline

• Stop a pipeline execution in CodePipeline

• Create a pipeline in CodePipeline

• Edit a pipeline in CodePipeline

• View pipelines and details in CodePipeline

• Delete a pipeline in CodePipeline

• Create a pipeline in CodePipeline that uses resources from another AWS account

• Migrate polling pipelines to use event-based change detection

• Create the CodePipeline service role

• Tag a pipeline in CodePipeline

• Create a notification rule

API Version 2015-07-09 241

AWS CodePipeline User Guide

Start a pipeline in CodePipeline

Each pipeline execution can be started based on a different trigger. Each pipeline execution can
have a different type of trigger, depending on how the pipeline is started. The trigger type for each
execution is shown in the execution history for a pipeline. Trigger types can depend on the source
action provider as follows:

Note

You cannot specify more than one trigger per source action.

• Pipeline creation: When a pipeline is created, a pipeline execution starts automatically. This is
the CreatePipeline trigger type in the Execution history.

• Changes on revised objects: This category represents the PutActionRevision trigger type in
the Execution history.

• Change detection on branch and commit for a code push: This category represents the
CloudWatchEvent trigger type in the Execution history. When a change is detected to a
source commit and branch in the source repository, your pipeline starts. This trigger type uses
automated change detection. The source action providers that use this trigger type are S3 and
CodeCommit. This type is also used for a schedule that starts your pipeline. See Start a pipeline
on a schedule.

• Polling for source changes: This category represents the PollForSourceChanges trigger
type in the Execution history. When a change is detected to a source commit and branch in the
source repository through polling, your pipeline starts. This trigger type is not recommended and
should be migrated to use automated change detection. The source action providers that use this
trigger type are S3 and CodeCommit.

• Webhook events for third-party sources: This category represents the Webhook trigger type in
the Execution history. When a change is detected by a webhook event, your pipeline starts. This
trigger type uses automated change detection. The source action providers that use this trigger
type are connections configured for code push (Bitbucket Cloud, GitHub, GitHub Enterprise
Server, GitLab.com, and GitLab self-managed).

• WebhookV2 events for third-party sources: This category represents the WebhookV2 trigger
type in the Execution history. This type is for executions that are triggered based on triggers
defined in the pipeline definition. When a release with a specified Git tag is detected, your
pipeline starts. You can use Git tags to mark a commit with a name or other identifier that

Start a pipeline in CodePipeline API Version 2015-07-09 242

AWS CodePipeline User Guide

helps other repository users understand its importance. You can also use Git tags to identify a
particular commit in the history of a repository. This trigger type disables automated change
detection. The source action providers that use this trigger type are connections configured for
Git tags (Bitbucket Cloud, GitHub, GitHub Enterprise Server, and GitLab.com).

• Manually starting a pipeline: This category represents the StartPipelineExecution
trigger type in the Execution history. You can use the console or the AWS CLI to start a pipeline
manually. For information, see Start a pipeline manually.

When you add a source action to your pipeline that uses automated change detection trigger types,
the actions work with additional resources. Creating each source action is detailed in separate
sections due to these additional resources for change detection. For details about each source
provider and the change detection methods required for automated change detection, see Source
actions and change detection methods.

Topics

• Source actions and change detection methods

• Start a pipeline manually

• Start a pipeline on a schedule

• Start a pipeline with a source revision override

Source actions and change detection methods

When you add a source action to your pipeline, the actions work with additional resources
described in the table.

Note

The CodeCommit and S3 source actions require either a configured change detection
resource (an EventBridge rule) or use the option to poll the repository for source changes.
For pipelines with a Bitbucket, GitHub, or GitHub Enterprise Server source action, you
do not have to set up a webhook or default to polling. The connections action manages
change detection for you.

Source actions and change detection methods API Version 2015-07-09 243

AWS CodePipeline User Guide

Source Uses additional resources? Steps

Amazon S3 This source action uses additiona
l resources. When you use the
CLI or CloudFormation to create
this action, you also create and
manage these resources.

See Create a pipeline in CodePipeline
and Amazon S3 source actions and
EventBridge with AWS CloudTrail

Bitbucket Cloud This source action uses a connectio
n resource.

See Bitbucket Cloud connections

AWS CodeCommit Amazon EventBridge (recommen
ded). This is the default for
pipelines with an CodeCommit
source created or edited in the
console.

See Create a pipeline in CodePipeline
and CodeCommit source actions and
EventBridge

Amazon ECR Amazon EventBridge. This is
created by the wizard for pipelines
with an Amazon ECR source
created or edited in the console.

See Create a pipeline in CodePipeline
and Amazon ECR source actions and
EventBridge resources.

GitHub or GitHub
Enterprise Cloud

This source action uses a connectio
n resource.

See GitHub connections

GitHub Enterprise
Server

This source action uses a connectio
n resource and a host resource.

See GitHub Enterprise Server
connections

GitLab.com This source action uses a connectio
n resource.

See GitLab.com connections

GitLab self-mana
ged

This source action uses a connectio
n resource and a host resource.

See Connections for GitLab self-
managed

If you have a pipeline that uses polling, you can update it to use the recommended detection
method. For more information, see Update polling pipelines to the recommended change
detection method.

Source actions and change detection methods API Version 2015-07-09 244

AWS CodePipeline User Guide

If you want to turn off change detection for a source action that uses connections, see
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and
GitLab self-managed actions.

Start a pipeline manually

By default, a pipeline starts automatically when it is created and any time a change is made in a
source repository. However, you might want to rerun the most recent revision through the pipeline
a second time. You can use the CodePipeline console or the AWS CLI and start-pipeline-execution
command to manually rerun the most recent revision through your pipeline.

Topics

• Start a pipeline manually (console)

• Start a pipeline manually (CLI)

Start a pipeline manually (console)

To manually start a pipeline and run the most recent revision through a pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. In Name, choose the name of the pipeline you want to start.

3. On the pipeline details page, choose Release change. If the pipeline is configured to pass
parameters (pipeline variables), then choosing Release change opens the Release change
window. In Pipeline variables, in the field or fields for the variables at the pipeline level, enter
the value or values you want to pass for this pipeline execution. For more information, see
Variables.

This starts the most recent revision available in each source location specified in a source
action through the pipeline.

Start a pipeline manually (CLI)

To manually start a pipeline and run the most recent version of an artifact through a pipeline

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS
CLI to run the start-pipeline-execution command, specifying the name of the pipeline

Start a pipeline manually API Version 2015-07-09 245

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

you want to start. For example, to start running the last change through a pipeline named
MyFirstPipeline:

aws codepipeline start-pipeline-execution --name MyFirstPipeline

To start a pipeline where variables are configured at the pipeline level, use the start-pipeline-
execution command with the optional --variables argument to start the pipeline and add the
variables that will be used in the execution. For example, to add a variable var1 with a value
of 1, use the following command:

aws codepipeline start-pipeline-execution --name MyFirstPipeline --variables
 name=var1,value=1

2. To verify success, view the returned object. This command returns an execution ID, similar to
the following:

{
 "pipelineExecutionId": "c53dbd42-This-Is-An-Example"
}

Note

After you have started the pipeline, you can monitor its progress in the CodePipeline
console or by running the get-pipeline-state command. For more information, see
View pipelines (console) and View pipeline details and history (CLI).

Start a pipeline on a schedule

You can set up a rule in EventBridge to start a pipeline on a schedule.

Create an EventBridge rule that schedules your pipeline to start (console)

To create an EventBridge rule with a schedule as the event source

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule, and then under Rule detail, choose Schedule.

Start a pipeline on a schedule API Version 2015-07-09 246

https://console.aws.amazon.com/events/

AWS CodePipeline User Guide

4. Set up the schedule using a fixed rate or expression. For information, see Schedule Expression
for Rules.

5. In Targets, choose CodePipeline.

6. Enter the pipeline ARN for the pipeline execution for this schedule.

Note

You can find the pipeline ARN under Settings in the console. See View the pipeline
ARN and service role ARN (console).

7. Choose one of the following to create or specify an IAM service role that gives EventBridge
permissions to invoke the target associated with your EventBridge rule (in this case, the target
is CodePipeline).

• Choose Create a new role for this specific resource to create a service role that grants
EventBridge permissions to start your pipeline executions.

• Choose Use existing role to enter a service role that grants EventBridge permissions to start
your pipeline executions.

8. Choose Configure details.

9. On the Configure rule details page, enter a name and description for the rule, and then
choose State to enable the rule.

10. If you're satisfied with the rule, choose Create rule.

Create an EventBridge rule that schedules your pipeline to start (CLI)

To use the AWS CLI to create a rule, call the put-rule command, specifying:

• A name that uniquely identifies the rule you are creating. This name must be unique across all of
the pipelines you create with CodePipeline associated with your AWS account.

• The schedule expression for the rule.

To create an EventBridge rule with a schedule as the event source

1. Call the put-rule command and include the --name and --schedule-expression
parameters.

Start a pipeline on a schedule API Version 2015-07-09 247

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS CodePipeline User Guide

Examples:

The following sample command uses --schedule-expression to create a rule called MyRule2
that filters EventBridge on a schedule.

aws events put-rule --schedule-expression 'cron(15 10 ? * 6L 2002-2005)' --name
 MyRule2

2. Grant permissions for EventBridge to use CodePipeline to invoke the rule. For more
information, see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy to allow EventBridge to assume the
service role. Name it trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON as shown in this sample for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Start a pipeline on a schedule API Version 2015-07-09 248

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]
 }
]
}

d. Use the following command to attach the new CodePipeline-Permissions-Policy-
for-EB permissions policy to the Role-for-MyRule role you created.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforCWE.json

Start a pipeline with a source revision override

You can use overrides to start a pipeline with a specific source revision ID that you provide for the
pipeline execution. For example, if you want to start a pipeline that will process a specific commit
ID from your CodeCommit source, you can add the commit ID as an override when you start your
pipeline.

There are three types of source revision for revisionType:

• COMMIT_ID

• IMAGE_DIGEST

• S3_OBJECT_VERSION_ID

Note

For the COMMIT_ID and IMAGE_DIGEST types of source revisions, the source revision ID
applies to all content in the repository, across all branches.

Topics

• Start a pipeline with a source revision override (console)

• Start a pipeline with a source revision override (CLI)

Start a pipeline with a source revision override API Version 2015-07-09 249

AWS CodePipeline User Guide

Start a pipeline with a source revision override (console)

To manually start a pipeline and run the most recent revision through a pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. In Name, choose the name of the pipeline you want to start.

3. On the pipeline details page, choose Release change. Choosing Release change opens the
Release change window. For Source revision override, choose the arrow to expand the field.
In Source, enter the source revision ID. For example, if your pipeline has a CodeCommit source,
choose the commit ID from the field that you want to use.

Start a pipeline with a source revision override (CLI)

To manually start a pipeline and run the specified source revision ID for an artifact through a
pipeline

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS
CLI to run the start-pipeline-execution command, specifying the name of the pipeline you
want to start. You also use the --source-revisions argument to provide the source revision
ID. The source revision is made up of the actionName, revisionType, and revisionValue. Valid
revisionType values are COMMIT_ID | IMAGE_DIGEST | S3_OBJECT_VERSION_ID.

Start a pipeline with a source revision override API Version 2015-07-09 250

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

In the following example, to start running the specified change through a pipeline named
codecommit-pipeline, the following command species a source action name of Source, a
revision type of COMMIT_ID, and a commit ID of 78a25c18755ccac3f2a9eec099dEXAMPLE.

aws codepipeline start-pipeline-execution --name codecommit-pipeline --source-
revisions
 actionName=Source,revisionType=COMMIT_ID,revisionValue=78a25c18755ccac3f2a9eec099dEXAMPLE
 --region us-west-1

2. To verify success, view the returned object. This command returns an execution ID, similar to
the following:

{
 "pipelineExecutionId": "c53dbd42-This-Is-An-Example"
}

Note

After you have started the pipeline, you can monitor its progress in the CodePipeline
console or by running the get-pipeline-state command. For more information, see
View pipelines (console) and View pipeline details and history (CLI).

Stop a pipeline execution in CodePipeline

When a pipeline execution starts to run through a pipeline, it enters one stage at a time and locks
the stage while all action executions in the stage are running. These in-progress actions must be
handled in a way so that, when the pipeline execution is stopped, the actions are either allowed to
complete or abandoned.

There are two ways to stop a pipeline execution:

• Stop and wait: AWS CodePipeline waits to stop the execution until all in-progress actions are
completed (that is, the actions have a Succeeded or Failed status). This option preserves
in-progress actions. The execution is in a Stopping state until the in-progress actions are
complete. Then the execution is in a Stopped state. The stage unlocks after the actions are
complete.

Stop a pipeline execution API Version 2015-07-09 251

AWS CodePipeline User Guide

If you choose to stop and wait, and you change your mind while your execution is still in a
Stopping state, you can then choose to abandon.

• Stop and abandon: AWS CodePipeline stops the execution without waiting for in-progress
actions to complete. The execution is in a Stopping state for a very short time while the in-
progress actions are abandoned. After the execution is stopped, the action execution is in an
Abandoned state while the pipeline execution is in a Stopped state. The stage unlocks.

For a pipeline execution in a Stopped state, the actions in the stage where the execution
stopped can be retried.

Warning

This option can lead to failed tasks or out of sequence tasks.

Topics

• Stop a pipeline execution (console)

• Stop an Inbound Execution (Console)

• Stop a pipeline execution (CLI)

• Stop an Inbound Execution (CLI)

Stop a pipeline execution (console)

You can use the console to stop a pipeline execution. Choose an execution, and then choose the
method for stopping the pipeline execution.

Note

You can also stop a pipeline execution that is an inbound execution. To learn more about
stopping an inbound execution, see Stop an Inbound Execution (Console).

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. Do one of the following:

Stop a pipeline execution (console) API Version 2015-07-09 252

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Note

Before you stop an execution, we recommend that you disable the transition in front
of the stage. This way, when the stage unlocks due to the stopped execution, the stage
does not accept a subsequent pipeline execution.

• In Name, choose the name of the pipeline with the execution you want to stop. On the
pipeline details page, choose Stop execution.

• Choose View history. On the history page, choose Stop execution.

3. On the Stop execution page, under Select execution, choose the execution you want to stop.

Note

The execution is displayed only if it is still in progress. Executions that are already
complete are not displayed.

Stop a pipeline execution (console) API Version 2015-07-09 253

AWS CodePipeline User Guide

4. Under Select an action to apply to execution, choose one of the following:

• To make sure the execution does not stop until all in-progress actions are complete, choose
Stop and wait.

Note

You cannot choose to stop and wait if the execution is already in a Stopping state,
but you can choose to stop and abandon.

• To stop without waiting for in-progress actions to complete, choose Stop and abandon.

Warning

This option can lead to failed tasks or out of sequence tasks.

Stop a pipeline execution (console) API Version 2015-07-09 254

AWS CodePipeline User Guide

5. (Optional) Enter comments. These comments, along with the execution status, are displayed
on the history page for the execution.

6. Choose Stop.

Important

This action cannot be undone.

7. View the execution status in the pipeline visualization as follows:

• If you chose to stop and wait, the selected execution continues until in-progress actions are
completed.

• The success banner message is displayed at the top of the console.

• In the current stage, in-progress actions continue in an InProgress state. While the
actions are in progress, the pipeline execution is in a Stopping state.

After the actions complete (that is, the action fails or succeeds), the pipeline execution
changes to a Stopped state and the action changes to a Failed or Succeeded state. You
can also view the action state on the execution details page. You can view the execution
status on the execution history page or the execution details page.

• The pipeline execution changes to a Stopping state briefly, and then it changes to a
Stopped state. You can view the execution status on the execution history page or the
execution details page.

• If you chose to stop and abandon, the execution does not wait for in-progress actions to
complete.

• The success banner message is displayed at the top of the console.

• In the current stage, in-progress actions change to a status of Abandoned. You can also
view the action status on the execution details page.

• The pipeline execution changes to a Stopping state briefly, and then it changes to a
Stopped state. You can view the execution status on the execution history page or the
execution details page.

You can view the pipeline execution status in the execution history view and the detailed
history view.

Stop a pipeline execution (console) API Version 2015-07-09 255

AWS CodePipeline User Guide

Stop an Inbound Execution (Console)

You can use the console to stop an inbound execution. An inbound execution is a pipeline execution
that is waiting to enter a stage where the transition has been disabled. When the transition is
enabled, an inbound execution that is InProgress continues to enter the stage. An inbound
execution that is Stopped does not enter the stage.

Note

After an inbound execution has been stopped, it cannot be retried.

If you do not see an inbound execution, then there are no pending executions at a disabled stage
transition.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account will be displayed.

2. Choose the name of the pipeline for which you want to stop the inbound execution, Do one of
the following:

• In the Pipeline view, choose the inbound execution ID and then choose to stop the execution.

• Choose the pipeline and choose View history. In the execution history, choose the inbound
execution ID and then choose to stop the execution.

3. In the Stop execution modal, follow the steps in the section above to select the execution ID
and specify the stop method.

Use the get-pipeline-state command to view the status of the inbound execution.

Stop a pipeline execution (CLI)

To use the AWS CLI to manually stop a pipeline, use the stop-pipeline-execution command with
the following parameters:

• Execution ID (required)

• Comments (optional)

Stop an Inbound Execution (Console) API Version 2015-07-09 256

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

• Pipeline name (required)

• Abandon flag (optional, the default is false)

Command format:

aws codepipeline stop-pipeline-execution --pipeline-name Pipeline_Name –-pipeline-
execution-id Execution_ID [--abandon | --no-abandon] [--reason STOP_EXECUTION_REASON]

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows).

2. To stop a pipeline execution, choose one of the following:

• To make sure the execution does not stop until all in-progress actions are complete, choose
to stop and wait. You can do this by including the no-abandon parameter. If you do not
specify the parameter, the command defaults to stop and wait. Use the AWS CLI to run the
stop-pipeline-execution command, specifying the name of the pipeline and the execution
ID. For example, to stop a pipeline named MyFirstPipeline with the stop and wait option
specified:

aws codepipeline stop-pipeline-execution --pipeline-name MyFirstPipeline --
pipeline-execution-id d-EXAMPLE --no-abandon

For example, to stop a pipeline named MyFirstPipeline, defaulting to the stop and wait
option, and choosing to include comments:

aws codepipeline stop-pipeline-execution --pipeline-name MyFirstPipeline --
pipeline-execution-id d-EXAMPLE --reason "Stopping execution after the build
 action is done"

Note

You cannot choose to stop and wait if the execution is already in a Stopping state.
You can choose to stop and abandon an execution that is already in a Stopping
state.

• To stop without waiting for in-progress actions to complete, choose to stop and abandon.
Include the abandon parameter. Use the AWS CLI to run the stop-pipeline-execution
command, specifying the name of the pipeline and the execution ID.

Stop a pipeline execution (CLI) API Version 2015-07-09 257

AWS CodePipeline User Guide

For example, to stop a pipeline named MyFirstPipeline, specifying the abandon option,
and choosing to include comments:

aws codepipeline stop-pipeline-execution --pipeline-name MyFirstPipeline --
pipeline-execution-id d-EXAMPLE --abandon --reason "Stopping execution for a bug
 fix"

Stop an Inbound Execution (CLI)

You can use the CLI to stop an inbound execution. An inbound execution is a pipeline execution
that is waiting to enter a stage where the transition has been disabled. When the transition is
enabled, an inbound execution that is InProgress continues to enter the stage. An inbound
execution that is Stopped does not enter the stage.

Note

After an inbound execution has been stopped, it cannot be retried.

If you do not see an inbound execution, then there are no pending executions at a disabled stage
transition.

To use the AWS CLI to manually stop an inbound execution, use the stop-pipeline-execution
command with the following parameters:

• Inbound Execution ID (required)

• Comments (optional)

• Pipeline name (required)

• Abandon flag (optional, the default is false)

Command format:

aws codepipeline stop-pipeline-execution --pipeline-name Pipeline_Name –-
pipeline-execution-id Inbound_Execution_ID [--abandon | --no-abandon] [--
reason STOP_EXECUTION_REASON]

Follow the steps in the procedure above to enter the command and specify the stop method.

Stop an Inbound Execution (CLI) API Version 2015-07-09 258

AWS CodePipeline User Guide

Use the get-pipeline-state command to view the status of the inbound execution.

Create a pipeline in CodePipeline

You can use the AWS CodePipeline console or the AWS CLI to create a pipeline. Pipelines must have
at least two stages. The first stage of a pipeline must be a source stage. The pipeline must have at
least one other stage that is a build or deployment stage.

You can add actions to your pipeline that are in an AWS Region different from your pipeline. A
cross-Region action is one in which an AWS service is the provider for an action and the action type
or provider type are in an AWS Region different from your pipeline. For more information, see Add
a cross-Region action in CodePipeline.

You can also create pipelines that build and deploy container-based applications by using Amazon
ECS as the deployment provider. Before you create a pipeline that deploys container-based
applications with Amazon ECS, you must create an image definitions file as described in Image
definitions file reference.

CodePipeline uses change detection methods to start your pipeline when a source code change is
pushed. These detection methods are based on source type:

• CodePipeline uses Amazon CloudWatch Events to detect changes in your CodeCommit source
repository and branch or your S3 source bucket.

Note

When you use the console to create or edit a pipeline, the change detection resources
are created for you. If you use the AWS CLI to create the pipeline, you must create the
additional resources yourself. For more information, see CodeCommit source actions and
EventBridge.

Topics

• Create a pipeline (console)

• Create a pipeline (CLI)

• Amazon ECR source actions and EventBridge resources

Create a pipeline API Version 2015-07-09 259

AWS CodePipeline User Guide

• Amazon S3 source actions and EventBridge with AWS CloudTrail

• Bitbucket Cloud connections

• CodeCommit source actions and EventBridge

• GitHub connections

• GitHub Enterprise Server connections

• GitLab.com connections

• Connections for GitLab self-managed

Create a pipeline (console)

To create a pipeline in the console, you must provide the source file location and information about
the providers you will use for your actions.

When you use the console to create a pipeline, you must include a source stage and one or both of
the following:

• A build stage.

• A deployment stage.

When you use the pipeline wizard, CodePipeline creates the names of stages (source, build,
staging). These names cannot be changed. You can use more specific names (for example,
BuildToGamma or DeployToProd) to stages you add later.

Step 1: Create and name your pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, choose Create pipeline.

If this is your first time using CodePipeline, choose Get Started.

3. On the Step 1: Choose pipeline settings page, in Pipeline name, enter the name for your
pipeline.

In a single AWS account, each pipeline you create in an AWS Region must have a unique name.
Names can be reused for pipelines in different Regions.

Create a pipeline (console) API Version 2015-07-09 260

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Note

After you create a pipeline, you cannot change its name. For information about other
limitations, see Quotas in AWS CodePipeline.

4. In Pipeline type, choose one of the following options. Pipeline types differ in characteristics
and price. For more information, see Pipeline types.

• V1 type pipelines have a JSON structure that contains standard pipeline, stage, and action-
level parameters.

• V2 type pipelines have the same structure as a V1 type, along with additional parameter
support, such as triggers on Git tags and pipeline-level variables.

5. In Service role, do one of the following:

• Choose New service role to allow CodePipeline to create a new service role in IAM.

• Choose Existing service role to use a service role already created in IAM. In Role ARN,
choose your service role ARN from the list.

Note

Depending on when your service role was created, you might need to update its
permissions to support additional AWS services. For information, see Add permissions
to the CodePipeline service role.

For more information about the service role and its policy statement, see Manage the
CodePipeline service role.

6. (Optional) Under Variables, choose Add variable to add variables at the pipeline level.

For more information about variables at the pipeline level, see Variables. For a tutorial with
a pipeline-level variable that is passed at the time of the pipeline execution, see Tutorial: Use
pipeline-level variables.

Create a pipeline (console) API Version 2015-07-09 261

AWS CodePipeline User Guide

Note

While it is optional to add variables at the pipeline level, for a pipeline specified with
variables at the pipeline level where no values are provided, the pipeline execution will
fail.

7. (Optional) Expand Advanced settings.

8. In Artifact store, do one of the following:

a. Choose Default location to use the default artifact store, such as the S3 artifact bucket
designated as the default, for your pipeline in the AWS Region you have selected for your
pipeline.

b. Choose Custom location if you already have an artifact store, such as an S3 artifact
bucket, in the same Region as your pipeline. In Bucket, choose the bucket name.

Note

This is not the source bucket for your source code. This is the artifact store for your
pipeline. A separate artifact store, such as an S3 bucket, is required for each pipeline.
When you create or edit a pipeline, you must have an artifact bucket in the pipeline
Region and one artifact bucket per AWS Region where you are running an action.
For more information, see Input and output artifacts and CodePipeline pipeline
structure reference.

9. In Encryption key, do one of the following:

a. To use the CodePipeline default AWS KMS key to encrypt the data in the pipeline artifact
store (S3 bucket), choose Default AWS Managed Key.

b. To use your customer managed key to encrypt the data in the pipeline artifact store (S3
bucket), choose Customer Managed Key. Choose the key ID, key ARN, or alias ARN.

10. Choose Next.

Step 2: Create a source stage

• On the Step 2: Add source stage page, in Source provider, choose the type of repository
where your source code is stored, specify its required options, and then choose Next step.

Create a pipeline (console) API Version 2015-07-09 262

AWS CodePipeline User Guide

• For Bitbucket Cloud, GitHub (Version 2), GitHub Enterprise Server, GitLab.com, or GitLab
self-managed:

1. Under Connection, choose an existing connection or create a new one. To create or
manage a connection for your GitHub source action, see GitHub connections.

2. Choose the repository you want to use as the source location for your pipeline.

Choose to add a trigger or filter on trigger types to start your pipeline. For more
information about working with triggers, see Filter triggers on code push or pull requests.
For more information about filtering with glob patterns, see Working with glob patterns
in syntax.

3. In Output artifact format, choose the format for your artifacts.

• To store output artifacts from the GitHub action using the default method, choose
CodePipeline default. The action accesses the files from the GitHub repository and
stores the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be
used by CodeBuild downstream actions.

If you choose this option, you will need to update the permissions for your CodeBuild
project service role as shown in Troubleshooting CodePipeline. For a tutorial that shows
you how to use the Full clone option, see Tutorial: Use full clone with a GitHub pipeline
source.

• For Amazon S3:

1. In Amazon S3 location, provide the S3 bucket name and path to the object in a bucket
with versioning enabled. The format of the bucket name and path looks like this:

 s3://bucketName/folderName/objectName

Note

When Amazon S3 is the source provider for your pipeline, you may zip your source
file or files into a single .zip and upload the .zip to your source bucket. You may
also upload a single unzipped file; however, downstream actions that expect a .zip
file will fail.

Create a pipeline (console) API Version 2015-07-09 263

AWS CodePipeline User Guide

2. After you choose the S3 source bucket, CodePipeline creates the Amazon CloudWatch
Events rule and the AWS CloudTrail trail to be created for this pipeline. Accept the
defaults under Change detection options. This allows CodePipeline to use Amazon
CloudWatch Events and AWS CloudTrail to detect changes for your new pipeline. Choose
Next.

• For AWS CodeCommit:

• In Repository name, choose the name of the CodeCommit repository you want to use as
the source location for your pipeline. In Branch name, from the drop-down list, choose
the branch you want to use.

• In Output artifact format, choose the format for your artifacts.

• To store output artifacts from the CodeCommit action using the default method, choose
CodePipeline default. The action accesses the files from the CodeCommit repository
and stores the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be
used by CodeBuild downstream actions.

If you choose this option, you will need to add the codecommit:GitPull
permission to your CodeBuild service role as shown in Add CodeBuild GitClone
permissions for CodeCommit source actions. You will also need to add the
codecommit:GetRepository permissions to your CodePipeline service role as shown
in Add permissions to the CodePipeline service role. For a tutorial that shows you how
to use the Full clone option, see Tutorial: Use full clone with a GitHub pipeline source.

• After you choose the CodeCommit repository name and branch, a message is displayed
in Change detection options showing the Amazon CloudWatch Events rule to be created
for this pipeline. Accept the defaults under Change detection options. This allows
CodePipeline to use Amazon CloudWatch Events to detect changes for your new pipeline.

• For Amazon ECR:

• In Repository name, choose the name of your Amazon ECR repository.

• In Image tag, specify the image name and version, if different from LATEST.

• In Output artifacts, choose the output artifact default, such as MyApp, that contains the
image name and repository URI information you want the next stage to use.

Create a pipeline (console) API Version 2015-07-09 264

AWS CodePipeline User Guide

For a tutorial about creating a pipeline for Amazon ECS with CodeDeploy blue-green
deployments that includes an Amazon ECR source stage, see Tutorial: Create a pipeline
with an Amazon ECR source and ECS-to-CodeDeploy deployment.

When you include an Amazon ECR source stage in your pipeline, the source action
generates an imageDetail.json file as an output artifact when you commit a change. For
information about the imageDetail.json file, see imageDetail.json file for Amazon ECS
blue/green deployment actions.

Note

The object and file type must be compatible with the deployment system you plan
to use (for example, Elastic Beanstalk or CodeDeploy). Supported file types might
include .zip, .tar, and .tgz files. For more information about the supported container
types for Elastic Beanstalk, see Customizing and Configuring Elastic Beanstalk
Environments and Supported Platforms. For more information about deploying
revisions with CodeDeploy, see Uploading Your Application Revision and Prepare a
Revision.

Step 3: Create a build stage

This step is optional if you plan to create a deployment stage.

• On the Step 3: Add build stage page, do one of the following, and then choose Next:

• Choose Skip build stage if you plan to create a deployment stage.

• From Build provider, choose a custom action provider of build services, and provide the
configuration details for that provider. For an example of how to add Jenkins as a build
provider, see Tutorial: Create a four-stage pipeline.

• From Build provider, choose AWS CodeBuild.

In Region, choose the AWS Region where the resource exists. The Region field designates
where the AWS resources are created for this action type and provider type. This field is
displayed only for actions where the action provider is an AWS service. The Region field
defaults to the same AWS Region as your pipeline.

Create a pipeline (console) API Version 2015-07-09 265

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-steps.html#deployment-steps-uploading-your-app
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-prepare-revision.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-prepare-revision.html

AWS CodePipeline User Guide

In Project name, choose your build project. If you have already created a build project in
CodeBuild, choose it. Or you can create a build project in CodeBuild and then return to this
task. Follow the instructions in Create a Pipeline That Uses CodeBuild in the CodeBuild User
Guide.

In Environment variables, to add CodeBuild environment variables to your build action,
choose Add environment variable. Each variable is made up of three entries:

• In Name, enter the name or key of the environment variable.

• In Value, enter the value of the environment variable. If you choose Parameter for the
variable type, make sure this value is the name of a parameter you have already stored in
AWS Systems Manager Parameter Store.

Note

We strongly discourage the use of environment variables to store sensitive
values, especially AWS credentials. When you use the CodeBuild console or AWS
CLI, environment variables are displayed in plain text. For sensitive values, we
recommend that you use the Parameter type instead.

• (Optional) In Type, enter the type of environment variable. Valid values are Plaintext or
Parameter. The default is Plaintext.

(Optional) In Build type, choose one of the following:

• To run each build in a single build action execution, choose Single build.

• To run multiple builds in the same build action execution, choose Batch build.

(Optional) If you chose to run batch builds, you can choose Combine all artifacts from
batch into a single location to place all build artifacts into a single output artifact.

Step 4: Create a deployment stage

This step is optional if you have already created a build stage.

• On the Step 4: Add deploy stage page, do one of the following, and then choose Next:

• Choose Skip deploy stage if you created a build stage in the previous step.

Create a pipeline (console) API Version 2015-07-09 266

https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html#pipelines-create-console

AWS CodePipeline User Guide

Note

This option does not appear if you have already skipped the build stage.

• In Deploy provider, choose a custom action that you have created for a deployment
provider.

In Region, for cross-Region actions only, choose the AWS Region where the resource is
created. The Region field designates where the AWS resources are created for this action
type and provider type. This field only displays for actions where the action provider is an
AWS service. The Region field defaults to the same AWS Region as your pipeline.

• In Deploy provider, fields are available for default providers as follows:

• CodeDeploy

In Application name, enter or choose the name of an existing CodeDeploy application. In
Deployment group, enter the name of a deployment group for the application. Choose
Next. You can also create an application, deployment group, or both in the CodeDeploy
console.

• AWS Elastic Beanstalk

In Application name, enter or choose the name of an existing Elastic Beanstalk
application. In Environment name, enter an environment for the application. Choose
Next. You can also create an application, environment, or both in the Elastic Beanstalk
console.

• AWS OpsWorks Stacks

In Stack, enter or choose the name of the stack you want to use. In Layer, choose the
layer that your target instances belong to. In App, choose the application that you want
to update and deploy. If you need to create an app, choose Create a new one in AWS
OpsWorks.

For information about adding an application to a stack and layer in AWS OpsWorks, see
Adding Apps in the AWS OpsWorks User Guide.

For an end-to-end example of how to use a simple pipeline in CodePipeline as the
source for code that you run on AWS OpsWorks layers, see Using CodePipeline with AWS
OpsWorks Stacks.

Create a pipeline (console) API Version 2015-07-09 267

https://docs.aws.amazon.com/opsworks/latest/userguide/workingapps-creating.html
https://docs.aws.amazon.com/opsworks/latest/userguide/other-services-cp.html
https://docs.aws.amazon.com/opsworks/latest/userguide/other-services-cp.html

AWS CodePipeline User Guide

• AWS CloudFormation

Do one of the following:

• In Action mode, choose Create or update a stack, enter a stack name and template
file name, and then choose the name of a role for AWS CloudFormation to assume.
Optionally, enter the name of a configuration file and choose an IAM capability option.

• In Action mode, choose Create or replace a change set, enter a stack name and change
set name, and then choose the name of a role for AWS CloudFormation to assume.
Optionally, enter the name of a configuration file and choose an IAM capability option.

For information about integrating AWS CloudFormation capabilities into a pipeline in
CodePipeline, see Continuous Delivery with CodePipeline in the AWS CloudFormation User
Guide.

• Amazon ECS

In Cluster name, enter or choose the name of an existing Amazon ECS cluster. In Service
name, enter or choose the name of the service running on the cluster. You can also create
a cluster and service. In Image filename, enter the name of the image definitions file that
describes your service's container and image.

Note

The Amazon ECS deployment action requires an imagedefinitions.json
file as an input to the deployment action. The default file name for the file is
imagedefinitions.json. If you choose to use a different file name, you must provide
it when you create the pipeline deployment stage. For more information, see
imagedefinitions.json file for Amazon ECS standard deployment actions.

Choose Next.

Note

Make sure your Amazon ECS cluster is configured with two or more instances.
Amazon ECS clusters must contain at least two instances so that one is maintained
as the primary instance and another is used to accommodate new deployments.

Create a pipeline (console) API Version 2015-07-09 268

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline.html

AWS CodePipeline User Guide

For a tutorial about deploying container-based applications with your pipeline, see
Tutorial: Continuous Deployment with CodePipeline.

• Amazon ECS (Blue/Green)

Enter the CodeDeploy application and deployment group, Amazon ECS task definition,
and AppSpec file information, and then choose Next.

Note

The Amazon ECS (Blue/Green) action requires an imageDetail.json file as an
input artifact to the deploy action. Because the Amazon ECR source action creates
this file, pipelines with an Amazon ECR source action do not need to provide an
imageDetail.json file. For more information, see imageDetail.json file for
Amazon ECS blue/green deployment actions.

For a tutorial about creating a pipeline for blue-green deployments to an Amazon ECS
cluster with CodeDeploy, see Tutorial: Create a pipeline with an Amazon ECR source and
ECS-to-CodeDeploy deployment.

• AWS Service Catalog

Choose Enter deployment configuration if you want to use fields in the console to specify
your configuration, or choose Configuration file if you have a separate configuration file.
Enter product and configuration information, and then choose Next.

For a tutorial about deploying product changes to Service Catalog with your pipeline, see
Tutorial: Create a pipeline that deploys to Service Catalog.

• Alexa Skills Kit

In Alexa Skill ID, enter the skill ID for your Alexa skill. In Client ID and Client secret, enter
the credentials generated using a Login with Amazon (LWA) security profile. In Refresh
token, enter the refresh token you generated using the ASK CLI command for retrieving a
refresh token. Choose Next.

For a tutorial about deploying Alexa skills with your pipeline and generating the LWA
credentials, see Tutorial: Create a pipeline that deploys an Amazon Alexa skill.

Create a pipeline (console) API Version 2015-07-09 269

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html

AWS CodePipeline User Guide

• Amazon S3

In Bucket, enter the name of the S3 bucket you want to use. Choose Extract file before
deploy if the input artifact to your deploy stage is a ZIP file. If Extract file before deploy
is selected, you may optionally enter a value for Deployment path to which your ZIP file
will be unzipped. If it is not selected, you are required to to enter a value in S3 object key.

Note

Most source and build stage output artifacts are zipped. All pipeline source
providers except Amazon S3 zip your source files before providing them as the
input artifact to the next action.

(Optional) In Canned ACL, enter the canned ACL to apply to the object deployed to
Amazon S3.

Note

Applying a canned ACL overwrites any existing ACL applied to the object.

(Optional) In Cache control, specify the cache control parameters for requests to
download objects from the bucket. For a list of valid values, see the Cache-Control
header field for HTTP operations. To enter multiple values in Cache control, use a comma
between each value. You can add a space after each comma (optional), as shown in this
example.

The preceding example entry is displayed in the CLI as follows:

"CacheControl": "public, max-age=0, no-transform"

Choose Next.

Create a pipeline (console) API Version 2015-07-09 270

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

AWS CodePipeline User Guide

For a tutorial about creating a pipeline with an Amazon S3 deployment action provider,
see Tutorial: Create a pipeline that uses Amazon S3 as a deployment provider.

Step 5: Review the pipeline

• On the Step 5: Review page, review your pipeline configuration, and then choose Create
pipeline to create the pipeline or Previous to go back and edit your choices. To exit the wizard
without creating a pipeline, choose Cancel.

Now that you've created your pipeline, you can view it in the console. The pipeline starts to run
after you create it. For more information, see View pipelines and details in CodePipeline. For more
information about making changes to your pipeline, see Edit a pipeline in CodePipeline.

Create a pipeline (CLI)

To use the AWS CLI to create a pipeline, you create a JSON file to define the pipeline structure, and
then run the create-pipeline command with the --cli-input-json parameter.

Important

You cannot use the AWS CLI to create a pipeline that includes partner actions. You must use
the CodePipeline console instead.

For more information about pipeline structure, see CodePipeline pipeline structure reference and
create-pipeline in the CodePipeline API Reference.

To create a JSON file, use the sample pipeline JSON file, edit it, and then call that file when you run
the create-pipeline command.

Prerequisites:

You need the ARN of the service role you created for CodePipeline in Getting started with
CodePipeline. You use the CodePipeline service role ARN in the pipeline JSON file when you run
the create-pipeline command. For more information about creating a service role, see Create the
CodePipeline service role. Unlike the console, running the create-pipeline command in the AWS
CLI does not have the option to create the CodePipeline service role for you. The service role must
already exist.

Create a pipeline (CLI) API Version 2015-07-09 271

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/create-pipeline.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline

AWS CodePipeline User Guide

You need the name of an S3 bucket where artifacts for the pipeline are stored. This bucket must
be in the same Region as the pipeline. You use the bucket name in the pipeline JSON file when you
run the create-pipeline command. Unlike the console, running the create-pipeline command in
the AWS CLI does not create an S3 bucket for storing artifacts. The bucket must already exist.

Note

You can also use the get-pipeline command to get a copy of the JSON structure of that
pipeline, and then modify that structure in a plain-text editor.

To create the JSON file

1. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), create a new text file in
a local directory.

2. (Optional) You can add one or more variables at the pipeline level. You can reference this value
in configuration of CodePipeline actions. You can add the variable names and values when you
create the pipeline, and you can also choose to assign values when you start the pipeline in the
console.

Note

While it is optional to add variables at the pipeline level, for a pipeline specified with
variables at the pipeline level where no values are provided, the pipeline execution will
fail.

A variable at the pipeline level is resolved at run time of pipeline. All variables are immutable,
meaning that they cannot be updated after a value is assigned. Variables at the pipeline level
with resolved values will display in the history for each execution.

You provide variables at the pipeline level using the variables attribute in the pipeline
structure. In the following example, the variable Variable1 has a value of Value1.

 "variables": [
 {
 "name": "Timeout",
 "defaultValue": "1000",
 "description": "description"

Create a pipeline (CLI) API Version 2015-07-09 272

AWS CodePipeline User Guide

 }
]

Add this structure to your pipeline JSON, or to the example JSON in the following step. For
more information about variables, including namespace information, see Variables.

3. Open the file in a plain-text editor and edit the values to reflect the structure you want to
create. At a minimum, you must change the name of the pipeline. You should also consider
whether you want to change:

• The S3 bucket where artifacts for this pipeline are stored.

• The source location for your code.

• The deployment provider.

• How you want your code deployed.

• The tags for your pipeline.

The following two-stage sample pipeline structure highlights the values you should consider
changing for your pipeline. Your pipeline likely contains more than two stages:

{
 "pipeline": {
 "roleArn": "arn:aws:iam::80398EXAMPLE::role/AWS-CodePipeline-Service",
 "stages": [
 {
 "name": "Source",
 "actions": [
 {
 "inputArtifacts": [],
 "name": "Source",
 "actionTypeId": {
 "category": "Source",
 "owner": "AWS",
 "version": "1",
 "provider": "S3"
 },
 "outputArtifacts": [
 {
 "name": "MyApp"
 }
],

Create a pipeline (CLI) API Version 2015-07-09 273

AWS CodePipeline User Guide

 "configuration": {
 "S3Bucket": "awscodepipeline-demobucket-example-date",
 "S3ObjectKey": "ExampleCodePipelineSampleBundle.zip",
 "PollForSourceChanges": "false"
 },
 "runOrder": 1
 }
]
 },
 {
 "name": "Staging",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyApp"
 }
],
 "name": "Deploy-CodeDeploy-Application",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "CodePipelineDemoApplication",
 "DeploymentGroupName": "CodePipelineDemoFleet"
 },
 "runOrder": 1
 }
]
 }
],
 "artifactStore": {
 "type": "S3",
 "location": "codepipeline-us-east-2-250656481468"
 },
 "name": "MyFirstPipeline",
 "version": 1,
 "variables": [
 {
 "name": "Timeout",

Create a pipeline (CLI) API Version 2015-07-09 274

AWS CodePipeline User Guide

 "defaultValue": "1000",
 "description": "description"
 }
]
 },
 "triggers": [
 {
 "providerType": "CodeStarSourceConnection",
 "gitConfiguration": {
 "sourceActionName": "Source",
 "push": [
 {
 "tags": {
 "includes": [
 "v1"
],
 "excludes": [
 "v2"
]
 }
 }
]
 }
 }
]
 "metadata": {
 "pipelineArn": "arn:aws:codepipeline:us-
east-2:80398EXAMPLE:MyFirstPipeline",
 "updated": 1501626591.112,
 "created": 1501626591.112
 },
 "tags": [{
 "key": "Project",
 "value": "ProjectA"
 }]
}

This example adds tagging to the pipeline by including the Project tag key and ProjectA
value on the pipeline. For more information about tagging resources in CodePipeline, see
Tagging resources.

Make sure the PollForSourceChanges parameter in your JSON file is set as follows:

Create a pipeline (CLI) API Version 2015-07-09 275

AWS CodePipeline User Guide

 "PollForSourceChanges": "false",

CodePipeline uses Amazon CloudWatch Events to detect changes in your CodeCommit
source repository and branch or your S3 source bucket. The next step includes instructions to
manually create these resources for your pipeline. Setting the flag to false disables periodic
checks, which are not necessary when you are using the recommended change detection
methods.

4. To create a build, test, or deploy action in a Region different from your pipeline, you must
add the following to your pipeline structure. For instructions, see Add a cross-Region action in
CodePipeline.

• Add the Region parameter to your action's pipeline structure.

• Use the artifactStores parameter to specify an artifact bucket for each AWS Region
where you have an action.

5. When you are satisfied with its structure, save your file with a name like pipeline.json.

To create a pipeline

1. Run the create-pipeline command and use the --cli-input-json parameter to specify the
JSON file you created previously.

To create a pipeline named MySecondPipeline with a JSON file named pipeline.json that
includes the name "MySecondPipeline" as the value for name in the JSON, your command
would look like the following:

aws codepipeline create-pipeline --cli-input-json file://pipeline.json

Important

Be sure to include file:// before the file name. It is required in this command.

This command returns the structure of the entire pipeline you created.

Create a pipeline (CLI) API Version 2015-07-09 276

AWS CodePipeline User Guide

2. To view the pipeline, either open the CodePipeline console and choose it from the list of
pipelines, or use the get-pipeline-state command. For more information, see View pipelines
and details in CodePipeline.

3. If you use the CLI to create a pipeline, you must manually create the recommended change
detection resources for your pipeline:

• For a pipeline with a CodeCommit repository, you must manually create the CloudWatch
Events rule, as described in Create an EventBridge rule for a CodeCommit source (CLI).

• For a pipeline with an Amazon S3 source, you must manually create the CloudWatch Events
rule and AWS CloudTrail trail, as described in Amazon S3 source actions and EventBridge
with AWS CloudTrail.

Amazon ECR source actions and EventBridge resources

To add an Amazon ECR source action in CodePipeline, you can choose either to:

• Use the CodePipeline console Create pipeline wizard (Create a pipeline (console)) or Edit action
page to choose the Amazon ECR provider option. The console creates an EventBridge rule that
starts your pipeline when the source changes.

• Use the CLI to add the action configuration for the ECR action and create additional resources as
follows:

• Use the ECR example action configuration in Amazon ECR to create your action as shown in
Create a pipeline (CLI).

• The change detection method defaults to starting the pipeline by polling the source. You
should disable periodic checks and create the change detection rule manually. Use one of the
following methods: Create an EventBridge rule for an Amazon ECR source (console), Create an
EventBridge rule for an Amazon ECR source (CLI), or Create an EventBridge rule for an Amazon
ECR source (AWS CloudFormation template) .

Topics

• Create an EventBridge rule for an Amazon ECR source (console)

• Create an EventBridge rule for an Amazon ECR source (CLI)

• Create an EventBridge rule for an Amazon ECR source (AWS CloudFormation template)

Amazon ECR source actions and EventBridge API Version 2015-07-09 277

AWS CodePipeline User Guide

Create an EventBridge rule for an Amazon ECR source (console)

To create an EventBridge rule for use in CodePipeline operations (Amazon ECR source)

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Events.

3. Choose Create rule, and then under Event source, from Service Name, choose Elastic
Container Registry (ECR).

4. In Event Source, choose Event Pattern.

Choose Edit, and then paste the following example event pattern in the Event Source window
for a eb-test repository with an image tag of cli-testing:

{
 "detail-type": [
 "ECR Image Action"
],
 "source": [
 "aws.ecr"
],
 "detail": {
 "action-type": [
 "PUSH"
],
 "image-tag": [
 "latest"
],
 "repository-name": [
 "eb-test"
],
 "result": [
 "SUCCESS"
]
 }
}

Note

To view the full event pattern supported for Amazon ECR events, see Amazon ECR
Events and EventBridge or Amazon Elastic Container Registry Events.

Amazon ECR source actions and EventBridge API Version 2015-07-09 278

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/event-types.html#ecr-event-types

AWS CodePipeline User Guide

5. Choose Save.

In the Event Pattern Preview pane, view the rule.

6. In Targets, choose CodePipeline.

7. Enter the pipeline ARN for the pipeline to be started by this rule.

Note

You can find the pipeline ARN in the metadata output after you run the get-pipeline
command. The pipeline ARN is constructed in this format:
arn:aws:codepipeline:region:account:pipeline-name
Sample pipeline ARN:
arn:aws:codepipeline:us-east-2:80398EXAMPLE:MyFirstPipeline

8. Create or specify an IAM service role that grants EventBridge permissions to invoke the target
associated with your EventBridge rule (in this case, the target is CodePipeline).

• Choose Create a new role for this specific resource to create a service role that gives
EventBridge permissions to your start your pipeline executions.

• Choose Use existing role to enter a service role that gives EventBridge permissions to your
start your pipeline executions.

9. Review your rule setup to make sure it meets your requirements.

10. Choose Configure details.

11. On the Configure rule details page, enter a name and description for the rule, and then
choose State to enable the rule.

12. If you're satisfied with the rule, choose Create rule.

Create an EventBridge rule for an Amazon ECR source (CLI)

Call the put-rule command, specifying:

• A name that uniquely identifies the rule you are creating. This name must be unique across all of
the pipelines you create with CodePipeline associated with your AWS account.

• The event pattern for the source and detail fields used by the rule. For more information, see
Amazon EventBridge and Event Patterns.

Amazon ECR source actions and EventBridge API Version 2015-07-09 279

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

AWS CodePipeline User Guide

To create an EventBridge rule with Amazon ECR as the event source and CodePipeline as the
target

1. Add permissions for EventBridge to use CodePipeline to invoke the rule. For more information,
see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy that allows EventBridge to assume the
service role. Name the trust policy trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON, as shown in this sample, for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]

Amazon ECR source actions and EventBridge API Version 2015-07-09 280

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

 }
]
}

d. Use the following command to attach the CodePipeline-Permissions-Policy-for-
EB permissions policy to the Role-for-MyRule role.

Why am I making this change? Adding this policy to the role creates permissions for
EventBridge.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforEB.json

2. Call the put-rule command and include the --name, --event-pattern, and --role-arn
parameters.

Why am I making this change? You must create an event with a rule that specifies how an
image push must be made, and a target that names the pipeline to be started by the event.

The following sample command creates a rule called MyECRRepoRule.

aws events put-rule --name "MyECRRepoRule" --event-pattern "{\"detail-type\":[\"ECR
 Image Action\"],\"source\":[\"aws.ecr\"],\"detail\":{\"action-type\":[\"PUSH\"],
\"image-tag\":[\"latest\"],\"repository-name\":[\"eb-test\"],\"result\":[\"SUCCESS
\"]}}}" --role-arn "arn:aws:iam::ACCOUNT_ID:role/Role-for-MyRule"

Note

To view the full event pattern supported for Amazon ECR events, see Amazon ECR
Events and EventBridge or Amazon Elastic Container Registry Events.

3. To add CodePipeline as a target, call the put-targets command and include the following
parameters:

• The --rule parameter is used with the rule_name you created by using put-rule.

• The --targets parameter is used with the list Id of the target in the list of targets and the
ARN of the target pipeline.

Amazon ECR source actions and EventBridge API Version 2015-07-09 281

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/event-types.html#ecr-event-types

AWS CodePipeline User Guide

The following sample command specifies that for the rule called MyECRRepoRule, the target
Id is composed of the number one, indicating that in a list of targets for the rule, this is target
1. The sample command also specifies an example Arn for the pipeline and the example
RoleArn for the rule. The pipeline starts when something changes in the repository.

aws events put-targets --rule MyECRRepoRule --targets
 Id=1,Arn=arn:aws:codepipeline:us-
west-2:80398EXAMPLE:TestPipeline,RoleArn=arn:aws:iam::80398EXAMPLE:role/Role-for-
MyRule

Create an EventBridge rule for an Amazon ECR source (AWS CloudFormation
template)

To use AWS CloudFormation to create a rule, use the template snippet as shown here.

To update your pipeline AWS CloudFormation template and create EventBridge rule

1. In the template, under Resources, use the AWS::IAM::Role AWS CloudFormation resource
to configure the IAM role that allows your event to start your pipeline. This entry creates a role
that uses two policies:

• The first policy allows the role to be assumed.

• The second policy provides permissions to start the pipeline.

Why am I making this change? You must create a role that can be assumed by EventBridge to
start an execution in our pipeline.

YAML

 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow

Amazon ECR source actions and EventBridge API Version 2015-07-09 282

AWS CodePipeline User Guide

 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Sub arn:aws:codepipeline:${AWS::Region}:
${AWS::AccountId}:${AppPipeline}

JSON

{
 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",

Amazon ECR source actions and EventBridge API Version 2015-07-09 283

AWS CodePipeline User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Sub": "arn:aws:codepipeline:
${AWS::Region}:${AWS::AccountId}:${AppPipeline}"
 }
 }
]
 }
 }
]
 }
 }
}
...

2. In the template, under Resources, use the AWS::Events::Rule AWS CloudFormation
resource to add an EventBridge rule for the Amazon ECR source. This event pattern creates an
event that monitors commits to your repository. When EventBridge detects a repository state
change, the rule invokes StartPipelineExecution on your target pipeline.

Why am I making this change? You must create an event with a rule that specifies how an
image push must be made, and a target that names the pipeline to be started by the event.

This snippet uses an image named eb-test with a tag of latest.

YAML

EventRule:
 Type: 'AWS::Events::Rule'
 Properties:
 EventPattern:
 detail:
 action-type: [PUSH]
 image-tag: [latest]
 repository-name: [eb-test]
 result: [SUCCESS]
 detail-type: [ECR Image Action]
 source: [aws.ecr]
 Targets:

Amazon ECR source actions and EventBridge API Version 2015-07-09 284

AWS CodePipeline User Guide

 - Arn: !Sub arn:aws:codepipeline:${AWS::Region}:${AWS::AccountId}:
${AppPipeline}
 RoleArn: !GetAtt
 - EventRole
 - Arn
 Id: codepipeline-AppPipeline

JSON

{
 "EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "detail": {
 "action-type": [
 "PUSH"
],
 "image-tag": [
 "latest"
],
 "repository-name": [
 "eb-test"
],
 "result": [
 "SUCCESS"
]
 },
 "detail-type": [
 "ECR Image Action"
],
 "source": [
 "aws.ecr"
]
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Sub": "arn:aws:codepipeline:${AWS::Region}:
${AWS::AccountId}:${AppPipeline}"
 },
 "RoleArn": {
 "Fn::GetAtt": [

Amazon ECR source actions and EventBridge API Version 2015-07-09 285

AWS CodePipeline User Guide

 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 }
},

Note

To view the full event pattern supported for Amazon ECR events, see Amazon ECR
Events and EventBridge or Amazon Elastic Container Registry Events.

3. Save the updated template to your local computer, and then open the AWS CloudFormation
console.

4. Choose your stack, and then choose Create Change Set for Current Stack.

5. Upload the template, and then view the changes listed in AWS CloudFormation. These are the
changes to be made to the stack. You should see your new resources in the list.

6. Choose Execute.

Amazon S3 source actions and EventBridge with AWS CloudTrail

To add an Amazon S3 source action in CodePipeline, you choose either to:

• Use the CodePipeline console Create pipeline wizard (Create a pipeline (console)) or Edit action
page to choose the S3 provider option. The console creates an EventBridge rule and a CloudTrail
trail that starts your pipeline when the source changes.

• Use the AWS CLI to add the action configuration for the S3 action and create additional
resources as follows:

• Use the S3 example action configuration in Amazon S3 source action to create your action as
shown in Create a pipeline (CLI).

• The change detection method defaults to starting the pipeline by polling the source. You
should disable periodic checks and create the change detection rule and trail manually. Use

Amazon S3 source actions and EventBridge API Version 2015-07-09 286

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/event-types.html#ecr-event-types

AWS CodePipeline User Guide

one of the following methods: Create an EventBridge rule for an Amazon S3 source (console),
Create an EventBridge rule for an Amazon S3 source (CLI), or Create an EventBridge rule for an
Amazon S3 source (AWS CloudFormation template) .

AWS CloudTrail is a service that logs and filters events on your Amazon S3 source bucket. The trail
sends the filtered source changes to the EventBridge rule. The EventBridge rule detects the source
change and then starts your pipeline.

Requirements:

• If you are not creating a trail, use an existing AWS CloudTrail trail for logging events in your
Amazon S3 source bucket and sending filtered events to the EventBridge rule.

• Create or use an existing S3 bucket where AWS CloudTrail can store its log files. AWS CloudTrail
must have the permissions required to deliver log files to an Amazon S3 bucket. The bucket
cannot be configured as a Requester Pays bucket. When you create an Amazon S3 bucket as part
of creating or updating a trail in the console, AWS CloudTrail attaches the required permissions
to a bucket for you. For more information, see Amazon S3 Bucket Policy for CloudTrail.

Create an EventBridge rule for an Amazon S3 source (console)

Before you set up a rule in EventBridge, you must create an AWS CloudTrail trail. For more
information, see Creating a Trail in the Console.

Important

If you use the console to create or edit your pipeline, your EventBridge rule and AWS
CloudTrail trail are created for you.

To create a trail

1. Open the AWS CloudTrail console.

2. In the navigation pane, choose Trails.

3. Choose Create trail. For Trail name, enter a name for your trail.

4. Under Storage location, create or specify the bucket to be used to store the log files. By
default, Amazon S3 buckets and objects are private. Only the resource owner (the AWS

Amazon S3 source actions and EventBridge API Version 2015-07-09 287

https://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/create-s3-bucket-policy-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html

AWS CodePipeline User Guide

account that created the bucket) can access the bucket and its objects. The bucket must have a
resource policy that allows AWS CloudTrail permissions to access the objects in the bucket.

5. Under Trail log bucket and folder, specify an Amazon S3 bucket and the object prefix (folder
name) to log data events for all objects in the folder. For each trail, you can add up to 250
Amazon S3 objects. Complete the required encryption key information and choose Next.

6. For Event type, choose Management events.

7. For Management events, choose Write. The trail records Amazon S3 object-level API activity
(for example, GetObject and PutObject) on the specified bucket and prefix.

8. Choose Write.

9. If you're satisfied with the trail, choose Create trail.

To create an EventBridge rule that targets your pipeline with an Amazon S3 source

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules. Leave the default bus selected or choose an event bus.
Choose Create rule.

3. In Name, enter a name for your rule.

4. Under Rule type, choose Rule with an event pattern. Choose Next.

5. Under Event source, choose AWS events or EventBridge partner events.

6. Under Sample event type, choose AWS events.

7. In Sample events, type S3 as the keyword to filter on. Choose AWS API call via CloudTrail.

8. Under Creation method, choose Customer pattern (JSON editor).

Paste the event pattern provided below. Make sure to add the bucket name and S3 object key
(or key name) which uniquely identifies the object in the bucket as requestParameters.
In this example, a rule is created for a bucket named my-bucket and an object key of my-
files.zip. When you use the Edit window to specify resources, your rule is updated to use a
custom event pattern.

The following is a sample event pattern to copy and paste:

{
 "source": [
 "aws.s3"
],

Amazon S3 source actions and EventBridge API Version 2015-07-09 288

https://console.aws.amazon.com/events/

AWS CodePipeline User Guide

 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [
 "s3.amazonaws.com"
],
 "eventName": [
 "CopyObject",
 "CompleteMultipartUpload",
 "PutObject"
],
 "requestParameters": {
 "bucketName": [
 "my-bucket"
],
 "key": [
 "my-files.zip"
]
 }
 }
}

9. Choose Next.

10. In Target types, choose AWS service.

11. In Select a target, choose CodePipeline. In Pipeline ARN, enter the pipeline ARN for the
pipeline to be started by this rule.

Note

To get the pipeline ARN, run the get-pipeline command. The pipeline ARN appears in
the output. It is constructed in this format:
arn:aws:codepipeline:region:account:pipeline-name
Sample pipeline ARN:
arn:aws:codepipeline:us-east-2:80398EXAMPLE:MyFirstPipeline

12. To create or specify an IAM service role that grants EventBridge permissions to invoke the
target associated with your EventBridge rule (in this case, the target is CodePipeline):

• Choose Create a new role for this specific resource to create a service role that gives
EventBridge permissions to your start your pipeline executions.

Amazon S3 source actions and EventBridge API Version 2015-07-09 289

AWS CodePipeline User Guide

• Choose Use existing role to enter a service role that gives EventBridge permissions to your
start your pipeline executions.

13. Choose Next.

14. On the Tags page, choose Next.

15. On the Review and create page, review the rule configuration. If you're satisfied with the rule,
choose Create rule.

Create an EventBridge rule for an Amazon S3 source (CLI)

To create an AWS CloudTrail trail and enable logging

To use the AWS CLI to create a trail, call the create-trail command, specifying:

• The trail name.

• The bucket to which you have already applied the bucket policy for AWS CloudTrail.

For more information, see Creating a trail with the AWS command line interface.

1. Call the create-trail command and include the --name and --s3-bucket-name parameters.

Why am I making this change? This creates the CloudTrail trail required for your S3 source
bucket.

The following command uses --name and --s3-bucket-name to create a trail named my-
trail and a bucket named myBucket.

aws cloudtrail create-trail --name my-trail --s3-bucket-name myBucket

2. Call the start-logging command and include the --name parameter.

Why am I making this change? This command starts the CloudTrail logging for your source
bucket and sends events to EventBridge.

Example:

The following command uses --name to start logging on a trail named my-trail.

aws cloudtrail start-logging --name my-trail

Amazon S3 source actions and EventBridge API Version 2015-07-09 290

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail-by-using-the-aws-cli.html

AWS CodePipeline User Guide

3. Call the put-event-selectors command and include the --trail-name and --event-
selectors parameters. Use event selectors to specify that you want your trail to log data
events for your source bucket and send the events to the EventBridge rule.

Why am I making this change? This command filters events.

Example:

The following command uses --trail-name and --event-selectors to specify data
events for a source bucket and prefix named myBucket/myFolder.

aws cloudtrail put-event-selectors --trail-name my-trail --event-selectors
 '[{ "ReadWriteType": "WriteOnly", "IncludeManagementEvents":false,
 "DataResources": [{ "Type": "AWS::S3::Object", "Values": ["arn:aws:s3:::myBucket/
myFolder/file.zip"] }] }]'

To create an EventBridge rule with Amazon S3 as the event source and CodePipeline as the
target and apply the permissions policy

1. Grant permissions for EventBridge to use CodePipeline to invoke the rule. For more
information, see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy to allow EventBridge to assume the
service role. Name it trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

Amazon S3 source actions and EventBridge API Version 2015-07-09 291

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

Why am I making this change? Adding this trust policy to the role creates permissions for
EventBridge.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON, as shown here for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]
 }
]
}

d. Use the following command to attach the new CodePipeline-Permissions-Policy-
for-EB permissions policy to the Role-for-MyRule role you created.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforEB.json

2. Call the put-rule command and include the --name, --event-pattern, and --role-arn
parameters.

The following sample command creates a rule named MyS3SourceRule.

aws events put-rule --name "MyS3SourceRule" --event-pattern "{\"source\":
[\"aws.s3\"],\"detail-type\":[\"AWS API Call via CloudTrail\"],\"detail\":
{\"eventSource\":[\"s3.amazonaws.com\"],\"eventName\":[\"CopyObject\",\"PutObject
\",\"CompleteMultipartUpload\"],\"requestParameters\":{\"bucketName\":[\"my-bucket
\"],\"key\":[\"my-key\"]}}}
 --role-arn "arn:aws:iam::ACCOUNT_ID:role/Role-for-MyRule"

Amazon S3 source actions and EventBridge API Version 2015-07-09 292

AWS CodePipeline User Guide

3. To add CodePipeline as a target, call the put-targets command and include the --rule and
--targets parameters.

The following command specifies that for the rule named MyS3SourceRule, the target Id
is composed of the number one, indicating that in a list of targets for the rule, this is target
1. The command also specifies an example ARN for the pipeline. The pipeline starts when
something changes in the repository.

aws events put-targets --rule MyS3SourceRule --targets
 Id=1,Arn=arn:aws:codepipeline:us-west-2:80398EXAMPLE:TestPipeline

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

1. Run the get-pipeline command to copy the pipeline structure into a JSON file. For example,
for a pipeline named MyFirstPipeline, run the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and edit the source stage by changing the
PollForSourceChanges parameter for a bucket named storage-bucket to false, as
shown in this example.

Why am I making this change? Setting this parameter to false turns off periodic checks so
you can use event-based change detection only.

"configuration": {

Amazon S3 source actions and EventBridge API Version 2015-07-09 293

AWS CodePipeline User Guide

 "S3Bucket": "storage-bucket",
 "PollForSourceChanges": "false",
 "S3ObjectKey": "index.zip"
},

3. If you are working with the pipeline structure retrieved using the get-pipeline command,
you must remove the metadata lines from the JSON file. Otherwise, the update-pipeline
command cannot use it. Remove the "metadata": { } lines and the "created",
"pipelineARN", and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
},

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

Amazon S3 source actions and EventBridge API Version 2015-07-09 294

AWS CodePipeline User Guide

Create an EventBridge rule for an Amazon S3 source (AWS CloudFormation
template)

To use AWS CloudFormation to create a rule, update your template as shown here.

To create an EventBridge rule with Amazon S3 as the event source and CodePipeline as the
target and apply the permissions policy

1. In the template, under Resources, use the AWS::IAM::Role AWS CloudFormation resource
to configure the IAM role that allows your event to start your pipeline. This entry creates a role
that uses two policies:

• The first policy allows the role to be assumed.

• The second policy provides permissions to start the pipeline.

Why am I making this change? Adding AWS::IAM::Role resource enables AWS
CloudFormation to create permissions for EventBridge. This resource is added to your AWS
CloudFormation stack.

YAML

 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -

Amazon S3 source actions and EventBridge API Version 2015-07-09 295

AWS CodePipeline User Guide

 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref
 'AWS::Region', ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]

...

JSON

 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {

Amazon S3 source actions and EventBridge API Version 2015-07-09 296

AWS CodePipeline User Guide

 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]

...

2. Use the AWS::Events::Rule AWS CloudFormation resource to add an EventBridge
rule. This event pattern creates an event that monitors CopyObject, PutObject and
CompleteMultipartUpload on your Amazon S3 source bucket. In addition, include a target
of your pipeline. When CopyObject, PutObject, or CompleteMultipartUpload occurs,
this rule invokes StartPipelineExecution on your target pipeline.

Why am I making this change? Adding the AWS::Events::Rule resource enables AWS
CloudFormation to create the event. This resource is added to your AWS CloudFormation stack.

YAML

 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventPattern:
 source:
 - aws.s3
 detail-type:
 - 'AWS API Call via CloudTrail'
 detail:
 eventSource:
 - s3.amazonaws.com
 eventName:
 - CopyObject
 - PutObject
 - CompleteMultipartUpload
 requestParameters:
 bucketName:

Amazon S3 source actions and EventBridge API Version 2015-07-09 297

AWS CodePipeline User Guide

 - !Ref SourceBucket
 key:
 - !Ref SourceObjectKey
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

...

JSON

 "EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "source": [
 "aws.s3"
],
 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [
 "s3.amazonaws.com"
],
 "eventName": [
 "CopyObject",
 "PutObject",
 "CompleteMultipartUpload"
],
 "requestParameters": {
 "bucketName": [
 {
 "Ref": "SourceBucket"
 }
],
 "key": [

Amazon S3 source actions and EventBridge API Version 2015-07-09 298

AWS CodePipeline User Guide

 {
 "Ref": "SourceObjectKey"
 }
]
 }
 }
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 }
},

...

3. Add this snippet to your first template to allow cross-stack functionality:

Amazon S3 source actions and EventBridge API Version 2015-07-09 299

AWS CodePipeline User Guide

YAML

Outputs:
 SourceBucketARN:
 Description: "S3 bucket ARN that Cloudtrail will use"
 Value: !GetAtt SourceBucket.Arn
 Export:
 Name: SourceBucketARN

JSON

 "Outputs" : {
 "SourceBucketARN" : {
 "Description" : "S3 bucket ARN that Cloudtrail will use",
 "Value" : { "Fn::GetAtt": ["SourceBucket", "Arn"] },
 "Export" : {
 "Name" : "SourceBucketARN"
 }
 }

...

4. Save your updated template to your local computer, and open the AWS CloudFormation
console.

5. Choose your stack, and then choose Create Change Set for Current Stack.

6. Upload your updated template, and then view the changes listed in AWS CloudFormation.
These are the changes that will be made to the stack. You should see your new resources in the
list.

7. Choose Execute.

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.

Amazon S3 source actions and EventBridge API Version 2015-07-09 300

AWS CodePipeline User Guide

Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

• In the template, change PollForSourceChanges to false. If you did not include
PollForSourceChanges in your pipeline definition, add it and set it to false.

Why am I making this change? Changing PollForSourceChanges to false turns off
periodic checks so you can use event-based change detection only.

YAML

 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref SourceObjectKey
 PollForSourceChanges: false
 RunOrder: 1

JSON

 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"

Amazon S3 source actions and EventBridge API Version 2015-07-09 301

AWS CodePipeline User Guide

 }
],
 "Configuration": {
 "S3Bucket": {
 "Ref": "SourceBucket"
 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }

To create a second template for your Amazon S3 pipeline's CloudTrail resources

• In a separate template, under Resources, use the AWS::S3::Bucket,
AWS::S3::BucketPolicy, and AWS::CloudTrail::Trail AWS CloudFormation resources
to provide a simple bucket definition and trail for CloudTrail.

Why am I making this change? Given the current limit of five trails per account, the
CloudTrail trail must be created and managed separately. (See Limits in AWS CloudTrail.)
However, you can include many Amazon S3 buckets on a single trail, so you can create the trail
once and then add Amazon S3 buckets for other pipelines as necessary. Paste the following
into your second sample template file.

YAML

###
Prerequisites:
- S3 SourceBucket and SourceObjectKey must exist
###

Parameters:
 SourceObjectKey:
 Description: 'S3 source artifact'
 Type: String
 Default: SampleApp_Linux.zip

Resources:

Amazon S3 source actions and EventBridge API Version 2015-07-09 302

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/WhatIsCloudTrail-Limits.html

AWS CodePipeline User Guide

 AWSCloudTrailBucketPolicy:
 Type: AWS::S3::BucketPolicy
 Properties:
 Bucket: !Ref AWSCloudTrailBucket
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Sid: AWSCloudTrailAclCheck
 Effect: Allow
 Principal:
 Service:
 - cloudtrail.amazonaws.com
 Action: s3:GetBucketAcl
 Resource: !GetAtt AWSCloudTrailBucket.Arn
 -
 Sid: AWSCloudTrailWrite
 Effect: Allow
 Principal:
 Service:
 - cloudtrail.amazonaws.com
 Action: s3:PutObject
 Resource: !Join ['', [!GetAtt AWSCloudTrailBucket.Arn, '/
AWSLogs/', !Ref 'AWS::AccountId', '/*']]
 Condition:
 StringEquals:
 s3:x-amz-acl: bucket-owner-full-control
 AWSCloudTrailBucket:
 Type: AWS::S3::Bucket
 DeletionPolicy: Retain
 AwsCloudTrail:
 DependsOn:
 - AWSCloudTrailBucketPolicy
 Type: AWS::CloudTrail::Trail
 Properties:
 S3BucketName: !Ref AWSCloudTrailBucket
 EventSelectors:
 -
 DataResources:
 -
 Type: AWS::S3::Object
 Values:
 - !Join ['', [!ImportValue SourceBucketARN, '/', !Ref
 SourceObjectKey]]

Amazon S3 source actions and EventBridge API Version 2015-07-09 303

AWS CodePipeline User Guide

 ReadWriteType: WriteOnly
 IncludeManagementEvents: false
 IncludeGlobalServiceEvents: true
 IsLogging: true
 IsMultiRegionTrail: true

...

JSON

{
 "Parameters": {
 "SourceObjectKey": {
 "Description": "S3 source artifact",
 "Type": "String",
 "Default": "SampleApp_Linux.zip"
 }
 },
 "Resources": {
 "AWSCloudTrailBucket": {
 "Type": "AWS::S3::Bucket",
 "DeletionPolicy": "Retain"
 },
 "AWSCloudTrailBucketPolicy": {
 "Type": "AWS::S3::BucketPolicy",
 "Properties": {
 "Bucket": {
 "Ref": "AWSCloudTrailBucket"
 },
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSCloudTrailAclCheck",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cloudtrail.amazonaws.com"
]
 },
 "Action": "s3:GetBucketAcl",
 "Resource": {

Amazon S3 source actions and EventBridge API Version 2015-07-09 304

AWS CodePipeline User Guide

 "Fn::GetAtt": [
 "AWSCloudTrailBucket",
 "Arn"
]
 }
 },
 {
 "Sid": "AWSCloudTrailWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cloudtrail.amazonaws.com"
]
 },
 "Action": "s3:PutObject",
 "Resource": {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "AWSCloudTrailBucket",
 "Arn"
]
 },
 "/AWSLogs/",
 {
 "Ref": "AWS::AccountId"
 },
 "/*"
]
]
 },
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control"
 }
 }
 }
]
 }
 }
 },
 "AwsCloudTrail": {

Amazon S3 source actions and EventBridge API Version 2015-07-09 305

AWS CodePipeline User Guide

 "DependsOn": [
 "AWSCloudTrailBucketPolicy"
],
 "Type": "AWS::CloudTrail::Trail",
 "Properties": {
 "S3BucketName": {
 "Ref": "AWSCloudTrailBucket"
 },
 "EventSelectors": [
 {
 "DataResources": [
 {
 "Type": "AWS::S3::Object",
 "Values": [
 {
 "Fn::Join": [
 "",
 [
 {
 "Fn::ImportValue": "SourceBucketARN"
 },
 "/",
 {
 "Ref": "SourceObjectKey"
 }
]
]
 }
]
 }
],
 "ReadWriteType": "WriteOnly",
 "IncludeManagementEvents": false
 }
],
 "IncludeGlobalServiceEvents": true,
 "IsLogging": true,
 "IsMultiRegionTrail": true
 }
 }
 }
}

Amazon S3 source actions and EventBridge API Version 2015-07-09 306

AWS CodePipeline User Guide

...

Bitbucket Cloud connections

Connections allow you to authorize and establish configurations that associate your third-party
provider with your AWS resources. To associate your third-party repository as a source for your
pipeline, you use a connection.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

To add a Bitbucket Cloud source action in CodePipeline, you can choose either to:

• Use the CodePipeline console Create pipeline wizard or Edit action page to choose the
Bitbucket provider option. See Create a connection to Bitbucket Cloud (console) to add the
action. The console helps you create a connections resource.

Note

You can create connections to a Bitbucket Cloud repository. Installed Bitbucket provider
types, such as Bitbucket Server, are not supported.

• Use the CLI to add the action configuration for the CreateSourceConnection action with the
Bitbucket provider as follows:

• To create your connections resources, see Create a connection to Bitbucket Cloud (CLI) to
create a connections resource with the CLI.

• Use the CreateSourceConnection example action configuration in
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions to add your action as shown in Create a pipeline (CLI).

Bitbucket Cloud connections API Version 2015-07-09 307

AWS CodePipeline User Guide

Note

You can also create a connection using the Developer Tools console under Settings. See
Create a Connection.

Before you begin:

• You must have created an account with the provider of the third-party repository, such as
Bitbucket Cloud.

• You must have already created a third-party code repository, such as a Bitbucket Cloud
repository.

Note

Bitbucket Cloud connections only provide access to repositories owned by the Bitbucket
Cloud account that was used to create the connection.
If the application is being installed in a Bitbucket Cloud workspace, you need Administer
workspace permissions. Otherwise, the option to install the app will not display.

Topics

• Create a connection to Bitbucket Cloud (console)

• Create a connection to Bitbucket Cloud (CLI)

Create a connection to Bitbucket Cloud (console)

Use these steps to use the CodePipeline console to add a connections action for your Bitbucket
repository.

Note

You can create connections to a Bitbucket Cloud repository. Installed Bitbucket provider
types, such as Bitbucket Server, are not supported.

Bitbucket Cloud connections API Version 2015-07-09 308

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create.html

AWS CodePipeline User Guide

Step 1: Create or edit your pipeline

To create or edit your pipeline

1. Sign in to the CodePipeline console.

2. Choose one of the following.

• Choose to create a pipeline. Follow the steps in Create a Pipeline to complete the first screen
and choose Next. On the Source page, under Source Provider, choose Bitbucket.

• Choose to edit an existing pipeline. Choose Edit, and then choose Edit stage. Choose to add
or edit your source action. On the Edit action page, under Action name, enter the name for
your action. In Action provider, choose Bitbucket.

3. Do one of the following:

• Under Connection, if you have not already created a connection to your provider, choose
Connect to Bitbucket. Proceed to Step 2: Create a Connection to Bitbucket.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to Step 3: Save the Source Action for Your Connection.

Step 2: Create a connection to Bitbucket Cloud

To create a connection to Bitbucket Cloud

1. On the Connect to Bitbucket settings page, enter your connection name and choose Connect
to Bitbucket.

The Bitbucket apps field appears.

2. Under Bitbucket apps, choose an app installation or choose Install a new app to create one.

Bitbucket Cloud connections API Version 2015-07-09 309

AWS CodePipeline User Guide

Note

You only install the app once for each Bitbucket Cloud workspace or account. If you
have already installed the Bitbucket app, choose it and move to step 4.

3. If the login page for Bitbucket Cloud displays, log in with your credentials and then choose to
continue.

4. On the app installation page, a message shows that the AWS CodeStar app is trying to connect
to your Bitbucket account.

If you are using a Bitbucket workspace, change the Authorize for option to the workspace.
Only workspaces where you have administrator access will display.

Choose Grant access.

5. In Bitbucket apps, the connection ID for your new installation is displayed. Choose Connect.
The created connection displays in the connections list.

Bitbucket Cloud connections API Version 2015-07-09 310

AWS CodePipeline User Guide

Step 3: Save your Bitbucket Cloud source action

Use these steps on the wizard or Edit action page to save your source action with your connection
information.

To complete and save your source action with your connection

1. In Repository name, choose the name of your third-party repository.

2. Under Pipeline triggers you can add triggers if your action is an AWS CodeStar Connections
action. To configure the pipeline trigger configuration and to optionally filter with triggers, see
more details in Filter triggers on code push or pull requests.

3. In Output artifact format, you must choose the format for your artifacts.

• To store output artifacts from the Bitbucket Cloud action using the default method, choose
CodePipeline default. The action accesses the files from the Bitbucket Cloud repository and
stores the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

If you choose this option, you will need to update the permissions for your CodeBuild project
service role as shown in Add CodeBuild GitClone permissions for connections to Bitbucket,
GitHub, GitHub Enterprise Server, or GitLab.com.

4. Choose Next on the wizard or Save on the Edit action page.

Bitbucket Cloud connections API Version 2015-07-09 311

AWS CodePipeline User Guide

Create a connection to Bitbucket Cloud (CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a connection.

Note

You can create connections to a Bitbucket Cloud repository. Installed Bitbucket provider
types, such as Bitbucket Server, are not supported.

To do this, use the create-connection command.

Important

A connection created through the AWS CLI or AWS CloudFormation is in PENDING status by
default. After you create a connection with the CLI or AWS CloudFormation, use the console
to edit the connection to make its status AVAILABLE.

To create a connection

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS
CLI to run the create-connection command, specifying the --provider-type and --
connection-name for your connection. In this example, the third-party provider name is
Bitbucket and the specified connection name is MyConnection.

aws codestar-connections create-connection --provider-type Bitbucket --connection-
name MyConnection

If successful, this command returns the connection ARN information similar to the following.

{
 "ConnectionArn": "arn:aws:codestar-connections:us-west-2:account_id:connection/
aEXAMPLE-8aad-4d5d-8878-dfcab0bc441f"
}

2. Use the console to complete the connection. For more information, see Update a pending
connection.

Bitbucket Cloud connections API Version 2015-07-09 312

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-update.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-update.html

AWS CodePipeline User Guide

3. The pipeline defaults to detect changes on code push to the connection source repository. To
configure the pipeline trigger configuration for manual release or for Git tags, do one of the
following:

• To configure the pipeline trigger configuration to start with a manual release only, add the
following line to the configuration:

"DetectChanges": "false",

• To configure the pipeline trigger configuration to filter with triggers, see more details in
Filter triggers on code push or pull requests. For example, the following adds Git tags to the
pipeline level of the pipeline JSON definition. In this example, release-v0 and release-
v1 are the Git tags to include, and release-v2 is the Git tag to exclude.

"triggers": [
 {
 "providerType": "CodeStarSourceConnection",
 "gitConfiguration": {
 "sourceActionName": "Source",
 "push": [
 {
 "tags": {
 "includes": [
 "release-v0", "release-v1"
],
 "excludes": [
 "release-v2"
]
 }
 }
]
 }
 }
]

CodeCommit source actions and EventBridge

To add a CodeCommit source action in CodePipeline, you can choose either to:

CodeCommit source actions and EventBridge API Version 2015-07-09 313

AWS CodePipeline User Guide

• Use the CodePipeline console Create pipeline wizard (Create a pipeline (console)) or Edit action
page to choose the CodeCommit provider option. The console creates an EventBridge rule that
starts your pipeline when the source changes.

• Use the AWS CLI to add the action configuration for the CodeCommit action and create
additional resources as follows:

• Use the CodeCommit example action configuration in CodeCommit to create your action as
shown in Create a pipeline (CLI).

• The change detection method defaults to starting the pipeline by polling the source. You
should disable periodic checks and create the change detection rule manually. Use one of
the following methods: Create an EventBridge rule for a CodeCommit source (console),
Create an EventBridge rule for a CodeCommit source (CLI), or Create an EventBridge rule for a
CodeCommit source (AWS CloudFormation template) .

Topics

• Create an EventBridge rule for a CodeCommit source (console)

• Create an EventBridge rule for a CodeCommit source (CLI)

• Create an EventBridge rule for a CodeCommit source (AWS CloudFormation template)

Create an EventBridge rule for a CodeCommit source (console)

Important

If you use the console to create or edit your pipeline, your EventBridge rule is created for
you.

To create an EventBridge rule for use in CodePipeline operations

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules. Leave the default bus selected or choose an event bus.
Choose Create rule.

3. In Name, enter a name for your rule.

4. Under Rule type, choose Rule with an event pattern. Choose Next.

5. Under Event source, choose AWS events or EventBridge partner events.

CodeCommit source actions and EventBridge API Version 2015-07-09 314

https://console.aws.amazon.com/events/

AWS CodePipeline User Guide

6. Under Sample event type, choose AWS events.

7. In Sample events, type CodeCommit as the keyword to filter on. Choose CodeCommit
Repository State Change.

8. Under Creation method, choose Customer pattern (JSON editor).

Paste the event pattern provided below. The following is a sample CodeCommit event pattern
in the Event window for a MyTestRepo repository with a branch named main:

{
 "source": [
 "aws.codecommit"
],
 "detail-type": [
 "CodeCommit Repository State Change"
],
 "resources": [
 "arn:aws:codecommit:us-west-2:80398EXAMPLE:MyTestRepo"
],
 "detail": {
 "referenceType": [
 "branch"
],
 "referenceName": [
 "main"
]
 }
}

9. In Targets, choose CodePipeline.

10. Enter the pipeline ARN for the pipeline to be started by this rule.

Note

You can find the pipeline ARN in the metadata output after you run the get-pipeline
command. The pipeline ARN is constructed in this format:
arn:aws:codepipeline:region:account:pipeline-name
Sample pipeline ARN:
arn:aws:codepipeline:us-east-2:80398EXAMPLE:MyFirstPipeline

CodeCommit source actions and EventBridge API Version 2015-07-09 315

AWS CodePipeline User Guide

11. To create or specify an IAM service role that grants EventBridge permissions to invoke the
target associated with your EventBridge rule (in this case, the target is CodePipeline):

• Choose Create a new role for this specific resource to create a service role that gives
EventBridge permissions to your start your pipeline executions.

• Choose Use existing role to enter a service role that gives EventBridge permissions to your
start your pipeline executions.

12. Choose Next.

13. On the Tags page, choose Next.

14. On the Review and create page, review the rule configuration. If you're satisfied with the rule,
choose Create rule.

Create an EventBridge rule for a CodeCommit source (CLI)

Call the put-rule command, specifying:

• A name that uniquely identifies the rule you are creating. This name must be unique across all of
the pipelines you create with CodePipeline associated with your AWS account.

• The event pattern for the source and detail fields used by the rule. For more information, see
Amazon EventBridge and Event Patterns.

To create an EventBridge rule with CodeCommit as the event source and CodePipeline as the
target

1. Add permissions for EventBridge to use CodePipeline to invoke the rule. For more information,
see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy that allows EventBridge to assume the
service role. Name the trust policy trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },

CodeCommit source actions and EventBridge API Version 2015-07-09 316

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

 "Action": "sts:AssumeRole"
 }
]
}

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON, as shown in this sample, for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]
 }
]
}

d. Use the following command to attach the CodePipeline-Permissions-Policy-for-
EB permissions policy to the Role-for-MyRule role.

Why am I making this change? Adding this policy to the role creates permissions for
EventBridge.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforEB.json

2. Call the put-rule command and include the --name, --event-pattern , and--role-arn
parameters.

CodeCommit source actions and EventBridge API Version 2015-07-09 317

AWS CodePipeline User Guide

Why am I making this change? This command enables AWS CloudFormation to create the
event.

The following sample command creates a rule called MyCodeCommitRepoRule.

aws events put-rule --name "MyCodeCommitRepoRule" --event-pattern "{\"source\":
[\"aws.codecommit\"],\"detail-type\":[\"CodeCommit Repository State Change\"],
\"resources\":[\"repository-ARN\"],\"detail\":{\"referenceType\":[\"branch\"],
\"referenceName\":[\"main\"]}}" --role-arn "arn:aws:iam::ACCOUNT_ID:role/Role-for-
MyRule"

3. To add CodePipeline as a target, call the put-targets command and include the following
parameters:

• The --rule parameter is used with the rule_name you created by using put-rule.

• The --targets parameter is used with the list Id of the target in the list of targets and the
ARN of the target pipeline.

The following sample command specifies that for the rule called MyCodeCommitRepoRule,
the target Id is composed of the number one, indicating that in a list of targets for the rule,
this is target 1. The sample command also specifies an example ARN for the pipeline. The
pipeline starts when something changes in the repository.

aws events put-targets --rule MyCodeCommitRepoRule --targets
 Id=1,Arn=arn:aws:codepipeline:us-west-2:80398EXAMPLE:TestPipeline

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

CodeCommit source actions and EventBridge API Version 2015-07-09 318

AWS CodePipeline User Guide

1. Run the get-pipeline command to copy the pipeline structure into a JSON file. For example,
for a pipeline named MyFirstPipeline, run the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and edit the source stage by changing the
PollForSourceChanges parameter to false, as shown in this example.

Why am I making this change? Changing this parameter to false turns off periodic checks so
you can use event-based change detection only.

"configuration": {
 "PollForSourceChanges": "false",
 "BranchName": "main",
 "RepositoryName": "MyTestRepo"
},

3. If you are working with the pipeline structure retrieved using the get-pipeline command,
remove the metadata lines from the JSON file. Otherwise, the update-pipeline command
cannot use it. Remove the "metadata": { } lines and the "created", "pipelineARN",
and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
},

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

CodeCommit source actions and EventBridge API Version 2015-07-09 319

AWS CodePipeline User Guide

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

Create an EventBridge rule for a CodeCommit source (AWS CloudFormation
template)

To use AWS CloudFormation to create a rule, update your template as shown here.

To update your pipeline AWS CloudFormation template and create EventBridge rule

1. In the template, under Resources, use the AWS::IAM::Role AWS CloudFormation resource
to configure the IAM role that allows your event to start your pipeline. This entry creates a role
that uses two policies:

• The first policy allows the role to be assumed.

• The second policy provides permissions to start the pipeline.

Why am I making this change? Adding the AWS::IAM::Role resource enables AWS
CloudFormation to create permissions for EventBridge. This resource is added to your AWS
CloudFormation stack.

YAML

 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:

CodeCommit source actions and EventBridge API Version 2015-07-09 320

AWS CodePipeline User Guide

 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref
 'AWS::Region', ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]

JSON

"EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {

CodeCommit source actions and EventBridge API Version 2015-07-09 321

AWS CodePipeline User Guide

 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]

...

2. In the template, under Resources, use the AWS::Events::Rule AWS CloudFormation
resource to add an EventBridge rule. This event pattern creates an event that monitors push
changes to your repository. When EventBridge detects a repository state change, the rule
invokes StartPipelineExecution on your target pipeline.

Why am I making this change? Adding the AWS::Events::Rule resource enables AWS
CloudFormation to create the event. This resource is added to your AWS CloudFormation stack.

YAML

 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventPattern:
 source:
 - aws.codecommit

CodeCommit source actions and EventBridge API Version 2015-07-09 322

AWS CodePipeline User Guide

 detail-type:
 - 'CodeCommit Repository State Change'
 resources:
 - !Join ['', ['arn:aws:codecommit:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref RepositoryName]]
 detail:
 event:
 - referenceCreated
 - referenceUpdated
 referenceType:
 - branch
 referenceName:
 - main
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

JSON

"EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "source": [
 "aws.codecommit"
],
 "detail-type": [
 "CodeCommit Repository State Change"
],
 "resources": [
 {
 "Fn::Join": [
 "",
 [
 "arn:aws:codecommit:",
 {
 "Ref": "AWS::Region"
 },

CodeCommit source actions and EventBridge API Version 2015-07-09 323

AWS CodePipeline User Guide

 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "RepositoryName"
 }
]
]
 }
],
 "detail": {
 "event": [
 "referenceCreated",
 "referenceUpdated"
],
 "referenceType": [
 "branch"
],
 "referenceName": [
 "main"
]
 }
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]

CodeCommit source actions and EventBridge API Version 2015-07-09 324

AWS CodePipeline User Guide

]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
},

3. Save the updated template to your local computer, and then open the AWS CloudFormation
console.

4. Choose your stack, and then choose Create Change Set for Current Stack.

5. Upload the template, and then view the changes listed in AWS CloudFormation. These are the
changes to be made to the stack. You should see your new resources in the list.

6. Choose Execute.

To edit your pipeline's PollForSourceChanges parameter

Important

In many cases, the PollForSourceChanges parameter defaults to true when you create
a pipeline. When you add event-based change detection, you must add the parameter
to your output and set it to false to disable polling. Otherwise, your pipeline starts twice
for a single source change. For details, see Default settings for the PollForSourceChanges
parameter.

• In the template, change PollForSourceChanges to false. If you did not include
PollForSourceChanges in your pipeline definition, add it and set it to false.

Why am I making this change? Changing this parameter to false turns off periodic checks so
you can use event-based change detection only.

CodeCommit source actions and EventBridge API Version 2015-07-09 325

AWS CodePipeline User Guide

YAML

 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: CodeCommit
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 BranchName: !Ref BranchName
 RepositoryName: !Ref RepositoryName
 PollForSourceChanges: false
 RunOrder: 1

JSON

{
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "CodeCommit"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "BranchName": {
 "Ref": "BranchName"
 },
 "RepositoryName": {

CodeCommit source actions and EventBridge API Version 2015-07-09 326

AWS CodePipeline User Guide

 "Ref": "RepositoryName"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }
]
},

GitHub connections

You use connections to authorize and establish configurations that associate your third-party
provider with your AWS resources.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

To add a source action for your GitHub or GitHub Enterprise Cloud repository in CodePipeline, you
can choose either to:

• Use the CodePipeline console Create pipeline wizard or Edit action page to choose the GitHub
(Version 2) provider option. See Create a connection to GitHub Enterprise Server (console) to
add the action. The console helps you create a connections resource.

Note

For a tutorial that walks you through how to add a GitHub connection and use the Full
clone option in your pipeline, see Tutorial: Use full clone with a GitHub pipeline source.

GitHub connections API Version 2015-07-09 327

AWS CodePipeline User Guide

• Use the CLI to add the action configuration for the CodeStarSourceConnection action with
the GitHub provider with the CLI steps shown in Create a pipeline (CLI).

Note

You can also create a connection using the Developer Tools console under Settings. See
Create a Connection.

Before you begin:

• You must have created an account with GitHub.

• You must have already created a GitHub code repository.

• If your CodePipeline service role was created before December 18, 2019, you might need to
update its permissions to use codestar-connections:UseConnection for AWS CodeStar
connections. For instructions, see Add permissions to the CodePipeline service role.

Note

To create the connection, you must be the GitHub organization owner. For repositories that
are not under an organization, you must be the repository owner.

Topics

• Create a connection to GitHub (console)

• Create a connection to GitHub (CLI)

Create a connection to GitHub (console)

Use these steps to use the CodePipeline console to add a connections action for your GitHub or
GitHub Enterprise Cloud repository.

GitHub connections API Version 2015-07-09 328

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create.html

AWS CodePipeline User Guide

Note

In these steps, you can select specific repositories under Repository Access. Any
repositories that are not selected will not be accessible or visible by CodePipeline.

Step 1: Create or edit your pipeline

1. Sign in to the CodePipeline console.

2. Choose one of the following.

• Choose to create a pipeline. Follow the steps in Create a Pipeline to complete the first screen
and choose Next. On the Source page, under Source Provider, choose GitHub (Version 2).

• Choose to edit an existing pipeline. Choose Edit, and then choose Edit stage. Choose to add
or edit your source action. On the Edit action page, under Action name, enter the name for
your action. In Action provider, choose GitHub (Version 2).

3. Do one of the following:

• Under Connection, if you have not already created a connection to your provider, choose
Connect to GitHub. Proceed to Step 2: Create a Connection to GitHub.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to Step 3: Save the source action for your connection.

Step 2: Create a connection to GitHub

After you choose to create the connection, the Connect to GitHub page appears.

GitHub connections API Version 2015-07-09 329

AWS CodePipeline User Guide

To create a connection to GitHub

1. Under GitHub connection settings, your connection name appears in Connection name.
Choose Connect to GitHub. The access request page appears.

2. Choose Authorize AWS Connector for GitHub. The connection page displays and shows the
GitHub Apps field.

3. Under GitHub Apps, choose an app installation or choose Install a new app to create one.

Note

You install one app for all of your connections to a particular provider. If you have
already installed the AWS Connector for GitHub app, choose it and skip this step.

4. On the Install AWS Connector for GitHub page, choose the account where you want to install
the app.

Note

You only install the app once for each GitHub account. If you previously installed
the app, you can choose Configure to proceed to a modification page for your app
installation, or you can use the back button to return to the console.

5. On the Install AWS Connector for GitHub page, leave the defaults, and choose Install.

6. On the Connect to GitHub page, the connection ID for your new installation appears in
GitHub Apps. Choose Connect.

GitHub connections API Version 2015-07-09 330

AWS CodePipeline User Guide

Step 3: Save your GitHub source action

Use these steps on the Edit action page to save your source action with your connection
information.

To save your GitHub source action

1. In Repository name, choose the name of your third-party repository.

2. Under Pipeline triggers you can add triggers if your action is an AWS CodeStar Connections
action. To configure the pipeline trigger configuration and to optionally filter with triggers, see
more details in Filter triggers on code push or pull requests.

3. In Output artifact format, you must choose the format for your artifacts.

• To store output artifacts from the GitHub action using the default method, choose
CodePipeline default. The action accesses the files from the GitHub repository and stores
the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

If you choose this option, you will need to update the permissions for your CodeBuild project
service role as shown in Add CodeBuild GitClone permissions for connections to Bitbucket,
GitHub, GitHub Enterprise Server, or GitLab.com. For a tutorial that shows you how to use
the Full clone option, see Tutorial: Use full clone with a GitHub pipeline source.

4. Choose Next on the wizard or Save on the Edit action page.

Create a connection to GitHub (CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a connection.

To do this, use the create-connection command.

Important

A connection created through the AWS CLI or AWS CloudFormation is in PENDING status by
default. After you create a connection with the CLI or AWS CloudFormation, use the console
to edit the connection to make its status AVAILABLE.

GitHub connections API Version 2015-07-09 331

AWS CodePipeline User Guide

To create a connection

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS
CLI to run the create-connection command, specifying the --provider-type and --
connection-name for your connection. In this example, the third-party provider name is
GitHub and the specified connection name is MyConnection.

aws codestar-connections create-connection --provider-type GitHub --connection-name
 MyConnection

If successful, this command returns the connection ARN information similar to the following.

{
 "ConnectionArn": "arn:aws:codestar-connections:us-west-2:account_id:connection/
aEXAMPLE-8aad-4d5d-8878-dfcab0bc441f"
}

2. Use the console to complete the connection. For more information, see Update a pending
connection.

3. The pipeline defaults to detect changes on code push to the connection source repository. To
configure the pipeline trigger configuration for manual release or for Git tags, do one of the
following:

• To configure the pipeline trigger configuration to start with a manual release only, add the
following line to the configuration:

"DetectChanges": "false",

• To configure the pipeline trigger configuration to filter with triggers, see more details in
Filter triggers on code push or pull requests. For example, the following adds to the pipeline
level of the pipeline JSON definition. In this example, release-v0 and release-v1 are the
Git tags to include, and release-v2 is the Git tag to exclude.

"triggers": [
 {
 "providerType": "CodeStarSourceConnection",
 "gitConfiguration": {
 "sourceActionName": "Source",
 "push": [
 {

GitHub connections API Version 2015-07-09 332

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-update.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-update.html

AWS CodePipeline User Guide

 "tags": {
 "includes": [
 "release-v0", "release-v1"
],
 "excludes": [
 "release-v2"
]
 }
 }
]
 }
 }
]

GitHub Enterprise Server connections

Connections allow you to authorize and establish configurations that associate your third-party
provider with your AWS resources. To associate your third-party repository as a source for your
pipeline, you use a connection.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

To add a GitHub Enterprise Server source action in CodePipeline, you can choose either to:

• Use the CodePipeline console Create pipeline wizard or Edit action page to choose the GitHub
Enterprise Server provider option. See Create a connection to GitHub Enterprise Server (console)
to add the action. The console helps you create a host resource and a connections resource.

• Use the CLI to add the action configuration for the CreateSourceConnection action with the
GitHubEnterpriseServer provider and create your resources:

GitHub Enterprise Server connections API Version 2015-07-09 333

AWS CodePipeline User Guide

• To create your connections resources, see Create a host and connection to GitHub Enterprise
Server (CLI) to create a host resource and a connections resource with the CLI.

• Use the CreateSourceConnection example action configuration in
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions to add your action as shown in Create a pipeline (CLI).

Note

You can also create a connection using the Developer Tools console under Settings. See
Create a Connection.

Before you begin:

• You must have created an account with GitHub Enterprise Server and installed the GitHub
Enterprise Server instance on your infrastructure.

Note

Each VPC can only be associated with one host (GitHub Enterprise Server instance) at a
time.

• You must have already created a code repository with GitHub Enterprise Server.

Topics

• Create a connection to GitHub Enterprise Server (console)

• Create a host and connection to GitHub Enterprise Server (CLI)

Create a connection to GitHub Enterprise Server (console)

Use these steps to use the CodePipeline console to add a connections action for your GitHub
Enterprise Server repository.

GitHub Enterprise Server connections API Version 2015-07-09 334

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create.html

AWS CodePipeline User Guide

Note

GitHub Enterprise Server connections only provide access to repositories owned by the
GitHub Enterprise Server account that was used to create the connection.

Before you begin:

For a host connection to GitHub Enterprise Server, you must have completed the steps to create a
host resource for your connection. See Manage hosts for connections.

Step 1: Create or edit your pipeline

To create or edit your pipeline

1. Sign in to the CodePipeline console.

2. Choose one of the following.

• Choose to create a pipeline. Follow the steps in Create a Pipeline to complete the first screen
and choose Next. On the Source page, under Source provider, choose GitHub Enterprise
Server.

• Choose to edit an existing pipeline. Choose Edit, and then choose Edit stage. Choose to add
or edit your source action. On the Edit action page, under Action name, enter the name for
your action. In Action provider, choose GitHub Enterprise Server.

3. Do one of the following:

• Under Connection, if you have not already created a connection to your provider, choose
Connect to GitHub Enterprise Server. Proceed to Step 2: Create a Connection to GitHub
Enterprise Server.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to Step 3: Save the Source Action for Your Connection.

Create a connection to GitHub Enterprise Server

After you choose to create the connection, the Connect to GitHub Enterprise Server page is
shown.

GitHub Enterprise Server connections API Version 2015-07-09 335

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-hosts.html

AWS CodePipeline User Guide

Important

AWS CodeStar Connections does not support GitHub Enterprise Server version 2.22.0
due to a known issue in the release. To connect, upgrade to version 2.22.1 or the latest
available version.

To connect to GitHub Enterprise Server

1. In Connection name, enter the name for your connection.

2. In URL, enter the endpoint for your server.

Note

If the provided URL has already been used to set up a GitHub Enterprise Server for a
connection, you will be prompted to choose the host resource ARN that was created
previously for that endpoint.

3. If you have launched your server into an Amazon VPC and you want to connect with your VPC,
choose Use a VPC and complete the following.

a. In VPC ID, choose your VPC ID. Make sure to choose the VPC for the infrastructure where
your GitHub Enterprise Server instance is installed or a VPC with access to your GitHub
Enterprise Server instance through VPN or Direct Connect.

b. Under Subnet ID, choose Add. In the field, choose the subnet ID you want to use for your
host. You can choose up to 10 subnets.

Make sure to choose the subnet for the infrastructure where your GitHub Enterprise
Server instance is installed or a subnet with access to your installed GitHub Enterprise
Server instance through VPN or Direct Connect.

c. Under Security group IDs, choose Add. In the field, choose the security group you want to
use for your host. You can choose up to 10 security groups.

Make sure to choose the security group for the infrastructure where your GitHub
Enterprise Server instance is installed or a security group with access to your installed
GitHub Enterprise Server instance through VPN or Direct Connect.

d. If you have a private VPC configured, and you have configured your GitHub Enterprise
Server instance to perform TLS validation using a non-public certificate authority, in TLS

GitHub Enterprise Server connections API Version 2015-07-09 336

AWS CodePipeline User Guide

certificate, enter your certificate ID. The TLS Certificate value should be the public key of
the certificate.

4. Choose Connect to GitHub Enterprise Server. The created connection is shown with a
Pending status. A host resource is created for the connection with the server information you
provided. For the host name, the URL is used.

5. Choose Update pending connection.

6. If prompted, on the GitHub Enterprise login page, sign in with your GitHub Enterprise
credentials.

7. On the Create GitHub App page, choose a name for your app.

8. On the GitHub authorization page, choose Authorize <app-name>.

9. On the app installation page, a message shows that the AWS CodeStar Connector app is ready
to be installed. If you have multiple organizations, you might be prompted to choose the
organization where you want to install the app.

Choose the repository settings where you want to install the app. Choose Install.

10. The connection page shows the created connection in an Available status.

GitHub Enterprise Server connections API Version 2015-07-09 337

AWS CodePipeline User Guide

Step 3: Save your GitHub Enterprise Server source action

Use these steps on the wizard or Edit action page to save your source action with your connection
information.

To complete and save your source action with your connection

1. In Repository name, choose the name of your third-party repository.

2. Under Pipeline triggers you can add triggers if your action is an AWS CodeStar Connections
action. To configure the pipeline trigger configuration and to optionally filter with triggers, see
more details in Filter triggers on code push or pull requests.

3. In Output artifact format, you must choose the format for your artifacts.

• To store output artifacts from the GitHub Enterprise Server action using the default method,
choose CodePipeline default. The action accesses the files from the GitHub Enterprise
Server repository and stores the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

4. Choose Next on the wizard or Save on the Edit action page.

Create a host and connection to GitHub Enterprise Server (CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a connection.

To do this, use the create-connection command.

Important

A connection created through the AWS CLI or AWS CloudFormation is in PENDING status by
default. After you create a connection with the CLI or AWS CloudFormation, use the console
to edit the connection to make its status AVAILABLE.

You can use the AWS Command Line Interface (AWS CLI) to create a host for installed connections.

GitHub Enterprise Server connections API Version 2015-07-09 338

AWS CodePipeline User Guide

Note

You only create a host once per GitHub Enterprise Server account. All of your connections
to a specific GitHub Enterprise Server account will use the same host.

You use a host to represent the endpoint for the infrastructure where your third-party provider
is installed. After you complete the host creation with the CLI, the host is in Pending status. You
then set up, or register, the host to move it to an Available status. After the host is available, you
complete the steps to create a connection.

To do this, use the create-host command.

Important

A host created through the AWS CLI is in Pending status by default. After you create a host
with the CLI, use the console or the CLI to set up the host to make its status Available.

To create a host

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS
CLI to run the create-host command, specifying the --name, --provider-type, and --
provider-endpoint for your connection. In this example, the third-party provider name is
GitHubEnterpriseServer and the endpoint is my-instance.dev.

aws codestar-connections create-host --name MyHost --provider-type
 GitHubEnterpriseServer --provider-endpoint "https://my-instance.dev"

If successful, this command returns the host Amazon Resource Name (ARN) information similar
to the following.

{
 "HostArn": "arn:aws:codestar-connections:us-west-2:account_id:host/My-
Host-28aef605"
}

After this step, the host is in PENDING status.

GitHub Enterprise Server connections API Version 2015-07-09 339

AWS CodePipeline User Guide

2. Use the console to complete the host setup and move the host to an Available status.

To create a connection to GitHub Enterprise Server

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS CLI to
run the create-connection command, specifying the --host-arn and --connection-name
for your connection.

aws codestar-connections create-connection --host-arn arn:aws:codestar-
connections:us-west-2:account_id:host/MyHost-234EXAMPLE --connection-name
 MyConnection

If successful, this command returns the connection ARN information similar to the following.

{
 "ConnectionArn": "arn:aws:codestar-connections:us-west-2:account_id:connection/
aEXAMPLE-8aad"
}

2. Use the console to set up the pending connection.

3. The pipeline defaults to detect changes on code push to the connection source repository. To
configure the pipeline trigger configuration for manual release or for Git tags, do one of the
following:

• To configure the pipeline trigger configuration to start with a manual release only, add the
following line to the configuration:

"DetectChanges": "false",

• To configure the pipeline trigger configuration to filter with triggers, see more details in
Filter triggers on code push or pull requests. For example, the following adds to the pipeline
level of the pipeline JSON definition. In this example, release-v0 and release-v1 are the
Git tags to include, and release-v2 is the Git tag to exclude.

"triggers": [
 {
 "providerType": "CodeStarSourceConnection",
 "gitConfiguration": {
 "sourceActionName": "Source",

GitHub Enterprise Server connections API Version 2015-07-09 340

AWS CodePipeline User Guide

 "push": [
 {
 "tags": {
 "includes": [
 "release-v0", "release-v1"
],
 "excludes": [
 "release-v2"
]
 }
 }
]
 }
 }
]

GitLab.com connections

Connections allow you to authorize and establish configurations that associate your third-party
provider with your AWS resources. To associate your third-party repository as a source for your
pipeline, you use a connection.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

To add a GitLab.com source action in CodePipeline, you can choose either to:

• Use the CodePipeline console Create pipeline wizard or Edit action page to choose the GitLab
provider option. See Create a connection to GitLab.com (console) to add the action. The console
helps you create a connections resource.

GitLab.com connections API Version 2015-07-09 341

AWS CodePipeline User Guide

• Use the CLI to add the action configuration for the CreateSourceConnection action with the
GitLab provider as follows:

• To create your connections resources, see Create a connection to GitLab.com (CLI) to create a
connections resource with the CLI.

• Use the CreateSourceConnection example action configuration in
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions to add your action as shown in Create a pipeline (CLI).

Note

You can also create a connection using the Developer Tools console under Settings. See
Create a Connection.

Note

By authorizing this connection installation in GitLab.com, you grant our service permissions
to process your data by accessing your account, and you can revoke the permissions at any
time by uninstalling the application.

Before you begin:

• You must have already created an account with GitLab.com.

Note

Connections only provide access to repositories owned by the account that was used to
create and authorize the connection.

Note

You can create connections to a repository where you have the Owner role in GitLab, and
then the connection can be used with the repository with resources such as CodePipeline.
For repositories in groups, you do not need to be the group owner.

GitLab.com connections API Version 2015-07-09 342

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create.html

AWS CodePipeline User Guide

• To specify a source for your pipeline, you must have already created a repository on gitlab.com.

Topics

• Create a connection to GitLab.com (console)

• Create a connection to GitLab.com (CLI)

Create a connection to GitLab.com (console)

Use these steps to use the CodePipeline console to add a connections action for your project
(repository) in GitLab.

To create or edit your pipeline

1. Sign in to the CodePipeline console.

2. Choose one of the following.

• Choose to create a pipeline. Follow the steps in Create a Pipeline to complete the first screen
and choose Next. On the Source page, under Source Provider, choose GitLab.

• Choose to edit an existing pipeline. Choose Edit, and then choose Edit stage. Choose to add
or edit your source action. On the Edit action page, under Action name, enter the name for
your action. In Action provider, choose GitLab.

3. Do one of the following:

• Under Connection, if you have not already created a connection to your provider, choose
Connect to GitLab. Proceed to step 4 to create the connection.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to step 9.

Note

If you close the pop-up window before a GitLab.com connection is created, you need to
refresh the page.

4. To create a connection to a GitLab.com repository, under Select a provider, choose GitLab.
In Connection name, enter the name for the connection that you want to create. Choose
Connect to GitLab.

GitLab.com connections API Version 2015-07-09 343

AWS CodePipeline User Guide

5. When the sign-in page for GitLab.com displays, log in with your credentials, and then choose
Sign in.

6. If this is your first time authorizing the connection, an authorization page displays with a
message requesting authorization for the connection to access your GitLab.com account.

Choose Authorize.

GitLab.com connections API Version 2015-07-09 344

AWS CodePipeline User Guide

7. The browser returns to the connections console page. Under Create GitLab connection, the
new connection is shown in Connection name.

8. Choose Connect to GitLab.

You will be returned to the CodePipeline console.

GitLab.com connections API Version 2015-07-09 345

AWS CodePipeline User Guide

Note

After a GitLab.com connection is successfully created, a success banner will be
displayed on the main window.
If you have not previously logged in to GitLab on the current machine, you will need to
manually close the pop-up window.

9. In Repository name, choose the name of your project in GitLab by specifying the project path
with the namespace. For example, for a group-level repository, enter the repository name in
the following format: group-name/repository-name. For more information about the path
and namespace, see the path_with_namespace field in https://docs.gitlab.com/ee/api/
projects.html#get-single-project. For more information about the namespace in GitLab, see
https://docs.gitlab.com/ee/user/namespace/.

Note

For groups in GitLab, you must manually specify the project path with the namespace.
For example, for a repository named myrepo in a group mygroup, enter the following:
mygroup/myrepo. You can find the project path with the namespace in the URL in
GitLab.

10. Under Pipeline triggers you can add triggers if your action is an AWS CodeStar Connections
action. To configure the pipeline trigger configuration and to optionally filter with triggers, see
more details in Filter triggers on code push or pull requests.

11. In Branch name, choose the branch where you want your pipeline to detect source changes.

Note

If the branch name does not populate automatically, then you do not have Owner
access to the repository. Either the project name is not valid, or the connection used
doesn't have access to the project/repository.

12. In Output artifact format, you must choose the format for your artifacts.

• To store output artifacts from the GitLab.com action using the default method, choose
CodePipeline default. The action accesses the files from the GitLab.com repository and
stores the artifacts in a ZIP file in the pipeline artifact store.

GitLab.com connections API Version 2015-07-09 346

https://docs.gitlab.com/ee/api/projects.html#get-single-project
https://docs.gitlab.com/ee/api/projects.html#get-single-project
https://docs.gitlab.com/ee/user/namespace/

AWS CodePipeline User Guide

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

If you choose this option, you will need to update the permissions for your CodeBuild project
service role as shown in Add CodeBuild GitClone permissions for connections to Bitbucket,
GitHub, GitHub Enterprise Server, or GitLab.com. For a tutorial that shows you how to use
the Full clone option, see Tutorial: Use full clone with a GitHub pipeline source.

13. Choose to save the source action and continue.

Create a connection to GitLab.com (CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a connection.

To do this, use the create-connection command.

Important

A connection created through the AWS CLI or AWS CloudFormation is in PENDING status by
default. After you create a connection with the CLI or AWS CloudFormation, use the console
to edit the connection to make its status AVAILABLE.

To create a connection

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS
CLI to run the create-connection command, specifying the --provider-type and --
connection-name for your connection. In this example, the third-party provider name is
GitLab and the specified connection name is MyConnection.

aws codestar-connections create-connection --provider-type GitLab --connection-name
 MyConnection

If successful, this command returns the connection ARN information similar to the following.

{
 "ConnectionArn": "arn:aws:codestar-connections:us-west-2:account_id:connection/
aEXAMPLE-8aad-4d5d-8878-dfcab0bc441f"

GitLab.com connections API Version 2015-07-09 347

AWS CodePipeline User Guide

}

2. Use the console to complete the connection. For more information, see Update a pending
connection.

3. The pipeline defaults to detect changes on code push to the connection source repository. To
configure the pipeline trigger configuration for manual release or for Git tags, do one of the
following:

• To configure the pipeline trigger configuration to start with a manual release only, add the
following line to the configuration:

"DetectChanges": "false",

• To configure the pipeline trigger configuration to filter with triggers, see more details in
Filter triggers on code push or pull requests. For example, the following adds to the pipeline
level of the pipeline JSON definition. In this example, release-v0 and release-v1 are the
Git tags to include, and release-v2 is the Git tag to exclude.

"triggers": [
 {
 "providerType": "CodeStarSourceConnection",
 "gitConfiguration": {
 "sourceActionName": "Source",
 "push": [
 {
 "tags": {
 "includes": [
 "release-v0", "release-v1"
],
 "excludes": [
 "release-v2"
]
 }
 }
]
 }
 }
]

GitLab.com connections API Version 2015-07-09 348

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-update.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-update.html

AWS CodePipeline User Guide

Connections for GitLab self-managed

Connections allow you to authorize and establish configurations that associate your third-party
provider with your AWS resources. To associate your third-party repository as a source for your
pipeline, you use a connection.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

To add a GitLab self-managed source action in CodePipeline, you can choose either to:

• Use the CodePipeline console Create pipeline wizard or Edit action page to choose the GitLab
self-managed provider option. See Create a connection to GitLab self-managed (console) to add
the action. The console helps you create a host resource and a connections resource.

• Use the CLI to add the action configuration for the CreateSourceConnection action with the
GitLabSelfManaged provider and create your resources:

• To create your connections resources, see Create a host and connection to GitLab self-
managed (CLI) to create a host resource and a connections resource with the CLI.

• Use the CreateSourceConnection example action configuration in
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions to add your action as shown in Create a pipeline (CLI).

Note

You can also create a connection using the Developer Tools console under Settings. See
Create a Connection.

Before you begin:

Connections for GitLab self-managed API Version 2015-07-09 349

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-create.html

AWS CodePipeline User Guide

• You must have already created an account with GitLab and have GitLab Enterprise Edition or
GitLab Community Edition with a self-managed installation. For more information, see https://
docs.gitlab.com/ee/subscriptions/self_managed/.

Note

Connections only provide access for the account that was used to create and authorize
the connection.

Note

You can create connections to a repository where you have the Owner role in GitLab,
and then the connection can be used with with resources such as CodePipeline. For
repositories in groups, you do not need to be the group owner.

• You must have already created a GitLab personal access token (PAT) with the following scoped-
down permission only: api. For more information, see https://docs.gitlab.com/ee/user/profile/
personal_access_tokens.html. You must be an administrator to create and use the PAT.

Note

Your PAT is used to authorize the host and is not otherwise stored or used by
connections. To set up a host, you can create a temporary PAT and then after you set up
the host, you can delete the PAT.

• You can choose to set up your host ahead of time. You can set up a host with or without a VPC.
For details about VPC configuration and additional information about creating a host, see Create
a host.

Topics

• Create a connection to GitLab self-managed (console)

• Create a host and connection to GitLab self-managed (CLI)

Connections for GitLab self-managed API Version 2015-07-09 350

https://docs.gitlab.com/ee/subscriptions/self_managed/
https://docs.gitlab.com/ee/subscriptions/self_managed/
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-host-create.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-host-create.html

AWS CodePipeline User Guide

Create a connection to GitLab self-managed (console)

Use these steps to use the CodePipeline console to add a connections action for your GitLab self-
managedr repository.

Note

GitLab self-managed connections only provide access to repositories owned by the GitLab
self-managed account that was used to create the connection.

Before you begin:

For a host connection to GitLab self-managed, you must have completed the steps to create a host
resource for your connection. See Manage hosts for connections.

Step 1: Create or edit your pipeline

To create or edit your pipeline

1. Sign in to the CodePipeline console.

2. Choose one of the following.

• Choose to create a pipeline. Follow the steps in Create a Pipeline to complete the first
screen and choose Next. On the Source page, under Source provider, choose GitLab self-
managed.

• Choose to edit an existing pipeline. Choose Edit, and then choose Edit stage. Choose to add
or edit your source action. On the Edit action page, under Action name, enter the name for
your action. In Action provider, choose GitLab self-managed.

3. Do one of the following:

• Under Connection, if you have not already created a connection to your provider, choose
Connect to GitLab self-managed. Proceed to Step 2: Create a Connection to GitLab self-
managed.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to Step 3: Save the Source Action for Your Connection.

Connections for GitLab self-managed API Version 2015-07-09 351

https://docs.aws.amazon.com/dtconsole/latest/userguide/connections-hosts.html

AWS CodePipeline User Guide

Create a connection to GitLab self-managed

After you choose to create the connection, the Connect to GitLab self-managed page is shown.

To connect to GitLab self-managed

1. In Connection name, enter the name for your connection.

2. In URL, enter the endpoint for your server.

Note

If the provided URL has already been used to set up a host for a connection, you will
be prompted to choose the host resource ARN that was created previously for that
endpoint.

3. If you have launched your server into an Amazon VPC and you want to connect with your VPC,
choose Use a VPC and complete the information for the VPC.

4. Choose Connect to GitLab self-managed. The created connection is shown with a Pending
status. A host resource is created for the connection with the server information you provided.
For the host name, the URL is used.

5. Choose Update pending connection.

6. If a page opens with a redirect message confirming that you want to continue to the provider,
choose Continue. Enter the authorization for the provider.

7. A Set up host_name page displays. In Provide personal access token, provide your GitLab
PAT with the following scoped-down permission only: api.

Note

Only an administrator can create and use the PAT.

Choose Continue.

Connections for GitLab self-managed API Version 2015-07-09 352

AWS CodePipeline User Guide

8. The connection page shows the created connection in an Available status.

Step 3: Save your GitLab self-managed source action

Use these steps on the wizard or Edit action page to save your source action with your connection
information.

To complete and save your source action with your connection

1. In Repository name, choose the name of your third-party repository.

2. Under Pipeline triggers you can add triggers if your action is an AWS CodeStar Connections
action. To configure the pipeline trigger configuration and to optionally filter with triggers, see
more details in Filter triggers on code push or pull requests.

3. In Output artifact format, you must choose the format for your artifacts.

• To store output artifacts from the GitLab self-managed action using the default method,
choose CodePipeline default. The action accesses the files from the repository and stores
the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

4. Choose Next on the wizard or Save on the Edit action page.

Connections for GitLab self-managed API Version 2015-07-09 353

AWS CodePipeline User Guide

Create a host and connection to GitLab self-managed (CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a connection.

To do this, use the create-connection command.

Important

A connection created through the AWS CLI or AWS CloudFormation is in PENDING status by
default. After you create a connection with the CLI or AWS CloudFormation, use the console
to edit the connection to make its status AVAILABLE.

You can use the AWS Command Line Interface (AWS CLI) to create a host for installed connections.

You use a host to represent the endpoint for the infrastructure where your third-party provider
is installed. After you complete the host creation with the CLI, the host is in Pending status. You
then set up, or register, the host to move it to an Available status. After the host is available, you
complete the steps to create a connection.

To do this, use the create-host command.

Important

A host created through the AWS CLI is in Pending status by default. After you create a host
with the CLI, use the console or the CLI to set up the host to make its status Available.

To create a host

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS
CLI to run the create-host command, specifying the --name, --provider-type, and --
provider-endpoint for your connection. In this example, the third-party provider name is
GitLabSelfManaged and the endpoint is my-instance.dev.

aws codestar-connections create-host --name MyHost --provider-type
 GitLabSelfManaged --provider-endpoint "https://my-instance.dev"

If successful, this command returns the host Amazon Resource Name (ARN) information similar
to the following.

Connections for GitLab self-managed API Version 2015-07-09 354

AWS CodePipeline User Guide

{
 "HostArn": "arn:aws:codestar-connections:us-west-2:account_id:host/My-
Host-28aef605"
}

After this step, the host is in PENDING status.

2. Use the console to complete the host setup and move the host to an Available status.

To create a connection to GitLab self-managed

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS CLI to
run the create-connection command, specifying the --host-arn and --connection-name
for your connection.

aws codestar-connections create-connection --host-arn arn:aws:codestar-
connections:us-west-2:account_id:host/MyHost-234EXAMPLE --connection-name
 MyConnection

If successful, this command returns the connection ARN information similar to the following.

{
 "ConnectionArn": "arn:aws:codestar-connections:us-west-2:account_id:connection/
aEXAMPLE-8aad"
}

2. Use the console to set up the pending connection.

3. The pipeline defaults to detect changes on code push to the connection source repository. To
configure the pipeline trigger configuration for manual release or for Git tags, do one of the
following:

• To configure the pipeline trigger configuration to start with a manual release only, add the
following line to the configuration:

"DetectChanges": "false",

• To configure the pipeline trigger configuration to filter with triggers, see more details in
Filter triggers on code push or pull requests. For example, the following adds to the pipeline

Connections for GitLab self-managed API Version 2015-07-09 355

AWS CodePipeline User Guide

level of the pipeline JSON definition. In this example, release-v0 and release-v1 are the
Git tags to include, and release-v2 is the Git tag to exclude.

"triggers": [
 {
 "providerType": "CodeStarSourceConnection",
 "gitConfiguration": {
 "sourceActionName": "Source",
 "push": [
 {
 "tags": {
 "includes": [
 "release-v0", "release-v1"
],
 "excludes": [
 "release-v2"
]
 }
 }
]
 }
 }
]

Edit a pipeline in CodePipeline

A pipeline describes the release process that you want AWS CodePipeline to follow, including
stages and actions that must be completed. You can edit a pipeline to add or remove these
elements. However, when you edit a pipeline, values such as the pipeline name or pipeline
metadata cannot be changed.

You can edit your pipeline type, variables, and triggers using the pipeline edit page. You can also
add or change stages and actions in your pipeline.

Unlike creating a pipeline, editing a pipeline does not rerun the most recent revision through the
pipeline. If you want to run the most recent revision through a pipeline you've just edited, you must
manually rerun it. Otherwise, the edited pipeline runs the next time you make a change to a source
location configured in the source stage. For information, see Start a pipeline manually.

Edit a pipeline API Version 2015-07-09 356

AWS CodePipeline User Guide

You can add actions to your pipeline that are in an AWS Region different from your pipeline. When
an AWS service is the provider for an action, and this action type/provider type are in a different
AWS Region from your pipeline, this is a cross-Region action. For more information about cross-
Region actions, see Add a cross-Region action in CodePipeline.

CodePipeline uses change detection methods to start your pipeline when a source code change is
pushed. These detection methods are based on source type:

• CodePipeline uses Amazon CloudWatch Events to detect changes in your CodeCommit source
repository or your Amazon S3 source bucket.

Note

Change detection resources are created automatically when you use the console. When
you use the console to create or edit a pipeline, the additional resources are created for
you. If you use the AWS CLI to create the pipeline, you must create the additional resources
yourself. For more information about creating or updating a CodeCommit pipeline, see
Create an EventBridge rule for a CodeCommit source (CLI). For more information about
using the CLI to create or update an Amazon S3 pipeline, see Create an EventBridge rule for
an Amazon S3 source (CLI).

Topics

• Edit a pipeline (console)

• Edit a pipeline (AWS CLI)

Edit a pipeline (console)

You can use the CodePipeline console to add, edit, or remove stages in a pipeline and to add, edit,
or remove actions in a stage.

When you update a pipeline, CodePipeline gracefully completes all the running actions and
then fails the stages and pipeline executions where the running actions were completed. When
a pipeline is updated, you will need to re-run your pipeline. For more information on running a
pipeline, see Start a pipeline manually.

Edit a pipeline (console) API Version 2015-07-09 357

AWS CodePipeline User Guide

To edit a pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit. This opens a detailed view of the
pipeline, including the state of each of the actions in each stage of the pipeline.

3. On the pipeline details page, choose Edit.

4. To edit the pipeline type, choose Edit on the Edit: Pipeline properties card. Choose one of the
following options, and then choose Done.

• V1 type pipelines have a JSON structure that contains standard pipeline, stage, and action-
level parameters.

• V2 type pipelines have the same structure as a V1 type, along with additional parameter
support, such as triggers and pipeline-level variables.

Pipeline types differ in characteristics and price. For more information, see Pipeline types.

5. To edit the pipeline variables, choose Edit variables on the Edit: Variables card. Add or change
variables for the pipeline level, and then choose Done.

For more information about variables at the pipeline level, see Variables. For a tutorial with
a pipeline-level variable that is passed at the time of the pipeline execution, see Tutorial: Use
pipeline-level variables.

Note

While it is optional to add variables at the pipeline level, for a pipeline specified with
variables at the pipeline level where no values are provided, the pipeline execution will
fail.

6. To edit the pipeline triggers, choose Edit triggers on the Edit: Triggers card. Add or change
triggers, and then choose Done.

For more information about adding triggers, see the steps for creating a connection to
Bitbucket Cloud, GitHub (Version 2), GitHub Enterprise Server, GitLab.com, or GitLab self-
managed, such as GitHub connections.

Edit a pipeline (console) API Version 2015-07-09 358

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

7. To edit stages and actions on the Edit page, do one of the following:

• To edit a stage, choose Edit stage. You can add actions in serial and parallel with existing
actions:

You can also edit actions in this view by choosing the edit icon for those actions. To delete
an action, choose the delete icon on that action.

• To edit an action, choose the edit icon for that action, and then on Edit action, change the
values. Items marked with an asterisk (*) are required.

• For a CodeCommit repository name and branch, a message appears showing the Amazon
CloudWatch Events rule to be created for this pipeline. If you remove the CodeCommit
source, a message appears showing the Amazon CloudWatch Events rule to be deleted.

• For an Amazon S3 source bucket, a message appears showing the Amazon CloudWatch
Events rule and AWS CloudTrail trail to be created for this pipeline. If you remove the
Amazon S3 source, a message appears showing the Amazon CloudWatch Events rule and
AWS CloudTrail trail to be deleted. If the AWS CloudTrail trail is in use by other pipelines,
the trail is not removed and the data event is deleted.

• To add a stage, choose + Add stage at the point in the pipeline where you want to add a
stage. Provide a name for the stage, and then add at least one action to it. Items marked
with an asterisk (*) are required.

• To delete a stage, choose the delete icon on that stage. The stage and all of its actions are
deleted.

For example, if you wanted to add a serial action to a stage in a pipeline:

1. In the stage where you want to add your action, choose Edit stage, and then choose + Add
action group.

2.
In Edit action, in Action name, enter the name of your action. The Action provider list
displays provider options by category. Look for the category (for example, Deploy). Under
the category, choose the provider (for example, AWS CodeDeploy). In Region, choose the
AWS Region where the resource is created or where you plan to create it. The Region field
designates where the AWS resources are created for this action type and provider type. This
field only displays for actions where the action provider is an AWS service. The Region field
defaults to the same AWS Region as your pipeline.

Edit a pipeline (console) API Version 2015-07-09 359

AWS CodePipeline User Guide

For more information about the requirements for actions in CodePipeline, including names
for input and output artifacts and how they are used, see Action structure requirements in
CodePipeline. For examples of adding action providers and using the default fields for each
provider, see Create a pipeline (console).

To add CodeBuild as a build action or test action to a stage, see Use CodePipeline with
CodeBuild to Test Code and Run Builds in the CodeBuild User Guide.

Note

Some action providers, such as GitHub, require you to connect to the provider's
website before you can complete the configuration of the action. When you connect
to a provider's website, make sure you use the credentials for that website. Do not
use your AWS credentials.

3. When you have finished configuring your action, choose Save.

Note

You cannot rename a stage in the console view. You can add a stage with the name you
want to change, and then delete the old one. Make sure you have added all the actions
you want in that stage before you delete the old one.

8. When you have finished editing your pipeline, choose Save to return to the summary page.

Important

After you save your changes, you cannot undo them. You must edit the pipeline again.
If a revision is running through your pipeline when you save your changes, the run
is not completed. If you want a specific commit or change to run through the edited
pipeline, you must manually run it through the pipeline. Otherwise, the next commit or
change runs automatically through the pipeline.

9. To test your action, choose Release change to process that commit through the pipeline and
commit a change to the source specified in the source stage of the pipeline. Or follow the
steps in Start a pipeline manually to use the AWS CLI to manually release a change.

Edit a pipeline (console) API Version 2015-07-09 360

https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html
https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html

AWS CodePipeline User Guide

Edit a pipeline (AWS CLI)

You can use the update-pipeline command to edit a pipeline.

When you update a pipeline, CodePipeline gracefully completes all the running actions and
then fails the stages and pipeline executions where the running actions were completed. When
a pipeline is updated, you will need to re-run your pipeline. For more information on running a
pipeline, see Start a pipeline manually.

Important

Although you can use the AWS CLI to edit pipelines that include partner actions, you must
not manually edit the JSON of a partner action. If you do so, the partner action fails after
you update the pipeline.

To edit a pipeline

1. Open a terminal session (Linux, macOS, or Unix) or command prompt (Windows) and run the
get-pipeline command to copy the pipeline structure into a JSON file. For example, for a
pipeline named MyFirstPipeline, enter the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and modify the structure of the file to reflect the
changes you want to make to the pipeline. For example, you can add or remove stages, or add
another action to an existing stage.

The following example shows how you would add another deployment stage in the
pipeline.json file. This stage runs after the first deployment stage named Staging.

Note

This is just a portion of the file, not the entire structure. For more information, see
CodePipeline pipeline structure reference.

Edit a pipeline (AWS CLI) API Version 2015-07-09 361

AWS CodePipeline User Guide

,
 {
 "name": "Staging",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyApp"
 }
],
 "name": "Deploy-CodeDeploy-Application",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "CodePipelineDemoApplication",
 "DeploymentGroupName": "CodePipelineDemoFleet"
 },
 "runOrder": 1
 }
]
 },
 {
 "name": "Production",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyApp"
 }
],
 "name": "Deploy-Second-Deployment",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },

Edit a pipeline (AWS CLI) API Version 2015-07-09 362

AWS CodePipeline User Guide

 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "CodePipelineDemoApplication",
 "DeploymentGroupName": "CodePipelineProductionFleet"
 },
 "runOrder": 1
 }
]
 }
]
}

For information about using the CLI to add an approval action to a pipeline, see Add a manual
approval action to a pipeline in CodePipeline .

Make sure the PollForSourceChanges parameter in your JSON file is set as follows:

 "PollForSourceChanges": "false",

CodePipeline uses Amazon CloudWatch Events to detect changes in your CodeCommit source
repository and branch or your Amazon S3 source bucket. The next step includes instructions
for creating these resources manually. Setting the flag to false disables periodic checks,
which are not required when you use the recommended change detection methods.

3. To add a build, test, or deploy action in a Region different from your pipeline, you must add
the following to your pipeline structure. For detailed instructions, see Add a cross-Region
action in CodePipeline.

• Add the Region parameter to your action's pipeline structure.

• Use the artifactStores parameter to specify an artifact bucket for each Region where
you have an action.

4. If you are working with the pipeline structure retrieved using the get-pipeline command, you
must modify the structure in the JSON file. You must remove the metadata lines from the file
so the update-pipeline command can use it. Remove the section from the pipeline structure
in the JSON file (the "metadata": { } lines and the "created", "pipelineARN", and
"updated" fields).

For example, remove the following lines from the structure:

"metadata": {

Edit a pipeline (AWS CLI) API Version 2015-07-09 363

AWS CodePipeline User Guide

 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
 }

Save the file.

5. If you use the CLI to edit a pipeline, you must manually manage the recommended change
detection resources for your pipeline:

• For a CodeCommit repository, you must create the CloudWatch Events rule, as described in
Create an EventBridge rule for a CodeCommit source (CLI).

• For an Amazon S3 source, you must create the CloudWatch Events rule and AWS CloudTrail
trail, as described in Amazon S3 source actions and EventBridge with AWS CloudTrail.

6. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must start the pipeline manually to run that revision through the updated pipeline.

7. Open the CodePipeline console and choose the pipeline you just edited.

The pipeline shows your changes. The next time you make a change to the source location, the
pipeline runs that revision through the revised structure of the pipeline.

8. To manually run the last revision through the revised structure of the pipeline, run the start-
pipeline-execution command. For more information, see Start a pipeline manually.

Edit a pipeline (AWS CLI) API Version 2015-07-09 364

AWS CodePipeline User Guide

For more information about the structure of a pipeline and expected values, see CodePipeline
pipeline structure reference and AWS CodePipeline API Reference.

View pipelines and details in CodePipeline

You can use the AWS CodePipeline console or the AWS CLI to view details about pipelines
associated with your AWS account.

Topics

• View pipelines (console)

• View action details in a pipeline (console)

• View the pipeline ARN and service role ARN (console)

• View pipeline details and history (CLI)

View pipelines (console)

You can view status, transitions, and artifact updates for a pipeline.

Note

After an hour, the detailed view of a pipeline stops refreshing automatically in your
browser. To view current information, refresh the page.

To view pipelines

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The Pipelines page displays. A list of all your pipelines for that Region are shown.

The name, type, status, version, creation date, and date when last modified of all pipelines
associated with your AWS account are displayed, along with the most recently started
execution time.

2. The status for the five most recent executions is shown.

View pipelines and details API Version 2015-07-09 365

http://docs.aws.amazon.com/codepipeline/latest/APIReference
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Choose View details next to a specific row to display a details dialog box listing the most
recent executions.

View pipelines (console) API Version 2015-07-09 366

AWS CodePipeline User Guide

To view details about the most recent executions for the pipeline, you can also choose the
selector next to your pipeline, and then choose View history. For past executions, you can view
revision details associated with source artifacts, such as execution IDs, status, start and end
times, duration, and commit IDs and messages.

3. To see details for a single pipeline, in Name, choose the pipeline. A detailed view of the
pipeline, including the state of each action in each stage and the state of the transitions, is
displayed.

View pipelines (console) API Version 2015-07-09 367

AWS CodePipeline User Guide

The graphical view displays the following information for each stage:

• The stage name.

• Every action configured for the stage.

• The state of transitions between stages (enabled or disabled), as indicated by the state of
the arrow between stages. An enabled transition is indicated by an arrow with a Disable
transition button next to it. A disabled transition is indicated by an arrow with a strikeout
under it and an Enable transition button next to it.

• A color bar to indicate the status of the stage:

• Gray: No executions yet

• Blue: In progress

• Green: Succeeded

• Red: Failed

The graphical view also displays the following information about actions in each stage:
View pipelines (console) API Version 2015-07-09 368

AWS CodePipeline User Guide

• The name of the action.

• The provider of the action, such as CodeDeploy.

• When the action was last run.

• Whether the action succeeded or failed.

• Links to other details about the last run of the action, where available.

• Details about the source revisions that are running through the latest pipeline execution in
the stage or, for CodeDeploy deployments, the latest source revisions that were deployed to
target instances.

• A View details button that opens a dialog box with details about the action execution, logs,
and action configuration.

Note

The Logs tab is available for CodeBuild and AWS CloudFormation actions that have
run in the account of the pipeline.

4. To view the details of the provider of the action, choose the provider. For example, in the
preceding example pipeline, if you choose CodeDeploy in either the Staging or Production
stages the CodeDeploy console page for the deployment group configured for that stage is
displayed.

5. To see the progress for an action is displayed next to an action in progress (indicated by an In
Progress message). If the action is in progress, you see the incremental progress and the steps
or actions as they occur.

6. To approve or reject actions that have been configured for manual approval, choose Review.

7. To retry actions in a stage that were not completed successfully, choose Retry.

8. The status from the last time the action ran, including the results of that action (Succeeded or
Failed) is displayed.

View action details in a pipeline (console)

You can view details for a pipeline, including details for actions in each stage.

View action details in a pipeline (console) API Version 2015-07-09 369

AWS CodePipeline User Guide

Note

After an hour, the detailed view of a pipeline stops refreshing automatically in your
browser. To view current information, refresh the page.

To view action details in a pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The Pipelines page displays.

2. On any action, choose View details to open a dialog box with details about the action
execution, logs, and action configuration.

Note

The Logs tab is available for CodeBuild and AWS CloudFormation actions.

3. To see the action summary for an action in a stage of a pipeline, choose View details on the
action, and then choose the Summary tab.

View action details in a pipeline (console) API Version 2015-07-09 370

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

4. To see the action logs for an action with logs, choose View details on the action, and then
choose the Logs tab.

View action details in a pipeline (console) API Version 2015-07-09 371

AWS CodePipeline User Guide

5. To see the configuration details for an action, choose the Configuration tab.

View action details in a pipeline (console) API Version 2015-07-09 372

AWS CodePipeline User Guide

View the pipeline ARN and service role ARN (console)

You can use the console to view pipeline settings, such as the pipeline ARN, the service role ARN,
and the pipeline artifact store.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account will be displayed.

2. Choose the name of your pipeline, and then choose Settings in the left-hand navigation pane.
The page shows the following:

• The pipeline name

• The pipeline Amazon Resource Name (ARN)

The pipeline ARN is constructed in this format:

arn:aws:codepipeline:region:account:pipeline-name

Sample pipeline ARN:

arn:aws:codepipeline:us-east-2:80398EXAMPLE:MyFirstPipeline

View the pipeline ARN and service role ARN (console) API Version 2015-07-09 373

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

• The CodePipeline service role ARN for your pipeline

• The pipeline version

• The name and location of the artifact store for the pipeline

View pipeline details and history (CLI)

You can run the following commands to view details about your pipelines and pipeline executions:

• list-pipelines command to view a summary of all of the pipelines associated with your AWS
account.

• get-pipeline command to review details of a single pipeline.

• list-pipeline-executions to view summaries of the most recent executions for a pipeline.

• get-pipeline-execution to view information about an execution of a pipeline, including details
about artifacts, the pipeline execution ID, and the name, version, and status of the pipeline.

• get-pipeline-state command to view pipeline, stage, and action status.

• list-action-executions to view action execution details for a pipeline.

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS CLI
to run the list-pipelines command:

aws codepipeline list-pipelines

This command returns a list of all of the pipelines associated with your AWS account.

2. To view details about a pipeline, run the get-pipeline command, specifying the unique name
of the pipeline. For example, to view details about a pipeline named MyFirstPipeline, enter
the following:

aws codepipeline get-pipeline --name MyFirstPipeline

This command returns the structure of the pipeline.

View pipeline details and history (CLI) API Version 2015-07-09 374

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/list-pipelines.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline.html

AWS CodePipeline User Guide

Delete a pipeline in CodePipeline

You can always edit a pipeline to change its functionality, but you might decide you want to delete
it instead. You can use the AWS CodePipeline console or the delete-pipeline command in the AWS
CLI to delete a pipeline.

Topics

• Delete a pipeline (console)

• Delete a pipeline (CLI)

Delete a pipeline (console)

To delete a pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names and status of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to delete.

3. On the pipeline details page, choose Edit.

4. On the Edit page, choose Delete.

5. Type delete in the field to confirm, and then choose Delete.

Important

This action cannot be undone.

Delete a pipeline (CLI)

To use the AWS CLI to manually delete a pipeline, use the delete-pipeline command.

Important

Deleting a pipeline is irreversible. There is no confirmation dialog box. After the command
is run, the pipeline is deleted, but none of the resources used in the pipeline are deleted.

Delete a pipeline API Version 2015-07-09 375

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://docs.aws.amazon.com/cli/latest/reference/codepipeline/delete-pipeline.html

AWS CodePipeline User Guide

This makes it easier to create a new pipeline that uses those resources to automate the
release of your software.

To delete a pipeline

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS CLI
to run the delete-pipeline command, specifying the name of the pipeline you want to delete.
For example, to delete a pipeline named MyFirstPipeline:

aws codepipeline delete-pipeline --name MyFirstPipeline

This command returns nothing.

2. Delete any resources you no longer need.

Note

Deleting a pipeline does not delete the resources used in the pipeline, such as the
CodeDeploy or Elastic Beanstalk application you used to deploy your code, or, if
you created your pipeline from the CodePipeline console, the Amazon S3 bucket
CodePipeline created to store the artifacts of your pipelines. Make sure that you
delete resources that are no longer required so that you are not charged for them in
the future. For example, when you use the console to create a pipeline for the first
time, CodePipeline creates one Amazon S3 bucket to store all artifacts for all of your
pipelines. If you have deleted all of your pipelines, follow the steps in Deleting a
Bucket.

Create a pipeline in CodePipeline that uses resources from
another AWS account

You might want to create a pipeline that uses resources created or managed by another AWS
account. For example, you might want to use one account for your pipeline and another for your
CodeDeploy resources.

Create a pipeline that uses resources from another account API Version 2015-07-09 376

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/DeletingaBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/DeletingaBucket.html

AWS CodePipeline User Guide

Note

When you create a pipeline with actions from multiple accounts, you must configure
your actions so that they can still access artifacts within the limitations of cross-account
pipelines. The following limitations apply to cross-account actions:

• In general, an action can only consume an artifact if:

• The action is in the same account as the pipeline account OR

• The artifact was created in the pipeline account for an action in another account OR

• The artifact was produced by a previous action in the same account as the action

In other words, you cannot pass an artifact from one account to another if neither
account is the pipeline account.

• Cross-account actions are not supported for the following action types:

• Jenkins build actions

For this example, you must create an AWS Key Management Service (AWS KMS) key to use, add the
key to the pipeline, and set up account policies and roles to enable cross-account access. For an
AWS KMS key, you can use the key ID, the key ARN, or the alias ARN.

Note

Aliases are recognized only in the account that created the KMS key. For cross-account
actions, you can only use the key ID or key ARN to identify the key. Cross-account actions
involve using the role from the other account (AccountB), so specifying the key ID will use
the key from the other account (AccountB).

In this walkthrough and its examples, AccountA is the account originally used to create the
pipeline. It has access to the Amazon S3 bucket used to store pipeline artifacts and the service role
used by AWS CodePipeline. AccountB is the account originally used to create the CodeDeploy
application, deployment group, and service role used by CodeDeploy.

For AccountA to edit a pipeline to use the CodeDeploy application created by AccountB,
AccountA must:

Create a pipeline that uses resources from another account API Version 2015-07-09 377

AWS CodePipeline User Guide

• Request the ARN or account ID of AccountB (in this walkthrough, the AccountB ID is
012ID_ACCOUNT_B).

• Create or use an AWS KMS customer managed key in the Region for the pipeline, and grant
permissions to use that key to the service role (CodePipeline_Service_Role) and AccountB.

• Create an Amazon S3 bucket policy that grants AccountB access to the Amazon S3 bucket (for
example, codepipeline-us-east-2-1234567890).

• Create a policy that allows AccountA to assume a role configured by AccountB, and attach that
policy to the service role (CodePipeline_Service_Role).

• Edit the pipeline to use the customer managed AWS KMS key instead of the default key.

For AccountB to allow access to its resources to a pipeline created in AccountA, AccountB must:

• Request the ARN or account ID of AccountA (in this walkthrough, the AccountA ID is
012ID_ACCOUNT_A).

• Create a policy applied to the Amazon EC2 instance role configured for CodeDeploy that allows
access to the Amazon S3 bucket (codepipeline-us-east-2-1234567890).

• Create a policy applied to the Amazon EC2 instance role configured for CodeDeploy that
allows access to the AWS KMS customer managed key used to encrypt the pipeline artifacts in
AccountA.

• Configure and attach an IAM role (CrossAccount_Role) with a trust relationship policy that
allows AccountA to assume the role.

• Create a policy that allows access to the deployment resources required by the pipeline and
attach it to CrossAccount_Role.

• Create a policy that allows access to the Amazon S3 bucket (codepipeline-us-
east-2-1234567890) and attach it to CrossAccount_Role.

Topics

• Prerequisite: Create an AWS KMS encryption key

• Step 1: Set up account policies and roles

• Step 2: Edit the pipeline

Create a pipeline that uses resources from another account API Version 2015-07-09 378

https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html

AWS CodePipeline User Guide

Prerequisite: Create an AWS KMS encryption key

Customer-managed keys are specific to a Region, as are all AWS KMS keys. You must create your
customer managed AWS KMS key in the same Region where the pipeline was created (for example,
us-east-2).

To create a customer managed key in AWS KMS

1. Sign in to the AWS Management Console with AccountA and open the AWS KMS console.

2. On the left, choose Customer managed keys.

3. Choose Create key. In Configure key, leave the Symmetric default selected and choose Next.

4. In Alias, enter an alias to use for this key (for example, PipelineName-Key). Optionally,
provide a description and tags for this key, and then choose Next.

5. In Define Key Administrative Permissions, choose the role or roles you want to act as
administrators for this key, and then choose Next.

6. In Define Key Usage Permissions, under This Account, select the name of the service role for
the pipeline (for example, CodePipeline_Service_Role). Under Other AWS accounts, choose
Add another AWS account. Enter the account ID for AccountB to complete the ARN, and then
choose Next.

7. In Review and edit key policy, review the policy, and then choose Finish.

8. From the list of keys, choose the alias of your key and copy its ARN (for example,
arn:aws:kms:us-
east-2:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE). You will
need this when you edit your pipeline and configure policies.

Step 1: Set up account policies and roles

After you create the AWS KMS key, you must create and attach policies that will enable the cross-
account access. This requires actions from both AccountA and AccountB.

Topics

• Configure policies and roles in the account that will create the pipeline (AccountA)

• Configure policies and roles in the account that owns the AWS resource (AccountB)

Prerequisite: Create an AWS KMS encryption key API Version 2015-07-09 379

AWS CodePipeline User Guide

Configure policies and roles in the account that will create the pipeline
(AccountA)

To create a pipeline that uses CodeDeploy resources associated with another AWS account,
AccountA must configure policies for both the Amazon S3 bucket used to store artifacts and the
service role for CodePipeline.

To create a policy for the Amazon S3 bucket that grants access to AccountB (console)

1. Sign in to the AWS Management Console with AccountA and open the Amazon S3 console at
https://console.aws.amazon.com/s3/.

2. In the list of Amazon S3 buckets, choose the Amazon S3 bucket where artifacts for your
pipelines are stored. This bucket is named codepipeline-region-1234567EXAMPLE, where
region is the AWS Region in which you created the pipeline and 1234567EXAMPLE is a ten-
digit random number that ensures the bucket name is unique (for example, codepipeline-
us-east-2-1234567890).

3. On the detail page for the Amazon S3 bucket, choose Properties.

4. In the properties pane, expand Permissions, and then choose Add bucket policy.

Note

If a policy is already attached to your Amazon S3 bucket, choose Edit bucket policy.
You can then add the statements in the following example to the existing policy.
To add a new policy, choose the link, and follow the instructions in the AWS Policy
Generator. For more information, see Overview of IAM Policies.

5. In the Bucket Policy Editor window, type the following policy. This will allow AccountB access
to the pipeline artifacts, and will give AccountB the ability to add output artifacts if an action,
such as a custom source or build action, creates them.

In the following example, the ARN is for AccountB is 012ID_ACCOUNT_B. The ARN for the
Amazon S3 bucket is codepipeline-us-east-2-1234567890. Replace these ARNs with the
ARN for the account you want to allow access and the ARN for the Amazon S3 bucket:

 {
 "Version": "2012-10-17",
 "Id": "SSEAndSSLPolicy",
 "Statement": [

Step 1: Set up account policies and roles API Version 2015-07-09 380

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html

AWS CodePipeline User Guide

 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": false
 }
 }
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::012ID_ACCOUNT_B:root"
 },
 "Action": [
 "s3:Get*",
 "s3:Put*"
],
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*"
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::012ID_ACCOUNT_B:root"
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890"

Step 1: Set up account policies and roles API Version 2015-07-09 381

AWS CodePipeline User Guide

 }
]
}

6. Choose Save, and then close the policy editor.

7. Choose Save to save the permissions for the Amazon S3 bucket.

To create a policy for the service role for CodePipeline (console)

1. Sign in to the AWS Management Console with AccountA and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. In the list of roles, under Role Name, choose the name of the service role for CodePipeline.

4. On the Permissions tab, choose Add inline policy.

5. Choose the JSON tab, and enter the following policy to allow AccountB to assume the role. In
the following example, 012ID_ACCOUNT_B is the ARN for AccountB:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": [
 "arn:aws:iam::012ID_ACCOUNT_B:role/*"
]
 }
 }

6. Choose Review policy.

7. In Name, enter a name for this policy. Choose Create policy.

Configure policies and roles in the account that owns the AWS resource
(AccountB)

When you create an application, deployment, and deployment group in CodeDeploy, you also
create an Amazon EC2 instance role. (This role is created for you if you use the Run Deployment
Walkthrough wizard, but you can also create it manually.) For a pipeline created in AccountA to
use CodeDeploy resources created in AccountB, you must:

Step 1: Set up account policies and roles API Version 2015-07-09 382

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html

AWS CodePipeline User Guide

• Configure a policy for the instance role that allows it to access the Amazon S3 bucket where
pipeline artifacts are stored.

• Create a second role in AccountB configured for cross-account access.

This second role must not only have access to the Amazon S3 bucket in AccountA, it must also
contain a policy that allows access to the CodeDeploy resources and a trust relationship policy
that allows AccountA to assume the role.

Note

These policies are specific to setting up CodeDeploy resources to be used in a pipeline
created using a different AWS account. Other AWS resources will require policies specific
to their resource requirements.

To create a policy for the Amazon EC2 instance role configured for CodeDeploy (console)

1. Sign in to the AWS Management Console with AccountB and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. In the list of roles, under Role Name, choose the name of the service role used as the Amazon
EC2 instance role for the CodeDeploy application. This role name can vary, and more than one
instance role can be used by a deployment group. For more information, see Create an IAM
Instance Profile for your Amazon EC2 Instances.

4. On the Permissions tab, choose Add inline policy.

5. Choose the JSON tab, and enter the following policy to grant access to the Amazon S3 bucket
used by AccountA to store artifacts for pipelines (in this example, codepipeline-us-
east-2-1234567890):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*"
],
 "Resource": [

Step 1: Set up account policies and roles API Version 2015-07-09 383

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html

AWS CodePipeline User Guide

 "arn:aws:s3:::codepipeline-us-east-2-1234567890/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::codepipeline-us-east-2-1234567890"
]
 }
]
 }

6. Choose Review policy.

7. In Name, enter a name for this policy. Choose Create policy.

8. Create a second policy for AWS KMS where arn:aws:kms:us-
east-1:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE is the ARN of
the customer managed key created in AccountA and configured to allow AccountB to use it:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*",
 "kms:Encrypt",
 "kms:ReEncrypt*",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-
east-1:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE"
]
 }
]
}

Step 1: Set up account policies and roles API Version 2015-07-09 384

AWS CodePipeline User Guide

Important

You must use the account ID of AccountA in this policy as part of the resource ARN for
the AWS KMS key, as shown here, or the policy will not work.

9. Choose Review policy.

10. In Name, enter a name for this policy. Choose Create policy.

Now create an IAM role to use for cross-account access, and configure it so that AccountA can
assume the role. This role must contain policies that allow access to the CodeDeploy resources and
the Amazon S3 bucket used to store artifacts in AccountA.

To configure the cross-account role in IAM

1. Sign in to the AWS Management Console with AccountB and open the IAM console at https://
console.aws.amazon.com/iam.

2. In the navigation pane, choose Roles. Choose Create role.

3. Under Select type of trusted entity, choose Another AWS account. Under Specify accounts
that can use this role, in Account ID, enter the AWS account ID for the account that will create
the pipeline in CodePipeline (AccountA), and then choose Next: Permissions.

Note

This step creates the trust relationship policy between AccountB and AccountA.

4. UnderAttach permissions policies, choose AmazonS3ReadOnlyAccess, and then choose Next:
Tags.

Note

This is not the policy you will use. You must choose a policy to complete the wizard.

5. Choose Next: Review. Type a name for this role in Role name (for example,
CrossAccount_Role). You can name this role anything you want as long as it follows the
naming conventions in IAM. Consider giving the role a name that clearly states its purpose.
Choose Create Role.

Step 1: Set up account policies and roles API Version 2015-07-09 385

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

AWS CodePipeline User Guide

6. From the list of roles, choose the role you just created (for example, CrossAccount_Role) to
open the Summary page for that role.

7. On the Permissions tab, choose Add inline policy.

8. Choose the JSON tab, and enter the following policy to allow access to CodeDeploy resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:GetApplicationRevision",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": "*"
 }
]
}

9. Choose Review policy.

10. In Name, enter a name for this policy. Choose Create policy.

11. On the Permissions tab, choose Add inline policy.

12. Choose the JSON tab, and enter the following policy to allow this role to retrieve input
artifacts from, and put output artifacts into, the Amazon S3 bucket in AccountA:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::codepipeline-us-east-2-1234567890/*"
]

Step 1: Set up account policies and roles API Version 2015-07-09 386

AWS CodePipeline User Guide

 }
]
}

13. Choose Review policy.

14. In Name, enter a name for this policy. Choose Create policy.

15. On the Permissions tab, find AmazonS3ReadOnlyAccess in the list of policies under Policy
Name, and choose the delete icon (X) next to the policy. When prompted, choose Detach.

Step 2: Edit the pipeline

You cannot use the CodePipeline console to create or edit a pipeline that uses resources associated
with another AWS account. However, you can use the console to create the general structure of the
pipeline, and then use the AWS CLI to edit the pipeline and add those resources. Alternatively, you
can use the structure of an existing pipeline and manually add the resources to it.

To add the resources associated with another AWS account (AWS CLI)

1. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the get-pipeline
command on the pipeline to which you want to add resources. Copy the command output to
a JSON file. For example, for a pipeline named MyFirstPipeline, you would type something
similar to the following:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

The output is sent to the pipeline.json file.

2. Open the JSON file in any plain-text editor. After "type": "S3" in the
artifact store, add the KMS encryptionKey, ID, and type information where
codepipeline-us-east-2-1234567890 is the name of the Amazon
S3 bucket used to store artifacts for the pipeline and arn:aws:kms:us-
east-1:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE is the ARN of
the customer-managed key you just created:

{
 "artifactStore”: {
 "location": "codepipeline-us-east-2-1234567890",
 "type": "S3",
 "encryptionKey": {

Step 2: Edit the pipeline API Version 2015-07-09 387

AWS CodePipeline User Guide

 "id": "arn:aws:kms:us-
east-1:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE",
 "type": "KMS"
 }
 },

3. Add a deploy action in a stage to use the CodeDeploy resources associated with AccountB,
including the roleArn values for the cross-account role you created (CrossAccount_Role).

The following example shows JSON that adds a deploy action named ExternalDeploy.
It uses the CodeDeploy resources created in AccountB in a stage named Staging. In the
following example, the ARN for AccountB is 012ID_ACCOUNT_B:

,
 {
 "name": "Staging",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyAppBuild"
 }
],
 "name": "ExternalDeploy",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "AccountBApplicationName",
 "DeploymentGroupName": "AccountBApplicationGroupName"
 },
 "runOrder": 1,
 "roleArn":
 "arn:aws:iam::012ID_ACCOUNT_B:role/CrossAccount_Role"
 }
]
 }

Step 2: Edit the pipeline API Version 2015-07-09 388

AWS CodePipeline User Guide

Note

This is not the JSON for the entire pipeline, just the structure for the action in a stage.

4. You must remove the metadata lines from the file so the update-pipeline command can use
it. Remove the section from the pipeline structure in the JSON file (the "metadata": { }
lines and the "created", "pipelineARN", and "updated" fields).

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
 }

Save the file.

5. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file,
similar to the following:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

To test the pipeline that uses resources associated with another AWS account

1. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the start-pipeline-
execution command, specifying the name of the pipeline, similar to the following:

aws codepipeline start-pipeline-execution --name MyFirstPipeline

For more information, see Start a pipeline manually.

Step 2: Edit the pipeline API Version 2015-07-09 389

AWS CodePipeline User Guide

2. Sign in to the AWS Management Console with AccountA and open the CodePipeline console
at http://console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

3. In Name, choose the name of the pipeline you just edited. This opens a detailed view of the
pipeline, including the state of each action in each stage of the pipeline.

4. Watch the progress through the pipeline. Wait for a success message on the action that uses
the resource associated with another AWS account.

Note

You will receive an error if you try to view details for the action while signed in with
AccountA. Sign out, and then sign in with AccountB to view the deployment details
in CodeDeploy.

Migrate polling pipelines to use event-based change detection

AWS CodePipeline supports full, end-to-end continuous delivery, which includes starting your
pipeline whenever there is a code change. There are two supported ways to start your pipeline
upon a code change: event-based change detection and polling. We recommend using event-based
change detection for pipelines.

Use the procedures included here to migrate (update) your polling pipelines to the event-based
change detection method for your pipeline.

The recommended event-based change detection method for pipelines is determined by the
pipeline source, such as CodeCommit. In that case, for example, the polling pipeline would need to
migrate to event-based change detection with EventBridge.

How to migrate polling pipelines

To migrate polling pipelines, determine your polling pipelines and then determine the
recommended event-based change detection method:

• Use the steps in Viewing polling pipelines in your account to determine your polling pipelines.

Migrate polling pipelines to use event-based change detection API Version 2015-07-09 390

http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

• In the table, find your pipeline source type and then choose the procedure with the
implementation you want to use to migrate your polling pipeline. Each section contains multiple
methods for migration, such as using the CLI or AWS CloudFormation.

How to migrate pipelines to the recommended change detection method

Pipeline source Recommended event-based
detection method

Migration procedures

AWS CodeCommit EventBridge (recommended). See Migrate polling pipelines with a
CodeCommit source.

Amazon S3 EventBridge and bucket
enabled for event notifications
(recommended).

See Migrate polling pipelines with an
S3 source enabled for events.

Amazon S3 EventBridge and an AWS
CloudTrail trail.

See Migrate polling pipelines with an
S3 source and CloudTrail trail.

GitHub version 1 Connections (recommended) See Migrate polling pipelines for a
GitHub version 1 source action to
connections.

GitHub version 1 Webhooks See Migrate polling pipelines for a
GitHub version 1 source action to
webhooks.

Important

For applicable pipeline action configuration updates, such as pipelines with a GitHub
version 1 action, you must explicitly set the PollForSourceChanges parameter to false
within your Source action’s configuration to stop a pipeline from polling. As a result, it
is possible to erroneously configure a pipeline with both event-based change detection
and polling by, for example, configuring an EventBridge rule and also omitting the
PollForSourceChanges parameter. This results in duplicate pipeline executions, and
the pipeline is counted toward the limit on total number of polling pipelines, which by

How to migrate polling pipelines API Version 2015-07-09 391

AWS CodePipeline User Guide

default is much lower than event-based pipelines. For more information, see Quotas in
AWS CodePipeline.

Viewing polling pipelines in your account

As a first step, use one of the following scripts to determine which pipelines in your account are
configured for polling. These are the pipelines to migrate to event-based change detection.

Viewing polling pipelines in your account (script)

Follow these steps to use a script to determine pipelines in your account that are using polling.

1. Open a terminal window, and then do one of the following:

• Run the following command to create a new script named PollingPipelinesExtractor.sh.

vi PollingPipelinesExtractor.sh

• To use a python script, run the following command to create a new python script named
PollingPipelinesExtractor.py.

vi PollingPipelinesExtractor.py

2. Copy and paste the following code into the PollingPipelinesExtractor script. Do one of the
following:

• Copy and paste the following code into the PollingPipelinesExtractor.sh script.

#!/bin/bash

set +x

POLLING_PIPELINES=()
LAST_EXECUTED_DATES=()
NEXT_TOKEN=null
HAS_NEXT_TOKEN=true
if [[$# -eq 0]] ; then
 echo 'Please provide region name'
 exit 0
fi

Viewing polling pipelines in your account API Version 2015-07-09 392

AWS CodePipeline User Guide

REGION=$1

while ["$HAS_NEXT_TOKEN" != "false"]; do
 if ["$NEXT_TOKEN" != "null"];
 then
 LIST_PIPELINES_RESPONSE=$(aws codepipeline list-pipelines --region
 $REGION --next-token $NEXT_TOKEN)
 else
 LIST_PIPELINES_RESPONSE=$(aws codepipeline list-pipelines --region
 $REGION)
 fi
 LIST_PIPELINES=$(jq -r '.pipelines[].name' <<< "$LIST_PIPELINES_RESPONSE")
 NEXT_TOKEN=$(jq -r '.nextToken' <<< "$LIST_PIPELINES_RESPONSE")
 if ["$NEXT_TOKEN" == "null"];
 then
 HAS_NEXT_TOKEN=false
 fi

 for pipline_name in $LIST_PIPELINES
 do
 PIPELINE=$(aws codepipeline get-pipeline --name $pipline_name --region
 $REGION)
 HAS_POLLABLE_ACTIONS=$(jq '.pipeline.stages[].actions[] |
 select(.actionTypeId.category == "Source") | select(.actionTypeId.owner
 == ("ThirdParty","AWS")) | select(.actionTypeId.provider ==
 ("GitHub","S3","CodeCommit")) | select(.configuration.PollForSourceChanges ==
 ("true",null))' <<< "$PIPELINE")
 if [! -z "$HAS_POLLABLE_ACTIONS"];
 then
 POLLING_PIPELINES+=("$pipline_name")
 PIPELINE_EXECUTIONS=$(aws codepipeline list-pipeline-executions --
pipeline-name $pipline_name --region $REGION)
 LAST_EXECUTION=$(jq -r '.pipelineExecutionSummaries[0]' <<<
 "$PIPELINE_EXECUTIONS")
 if ["$LAST_EXECUTION" != "null"];
 then
 LAST_EXECUTED_TIMESTAMP=$(jq -r '.startTime' <<<
 "$LAST_EXECUTION")
 LAST_EXECUTED_DATE="$(date -r ${LAST_EXECUTED_TIMESTAMP%.*})"
 else
 LAST_EXECUTED_DATE="Not executed in last year"
 fi
 LAST_EXECUTED_DATES+=("$LAST_EXECUTED_DATE")

Viewing polling pipelines in your account API Version 2015-07-09 393

AWS CodePipeline User Guide

 fi
 done

done

fileName=$REGION-$(date +%s)
printf "| %-30s | %-30s |\n" "Polling Pipeline Name" "Last Executed Time"
printf "| %-30s | %-30s |\n" "_____________________" "__________________"
for i in "${!POLLING_PIPELINES[@]}"; do
 printf "| %-30s | %-30s |\n" "${POLLING_PIPELINES[i]}"
 "${LAST_EXECUTED_DATES[i]}"
 printf "${POLLING_PIPELINES[i]}," >> $fileName.csv
done

printf "\nSaving Polling Pipeline Names to file $fileName.csv."

• Copy and paste the following code into the PollingPipelinesExtractor.py script.

import boto3
import sys
import time
import math

hasNextToken = True
nextToken = ""
pollablePipelines = []
lastExecutedTimes = []
if len(sys.argv) == 1:
 raise Exception("Please provide region name.")
session = boto3.Session(profile_name='default', region_name=sys.argv[1])
codepipeline = session.client('codepipeline')

def is_pollable_action(action):
 actionTypeId = action['actionTypeId']
 configuration = action['configuration']
 return actionTypeId['owner'] in {"AWS", "ThirdParty"}
 and actionTypeId['provider'] in {"GitHub", "CodeCommit",
 "S3"} and ('PollForSourceChanges' not in configuration or
 configuration['PollForSourceChanges'] == 'true')

def has_pollable_actions(pipeline):
 hasPollableAction = False
 pipelineDefinition = codepipeline.get_pipeline(name=pipeline['name'])
['pipeline']

Viewing polling pipelines in your account API Version 2015-07-09 394

AWS CodePipeline User Guide

 for action in pipelineDefinition['stages'][0]['actions']:
 hasPollableAction = is_pollable_action(action)
 if hasPollableAction:
 break
 return hasPollableAction

def get_last_executed_time(pipelineName):

 pipelineExecutions=codepipeline.list_pipeline_executions(pipelineName=pipelineName)
['pipelineExecutionSummaries']
 if pipelineExecutions:
 return pipelineExecutions[0]['startTime'].strftime("%A %m/%d/%Y, %H:%M:
%S")
 else:
 return "Not executed in last year"

while hasNextToken:
 if nextToken=="":
 list_pipelines_response = codepipeline.list_pipelines()
 else:
 list_pipelines_response =
 codepipeline.list_pipelines(nextToken=nextToken)
 if 'nextToken' in list_pipelines_response:
 nextToken = list_pipelines_response['nextToken']
 else:
 hasNextToken= False
 for pipeline in list_pipelines_response['pipelines']:
 if has_pollable_actions(pipeline):
 pollablePipelines.append(pipeline['name'])
 lastExecutedTimes.append(get_last_executed_time(pipeline['name']))

fileName="{region}-
{timeNow}.csv".format(region=sys.argv[1],timeNow=math.trunc(time.time()))
file = open(fileName, 'w')

print ("{:<30} {:<30} {:<30}".format('Polling Pipeline Name', '|','Last Executed
 Time'))
print ("{:<30} {:<30} {:<30}".format('_____________________',
 '|','__________________'))
for i in range(len(pollablePipelines)):
 print("{:<30} {:<30} {:<30}".format(pollablePipelines[i], '|',
 lastExecutedTimes[i]))
 file.write("{pipeline},".format(pipeline=pollablePipelines[i]))
file.close()

Viewing polling pipelines in your account API Version 2015-07-09 395

AWS CodePipeline User Guide

print("\nSaving Polling Pipeline Names to file
 {fileName}".format(fileName=fileName))

3. For each Region where you have pipelines, you must run the script for that Region. To run the
script, do one of the following:

• Run the following command to run the script named PollingPipelinesExtractor.sh. In this
example, the Region is us-west-2.

./PollingPipelinesExtractor.sh us-west-2

• For the python script, run the following command to run the python script
namedPollingPipelinesExtractor.py. In this example, the Region is us-west-2.

python3 PollingPipelinesExtractor.py us-west-2

In the following sample output from the script, the Region us-west-2 returned a list of polling
pipelines and shows the last execution time for each pipeline.

 % ./pollingPipelineExtractor.sh us-west-2

Polling Pipeline Name	Last Executed Time
_____________________	__________________
myCodeBuildPipeline	Wed Mar 8 09:35:49 PST 2023
myCodeCommitPipeline	Mon Apr 24 22:32:32 PDT 2023
TestPipeline	Not executed in last year

Saving list of polling pipeline names to us-west-2-1682496174.csv...%

Analyze the script output and, for each pipeline in the list, update the polling source to the
recommended event-based change detection method.

Note

Your polling pipelines are determined by the pipeline's action configuration for
the PollForSourceChanges parameter. If the pipeline source configuration has
the PollForSourceChanges parameter ommitted, then CodePipeline defaults
to polling your repository for source changes. This behavior is the same as if

Viewing polling pipelines in your account API Version 2015-07-09 396

AWS CodePipeline User Guide

PollForSourceChanges is included and set to true. For more information, see the
configuration parameters for your pipeline's source action, such as the Amazon S3
source action configuration parameters in Amazon S3 source action.

Note that this script also generates a .csv file containing the list of polling pipelines in your
account and saves the .csv file to the current working folder.

Migrate polling pipelines with a CodeCommit source

You can migrate your polling pipeline to use EventBridge to detect changes in your CodeCommit
source repository or your Amazon S3 source bucket.

CodeCommit -- For a pipeline with a CodeCommit source, modify the pipeline so that change
detection is automated through EventBridge. Choose from the following methods to implement
the migration:

• Console: Migrate polling pipelines (CodeCommit or Amazon S3 source) (console)

• CLI: Migrate polling pipelines (CodeCommit source) (CLI)

• AWS CloudFormation: Migrate polling pipelines (CodeCommit source) (AWS CloudFormation
template)

Migrate polling pipelines (CodeCommit or Amazon S3 source) (console)

You can use the CodePipeline console to update your pipeline to use EventBridge to detect changes
in your CodeCommit source repository or your Amazon S3 source bucket.

Note

When you use the console to edit a pipeline that has a CodeCommit source repository or an
Amazon S3 source bucket, the rule and IAM role are created for you. If you use the AWS CLI
to edit the pipeline, you must create the EventBridge rule and IAM role yourself. For more
information, see CodeCommit source actions and EventBridge.

Use these steps to edit a pipeline that is using periodic checks. If you want to create a pipeline, see
Create a pipeline in CodePipeline.

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 397

AWS CodePipeline User Guide

To edit the pipeline source stage

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit. This opens a detailed view of the
pipeline, including the state of each of the actions in each stage of the pipeline.

3. On the pipeline details page, choose Edit.

4. In Edit stage, choose the edit icon on the source action.

5. Expand Change Detection Options and choose Use CloudWatch Events to automatically
start my pipeline when a change occurs (recommended).

A message appears showing the EventBridge rule to be created for this pipeline. Choose
Update.

If you are updating a pipeline that has an Amazon S3 source, you see the following message.
Choose Update.

6. When you have finished editing your pipeline, choose Save pipeline changes to return to the
summary page.

A message displays the name of the EventBridge rule to be created for your pipeline. Choose
Save and continue.

7. To test your action, release a change by using the AWS CLI to commit a change to the source
specified in the source stage of the pipeline.

Migrate polling pipelines (CodeCommit source) (CLI)

Follow these steps to edit a pipeline that is using polling (periodic checks) to use an EventBridge
rule to start the pipeline. If you want to create a pipeline, see Create a pipeline in CodePipeline.

To build an event-driven pipeline with CodeCommit, you edit the PollForSourceChanges
parameter of your pipeline and then create the following resources:

• EventBridge event

• IAM role to allow this event to start your pipeline

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 398

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

1. Run the get-pipeline command to copy the pipeline structure into a JSON file. For example,
for a pipeline named MyFirstPipeline, run the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and edit the source stage by changing the
PollForSourceChanges parameter to false, as shown in this example.

Why am I making this change? Changing this parameter to false turns off periodic checks so
you can use event-based change detection only.

"configuration": {
 "PollForSourceChanges": "false",
 "BranchName": "main",
 "RepositoryName": "MyTestRepo"
},

3. If you are working with the pipeline structure retrieved using the get-pipeline command,
remove the metadata lines from the JSON file. Otherwise, the update-pipeline command
cannot use it. Remove the "metadata": { } lines and the "created", "pipelineARN",
and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 399

AWS CodePipeline User Guide

 "created": "date",
 "updated": "date"
},

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

To create an EventBridge rule with CodeCommit as the event source and CodePipeline as the
target

1. Add permissions for EventBridge to use CodePipeline to invoke the rule. For more information,
see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy that allows EventBridge to assume the
service role. Name the trust policy trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 400

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON, as shown in this sample, for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]
 }
]
}

d. Use the following command to attach the CodePipeline-Permissions-Policy-for-
EB permissions policy to the Role-for-MyRule role.

Why am I making this change? Adding this policy to the role creates permissions for
EventBridge.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforEB.json

2. Call the put-rule command and include the --name, --event-pattern , and--role-arn
parameters.

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 401

AWS CodePipeline User Guide

Why am I making this change? This command enables AWS CloudFormation to create the
event.

The following sample command creates a rule called MyCodeCommitRepoRule.

aws events put-rule --name "MyCodeCommitRepoRule" --event-pattern "{\"source\":
[\"aws.codecommit\"],\"detail-type\":[\"CodeCommit Repository State Change\"],
\"resources\":[\"repository-ARN\"],\"detail\":{\"referenceType\":[\"branch\"],
\"referenceName\":[\"main\"]}}" --role-arn "arn:aws:iam::ACCOUNT_ID:role/Role-for-
MyRule"

3. To add CodePipeline as a target, call the put-targets command and include the following
parameters:

• The --rule parameter is used with the rule_name you created by using put-rule.

• The --targets parameter is used with the list Id of the target in the list of targets and the
ARN of the target pipeline.

The following sample command specifies that for the rule called MyCodeCommitRepoRule,
the target Id is composed of the number one, indicating that in a list of targets for the rule,
this is target 1. The sample command also specifies an example ARN for the pipeline. The
pipeline starts when something changes in the repository.

aws events put-targets --rule MyCodeCommitRepoRule --targets
 Id=1,Arn=arn:aws:codepipeline:us-west-2:80398EXAMPLE:TestPipeline

Migrate polling pipelines (CodeCommit source) (AWS CloudFormation template)

To build an event-driven pipeline with AWS CodeCommit, you edit the PollForSourceChanges
parameter of your pipeline and then add the following resources to your template:

• An EventBridge rule

• An IAM role for your EventBridge rule

If you use AWS CloudFormation to create and manage your pipelines, your template includes
content like the following.

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 402

AWS CodePipeline User Guide

Note

The Configuration property in the source stage called PollForSourceChanges. If that
property isn't included in your template, then PollForSourceChanges is set to true by
default.

YAML

Resources:
 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 Name: codecommit-polling-pipeline
 RoleArn:
 !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: CodeCommit
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 BranchName: !Ref BranchName
 RepositoryName: !Ref RepositoryName
 PollForSourceChanges: true
 RunOrder: 1

JSON

"Stages": [
 {
 "Name": "Source",
 "Actions": [{
 "Name": "SourceAction",

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 403

AWS CodePipeline User Guide

 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "CodeCommit"
 },
 "OutputArtifacts": [{
 "Name": "SourceOutput"
 }],
 "Configuration": {
 "BranchName": {
 "Ref": "BranchName"
 },
 "RepositoryName": {
 "Ref": "RepositoryName"
 },
 "PollForSourceChanges": true
 },
 "RunOrder": 1
 }]
 },

To update your pipeline AWS CloudFormation template and create EventBridge rule

1. In the template, under Resources, use the AWS::IAM::Role AWS CloudFormation resource
to configure the IAM role that allows your event to start your pipeline. This entry creates a role
that uses two policies:

• The first policy allows the role to be assumed.

• The second policy provides permissions to start the pipeline.

Why am I making this change? Adding the AWS::IAM::Role resource enables AWS
CloudFormation to create permissions for EventBridge. This resource is added to your AWS
CloudFormation stack.

YAML

 EventRole:
 Type: AWS::IAM::Role
 Properties:

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 404

AWS CodePipeline User Guide

 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref
 'AWS::Region', ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]

JSON

"EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 405

AWS CodePipeline User Guide

 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]

...

2. In the template, under Resources, use the AWS::Events::Rule AWS CloudFormation
resource to add an EventBridge rule. This event pattern creates an event that monitors push
changes to your repository. When EventBridge detects a repository state change, the rule
invokes StartPipelineExecution on your target pipeline.

Why am I making this change? Adding the AWS::Events::Rule resource enables AWS
CloudFormation to create the event. This resource is added to your AWS CloudFormation stack.

YAML

 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventPattern:
 source:

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 406

AWS CodePipeline User Guide

 - aws.codecommit
 detail-type:
 - 'CodeCommit Repository State Change'
 resources:
 - !Join ['', ['arn:aws:codecommit:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref RepositoryName]]
 detail:
 event:
 - referenceCreated
 - referenceUpdated
 referenceType:
 - branch
 referenceName:
 - main
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

JSON

"EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "source": [
 "aws.codecommit"
],
 "detail-type": [
 "CodeCommit Repository State Change"
],
 "resources": [
 {
 "Fn::Join": [
 "",
 [
 "arn:aws:codecommit:",
 {
 "Ref": "AWS::Region"

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 407

AWS CodePipeline User Guide

 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "RepositoryName"
 }
]
]
 }
],
 "detail": {
 "event": [
 "referenceCreated",
 "referenceUpdated"
],
 "referenceType": [
 "branch"
],
 "referenceName": [
 "main"
]
 }
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 408

AWS CodePipeline User Guide

]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
},

3. Save the updated template to your local computer, and then open the AWS CloudFormation
console.

4. Choose your stack, and then choose Create Change Set for Current Stack.

5. Upload the template, and then view the changes listed in AWS CloudFormation. These are the
changes to be made to the stack. You should see your new resources in the list.

6. Choose Execute.

To edit your pipeline's PollForSourceChanges parameter

Important

In many cases, the PollForSourceChanges parameter defaults to true when you create
a pipeline. When you add event-based change detection, you must add the parameter
to your output and set it to false to disable polling. Otherwise, your pipeline starts twice
for a single source change. For details, see Default settings for the PollForSourceChanges
parameter.

• In the template, change PollForSourceChanges to false. If you did not include
PollForSourceChanges in your pipeline definition, add it and set it to false.

Why am I making this change? Changing this parameter to false turns off periodic checks so
you can use event-based change detection only.

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 409

AWS CodePipeline User Guide

YAML

 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: CodeCommit
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 BranchName: !Ref BranchName
 RepositoryName: !Ref RepositoryName
 PollForSourceChanges: false
 RunOrder: 1

JSON

{
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "CodeCommit"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "BranchName": {
 "Ref": "BranchName"
 },
 "RepositoryName": {

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 410

AWS CodePipeline User Guide

 "Ref": "RepositoryName"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }
]
},

Example

When you create these resources with AWS CloudFormation, your pipeline is triggered when files in
your repository are created or updated. Here is the final template snippet:

YAML

Resources:
 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region',
 ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 411

AWS CodePipeline User Guide

 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventPattern:
 source:
 - aws.codecommit
 detail-type:
 - 'CodeCommit Repository State Change'
 resources:
 - !Join ['', ['arn:aws:codecommit:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref RepositoryName]]
 detail:
 event:
 - referenceCreated
 - referenceUpdated
 referenceType:
 - branch
 referenceName:
 - main
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline
 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 Name: codecommit-events-pipeline
 RoleArn:
 !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: CodeCommit
 OutputArtifacts:

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 412

AWS CodePipeline User Guide

 - Name: SourceOutput
 Configuration:
 BranchName: !Ref BranchName
 RepositoryName: !Ref RepositoryName
 PollForSourceChanges: false
 RunOrder: 1

...

JSON

 "Resources": {

...

 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 413

AWS CodePipeline User Guide

 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]
 }
 }
]
 }
 }
]
 }
 },
 "EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "source": [
 "aws.codecommit"
],
 "detail-type": [
 "CodeCommit Repository State Change"
],
 "resources": [
 {
 "Fn::Join": [
 "",
 [
 "arn:aws:codecommit:",
 {
 "Ref": "AWS::Region"

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 414

AWS CodePipeline User Guide

 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "RepositoryName"
 }
]
]
 }
],
 "detail": {
 "event": [
 "referenceCreated",
 "referenceUpdated"
],
 "referenceType": [
 "branch"
],
 "referenceName": [
 "main"
]
 }
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 415

AWS CodePipeline User Guide

]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 },
 "AppPipeline": {
 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "Name": "codecommit-events-pipeline",
 "RoleArn": {
 "Fn::GetAtt": [
 "CodePipelineServiceRole",
 "Arn"
]
 },
 "Stages": [
 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "CodeCommit"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "BranchName": {
 "Ref": "BranchName"

Migrate polling pipelines with a CodeCommit source API Version 2015-07-09 416

AWS CodePipeline User Guide

 },
 "RepositoryName": {
 "Ref": "RepositoryName"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }
]
 },

...

Migrate polling pipelines with an S3 source enabled for events

For a pipeline with an Amazon S3 source, modify the pipeline so that change detection is
automated through EventBridge and with a source bucket that is enabled for event notifications.
This is the recommend method if you are using the CLI or AWS CloudFormation to migrate your
pipeline.

Note

This includes using a bucket that is enabled for event notifications, where you do not need
to create a separate CloudTrail trail. If you are using the console, then an event rule and
CloudTrail trail are set up for you. For those steps, see Migrate polling pipelines with an S3
source and CloudTrail trail.

• CLI: Migrate polling pipelines with an S3 source and CloudTrail trail (CLI)

• AWS CloudFormation: Migrate polling pipelines with an S3 source and CloudTrail trail (AWS
CloudFormation template)

Migrate polling pipelines with an S3 source enabled for events (CLI)

Follow these steps to edit a pipeline that is using polling (periodic checks) to use an event in
EventBridge instead. If you want to create a pipeline, see Create a pipeline in CodePipeline.

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 417

AWS CodePipeline User Guide

To build an event-driven pipeline with Amazon S3, you edit the PollForSourceChanges
parameter of your pipeline and then create the following resources:

• EventBridge event rule

• IAM role to allow the EventBridge event to start your pipeline

To create an EventBridge rule with Amazon S3 as the event source and CodePipeline as the
target and apply the permissions policy

1. Grant permissions for EventBridge to use CodePipeline to invoke the rule. For more
information, see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy to allow EventBridge to assume the
service role. Name it trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

Why am I making this change? Adding this trust policy to the role creates permissions for
EventBridge.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON, as shown here for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 418

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]
 }
]
}

d. Use the following command to attach the new CodePipeline-Permissions-Policy-
for-EB permissions policy to the Role-for-MyRule role you created.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforEB.json

2. Call the put-rule command and include the --name, --event-pattern, and --role-arn
parameters.

The following sample command creates a rule named EnabledS3SourceRule.

aws events put-rule --name "EnabledS3SourceRule" --event-pattern "{\"source\":
[\"aws.s3\"],\"detail-type\":[\"Object Created\"],\"detail\":{\"bucket\":{\"name\":
[\"my-bucket\"]}}}" --role-arn "arn:aws:iam::ACCOUNT_ID:role/Role-for-MyRule"

3. To add CodePipeline as a target, call the put-targets command and include the --rule and
--targets parameters.

The following command specifies that for the rule named EnabledS3SourceRule, the target
Id is composed of the number one, indicating that in a list of targets for the rule, this is target
1. The command also specifies an example ARN for the pipeline. The pipeline starts when
something changes in the repository.

aws events put-targets --rule EnabledS3SourceRule --targets Id=codepipeline-
AppPipeline,Arn=arn:aws:codepipeline:us-west-2:80398EXAMPLE:TestPipeline

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 419

AWS CodePipeline User Guide

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

1. Run the get-pipeline command to copy the pipeline structure into a JSON file. For example,
for a pipeline named MyFirstPipeline, run the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and edit the source stage by changing the
PollForSourceChanges parameter for a bucket named storage-bucket to false, as
shown in this example.

Why am I making this change? Setting this parameter to false turns off periodic checks so
you can use event-based change detection only.

"configuration": {
 "S3Bucket": "storage-bucket",
 "PollForSourceChanges": "false",
 "S3ObjectKey": "index.zip"
},

3. If you are working with the pipeline structure retrieved using the get-pipeline command,
you must remove the metadata lines from the JSON file. Otherwise, the update-pipeline
command cannot use it. Remove the "metadata": { } lines and the "created",
"pipelineARN", and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 420

AWS CodePipeline User Guide

 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
},

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

Migrate polling pipelines with an S3 source enabled for events (AWS
CloudFormation template)

This procedure is for a pipeline where the source bucket has events enabled.

Use these steps to edit your pipeline with an Amazon S3 source from polling to event-based
change detection.

To build an event-driven pipeline with Amazon S3, you edit the PollForSourceChanges
parameter of your pipeline and then add the following resources to your template:

• EventBridge rule and IAM role to allow this event to start your pipeline.

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 421

AWS CodePipeline User Guide

If you use AWS CloudFormation to create and manage your pipelines, your template includes
content like the following.

Note

The Configuration property in the source stage called PollForSourceChanges. If your
template doesn't include that property, then PollForSourceChanges is set to true by
default.

YAML

 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 RoleArn: !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:
 -
 Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref S3SourceObjectKey
 PollForSourceChanges: true
 RunOrder: 1

...

JSON

 "AppPipeline": {

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 422

AWS CodePipeline User Guide

 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "RoleArn": {
 "Fn::GetAtt": ["CodePipelineServiceRole", "Arn"]
 },
 "Stages": [
 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "S3Bucket": {
 "Ref": "SourceBucket"
 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": true
 },
 "RunOrder": 1
 }
]
 },

...

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 423

AWS CodePipeline User Guide

To create an EventBridge rule with Amazon S3 as the event source and CodePipeline as the
target and apply the permissions policy

1. In the template, under Resources, use the AWS::IAM::Role AWS CloudFormation resource
to configure the IAM role that allows your event to start your pipeline. This entry creates a role
that uses two policies:

• The first policy allows the role to be assumed.

• The second policy provides permissions to start the pipeline.

Why am I making this change? Adding AWS::IAM::Role resource enables AWS
CloudFormation to create permissions for EventBridge. This resource is added to your AWS
CloudFormation stack.

YAML

 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref
 'AWS::Region', ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 424

AWS CodePipeline User Guide

...

JSON

 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 425

AWS CodePipeline User Guide

 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]

...

2. Use the AWS::Events::Rule AWS CloudFormation resource to add an EventBridge rule. This
event pattern creates an event that monitors creation or deletion of objects in your Amazon
S3 source bucket. In addition, include a target of your pipeline. When an object is created, this
rule invokes StartPipelineExecution on your target pipeline.

Why am I making this change? Adding the AWS::Events::Rule resource enables AWS
CloudFormation to create the event. This resource is added to your AWS CloudFormation stack.

YAML

 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventBusName: default
 EventPattern:
 source:
 - aws.s3
 detail-type:
 - Object Created
 detail:
 bucket:
 name:
 - !Ref SourceBucket
 Name: EnabledS3SourceRule
 State: ENABLED
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 426

AWS CodePipeline User Guide

...

JSON

 "EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventBusName": "default",
 "EventPattern": {
 "source": [
 "aws.s3"
],
 "detail-type": [
 "Object Created"
],
 "detail": {
 "bucket": {
 "name": [
 "s3-pipeline-source-fra-bucket"
]
 }
 }
 },
 "Name": "EnabledS3SourceRule",
 "State": "ENABLED",
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 427

AWS CodePipeline User Guide

 "Ref": "AppPipeline"
 }
]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 }
},

...

3. Save your updated template to your local computer, and open the AWS CloudFormation
console.

4. Choose your stack, and then choose Create Change Set for Current Stack.

5. Upload your updated template, and then view the changes listed in AWS CloudFormation.
These are the changes that will be made to the stack. You should see your new resources in the
list.

6. Choose Execute.

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 428

AWS CodePipeline User Guide

• In the template, change PollForSourceChanges to false. If you did not include
PollForSourceChanges in your pipeline definition, add it and set it to false.

Why am I making this change? Changing PollForSourceChanges to false turns off
periodic checks so you can use event-based change detection only.

YAML

 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref SourceObjectKey
 PollForSourceChanges: false
 RunOrder: 1

JSON

 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "S3Bucket": {

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 429

AWS CodePipeline User Guide

 "Ref": "SourceBucket"
 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }

Example

When you use AWS CloudFormation to create these resources, your pipeline is triggered when files
in your repository are created or updated.

Note

Do not stop here. Although your pipeline is created, you must create a second AWS
CloudFormation template for your Amazon S3 pipeline. If you do not create the second
template, your pipeline does not have any change detection functionality.

YAML

Parameters:
 SourceObjectKey:
 Description: 'S3 source artifact'
 Type: String
 Default: SampleApp_Linux.zip
 ApplicationName:
 Description: 'CodeDeploy application name'
 Type: String
 Default: DemoApplication
 BetaFleet:
 Description: 'Fleet configured in CodeDeploy'
 Type: String
 Default: DemoFleet

Resources:
 SourceBucket:

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 430

AWS CodePipeline User Guide

 Type: AWS::S3::Bucket
 Properties:
 NotificationConfiguration:
 EventBridgeConfiguration:
 EventBridgeEnabled: true
 VersioningConfiguration:
 Status: Enabled
 CodePipelineArtifactStoreBucket:
 Type: AWS::S3::Bucket
 CodePipelineArtifactStoreBucketPolicy:
 Type: AWS::S3::BucketPolicy
 Properties:
 Bucket: !Ref CodePipelineArtifactStoreBucket
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Sid: DenyUnEncryptedObjectUploads
 Effect: Deny
 Principal: '*'
 Action: s3:PutObject
 Resource: !Join ['', [!GetAtt CodePipelineArtifactStoreBucket.Arn, '/
*']]
 Condition:
 StringNotEquals:
 s3:x-amz-server-side-encryption: aws:kms
 -
 Sid: DenyInsecureConnections
 Effect: Deny
 Principal: '*'
 Action: s3:*
 Resource: !Sub ${CodePipelineArtifactStoreBucket.Arn}/*
 Condition:
 Bool:
 aws:SecureTransport: false
 CodePipelineServiceRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 431

AWS CodePipeline User Guide

 Service:
 - codepipeline.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: AWS-CodePipeline-Service-3
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - codecommit:CancelUploadArchive
 - codecommit:GetBranch
 - codecommit:GetCommit
 - codecommit:GetUploadArchiveStatus
 - codecommit:UploadArchive
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - codedeploy:CreateDeployment
 - codedeploy:GetApplicationRevision
 - codedeploy:GetDeployment
 - codedeploy:GetDeploymentConfig
 - codedeploy:RegisterApplicationRevision
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - codebuild:BatchGetBuilds
 - codebuild:StartBuild
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - devicefarm:ListProjects
 - devicefarm:ListDevicePools
 - devicefarm:GetRun
 - devicefarm:GetUpload
 - devicefarm:CreateUpload
 - devicefarm:ScheduleRun
 Resource: 'resource_ARN'

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 432

AWS CodePipeline User Guide

 -
 Effect: Allow
 Action:
 - lambda:InvokeFunction
 - lambda:ListFunctions
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - iam:PassRole
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - elasticbeanstalk:*
 - ec2:*
 - elasticloadbalancing:*
 - autoscaling:*
 - cloudwatch:*
 - s3:*
 - sns:*
 - cloudformation:*
 - rds:*
 - sqs:*
 - ecs:*
 Resource: 'resource_ARN'
 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 Name: s3-events-pipeline
 RoleArn:
 !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 433

AWS CodePipeline User Guide

 - Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref SourceObjectKey
 PollForSourceChanges: false
 RunOrder: 1
 -
 Name: Beta
 Actions:
 -
 Name: BetaAction
 InputArtifacts:
 - Name: SourceOutput
 ActionTypeId:
 Category: Deploy
 Owner: AWS
 Version: 1
 Provider: CodeDeploy
 Configuration:
 ApplicationName: !Ref ApplicationName
 DeploymentGroupName: !Ref BetaFleet
 RunOrder: 1
 ArtifactStore:
 Type: S3
 Location: !Ref CodePipelineArtifactStoreBucket
 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 434

AWS CodePipeline User Guide

 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region',
 ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]
 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventBusName: default
 EventPattern:
 source:
 - aws.s3
 detail-type:
 - Object Created
 detail:
 bucket:
 name:
 - !Ref SourceBucket
 Name: EnabledS3SourceRule
 State: ENABLED
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

JSON

{
 "Parameters": {
 "SourceObjectKey": {
 "Description": "S3 source artifact",
 "Type": "String",
 "Default": "SampleApp_Linux.zip"
 },
 "ApplicationName": {
 "Description": "CodeDeploy application name",
 "Type": "String",
 "Default": "DemoApplication"
 },

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 435

AWS CodePipeline User Guide

 "BetaFleet": {
 "Description": "Fleet configured in CodeDeploy",
 "Type": "String",
 "Default": "DemoFleet"
 }
 },
 "Resources": {
 "SourceBucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "NotificationConfiguration": {
 "EventBridgeConfiguration": {
 "EventBridgeEnabled": true
 }
 },
 "VersioningConfiguration": {
 "Status": "Enabled"
 }
 }
 },
 "CodePipelineArtifactStoreBucket": {
 "Type": "AWS::S3::Bucket"
 },
 "CodePipelineArtifactStoreBucketPolicy": {
 "Type": "AWS::S3::BucketPolicy",
 "Properties": {
 "Bucket": {
 "Ref": "CodePipelineArtifactStoreBucket"
 },
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "CodePipelineArtifactStoreBucket",

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 436

AWS CodePipeline User Guide

 "Arn"
]
 },
 "/*"
]
]
 },
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "CodePipelineArtifactStoreBucket",
 "Arn"
]
 },
 "/*"
]
]
 },
 "Condition": {
 "Bool": {
 "aws:SecureTransport": false
 }
 }
 }
]
 }
 }
 },
 "CodePipelineServiceRole": {
 "Type": "AWS::IAM::Role",

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 437

AWS CodePipeline User Guide

 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "codepipeline.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "AWS-CodePipeline-Service-3",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:CancelUploadArchive",
 "codecommit:GetBranch",
 "codecommit:GetCommit",
 "codecommit:GetUploadArchiveStatus",
 "codecommit:UploadArchive"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetApplicationRevision",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": "resource_ARN"
 },

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 438

AWS CodePipeline User Guide

 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "devicefarm:ListProjects",
 "devicefarm:ListDevicePools",
 "devicefarm:GetRun",
 "devicefarm:GetUpload",
 "devicefarm:CreateUpload",
 "devicefarm:ScheduleRun"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:ListFunctions"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 439

AWS CodePipeline User Guide

 "sns:*",
 "cloudformation:*",
 "rds:*",
 "sqs:*",
 "ecs:*"
],
 "Resource": "resource_ARN"
 }
]
 }
 }
]
 }
 },
 "AppPipeline": {
 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "Name": "s3-events-pipeline",
 "RoleArn": {
 "Fn::GetAtt": [
 "CodePipelineServiceRole",
 "Arn"
]
 },
 "Stages": [
 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "S3Bucket": {
 "Ref": "SourceBucket"

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 440

AWS CodePipeline User Guide

 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }
]
 },
 {
 "Name": "Beta",
 "Actions": [
 {
 "Name": "BetaAction",
 "InputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "CodeDeploy"
 },
 "Configuration": {
 "ApplicationName": {
 "Ref": "ApplicationName"
 },
 "DeploymentGroupName": {
 "Ref": "BetaFleet"
 }
 },
 "RunOrder": 1
 }
]
 }
],
 "ArtifactStore": {
 "Type": "S3",
 "Location": {
 "Ref": "CodePipelineArtifactStoreBucket"
 }

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 441

AWS CodePipeline User Guide

 }
 }
 },
 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 442

AWS CodePipeline User Guide

 "Ref": "AppPipeline"
 }
]
]
 }
 }
]
 }
 }
]
 }
 },
 "EventRule": {
 "Type": "AWS::Events::Rule",

 "Properties": {
 "EventBusName": "default",
 "EventPattern": {
 "source": [
 "aws.s3"
],
 "detail-type": [
 "Object Created"
],
 "detail": {
 "bucket": {
 "name": [
 {
 "Ref": "SourceBucket"
 }
]
 }
 }
 },
 "Name": "EnabledS3SourceRule",
 "State": "ENABLED",
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {

Migrate polling pipelines with an S3 source enabled for events API Version 2015-07-09 443

AWS CodePipeline User Guide

 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 }
 }
 }
}

Migrate polling pipelines with an S3 source and CloudTrail trail

For a pipeline with an Amazon S3 source, modify the pipeline so that change detection is
automated through EventBridge. Choose from the following methods to implement the migration:

• Console: Migrate polling pipelines (CodeCommit or Amazon S3 source) (console)

• CLI: Migrate polling pipelines with an S3 source and CloudTrail trail (CLI)

• AWS CloudFormation: Migrate polling pipelines with an S3 source and CloudTrail trail (AWS
CloudFormation template)

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 444

AWS CodePipeline User Guide

Migrate polling pipelines with an S3 source and CloudTrail trail (CLI)

Follow these steps to edit a pipeline that is using polling (periodic checks) to use an event in
EventBridge instead. If you want to create a pipeline, see Create a pipeline in CodePipeline.

To build an event-driven pipeline with Amazon S3, you edit the PollForSourceChanges
parameter of your pipeline and then create the following resources:

• AWS CloudTrail trail, bucket, and bucket policy that Amazon S3 can use to log the events.

• EventBridge event

• IAM role to allow the EventBridge event to start your pipeline

To create an AWS CloudTrail trail and enable logging

To use the AWS CLI to create a trail, call the create-trail command, specifying:

• The trail name.

• The bucket to which you have already applied the bucket policy for AWS CloudTrail.

For more information, see Creating a trail with the AWS command line interface.

1. Call the create-trail command and include the --name and --s3-bucket-name parameters.

Why am I making this change? This creates the CloudTrail trail required for your S3 source
bucket.

The following command uses --name and --s3-bucket-name to create a trail named my-
trail and a bucket named myBucket.

aws cloudtrail create-trail --name my-trail --s3-bucket-name myBucket

2. Call the start-logging command and include the --name parameter.

Why am I making this change? This command starts the CloudTrail logging for your source
bucket and sends events to EventBridge.

Example:

The following command uses --name to start logging on a trail named my-trail.

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 445

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail-by-using-the-aws-cli.html

AWS CodePipeline User Guide

aws cloudtrail start-logging --name my-trail

3. Call the put-event-selectors command and include the --trail-name and --event-
selectors parameters. Use event selectors to specify that you want your trail to log data
events for your source bucket and send the events to the EventBridge rule.

Why am I making this change? This command filters events.

Example:

The following command uses --trail-name and --event-selectors to specify data
events for a source bucket and prefix named myBucket/myFolder.

aws cloudtrail put-event-selectors --trail-name my-trail --event-selectors
 '[{ "ReadWriteType": "WriteOnly", "IncludeManagementEvents":false,
 "DataResources": [{ "Type": "AWS::S3::Object", "Values": ["arn:aws:s3:::myBucket/
myFolder/file.zip"] }] }]'

To create an EventBridge rule with Amazon S3 as the event source and CodePipeline as the
target and apply the permissions policy

1. Grant permissions for EventBridge to use CodePipeline to invoke the rule. For more
information, see Using resource-based policies for Amazon EventBridge.

a. Use the following sample to create the trust policy to allow EventBridge to assume the
service role. Name it trustpolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 446

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

b. Use the following command to create the Role-for-MyRule role and attach the trust
policy.

Why am I making this change? Adding this trust policy to the role creates permissions for
EventBridge.

aws iam create-role --role-name Role-for-MyRule --assume-role-policy-document
 file://trustpolicyforEB.json

c. Create the permissions policy JSON, as shown here for the pipeline named
MyFirstPipeline. Name the permissions policy permissionspolicyforEB.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:StartPipelineExecution"
],
 "Resource": [
 "arn:aws:codepipeline:us-west-2:80398EXAMPLE:MyFirstPipeline"
]
 }
]
}

d. Use the following command to attach the new CodePipeline-Permissions-Policy-
for-EB permissions policy to the Role-for-MyRule role you created.

aws iam put-role-policy --role-name Role-for-MyRule --policy-name CodePipeline-
Permissions-Policy-For-EB --policy-document file://permissionspolicyforEB.json

2. Call the put-rule command and include the --name, --event-pattern, and --role-arn
parameters.

The following sample command creates a rule named MyS3SourceRule.

aws events put-rule --name "MyS3SourceRule" --event-pattern "{\"source\":
[\"aws.s3\"],\"detail-type\":[\"AWS API Call via CloudTrail\"],\"detail\":
{\"eventSource\":[\"s3.amazonaws.com\"],\"eventName\":[\"CopyObject\",\"PutObject

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 447

AWS CodePipeline User Guide

\",\"CompleteMultipartUpload\"],\"requestParameters\":{\"bucketName\":[\"my-bucket
\"],\"key\":[\"my-key\"]}}}
 --role-arn "arn:aws:iam::ACCOUNT_ID:role/Role-for-MyRule"

3. To add CodePipeline as a target, call the put-targets command and include the --rule and
--targets parameters.

The following command specifies that for the rule named MyS3SourceRule, the target Id
is composed of the number one, indicating that in a list of targets for the rule, this is target
1. The command also specifies an example ARN for the pipeline. The pipeline starts when
something changes in the repository.

aws events put-targets --rule MyS3SourceRule --targets
 Id=1,Arn=arn:aws:codepipeline:us-west-2:80398EXAMPLE:TestPipeline

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

1. Run the get-pipeline command to copy the pipeline structure into a JSON file. For example,
for a pipeline named MyFirstPipeline, run the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and edit the source stage by changing the
PollForSourceChanges parameter for a bucket named storage-bucket to false, as
shown in this example.

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 448

AWS CodePipeline User Guide

Why am I making this change? Setting this parameter to false turns off periodic checks so
you can use event-based change detection only.

"configuration": {
 "S3Bucket": "storage-bucket",
 "PollForSourceChanges": "false",
 "S3ObjectKey": "index.zip"
},

3. If you are working with the pipeline structure retrieved using the get-pipeline command,
you must remove the metadata lines from the JSON file. Otherwise, the update-pipeline
command cannot use it. Remove the "metadata": { } lines and the "created",
"pipelineARN", and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
},

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 449

AWS CodePipeline User Guide

must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

Migrate polling pipelines with an S3 source and CloudTrail trail (AWS
CloudFormation template)

Use these steps to edit your pipeline with an Amazon S3 source from polling to event-based
change detection.

To build an event-driven pipeline with Amazon S3, you edit the PollForSourceChanges
parameter of your pipeline and then add the following resources to your template:

• EventBridge requires that all Amazon S3 events must be logged. You must create an AWS
CloudTrail trail, bucket, and bucket policy that Amazon S3 can use to log the events that occur.
For more information, see Logging data events for trails and Logging management events for
trails.

• EventBridge rule and IAM role to allow this event to start our pipeline.

If you use AWS CloudFormation to create and manage your pipelines, your template includes
content like the following.

Note

The Configuration property in the source stage called PollForSourceChanges. If your
template doesn't include that property, then PollForSourceChanges is set to true by
default.

YAML

 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 RoleArn: !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 450

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

AWS CodePipeline User Guide

 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:
 -
 Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref S3SourceObjectKey
 PollForSourceChanges: true
 RunOrder: 1

...

JSON

 "AppPipeline": {
 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "RoleArn": {
 "Fn::GetAtt": ["CodePipelineServiceRole", "Arn"]
 },
 "Stages": [
 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 451

AWS CodePipeline User Guide

],
 "Configuration": {
 "S3Bucket": {
 "Ref": "SourceBucket"
 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": true
 },
 "RunOrder": 1
 }
]
 },

...

To create an EventBridge rule with Amazon S3 as the event source and CodePipeline as the
target and apply the permissions policy

1. In the template, under Resources, use the AWS::IAM::Role AWS CloudFormation resource
to configure the IAM role that allows your event to start your pipeline. This entry creates a role
that uses two policies:

• The first policy allows the role to be assumed.

• The second policy provides permissions to start the pipeline.

Why am I making this change? Adding AWS::IAM::Role resource enables AWS
CloudFormation to create permissions for EventBridge. This resource is added to your AWS
CloudFormation stack.

YAML

 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 452

AWS CodePipeline User Guide

 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref
 'AWS::Region', ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]

...

JSON

 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 453

AWS CodePipeline User Guide

 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]

...

2. Use the AWS::Events::Rule AWS CloudFormation resource to add an EventBridge
rule. This event pattern creates an event that monitors CopyObject, PutObject and
CompleteMultipartUpload on your Amazon S3 source bucket. In addition, include a target
of your pipeline. When CopyObject, PutObject, or CompleteMultipartUpload occurs,
this rule invokes StartPipelineExecution on your target pipeline.

Why am I making this change? Adding the AWS::Events::Rule resource enables AWS
CloudFormation to create the event. This resource is added to your AWS CloudFormation stack.

YAML

 EventRule:
 Type: AWS::Events::Rule
 Properties:

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 454

AWS CodePipeline User Guide

 EventPattern:
 source:
 - aws.s3
 detail-type:
 - 'AWS API Call via CloudTrail'
 detail:
 eventSource:
 - s3.amazonaws.com
 eventName:
 - CopyObject
 - PutObject
 - CompleteMultipartUpload
 requestParameters:
 bucketName:
 - !Ref SourceBucket
 key:
 - !Ref SourceObjectKey
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

...

JSON

 "EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "source": [
 "aws.s3"
],
 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 455

AWS CodePipeline User Guide

 "s3.amazonaws.com"
],
 "eventName": [
 "CopyObject",
 "PutObject",
 "CompleteMultipartUpload"
],
 "requestParameters": {
 "bucketName": [
 {
 "Ref": "SourceBucket"
 }
],
 "key": [
 {
 "Ref": "SourceObjectKey"
 }
]
 }
 }
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 456

AWS CodePipeline User Guide

 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 }
},

...

3. Add this snippet to your first template to allow cross-stack functionality:

YAML

Outputs:
 SourceBucketARN:
 Description: "S3 bucket ARN that Cloudtrail will use"
 Value: !GetAtt SourceBucket.Arn
 Export:
 Name: SourceBucketARN

JSON

 "Outputs" : {
 "SourceBucketARN" : {
 "Description" : "S3 bucket ARN that Cloudtrail will use",
 "Value" : { "Fn::GetAtt": ["SourceBucket", "Arn"] },
 "Export" : {
 "Name" : "SourceBucketARN"
 }
 }

...

4. Save your updated template to your local computer, and open the AWS CloudFormation
console.

5. Choose your stack, and then choose Create Change Set for Current Stack.

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 457

AWS CodePipeline User Guide

6. Upload your updated template, and then view the changes listed in AWS CloudFormation.
These are the changes that will be made to the stack. You should see your new resources in the
list.

7. Choose Execute.

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

• In the template, change PollForSourceChanges to false. If you did not include
PollForSourceChanges in your pipeline definition, add it and set it to false.

Why am I making this change? Changing PollForSourceChanges to false turns off
periodic checks so you can use event-based change detection only.

YAML

 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref SourceObjectKey
 PollForSourceChanges: false

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 458

AWS CodePipeline User Guide

 RunOrder: 1

JSON

 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "S3Bucket": {
 "Ref": "SourceBucket"
 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }

To create a second template for your Amazon S3 pipeline's CloudTrail resources

• In a separate template, under Resources, use the AWS::S3::Bucket,
AWS::S3::BucketPolicy, and AWS::CloudTrail::Trail AWS CloudFormation resources
to provide a simple bucket definition and trail for CloudTrail.

Why am I making this change? Given the current limit of five trails per account, the
CloudTrail trail must be created and managed separately. (See Limits in AWS CloudTrail.)
However, you can include many Amazon S3 buckets on a single trail, so you can create the trail
once and then add Amazon S3 buckets for other pipelines as necessary. Paste the following
into your second sample template file.

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 459

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/WhatIsCloudTrail-Limits.html

AWS CodePipeline User Guide

YAML

###
Prerequisites:
- S3 SourceBucket and SourceObjectKey must exist
###

Parameters:
 SourceObjectKey:
 Description: 'S3 source artifact'
 Type: String
 Default: SampleApp_Linux.zip

Resources:
 AWSCloudTrailBucketPolicy:
 Type: AWS::S3::BucketPolicy
 Properties:
 Bucket: !Ref AWSCloudTrailBucket
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Sid: AWSCloudTrailAclCheck
 Effect: Allow
 Principal:
 Service:
 - cloudtrail.amazonaws.com
 Action: s3:GetBucketAcl
 Resource: !GetAtt AWSCloudTrailBucket.Arn
 -
 Sid: AWSCloudTrailWrite
 Effect: Allow
 Principal:
 Service:
 - cloudtrail.amazonaws.com
 Action: s3:PutObject
 Resource: !Join ['', [!GetAtt AWSCloudTrailBucket.Arn, '/
AWSLogs/', !Ref 'AWS::AccountId', '/*']]
 Condition:
 StringEquals:
 s3:x-amz-acl: bucket-owner-full-control
 AWSCloudTrailBucket:
 Type: AWS::S3::Bucket

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 460

AWS CodePipeline User Guide

 DeletionPolicy: Retain
 AwsCloudTrail:
 DependsOn:
 - AWSCloudTrailBucketPolicy
 Type: AWS::CloudTrail::Trail
 Properties:
 S3BucketName: !Ref AWSCloudTrailBucket
 EventSelectors:
 -
 DataResources:
 -
 Type: AWS::S3::Object
 Values:
 - !Join ['', [!ImportValue SourceBucketARN, '/', !Ref
 SourceObjectKey]]
 ReadWriteType: WriteOnly
 IncludeManagementEvents: false
 IncludeGlobalServiceEvents: true
 IsLogging: true
 IsMultiRegionTrail: true

...

JSON

{
 "Parameters": {
 "SourceObjectKey": {
 "Description": "S3 source artifact",
 "Type": "String",
 "Default": "SampleApp_Linux.zip"
 }
 },
 "Resources": {
 "AWSCloudTrailBucket": {
 "Type": "AWS::S3::Bucket",
 "DeletionPolicy": "Retain"
 },
 "AWSCloudTrailBucketPolicy": {
 "Type": "AWS::S3::BucketPolicy",
 "Properties": {
 "Bucket": {

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 461

AWS CodePipeline User Guide

 "Ref": "AWSCloudTrailBucket"
 },
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSCloudTrailAclCheck",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cloudtrail.amazonaws.com"
]
 },
 "Action": "s3:GetBucketAcl",
 "Resource": {
 "Fn::GetAtt": [
 "AWSCloudTrailBucket",
 "Arn"
]
 }
 },
 {
 "Sid": "AWSCloudTrailWrite",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cloudtrail.amazonaws.com"
]
 },
 "Action": "s3:PutObject",
 "Resource": {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "AWSCloudTrailBucket",
 "Arn"
]
 },
 "/AWSLogs/",
 {
 "Ref": "AWS::AccountId"
 },

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 462

AWS CodePipeline User Guide

 "/*"
]
]
 },
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control"
 }
 }
 }
]
 }
 }
 },
 "AwsCloudTrail": {
 "DependsOn": [
 "AWSCloudTrailBucketPolicy"
],
 "Type": "AWS::CloudTrail::Trail",
 "Properties": {
 "S3BucketName": {
 "Ref": "AWSCloudTrailBucket"
 },
 "EventSelectors": [
 {
 "DataResources": [
 {
 "Type": "AWS::S3::Object",
 "Values": [
 {
 "Fn::Join": [
 "",
 [
 {
 "Fn::ImportValue": "SourceBucketARN"
 },
 "/",
 {
 "Ref": "SourceObjectKey"
 }
]
]
 }
]

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 463

AWS CodePipeline User Guide

 }
],
 "ReadWriteType": "WriteOnly",
 "IncludeManagementEvents": false
 }
],
 "IncludeGlobalServiceEvents": true,
 "IsLogging": true,
 "IsMultiRegionTrail": true
 }
 }
 }
}

...

Example

When you use AWS CloudFormation to create these resources, your pipeline is triggered when files
in your repository are created or updated.

Note

Do not stop here. Although your pipeline is created, you must create a second AWS
CloudFormation template for your Amazon S3 pipeline. If you do not create the second
template, your pipeline does not have any change detection functionality.

YAML

Resources:
 SourceBucket:
 Type: AWS::S3::Bucket
 Properties:
 VersioningConfiguration:
 Status: Enabled
 CodePipelineArtifactStoreBucket:
 Type: AWS::S3::Bucket
 CodePipelineArtifactStoreBucketPolicy:
 Type: AWS::S3::BucketPolicy
 Properties:

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 464

AWS CodePipeline User Guide

 Bucket: !Ref CodePipelineArtifactStoreBucket
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Sid: DenyUnEncryptedObjectUploads
 Effect: Deny
 Principal: '*'
 Action: s3:PutObject
 Resource: !Join ['', [!GetAtt CodePipelineArtifactStoreBucket.Arn, '/
*']]
 Condition:
 StringNotEquals:
 s3:x-amz-server-side-encryption: aws:kms
 -
 Sid: DenyInsecureConnections
 Effect: Deny
 Principal: '*'
 Action: s3:*
 Resource: !Join ['', [!GetAtt CodePipelineArtifactStoreBucket.Arn, '/
*']]
 Condition:
 Bool:
 aws:SecureTransport: false
 CodePipelineServiceRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - codepipeline.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: AWS-CodePipeline-Service-3
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 465

AWS CodePipeline User Guide

 Effect: Allow
 Action:
 - codecommit:CancelUploadArchive
 - codecommit:GetBranch
 - codecommit:GetCommit
 - codecommit:GetUploadArchiveStatus
 - codecommit:UploadArchive
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - codedeploy:CreateDeployment
 - codedeploy:GetApplicationRevision
 - codedeploy:GetDeployment
 - codedeploy:GetDeploymentConfig
 - codedeploy:RegisterApplicationRevision
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - codebuild:BatchGetBuilds
 - codebuild:StartBuild
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - devicefarm:ListProjects
 - devicefarm:ListDevicePools
 - devicefarm:GetRun
 - devicefarm:GetUpload
 - devicefarm:CreateUpload
 - devicefarm:ScheduleRun
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - lambda:InvokeFunction
 - lambda:ListFunctions
 Resource: 'resource_ARN'
 -
 Effect: Allow
 Action:
 - iam:PassRole
 Resource: 'resource_ARN'

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 466

AWS CodePipeline User Guide

 -
 Effect: Allow
 Action:
 - elasticbeanstalk:*
 - ec2:*
 - elasticloadbalancing:*
 - autoscaling:*
 - cloudwatch:*
 - s3:*
 - sns:*
 - cloudformation:*
 - rds:*
 - sqs:*
 - ecs:*
 Resource: 'resource_ARN'
 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 Name: s3-events-pipeline
 RoleArn:
 !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: AWS
 Version: 1
 Provider: S3
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 S3Bucket: !Ref SourceBucket
 S3ObjectKey: !Ref SourceObjectKey
 PollForSourceChanges: false
 RunOrder: 1
 -
 Name: Beta
 Actions:
 -
 Name: BetaAction

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 467

AWS CodePipeline User Guide

 InputArtifacts:
 - Name: SourceOutput
 ActionTypeId:
 Category: Deploy
 Owner: AWS
 Version: 1
 Provider: CodeDeploy
 Configuration:
 ApplicationName: !Ref ApplicationName
 DeploymentGroupName: !Ref BetaFleet
 RunOrder: 1
 ArtifactStore:
 Type: S3
 Location: !Ref CodePipelineArtifactStoreBucket
 EventRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - events.amazonaws.com
 Action: sts:AssumeRole
 Path: /
 Policies:
 -
 PolicyName: eb-pipeline-execution
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action: codepipeline:StartPipelineExecution
 Resource: !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region',
 ':', !Ref 'AWS::AccountId', ':', !Ref AppPipeline]]
 EventRule:
 Type: AWS::Events::Rule
 Properties:
 EventPattern:
 source:
 - aws.s3

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 468

AWS CodePipeline User Guide

 detail-type:
 - 'AWS API Call via CloudTrail'
 detail:
 eventSource:
 - s3.amazonaws.com
 eventName:
 - PutObject
 - CompleteMultipartUpload
 resources:
 ARN:
 - !Join ['', [!GetAtt SourceBucket.Arn, '/', !Ref
 SourceObjectKey]]
 Targets:
 -
 Arn:
 !Join ['', ['arn:aws:codepipeline:', !Ref 'AWS::Region', ':', !Ref
 'AWS::AccountId', ':', !Ref AppPipeline]]
 RoleArn: !GetAtt EventRole.Arn
 Id: codepipeline-AppPipeline

Outputs:
 SourceBucketARN:
 Description: "S3 bucket ARN that Cloudtrail will use"
 Value: !GetAtt SourceBucket.Arn
 Export:
 Name: SourceBucketARN

JSON

 "Resources": {
 "SourceBucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "VersioningConfiguration": {
 "Status": "Enabled"
 }
 }
 },
 "CodePipelineArtifactStoreBucket": {
 "Type": "AWS::S3::Bucket"
 },
 "CodePipelineArtifactStoreBucketPolicy": {
 "Type": "AWS::S3::BucketPolicy",

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 469

AWS CodePipeline User Guide

 "Properties": {
 "Bucket": {
 "Ref": "CodePipelineArtifactStoreBucket"
 },
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "CodePipelineArtifactStoreBucket",
 "Arn"
]
 },
 "/*"
]
]
 },
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "CodePipelineArtifactStoreBucket",

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 470

AWS CodePipeline User Guide

 "Arn"
]
 },
 "/*"
]
]
 },
 "Condition": {
 "Bool": {
 "aws:SecureTransport": false
 }
 }
 }
]
 }
 }
 },
 "CodePipelineServiceRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "codepipeline.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "AWS-CodePipeline-Service-3",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 471

AWS CodePipeline User Guide

 "codecommit:CancelUploadArchive",
 "codecommit:GetBranch",
 "codecommit:GetCommit",
 "codecommit:GetUploadArchiveStatus",
 "codecommit:UploadArchive"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetApplicationRevision",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "devicefarm:ListProjects",
 "devicefarm:ListDevicePools",
 "devicefarm:GetRun",
 "devicefarm:GetUpload",
 "devicefarm:CreateUpload",
 "devicefarm:ScheduleRun"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:ListFunctions"

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 472

AWS CodePipeline User Guide

],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "resource_ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "rds:*",
 "sqs:*",
 "ecs:*"
],
 "Resource": "resource_ARN"
 }
]
 }
 }
]
 }
 },
 "AppPipeline": {
 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "Name": "s3-events-pipeline",
 "RoleArn": {
 "Fn::GetAtt": [
 "CodePipelineServiceRole",
 "Arn"
]
 },
 "Stages": [

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 473

AWS CodePipeline User Guide

 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "S3"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "S3Bucket": {
 "Ref": "SourceBucket"
 },
 "S3ObjectKey": {
 "Ref": "SourceObjectKey"
 },
 "PollForSourceChanges": false
 },
 "RunOrder": 1
 }
]
 },
 {
 "Name": "Beta",
 "Actions": [
 {
 "Name": "BetaAction",
 "InputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "CodeDeploy"

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 474

AWS CodePipeline User Guide

 },
 "Configuration": {
 "ApplicationName": {
 "Ref": "ApplicationName"
 },
 "DeploymentGroupName": {
 "Ref": "BetaFleet"
 }
 },
 "RunOrder": 1
 }
]
 }
],
 "ArtifactStore": {
 "Type": "S3",
 "Location": {
 "Ref": "CodePipelineArtifactStoreBucket"
 }
 }
 }
 },
 "EventRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "eb-pipeline-execution",
 "PolicyDocument": {

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 475

AWS CodePipeline User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {
 "Ref": "AppPipeline"
 }
]
]
 }
 }
]
 }
 }
]
 }
 },
 "EventRule": {
 "Type": "AWS::Events::Rule",
 "Properties": {
 "EventPattern": {
 "source": [
 "aws.s3"
],
 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [
 "s3.amazonaws.com"

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 476

AWS CodePipeline User Guide

],
 "eventName": [
 "PutObject",
 "CompleteMultipartUpload"
],
 "resources": {
 "ARN": [
 {
 "Fn::Join": [
 "",
 [
 {
 "Fn::GetAtt": [
 "SourceBucket",
 "Arn"
]
 },
 "/",
 {
 "Ref": "SourceObjectKey"
 }
]
]
 }
]
 }
 }
 },
 "Targets": [
 {
 "Arn": {
 "Fn::Join": [
 "",
 [
 "arn:aws:codepipeline:",
 {
 "Ref": "AWS::Region"
 },
 ":",
 {
 "Ref": "AWS::AccountId"
 },
 ":",
 {

Migrate polling pipelines with an S3 source and CloudTrail trail API Version 2015-07-09 477

AWS CodePipeline User Guide

 "Ref": "AppPipeline"
 }
]
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "EventRole",
 "Arn"
]
 },
 "Id": "codepipeline-AppPipeline"
 }
]
 }
 }
 },
 "Outputs" : {
 "SourceBucketARN" : {
 "Description" : "S3 bucket ARN that Cloudtrail will use",
 "Value" : { "Fn::GetAtt": ["SourceBucket", "Arn"] },
 "Export" : {
 "Name" : "SourceBucketARN"
 }
 }
 }
}

...

Migrate polling pipelines for a GitHub version 1 source action to
connections

You can migrate a GitHub version 1 source action to use connections for your external repository.
This is the recommended change detection method for pipelines with a GitHub version 1 source
action.

For a pipeline with a GitHub version 1 source action, we recommend modify the pipeline to
use a GitHub version 2 action so that change detection is automated through AWS CodeStar
Connections. For more information about working with connections, see GitHub connections.

Migrate polling pipelines for a GitHub version 1 source action to connections API Version 2015-07-09 478

AWS CodePipeline User Guide

Create a connection to GitHub (console)

You can use the console to create a connection to GitHub.

Step 1: Replace your version 1 GitHub action

Use the pipeline edit page to replace your version 1 GitHub action with a version 2 GitHub action.

To replace your version 1 GitHub action

1. Sign in to the CodePipeline console.

2. Choose your pipeline, and choose Edit. Choose Edit stage on your source stage. A message
displays that recommends you update your action.

3. In Action provider, choose GitHub (Version 2).

4. Do one of the following:

• Under Connection, if you have not already created a connection to your provider, choose
Connect to GitHub. Proceed to Step 2: Create a connection to GitHub.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to Step 3: Save the Source Action for Your Connection.

Step 2: Create a connection to GitHub

After you choose to create the connection, the Connect to GitHub page is shown.

To create a connection to GitHub

1. Under GitHub connection settings, your connection name is shown in Connection name.

Under GitHub Apps, choose an app installation or choose Install a new app to create one.

Note

You install one app for all of your connections to a particular provider. If you have
already installed the GitHub app, choose it and skip this step.

2. If the authorization page for GitHub displays, log in with your credentials and then choose to
continue.

Migrate polling pipelines for a GitHub version 1 source action to connections API Version 2015-07-09 479

AWS CodePipeline User Guide

3. On the app installation page, a message shows that the AWS CodeStar app is trying to connect
to your GitHub account.

Note

You only install the app once for each GitHub account. If you previously installed
the app, you can choose Configure to proceed to a modification page for your app
installation, or you can use the back button to return to the console.

4. On the Install AWS CodeStar page, choose Install.

5. On the Connect to GitHub page, the connection ID for your new installation is displayed.
Choose Connect.

Step 3: Save your GitHub source action

Complete your updates on the Edit action page to save your new source action.

To save your GitHub source action

1. In Repository, enter the name of your third-party repository. In Branch, enter the branch
where you want your pipeline to detect source changes.

Note

In Repository, type owner-name/repository-name as shown in this example:

my-account/my-repository

2. In Output artifact format, choose the format for your artifacts.

• To store output artifacts from the GitHub action using the default method, choose
CodePipeline default. The action accesses the files from the GitHub repository and stores
the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

Migrate polling pipelines for a GitHub version 1 source action to connections API Version 2015-07-09 480

AWS CodePipeline User Guide

If you choose this option, you will need to update the permissions for your CodeBuild project
service role as shown in Add CodeBuild GitClone permissions for connections to Bitbucket,
GitHub, GitHub Enterprise Server, or GitLab.com. For a tutorial that shows you how to use
the Full clone option, see Tutorial: Use full clone with a GitHub pipeline source.

3. In Output artifacts, you can retain the name of the output artifact for this action, such as
SourceArtifact. Choose Done to close the Edit action page.

4. Choose Done to close the stage editing page. Choose Save to close the pipeline editing page.

Create a connection to GitHub (CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a connection to GitHub.

To do this, use the create-connection command.

Important

A connection created through the AWS CLI or AWS CloudFormation is in PENDING status by
default. After you create a connection with the CLI or AWS CloudFormation, use the console
to edit the connection to make its status AVAILABLE.

To create a connection to GitHub

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows). Use the AWS
CLI to run the create-connection command, specifying the --provider-type and --
connection-name for your connection. In this example, the third-party provider name is
GitHub and the specified connection name is MyConnection.

aws codestar-connections create-connection --provider-type GitHub --connection-name
 MyConnection

If successful, this command returns the connection ARN information similar to the following.

{
 "ConnectionArn": "arn:aws:codestar-connections:us-west-2:account_id:connection/
aEXAMPLE-8aad-4d5d-8878-dfcab0bc441f"
}

Migrate polling pipelines for a GitHub version 1 source action to connections API Version 2015-07-09 481

AWS CodePipeline User Guide

2. Use the console to complete the connection.

Migrate polling pipelines for a GitHub version 1 source action to
webhooks

You can migrate your pipeline to use webhooks to detect changes in your GitHub source repository.
This migration to webhooks is for the GitHub version 1 action only.

• Console: Migrate polling pipelines to webhooks (GitHub version 1 source actions) (console)

• CLI: Migrate polling pipelines to webhooks (GitHub version 1 source actions) (CLI)

• AWS CloudFormation: Update pipelines for push events (GitHub version 1 source actions) (AWS
CloudFormation template)

Migrate polling pipelines to webhooks (GitHub version 1 source actions) (console)

You can use the CodePipeline console to update your pipeline to use webhooks to detect changes
in your CodeCommit source repository.

Follow these steps to edit a pipeline that is using polling (periodic checks) to use EventBridge
instead. If you want to create a pipeline, see Create a pipeline in CodePipeline.

When you use the console, the PollForSourceChanges parameter for your pipelined is changed
for you. The GitHub webhook is created and registered for you.

To edit the pipeline source stage

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit. This opens a detailed view of the
pipeline, including the state of each of the actions in each stage of the pipeline.

3. On the pipeline details page, choose Edit.

4. In Edit stage, choose the edit icon on the source action.

5. Expand Change detection options and choose Use Amazon CloudWatch Events to
automatically start my pipeline when a change occurs (recommended).

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 482

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

A message is displayed to advise that CodePipeline creates a webhook in GitHub to detect
source changes: AWS CodePipeline will create a webhook for you. You can opt-out in the
options below. Choose Update. In addition to the webhook, CodePipeline creates the
following:

• A secret, randomly generated and used to authorize the connection to GitHub.

• The webhook URL, generated using the public endpoint for the Region.

CodePipeline registers the webhook with GitHub. This subscribes the URL to receive repository
events.

6. When you have finished editing your pipeline, choose Save pipeline changes to return to the
summary page.

A message displays the name of the webhook to be created for your pipeline. Choose Save and
continue.

7. To test your action, release a change by using the AWS CLI to commit a change to the source
specified in the source stage of the pipeline.

Migrate polling pipelines to webhooks (GitHub version 1 source actions) (CLI)

Follow these steps to edit a pipeline that is using periodic checks to use a webhook instead. If you
want to create a pipeline, see Create a pipeline in CodePipeline.

To build an event-driven pipeline, you edit the PollForSourceChanges parameter of your
pipeline and then create the following resources manually:

• GitHub webhook and authorization parameters

To create and register your webhook

Note

When you use the CLI or AWS CloudFormation to create a pipeline and add a webhook,
you must disable periodic checks. To disable periodic checks, you must explicitly add
the PollForSourceChanges parameter and set it to false, as detailed in the final
procedure below. Otherwise, the default for a CLI or AWS CloudFormation pipeline is that

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 483

AWS CodePipeline User Guide

PollForSourceChanges defaults to true and does not display in the pipeline structure
output. For more information about PollForSourceChanges defaults, see Default settings
for the PollForSourceChanges parameter.

1. In a text editor, create and save a JSON file for the webhook you want to create. Use this
sample file for a webhook named my-webhook:

{
 "webhook": {
 "name": "my-webhook",
 "targetPipeline": "pipeline_name",
 "targetAction": "source_action_name",
 "filters": [{
 "jsonPath": "$.ref",
 "matchEquals": "refs/heads/{Branch}"
 }],
 "authentication": "GITHUB_HMAC",
 "authenticationConfiguration": {
 "SecretToken": "secret"
 }
 }
}

2. Call the put-webhook command and include the --cli-input and --region parameters.

The following sample command creates a webhook with the webhook_json JSON file.

aws codepipeline put-webhook --cli-input-json file://webhook_json.json --region
 "eu-central-1"

3. In the output shown in this example, the URL and ARN are returned for a webhook named my-
webhook.

{
 "webhook": {
 "url": "https://webhooks.domain.com/
trigger111111111EXAMPLE11111111111111111",
 "definition": {
 "authenticationConfiguration": {
 "SecretToken": "secret"
 },

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 484

AWS CodePipeline User Guide

 "name": "my-webhook",
 "authentication": "GITHUB_HMAC",
 "targetPipeline": "pipeline_name",
 "targetAction": "Source",
 "filters": [
 {
 "jsonPath": "$.ref",
 "matchEquals": "refs/heads/{Branch}"
 }
]
 },
 "arn": "arn:aws:codepipeline:eu-central-1:ACCOUNT_ID:webhook:my-webhook"
 },
 "tags": [{
 "key": "Project",
 "value": "ProjectA"
 }]
}

This example adds tagging to the webhook by including the Project tag key and ProjectA
value on the webhook. For more information about tagging resources in CodePipeline, see
Tagging resources.

4. Call the register-webhook-with-third-party command and include the --webhook-name
parameter.

The following sample command registers a webhook named my-webhook.

aws codepipeline register-webhook-with-third-party --webhook-name my-webhook

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 485

AWS CodePipeline User Guide

1. Run the get-pipeline command to copy the pipeline structure into a JSON file. For example,
for a pipeline named MyFirstPipeline, you would type the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and edit the source stage by changing or
adding the PollForSourceChanges parameter. In this example, for a repository named
UserGitHubRepo, the parameter is set to false .

Why am I making this change? Changing this parameter turns off periodic checks so you can
use event-based change detection only.

"configuration": {
 "Owner": "name",
 "Repo": "UserGitHubRepo",
 "PollForSourceChanges": "false",
 "Branch": "main",
 "OAuthToken": "****"
},

3. If you are working with the pipeline structure retrieved using the get-pipeline command,
you must edit the structure in the JSON file by removing the metadata lines from the
file. Otherwise, the update-pipeline command cannot use it. Remove the "metadata"
section from the pipeline structure in the JSON file, including the : { } and the "created",
"pipelineARN", and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
},

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file,
similar to the following:

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 486

AWS CodePipeline User Guide

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

Update pipelines for push events (GitHub version 1 source actions) (AWS
CloudFormation template)

Follow these steps to update your pipeline (with a GitHub source) from periodic checks (polling) to
event-based change detection using webhooks.

To build an event-driven pipeline with AWS CodeCommit, you edit the PollForSourceChanges
parameter of your pipeline and then add a GitHub webhook resource to your template.

If you use AWS CloudFormation to create and manage your pipelines, your template has content
like the following.

Note

Note the PollForSourceChanges configuration property in the source stage. If your
template doesn't include that property, then PollForSourceChanges is set to true by
default.

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 487

AWS CodePipeline User Guide

YAML

Resources:
 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 Name: github-polling-pipeline
 RoleArn:
 !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: ThirdParty
 Version: 1
 Provider: GitHub
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 Owner: !Ref GitHubOwner
 Repo: !Ref RepositoryName
 Branch: !Ref BranchName
 OAuthToken:
 {{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}
 PollForSourceChanges: true
 RunOrder: 1

...

JSON

 "AppPipeline": {
 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "Name": "github-polling-pipeline",
 "RoleArn": {
 "Fn::GetAtt": [
 "CodePipelineServiceRole",

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 488

AWS CodePipeline User Guide

 "Arn"
]
 },
 "Stages": [
 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "ThirdParty",
 "Version": 1,
 "Provider": "GitHub"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "Owner": {
 "Ref": "GitHubOwner"
 },
 "Repo": {
 "Ref": "RepositoryName"
 },
 "Branch": {
 "Ref": "BranchName"
 },
 "OAuthToken":
 "{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}",
 "PollForSourceChanges": true
 },
 "RunOrder": 1
 }
]
 },

...

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 489

AWS CodePipeline User Guide

To add parameters and create a webhook in your template

We strongly recommend that you use AWS Secrets Manager to store your credentials. If you use
Secrets Manager, you must have already configured and stored your secret parameters in Secrets
Manager. This example uses dynamic references to Secrets Manager for the GitHub credentials for
your webhook. For more information, see Using Dynamic References to Specify Template Values.

Important

When passing secret parameters, do not enter the value directly into the template. The
value is rendered as plaintext and is therefore readable. For security reasons, do not use
plaintext in your AWS CloudFormation template to store your credentials.

When you use the CLI or AWS CloudFormation to create a pipeline and add a webhook, you must
disable periodic checks.

Note

To disable periodic checks, you must explicitly add the PollForSourceChanges
parameter and set it to false, as detailed in the final procedure below. Otherwise, the
default for a CLI or AWS CloudFormation pipeline is that PollForSourceChanges
defaults to true and does not display in the pipeline structure output. For more information
about PollForSourceChanges defaults, see Default settings for the PollForSourceChanges
parameter.

1. In the template, under Resources, add your parameters:

YAML

Parameters:
 GitHubOwner:
 Type: String

...

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 490

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager

AWS CodePipeline User Guide

JSON

{
 "Parameters": {
 "BranchName": {
 "Description": "GitHub branch name",
 "Type": "String",
 "Default": "main"
 },
 "GitHubOwner": {
 "Type": "String"
 },

...

2. Use the AWS::CodePipeline::Webhook AWS CloudFormation resource to add a webhook.

Note

The TargetAction you specify must match the Name property of the source action
defined in the pipeline.

If RegisterWithThirdParty is set to true, make sure the user associated to the
OAuthToken can set the required scopes in GitHub. The token and webhook require the
following GitHub scopes:

• repo - used for full control to read and pull artifacts from public and private repositories
into a pipeline.

• admin:repo_hook - used for full control of repository hooks.

Otherwise, GitHub returns a 404. For more information about the 404 returned, see https://
help.github.com/articles/about-webhooks.

YAML

 AppPipelineWebhook:
 Type: AWS::CodePipeline::Webhook
 Properties:

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 491

https://help.github.com/articles/about-webhooks
https://help.github.com/articles/about-webhooks

AWS CodePipeline User Guide

 Authentication: GITHUB_HMAC
 AuthenticationConfiguration:
 SecretToken:
 {{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}
 Filters:
 -
 JsonPath: "$.ref"
 MatchEquals: refs/heads/{Branch}
 TargetPipeline: !Ref AppPipeline
 TargetAction: SourceAction
 Name: AppPipelineWebhook
 TargetPipelineVersion: !GetAtt AppPipeline.Version
 RegisterWithThirdParty: true

...

JSON

"AppPipelineWebhook": {
 "Type": "AWS::CodePipeline::Webhook",
 "Properties": {
 "Authentication": "GITHUB_HMAC",
 "AuthenticationConfiguration": {
 "SecretToken":
 "{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}"
 },
 "Filters": [{
 "JsonPath": "$.ref",
 "MatchEquals": "refs/heads/{Branch}"
 }],
 "TargetPipeline": {
 "Ref": "AppPipeline"
 },
 "TargetAction": "SourceAction",
 "Name": "AppPipelineWebhook",
 "TargetPipelineVersion": {
 "Fn::GetAtt": [
 "AppPipeline",
 "Version"
]
 },
 "RegisterWithThirdParty": true

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 492

AWS CodePipeline User Guide

 }
},

...

3. Save the updated template to your local computer, and then open the AWS CloudFormation
console.

4. Choose your stack, and then choose Create Change Set for Current Stack.

5. Upload the template, and then view the changes listed in AWS CloudFormation. These are the
changes to be made to the stack. You should see your new resources in the list.

6. Choose Execute.

To edit your pipeline's PollForSourceChanges parameter

Important

When you create a pipeline with this method, the PollForSourceChanges parameter
defaults to true if it is not explicitly set to false. When you add event-based change
detection, you must add the parameter to your output and set it to false to disable polling.
Otherwise, your pipeline starts twice for a single source change. For details, see Default
settings for the PollForSourceChanges parameter.

• In the template, change PollForSourceChanges to false. If you did not include
PollForSourceChanges in your pipeline definition, add it and set it to false.

Why am I making this change? Changing this parameter to false turns off periodic checks
so you can use event-based change detection only.

YAML

 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: ThirdParty
 Version: 1

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 493

AWS CodePipeline User Guide

 Provider: GitHub
 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 Owner: !Ref GitHubOwner
 Repo: !Ref RepositoryName
 Branch: !Ref BranchName
 OAuthToken:
 {{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}
 PollForSourceChanges: false
 RunOrder: 1

JSON

 {
 "Name": "Source",
 "Actions": [{
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "ThirdParty",
 "Version": 1,
 "Provider": "GitHub"
 },
 "OutputArtifacts": [{
 "Name": "SourceOutput"
 }],
 "Configuration": {
 "Owner": {
 "Ref": "GitHubOwner"
 },
 "Repo": {
 "Ref": "RepositoryName"
 },
 "Branch": {
 "Ref": "BranchName"
 },
 "OAuthToken":
 "{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}",
 PollForSourceChanges: false
 },
 "RunOrder": 1
 }]

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 494

AWS CodePipeline User Guide

Example

When you create these resources with AWS CloudFormation, the webhook defined is created in the
specified GitHub repository. Your pipeline is triggered on commit.

YAML

Parameters:
 GitHubOwner:
 Type: String

Resources:
 AppPipelineWebhook:
 Type: AWS::CodePipeline::Webhook
 Properties:
 Authentication: GITHUB_HMAC
 AuthenticationConfiguration:
 SecretToken: {{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}
 Filters:
 -
 JsonPath: "$.ref"
 MatchEquals: refs/heads/{Branch}
 TargetPipeline: !Ref AppPipeline
 TargetAction: SourceAction
 Name: AppPipelineWebhook
 TargetPipelineVersion: !GetAtt AppPipeline.Version
 RegisterWithThirdParty: true
 AppPipeline:
 Type: AWS::CodePipeline::Pipeline
 Properties:
 Name: github-events-pipeline
 RoleArn:
 !GetAtt CodePipelineServiceRole.Arn
 Stages:
 -
 Name: Source
 Actions:
 -
 Name: SourceAction
 ActionTypeId:
 Category: Source
 Owner: ThirdParty
 Version: 1
 Provider: GitHub

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 495

AWS CodePipeline User Guide

 OutputArtifacts:
 - Name: SourceOutput
 Configuration:
 Owner: !Ref GitHubOwner
 Repo: !Ref RepositoryName
 Branch: !Ref BranchName
 OAuthToken:
 {{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}
 PollForSourceChanges: false
 RunOrder: 1

...

JSON

{
 "Parameters": {
 "BranchName": {
 "Description": "GitHub branch name",
 "Type": "String",
 "Default": "main"
 },
 "RepositoryName": {
 "Description": "GitHub repository name",
 "Type": "String",
 "Default": "test"
 },
 "GitHubOwner": {
 "Type": "String"
 },
 "ApplicationName": {
 "Description": "CodeDeploy application name",
 "Type": "String",
 "Default": "DemoApplication"
 },
 "BetaFleet": {
 "Description": "Fleet configured in CodeDeploy",
 "Type": "String",
 "Default": "DemoFleet"
 }
 },
 "Resources": {

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 496

AWS CodePipeline User Guide

...

 },
 "AppPipelineWebhook": {
 "Type": "AWS::CodePipeline::Webhook",
 "Properties": {
 "Authentication": "GITHUB_HMAC",
 "AuthenticationConfiguration": {
 "SecretToken": {

 "{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}"
 }
 },
 "Filters": [
 {
 "JsonPath": "$.ref",
 "MatchEquals": "refs/heads/{Branch}"
 }
],
 "TargetPipeline": {
 "Ref": "AppPipeline"
 },
 "TargetAction": "SourceAction",
 "Name": "AppPipelineWebhook",
 "TargetPipelineVersion": {
 "Fn::GetAtt": [
 "AppPipeline",
 "Version"
]
 },
 "RegisterWithThirdParty": true
 }
 },
 "AppPipeline": {
 "Type": "AWS::CodePipeline::Pipeline",
 "Properties": {
 "Name": "github-events-pipeline",
 "RoleArn": {
 "Fn::GetAtt": [
 "CodePipelineServiceRole",
 "Arn"
]
 },
 "Stages": [

Migrate polling pipelines for a GitHub version 1 source action to webhooks API Version 2015-07-09 497

AWS CodePipeline User Guide

 {
 "Name": "Source",
 "Actions": [
 {
 "Name": "SourceAction",
 "ActionTypeId": {
 "Category": "Source",
 "Owner": "ThirdParty",
 "Version": 1,
 "Provider": "GitHub"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceOutput"
 }
],
 "Configuration": {
 "Owner": {
 "Ref": "GitHubOwner"
 },
 "Repo": {
 "Ref": "RepositoryName"
 },
 "Branch": {
 "Ref": "BranchName"
 },
 "OAuthToken":
 "{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}",
 "PollForSourceChanges": false
 },
 "RunOrder": 1

...

Create the CodePipeline service role

When you create a pipeline, you create a service role or use an existing service role.

You can use the CodePipeline console or the AWS CLI to create a CodePipeline service role. A
service role is required to create a pipeline, and the pipeline is always associated to that service
role.

Create the CodePipeline service role API Version 2015-07-09 498

AWS CodePipeline User Guide

Before you create a pipeline with the AWS CLI, you must create a CodePipeline service role for your
pipeline. For an example AWS CloudFormation template with the service role and policy specified,
see the tutorials in Tutorial: Create a pipeline that uses variables from AWS CloudFormation
deployment actions.

The service role is not an AWS managed role but is created initially for pipeline creation, and then
as new permissions are added to the service role policy, you may need to update the service role
for your pipeline. Once your pipeline is created with a service role, you cannot apply a different
service role to that pipeline. Attach the recommended policy to the service role.

For more information about the service role, see Manage the CodePipeline service role.

Create the CodePipeline service role (console)

When you use the console to create a pipeline, you create the CodePipeline service role with the
pipeline creation wizard.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

Choose Create pipeline and complete the Step 1: Choose pipeline settings page in the
pipeline creation wizard.

Note

After you create a pipeline, you cannot change its name. For information about other
limitations, see Quotas in AWS CodePipeline.

2. In Service role, choose New service role to allow CodePipeline to create a new service role in
IAM.

3. Complete the pipeline creation. Your pipeline service role is available to view in your list of
IAM roles, and you can view the service role ARN associated to a pipeline by running the get-
pipeline command with the AWS CLI.

Create the CodePipeline service role (CLI)

Before you create a pipeline with the AWS CLI or AWS CloudFormation, you must create a
CodePipeline service role for your pipeline and attach the service role policy and the trust policy.

Create the CodePipeline service role (console) API Version 2015-07-09 499

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

To use the CLI to create your service role, use the steps below to first create a trust policy JSON and
the role policy JSON as separate files in the directory where you will run the CLI commands.

Note

We recommend that you allow only administrative users to create any service role. A person
with permissions to create a role and attach any policy can escalate their own permissions.
Instead, create a policy that allows them to create only the roles that they need or have an
administrator create the service role on their behalf.

1. In a terminal window, enter the following command to create a file named
TrustPolicy.json, where you will paste the role policy JSON. This example uses VIM.

vim TrustPolicy.json

2. Paste the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "codepipeline.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To save and exit the file, enter the following VIM command:

:wq

3. In a terminal window, enter the following command to create a file named
RolePolicy.json, where you will paste the role policy JSON. This example uses VIM.

vim RolePolicy.json

Create the CodePipeline service role (CLI) API Version 2015-07-09 500

AWS CodePipeline User Guide

4. Paste the following JSON into the file. Make sure to scope down permissions as much as
possible by adding the Amazon Resource Name (ARN) for your pipeline in the policy statement
Resource field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:CancelUploadArchive",
 "codecommit:GetBranch",
 "codecommit:GetCommit",
 "codecommit:GetUploadArchiveStatus",
 "codecommit:UploadArchive"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetApplicationRevision",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "devicefarm:ListProjects",
 "devicefarm:ListDevicePools",
 "devicefarm:GetRun",

Create the CodePipeline service role (CLI) API Version 2015-07-09 501

AWS CodePipeline User Guide

 "devicefarm:GetUpload",
 "devicefarm:CreateUpload",
 "devicefarm:ScheduleRun"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:ListFunctions"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "rds:*",
 "sqs:*",
 "ecs:*"
],
 "Resource": "resource_ARN"
 }
]
}

To save and exit the file, enter the following VIM command:

Create the CodePipeline service role (CLI) API Version 2015-07-09 502

AWS CodePipeline User Guide

:wq

5. Enter the following command to create the role and attach the trust role policy. The policy
name format is normally the same as the role name format. This examples uses the role name
MyRole and the policy TrustPolicy that was created as a separate file.

aws iam create-role --role-name MyRole --assume-role-policy-document file://
TrustPolicy.json

6. Enter the following command to create the role policy and attach it to the role. The policy
name format is normally the same as the role name format. This examples uses the role name
MyRole and the policy MyRole that was created as a separate file.

aws iam put-role-policy --role-name MyRole --policy-name RolePolicy --policy-
document file://RolePolicy.json

7. To view the created role name and trust policy, enter the following command for the role
named MyRole:

aws iam get-role --role-name MyRole

8. Use the service role ARN when you create your pipeline with the AWS CLI or AWS
CloudFormation.

Tag a pipeline in CodePipeline

Tags are key-value pairs associated with AWS resources. You can apply tags to your pipelines in
CodePipeline. For information about CodePipeline resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a pipeline. You can use the console or CLI to
add or remove tags, and update the values of tags in a pipeline. You can add up to 50 tags to each
pipeline.

Topics

• Tag pipelines (console)

• Tag pipelines (CLI)

Tag a pipeline API Version 2015-07-09 503

AWS CodePipeline User Guide

Tag pipelines (console)

You can use the console or the CLI to tag resources. Pipelines are the only CodePipeline resource
that can be managed with either the console or the CLI.

Topics

• Add tags to a pipeline (console)

• View tags for a pipeline (console)

• Edit tags for a pipeline (console)

• Remove tags from a pipeline (console)

Add tags to a pipeline (console)

You can use the console to add tags to an existing pipeline.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Pipelines page, choose the pipeline where you want to add tags.

3. From the navigation pane, choose Settings.

4. Under Pipeline tags, choose Edit.

5. In the Key and Value fields, enter a key pair for each set of tags you want to add. (The Value
field is optional.) For example, in Key, enter Project. In Value, enter ProjectA.

6. (Optional) Choose Add tag to add more rows and enter more tags.

7. Choose Submit. The tags are listed under pipeline settings.

View tags for a pipeline (console)

You can use the console to list tags for existing pipelines.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Pipelines page, choose the pipeline where you want to view tags.

3. From the navigation pane, choose Settings.

4. Under Pipeline tags, view the tags for the pipeline under the Key and Value columns.

Tag pipelines (console) API Version 2015-07-09 504

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Edit tags for a pipeline (console)

You can use the console to edit tags that have been added to pipelines.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Pipelines page, choose the pipeline where you want to update tags.

3. From the navigation pane, choose Settings.

4. Under Pipeline tags, choose Edit.

5. In the Key and Value fields, update the values in each field as needed. For example, for the
Project key, in Value, change ProjectA to ProjectB.

6. Choose Submit.

Remove tags from a pipeline (console)

You can use the console to delete tags from pipelines. When you remove tags from the associated
resource, the tags are deleted.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Pipelines page, choose the pipeline where you want to remove tags.

3. From the navigation pane, choose Settings.

4. Under Pipeline tags, choose Edit.

5. Next to the key and value for each tag you want to delete, choose Remove tag.

6. Choose Submit.

Tag pipelines (CLI)

You can use the CLI to tag resources. You must use the console to manage tags in pipelines.

Topics

• Add tags to a pipeline (CLI)

• View tags for a pipeline (CLI)

• Edit tags for a pipeline (CLI)

Tag pipelines (CLI) API Version 2015-07-09 505

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

• Remove tags from a pipeline (CLI)

Add tags to a pipeline (CLI)

You can use the console or the AWS CLI to tag pipelines.

To add a tag to a pipeline when you create it, see Create a pipeline in CodePipeline.

In these steps, we assume that you have already installed a recent version of the AWS CLI or
updated to the current version. For more information, see Installing the AWS Command Line
Interface.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the pipeline where you want to add tags and the key and value of the tag you
want to add. You can add more than one tag to a pipeline. For example, to tag a pipeline named
MyPipeline with two tags, a tag key named DeploymentEnvironment with the tag value of
Test, and a tag key named IscontainerBased with the tag value of true:

aws codepipeline tag-resource --resource-arn arn:aws:codepipeline:us-west-2:account-
id:MyPipeline --tags key=Project,value=ProjectA key=IscontainerBased,value=true

If successful, this command returns nothing.

View tags for a pipeline (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a pipeline. If no tags have been
added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command. For example,
to view a list of tag keys and tag values for a pipeline named MyPipeline with the
arn:aws:codepipeline:us-west-2:account-id:MyPipeline ARN value:

aws codepipeline list-tags-for-resource --resource-arn arn:aws:codepipeline:us-
west-2:account-id:MyPipeline

If successful, this command returns information similar to the following:

{
 "tags": {
 "Project": "ProjectA",

Tag pipelines (CLI) API Version 2015-07-09 506

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS CodePipeline User Guide

 "IscontainerBased": "true"
 }
}

Edit tags for a pipeline (CLI)

Follow these steps to use the AWS CLI to edit a tag for a pipeline. You can change the value for an
existing key or add another key. You can also remove tags from a pipeline, as shown in the next
section.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
pipeline where you want to update a tag and specify the tag key and tag value:

aws codepipeline tag-resource --resource-arn arn:aws:codepipeline:us-west-2:account-
id:MyPipeline --tags key=Project,value=ProjectA

If successful, this command returns nothing.

Remove tags from a pipeline (CLI)

Follow these steps to use the AWS CLI to remove a tag from a pipeline. When you remove tags
from the associated resource, the tags are deleted.

Note

If you delete a pipeline, all tag associations are removed from the deleted pipeline. You do
not have to remove tags before you delete a pipeline.

At the terminal or command line, run the untag-resource command, specifying the ARN of the
pipeline where you want to remove tags and the tag key of the tag you want to remove. For
example, to remove multiple tags on a pipeline named MyPipeline with the tag keys Project
and IscontainerBased:

aws codepipeline untag-resource --resource-arn arn:aws:codepipeline:us-west-2:account-
id:MyPipeline --tag-keys Project IscontainerBased

If successful, this command returns nothing. To verify the tags associated with the pipeline, run the
list-tags-for-resource command.

Tag pipelines (CLI) API Version 2015-07-09 507

AWS CodePipeline User Guide

Create a notification rule

You can use notification rules to notify users of important changes, such as when a pipeline starts
execution. Notification rules specify both the events and the Amazon SNS topic that is used to send
notifications. For more information, see What are notifications?

You can use the console or the AWS CLI to create notification rules for AWS CodePipeline.

To create a notification rule (console)

1. Sign in to the AWS Management Console and open the CodePipeline console at https://
console.aws.amazon.com/codepipeline/.

2. Choose Pipelines, and then choose a pipeline where you want to add notifications.

3. On the pipeline page, choose Notify, and then choose Create notification rule. You can also
go to the Settings page for the pipeline and choose Create notification rule.

4. In Notification name, enter a name for the rule.

5.
In Detail type, choose Basic if you want only the information provided to Amazon EventBridge
included in the notification. Choose Full if you want to include information provided to
Amazon EventBridge and information that might be supplied by the CodePipeline or the
notification manager.

For more information, see Understanding Notification Contents and Security.

6. In Events that trigger notifications, select the events for which you want to send notifications.
For more information, see Events for Notification Rules on Pipelines.

7. In Targets, do one of the following:

• If you have already configured a resource to use with notifications, in Choose target type,
choose either AWS Chatbot (Slack) or SNS topic. In Choose target, choose the name of the
client (for a Slack client configured in AWS Chatbot) or the Amazon Resource Name (ARN) of
the Amazon SNS topic (for Amazon SNS topics already configured with the policy required
for notifications).

• If you have not configured a resource to use with notifications, choose Create target, and
then choose SNS topic. Provide a name for the topic after codestar-notifications-, and then
choose Create.

Create a notification rule API Version 2015-07-09 508

https://docs.aws.amazon.com/codestar-notifications/latest/userguide/welcome.html
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/security.html#security-notifications
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/concepts.html#events-ref-pipeline

AWS CodePipeline User Guide

Note

• If you create the Amazon SNS topic as part of creating the notification rule, the
policy that allows the notifications feature to publish events to the topic is applied
for you. Using a topic created for notification rules helps ensure that you subscribe
only those users that you want to receive notifications about this resource.

• You cannot create an AWS Chatbot client as part of creating a notification rule. If you
choose AWS Chatbot (Slack), you will see a button directing you to configure a client
in AWS Chatbot. Choosing that option opens the AWS Chatbot console. For more
information, see Configure Integrations Between Notifications and AWS Chatbot.

• If you want to use an existing Amazon SNS topic as a target, you must add the
required policy for AWS CodeStar Notifications in addition to any other policies that
might exist for that topic. For more information, see Configure Amazon SNS Topics
for Notifications and Understanding Notification Contents and Security.

8. To finish creating the rule, choose Submit.

9. You must subscribe users to the Amazon SNS topic for the rule before they can receive
notifications. For more information, see Subscribe Users to Amazon SNS Topics That Are
Targets. You can also set up integration between notifications and AWS Chatbot to send
notifications to Amazon Chime chatrooms or Slack channels. For more information, see
Configure Integration Between Notifications and AWS Chatbot.

To create a notification rule (AWS CLI)

1. At a terminal or command prompt, run the create-notification rule command to generate the
JSON skeleton:

aws codestar-notifications create-notification-rule --generate-cli-skeleton
 > rule.json

You can name the file anything you want. In this example, the file is named rule.json.

2. Open the JSON file in a plain-text editor and edit it to include the resource, event types,
and target you want for the rule. The following example shows a notification rule named
MyNotificationRule for a pipeline named MyDemoPipeline in an AWS acccount with the

Create a notification rule API Version 2015-07-09 509

https://docs.aws.amazon.com/codestar-notifications/latest/userguide/notifications-chatbot.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/set-up-sns.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/set-up-sns.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/security.html#security-notifications
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/subscribe-users-sns.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/subscribe-users-sns.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/notifications-chatbot.html

AWS CodePipeline User Guide

ID 123456789012. Notifications are sent with the full detail type to an Amazon SNS topic
named codestar-notifications-MyNotificationTopic when pipeline executions start:

{
 "Name": "MyNotificationRule",
 "EventTypeIds": [
 "codepipeline-pipeline-pipeline-execution-started"
],
 "Resource": "arn:aws:codebuild:us-east-2:123456789012:MyDemoPipeline",
 "Targets": [
 {
 "TargetType": "SNS",
 "TargetAddress": "arn:aws:sns:us-east-2:123456789012:codestar-
notifications-MyNotificationTopic"
 }
],
 "Status": "ENABLED",
 "DetailType": "FULL"
}

Save the file.

3. Using the file you just edited, at the terminal or command line, run the create-notification-
rule command again to create the notification rule:

aws codestar-notifications create-notification-rule --cli-input-json
 file://rule.json

4. If successful, the command returns the ARN of the notification rule, similar to the following:

{
 "Arn": "arn:aws:codestar-notifications:us-east-1:123456789012:notificationrule/
dc82df7a-EXAMPLE"
}

Create a notification rule API Version 2015-07-09 510

AWS CodePipeline User Guide

Working with triggers in CodePipeline

Triggers allow you to configure your pipeline to start on a particular event type or filtered event
type, such as when a change on a particular branch or pull request is detected. Triggers are
configurable for source actions with connections that use the CodeStarSourceConnection
action in CodePipeline, such as GitHub, Bitbucket, and GitLab.

Source actions, such as CodeCommit and S3, use change detection as detailed in this section about
starting pipelines.

You can add a trigger to your pipeline and configure the trigger to filter on particular events

You specify triggers using the console or CLI.

Filter triggers on code push or pull requests

You can configure filters for pipeline triggers to have pipeline executions started for different Git
events, such as tag or branch push, changes in specific file paths, a pull request opened into a
specific branch, and so on. You can use the AWS CodePipeline console or the create-pipeline and
update-pipeline commands in the AWS CLI to configure triggers' filters.

You can specify filters for the following trigger types:

• Push

A push trigger starts a pipeline when a change is pushed to your source repository. The execution
will use the commit from the branch that you're pushing to (that is, the destination branch). You
can filter push triggers on branches, file paths, or Git tags.

• Pull request

A pull request trigger starts a pipeline when a pull request is opened, updated, or closed in your
source repository. The execution will use the commit from the source branch that you're pulling
from (that is, the source branch). You can filter pull request triggers on branches and file paths.

Note

The supported event types for pull requests are opened, updated, or closed (merged). All
other pull request events are ignored.

Filter triggers on code push or pull requests API Version 2015-07-09 511

AWS CodePipeline User Guide

The pipeline definition allows you to combine different filters within the same push trigger
configuration. For details about the pipeline definition, see Trigger filtering in the pipeline JSON
(CLI). Valid combinations are:

• tags

• branches

• branches + file paths

You specify filter types as follows:

• No filter

This trigger configuration starts your pipeline on any push to the default branch specified as part
of action configuration.

• Specify filter

You add a filter that starts your pipeline on a specific filter, such as on branch names for a code
push, and fetches the exact commit. This also configures the pipeline not to start automatically
on any change.

• Do not detect changes

This does not add a trigger and the pipeline does not start automatically on any change.

The following table provides valid filter options for each event type. The table also shows which
trigger configurations default to true or false for automatic change detection in the action
configuration.

Trigger configura
tion

Event type Filter options Detect changes

Add a trigger – no
filter

none none true

Add a trigger – filter
on code push

push event Git tags, branches,
file paths

false

Filter triggers on code push or pull requests API Version 2015-07-09 512

AWS CodePipeline User Guide

Trigger configura
tion

Event type Filter options Detect changes

Add a trigger – filter
for pull requests

pull requests branches, file paths false

No trigger – do not
detect

none none false

Note

This trigger type uses automated change detection (as the Webhook trigger type). The
source action providers that use this trigger type are connections configured for code push
(Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and GitLab self-managed).

For filtering, regular expression patterns in glob format are supported as detailed in Working with
glob patterns in syntax.

Note

In certain cases, for pipelines with triggers that are filtered on file paths, the pipeline might
not start when a branch with a file path filter is first created. For more information, see
Pipelines with connections that use trigger filtering by file paths might not start at branch
creation.

Topics

• Considerations for trigger filters

• Examples for trigger filters

• Filtering on push events (console)

• Filtering on pull requests (console)

• Trigger filtering in the pipeline JSON (CLI)

• Trigger filtering in AWS CloudFormation templates

Filter triggers on code push or pull requests API Version 2015-07-09 513

AWS CodePipeline User Guide

Considerations for trigger filters

The following considerations apply when using triggers.

• For a trigger with branch and file paths filters, when pushing the branch for the first time, the
pipeline won't run since there is not access to the list of files changed for the newly created
branch.

• Merging a pull request might trigger two pipeline executions, in cases where push (branches
filter) and pull request (branches filter) triggers configurations intersect.

Examples for trigger filters

For a Git configuration with filters for push and pull request event types, the specified filters might
conflict with each other. The following are examples of valid filter combinations for push and pull
request events.

When customers combining filters within single configuration object, these filters will use an AND
operation, meaning only a full match will start the pipeline. The following example shows the Git
configuration:

{
 "filePaths": {
 "includes": ["common/**/*.js"]
 },
 "branches": {
 "includes": ["feature/**"]
 }
}

With the Git configuration above, this example shows an event that will start the pipeline
execution because the AND operation succeeds.

{
 "ref": "refs/heads/feature/triggers",
 ...
 "commits": [
 {
 ...
 "modified": [

Considerations for trigger filters API Version 2015-07-09 514

AWS CodePipeline User Guide

 "common/app.js"
]
 ...
 }
]
}

This example shows an event that will not start the pipeline execution because the branch is able
to filter, but the file path is not.

{
 "ref": "refs/heads/feature/triggers",
 ...
 "commits": [
 {
 ...
 "modified": [
 "src/Main.java"
]
 ...
 }
]
}

At the same time, trigger configurations objects within the push array use an OR operation. This
allows you to configure multiple triggers to start the execution for the same pipeline. For a list of
field definitions in the JSON structure, see Trigger filtering in the pipeline JSON (CLI).

Filtering on push events (console)

You can use the console to add filters for push events and include or exclude branches or file paths.

Filtering on push events (console)

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names and status of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit. Otherwise, use these steps on the
pipeline creation wizard.

3. On the pipeline details page, choose Edit.

Filtering on push events (console) API Version 2015-07-09 515

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

4. On the Edit page, choose the source action you want to edit. Choose Edit triggers. Choose
Specify filter.

5. In Event type, choose Push from the following options.

• Choose Push to start the pipeline when a change is pushed to your source repository.
Choosing this enables the fields to specify filters for branches and file paths or Git tags.

• Choose Pull request to start the pipeline when a pull request is opened, updated, or closed
in your source repository. Choosing this enables the fields to specify filters for destination
branches and file paths.

6. In Filter type, choose one of the following options.

• Choose Branch to specify the branches in your source repository that the trigger monitors in
order to know when to start a workflow run. In Include, enter patterns for branch names in
glob format that you want to specify for the trigger configuration to start your pipeline on
changes in the specified branches. In Exclude, enter the regex patterns for branch names in
glob format that you want to specify for the trigger configuration to ignore and to not start
your pipeline on changes in the specified branches. See Working with glob patterns in syntax
for more information.

Note

If the include and exclude both have the same pattern, then the default is to exclude
the pattern.

You can use regex patterns in glob format to define your branch names. For example, use
main.* to match all branches beginning with main.*. See Working with glob patterns in
syntax for more information.

For a push trigger, specify the branches you're pushing to, that is, the destination branches.
For a pull request trigger, specify destination branches you're opening pull request to.

• (Optional) Under File paths, specify file paths for your trigger. Enter the names in Include
and Exclude as appropriate.

You can use regex patterns in glob format to define your file path names. For example, use
prod.* to match all file paths beginning with prod.*. See Working with glob patterns in
syntax for more information.

Filtering on push events (console) API Version 2015-07-09 516

AWS CodePipeline User Guide

• Choose Tags to configure the pipeline trigger configuration to start with Git tags. In
Include, enter patterns for tag names in glob format that you want to specify for the trigger
configuration to start your pipeline on release of the specified tag or tags. In Exclude, enter
the regex patterns for tag names in glob format that you want to specify for the trigger
configuration to ignore and to not start your pipeline on release of the specified tag or tags.
If the include and exclude both have the same tag pattern, then the default is to exclude the
tag pattern.

Filtering on pull requests (console)

You can use the console to add filters for pull requests with specified events and include or exclude
branches or file paths.

Filtering on pull requests (console)

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names and status of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit. Otherwise, use these steps on the
pipeline creation wizard.

3. On the pipeline details page, choose Edit.

4. On the Edit page, choose the source action you want to edit. Choose Edit triggers. Choose
Specify filter.

5. In Event type, choose Pull request from the following options.

• Choose Push to start the pipeline when a change is pushed to your source repository.
Choosing this enables the fields to specify filters for branches and file paths or Git tags.

• Choose Pull request to start the pipeline when a pull request is opened, updated, or closed
to the specified target branches. Choosing this enables the fields to specify filters for
branches and file paths.

You can optionally specify the following pull request events to filter:

• Pull request is created

• New revision is made to pull request

• Pull request is closed

Filtering on pull requests (console) API Version 2015-07-09 517

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

6. In Filter type, choose one of the following options.

• Choose Branch to specify the branches in your source repository that the trigger monitors in
order to know when to start a workflow run. In Include, enter patterns for branch names in
glob format that you want to specify for the trigger configuration to start your pipeline on
changes in the specified branches. In Exclude, enter the regex patterns for branch names in
glob format that you want to specify for the trigger configuration to ignore and to not start
your pipeline on changes in the specified branches. See Working with glob patterns in syntax
for more information.

Note

If the include and exclude both have the same pattern, then the default is to exclude
the pattern.

You can use regex patterns in glob format to define your branch names. For example, use
main.* to match all branches beginning with main.*. See Working with glob patterns in
syntax for more information.

For a push trigger, specify the branches you're pushing to, that is, the destination branches.
For a pull request trigger, specify destination branches you're opening pull request to.

• (Optional) Under File paths, specify file path names for your trigger. Enter the names in
Include and Exclude as appropriate.

You can use regex patterns in glob format to define your file path names. For example, use
prod.* to match all file paths beginning with prod.*. See Working with glob patterns in
syntax for more information.

Trigger filtering in the pipeline JSON (CLI)

You can update the pipeline JSON to add filters for triggers.

To use the AWS CLI to create or update your pipeline, use the create-pipeline or update-
pipeline command.

The following example JSON structure provides a reference for the field definitions under create-
pipeline.

Trigger filtering in the pipeline JSON (CLI) API Version 2015-07-09 518

AWS CodePipeline User Guide

{
 "pipeline": {
 "name": "MyServicePipeline",
 "triggers": [
 {
 "provider": "Connection",
 "gitConfiguration": {
 "sourceActionName": "ApplicationSource",
 "push": [
 {
 "filePaths": {
 "includes": [
 "projectA/**",
 "common/**/*.js"
],
 "excludes": [
 "**/README.md",
 "**/LICENSE",
 "**/CONTRIBUTING.md"
]
 },
 "branches": {
 "includes": [
 "feature/**",
 "release/**"
],
 "excludes": [
 "mainline"
]
 },
 "tags": {
 "includes": [
 "release-v0", "release-v1"
],
 "excludes": [
 "release-v2"
]
 }
 }
],
 "pullRequest": [
 {
 "events": [

Trigger filtering in the pipeline JSON (CLI) API Version 2015-07-09 519

AWS CodePipeline User Guide

 "CLOSED"
],
 "branches": {
 "includes": [
 "feature/**",
 "release/**"
],
 "excludes": [
 "mainline"
]
 },
 "filePaths": {
 "includes": [
 "projectA/**",
 "common/**/*.js"
],
 "excludes": [
 "**/README.md",
 "**/LICENSE",
 "**/CONTRIBUTING.md"
]
 }
 }
]
 }
 }
],
 "stages": [
 {
 "name": "Source",
 "actions": [
 {
 "name": "ApplicationSource",
 "configuration": {
 "BranchName": "mainline",
 "ConnectionArn": "arn:aws:codestar-connections:eu-
central-1:111122223333:connection/fe9ff2e8-ee25-40c9-829e-65f8EXAMPLE",
 "FullRepositoryId": "monorepo-example",
 "OutputArtifactFormat": "CODE_ZIP"
 }
 }
]
 }
]

Trigger filtering in the pipeline JSON (CLI) API Version 2015-07-09 520

AWS CodePipeline User Guide

 }
}

The fields in the JSON structure are defined as follows:

• sourceActionName: The name of the pipeline source action with the Git configuration.

• push: Push events with filtering. These events use an OR operation between different push
filters and an AND operation inside filters.

• branches: The branches to filter on. Branches use an AND operation between includes and
excludes.

• includes: Patterns to filter on for branches that will be included. Includes use an OR
operation.

• excludes: Patterns to filter on for branches that will be excluded. Excludes use an OR
operation.

• filePaths: The file path names to filter on.

• includes: Patterns to filter on for file paths that will be included. Includes use an OR
operation.

• excludes: Patterns to filter on for file paths that will be excluded. Excludes use an OR
operation.

• tags: The tag names to filter on.

• includes: Patterns to filter on for tags that will be included. Includes use an OR operation.

• excludes: Patterns to filter on for tags that will be excluded. Excludes use an OR operation.

• pullRequest: Pull request events with filtering on pull request events and pull request filters.

• events: Filters on open, updated, or closed pull request events as specified.

• branches: The branches to filter on. Branches use an AND operation between includes and
excludes.

• includes: Patterns to filter on for branches that will be included. Includes use an OR
operation.

• excludes: Patterns to filter on for branches that will be excluded. Excludes use an OR
operation.

• filePaths: The file path names to filter on.

• includes: Patterns to filter on for file paths that will be included. Includes use an OR
operation.

Trigger filtering in the pipeline JSON (CLI) API Version 2015-07-09 521

AWS CodePipeline User Guide

• excludes: Patterns to filter on for file paths that will be excluded. Excludes use an OR
operation.

Trigger filtering in AWS CloudFormation templates

You can update the pipeline resource in AWS CloudFormation to add trigger filtering.

The following example template snippet provides a YAML reference for triggers field definitions.
For a list of field definitions, see Trigger filtering in the pipeline JSON (CLI).

pipeline:
 name: MyServicePipeline
 executionMode: PARALLEL
 triggers:
 - provider: CodeConnection
 gitConfiguration:
 sourceActionName: ApplicationSource
 push:
 - filePaths:
 includes:
 - projectA/**
 - common/**/*.js
 excludes:
 - '**/README.md'
 - '**/LICENSE'
 - '**/CONTRIBUTING.md'
 branches:
 includes:
 - feature/**
 - release/**
 excludes:
 - mainline
 - tags:
 includes:
 - release-v0
 - release-v1
 excludes:
 - release-v2
 pullRequest:
 - events:
 - CLOSED
 branches:

Trigger filtering in AWS CloudFormation templates API Version 2015-07-09 522

AWS CodePipeline User Guide

 includes:
 - feature/**
 - release/**
 excludes:
 - mainline
 filePaths:
 includes:
 - projectA/**
 - common/**/*.js
 excludes:
 - '**/README.md'
 - '**/LICENSE'
 - '**/CONTRIBUTING.md'
 stages:
 - name: Source
 actions:
 - name: ApplicationSource
 configuration:
 BranchName: mainline
 ConnectionArn: arn:aws:codestar-connections:eu-
central-1:111122223333:connection/fe9ff2e8-ee25-40c9-829e-65f85EXAMPLE
 FullRepositoryId: monorepo-example
 OutputArtifactFormat: CODE_ZIP

Trigger filtering in AWS CloudFormation templates API Version 2015-07-09 523

AWS CodePipeline User Guide

Manage executions in CodePipeline

To analyse pipeline progress, you can view error logs, view pipeline and action execution history,
and retry failed stages or actions.

Topics

• View executions in CodePipeline

• Set the pipeline execution mode

• Retry a failed stage or failed actions in a stage

View executions in CodePipeline

You can use the AWS CodePipeline console or the AWS CLI to view execution status, view execution
history, and retry failed stages or actions.

Topics

• View pipeline execution history (console)

• View execution status (console)

• View an inbound execution (Console)

• View pipeline execution source revisions (console)

• View action executions (console)

• View action artifacts and artifact store information (console)

• View pipeline details and history (CLI)

View pipeline execution history (console)

You can use the CodePipeline console to view a list of all of the pipelines in your account. You
can also view details for each pipeline, including when actions last ran in the pipeline, whether
a transition between stages is enabled or disabled, whether any actions have failed, and other
information. You can also view a history page that shows details for all pipeline executions for
which history has been recorded. Execution history is retained for up to 12 months.

View executions API Version 2015-07-09 524

AWS CodePipeline User Guide

Note

Detailed execution history is available for executions run on or after February 21, 2019.

You can use the console to view the history of executions in a pipeline, including status, source
revisions, and timing details for each execution.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed, along with their
status.

2. In Name, choose the name of the pipeline.

3. Choose View history.

4. View the status, source revisions, change details, and triggers related to each execution for
your pipeline.

5. Choose an execution. The detail view shows execution details, the Timeline tab, the
Visualization tab, and the Variables tab. Variable values for variables at the pipeline level are
resolved at the time of pipeline execution and can be viewed in the execution history for each
execution.

Note

Output variables from pipeline actions can be viewed on the Output variables tab
under the history for each action execution.

View execution status (console)

You can view the pipeline status in Status on the execution history page. Choose an execution ID
link, and then view the action status.

The following are valid states for pipelines, stages, and actions:

View execution status (console) API Version 2015-07-09 525

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

Note

The following pipeline states also apply to a pipeline execution that is an inbound
execution. To view an inbound execution and its status, see View an inbound execution
(Console).

Pipeline-level states

Pipeline state Description

InProgress The pipeline execution is currently running.

Stopping The pipeline execution is stopping due to a request to either stop and
wait or stop and abandon the pipeline execution.

Stopped The stopping process is complete, and the pipeline execution is
stopped.

Succeeded The pipeline execution was completed successfully.

Superseded While this pipeline execution was waiting for the next stage to be
completed, a newer pipeline execution advanced and continued
through the pipeline instead.

Failed The pipeline execution was not completed successfully.

Stage-level states

Stage state Description

InProgress The stage is currently running.

Stopping The stage execution is stopping due to a request to either stop and wait
or stop and abandon the pipeline execution.

Stopped The stopping process is complete, and the stage execution is stopped.

Succeeded The stage was completed successfully.

View execution status (console) API Version 2015-07-09 526

AWS CodePipeline User Guide

Stage state Description

Failed The stage was not completed successfully.

Action-level states

Action state Description

InProgress The action is currently running.

Abandoned The action is abandoned due to a request to stop and abandon the
pipeline execution.

Succeeded The action was completed successfully.

Failed For approval actions, the FAILED state means the action was either
rejected by the reviewer or failed due to an incorrect action configura
tion.

View an inbound execution (Console)

You can use the console to view the status and details for an inbound execution. When the
transition is enabled or the stage becomes available, an inbound execution that is InProgress
continues and enters the stage. An inbound execution with a Stopped status does not enter the
stage. An inbound execution status changes to Failed if the pipeline is edited. When you edit a
pipeline, all in-progress executions do not continue, and the execution status changes to Failed.

If you do not see an inbound execution, then there are no pending executions at a disabled stage
transition.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account will be displayed.

2. Choose the name of the pipeline for which you want to view the inbound execution, Do one of
the following:

View an inbound execution (Console) API Version 2015-07-09 527

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

• Choose View. In the pipeline diagram, in the Inbound execution ID field in front of your
disabled transition, you can view the inbound execution ID.

Choose View summary to see execution details, such as the execution ID, source trigger, and
the name of the next stage.

• Choose the pipeline and choose View history.

View pipeline execution source revisions (console)

You can view details about source artifacts (output artifact that originated in the first stage of a
pipeline) that are used in an execution of a pipeline. The details include identifiers, such as commit
IDs, check-in comments, and, when you use the CLI, version numbers of pipeline build actions. For
some revision types, you can view and open the URL of the commit. Source revisions are made up
of the following:

• Summary: Summary information about the most recent revision of the artifact. For GitHub
and CodeCommit repositories, the commit message. For Amazon S3 buckets or actions, the
user-provided content of a codepipeline-artifact-revision-summary key specified in the object
metadata.

• revisionUrl: The revision URL for the artifact revision (for example, the external repository URL).

• revisionId: The revision ID for the artifact revision. For example, for a source change in a
CodeCommit or GitHub repository, this is the commit ID. For artifacts stored in GitHub or
CodeCommit repositories, the commit ID is linked to a commit details page.

View pipeline execution source revisions (console) API Version 2015-07-09 528

AWS CodePipeline User Guide

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS accountwill be displayed.

2. Choose the name of the pipeline for which you want to view source revision details. Do one of
the following:

• Choose View history. In Source revisions, the source change for each execution is listed.

• Locate an action for which you want to view source revision details, and then find the
revision information at the bottom of its stage:

Choose View current revisions to view source information. With the exception of artifacts
stored in Amazon S3 buckets, identifiers such as commit IDs in this information detail view
are linked to source information pages for the artifacts.

View pipeline execution source revisions (console) API Version 2015-07-09 529

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

View action executions (console)

You can view action details for a pipeline, such as action execution ID, input artifacts, output
artifacts, and status. You can view action details by choosing a pipeline in the console and then
choosing an execution ID.

Note

Detailed execution history is available for executions run on or after February 21, 2019.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. Choose the name of the pipeline for which you want to view action details, and then choose
View history.

3. In Execution ID, choose the execution ID for which you want to view action execution details.

4. You can view the following information on the Timeline tab:

a. In Action name, choose the link to open a details page for the action where you can view
status, stage name, action name, configuration data, and artifact information.

b. In Provider, choose the link to view the action provider details. For example, in the
preceding example pipeline, if you choose CodeDeploy in either the Staging or Production
stages, the CodeDeploy console page for the CodeDeploy application configured for that
stage is displayed.

View action artifacts and artifact store information (console)

You can view input and output artifact details for an action. You can also choose a link that takes
you to the artifact information for that action. Because the artifact store uses versioning, each
action execution has a unique input and output artifact location.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

View action executions (console) API Version 2015-07-09 530

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

2. Choose the name of the pipeline for which you want to view action details, and then choose
View history.

3. In Execution ID, choose the execution ID for which you want to view action details.

4. On the Timeline tab, in Action name, choose the link to open a details page for the action.

5. On the details page, on the Execution tab, view the status and timing of the action execution.

6. On the Configuration tab, view the resource configuration for the action (for example, the
CodeBuild build project name).

7. On the Artifacts tab, view the artifact details in Artifact type and Artifact provider. Choose
the link under Artifact name to view the artifacts in the artifact store.

8. On the Output variables tab, view the resolved variables from actions in the pipeline for the
action execution.

View pipeline details and history (CLI)

You can run the following commands to view details about your pipelines and pipeline executions:

• list-pipelines command to view a summary of all of the pipelines associated with your AWS
account.

• get-pipeline command to review details of a single pipeline.

• list-pipeline-executions to view summaries of the most recent executions for a pipeline.

• get-pipeline-execution to view information about an execution of a pipeline, including details
about artifacts, the pipeline execution ID, and the name, version, and status of the pipeline.

• get-pipeline-state command to view pipeline, stage, and action status.

• list-action-executions to view action execution details for a pipeline.

Topics

• View execution history (CLI)

• View execution status (CLI)

• View inbound execution status (CLI)

• View source revisions (CLI)

• View action executions (CLI)

View pipeline details and history (CLI) API Version 2015-07-09 531

AWS CodePipeline User Guide

View execution history (CLI)

You can view pipeline execution history.

• To view details about past executions of a pipeline, run the list-pipeline-executions command,
specifying the unique name of the pipeline. For example, to view details about the current
state of a pipeline named MyFirstPipeline, enter the following:

aws codepipeline list-pipeline-executions --pipeline-name MyFirstPipeline

This command returns summary information about all pipeline executions for which history
has been recorded. The summary includes start and end times, duration, and status.

The following example shows the returned data for a pipeline named MyFirstPipeline that
has had three executions:

{
 "pipelineExecutionSummaries": [
 {
 "lastUpdateTime": 1496380678.648,
 "pipelineExecutionId": "7cf7f7cb-3137-539g-j458-d7eu3EXAMPLE",
 "startTime": 1496380258.243,
 "status": "Succeeded"
 },
 {
 "lastUpdateTime": 1496591045.634,
 "pipelineExecutionId": "3137f7cb-8d494hj4-039j-d84l-d7eu3EXAMPLE",
 "startTime": 1496590401.222,
 "status": "Succeeded"
 },
 {
 "lastUpdateTime": 1496946071.6456,
 "pipelineExecutionId": "4992f7jf-7cf7-913k-k334-d7eu3EXAMPLE",
 "startTime": 1496945471.5645,
 "status": "Succeeded"
 }
]
}

View pipeline details and history (CLI) API Version 2015-07-09 532

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/list-pipeline-executions.html

AWS CodePipeline User Guide

To view more details about a pipeline execution, run the get-pipeline-execution, specifying
the unique ID of the pipeline execution. For example, to view more details about the first
execution in the previous example, enter the following:

aws codepipeline get-pipeline-execution --pipeline-name MyFirstPipeline --pipeline-
execution-id 7cf7f7cb-3137-539g-j458-d7eu3EXAMPLE

This command returns summary information about an execution of a pipeline, including
details about artifacts, the pipeline execution ID, and the name, version, and status of the
pipeline.

The following example shows the returned data for a pipeline named MyFirstPipeline:

{
 "pipelineExecution": {
 "pipelineExecutionId": "3137f7cb-7cf7-039j-s83l-d7eu3EXAMPLE",
 "pipelineVersion": 2,
 "pipelineName": "MyFirstPipeline",
 "status": "Succeeded",
 "artifactRevisions": [
 {
 "created": 1496380678.648,
 "revisionChangeIdentifier": "1496380258.243",
 "revisionId": "7636d59f3c461cEXAMPLE8417dbc6371",
 "name": "MyApp",
 "revisionSummary": "Updating the application for feature 12-4820"
 }
]
 }
}

View execution status (CLI)

You can use the CLI to view pipeline, stage, and action status.

• To view details about the current state of a pipeline, run the get-pipeline-state command,
specifying the unique name of the pipeline. For example, to view details about the current
state of a pipeline named MyFirstPipeline, enter the following:

View pipeline details and history (CLI) API Version 2015-07-09 533

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-execution.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html

AWS CodePipeline User Guide

aws codepipeline get-pipeline-state --name MyFirstPipeline

This command returns the current status of all stages of the pipeline and the status of the
actions in those stages.

The following example shows the returned data for a three-stage pipeline named
MyFirstPipeline, where the first two stages and actions show success, the third shows
failure, and the transition between the second and third stages is disabled:

{
 "updated": 1427245911.525,
 "created": 1427245911.525,
 "pipelineVersion": 1,
 "pipelineName": "MyFirstPipeline",
 "stageStates": [
 {
 "actionStates": [
 {
 "actionName": "Source",
 "entityUrl": "https://console.aws.amazon.com/s3/home?#",
 "latestExecution": {
 "status": "Succeeded",
 "lastStatusChange": 1427298837.768
 }
 }
],
 "stageName": "Source"
 },
 {
 "actionStates": [
 {
 "actionName": "Deploy-CodeDeploy-Application",
 "entityUrl": "https://console.aws.amazon.com/codedeploy/home?
#",
 "latestExecution": {
 "status": "Succeeded",
 "lastStatusChange": 1427298939.456,
 "externalExecutionUrl": "https://console.aws.amazon.com/?
#",
 "externalExecutionId": ""c53dbd42-This-Is-An-Example"",
 "summary": "Deployment Succeeded"

View pipeline details and history (CLI) API Version 2015-07-09 534

AWS CodePipeline User Guide

 }
 }
],
 "inboundTransitionState": {
 "enabled": true
 },
 "stageName": "Staging"
 },
 {
 "actionStates": [
 {
 "actionName": "Deploy-Second-Deployment",
 "entityUrl": "https://console.aws.amazon.com/codedeploy/home?
#",
 "latestExecution": {
 "status": "Failed",
 "errorDetails": {
 "message": "Deployment Group is already deploying
 deployment ...",
 "code": "JobFailed"
 },
 "lastStatusChange": 1427246155.648
 }
 }
],
 "inboundTransitionState": {
 "disabledReason": "Disabled while I investigate the failure",
 "enabled": false,
 "lastChangedAt": 1427246517.847,
 "lastChangedBy": "arn:aws:iam::80398EXAMPLE:user/CodePipelineUser"
 },
 "stageName": "Production"
 }
]
}

View inbound execution status (CLI)

You can use the CLI to view inbound execution status. When the transition is enabled or the stage
becomes available, an inbound execution that is InProgress continues and enters the stage. An
inbound execution with a Stopped status does not enter the stage. An inbound execution status

View pipeline details and history (CLI) API Version 2015-07-09 535

AWS CodePipeline User Guide

changes to Failed if the pipeline is edited. When you edit a pipeline, all in-progress executions do
not continue, and the execution status changes to Failed.

• To view details about the current state of a pipeline, run the get-pipeline-state command,
specifying the unique name of the pipeline. For example, to view details about the current
state of a pipeline named MyFirstPipeline, enter the following:

aws codepipeline get-pipeline-state --name MyFirstPipeline

This command returns the current status of all stages of the pipeline and the status of the
actions in those stages. The output also shows pipeline execution ID in each stage, and
whether there is an inbound execution ID for a stage with a disabled transition.

The following example shows the returned data for a two-stage pipeline named
MyFirstPipeline, where the first stage shows an enabled transition and a successful
pipeline execution, and the second stage, named Beta, shows a disabled transition and an
inbound execution ID. The inbound execution can have an InProgress, Stopped, or FAILED
state.

{
 "pipelineName": "MyFirstPipeline",
 "pipelineVersion": 2,
 "stageStates": [
 {
 "stageName": "Source",
 "inboundTransitionState": {
 "enabled": true
 },
 "actionStates": [
 {
 "actionName": "SourceAction",
 "currentRevision": {
 "revisionId": "PARcnxX_u0SMRBnKh83pHL09.zPRLLMu"
 },
 "latestExecution": {
 "actionExecutionId": "14c8b311-0e34-4bda-EXAMPLE",
 "status": "Succeeded",
 "summary": "Amazon S3 version id: PARcnxX_u0EXAMPLE",
 "lastStatusChange": 1586273484.137,
 "externalExecutionId": "PARcnxX_u0EXAMPLE"
 },

View pipeline details and history (CLI) API Version 2015-07-09 536

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html

AWS CodePipeline User Guide

 "entityUrl": "https://console.aws.amazon.com/s3/home?#"
 }
],
 "latestExecution": {
 "pipelineExecutionId": "27a47e06-6644-42aa-EXAMPLE",
 "status": "Succeeded"
 }
 },
 {
 "stageName": "Beta",
 "inboundExecution": {
 "pipelineExecutionId": "27a47e06-6644-42aa-958a-EXAMPLE",
 "status": "InProgress"
 },
 "inboundTransitionState": {
 "enabled": false,
 "lastChangedBy": "USER_ARN",
 "lastChangedAt": 1586273583.949,
 "disabledReason": "disabled"
 },
 "currentRevision": {
 "actionStates": [
 {
 "actionName": "BetaAction",
 "latestExecution": {
 "actionExecutionId": "a748f4bf-0b52-4024-98cf-EXAMPLE",
 "status": "Succeeded",
 "summary": "Deployment Succeeded",
 "lastStatusChange": 1586272707.343,
 "externalExecutionId": "d-KFGF3EXAMPLE",
 "externalExecutionUrl": "https://us-
west-2.console.aws.amazon.com/codedeploy/home?#/deployments/d-KFGF3WTS2"
 },
 "entityUrl": "https://us-west-2.console.aws.amazon.com/
codedeploy/home?#/applications/my-application"
 }
],
 "latestExecution": {
 "pipelineExecutionId": "f6bf1671-d706-4b28-EXAMPLE",
 "status": "Succeeded"
 }
 }
],
 "created": 1585622700.512,

View pipeline details and history (CLI) API Version 2015-07-09 537

AWS CodePipeline User Guide

 "updated": 1586273472.662
}

View source revisions (CLI)

You can view details about source artifacts (output artifacts that originated in the first stage of a
pipeline) that are used in an execution of a pipeline. The details include identifiers, such as commit
IDs, check-in comments, time since the artifact was created or updated and, when you use the CLI,
version numbers of build actions. For some revision types, you can view and open the URL of the
commit for the artifact version. Source revisions are made up of the following:

• Summary: Summary information about the most recent revision of the artifact. For GitHub and
AWS CodeCommit repositories, the commit message. For Amazon S3 buckets or actions, the
user-provided content of a codepipeline-artifact-revision-summary key specified in the object
metadata.

• revisionUrl: The commit ID for the artifact revision. For artifacts stored in GitHub or AWS
CodeCommit repositories, the commit ID is linked to a commit details page.

You can run the get-pipeline-execution command to view information about the most recent
source revisions that were included in a pipeline execution. After you first run the get-pipeline-
state command to get details about all stages in a pipeline, you identify the execution ID that
applies to a stage for which you want source revision details. Then you use the execution ID in the
get-pipeline-execution command. (Because stages in a pipeline might have been last successfully
completed during different pipeline runs, they can have different execution IDs.)

In other words, if you want to view details about artifacts currently in the Staging stage, run the
get-pipeline-state command, identify the current execution ID of the Staging stage, and then run
the get-pipeline-execution command using that execution ID.

To view source revisions in a pipeline

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS CLI
to run the get-pipeline-state command. For a pipeline named MyFirstPipeline, you would
enter:

aws codepipeline get-pipeline-state --name MyFirstPipeline

View pipeline details and history (CLI) API Version 2015-07-09 538

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html

AWS CodePipeline User Guide

This command returns the most recent state of a pipeline, including the latest pipeline
execution ID for each stage.

2. To view details about a pipeline execution, run the get-pipeline-execution command,
specifying the unique name of the pipeline and the pipeline execution ID of the execution
for which you want to view artifact details. For example, to view details about the execution
of a pipeline named MyFirstPipeline, with the execution ID 3137f7cb-7cf7-039j-s83l-
d7eu3EXAMPLE, you would enter the following:

aws codepipeline get-pipeline-execution --pipeline-name MyFirstPipeline --pipeline-
execution-id 3137f7cb-7cf7-039j-s83l-d7eu3EXAMPLE

This command returns information about each source revision that is part of the pipeline
execution and identifying information about the pipeline. Only information about pipeline
stages that were included in that execution are included. There might be other stages in the
pipeline that were not part of that pipeline execution.

The following example shows the returned data for a portion of pipeline named
MyFirstPipeline, where an artifact named "MyApp" is stored in a GitHub repository:

3. {
 "pipelineExecution": {
 "artifactRevisions": [
 {
 "created": 1427298837.7689769,
 "name": "MyApp",
 "revisionChangeIdentifier": "1427298921.3976923",
 "revisionId": "7636d59f3c461cEXAMPLE8417dbc6371",
 "revisionSummary": "Updating the application for feature 12-4820",
 "revisionUrl": "https://api.github.com/repos/anycompany/MyApp/git/
commits/7636d59f3c461cEXAMPLE8417dbc6371"
 }
 //More revisions might be listed here
],
 "pipelineExecutionId": "3137f7cb-7cf7-039j-s83l-d7eu3EXAMPLE",
 "pipelineName": "MyFirstPipeline",
 "pipelineVersion": 2,
 "status": "Succeeded"
 }
}

View pipeline details and history (CLI) API Version 2015-07-09 539

AWS CodePipeline User Guide

View action executions (CLI)

You can view action execution details for a pipeline, such as action execution ID, input artifacts,
output artifacts, execution result, and status. You provide the Execution ID filter to return a listing
of actions in a pipeline execution:

Note

Detailed execution history is available for executions run on or after February 21, 2019.

• To view action executions for a pipeline, do one of the following:

• To view details for all action executions in a pipeline, run the list-action-executions
command, specifying the unique name of the pipeline. For example, to view action
executions in a pipeline named MyFirstPipeline, enter the following:

aws codepipeline list-action-executions --pipeline-name MyFirstPipeline

The following shows a portion of sample output for this command:

{
 "actionExecutionDetails": [
 {
 "actionExecutionId": "ID",
 "lastUpdateTime": 1552958312.034,
 "startTime": 1552958246.542,
 "pipelineExecutionId": "Execution_ID",
 "actionName": "Build",
 "status": "Failed",
 "output": {
 "executionResult": {
 "externalExecutionUrl": "Project_ID",
 "externalExecutionSummary": "Build terminated with state:
 FAILED",
 "externalExecutionId": "ID"
 },
 "outputArtifacts": []
 },
 "stageName": "Beta",
 "pipelineVersion": 8,

View pipeline details and history (CLI) API Version 2015-07-09 540

AWS CodePipeline User Guide

 "input": {
 "configuration": {
 "ProjectName": "java-project"
 },
 "region": "us-east-1",
 "inputArtifacts": [
 {
 "s3location": {
 "bucket": "codepipeline-us-east-1-ID",
 "key": "MyFirstPipeline/MyApp/Object.zip"
 },
 "name": "MyApp"
 }
],
 "actionTypeId": {
 "version": "1",
 "category": "Build",
 "owner": "AWS",
 "provider": "CodeBuild"
 }
 }
 },

. . .

• To view all action executions in a pipeline execution, run the list-action-executions
command, specifying the unique name of the pipeline and the execution ID. For example, to
view action executions for an Execution_ID, enter the following:

aws codepipeline list-action-executions --pipeline-name MyFirstPipeline --filter
 pipelineExecutionId=Execution_ID

• The following shows a portion of sample output for this command:

{
 "actionExecutionDetails": [
 {
 "stageName": "Beta",
 "pipelineVersion": 8,
 "actionName": "Build",
 "status": "Failed",
 "lastUpdateTime": 1552958312.034,
 "input": {

View pipeline details and history (CLI) API Version 2015-07-09 541

AWS CodePipeline User Guide

 "configuration": {
 "ProjectName": "java-project"
 },
 "region": "us-east-1",
 "actionTypeId": {
 "owner": "AWS",
 "category": "Build",
 "provider": "CodeBuild",
 "version": "1"
 },
 "inputArtifacts": [
 {
 "s3location": {
 "bucket": "codepipeline-us-east-1-ID",
 "key": "MyFirstPipeline/MyApp/Object.zip"
 },
 "name": "MyApp"
 }
]
 },

. . .

Set the pipeline execution mode

You can set the execution mode for your pipeline to specify how multiple executions are handled.

For more information about pipeline execution modes, see How pipeline executions work.

Important

For pipelines in PARALLEL mode, when editing the pipeline execution mode to QUEUED or
SUPERSEDED, the pipeline state will not display the updated state as PARALLEL. For more
information, see Pipelines changed from PARALLEL mode will display a previous execution
mode.

Set the pipeline execution mode API Version 2015-07-09 542

AWS CodePipeline User Guide

Important

For pipelines in PARALLEL mode, when editing the pipeline execution mode to QUEUED or
SUPERSEDED, the pipeline definition for the pipeline in each mode will not be updated. For
more information, see Pipelines in PARALLEL mode have an outdated pipeline definition if
edited when changing to QUEUED or SUPERSEDED mode.

Set the pipeline execution mode (console)

You can use the console to set the pipeline execution mode.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names and status of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline you want to edit.

3. On the pipeline details page, choose Edit.

4. On the Edit page, choose Edit: Pipeline properties.

5. Choose the mode for your pipeline.

• Superseded

• Queued (Pipeline type V2 required)

• Parallel (Pipeline type V2 required)

6. On the Edit page, choose Done.

Set the pipeline execution mode (CLI)

To use the AWS CLI to set the pipeline execution mode, use the create-pipeline or update-
pipeline command.

1. Open a terminal session (Linux, macOS, or Unix) or command prompt (Windows) and run the
get-pipeline command to copy the pipeline structure into a JSON file. For example, for a
pipeline named MyFirstPipeline, enter the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

Set the pipeline execution mode (console) API Version 2015-07-09 543

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any plain-text editor and modify the structure of the file to reflect the
pipeline execution mode you want to set, such as QUEUED.

"executionMode": "QUEUED"

The following example shows how you would set the execution mode to QUEUED in an
example pipeline with two stages.

{
 "pipeline": {
 "name": "MyPipeline",
 "roleArn": "arn:aws:iam::111122223333:role/service-role/
AWSCodePipelineServiceRole-us-east-1-dkpippe",
 "artifactStore": {
 "type": "S3",
 "location": "bucket"
 },
 "stages": [
 {
 "name": "Source",
 "actions": [
 {
 "name": "Source",
 "actionTypeId": {
 "category": "Source",
 "owner": "AWS",
 "provider": "CodeCommit",
 "version": "1"
 },
 "runOrder": 1,
 "configuration": {
 "BranchName": "main",
 "OutputArtifactFormat": "CODE_ZIP",
 "PollForSourceChanges": "true",
 "RepositoryName": "MyDemoRepo"
 },
 "outputArtifacts": [
 {
 "name": "SourceArtifact"

Set the pipeline execution mode (CLI) API Version 2015-07-09 544

AWS CodePipeline User Guide

 }
],
 "inputArtifacts": [],
 "region": "us-east-1",
 "namespace": "SourceVariables"
 }
]
 },
 {
 "name": "Build",
 "actions": [
 {
 "name": "Build",
 "actionTypeId": {
 "category": "Build",
 "owner": "AWS",
 "provider": "CodeBuild",
 "version": "1"
 },
 "runOrder": 1,
 "configuration": {
 "ProjectName": "MyBuildProject"
 },
 "outputArtifacts": [
 {
 "name": "BuildArtifact"
 }
],
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "region": "us-east-1",
 "namespace": "BuildVariables"
 }
]
 }
],
 "version": 1,
 "executionMode": "QUEUED"
 }
}

Set the pipeline execution mode (CLI) API Version 2015-07-09 545

AWS CodePipeline User Guide

3. If you are working with the pipeline structure retrieved using the get-pipeline command, you
must modify the structure in the JSON file. You must remove the metadata lines from the file
so the update-pipeline command can use it. Remove the section from the pipeline structure
in the JSON file (the "metadata": { } lines and the "created", "pipelineARN", and
"updated" fields).

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
 }

Save the file.

4. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must start the pipeline manually to run that revision through the updated pipeline.

Retry a failed stage or failed actions in a stage

You can retry a stage that has failed without having to run a pipeline again from the beginning.
You do this by either retrying the failed actions in a stage or by retrying all actions in the stage

Retry a failed stage or failed actions in a stage API Version 2015-07-09 546

AWS CodePipeline User Guide

starting from the first action in the stage. When you retry the failed actions in a stage, all actions
that are still in progress continue working, and failed actions are triggered again. When you retry
a failed stage from the first action in the stage, the stage cannot have any actions in progress.
Before a stage can be retried, it must either have all actions failed or some actions failed and some
succeeded.

Important

Retrying a failed stage retries all actions in the stage from the first action in the stage, and
retrying failed actions retries all failed actions in the stage. This overrides output artifacts
of previously successful actions in the same execution.
Although artifacts may be overriden, the execution history of previously successful actions
is still retained.

If you are using the console to view a pipeline, either a Retry stage button or a Retry failed actions
button appears on the stage that can be retried.

If you are using the AWS CLI, you can use the get-pipeline-state command to determine whether
any actions have failed.

Note

In the following cases, you might not be able to retry a stage:

• All actions in the stage succeeded, and so the stage is not in a failed status.

• The overall pipeline structure changed after the stage failed.

• Another retry attempt in the stage is already in progress.

Topics

• Retry a failed stage (console)

• Retry a failed stage (CLI)

Retry a failed stage or failed actions in a stage API Version 2015-07-09 547

AWS CodePipeline User Guide

Retry a failed stage (console)

To retry a failed stage or failed actions in a stage - console

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline.

3. Locate the stage with the failed action, and then choose one of the following:

• To retry all actions in the stage, choose Retry stage.

• To retry only failed actions in the stage, choose Retry failed actions.

Retry a failed stage (console) API Version 2015-07-09 548

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

If all retried actions in the stage are completed successfully, the pipeline continues to run.

Retry a failed stage (CLI)

To retry a failed stage or failed actions in a stage - CLI

To use the AWS CLI to retry all actions or all failed actions, you run the retry-stage-execution
command with the following parameters:

--pipeline-name <value>

Retry a failed stage (CLI) API Version 2015-07-09 549

AWS CodePipeline User Guide

--stage-name <value>
--pipeline-execution-id <value>
--retry-mode ALL_ACTIONS/FAILED_ACTIONS

Note

The values you can use for retry-mode are FAILED_ACTIONS and ALL_ACTIONS.

1. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the retry-stage-
execution command, as shown in the following example for a pipeline named MyPipeline.

aws codepipeline retry-stage-execution --pipeline-name MyPipeline --stage-name
 Deploy --pipeline-execution-id b59babff-5f34-EXAMPLE --retry-mode FAILED_ACTIONS

The output returns the execution ID:

{
 "pipelineExecutionId": "b59babff-5f34-EXAMPLE"
}

2. You can also run the command with a JSON input file. You first create a JSON file that
identifies the pipeline, the stage that contains the failed actions, and the latest pipeline
execution in that stage. You then run the retry-stage-execution command with the --cli-
input-json parameter. To retrieve the details you need for the JSON file, it's easiest to use
the get-pipeline-state command.

a. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the get-
pipeline-state command on a pipeline. For example, for a pipeline named MyFirstPipeline,
you would type something similar to the following:

aws codepipeline get-pipeline-state --name MyFirstPipeline

The response to the command includes pipeline state information for each stage. In the
following example, the response indicates that one or more actions failed in the Staging
stage:

{
 "updated": 1427245911.525,

Retry a failed stage (CLI) API Version 2015-07-09 550

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html

AWS CodePipeline User Guide

 "created": 1427245911.525,
 "pipelineVersion": 1,
 "pipelineName": "MyFirstPipeline",
 "stageStates": [
 {
 "actionStates": [...],
 "stageName": "Source",
 "latestExecution": {
 "pipelineExecutionId": "9811f7cb-7cf7-SUCCESS",
 "status": "Succeeded"
 }
 },
 {
 "actionStates": [...],
 "stageName": "Staging",
 "latestExecution": {
 "pipelineExecutionId": "3137f7cb-7cf7-EXAMPLE",
 "status": "Failed"
 }
 }
]
}

b. In a plain-text editor, create a file where you will record the following, in JSON format:

• The name of the pipeline that contains the failed actions

• The name of the stage that contains the failed actions

• The ID of the latest pipeline execution in the stage

• The retry mode.

For the preceding MyFirstPipeline example, your file would look something like this:

{
 "pipelineName": "MyFirstPipeline",
 "stageName": "Staging",
 "pipelineExecutionId": "3137f7cb-7cf7-EXAMPLE",
 "retryMode": "FAILED_ACTIONS"
}

c. Save the file with a name like retry-failed-actions.json.

d. Call the file you created when you run the retry-stage-execution command. For example:

Retry a failed stage (CLI) API Version 2015-07-09 551

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/retry-stage-execution.html

AWS CodePipeline User Guide

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline retry-stage-execution --cli-input-json file://retry-failed-
actions.json

e. To view the results of the retry attempt, either open the CodePipeline console and choose
the pipeline that contains the actions that failed, or use the get-pipeline-state command
again. For more information, see View pipelines and details in CodePipeline.

Retry a failed stage (CLI) API Version 2015-07-09 552

AWS CodePipeline User Guide

Working with actions in CodePipeline

In AWS CodePipeline, an action is part of the sequence in a stage of a pipeline. It is a task
performed on the artifact in that stage. Pipeline actions occur in a specified order, in sequence or in
parallel, as determined in the configuration of the stage.

CodePipeline provides support for six types of actions:

• Source

• Build

• Test

• Deploy

• Approval

• Invoke

For information about the AWS service and partner products and services you can integrate into
your pipeline based on action type, see Integrations with CodePipeline action types.

Topics

• Working with action types

• Create and add a custom action in CodePipeline

• Tag a custom action in CodePipeline

• Invoke an AWS Lambda function in a pipeline in CodePipeline

• Retry a failed action in a stage

• Manage approval actions in CodePipeline

• Add a cross-Region action in CodePipeline

• Working with variables

Working with action types

Action types are preconfigured actions that you as a provider create for customers by using one of
the supported integration models in AWS CodePipeline.

Working with action types API Version 2015-07-09 553

AWS CodePipeline User Guide

You can request, view, and update action types. If the action type is created for your account as the
owner, you can use the AWS CLI to view or update your action type properties and structure. If you
are the provider or owner of the action type, your customers can choose the action and add it to
their pipelines after it is available in CodePipeline.

Note

You create actions with custom in the owner field to run with a job worker. You do not
create them with an integration model. For information about custom actions, see Create
and add a custom action in CodePipeline.

Action type components

The following components make up an action type.

• Action type ID – The ID consists of the category, owner, provider, and version. The following
example shows an action type ID with an owner of ThirdParty, a category of Test, a provider
named TestProvider, and a version of 1.

 {
 "Category": "Test",
 "Owner": "ThirdParty",
 "Provider": "TestProvider",
 "Version": "1"
 },

• Executor configuration – The integration model, or action engine, specified when the action is
created. When you specify the executor for an action type, you choose one of two types:

• Lambda: The action type owner writes the integration as a Lambda function, which is invoked
by CodePipeline whenever there is a job available for the action.

• JobWorker: The action type owner writes the integration as a job worker that polls for available
jobs on customer pipelines. The job worker then runs the job and submits the job result back
to CodePipeline by using CodePipeline APIs.

Note

The job worker integration model is not the preferred integration model.

Working with action types API Version 2015-07-09 554

AWS CodePipeline User Guide

• Input and output artifacts: Limits for the artifacts that the action type owner designates for
customers of the action.

• Permissions: The permissions strategy that designates customers who can access the third-party
action type. The permissions strategies available depend on the chosen integration model for the
action type.

• URLs: Deep links to resources that the customer can interact with, such as the action type
owner's configuration page.

Topics

• Request an action type

• Add an available action type to a pipeline (console)

• View an action type

• Update an action type

Request an action type

When a new CodePipeline action type is requested by a third-party provider, the action type is
created for the action type owner in CodePipeline, and the owner can manage and view the action
type.

An action type can be either a private or public action. When your action type is created, it is
private. To request an action type be changed to a public action, contact the CodePipeline service
team.

Before you create your action definition file, executor resources, and action type request for the
CodePipeline team, you must choose an integration model.

Step 1: Choose your integration model

Choose your integration model and then create the configuration for that model. After you choose
the integration model, you must configure your integration resources.

• For the Lambda integration model, you create a Lambda function and add permissions.
Add permissions to your integrator Lambda function to provide the CodePipeline
service with permissions to invoke it using the CodePipeline service principal:

Request an action type API Version 2015-07-09 555

AWS CodePipeline User Guide

codepipeline.amazonaws.com. The permissions can be added using AWS CloudFormation or
the command line.

• Example for adding permissions using AWS CloudFormation:

 CodePipelineLambdaBasedActionPermission:
 Type: 'AWS::Lambda::Permission'
 Properties:
 Action: 'lambda:invokeFunction'
 FunctionName: {"Fn::Sub": "arn:${AWS::Partition}:lambda:${AWS::Region}:
${AWS::AccountId}:function:function-name"}
 Principal: codepipeline.amazonaws.com

• Documentation for command line

• For the job worker integration model, you create an integration with a list of allowed accounts
where the job worker polls for jobs with the CodePipeline APIs.

Step 2: Create an action type definition file

You define an action type in an action type definition file using JSON. In the file, you include
the action category, the integration model used to manage the action type, and configuration
properties.

Note

After you create a public action, you can't change the action type property under
properties from optional to required. You also can't change the owner.

For more information about the action type definition file parameters, see ActionTypeDeclaration
and UpdateActionType in the CodePipeline API Reference.

There are eight sections in the action type definition file:

• description: The description for the action type to be updated.

• executor: Information about the executor for an action type that was created with a
supported integration model, either Lambda or job worker. You can only provide either
jobWorkerExecutorConfiguration or lambdaExecutorConfiguration, based on your
executor type.

Request an action type API Version 2015-07-09 556

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html
http://docs.aws.amazon.com/cli/latest/reference/codepipelineAPI_ActionTypeDeclaration.html
http://docs.aws.amazon.com/cli/latest/reference/codepipelineAPI_UpdateActionType.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline

AWS CodePipeline User Guide

• configuration: Resources for the configuration of the action type, based on the chosen
integration model. For the Lambda integration model, use the Lambda function ARN. For the
job worker integration model, use the account or list of accounts from where the job worker
runs.

• jobTimeout: The timeout in seconds for the job. An action execution can consist of multiple
jobs. This is the timeout for a single job, and not for the entire action execution.

Note

For the Lambda integration model, the maximum timeout is 15 minutes.

• policyStatementsTemplate: The policy statement that specifies the permissions in the
CodePipeline customer’s account that are needed to successfully run an action execution.

• type: The integration model used to create and update the action type, either Lambda or
JobWorker.

• id: The category, owner, provider, and version ID for the action type:

• category: The kind of action can be taken in the stage: Source, Build, Deploy, Test, Invoke, or
Approval.

• provider: The provider of the action type being called, such as the provider company or
product name. The provider name is supplied when the action type is created.

• owner: The creator of the action type being called: AWS or ThirdParty.

• version: A string used to version the action type. For the first version, set the version number
to 1.

• inputArtifactDetails: The number of artifacts to expect from the previous stage in the
pipeline.

• outputArtifactDetails: The number of artifacts to expect from the result from the action
type stage.

• permissions: Details identifying the accounts with permissions to use the action type.

• properties: The parameters required for your project tasks to complete.

• description: The description of the property that is displayed to users.

• optional: Whether the configuration property is optional.

• noEcho: Whether the field value entered by the customer is omitted from the log. If true,
then the value is redacted when returned with a GetPipeline API request.

• key: Whether the configuration property is a key.

Request an action type API Version 2015-07-09 557

AWS CodePipeline User Guide

• queryable: Whether the property is used with polling. An action type can have up to one
queryable property. If it has one, that property must be both required and not secret.

• name: The property name that is displayed to users.

• urls: A list of the URLs CodePipeline displays to your users.

• entityUrlTemplate: URL to the external resources for the action type, such as a
configuration page.

• executionUrlTemplate: URL to the details for the latest run of the action.

• revisionUrlTemplate: URL displayed in the CodePipeline console to the page where
customers can update or change the configuration of the external action.

• thirdPartyConfigurationUrl: URL of a page where users can sign up for an external
service and perform initial configuration of the action provided by that service.

The following code shows an example action type definition file.

{
 "actionType": {
 "description": "string",
 "executor": {
 "configuration": {
 "jobWorkerExecutorConfiguration": {
 "pollingAccounts": ["string"],
 "pollingServicePrincipals": ["string"]
 },
 "lambdaExecutorConfiguration": {
 "lambdaFunctionArn": "string"
 }
 },
 "jobTimeout": number,
 "policyStatementsTemplate": "string",
 "type": "string"
 },
 "id": {
 "category": "string",
 "owner": "string",
 "provider": "string",
 "version": "string"
 },
 "inputArtifactDetails": {
 "maximumCount": number,

Request an action type API Version 2015-07-09 558

AWS CodePipeline User Guide

 "minimumCount": number
 },
 "outputArtifactDetails": {
 "maximumCount": number,
 "minimumCount": number
 },
 "permissions": {
 "allowedAccounts": ["string"]
 },
 "properties": [
 {
 "description": "string",
 "key": boolean,
 "name": "string",
 "noEcho": boolean,
 "optional": boolean,
 "queryable": boolean
 }
],
 "urls": {
 "configurationUrl": "string",
 "entityUrlTemplate": "string",
 "executionUrlTemplate": "string",
 "revisionUrlTemplate": "string"
 }
 }
}

Step 3: Register Your Integration with CodePipeline

To register your action type with CodePipeline, you contact the CodePipeline service team with
your request.

The CodePipeline service team registers the new action type integration by making changes in
the service codebase. CodePipeline registers two new actions: a public action and a private action.
You use the private action for testing, and then when ready, you activate the public action to serve
customer traffic.

To register a request for a Lambda integration

• Send a request to the CodePipeline service team using the following form.

Request an action type API Version 2015-07-09 559

AWS CodePipeline User Guide

This issue will track the onboarding of [Name] in CodePipeline.

[Contact engineer] will be the primary point of contact for this integration.

Name of the action type as you want it to appear to customers: Example.com Testing

Initial onboard checklist:

1. Attach an action type definition file in JSON format. This includes the schema
 for the action type

2. A list of test accounts for the allowlist which can access the new action type
 [{account, account_name}]

3. The Lambda function ARN

4. List of AWS Regions where your action will be available

5. Will this be available as a public action?

To register a request for a job worker integration

• Send a request to the CodePipeline service team using the following form.

This issue will track the onboarding of [Name] in CodePipeline.

[Contact engineer] will be the primary point of contact for this integration.

Name of the action type as you want it to appear to customers: Example.com Testing

Initial onboard checklist:

1. Attach an action type definition file in JSON format. This includes the schema
 for the action type.

2. A list of test accounts for the allowlist which can access the new action type
 [{account, account_name}]

3. URL information:

Request an action type API Version 2015-07-09 560

AWS CodePipeline User Guide

Website URL: https://www.example.com/%TestThirdPartyName%/%TestVersionNumber%

Example URL pattern where customers will be able to review their configuration
 information for the action: https://www.example.com/%TestThirdPartyName%/
%customer-ID%/%CustomerActionConfiguration%

Example runtime URL pattern: https://www.example.com/%TestThirdPartyName%/
%customer-ID%/%TestRunId%

4. List of AWS Regions where your action will be available

5. Will this be available as a public action?

Step 4: Activate Your New Integration

Contact the CodePipeline service team when you are ready to use the new integration publicly.

Add an available action type to a pipeline (console)

You add your action type to a pipeline so that you can test it. You can do this by creating a new
pipeline or editing an existing one.

Note

If your action type is a source, build, or deploy category action, you can add it by creating
a pipeline. If your action type is in the test category, you must add it by editing an existing
pipeline.

To add your action type to an existing pipeline from the CodePipeline console

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. In the list of pipelines, choose the pipeline where you want to add the action type.

3. On the summary view page of the pipeline, choose Edit.

4. Choose to edit the stage. In the stage where you want to add your action type, choose Add
action group. The Edit action page displays.

5. On the Edit action page, in Action name, enter a name for the action. This is the name that
displays for the stage in your pipeline.

Add an available action type to a pipeline (console) API Version 2015-07-09 561

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

6. In Action provider, choose your action type from the list.

Note that the value in the list is based on the provider specified in the action type definition
file.

7. In Input artifacts, enter the artifact name in this format:

Artifactname::FileName

Note that the minimum and maximum quantities allowed are defined based on the
inputArtifactDetails specified in the action type definition file.

8. Choose Connect to <Action_Name>.

A browser window opens and connects to the website you have created for your action type.

9. Log in to your website as a customer and complete the steps a customer takes to use
your action type. Your steps will vary depending on your action category, website, and
configuration, but usually includes a completion action that returns the customer to the Edit
action page.

10. In the CodePipeline Edit action page, the additional configuration fields for the action
display. The fields that display are the configuration properties that you specified in the action
definition file. Enter theinformation in the fields that are customized for your action type.

For example, if the action definition file specified a property named Host, then a field with the
label Host is shown on the Edit action page for your action.

11. In Output artifacts, enter the artifact name in this format:

Artifactname::FileName

Note that the minimum and maximum quantities allowed are defined based on the
outputArtifactDetails specified in the action type definition file.

12. Choose Done to return to the pipeline details page.

Note

Your customers can optionally use the CLI to add the action type to their pipeline.

13. To test your action, commit a change to the source specified in the source stage of the pipeline
or follow the steps in Manually Start a Pipeline.

Add an available action type to a pipeline (console) API Version 2015-07-09 562

https://docs.aws.amazon.com/codepipeline/latest/userguide/how-to-manually-start.html

AWS CodePipeline User Guide

To create a pipeline with your action type, follow the steps in Create a pipeline in CodePipeline and
choose your action type from as many stages as you will test.

View an action type

You can use the CLI to view your action type. Use the get-action-type command to view action
types that have been created using an integration model.

To view an action type

1. Create an input JSON file and name the file file.json. Add your action type ID in JSON
format as shown in the following example.

{
 "category": "Test",
 "owner": "ThirdParty",
 "provider": "TestProvider",
 "version": "1"
}

2. In a terminal window or at the command line, run the get-action-type command.

aws codepipeline get-action-type --cli-input-json file://file.json

This command returns the action definition output for an action type. This example shows an
action type that was created with the Lambda integration model.

{
 "actionType": {
 "executor": {
 "configuration": {
 "lambdaExecutorConfiguration": {
 "lambdaFunctionArn": "arn:aws:lambda:us-west-2:<account-
id>:function:my-function"
 }
 },
 "type": "Lambda"
 },
 "id": {
 "category": "Test",
 "owner": "ThirdParty",
 "provider": "TestProvider",

View an action type API Version 2015-07-09 563

AWS CodePipeline User Guide

 "version": "1"
 },
 "inputArtifactDetails": {
 "minimumCount": 0,
 "maximumCount": 1
 },
 "outputArtifactDetails": {
 "minimumCount": 0,
 "maximumCount": 1
 },
 "permissions": {
 "allowedAccounts": [
 "<account-id>"
]
 },
 "properties": []
 }
}

Update an action type

You can use the CLI to edit action types that are created with an integration model.

For a public action type, you can't update the owner, you can't change optional properties to
required, and you can only add new optional properties.

1. Use the get-action-type command to get the structure for your action type. Copy the
structure.

2. Create an input JSON file and name it action.json. Paste the action type structure you
copied in the previous step into it. Update any parameters you want to change. You can also
add optional parameters.

For more information about the parameters for the input file, see the action definition file
description in Step 2: Create an action type definition file.

The following example shows how to update an example action type created with the Lambda
integration model. This example makes the following changes:

• Changes the provider name to TestProvider1.

• Add a job timeout limit of 900 seconds.

Update an action type API Version 2015-07-09 564

AWS CodePipeline User Guide

• Adds an action configuration property named Host that is displayed to the customer using
the action.

{
 "actionType": {
 "executor": {
 "configuration": {
 "lambdaExecutorConfiguration": {
 "lambdaFunctionArn": "arn:aws:lambda:us-west-2:<account-
id>:function:my-function"
 }
 },
 "type": "Lambda",
 "jobTimeout": 900
 },
 "id": {
 "category": "Test",
 "owner": "ThirdParty",
 "provider": "TestProvider1",
 "version": "1"
 },
 "inputArtifactDetails": {
 "minimumCount": 0,
 "maximumCount": 1
 },
 "outputArtifactDetails": {
 "minimumCount": 0,
 "maximumCount": 1
 },
 "permissions": {
 "allowedAccounts": [
 "account-id"
]
 },
 "properties": {
 "description": "Owned build action parameter description",
 "optional": true,
 "noEcho": false,
 "key": true,
 "queryable": false,
 "name": "Host"
 }
 }

Update an action type API Version 2015-07-09 565

AWS CodePipeline User Guide

}

3. At the terminal or command line, run the update-action-type command

aws codepipeline update-action-type --cli-input-json file://action.json

This command returns the action type output to match your updated parameters.

Create and add a custom action in CodePipeline

AWS CodePipeline includes a number of actions that help you configure build, test, and deploy
resources for your automated release process. If your release process includes activities that are not
included in the default actions, such as an internally developed build process or a test suite, you
can create a custom action for that purpose and include it in your pipeline. You can use the AWS
CLI to create custom actions in pipelines associated with your AWS account.

You can create custom actions for the following AWS CodePipeline action categories:

• A custom build action that builds or transforms the items

• A custom deploy action that deploys items to one or more servers, websites, or repositories

• A custom test action that configures and runs automated tests

• A custom invoke action that runs functions

When you create a custom action, you must also create a job worker that will poll CodePipeline for
job requests for this custom action, execute the job, and return the status result to CodePipeline.
This job worker can be located on any computer or resource as long as it has access to the public
endpoint for CodePipeline. To easily manage access and security, consider hosting your job worker
on an Amazon EC2 instance.

The following diagram shows a high-level view of a pipeline that includes a custom build action:

Create a custom action for a pipeline API Version 2015-07-09 566

AWS CodePipeline User Guide

When a pipeline includes a custom action as part of a stage, the pipeline will create a job request.
A custom job worker detects that request and performs that job (in this example, a custom process
using third-party build software). When the action is complete, the job worker returns either a
success result or a failure result. If a success result is received, the pipeline will provide the revision
and its artifacts to the next action. If a failure is returned, the pipeline will not provide the revision
to the next action in the pipeline.

Note

These instructions assume that you have already completed the steps in Getting started
with CodePipeline.

Topics

• Create a custom action

• Create a job worker for your custom action

• Add a custom action to a pipeline

Create a custom action for a pipeline API Version 2015-07-09 567

AWS CodePipeline User Guide

Create a custom action

To create a custom action with the AWS CLI

1. Open a text editor and create a JSON file for your custom action that includes the action
category, the action provider, and any settings required by your custom action. For example,
to create a custom build action that requires only one property, your JSON file might look like
this:

{
 "category": "Build",
 "provider": "My-Build-Provider-Name",
 "version": "1",
 "settings": {
 "entityUrlTemplate": "https://my-build-instance/job/{Config:ProjectName}/",
 "executionUrlTemplate": "https://my-build-instance/job/
{Config:ProjectName}/lastSuccessfulBuild/{ExternalExecutionId}/"
 },
 "configurationProperties": [{
 "name": "ProjectName",
 "required": true,
 "key": true,
 "secret": false,
 "queryable": false,
 "description": "The name of the build project must be provided when this
 action is added to the pipeline.",
 "type": "String"
 }],
 "inputArtifactDetails": {
 "maximumCount": integer,
 "minimumCount": integer
 },
 "outputArtifactDetails": {
 "maximumCount": integer,
 "minimumCount": integer
 },
 "tags": [{
 "key": "Project",
 "value": "ProjectA"
 }]
}

Create a custom action API Version 2015-07-09 568

AWS CodePipeline User Guide

This example adds tagging to the custom action by including the Project tag key and
ProjectA value on the custom action. For more information about tagging resources in
CodePipeline, see Tagging resources.

There are two properties included in the JSON file, entityUrlTemplate and
executionUrlTemplate. You can refer to a name in the configuration properties of the
custom action within the URL templates by following the format of {Config:name}, as long
as the configuration property is both required and not secret. For example, in the sample
above, the entityUrlTemplate value refers to the configuration property ProjectName.

• entityUrlTemplate: the static link that provides information about the service provider
for the action. In the example, the build system includes a static link to each build project.
The link format will vary, depending on your build provider (or, if you are creating a different
action type, such as test, other service provider). You must provide this link format so that
when the custom action is added, the user can choose this link to open a browser to a page
on your website that provides the specifics for the build project (or test environment).

• executionUrlTemplate: the dynamic link that will be updated with information about
the current or most recent run of the action. When your custom job worker updates
the status of a job (for example, success, failure, or in progress), it will also provide an
externalExecutionId that will be used to complete the link. This link can be used to
provide details about the run of an action.

For example, when you view the action in the pipeline, you see the following two links:

Create a custom action API Version 2015-07-09 569

AWS CodePipeline User Guide

This static link appears after you add your custom action and points to the address in
entityUrlTemplate, which you specify when you create your custom action.

This dynamic link is updated after every run of the action and points to the address in
executionUrlTemplate, which you specify when you create your custom action.

For more information about these link types, as well as RevisionURLTemplate and
ThirdPartyURL, see ActionTypeSettings and CreateCustomActionType in the CodePipeline
API Reference. For more information about action structure requirements and how to create an
action, see CodePipeline pipeline structure reference.

2. Save the JSON file and give it a name you can easily remember (for example,
MyCustomAction.json).

3. Open a terminal session (Linux, OS X, Unix) or command prompt (Windows) on a computer
where you have installed the AWS CLI.

4. Use the AWS CLI to run the aws codepipeline create-custom-action-type command,
specifying the name of the JSON file you just created.

For example, to create a build custom action:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline create-custom-action-type --cli-input-json
 file://MyCustomAction.json

5. This command returns the entire structure of the custom action you created, as well as the
JobList action configuration property, which is added for you. When you add the custom
action to a pipeline, you can use JobList to specify which projects from the provider you can
poll for jobs. If you do not configure this, all available jobs will be returned when your custom
job worker polls for jobs.

Create a custom action API Version 2015-07-09 570

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ActionTypeSettings.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_CreateCustomActionType.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/
https://docs.aws.amazon.com/codepipeline/latest/APIReference/

AWS CodePipeline User Guide

For example, the preceding command might return a structure similar to the following:

{
 "actionType": {
 "inputArtifactDetails": {
 "maximumCount": 1,
 "minimumCount": 1
 },
 "actionConfigurationProperties": [
 {
 "secret": false,
 "required": true,
 "name": "ProjectName",
 "key": true,
 "description": "The name of the build project must be provided when
 this action is added to the pipeline."
 }
],
 "outputArtifactDetails": {
 "maximumCount": 0,
 "minimumCount": 0
 },
 "id": {
 "category": "Build",
 "owner": "Custom",
 "version": "1",
 "provider": "My-Build-Provider-Name"
 },
 "settings": {
 "entityUrlTemplate": "https://my-build-instance/job/
{Config:ProjectName}/",
 "executionUrlTemplate": "https://my-build-instance/job/mybuildjob/
lastSuccessfulBuild/{ExternalExecutionId}/"
 }
 }
}

Note

As part of the output of the create-custom-action-type command, the id section
includes "owner": "Custom". CodePipeline automatically assigns Custom as the

Create a custom action API Version 2015-07-09 571

AWS CodePipeline User Guide

owner of custom action types. This value can't be assigned or changed when you use
the create-custom-action-type command or the update-pipeline command.

Create a job worker for your custom action

Custom actions require a job worker that will poll CodePipeline for job requests for the custom
action, execute the job, and return the status result to CodePipeline. The job worker can be located
on any computer or resource as long as it has access to the public endpoint for CodePipeline.

There are many ways to design your job worker. The following sections provide some practical
guidance for developing your custom job worker for CodePipeline.

Topics

• Choose and configure a permissions management strategy for your job worker

• Develop a job worker for your custom action

• Custom job worker architecture and examples

Choose and configure a permissions management strategy for your job worker

To develop a custom job worker for your custom action in CodePipeline, you will need a strategy
for the integration of user and permission management.

The simplest strategy is to add the infrastructure you need for your custom job worker by creating
Amazon EC2 instances with an IAM instance role, which allow you to easily scale up the resources
you need for your integration. You can use the built-in integration with AWS to simplify the
interaction between your custom job worker and CodePipeline.

To set up Amazon EC2 instances

1. Learn more about Amazon EC2 and determine whether it is the right choice for your
integration. For information, see Amazon EC2 - Virtual Server Hosting.

2. Get started creating your Amazon EC2 instances. For information, see Getting Started with
Amazon EC2 Linux Instances.

Another strategy to consider is using identity federation with IAM to integrate your existing
identity provider system and resources. This strategy is particularly useful if you already have a

Create a job worker for your custom action API Version 2015-07-09 572

http://aws.amazon.com/ec2
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/

AWS CodePipeline User Guide

corporate identity provider or are already configured to support users using web identity providers.
Identity federation allows you to grant secure access to AWS resources, including CodePipeline,
without having to create or manage IAM users. You can use features and policies for password
security requirements and credential rotation. You can use sample applications as templates for
your own design.

To set up identity federation

1. Learn more about IAM identity federation. For information, see Manage Federation.

2. Review the examples in Scenarios for Granting Temporary Access to identify the scenario for
temporary access that best fits the needs of your custom action.

3. Review code examples of identity federation relevant to your infrastructure, such as:

• Identity Federation Sample Application for an Active Directory Use Case

4. Get started configuring identity federation. For information, see Identity Providers and
Federation in IAM User Guide.

Ceate one of the following to use under your AWS account when running your custom action and
job worker.

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS

Create a job worker for your custom action API Version 2015-07-09 573

http://aws.amazon.com/iam/details/manage-federation/
https://docs.aws.amazon.com/STS/latest/UsingSTS/STSUseCases.html
http://aws.amazon.com/code/1288653099190193
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

AWS CodePipeline User Guide

Which user needs
programmatic access?

To By

Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Create a job worker for your custom action API Version 2015-07-09 574

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS CodePipeline User Guide

The following is an example policy you might create for use with your custom job worker. This
policy is meant as an example only and is provided as-is.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:PollForJobs",
 "codepipeline:AcknowledgeJob",
 "codepipeline:GetJobDetails",
 "codepipeline:PutJobSuccessResult",
 "codepipeline:PutJobFailureResult"
],
 "Resource": [
 "arn:aws:codepipeline:us-east-2::actionType:custom/Build/MyBuildProject/1/"
]
 }
]
}

Note

Consider using the AWSCodePipelineCustomActionAccess managed policy.

Develop a job worker for your custom action

After you've chosen your permissions management strategy, you should consider how your job
worker will interact with CodePipeline. The following high-level diagram shows the workflow of a
custom action and job worker for a build process.

Create a job worker for your custom action API Version 2015-07-09 575

AWS CodePipeline User Guide

1. Your job worker polls CodePipeline for jobs using PollForJobs.

2. When a pipeline is triggered by a change in its source stage (for example, when a developer
commits a change), the automated release process begins. The process continues until the stage
at which your custom action has been configured. When it reaches your action in this stage,
CodePipeline queues a job. This job will appear if your job worker calls PollForJobs again to
get status. Take the job detail from PollForJobs and pass it back to your job worker.

3. The job worker calls AcknowledgeJob to send CodePipeline a job acknowledgment.
CodePipeline returns an acknowledgment that indicates the job worker should continue the job
(InProgress), or, if you have more than one job worker polling for jobs and another job worker
has already claimed the job, an InvalidNonceException error response will be returned.
After the InProgress acknowledgment, CodePipeline waits for results to be returned.

Create a job worker for your custom action API Version 2015-07-09 576

AWS CodePipeline User Guide

4. The job worker initiates your custom action on the revision, and then your action runs. Along
with any other actions, your custom action returns a result to the job worker. In the example of
a build custom action, the action pulls artifacts from the Amazon S3 bucket, builds them, and
pushes successfully built artifacts back to the Amazon S3 bucket.

5. While the action is running, the job worker can call PutJobSuccessResult with a continuation
token (the serialization of the state of the job generated by the job worker, for example a build
identifier in JSON format, or an Amazon S3 object key), as well as the ExternalExecutionId
information that will be used to populate the link in executionUrlTemplate. This will update
the console view of the pipeline with a working link to specific action details while it is in
progress. Although not required, it is a best practice because it enables users to view the status
of your custom action while it runs.

Once PutJobSuccessResult is called, the job is considered complete. A new job is created in
CodePipeline that includes the continuation token. This job will appear if your job worker calls
PollForJobs again. This new job can be used to check on the state of the action, and either
returns with a continuation token, or returns without a continuation token once the action is
complete.

Note

If your job worker performs all the work for a custom action, you should consider
breaking your job worker processing into at least two steps. The first step establishes the
details page for your action. Once you have created the details page, you can serialize
the state of the job worker and return it as a continuation token, subject to size limits
(see Quotas in AWS CodePipeline). For example, you could write the state of the action
into the string you use as the continuation token. The second step (and subsequent
steps) of your job worker processing perform the actual work of the action. The final
step returns success or failure to CodePipeline, with no continuation token on the final
step.

For more information about using the continuation token, see the specifications for
PutJobSuccessResult in the CodePipeline API Reference.

6. Once the custom action completes, the job worker returns the result of the custom action to
CodePipeline by calling one of two APIs:

Create a job worker for your custom action API Version 2015-07-09 577

http://docs.aws.amazon.com/codepipeline/latest/APIReference

AWS CodePipeline User Guide

• PutJobSuccessResult without a continuation token, which indicates the custom action ran
successfully

• PutJobFailureResult, which indicates the custom action did not run successfully

Depending on the result, the pipeline will either continue on to the next action (success) or stop
(failure).

Custom job worker architecture and examples

After you have mapped out your high-level workflow, you can create your job worker. Although the
specifics of your custom action will ultimately determine what is needed for your job worker, most
job workers for custom actions include the following functionality:

• Polling for jobs from CodePipeline using PollForJobs.

• Acknowledging jobs and returning results to CodePipeline using AcknowledgeJob,
PutJobSuccessResult, and PutJobFailureResult.

• Retrieving artifacts from and/or putting artifacts into the Amazon S3 bucket for the pipeline. To
download artifacts from the Amazon S3 bucket, you must create an Amazon S3 client that uses
Signature Version 4 signing (Sig V4). Sig V4 is required for AWS KMS.

To upload artifacts to the Amazon S3 bucket, you must additionally configure the Amazon S3
PutObject request to use encryption. Currently only AWS Key Management Service (AWS KMS)
is supported for encryption. AWS KMS uses AWS KMS keys. In order to know whether to use an
AWS managed key or a customer managed key to upload artifacts, your custom job worker must
look at the job data and check the encryption key property. If the property is set, you should use
that customer managed key ID when configuring AWS KMS. If the key property is null, you use
the AWS managed key. CodePipeline uses the AWS managed key unless otherwise configured.

For an example that shows how to create the AWS KMS parameters in Java or .NET, see
Specifying the AWS Key Management Service in Amazon S3 Using the AWS SDKs. For more
information about the Amazon S3 bucket for CodePipeline, see CodePipeline concepts.

A more complex example of a custom job worker is available on GitHub. This sample is open source
and provided as-is.

• Sample Job Worker for CodePipeline: Download the sample from the GitHub repository.

Create a job worker for your custom action API Version 2015-07-09 578

https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPPutObject.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_JobData.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_EncryptionKey.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/kms-using-sdks.html
https://github.com/awslabs/aws-codepipeline-custom-job-worker

AWS CodePipeline User Guide

Add a custom action to a pipeline

After you have a job worker, you can add your custom action to a pipeline by creating a new one
and choosing it when you use the Create Pipeline wizard, by editing an existing pipeline and adding
the custom action, or by using the AWS CLI, the SDKs, or the APIs.

Note

You can create a pipeline in the Create Pipeline wizard that includes a custom action if it
is a build or deploy action. If your custom action is in the test category, you must add it by
editing an existing pipeline.

Topics

• Add a custom action to an existing pipeline (CLI)

Add a custom action to an existing pipeline (CLI)

You can use the AWS CLI to add a custom action to an existing pipeline.

1. Open a terminal session (Linux, macOS, or Unix) or command prompt (Windows) and run the
get-pipeline command to copy the pipeline structure you want to edit into a JSON file. For
example, for a pipeline named MyFirstPipeline, you would type the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Open the JSON file in any text editor and modify the structure of the file to add your custom
action to an existing stage.

Note

If you want your action to run in parallel with another action in that stage, make sure
you assign it the same runOrder value as that action.

Add a custom action to a pipeline API Version 2015-07-09 579

AWS CodePipeline User Guide

For example, to modify the structure of a pipeline to add a stage named Build and to add a
build custom action to that stage, you might modify the JSON to add the Build stage before a
deployment stage as follows:

,
 {
 "name": "MyBuildStage",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyApp"
 }
],
 "name": "MyBuildCustomAction",
 "actionTypeId": {
 "category": "Build",
 "owner": "Custom",
 "version": "1",
 "provider": "My-Build-Provider-Name"
 },
 "outputArtifacts": [
 {
 "name": "MyBuiltApp"
 }
],
 "configuration": {
 "ProjectName": "MyBuildProject"
 },
 "runOrder": 1
 }
]
 },
 {
 "name": "Staging",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "MyBuiltApp"
 }

Add a custom action to a pipeline API Version 2015-07-09 580

AWS CodePipeline User Guide

],
 "name": "Deploy-CodeDeploy-Application",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "CodePipelineDemoApplication",
 "DeploymentGroupName": "CodePipelineDemoFleet"
 },
 "runOrder": 1
 }
]
 }
]
}

3. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file,
similar to the following:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline.

4. Open the CodePipeline console and choose the name of the pipeline you just edited.

The pipeline shows your changes. The next time you make a change to the source location, the
pipeline will run that revision through the revised structure of the pipeline.

Add a custom action to a pipeline API Version 2015-07-09 581

AWS CodePipeline User Guide

Tag a custom action in CodePipeline

Tags are key-value pairs associated with AWS resources. You can use the console or the CLI to apply
tags to your custom actions in CodePipeline. For information about CodePipeline resource tagging,
use cases, tag key and value constraints, and supported resource types, see Tagging resources.

You can add, remove, and update the values of tags in a custom action. You can add up to 50 tags
to each custom action.

Topics

• Add tags to a custom action

• View tags for a custom action

• Edit tags for a custom action

• Remove tags from a custom action

Add tags to a custom action

Follow these steps to use the AWS CLI to add a tag to a custom action. To add a tag to a custom
action when you create it, see Create and add a custom action in CodePipeline.

In these steps, we assume that you have already installed a recent version of the AWS CLI or
updated to the current version. For more information, see Installing the AWS Command Line
Interface.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the custom action where you want to add tags and the key and value of the tag
you want to add. You can add more than one tag to a custom action. For example, to tag a custom
action with two tags, a tag key named TestActionType with the tag value of UnitTest, and a
tag key named ApplicationName with the tag value of MyApplication:

aws codepipeline tag-resource --resource-arn arn:aws:codepipeline:us-west-2:account-
id:actiontype:Owner/Category/Provider/Version --tags key=TestActionType,value=UnitTest
 key=ApplicationName,value=MyApplication

If successful, this command returns nothing.

Tag a custom action in CodePipeline API Version 2015-07-09 582

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS CodePipeline User Guide

View tags for a custom action

Follow these steps to use the AWS CLI to view the AWS tags for a custom action. If no tags have
been added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command. For example, to view
a list of tag keys and tag values for a custom action with the ARN arn:aws:codepipeline:us-
west-2:account-id:actiontype:Owner/Category/Provider/Version:

aws codepipeline list-tags-for-resource --resource-arn arn:aws:codepipeline:us-
west-2:account-id:actiontype:Owner/Category/Provider/Version

If successful, this command returns information similar to the following:

{
 "tags": {
 "TestActionType": "UnitTest",
 "ApplicationName": "MyApplication"
 }
}

Edit tags for a custom action

Follow these steps to use the AWS CLI to edit a tag for a custom action. You can change the value
for an existing key or add another key. You can also remove tags from a custom action, as shown in
the next section.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the custom action where you want to update a tag and specify the tag key and tag
value:

aws codepipeline tag-resource --resource-arn arn:aws:codepipeline:us-
west-2:account-id:actiontype:Owner/Category/Provider/Version --tags
 key=TestActionType,value=IntegrationTest

Remove tags from a custom action

Follow these steps to use the AWS CLI to remove a tag from a custom action. When you remove
tags from the associated resource, the tags are deleted.

View tags for a custom action API Version 2015-07-09 583

AWS CodePipeline User Guide

Note

If you delete a custom action, all tag associations are removed from the deleted custom
action. You do not have to remove tags before deleting a custom action.

At the terminal or command line, run the untag-resource command, specifying the ARN of the
custom action where you want to remove tags and the tag key of the tag you want to remove. For
example, to remove a tag on a custom action with the tag key TestActionType:

aws codepipeline untag-resource --resource-arn arn:aws:codepipeline:us-west-2:account-
id:actiontype:Owner/Category/Provider/Version --tag-keys TestActionType

If successful, this command returns nothing. To verify the tags associated with the custom action,
run the list-tags-for-resource command.

Invoke an AWS Lambda function in a pipeline in CodePipeline

AWS Lambda is a compute service that lets you run code without provisioning or managing servers.
You can create Lambda functions and add them as actions in your pipelines. Because Lambda
allows you to write functions to perform almost any task, you can customize the way your pipeline
works.

Important

Do not log the JSON event that CodePipeline sends to Lambda because this can result
in user credentials being logged in CloudWatch Logs. The CodePipeline role uses a JSON
event to pass temporary credentials to Lambda in the artifactCredentials field. For
an example event, see Example JSON event.

Here are some ways Lambda functions can be used in pipelines:

• To create resources on demand in one stage of a pipeline using AWS CloudFormation and delete
them in another stage.

• To deploy application versions with zero downtime in AWS Elastic Beanstalk with a Lambda
function that swaps CNAME values.

• To deploy to Amazon ECS Docker instances.

Invoke a Lambda function in a pipeline API Version 2015-07-09 584

https://docs.aws.amazon.com/lambda/latest/dg/

AWS CodePipeline User Guide

• To back up resources before building or deploying by creating an AMI snapshot.

• To add integration with third-party products to your pipeline, such as posting messages to an IRC
client.

Note

Creating and running Lambda functions might result in charges to your AWS account. For
more information, see Pricing.

This topic assumes you are familiar with AWS CodePipeline and AWS Lambda and know how to
create pipelines, functions, and the IAM policies and roles on which they depend. This topic shows
you how to:

• Create a Lambda function that tests whether a webpage was deployed successfully.

• Configure the CodePipeline and Lambda execution roles and the permissions required to run the
function as part of the pipeline.

• Edit a pipeline to add the Lambda function as an action.

• Test the action by manually releasing a change.

Note

When using cross-Region Lambda invoke action in CodePipeline, the status of the lambda
execution using the PutJobSuccessResult and PutJobFailureResult should be sent to
the AWS Region where the Lambda function is present and not to the Region where
CodePipeline exists.

This topic includes sample functions to demonstrate the flexibility of working with Lambda
functions in CodePipeline:

• Basic Lambda function

• Creating a basic Lambda function to use with CodePipeline.

• Returning success or failure results to CodePipeline in the Details link for the action.

• Sample Python function that uses an AWS CloudFormation template

Invoke a Lambda function in a pipeline API Version 2015-07-09 585

http://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobSuccessResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobFailureResult.html

AWS CodePipeline User Guide

• Using JSON-encoded user parameters to pass multiple configuration values to the function
(get_user_params).

• Interacting with .zip artifacts in an artifact bucket (get_template).

• Using a continuation token to monitor a long-running asynchronous process
(continue_job_later). This allows the action to continue and the function to succeed even
if it exceeds a fifteen-minute runtime (a limit in Lambda).

Each sample function includes information about the permissions you must add to the role. For
information about limits in AWS Lambda, see Limits in the AWS Lambda Developer Guide.

Important

The sample code, roles, and policies included in this topic are examples only, and are
provided as-is.

Topics

• Step 1: Create a pipeline

• Step 2: Create the Lambda function

• Step 3: Add the Lambda function to a pipeline in the CodePipeline console

• Step 4: Test the pipeline with the Lambda function

• Step 5: Next steps

• Example JSON event

• Additional sample functions

Step 1: Create a pipeline

In this step, you create a pipeline to which you later add the Lambda function. This is the same
pipeline you created in CodePipeline tutorials. If that pipeline is still configured for your account
and is in the same Region where you plan to create the Lambda function, you can skip this step.

To create the pipeline

1. Follow the first three steps in Tutorial: Create a simple pipeline (S3 bucket) to create an
Amazon S3 bucket, CodeDeploy resources, and a two-stage pipeline. Choose the Amazon Linux

Step 1: Create a pipeline API Version 2015-07-09 586

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS CodePipeline User Guide

option for your instance types. You can use any name you want for the pipeline, but the steps
in this topic use MyLambdaTestPipeline.

2. On the status page for your pipeline, in the CodeDeploy action, choose Details. On the
deployment details page for the deployment group, choose an instance ID from the list.

3. In the Amazon EC2 console, on the Details tab for the instance, copy the IP address in Public
IPv4 address (for example, 192.0.2.4). You use this address as the target of the function in
AWS Lambda.

Note

The default service role policy for CodePipeline includes the Lambda permissions required
to invoke the function. However, if you have modified the default service role or selected a
different one, make sure the policy for the role allows the lambda:InvokeFunction and
lambda:ListFunctions permissions. Otherwise, pipelines that include Lambda actions
fail.

Step 2: Create the Lambda function

In this step, you create a Lambda function that makes an HTTP request and checks for a line of text
on a webpage. As part of this step, you must also create an IAM policy and Lambda execution role.
For more information, see Permissions Model in the AWS Lambda Developer Guide.

To create the execution role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Policies, and then choose Create Policy. Choose the JSON tab, and then paste the
following policy into the field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",

Step 2: Create the Lambda function API Version 2015-07-09 587

https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS CodePipeline User Guide

 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Action": [
 "codepipeline:PutJobSuccessResult",
 "codepipeline:PutJobFailureResult"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

3. Choose Review policy.

4. On the Review policy page, in Name, type a name for the policy (for example,
CodePipelineLambdaExecPolicy). In Description, enter Enables Lambda to execute
code.

Choose Create Policy.

Note

These are the minimum permissions required for a Lambda function to interoperate
with CodePipeline and Amazon CloudWatch. If you want to expand this policy to allow
functions that interact with other AWS resources, you should modify this policy to
allow the actions required by those Lambda functions.

5. On the policy dashboard page, choose Roles, and then choose Create role.

6. On the Create role page, choose AWS service. Choose Lambda, and then choose Next:
Permissions.

7. On the Attach permissions policies page, select the check box next to
CodePipelineLambdaExecPolicy, and then choose Next: Tags. Choose Next: Review.

8. On the Review page, in Role name, enter the name, and then choose Create role.

To create the sample Lambda function to use with CodePipeline

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

Step 2: Create the Lambda function API Version 2015-07-09 588

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS CodePipeline User Guide

2. On the Functions page, choose Create function.

Note

If you see a Welcome page instead of the Lambda page, choose Get Started Now.

3. On the Create function page, choose Author from scratch. In Function name, enter a name
for your Lambda function (for example, MyLambdaFunctionForAWSCodePipeline). In
Runtime, choose Node.js 14.x.

4. Under Role, select Choose an existing role. In Existing role, choose your role, and then choose
Create function.

The detail page for your created function opens.

5. Copy the following code into the Function code box:

Note

The event object, under the CodePipeline.job key, contains the job details. For a full
example of the JSON event CodePipeline returns to Lambda, see Example JSON event.

var assert = require('assert');
var AWS = require('aws-sdk');
var http = require('http');

exports.handler = function(event, context) {

 var codepipeline = new AWS.CodePipeline();

 // Retrieve the Job ID from the Lambda action
 var jobId = event["CodePipeline.job"].id;

 // Retrieve the value of UserParameters from the Lambda action configuration in
 CodePipeline, in this case a URL which will be
 // health checked by this function.
 var url =
 event["CodePipeline.job"].data.actionConfiguration.configuration.UserParameters;

 // Notify CodePipeline of a successful job

Step 2: Create the Lambda function API Version 2015-07-09 589

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_JobDetails.html

AWS CodePipeline User Guide

 var putJobSuccess = function(message) {
 var params = {
 jobId: jobId
 };
 codepipeline.putJobSuccessResult(params, function(err, data) {
 if(err) {
 context.fail(err);
 } else {
 context.succeed(message);
 }
 });
 };

 // Notify CodePipeline of a failed job
 var putJobFailure = function(message) {
 var params = {
 jobId: jobId,
 failureDetails: {
 message: JSON.stringify(message),
 type: 'JobFailed',
 externalExecutionId: context.awsRequestId
 }
 };
 codepipeline.putJobFailureResult(params, function(err, data) {
 context.fail(message);
 });
 };

 // Validate the URL passed in UserParameters
 if(!url || url.indexOf('http://') === -1) {
 putJobFailure('The UserParameters field must contain a valid URL address to
 test, including http:// or https://');
 return;
 }

 // Helper function to make a HTTP GET request to the page.
 // The helper will test the response and succeed or fail the job accordingly
 var getPage = function(url, callback) {
 var pageObject = {
 body: '',
 statusCode: 0,
 contains: function(search) {
 return this.body.indexOf(search) > -1;
 }

Step 2: Create the Lambda function API Version 2015-07-09 590

AWS CodePipeline User Guide

 };
 http.get(url, function(response) {
 pageObject.body = '';
 pageObject.statusCode = response.statusCode;

 response.on('data', function (chunk) {
 pageObject.body += chunk;
 });

 response.on('end', function () {
 callback(pageObject);
 });

 response.resume();
 }).on('error', function(error) {
 // Fail the job if our request failed
 putJobFailure(error);
 });
 };

 getPage(url, function(returnedPage) {
 try {
 // Check if the HTTP response has a 200 status
 assert(returnedPage.statusCode === 200);
 // Check if the page contains the text "Congratulations"
 // You can change this to check for different text, or add other tests
 as required
 assert(returnedPage.contains('Congratulations'));

 // Succeed the job
 putJobSuccess("Tests passed.");
 } catch (ex) {
 // If any of the assertions failed then fail the job
 putJobFailure(ex);
 }
 });
};

6. Leave Handler at the default value, and leave Role at the default,
CodePipelineLambdaExecRole.

7. In Basic settings, for Timeout, enter 20 seconds.

8. Choose Save.

Step 2: Create the Lambda function API Version 2015-07-09 591

AWS CodePipeline User Guide

Step 3: Add the Lambda function to a pipeline in the CodePipeline
console

In this step, you add a new stage to your pipeline, and then add a Lambda action that calls your
function to that stage.

To add a stage

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. On the Welcome page, choose the pipeline you created.

3. On the pipeline view page, choose Edit.

4. On the Edit page, choose + Add stage to add a stage after the deployment stage with the
CodeDeploy action. Enter a name for the stage (for example, LambdaStage), and choose Add
stage.

Note

You can also choose to add your Lambda action to an existing stage. For
demonstration purposes, we are adding the Lambda function as the only action in a
stage to allow you to easily view its progress as artifacts progress through a pipeline.

5. Choose + Add action group. In Edit action, in Action name, enter a name for your
Lambda action (for example, MyLambdaAction). In Provider, choose AWS Lambda.
In Function name, choose or enter the name of your Lambda function (for example,
MyLambdaFunctionForAWSCodePipeline). In User parameters, specify the IP address for
the Amazon EC2 instance you copied earlier (for example, http://192.0.2.4), and then
choose Done.

Note

This topic uses an IP address, but in a real-world scenario, you could provide your
registered website name instead (for example, http://www.example.com). For more
information about event data and handlers in AWS Lambda, see Programming Model
in the AWS Lambda Developer Guide.

6. On the Edit action page, choose Save.

Step 3: Add the Lambda function to a pipeline in the CodePipeline console API Version 2015-07-09 592

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html

AWS CodePipeline User Guide

Step 4: Test the pipeline with the Lambda function

To test the function, release the most recent change through the pipeline.

To use the console to run the most recent version of an artifact through a pipeline

1. On the pipeline details page, choose Release change. This runs the most recent revision
available in each source location specified in a source action through the pipeline.

2. When the Lambda action is complete, choose the Details link to view the log stream for the
function in Amazon CloudWatch, including the billed duration of the event. If the function
failed, the CloudWatch log provides information about the cause.

Step 5: Next steps

Now that you've successfully created a Lambda function and added it as an action in a pipeline, you
can try the following:

• Add more Lambda actions to your stage to check other webpages.

• Modify the Lambda function to check for a different text string.

• Explore Lambda functions and create and add your own Lambda functions to pipelines.

Step 4: Test the pipeline with the Lambda function API Version 2015-07-09 593

https://docs.aws.amazon.com/lambda/latest/dg/use-cases.html

AWS CodePipeline User Guide

After you have finished experimenting with the Lambda function, consider removing it from your
pipeline, deleting it from AWS Lambda, and deleting the role from IAM to avoid possible charges.
For more information, see Edit a pipeline in CodePipeline, Delete a pipeline in CodePipeline, and
Deleting Roles or Instance Profiles.

Example JSON event

The following example shows a sample JSON event sent to Lambda by CodePipeline. The
structure of this event is similar to the response to the GetJobDetails API, but without
the actionTypeId and pipelineContext data types. Two action configuration details,
FunctionName and UserParameters, are included in both the JSON event and the response to
the GetJobDetails API. The values in red italic text are examples or explanations, not real
values.

{
 "CodePipeline.job": {

Example JSON event API Version 2015-07-09 594

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_GetJobDetails.html

AWS CodePipeline User Guide

 "id": "11111111-abcd-1111-abcd-111111abcdef",
 "accountId": "111111111111",
 "data": {
 "actionConfiguration": {
 "configuration": {
 "FunctionName": "MyLambdaFunctionForAWSCodePipeline",
 "UserParameters": "some-input-such-as-a-URL"
 }
 },
 "inputArtifacts": [
 {
 "location": {
 "s3Location": {
 "bucketName": "the name of the bucket configured as the
 pipeline artifact store in Amazon S3, for example codepipeline-us-east-2-1234567890",
 "objectKey": "the name of the application, for example
 CodePipelineDemoApplication.zip"
 },
 "type": "S3"
 },
 "revision": null,
 "name": "ArtifactName"
 }
],
 "outputArtifacts": [],
 "artifactCredentials": {
 "secretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "sessionToken": "MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },

Example JSON event API Version 2015-07-09 595

AWS CodePipeline User Guide

 "continuationToken": "A continuation token if continuing job",
 "encryptionKey": {
 "id": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "type": "KMS"
 }
 }
 }
}

Additional sample functions

The following sample Lambda functions demonstrate additional functionality you can use for your
pipelines in CodePipeline. To use these functions, you might have to modify the policy for the
Lambda execution role, as noted in the introduction for each sample.

Topics

• Sample Python function that uses an AWS CloudFormation template

Sample Python function that uses an AWS CloudFormation template

The following sample shows a function that creates or updates a stack based on a supplied AWS
CloudFormation template. The template creates an Amazon S3 bucket. It is for demonstration
purposes only, to minimize costs. Ideally, you should delete the stack before you upload anything
to the bucket. If you upload files to the bucket, you cannot delete the bucket when you delete the
stack. You must manually delete everything in the bucket before you can delete the bucket itself.

This Python sample assumes you have a pipeline that uses an Amazon S3 bucket as a source action,
or that you have access to a versioned Amazon S3 bucket you can use with the pipeline. You create
the AWS CloudFormation template, compress it, and upload it to that bucket as a .zip file. You
must then add a source action to your pipeline that retrieves this .zip file from the bucket.

Note

When Amazon S3 is the source provider for your pipeline, you may zip your source file or
files into a single .zip and upload the .zip to your source bucket. You may also upload a
single unzipped file; however, downstream actions that expect a .zip file will fail.

Additional sample functions API Version 2015-07-09 596

AWS CodePipeline User Guide

This sample demonstrates:

• The use of JSON-encoded user parameters to pass multiple configuration values to the function
(get_user_params).

• The interaction with .zip artifacts in an artifact bucket (get_template).

• The use of a continuation token to monitor a long-running asynchronous process
(continue_job_later). This allows the action to continue and the function to succeed even if
it exceeds a fifteen-minute runtime (a limit in Lambda).

To use this sample Lambda function, the policy for the Lambda execution role must have Allow
permissions in AWS CloudFormation, Amazon S3, and CodePipeline, as shown in this sample policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Action": [
 "codepipeline:PutJobSuccessResult",
 "codepipeline:PutJobFailureResult"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "cloudformation:DescribeStacks",
 "cloudformation:CreateStack",
 "cloudformation:UpdateStack"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [

Additional sample functions API Version 2015-07-09 597

AWS CodePipeline User Guide

 "s3:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

To create the AWS CloudFormation template, open any plain-text editor and copy and paste the
following code:

{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "CloudFormation template which creates an S3 bucket",
 "Resources" : {
 "MySampleBucket" : {
 "Type" : "AWS::S3::Bucket",
 "Properties" : {
 }
 }
 },
 "Outputs" : {
 "BucketName" : {
 "Value" : { "Ref" : "MySampleBucket" },
 "Description" : "The name of the S3 bucket"
 }
 }
}

Save this as a JSON file with the name template.json in a directory named template-
package. Create a compressed (.zip) file of this directory and file named template-
package.zip, and upload the compressed file to a versioned Amazon S3 bucket. If you already
have a bucket configured for your pipeline, you can use it. Next, edit your pipeline to add a
source action that retrieves the .zip file. Name the output for this action MyTemplate. For more
information, see Edit a pipeline in CodePipeline.

Note

The sample Lambda function expects these file names and compressed structure. However,
you can substitute your own AWS CloudFormation template for this sample. If you use your

Additional sample functions API Version 2015-07-09 598

AWS CodePipeline User Guide

own template, make sure you modify the policy for the Lambda execution role to allow any
additional functionality required by your AWS CloudFormation template.

To add the following code as a function in Lambda

1. Open the Lambda console and choose Create function.

2. On the Create function page, choose Author from scratch. In Function name, enter a name
for your Lambda function.

3. In Runtime, choose Python 2.7.

4. Under Choose or create an execution role, select Use an existing role. In Existing role, choose
your role, and then choose Create function.

The detail page for your created function opens.

5. Copy the following code into the Function code box:

from __future__ import print_function
from boto3.session import Session

import json
import urllib
import boto3
import zipfile
import tempfile
import botocore
import traceback

print('Loading function')

cf = boto3.client('cloudformation')
code_pipeline = boto3.client('codepipeline')

def find_artifact(artifacts, name):
 """Finds the artifact 'name' among the 'artifacts'

 Args:
 artifacts: The list of artifacts available to the function
 name: The artifact we wish to use
 Returns:
 The artifact dictionary found
 Raises:

Additional sample functions API Version 2015-07-09 599

AWS CodePipeline User Guide

 Exception: If no matching artifact is found

 """
 for artifact in artifacts:
 if artifact['name'] == name:
 return artifact

 raise Exception('Input artifact named "{0}" not found in event'.format(name))

def get_template(s3, artifact, file_in_zip):
 """Gets the template artifact

 Downloads the artifact from the S3 artifact store to a temporary file
 then extracts the zip and returns the file containing the CloudFormation
 template.

 Args:
 artifact: The artifact to download
 file_in_zip: The path to the file within the zip containing the template

 Returns:
 The CloudFormation template as a string

 Raises:
 Exception: Any exception thrown while downloading the artifact or unzipping
 it

 """
 tmp_file = tempfile.NamedTemporaryFile()
 bucket = artifact['location']['s3Location']['bucketName']
 key = artifact['location']['s3Location']['objectKey']

 with tempfile.NamedTemporaryFile() as tmp_file:
 s3.download_file(bucket, key, tmp_file.name)
 with zipfile.ZipFile(tmp_file.name, 'r') as zip:
 return zip.read(file_in_zip)

def update_stack(stack, template):
 """Start a CloudFormation stack update

 Args:
 stack: The stack to update
 template: The template to apply

Additional sample functions API Version 2015-07-09 600

AWS CodePipeline User Guide

 Returns:
 True if an update was started, false if there were no changes
 to the template since the last update.

 Raises:
 Exception: Any exception besides "No updates are to be performed."

 """
 try:
 cf.update_stack(StackName=stack, TemplateBody=template)
 return True

 except botocore.exceptions.ClientError as e:
 if e.response['Error']['Message'] == 'No updates are to be performed.':
 return False
 else:
 raise Exception('Error updating CloudFormation stack
 "{0}"'.format(stack), e)

def stack_exists(stack):
 """Check if a stack exists or not

 Args:
 stack: The stack to check

 Returns:
 True or False depending on whether the stack exists

 Raises:
 Any exceptions raised .describe_stacks() besides that
 the stack doesn't exist.

 """
 try:
 cf.describe_stacks(StackName=stack)
 return True
 except botocore.exceptions.ClientError as e:
 if "does not exist" in e.response['Error']['Message']:
 return False
 else:
 raise e

def create_stack(stack, template):
 """Starts a new CloudFormation stack creation

Additional sample functions API Version 2015-07-09 601

AWS CodePipeline User Guide

 Args:
 stack: The stack to be created
 template: The template for the stack to be created with

 Throws:
 Exception: Any exception thrown by .create_stack()
 """
 cf.create_stack(StackName=stack, TemplateBody=template)

def get_stack_status(stack):
 """Get the status of an existing CloudFormation stack

 Args:
 stack: The name of the stack to check

 Returns:
 The CloudFormation status string of the stack such as CREATE_COMPLETE

 Raises:
 Exception: Any exception thrown by .describe_stacks()

 """
 stack_description = cf.describe_stacks(StackName=stack)
 return stack_description['Stacks'][0]['StackStatus']

def put_job_success(job, message):
 """Notify CodePipeline of a successful job

 Args:
 job: The CodePipeline job ID
 message: A message to be logged relating to the job status

 Raises:
 Exception: Any exception thrown by .put_job_success_result()

 """
 print('Putting job success')
 print(message)
 code_pipeline.put_job_success_result(jobId=job)

def put_job_failure(job, message):
 """Notify CodePipeline of a failed job

Additional sample functions API Version 2015-07-09 602

AWS CodePipeline User Guide

 Args:
 job: The CodePipeline job ID
 message: A message to be logged relating to the job status

 Raises:
 Exception: Any exception thrown by .put_job_failure_result()

 """
 print('Putting job failure')
 print(message)
 code_pipeline.put_job_failure_result(jobId=job, failureDetails={'message':
 message, 'type': 'JobFailed'})

def continue_job_later(job, message):
 """Notify CodePipeline of a continuing job

 This will cause CodePipeline to invoke the function again with the
 supplied continuation token.

 Args:
 job: The JobID
 message: A message to be logged relating to the job status
 continuation_token: The continuation token

 Raises:
 Exception: Any exception thrown by .put_job_success_result()

 """

 # Use the continuation token to keep track of any job execution state
 # This data will be available when a new job is scheduled to continue the
 current execution
 continuation_token = json.dumps({'previous_job_id': job})

 print('Putting job continuation')
 print(message)
 code_pipeline.put_job_success_result(jobId=job,
 continuationToken=continuation_token)

def start_update_or_create(job_id, stack, template):
 """Starts the stack update or create process

 If the stack exists then update, otherwise create.

Additional sample functions API Version 2015-07-09 603

AWS CodePipeline User Guide

 Args:
 job_id: The ID of the CodePipeline job
 stack: The stack to create or update
 template: The template to create/update the stack with

 """
 if stack_exists(stack):
 status = get_stack_status(stack)
 if status not in ['CREATE_COMPLETE', 'ROLLBACK_COMPLETE',
 'UPDATE_COMPLETE']:
 # If the CloudFormation stack is not in a state where
 # it can be updated again then fail the job right away.
 put_job_failure(job_id, 'Stack cannot be updated when status is: ' +
 status)
 return

 were_updates = update_stack(stack, template)

 if were_updates:
 # If there were updates then continue the job so it can monitor
 # the progress of the update.
 continue_job_later(job_id, 'Stack update started')

 else:
 # If there were no updates then succeed the job immediately
 put_job_success(job_id, 'There were no stack updates')
 else:
 # If the stack doesn't already exist then create it instead
 # of updating it.
 create_stack(stack, template)
 # Continue the job so the pipeline will wait for the CloudFormation
 # stack to be created.
 continue_job_later(job_id, 'Stack create started')

def check_stack_update_status(job_id, stack):
 """Monitor an already-running CloudFormation update/create

 Succeeds, fails or continues the job depending on the stack status.

 Args:
 job_id: The CodePipeline job ID
 stack: The stack to monitor

 """

Additional sample functions API Version 2015-07-09 604

AWS CodePipeline User Guide

 status = get_stack_status(stack)
 if status in ['UPDATE_COMPLETE', 'CREATE_COMPLETE']:
 # If the update/create finished successfully then
 # succeed the job and don't continue.
 put_job_success(job_id, 'Stack update complete')

 elif status in ['UPDATE_IN_PROGRESS', 'UPDATE_ROLLBACK_IN_PROGRESS',
 'UPDATE_ROLLBACK_COMPLETE_CLEANUP_IN_PROGRESS', 'CREATE_IN_PROGRESS',
 'ROLLBACK_IN_PROGRESS', 'UPDATE_COMPLETE_CLEANUP_IN_PROGRESS']:
 # If the job isn't finished yet then continue it
 continue_job_later(job_id, 'Stack update still in progress')

 else:
 # If the Stack is a state which isn't "in progress" or "complete"
 # then the stack update/create has failed so end the job with
 # a failed result.
 put_job_failure(job_id, 'Update failed: ' + status)

def get_user_params(job_data):
 """Decodes the JSON user parameters and validates the required properties.

 Args:
 job_data: The job data structure containing the UserParameters string which
 should be a valid JSON structure

 Returns:
 The JSON parameters decoded as a dictionary.

 Raises:
 Exception: The JSON can't be decoded or a property is missing.

 """
 try:
 # Get the user parameters which contain the stack, artifact and file
 settings
 user_parameters = job_data['actionConfiguration']['configuration']
['UserParameters']
 decoded_parameters = json.loads(user_parameters)

 except Exception as e:
 # We're expecting the user parameters to be encoded as JSON
 # so we can pass multiple values. If the JSON can't be decoded
 # then fail the job with a helpful message.
 raise Exception('UserParameters could not be decoded as JSON')

Additional sample functions API Version 2015-07-09 605

AWS CodePipeline User Guide

 if 'stack' not in decoded_parameters:
 # Validate that the stack is provided, otherwise fail the job
 # with a helpful message.
 raise Exception('Your UserParameters JSON must include the stack name')

 if 'artifact' not in decoded_parameters:
 # Validate that the artifact name is provided, otherwise fail the job
 # with a helpful message.
 raise Exception('Your UserParameters JSON must include the artifact name')

 if 'file' not in decoded_parameters:
 # Validate that the template file is provided, otherwise fail the job
 # with a helpful message.
 raise Exception('Your UserParameters JSON must include the template file
 name')

 return decoded_parameters

def setup_s3_client(job_data):
 """Creates an S3 client

 Uses the credentials passed in the event by CodePipeline. These
 credentials can be used to access the artifact bucket.

 Args:
 job_data: The job data structure

 Returns:
 An S3 client with the appropriate credentials

 """
 key_id = job_data['artifactCredentials']['accessKeyId']
 key_secret = job_data['artifactCredentials']['secretAccessKey']
 session_token = job_data['artifactCredentials']['sessionToken']

 session = Session(aws_access_key_id=key_id,
 aws_secret_access_key=key_secret,
 aws_session_token=session_token)
 return session.client('s3',
 config=botocore.client.Config(signature_version='s3v4'))

def lambda_handler(event, context):
 """The Lambda function handler

Additional sample functions API Version 2015-07-09 606

AWS CodePipeline User Guide

 If a continuing job then checks the CloudFormation stack status
 and updates the job accordingly.

 If a new job then kick of an update or creation of the target
 CloudFormation stack.

 Args:
 event: The event passed by Lambda
 context: The context passed by Lambda

 """
 try:
 # Extract the Job ID
 job_id = event['CodePipeline.job']['id']

 # Extract the Job Data
 job_data = event['CodePipeline.job']['data']

 # Extract the params
 params = get_user_params(job_data)

 # Get the list of artifacts passed to the function
 artifacts = job_data['inputArtifacts']

 stack = params['stack']
 artifact = params['artifact']
 template_file = params['file']

 if 'continuationToken' in job_data:
 # If we're continuing then the create/update has already been triggered
 # we just need to check if it has finished.
 check_stack_update_status(job_id, stack)
 else:
 # Get the artifact details
 artifact_data = find_artifact(artifacts, artifact)
 # Get S3 client to access artifact with
 s3 = setup_s3_client(job_data)
 # Get the JSON template file out of the artifact
 template = get_template(s3, artifact_data, template_file)
 # Kick off a stack update or create
 start_update_or_create(job_id, stack, template)

 except Exception as e:

Additional sample functions API Version 2015-07-09 607

AWS CodePipeline User Guide

 # If any other exceptions which we didn't expect are raised
 # then fail the job and log the exception message.
 print('Function failed due to exception.')
 print(e)
 traceback.print_exc()
 put_job_failure(job_id, 'Function exception: ' + str(e))

 print('Function complete.')
 return "Complete."

6. Leave Handler at the default value, and leave Role at the name you selected or created earlier,
CodePipelineLambdaExecRole.

7. In Basic settings, for Timeout, replace the default of 3 seconds with 20.

8. Choose Save.

9. From the CodePipeline console, edit the pipeline to add the function as an action in a stage in
your pipeline. Choose Edit for the pipeline stage you want to change, and choose Add action
group. On the Edit action page, in Action name, enter a name for your action. In Action
provider, choose Lambda.

Under Input artifacts, choose MyTemplate. In UserParameters, you must provide a JSON
string with three parameters:

• Stack name

• AWS CloudFormation template name and path to the file

• Input artifact

Use curly brackets ({ }) and separate the parameters with commas. For example, to
create a stack named MyTestStack, for a pipeline with the input artifact MyTemplate,
in UserParameters, enter: {"stack":"MyTestStack","file":"template-package/
template.json","artifact":"MyTemplate"}.

Note

Even though you have specified the input artifact in UserParameters, you must also
specify this input artifact for the action in Input artifacts.

10. Save your changes to the pipeline, and then manually release a change to test the action and
Lambda function.

Additional sample functions API Version 2015-07-09 608

AWS CodePipeline User Guide

Retry a failed action in a stage

You can retry a stage that has failed without having to run a pipeline again from the beginning.
You do this by either retrying the failed actions in a stage or by retrying all actions in the stage
starting from the first action in the stage. When you retry the failed actions in a stage, all actions
that are still in progress continue working, and failed actions are triggered again. When you retry
a failed stage from the first action in the stage, the stage cannot have any actions in progress.
Before a stage can be retried, it must either have all actions failed or some actions failed and some
succeeded.

Important

Retrying a failed stage retries all actions in the stage from the first action in the stage, and
retrying failed actions retries all failed actions in the stage. This overrides output artifacts
of previously successful actions in the same execution.
Although artifacts may be overriden, the execution history of previously successful actions
is still retained.

If you are using the console to view a pipeline, either a Retry stage button or a Retry failed actions
button appears on the stage that can be retried.

If you are using the AWS CLI, you can use the get-pipeline-state command to determine whether
any actions have failed.

Note

In the following cases, you might not be able to retry a stage:

• All actions in the stage succeeded, and so the stage is not in a failed status.

• The overall pipeline structure changed after the stage failed.

• Another retry attempt in the stage is already in progress.

Topics

• Retry failed actions (console)

• Retry failed actions (CLI)

Retry a failed action in a stage API Version 2015-07-09 609

AWS CodePipeline User Guide

Retry failed actions (console)

To retry a failed stage or failed actions in a stage - console

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline.

3. Locate the stage with the failed action, and then choose one of the following:

• To retry all actions in the stage, choose Retry stage.

• To retry only failed actions in the stage, choose Retry failed actions.

Retry failed actions (console) API Version 2015-07-09 610

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

If all retried actions in the stage are completed successfully, the pipeline continues to run.

Retry failed actions (CLI)

To retry a failed stage or failed actions in a stage - CLI

To use the AWS CLI to retry all actions or all failed actions, you run the retry-stage-execution
command with the following parameters:

--pipeline-name <value>

Retry failed actions (CLI) API Version 2015-07-09 611

AWS CodePipeline User Guide

--stage-name <value>
--pipeline-execution-id <value>
--retry-mode ALL_ACTIONS/FAILED_ACTIONS

Note

The values you can use for retry-mode are FAILED_ACTIONS and ALL_ACTIONS.

1. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the retry-stage-
execution command, as shown in the following example for a pipeline named MyPipeline.

aws codepipeline retry-stage-execution --pipeline-name MyPipeline --stage-name
 Deploy --pipeline-execution-id b59babff-5f34-EXAMPLE --retry-mode FAILED_ACTIONS

The output returns the execution ID:

{
 "pipelineExecutionId": "b59babff-5f34-EXAMPLE"
}

2. You can also run the command with a JSON input file. You first create a JSON file that
identifies the pipeline, the stage that contains the failed actions, and the latest pipeline
execution in that stage. You then run the retry-stage-execution command with the --cli-
input-json parameter. To retrieve the details you need for the JSON file, it's easiest to use
the get-pipeline-state command.

a. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the get-
pipeline-state command on a pipeline. For example, for a pipeline named MyFirstPipeline,
you would type something similar to the following:

aws codepipeline get-pipeline-state --name MyFirstPipeline

The response to the command includes pipeline state information for each stage. In the
following example, the response indicates that one or more actions failed in the Staging
stage:

{
 "updated": 1427245911.525,

Retry failed actions (CLI) API Version 2015-07-09 612

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html

AWS CodePipeline User Guide

 "created": 1427245911.525,
 "pipelineVersion": 1,
 "pipelineName": "MyFirstPipeline",
 "stageStates": [
 {
 "actionStates": [...],
 "stageName": "Source",
 "latestExecution": {
 "pipelineExecutionId": "9811f7cb-7cf7-SUCCESS",
 "status": "Succeeded"
 }
 },
 {
 "actionStates": [...],
 "stageName": "Staging",
 "latestExecution": {
 "pipelineExecutionId": "3137f7cb-7cf7-EXAMPLE",
 "status": "Failed"
 }
 }
]
}

b. In a plain-text editor, create a file where you will record the following, in JSON format:

• The name of the pipeline that contains the failed actions

• The name of the stage that contains the failed actions

• The ID of the latest pipeline execution in the stage

• The retry mode.

For the preceding MyFirstPipeline example, your file would look something like this:

{
 "pipelineName": "MyFirstPipeline",
 "stageName": "Staging",
 "pipelineExecutionId": "3137f7cb-7cf7-EXAMPLE",
 "retryMode": "FAILED_ACTIONS"
}

c. Save the file with a name like retry-failed-actions.json.

d. Call the file you created when you run the retry-stage-execution command. For example:

Retry failed actions (CLI) API Version 2015-07-09 613

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/retry-stage-execution.html

AWS CodePipeline User Guide

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline retry-stage-execution --cli-input-json file://retry-failed-
actions.json

e. To view the results of the retry attempt, either open the CodePipeline console and choose
the pipeline that contains the actions that failed, or use the get-pipeline-state command
again. For more information, see View pipelines and details in CodePipeline.

Manage approval actions in CodePipeline

In AWS CodePipeline, you can add an approval action to a stage in a pipeline at the point where
you want the pipeline execution to stop so that someone with the required AWS Identity and
Access Management permissions can approve or reject the action.

If the action is approved, the pipeline execution resumes. If the action is rejected—or if no one
approves or rejects the action within seven days of the pipeline reaching the action and stopping—
the result is the same as an action failing, and the pipeline execution does not continue.

You might use manual approvals for these reasons:

• You want someone to perform a code review or change management review before a revision is
allowed into the next stage of a pipeline.

• You want someone to perform manual quality assurance testing on the latest version of an
application, or to confirm the integrity of a build artifact, before it is released.

• You want someone to review new or updated text before it is published to a company website.

Configuration options for manual approval actions in CodePipeline

CodePipeline provides three configuration options you can use to tell approvers about the approval
action.

Publish Approval Notifications You can configure an approval action to publish a message to
an Amazon Simple Notification Service topic when the pipeline stops at the action. Amazon SNS

Manage approval actions in pipelines API Version 2015-07-09 614

AWS CodePipeline User Guide

delivers the message to every endpoint subscribed to the topic. You must use a topic created
in the same AWS Region as the pipeline that will include the approval action. When you create
a topic, we recommend you give it a name that will identify its purpose, in formats such as
MyFirstPipeline-us-east-2-approval.

When you publish approval notifications to Amazon SNS topics, you can choose from formats
such as email or SMS recipients, SQS queues, HTTP/HTTPS endpoints, or AWS Lambda functions
you invoke using Amazon SNS. For information about Amazon SNS topic notifications, see the
following topics:

• What Is Amazon Simple Notification Service?

• Create a Topic in Amazon SNS

• Sending Amazon SNS Messages to Amazon SQS Queues

• Subscribing a Queue to an Amazon SNS Topic

• Sending Amazon SNS Messages to HTTP/HTTPS Endpoints

• Invoking Lambda Functions Using Amazon SNS Notifications

For the structure of the JSON data generated for an approval action notification, see JSON data
format for manual approval notifications in CodePipeline.

Specify a URL for Review As part of the configuration of the approval action, you can specify a
URL to be reviewed. The URL might be a link to a web application you want approvers to test or a
page with more information about your approval request. The URL is included in the notification
that is published to the Amazon SNS topic. Approvers can use the console or CLI to view it.

Enter Comments for Approvers When you create an approval action, you can also add comments
that are displayed to those who receive the notifications or those who view the action in the
console or CLI response.

No Configuration Options You can also choose not to configure any of these three options. You
might not need them if, for example, you can notify someone directly that the action is ready
for their review, or you simply want the pipeline to stop until you decide to approve the action
yourself.

Setup and workflow overview for approval actions in CodePipeline

The following is an overview for setting up and using manual approvals.

Setup and workflow overview for approval actions API Version 2015-07-09 615

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/sns/latest/dg/SendMessageToSQS.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqssubscribe.html
https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.html
https://docs.aws.amazon.com/sns/latest/dg/sns-lambda.html

AWS CodePipeline User Guide

1. You grant the IAM permissions required for approving or rejecting approval actions to one or
more IAM roles in your organization.

2. (Optional) If you are using Amazon SNS notifications, you ensure that the service role you use in
your CodePipeline operations has permission to access Amazon SNS resources.

3. (Optional) If you are using Amazon SNS notifications, you create an Amazon SNS topic and add
one or more subscribers or endpoints to it.

4. When you use the AWS CLI to create the pipeline or after you have used the CLI or console to
create the pipeline, you add an approval action to a stage in the pipeline.

If you are using notifications, you include the Amazon Resource Name (ARN) of the
Amazon SNS topic in the configuration of the action. (An ARN is a unique identifier for an
Amazon resource. ARNs for Amazon SNS topics are structured like arn:aws:sns:us-
east-2:80398EXAMPLE:MyApprovalTopic. For more information, see Amazon Resource
Names (ARNs) and AWS service namespaces in the Amazon Web Services General Reference.)

5. The pipeline stops when it reaches the approval action. If an Amazon SNS topic ARN was
included in the configuration of the action, a notification is published to the Amazon SNS topic,
and a message is delivered to any subscribers to the topic or subscribed endpoints, with a link to
review the approval action in the console.

6. An approver examines the target URL and reviews comments, if any.

7. Using the console, CLI, or SDK, the approver provides a summary comment and submits a
response:

• Approved: The pipeline execution resumes.

• Rejected: The stage status is changed to "Failed" and the pipeline execution does not resume.

If no response is submitted within seven days, the action is marked as "Failed."

Grant approval permissions to an IAM user in CodePipeline

Before IAM users in your organization can approve or reject approval actions, they must be
granted permissions to access pipelines and to update the status of approval actions. You can
grant permission to access all pipelines and approval actions in your account by attaching the
AWSCodePipelineApproverAccess managed policy to an IAM user, role, or group; or you can
to grant limited permissions by specifying the individual resources that can be accessed by an IAM
user, role, or group.

Grant approval permissions to an IAM user in CodePipeline API Version 2015-07-09 616

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS CodePipeline User Guide

Note

The permissions described in this topic grant very limited access. To enable a user, role, or
group to do more than approve or reject approval actions, you can attach other managed
policies. For information about the managed policies available for CodePipeline, see AWS
managed policies for AWS CodePipeline.

Grant approval permission to all pipelines and approval actions

For users who need to perform approval actions in CodePipeline, use the
AWSCodePipelineApproverAccess managed policy.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Specify approval permission for specific pipelines and approval actions

For users who need to perform approval actions in CodePipeline, use the following custom policy.
In the policy below, specify the individual resources a user can access. For example, the following
policy grants users the authority to approve or reject only the action named MyApprovalAction
in the MyFirstPipeline pipeline in the US East (Ohio) Region (us-east-2):

Grant approval permissions to an IAM user in CodePipeline API Version 2015-07-09 617

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS CodePipeline User Guide

Note

The codepipeline:ListPipelines permission is required only if IAM users need to
access the CodePipeline dashboard to view this list of pipelines. If console access is not
required, you can omit codepipeline:ListPipelines.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:ListPipelines"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:GetPipelineExecution"
],
 "Resource": "arn:aws:codepipeline:us-
east-2:80398EXAMPLE:MyFirstPipeline"

Grant approval permissions to an IAM user in CodePipeline API Version 2015-07-09 618

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS CodePipeline User Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:PutApprovalResult"
],
 "Resource": "arn:aws:codepipeline:us-
east-2:80398EXAMPLE:MyFirstPipeline/MyApprovalStage/MyApprovalAction"
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

Grant Amazon SNS permissions to a CodePipeline service role

If you plan to use Amazon SNS to publish notifications to topics when approval actions require
review, the service role you use in your CodePipeline operations must be granted permission to
access the Amazon SNS resources. You can use the IAM console to add this permission to your
service role.

In the policy below, specify the policy for publishing with SNS. For the following policy, you can
name it SNSPublish. Use the following policy by attaching it to your service role.

Grant Amazon SNS permissions to a service role API Version 2015-07-09 619

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

AWS CodePipeline User Guide

Important

Make sure you are signed in to the AWS Management Console with the same account
information you used in Getting started with CodePipeline.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sns:Publish",
 "Resource": "*"
 }
]
}

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter or paste a JSON policy document. For details about the IAM policy language, see IAM
JSON policy reference.

6. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to

Grant Amazon SNS permissions to a service role API Version 2015-07-09 620

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html

AWS CodePipeline User Guide

optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. (Optional) When you create or edit a policy in the AWS Management Console, you can
generate a JSON or YAML policy template that you can use in AWS CloudFormation templates.

To do this, in the Policy editor choose Actions, and then choose Generate CloudFormation
template. To learn more about AWS CloudFormation, see AWS Identity and Access
Management resource type reference in the AWS CloudFormation User Guide.

8. When you are finished adding permissions to the policy, choose Next.

9. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

10. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tagging IAM resources in the IAM User Guide.

11. Choose Create policy to save your new policy.

Add a manual approval action to a pipeline in CodePipeline

You can add an approval action to a stage in a CodePipeline pipeline at the point where you want
the pipeline to stop so someone can manually approve or reject the action.

Note

Approval actions can't be added to Source stages. Source stages can contain only source
actions.

If you want to use Amazon SNS to send notifications when an approval action is ready for review,
you must first complete the following prerequisites:

• Grant permission to your CodePipeline service role to access Amazon SNS resources. For
information, see Grant Amazon SNS permissions to a CodePipeline service role.

• Grant permission to one or more IAM identities in your organization to update the status of an
approval action. For information, see Grant approval permissions to an IAM user in CodePipeline.

Add a manual approval action API Version 2015-07-09 621

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

AWS CodePipeline User Guide

In this example, you create a new approval stage and add a manual approval action to the stage.
You can also add a manual approval action to an existing stage that contains other actions.

Add a manual approval action to a CodePipeline pipeline (console)

You can use the CodePipeline console to add an approval action to an existing CodePipeline
pipeline. You must use the AWS CLI if you want to add approval actions when you create a new
pipeline.

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. In Name, choose the pipeline.

3. On the pipeline details page, choose Edit.

4. If you want to add an approval action to a new stage, choose + Add stage at the point in the
pipeline where you want to add an approval request, and enter a name for the stage. On the
Add stage page, in Stage name, enter your new stage name. For example, add a new stage
and name it Manual_Approval.

If you want to add an approval action to an existing stage, choose Edit stage.

5. In the stage where you want to add the approval action, choose + Add action group.

6. On the Edit action page, do the following:

1. In Action name, enter a name to identify the action.

2. In Action provider, under Approval, choose Manual approval.

3. (Optional) In SNS topic ARN, choose the name of the topic to be used to send notifications
for the approval action.

4. (Optional) In URL for review, enter the URL of the page or application you want the
approver to examine. Approvers can access this URL through a link included in the console
view of the pipeline.

5. (Optional) In Comments, enter any other information you want to share with the reviewer.

6. Choose Save.

Add a manual approval action to a CodePipeline pipeline (CLI)

You can use the CLI to add an approval action to an existing pipeline or when you create a pipeline.
You do this by including an approval action, with the Manual approval type, in a stage you are
creating or editing.

Add a manual approval action API Version 2015-07-09 622

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

For more information about creating and editing pipelines, see Create a pipeline in CodePipeline
and Edit a pipeline in CodePipeline.

To add a stage to a pipeline that includes only an approval action, you would include something
similar to the following example when you create or update the pipeline.

Note

The configuration section is optional. This is just a portion, not the entire structure, of
the file. For more information, see CodePipeline pipeline structure reference.

{
 "name": "MyApprovalStage",
 "actions": [
 {
 "name": "MyApprovalAction",
 "actionTypeId": {
 "category": "Approval",
 "owner": "AWS",
 "version": "1",
 "provider": "Manual"
 },
 "inputArtifacts": [],
 "outputArtifacts": [],
 "configuration": {
 "NotificationArn": "arn:aws:sns:us-
east-2:80398EXAMPLE:MyApprovalTopic",
 "ExternalEntityLink": "http://example.com",
 "CustomData": "The latest changes include feedback from Bob."},
 "runOrder": 1
 }
]
}

If the approval action is in a stage with other actions, the section of your JSON file that contains
the stage might look similar instead to the following example.

Add a manual approval action API Version 2015-07-09 623

AWS CodePipeline User Guide

Note

The configuration section is optional. This is just a portion, not the entire structure, of
the file. For more information, see CodePipeline pipeline structure reference.

,
{
 "name": "Production",
 "actions": [
 {
 "inputArtifacts": [],
 "name": "MyApprovalAction",
 "actionTypeId": {
 "category": "Approval",
 "owner": "AWS",
 "version": "1",
 "provider": "Manual"
 },
 "outputArtifacts": [],
 "configuration": {
 "NotificationArn": "arn:aws:sns:us-
east-2:80398EXAMPLE:MyApprovalTopic",
 "ExternalEntityLink": "http://example.com",
 "CustomData": "The latest changes include feedback from Bob."
 },
 "runOrder": 1
 },
 {
 "inputArtifacts": [
 {
 "name": "MyApp"
 }
],
 "name": "MyDeploymentAction",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],

Add a manual approval action API Version 2015-07-09 624

AWS CodePipeline User Guide

 "configuration": {
 "ApplicationName": "MyDemoApplication",
 "DeploymentGroupName": "MyProductionFleet"
 },
 "runOrder": 2
 }
]
}

Approve or reject an approval action in CodePipeline

When a pipeline includes an approval action, the pipeline execution stops at the point where the
action has been added. The pipeline won't resume unless someone manually approves the action.
If an approver rejects the action, or if no approval response is received within seven days of the
pipeline stopping for the approval action, the pipeline status becomes "Failed."

If the person who added the approval action to the pipeline configured notifications, you might
receive an email with the pipeline information and status for approval.

Approve or reject an approval action (console)

If you receive a notification that includes a direct link to an approval action, choose the Approve or
reject link, sign in to the console, and then continue with step 7 here. Otherwise, follow all of these
steps.

1. Open the CodePipeline console at https://console.aws.amazon.com/codepipeline/.

2. On the All Pipelines page, choose the name of the pipeline.

3. Locate the stage with the approval action. Choose Review.

The Review dialog box displays. The Details tab shows the review content and comments.

Approve or reject an approval action API Version 2015-07-09 625

https://console.aws.amazon.com/codepipeline/

AWS CodePipeline User Guide

The Revisions tab shows the source revisions for the execution.

Approve or reject an approval action API Version 2015-07-09 626

AWS CodePipeline User Guide

4. On the Details tab, view the comments and URL, if any. The message also displays the URL of
content for you to review, if one was included.

5. If a URL was provided, choose the URL for review link in the action to open the target
webpage, and then review the content.

6. In the Review window, enter review comments, such as why you are approving or rejecting the
action, and then choose Approve or Reject.

7. Choose Submit.

Approve or reject an approval request (CLI)

To use the CLI to respond to an approval action, you must first use the get-pipeline-state
command to retrieve the token associated with latest execution of the approval action.

1. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the get-pipeline-
state command on the pipeline that contains the approval action. For example, for a pipeline
named MyFirstPipeline, enter the following:

aws codepipeline get-pipeline-state --name MyFirstPipeline

Approve or reject an approval action API Version 2015-07-09 627

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html

AWS CodePipeline User Guide

2. In the response to the command, locate the token value, which appears in
latestExecution in the actionStates section for the approval action, as shown here:

{
 "created": 1467929497.204,
 "pipelineName": "MyFirstPipeline",
 "pipelineVersion": 1,
 "stageStates": [
 {
 "actionStates": [
 {
 "actionName": "MyApprovalAction",
 "currentRevision": {
 "created": 1467929497.204,
 "revisionChangeId": "CEM7d6Tp7zfelUSLCPPwo234xEXAMPLE",
 "revisionId": "HYGp7zmwbCPPwo23xCMdTeqIlEXAMPLE"
 },
 "latestExecution": {
 "lastUpdatedBy": "identity",
 "summary": "The new design needs to be reviewed before
 release.",
 "token": "1a2b3c4d-573f-4ea7-a67E-XAMPLETOKEN"
 }
 }
//More content might appear here
}

3. In a plain-text editor, create a file where you add the following, in JSON format:

• The name of the pipeline that contains the approval action.

• The name of the stage that contains the approval action.

• The name of the approval action.

• The token value you collected in the previous step.

• Your response to the action (Approved or Rejected). The response must be capitalized.

• Your summary comments.

For the preceding MyFirstPipeline example, your file should look like this:

{
 "pipelineName": "MyFirstPipeline",

Approve or reject an approval action API Version 2015-07-09 628

AWS CodePipeline User Guide

 "stageName": "MyApprovalStage",
 "actionName": "MyApprovalAction",
 "token": "1a2b3c4d-573f-4ea7-a67E-XAMPLETOKEN",
 "result": {
 "status": "Approved",
 "summary": "The new design looks good. Ready to release to customers."
 }
}

4. Save the file with a name like approvalstage-approved.json.

5. Run the put-approval-result command, specifying the name of the approval JSON file, similar
to the following:

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline put-approval-result --cli-input-json file://approvalstage-
approved.json

JSON data format for manual approval notifications in CodePipeline

For approval actions that use Amazon SNS notifications, JSON data about the action is created and
published to Amazon SNS when the pipeline stops. You can use the JSON output to send messages
to Amazon SQS queues or invoke functions in AWS Lambda.

Note

This guide does not address how to configure notifications using JSON. For information,
see Sending Amazon SNS Messages to Amazon SQS Queues and Invoking Lambda
Functions Using Amazon SNS Notifications in the Amazon SNS Developer Guide.

The following example shows the structure of the JSON output available with CodePipeline
approvals.

{

JSON data format for manual approval notifications API Version 2015-07-09 629

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/put-approval-result.html
https://docs.aws.amazon.com/sns/latest/dg/SendMessageToSQS.html
https://docs.aws.amazon.com/sns/latest/dg/sns-lambda.html
https://docs.aws.amazon.com/sns/latest/dg/sns-lambda.html

AWS CodePipeline User Guide

 "region": "us-east-2",
 "consoleLink": "https://console.aws.amazon.com/codepipeline/home?region=us-east-2#/
view/MyFirstPipeline",
 "approval": {
 "pipelineName": "MyFirstPipeline",
 "stageName": "MyApprovalStage",
 "actionName": "MyApprovalAction",
 "token": "1a2b3c4d-573f-4ea7-a67E-XAMPLETOKEN",
 "expires": "2016-07-07T20:22Z",
 "externalEntityLink": "http://example.com",
 "approvalReviewLink": "https://console.aws.amazon.com/codepipeline/
home?region=us-east-2#/view/MyFirstPipeline/MyApprovalStage/MyApprovalAction/
approve/1a2b3c4d-573f-4ea7-a67E-XAMPLETOKEN",
 "customData": "Review the latest changes and approve or reject within seven
 days."
 }
}

Add a cross-Region action in CodePipeline

AWS CodePipeline includes a number of actions that help you configure build, test, and deploy
resources for your automated release process. You can add actions to your pipeline that are in an
AWS Region different from your pipeline. When an AWS service is the provider for an action, and
this action type/provider type are in a different AWS Region from your pipeline, this is a cross-
Region action.

Note

Cross-region actions are supported and can only be created in those AWS Regions where
CodePipeline is supported. For a list of the supported AWS Regions for CodePipeline, see
Quotas in AWS CodePipeline.

You can use the console, AWS CLI, or AWS CloudFormation to add cross-Region actions in pipelines.

Add a cross-Region action to a pipeline API Version 2015-07-09 630

AWS CodePipeline User Guide

Note

Certain action types in CodePipeline may only be available in certain AWS Regions. Also
note that there may be AWS Regions where an action type is available, but a specific AWS
provider for that action type is not available.

When you create or edit a pipeline, you must have an artifact bucket in the pipeline Region and
then you must have one artifact bucket per Region where you plan to execute an action. For more
information about the ArtifactStores parameter, see CodePipeline pipeline structure reference.

Note

CodePipeline handles the copying of artifacts from one AWS Region to the other Regions
when performing cross-region actions.

If you use the console to create a pipeline or cross-Region actions, default artifact buckets are
configured by CodePipeline in the Regions where you have actions. When you use the AWS CLI,
AWS CloudFormation, or an SDK to create a pipeline or cross-Region actions, you provide the
artifact bucket for each Region where you have actions.

Note

You must create the artifact bucket and encryption key in the same AWS Region as the
cross-Region action and in the same account as your pipeline.

You cannot create cross-Region actions for the following action types:

• Source actions

• Third-party actions

• Custom actions

Add a cross-Region action to a pipeline API Version 2015-07-09 631

AWS CodePipeline User Guide

Note

When using cross-Region Lambda invoke action in CodePipeline, the status of the lambda
execution using the PutJobSuccessResult and PutJobFailureResult should be sent to
the AWS Region where the Lambda function is present and not to the Region where
CodePipeline exists.

When a pipeline includes a cross-Region action as part of a stage, CodePipeline replicates only the
input artifacts of the cross-Region action from the pipeline Region to the action's Region.

Note

The pipeline Region and the Region where your CloudWatch Events change detection
resources are maintained remain the same. The Region where your pipeline is hosted does
not change.

Manage cross-Region actions in a pipeline (console)

You can use the CodePipeline console to add a cross-Region action to an existing pipeline. To
create a new pipeline with cross-Region actions using the Create pipeline wizard, see Create a
pipeline (console).

In the console, you create a cross-Region action in a pipeline stage by choosing the action provider
and the Region field, which lists the resources you have created in that region for that provider.
When you add a cross-Region action, CodePipeline uses a separate artifact bucket in the action's
region. For more information about cross-Region artifact buckets, see CodePipeline pipeline
structure reference.

Add a cross-Region action to a pipeline stage (console)

Use the console to add a cross-Region action to a pipeline.

Note

If the pipeline is running when changes are saved, that execution does not complete.

Manage cross-Region actions in a pipeline (console) API Version 2015-07-09 632

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobSuccessResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobFailureResult.html

AWS CodePipeline User Guide

To add a cross-Region action

1. Sign in to the console at http://console.aws.amazon.com/codesuite/codepipeline/home.

2. Select your pipeline, and then choose Edit.

3. At the bottom of the diagram, choose + Add stage if you are adding a new stage, or choose
Edit stage if you want to add the action to an existing stage.

4. On Edit: <Stage>, choose + Add action group to add a serial action. Or choose + Add action
to add a parallel action.

5. On the Edit action page:

a. In Action name, enter a name for the cross-Region action.

b. In Action provider, choose the action provider.

c. In Region, choose the AWS Region where you have created or plan to create the resource
for the action. When the Region is selected, the available resources for that Region are
listed for selection. The Region field designates where the AWS resources are created for
this action type and provider type. This field only displays for actions where the action
provider is an AWS service. The Region field defaults to the same AWS Region as your
pipeline.

d. In Input artifacts choose the appropriate input from the previous stage. For example, if
the previous stage is a source stage, choose SourceArtifact.

e. Complete all the required fields for the action provider you are configuring.

f. In Output artifacts choose the appropriate output to the next stage. For example, if the
next stage is a deployment stage, choose BuildArtifact.

g. Choose Save.

6. On Edit: <Stage>, choose Done.

7. Choose Save.

Edit a cross-Region action in a pipeline stage (console)

Use the console to edit an existing cross-Region action in a pipeline.

Note

If the pipeline is running when changes are saved, that execution does not complete.

Manage cross-Region actions in a pipeline (console) API Version 2015-07-09 633

http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

To edit a cross-Region action

1. Sign in to the console at http://console.aws.amazon.com/codesuite/codepipeline/home.

2. Select your pipeline, and then choose Edit.

3. Choose Edit stage.

4. On Edit: <Stage>, choose the icon to edit an existing action.

5. On the Edit action page, make changes to the fields, as appropriate.

6. On Edit: <Stage>, choose Done.

7. Choose Save.

Delete a cross-Region action from a pipeline stage (console)

Use the console to delete an existing cross-Region action from a pipeline.

Note

If the pipeline is running when changes are saved, that execution does not complete.

To delete a cross-Region action

1. Sign in to the console at http://console.aws.amazon.com/codesuite/codepipeline/home.

2. Select your pipeline, and then choose Edit.

3. Choose Edit stage.

4. On Edit: <Stage>, choose the icon to delete an existing action.

5. On Edit: <Stage>, choose Done.

6. Choose Save.

Add a cross-Region action to a pipeline (CLI)

You can use the AWS CLI to add a cross-Region action to an existing pipeline.

To create a cross-Region action in a pipeline stage with the AWS CLI, you add the configuration
action along with an optional region field. You must also have already created an artifact bucket

Add a cross-Region action to a pipeline (CLI) API Version 2015-07-09 634

http://console.aws.amazon.com/codesuite/codepipeline/home.
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

in the action's region. Instead of providing the artifactStore parameter of the single-region
pipeline, you use the artifactStores parameter to include a listing of each Region's artifact
bucket.

Note

In this walkthrough and its examples, RegionA is the Region where the pipeline is created.
It has access to the RegionA Amazon S3 bucket used to store pipeline artifacts and
the service role used by CodePipeline. RegionB is the region where the CodeDeploy
application, deployment group, and service role used by CodeDeploy are created.

Prerequisites

You must have created the following:

• A pipeline in RegionA.

• An Amazon S3 artifact bucket in RegionB.

• The resources for your action, such as your CodeDeploy application and deployment group for a
cross-Region deploy action, in RegionB.

Add a cross-Region action to a pipeline (CLI)

Use the AWS CLI to add a cross-Region action to a pipeline.

To add a cross-Region action

1. For a pipeline in RegionA, run the get-pipeline command to copy the pipeline structure into a
JSON file. For example, for a pipeline named MyFirstPipeline, run the following command:

aws codepipeline get-pipeline --name MyFirstPipeline >pipeline.json

This command returns nothing, but the file you created should appear in the directory where
you ran the command.

2. Add the region field to add a new stage with your cross-Region action that includes the
Region and resources for your action. The following JSON sample adds a Deploy stage with a
cross-Region deploy action where the provider is CodeDeploy, in a new region us-east-1.

Add a cross-Region action to a pipeline (CLI) API Version 2015-07-09 635

AWS CodePipeline User Guide

 {
 "name": "Deploy",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "name": "Deploy",
 "region": "RegionB",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "name",
 "DeploymentGroupName": "name"
 },
 "runOrder": 1
 }

3. In the pipeline structure, remove the artifactStore field and add the artifactStores
map for your new cross-Region action. The mapping must include an entry for each AWS
Region in which you have actions. For each entry in the mapping, the resources must be in the
respective AWS Region. In the example below, ID-A is the encryption key ID for RegionA, and
ID-B is the encryption key ID for RegionB.

"artifactStores":{
 "RegionA":{
 "encryptionKey":{
 "id":"ID-A",
 "type":"KMS"
 },
 "location":"Location1",
 "type":"S3"
 },
 "RegionB":{
 "encryptionKey":{

Add a cross-Region action to a pipeline (CLI) API Version 2015-07-09 636

AWS CodePipeline User Guide

 "id":"ID-B",
 "type":"KMS"
 },
 "location":"Location2",
 "type":"S3"
 }
}

The following JSON example shows the us-west-2 bucket as my-storage-bucket and adds
the new us-east-1 bucket named my-storage-bucket-us-east-1.

 "artifactStores": {
 "us-west-2": {
 "type": "S3",
 "location": "my-storage-bucket"
 },
 "us-east-1": {
 "type": "S3",
 "location": "my-storage-bucket-us-east-1"
 }
 },

4. If you are working with the pipeline structure retrieved using the get-pipeline command,
remove the metadata lines from the JSON file. Otherwise, the update-pipeline command
cannot use it. Remove the "metadata": { } lines and the "created", "pipelineARN",
and "updated" fields.

For example, remove the following lines from the structure:

"metadata": {
 "pipelineArn": "arn:aws:codepipeline:region:account-ID:pipeline-name",
 "created": "date",
 "updated": "date"
 }

Save the file.

5. To apply your changes, run the update-pipeline command, specifying the pipeline JSON file:

Add a cross-Region action to a pipeline (CLI) API Version 2015-07-09 637

AWS CodePipeline User Guide

Important

Be sure to include file:// before the file name. It is required in this command.

aws codepipeline update-pipeline --cli-input-json file://pipeline.json

This command returns the entire structure of the edited pipeline. The output is similar to the
following.

{
 "pipeline": {
 "version": 4,
 "roleArn": "ARN",
 "stages": [
 {
 "name": "Source",
 "actions": [
 {
 "inputArtifacts": [],
 "name": "Source",
 "actionTypeId": {
 "category": "Source",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeCommit"
 },
 "outputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "configuration": {
 "PollForSourceChanges": "false",
 "BranchName": "main",
 "RepositoryName": "MyTestRepo"
 },
 "runOrder": 1
 }
]
 },

Add a cross-Region action to a pipeline (CLI) API Version 2015-07-09 638

AWS CodePipeline User Guide

 {
 "name": "Deploy",
 "actions": [
 {
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "name": "Deploy",
 "region": "us-east-1",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeDeploy"
 },
 "outputArtifacts": [],
 "configuration": {
 "ApplicationName": "name",
 "DeploymentGroupName": "name"
 },
 "runOrder": 1
 }
]
 }
],
 "name": "AnyCompanyPipeline",
 "artifactStores": {
 "us-west-2": {
 "type": "S3",
 "location": "my-storage-bucket"
 },
 "us-east-1": {
 "type": "S3",
 "location": "my-storage-bucket-us-east-1"
 }
 }
 }
}

Add a cross-Region action to a pipeline (CLI) API Version 2015-07-09 639

AWS CodePipeline User Guide

Note

The update-pipeline command stops the pipeline. If a revision is being run through
the pipeline when you run the update-pipeline command, that run is stopped. You
must manually start the pipeline to run that revision through the updated pipeline.
Use the start-pipeline-execution command to manually start your pipeline.

6. After you update your pipeline, the cross-Region action is displayed in the console.

Add a cross-Region action to a pipeline (AWS CloudFormation)

You can use AWS CloudFormation to add a cross-Region action to an existing pipeline.

To add a cross-Region action with AWS CloudFormation

1. Add the Region parameter to the ActionDeclaration resource in your template, as shown
in this example:

ActionDeclaration:
 Type: Object
 Properties:
 ActionTypeId:
 Type: ActionTypeId
 Required: true
 Configuration:
 Type: Map
 InputArtifacts:

Add a cross-Region action to a pipeline (AWS CloudFormation) API Version 2015-07-09 640

AWS CodePipeline User Guide

 Type: Array
 ItemType:
 Type: InputArtifact
 Name:
 Type: String
 Required: true
 OutputArtifacts:
 Type: Array
 ItemType:
 Type: OutputArtifact
 RoleArn:
 Type: String
 RunOrder:
 Type: Integer
 Region:
 Type: String

2. Under Mappings, add the region map as shown in this example for a mapping named
SecondRegionMap that maps values for the keys RegionA and RegionB. Under the
Pipeline resource, under the artifactStore field, add the artifactStores map for your
new cross-Region action as follows:

Mappings:
 SecondRegionMap:
 RegionA:
 SecondRegion: "RegionB"
 RegionB:
 SecondRegion: "RegionA"

...

 Properties:
 ArtifactStores:
 -
 Region: RegionB
 ArtifactStore:
 Type: "S3"
 Location: test-cross-region-artifact-store-bucket-RegionB
 -
 Region: RegionA
 ArtifactStore:
 Type: "S3"
 Location: test-cross-region-artifact-store-bucket-RegionA

Add a cross-Region action to a pipeline (AWS CloudFormation) API Version 2015-07-09 641

AWS CodePipeline User Guide

The following YAML example shows the RegionA bucket as us-west-2 and adds the new
RegionB bucket, eu-central-1:

Mappings:
 SecondRegionMap:
 us-west-2:
 SecondRegion: "eu-central-1"
 eu-central-1:
 SecondRegion: "us-west-2"

...

 Properties:
 ArtifactStores:
 -
 Region: eu-central-1
 ArtifactStore:
 Type: "S3"
 Location: test-cross-region-artifact-store-bucket-eu-central-1
 -
 Region: us-west-2
 ArtifactStore:
 Type: "S3"
 Location: test-cross-region-artifact-store-bucket-us-west-2

3. Save the updated template to your local computer, and then open the AWS CloudFormation
console.

4. Choose your stack, and then choose Create Change Set for Current Stack.

5. Upload the template, and then view the changes listed in AWS CloudFormation. These are the
changes to be made to the stack. You should see your new resources in the list.

6. Choose Execute.

Working with variables

Some actions in CodePipeline generate variables. To use variables:

• You assign a namespace to an action to make the variables it produces available to a
downstream action configuration.

Working with variables API Version 2015-07-09 642

AWS CodePipeline User Guide

• You configure the downstream action to consume the variables generated by the action.

You can view the details for each action execution to see the values for each output variable that
was generated by the action in execution-time.

To see step-by-step examples of using variables:

• For a tutorial with a Lambda action that uses variables from an upstream action (CodeCommit)
and generates output variables, see Tutorial: Using variables with Lambda invoke actions.

• For a tutorial with a AWS CloudFormation action that references stack output variables from an
upstream CloudFormation action, see Tutorial: Create a pipeline that uses variables from AWS
CloudFormation deployment actions.

• For an example manual approval action with message text that references output variables
that resolve to the CodeCommit commit ID and commit message, see Example: Use variables in
manual approvals.

• For an example CodeBuild action with an environment variable that resolves to the GitHub
branch name, see Example: Use a BranchName variable with CodeBuild environment variables.

• CodeBuild actions produce as variables all environment variables that were exported as
part of the build. For more information, see CodeBuild action output variables. For a list of
the environment variables you can use in CodeBuild, see Environment variables in build
environments in the AWS CodeBuild User Guide.

Topics

• Configure actions for variables

• View output variables

• Example: Use variables in manual approvals

• Example: Use a BranchName variable with CodeBuild environment variables

Configure actions for variables

When you add an action to your pipeline, you can assign it a namespace and configure it to
consume variables from previous actions.

Configure actions for variables API Version 2015-07-09 643

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS CodePipeline User Guide

Configure actions with variables (console)

This example creates a pipeline with a CodeCommit source action and a CodeBuild build action.
The CodeBuild action is configured to consume the variables produced by the CodeCommit action.

If the namespace isn’t specified, the variables are not available for reference in the action
configuration. When you use the console to create a pipeline, the namespace for each action is
generated automatically.

To create a pipeline with variables

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. Choose Create pipeline. Enter a name for your pipeline, and then choose Next.

3. In Source, in Provider, choose CodeCommit. Choose the CodeCommit repository and branch
for the source action, and then choose Next.

4. In Build, in Provider, choose CodeBuild. Choose an existing CodeBuild build project name
or choose Create project. On Create build project, create a build project, and then choose
Return to CodePipeline.

Under Environment variables, choose Add environment variables. For example, enter the
execution ID with the variable syntax #{codepipeline.PipelineExecutionId} and
commit ID with the variable syntax #{SourceVariables.CommitId}.

Note

You can enter variable syntax in any action configuration field in the wizard.

5. Choose Create.

6. After the pipeline is created, you can view the namespace that was created by the wizard.
On the pipeline, choose the icon for the stage you want to view the namespace for. In this
example, the source action's auto-generated namespace, SourceVariables, is displayed.

Configure actions for variables API Version 2015-07-09 644

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

To edit the namespace for an existing action

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. Choose the pipeline you want to edit, and then choose Edit. For the source stage, choose Edit
stage. Add the CodeCommit action.

3. On Edit action, view the Variable namespace field. If the existing action was created
previously or without using the wizard, you must add a namespace. In Variable namespace,
enter a namespace name, and then choose Save.

To view output variables

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

2. After the pipeline is created and runs successfully, you can view the variables on the Action
execution details page. For information, see View variables (console).

Configure actions for variables (CLI)

When you use the create-pipeline command to create a pipeline or the update-pipeline command
to edit a pipeline, you can reference/use variables in the configuration of an action.

If the namespace isn't specified, the variables produced by the action are not available to be
referenced in any downstream action configuration.

Configure actions for variables API Version 2015-07-09 645

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

To configure an action with a namespace

1. Follow the steps in Create a pipeline in CodePipeline to create a pipeline using the CLI.
Start an input file to provide the create-pipeline command with the --cli-input-json
parameter. In the pipeline structure, add the namespace parameter and specify a name, such
as SourceVariables.

. . .
{
 "inputArtifacts": [],
 "name": "Source",
 "region": "us-west-2",
 "namespace": "SourceVariables",
 "actionTypeId": {
 "category": "Source",
 "owner": "AWS",
 "version": "1",
 "provider": "CodeCommit"
 },
 "outputArtifacts": [

. . .

2. Save the file with a name like MyPipeline.json.

3. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the create-pipeline
command and create the pipeline.

Call the file you created when you run the create-pipeline command. For example:

aws codepipeline create-pipeline --cli-input-json file://MyPipeline.json

To configure downstream actions to consume variables

1. Edit an input file to provide the update-pipeline command with the --cli-input-json
parameter. In the downstream action, add the variable to the configuration for that action.
A variable is made up of a namespace and key, separated by a period. For example, to add
variables for the pipeline execution ID and the source commit ID, specify the namespace
codepipeline for the variable #{codepipeline.PipelineExecutionId}. Specify the
namespace SourceVariables for the variable #{SourceVariables.CommitId}.

Configure actions for variables API Version 2015-07-09 646

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/retry-stage-execution.html

AWS CodePipeline User Guide

{
 "name": "Build",
 "actions": [
 {
 "outputArtifacts": [
 {
 "name": "BuildArtifacts"
 }
],
 "name": "Build",
 "configuration": {
 "EnvironmentVariables": "[{\"name\":\"Execution_ID\",\"value
\":\"#{codepipeline.PipelineExecutionId}\",\"type\":\"PLAINTEXT\"},{\"name\":
\"Commit_ID\",\"value\":\"#{SourceVariables.CommitId}\",\"type\":\"PLAINTEXT\"}]",
 "ProjectName": "env-var-test"
 },
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "region": "us-west-2",
 "actionTypeId": {
 "provider": "CodeBuild",
 "category": "Build",
 "version": "1",
 "owner": "AWS"
 },
 "runOrder": 1
 }
]
},

2. Save the file with a name like MyPipeline.json.

3. At a terminal (Linux, macOS, or Unix) or command prompt (Windows), run the create-pipeline
command and create the pipeline.

Call the file you created when you run the create-pipeline command. For example:

aws codepipeline create-pipeline --cli-input-json file://MyPipeline.json

Configure actions for variables API Version 2015-07-09 647

https://docs.aws.amazon.com/cli/latest/reference/codepipeline/get-pipeline-state.html
https://docs.aws.amazon.com/cli/latest/reference/codepipeline/retry-stage-execution.html

AWS CodePipeline User Guide

View output variables

You can view the action execution details to view the variables for that action, specific to each
execution.

View variables (console)

You can use the console to view variables for an action.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline.

3. Choose View history.

4. After the pipeline runs successfully, you can view the variables produced by the source action.
Choose View history. Choose Source in the action list for the pipeline execution to view the
action execution details for the CodeCommit action. On the action detail screen, view the
variables under Output variables.

5. After the pipeline runs successfully, you can view the variables consumed by the build action.
Choose View history. In the action list for the pipeline execution, choose Build to view the
action execution details for the CodeBuild action. On the action detail page, view the variables
under Action configuration. The auto-generated namespace is displayed.

View output variables API Version 2015-07-09 648

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

By default, Action configuration displays the variable syntax. You can choose Show resolved
configuration to toggle the list to display the values that were produced during the action
execution.

View variables (CLI)

You can use the list-action-executions command to view variables for an action.

1. Use the following command:

aws codepipeline list-action-executions

The output shows the outputVariables parameter as shown here.

"outputVariables": {
 "BranchName": "main",
 "CommitMessage": "Updated files for test",
 "AuthorDate": "2019-11-08T22:24:34Z",
 "CommitId": "d99b0083cc10EXAMPLE",
 "CommitterDate": "2019-11-08T22:24:34Z",
 "RepositoryName": "variables-repo"
 },

2. Use the following command:

aws codepipeline get-pipeline --name <pipeline-name>

View output variables API Version 2015-07-09 649

AWS CodePipeline User Guide

In the action configuration for the CodeBuild action, you can view the variables:

{
 "name": "Build",
 "actions": [
 {
 "outputArtifacts": [
 {
 "name": "BuildArtifact"
 }
],
 "name": "Build",
 "configuration": {
 "EnvironmentVariables": "[{\"name\":\"Execution_ID\",\"value
\":\"#{codepipeline.PipelineExecutionId}\",\"type\":\"PLAINTEXT\"},{\"name\":
\"Commit_ID\",\"value\":\"#{SourceVariables.CommitId}\",\"type\":\"PLAINTEXT\"}]",
 "ProjectName": "env-var-test"
 },
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "region": "us-west-2",
 "actionTypeId": {
 "provider": "CodeBuild",
 "category": "Build",
 "version": "1",
 "owner": "AWS"
 },
 "runOrder": 1
 }
]
},

Example: Use variables in manual approvals

When you specify a namespace for an action, and that action produces output variables, you can
add a manual approval that displays variables in the approval message. This example shows you
how to add variable syntax to a manual approval message.

Example: Use variables in manual approvals API Version 2015-07-09 650

AWS CodePipeline User Guide

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed. Choose the
pipeline you want to add the approval to.

2. To edit your pipeline, choose Edit. Add a manual approval after the source action. In Action
name, enter the name of the approval action.

3. In Action provider, choose Manual approval.

4. In URL for review, add the variable syntax for CommitId to your CodeCommit URL. Make
sure you use the namespace assigned to your source action. For example, the variable
syntax for a CodeCommit action with the default namespace SourceVariables is
#{SourceVariables.CommitId}.

In Comments, in CommitMessage, enter the commit message:

Please approve this change. Commit message: #{SourceVariables.CommitMessage}

5. After the pipeline runs successfully, you can view the variable values in the approval message.

Example: Use a BranchName variable with CodeBuild environment
variables

When you add a CodeBuild action to your pipeline, you can use CodeBuild environment variables to
reference a BranchName output variable from an upstream source action. With an output variable
from an action in CodePipeline, you can create your own CodeBuild environment variables for use
in your build commands.

This example shows you how to add output variable syntax from a GitHub source action to a
CodeBuild environment variable. The output variable syntax in this example represents the GitHub
source action output variable for BranchName. After the action runs successfully, the variable
resolves to show the GitHub branch name.

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed. Choose the
pipeline you want to add the approval to.

Example: Use a BranchName variable with CodeBuild environment variables API Version 2015-07-09 651

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

2. To edit your pipeline, choose Edit. On the stage that contains your CodeBuild action, choose
Edit stage.

3. Choose the icon to edit your CodeBuild action.

4. On the Edit action page, under Environment variables, enter the following:

• In Name, enter a name for your environment variable.

• In Value, enter the variable syntax for your pipeline output variable, which includes
the namespace assigned to your source action. For example, the output variable
syntax for a GitHub action with the default namespace SourceVariables is
#{SourceVariables.BranchName}.

• In Type, choose Plaintext.

5. After the pipeline runs successfully, you can see how the resolved output variable is the value
in the environment variable. Choose one of the following:

• CodePipeline console: Choose your pipeline, and then choose History. Choose the most
recent pipeline execution.

• Under Timeline, choose the selector for Source. This is the source action that generates
GitHub output variables. Choose View execution details. Under Output variables, view
the list of output variables generated by this action.

• Under Timeline, choose the selector for Build. This is the build action that specifies the
CodeBuild environment variables for your build project. Choose View execution details.
Under Action configuration, view your CodeBuild environment variables. Choose Show
resolved configuration. Your environment variable value is the resolved BranchName
output variable from the GitHub source action. In this example, the resolved value is main.

For more information, see View variables (console).

• CodeBuild console: Choose your build project and choose the link for your build run.
Under Environment variables, your resolved output variable is the value for the CodeBuild
environment variable. In this example, the environment variable Name is BranchName and
the Value is the resolved BranchName output variable from the GitHub source action. In this
example, the resolved value is main.

Example: Use a BranchName variable with CodeBuild environment variables API Version 2015-07-09 652

AWS CodePipeline User Guide

Example: Use a BranchName variable with CodeBuild environment variables API Version 2015-07-09 653

AWS CodePipeline User Guide

Working with stage transitions in CodePipeline

Transitions are links between pipeline stages that can be disabled or enabled. They are enabled by
default. When you re-enable a disabled transition, the latest revision runs through the remaining
stages of the pipeline unless more than 30 days have passed. Pipeline execution won't resume
for a transition that has been disabled more than 30 days unless a new change is detected or you
manually rerun the pipeline.

You can use the AWS CodePipeline console or the AWS CLI to disable or enable transitions between
stages in a pipeline.

Note

You can use an approval action to pause the run of a pipeline until it is manually approved
to continue. For more information, see Manage approval actions in CodePipeline.

Topics

• Disable or enable transitions (console)

• Disable or enable transitions (CLI)

Disable or enable transitions (console)

To disable or enable transitions in a pipeline

1. Sign in to the AWS Management Console and open the CodePipeline console at http://
console.aws.amazon.com/codesuite/codepipeline/home.

The names of all pipelines associated with your AWS account are displayed.

2. In Name, choose the name of the pipeline for which you want to enable or disable transitions.
This opens a detailed view of the pipeline, including the transitions between the stages of the
pipeline.

3. Find the arrow after the last stage that you want to run, and then choose the button next to it.
For example, in the following pipeline, if you want the actions in the Staging stage to run, but
not the actions in the stage named Production, choose the Disable transition button between
those two stages:

Disable or enable transitions (console) API Version 2015-07-09 654

http://console.aws.amazon.com/codesuite/codepipeline/home
http://console.aws.amazon.com/codesuite/codepipeline/home

AWS CodePipeline User Guide

4. In the Disable transition dialog box, enter a reason for disabling the transition, and then
choose Disable.

The button changes to show that transitions are disabled between the stage preceding the
arrow and the stage following the arrow. Any revisions that were already running in the stages
that come after the disabled transition continue through the pipeline, but any subsequent
revisions do not continue past the disabled transition.

Disable or enable transitions (console) API Version 2015-07-09 655

AWS CodePipeline User Guide

5. Choose the Enable transition button next to the arrow. In the Enable transition dialog box,
choose Enable. The pipeline immediately enables the transition between the two stages. If any
revisions have been run through the earlier stages after the transition was disabled, in a few
moments, the pipeline starts running the latest revision through the stages after the formerly
disabled transition. The pipeline runs the revision through all remaining stages in the pipeline.

Note

It might take a few seconds for changes to appear in the CodePipeline console after
you enable the transition.

Disable or enable transitions (CLI)

To disable a transition between stages by using the AWS CLI, run the disable-stage-transition
command. To enable a disabled transition, run the enable-stage-transition command.

Disable or enable transitions (CLI) API Version 2015-07-09 656

AWS CodePipeline User Guide

To disable a transition

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS CLI
to run the disable-stage-transition command, specifying the name of the pipeline, the name
of the stage to which you want to disable transitions, the transition type, and the reason you
are disabling transitions to that stage. Unlike using the console, you must also specify whether
you are disabling transitions into the stage (inbound) or transitions out of the stage after all
actions complete (outbound).

For example, to disable the transition to a stage named Staging in a pipeline named
MyFirstPipeline, you would type a command similar to the following:

aws codepipeline disable-stage-transition --pipeline-name MyFirstPipeline --stage-
name Staging --transition-type Inbound --reason "My Reason"

The command returns nothing.

2. To verify the transition has been disabled, either view the pipeline in the CodePipeline console
or run the get-pipeline-state command. For more information, see View pipelines (console)
and View pipeline details and history (CLI).

To enable a transition

1. Open a terminal (Linux, macOS, or Unix) or command prompt (Windows) and use the AWS CLI
to run the enable-stage-transition command, specifying the name of the pipeline, the name of
the stage to which you want to enable transitions, and the transition type.

For example, to enable the transition to a stage named Staging in a pipeline named
MyFirstPipeline, you would type a command similar to the following:

aws codepipeline enable-stage-transition --pipeline-name MyFirstPipeline --stage-
name Staging --transition-type Inbound

The command returns nothing.

2. To verify the transition has been disabled, either view the pipeline in the CodePipeline console
or run the get-pipeline-state command. For more information, see View pipelines (console)
and View pipeline details and history (CLI).

Disable or enable transitions (CLI) API Version 2015-07-09 657

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/disable-stage-transition.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline/enable-stage-transition.html

AWS CodePipeline User Guide

Monitoring pipelines

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
CodePipeline. You should collect monitoring data from all parts of your AWS solution so that you
can more easily debug a multi-point failure, if one occurs. Before you start monitoring, you should
create a monitoring plan that answers the following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools are available for you to use?

• Who will perform the monitoring tasks?

• Who should be notified if something goes wrong?

You can use the following tools to monitor your CodePipeline pipelines and their resources:

• EventBridge event bus events — You can monitor CodePipeline events in EventBridge, which
detects changes in your pipeline, stage, or action execution status. EventBridge routes that data
to targets such as AWS Lambda and Amazon Simple Notification Service. EventBridge events are
the same as those that appear in Amazon CloudWatch Events.

• Notifications for pipeline events in the Developer Tools console — You can monitor
CodePipeline events with notifications that you set up in the console and then create an Amazon
Simple Notification Service topic and subscription for. For more information, see What are
notifications in the Developer Tools Console User Guide.

• AWS CloudTrail — Use CloudTrail to capture API calls made by or on behalf of CodePipeline
in your AWS account and deliver the log files to an Amazon S3 bucket. You can choose to have
CloudWatch publish Amazon SNS notifications when new log files are delivered so you can take
quick action.

• Console and CLI — You can use the CodePipeline console and CLI to view details about the
status of a pipeline or a particular pipeline execution.

Topics

• Monitoring CodePipeline events

• Events placeholder bucket reference

API Version 2015-07-09 658

https://docs.aws.amazon.com/dtconsole/latest/userguide/welcome.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/welcome.html

AWS CodePipeline User Guide

• Logging CodePipeline API calls with AWS CloudTrail

Monitoring CodePipeline events

You can monitor CodePipeline events in EventBridge, which delivers a stream of real-time
data from your own applications, software-as-a-service (SaaS) applications, and AWS services.
EventBridge routes that data to targets such as AWS Lambda and Amazon Simple Notification
Service. These events are the same as those that appear in Amazon CloudWatch Events, which
delivers a near real-time stream of system events that describe changes in AWS resources. For more
information, see What Is Amazon EventBridge? in the Amazon EventBridge User Guide.

Note

Amazon EventBridge is the preferred way to manage your events. Amazon CloudWatch
Events and EventBridge are the same underlying service and API, but EventBridge provides
more features. Changes you make in either CloudWatch Events or EventBridge will appear
in each console.

Events are composed of rules. A rule is configured by choosing the following:

• Event Pattern. Each rule is expressed as an event pattern with the source and type of events
to monitor, and event targets. To monitor events, you create a rule with the service you are
monitoring as the event source, such as CodePipeline. For example, you can create a rule with an
event pattern that that uses CodePipeline as an event source to trigger the rule when there are
changes in the state of a pipeline, stage, or action.

• Targets. The new rule receives a selected service as the event target. You might want to set up
a target service to send notifications, capture state information, take corrective action, initiate
events, or take other actions. When you add your target, you must also grant permissions to
EventBridge to allow it to invoke the selected target service.

Each type of execution state change event emits notifications with specific message content,
where:

• The initial version entry shows the version number for the event.

• The version entry under pipeline detail shows the pipeline structure version number.

Monitoring CodePipeline events API Version 2015-07-09 659

https://docs.aws.amazon.com/eventbridge/latest/userguide/

AWS CodePipeline User Guide

• The execution-id entry under pipeline detail shows the execution ID for the pipeline
execution that caused the state change. Refer to the GetPipelineExecution API call in the AWS
CodePipeline API Reference.

• The pipeline-execution-attempt entry shows the number of attempts, or retries, for the
specific execution ID.

CodePipeline reports an event to EventBridge whenever the state of a resource in your AWS
account changes. Events are emitted on a guaranteed, at-least-once basis for the following
resources:

• Pipeline executions

• Stage executions

• Action executions

Events are emitted by EventBridge with the event pattern and schema detailed above. For
processed events, such as events you receive through notifications you have configured in the
Developer Tools console, the event message includes event pattern fields with some variation. For
example, the detail-type field is converted to detailType. For more information, refer to the
PutEvents API call in the Amazon EventBridge API Reference.

The following examples show events for CodePipeline. Where possible, each example shows the
schema for an emitted event along with the schema for a processed event.

Topics

• Detail types

• Pipeline-level events

• Stage-level events

• Action-level events

• Create a Rule That Sends a Notification on a Pipeline Event

Detail types

When you set up events to monitor, you can choose the detail type for the event.

You can configure notifications to be sent when the state changes for:

Detail types API Version 2015-07-09 660

https://docs.aws.amazon.com/codepipeline/latest/APIReference/
https://docs.aws.amazon.com/codepipeline/latest/APIReference/
https://docs.aws.amazon.com/eventbridge/latest/APIReference/

AWS CodePipeline User Guide

• Specified pipelines or all your pipelines. You control this by using "detail-type":
"CodePipeline Pipeline Execution State Change".

• Specified stages or all your stages, within a specified pipeline or all your pipelines. You control
this by using "detail-type": "CodePipeline Stage Execution State Change".

• Specified actions or all actions, within a specified stage or all stages, within a specified pipeline
or all your pipelines. You control this by using "detail-type": "CodePipeline Action
Execution State Change".

Note

Events emitted by EventBridge contain the detail-type parameter, which is converted to
detailType when events are processed.

Detail type State Description

CANCELED The pipeline execution was canceled because the
pipeline structure was updated.

FAILED The pipeline execution was not completed successfully.

RESUMED A failed pipeline execution has been retried in response
to the RetryStageExecution API call.

STARTED The pipeline execution is currently running.

STOPPED The stopping process is complete, and the pipeline
execution is stopped.

STOPPING The pipeline execution is stopping due to a request to
either stop and wait or stop and abandon the pipeline
execution.

CodePipel
ine Pipeline
Execution State
Change

SUCCEEDED The pipeline execution was completed successfully.

Detail types API Version 2015-07-09 661

AWS CodePipeline User Guide

Detail type State Description

SUPERSEDED While this pipeline execution was waiting for the next
stage to be completed, a newer pipeline execution
advanced and continued through the pipeline instead.

CANCELED The stage was canceled because the pipeline structure
was updated.

FAILED The stage was not completed successfully.

RESUMED A failed stage has been retried in response to the
RetryStageExecution API call.

STARTED The stage is currently running.

STOPPED The stopping process is complete, and the stage
execution is stopped.

STOPPING The stage execution is stopping due to a request to
either stop and wait or stop and abandon the pipeline
execution.

CodePipeline
Stage Execution
State Change

SUCCEEDED The stage was completed successfully.

ABANDONED The action is abandoned due to a request to stop and
abandon the pipeline execution.

CANCELED The action was canceled because the pipeline structure
was updated.

FAILED For approval actions, the FAILED state means the action
was either rejected by the reviewer or failed due to an
incorrect action configuration.

STARTED The action is currently running.

CodePipeline
Action Execution
State Change

SUCCEEDED The action was completed successfully.

Detail types API Version 2015-07-09 662

AWS CodePipeline User Guide

Pipeline-level events

Pipeline-level events are emitted when there is a state change for a pipeline execution.

Topics

• Pipeline STARTED event

• Pipeline STOPPING event

• Pipeline SUCCEEDED event

• Pipeline SUCCEEDED (example with Git tags)

• Pipeline FAILED event

• Pipeline FAILED (example with Git tags)

Pipeline STARTED event

When a pipeline execution starts, it emits an event that sends notifications with the following
content. This example is for the pipeline named "myPipeline" in the us-east-1 Region. The id
field represents the event ID, and the account field represents the account ID where the pipeline is
created.

Emitted event

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Pipeline Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-24T22:03:07Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "execution-trigger": {
 "trigger-type": "StartPipelineExecution",
 "trigger-detail": "arn:aws:sts::123456789012:assumed-role/Admin/my-user"

Pipeline-level events API Version 2015-07-09 663

AWS CodePipeline User Guide

 },
 "state": "STARTED",
 "version": 1,
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Pipeline Execution State Change",
 "region": "us-east-1",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:44:50Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
east-1:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "execution-trigger": {
 "trigger-type": "StartPipelineExecution",
 "trigger-detail": "arn:aws:sts::123456789012:assumed-role/Admin/my-user"
 },
 "state": "STARTED",
 "version": 1,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "additionalAttributes": {}
}

Pipeline STOPPING event

When a pipeline execution is stopping, it emits an event that sends notifications with the following
content. This example is for the pipeline named myPipeline in the us-west-2 Region.

{
 "version": "0",

Pipeline-level events API Version 2015-07-09 664

AWS CodePipeline User Guide

 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Pipeline Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-24T22:02:20Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "state": "STOPPING",
 "version": 3,
 "pipeline-execution-attempt": 1
 "stop-execution-comments": "Stopping the pipeline for an update"
 }
}

Pipeline SUCCEEDED event

When a pipeline execution succeeds, it emits an event that sends notifications with the following
content. This example is for the pipeline named myPipeline in the us-east-1 Region.

Emitted event

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Pipeline Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-24T22:03:44Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "state": "SUCCEEDED",

Pipeline-level events API Version 2015-07-09 665

AWS CodePipeline User Guide

 "version": 3,
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Pipeline Execution State Change",
 "region": "us-east-1",
 "source": "aws.codepipeline",
 "time": "2021-06-30T22:13:51Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "state": "SUCCEEDED",
 "version": 1,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "additionalAttributes": {}
}

Pipeline SUCCEEDED (example with Git tags)

When a pipeline execution has a stage that has been retried and succeeded, it emits an event
that sends notifications with the following content. This example is for the pipeline named
myPipeline in the eu-central-1 Region where the execution-trigger is configured for Git
tags.

Note

The execution-trigger field will have either tag-name or branch-name, depending
on what kind of event triggered the pipeline.

Pipeline-level events API Version 2015-07-09 666

AWS CodePipeline User Guide

{
 "version": "0",
 "id": "b128b002-09fd-4574-4eba-27152726c777",
 "detail-type": "CodePipeline Pipeline Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2023-10-26T13:50:53Z",
 "region": "eu-central-1",
 "resources": [
 "arn:aws:codepipeline:eu-central-1:123456789012:BuildFromTag"
],
 "detail": {
 "pipeline": "BuildFromTag",
 "execution-id": "e17b5773-cc0d-4db2-9ad7-594c73888de8",
 "start-time": "2023-10-26T13:49:39.208Z",
 "execution-trigger": {
 "author-display-name": "Mary Major",
 "full-repository-name": "mmajor/sample-project",
 "provider-type": "GitLab",
 "author-email": "email_address",
 "commit-message": "Update file README.md",
 "author-date": "2023-08-16T21:08:08Z",
 "tag-name": "gitlab-v4.2.1",
 "commit-id": "commit_ID",
 "connection-arn": "arn:aws:codestar-connections:eu-
central-1:123456789012:connection/0f5b706a-1a1d-46c5-86b6-f177321bcfb2",
 "author-id": "Mary Major"
 },
 "state": "SUCCEEDED",
 "version": 32.0,
 "pipeline-execution-attempt": 1.0
 }
}

Pipeline FAILED event

When a pipeline execution fails, it emits an event that sends notifications with the following
content. This example is for the pipeline named "myPipeline" in the us-west-2 Region.

Emitted event

{
 "version": "0",

Pipeline-level events API Version 2015-07-09 667

AWS CodePipeline User Guide

 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Pipeline Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-31T18:55:43Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "state": "FAILED",
 "version": 4,
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Pipeline Execution State Change",
 "region": "us-west-2",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:46:16Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "state": "FAILED",
 "version": 1,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "additionalAttributes": {
 "failedActionCount": 1,
 "failedActions": [

Pipeline-level events API Version 2015-07-09 668

AWS CodePipeline User Guide

 {
 "action": "Deploy",
 "additionalInformation": "Deployment <ID> failed"
 }
],
 "failedStage": "Deploy"
 }

Pipeline FAILED (example with Git tags)

Unless it fails at the source stage, for a pipeline configure with triggers, it emits an event that sends
notifications with the following content. This example is for the pipeline named myPipeline in
the eu-central-1 Region where the execution-trigger is configured for Git tags.

Note

The execution-trigger field will have either tag-name or branch-name, depending
on what kind of event triggered the pipeline.

Emitted event

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Pipeline Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-31T18:55:43Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "execution-trigger": {
 "author-display-name": "Mary Major",
 "full-repository-name": "mmajor/sample-project",
 "provider-type": "GitLab",

Pipeline-level events API Version 2015-07-09 669

AWS CodePipeline User Guide

 "author-email": "email_address",
 "commit-message": "Update file README.md",
 "author-date": "2023-08-16T21:08:08Z",
 "tag-name": "gitlab-v4.2.1",
 "commit-id": "commit_ID",
 "connection-arn": "arn:aws:codestar-connections:eu-
central-1:123456789012:connection/0f5b706a-1a1d-46c5-86b6-f177321bcfb2",
 "author-id": "Mary Major"
 },
 "state": "FAILED",
 "version": 4,
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Pipeline Execution State Change",
 "region": "us-west-2",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:46:16Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "execution-trigger": {
 "author-display-name": "Mary Major",
 "full-repository-name": "mmajor/sample-project",
 "provider-type": "GitLab",
 "author-email": "email_address",
 "commit-message": "Update file README.md",
 "author-date": "2023-08-16T21:08:08Z",
 "tag-name": "gitlab-v4.2.1",
 "commit-id": "commit_ID",
 "connection-arn": "arn:aws:codestar-connections:eu-
central-1:123456789012:connection/0f5b706a-1a1d-46c5-86b6-f177321bcfb2",
 "author-id": "Mary Major"
 },
 "state": "FAILED",

Pipeline-level events API Version 2015-07-09 670

AWS CodePipeline User Guide

 "version": 1,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "additionalAttributes": {
 "failedActionCount": 1,
 "failedActions": [
 {
 "action": "Deploy",
 "additionalInformation": "Deployment <ID> failed"
 }
],
 "failedStage": "Deploy"
 }

Stage-level events

Stage-level events are emitted when there is a state change for a stage execution.

Topics

• Stage STARTED event

• Stage STOPPING event

• Stage STOPPED event

• Stage RESUMED after stage retry event

Stage STARTED event

When a stage execution starts, it emits an event that sends notifications with the following
content. This example is for the pipeline named "myPipeline" in the us-east-1 Region, for the
stage Prod.

Emitted event

{
 "version": "0",
 "id": 01234567-EXAMPLE,
 "detail-type": "CodePipeline Stage Execution State Change",

Stage-level events API Version 2015-07-09 671

AWS CodePipeline User Guide

 "source": "aws.codepipeline",
 "account": 123456789012,
 "time": "2020-01-24T22:03:07Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "version": "1",
 "execution-id": 12345678-1234-5678-abcd-12345678abcd,
 "start-time": "2023-10-26T13:49:39.208Z",
 "stage": "Prod",
 "state": "STARTED",
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Stage Execution State Change",
 "region": "us-east-1",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:45:40Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "stage": "Source",
 "state": "STARTED",
 "version": 1,
 "pipeline-execution-attempt": 0
 },
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "additionalAttributes": {
 "sourceActions": [
 {

Stage-level events API Version 2015-07-09 672

AWS CodePipeline User Guide

 "sourceActionName": "Source",
 "sourceActionProvider": "CodeCommit",
 "sourceActionVariables": {
 "BranchName": "main",
 "CommitId": "<ID>",
 "RepositoryName": "my-repo"
 }
 }
]
 }
}

Stage STOPPING event

When a stage execution is stopping, it emits an event that sends notifications with the following
content. This example is for the pipeline named myPipeline in the us-west-2 Region, for the
stage Deploy.

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Stage Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-24T22:02:20Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "stage": "Deploy",
 "state": "STOPPING",
 "version": 3,
 "pipeline-execution-attempt": 1
 }
}

Stage-level events API Version 2015-07-09 673

AWS CodePipeline User Guide

Stage STOPPED event

When a stage execution is stopped, it emits an event that sends notifications with the following
content. This example is for the pipeline named myPipeline in the us-west-2 Region, for the
stage Deploy.

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Stage Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-31T18:21:39Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:49:39.208Z",
 "stage": "Deploy",
 "state": "STOPPED",
 "version": 3,
 "pipeline-execution-attempt": 1
 }
}

Stage RESUMED after stage retry event

When a stage execution is resumed and has a stage that has been retried, it emits an event that
sends notifications with the following content.

When a stage has been retried, the stage-last-retry-attempt-time field displays, as shown
in the example. The field displays on all stage events if a retry was performed.

Note

The stage-last-retry-attempt-time field will be present in all the subsequent stage
events after a stage has been retried.

Stage-level events API Version 2015-07-09 674

AWS CodePipeline User Guide

{
 "version": "0",
 "id": "38656bcd-a798-5f92-c738-02a71be484e1",
 "detail-type": "CodePipeline Stage Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2023-10-26T14:14:56Z",
 "region": "eu-central-1",
 "resources": [
 "arn:aws:codepipeline:eu-central-1:123456789012:BuildFromTag"
],
 "detail": {
 "pipeline": "BuildFromTag",
 "execution-id": "05dafb6a-5a56-4951-a858-968795364846",
 "stage-last-retry-attempt-time": "2023-10-26T14:14:56.305Z",
 "stage": "Build",
 "state": "RESUMED",
 "version": 32.0,
 "pipeline-execution-attempt": 2.0
 }
}

Action-level events

Action-level events are emitted when there is a state change for an action execution.

Topics

• Action STARTED event

• Action SUCCEEDED event

• Action FAILED event

• Action ABANDONED event

Action STARTED event

When an action execution starts, it emits an event that sends notifications with the following
content. This example is for the pipeline named myPipeline in the us-east-1 Region, for the
deployment action myAction.

Action-level events API Version 2015-07-09 675

AWS CodePipeline User Guide

Emitted event

{
 "version": "0",
 "id": 01234567-EXAMPLE,
 "detail-type": "CodePipeline Action Execution State Change",
 "source": "aws.codepipeline",
 "account": 123456789012,
 "time": "2020-01-24T22:03:07Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": 12345678-1234-5678-abcd-12345678abcd,
 "start-time": "2023-10-26T13:51:09.981Z",
 "stage": "Prod",
 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "myAction",
 "state": "STARTED",
 "type": {
 "owner": "AWS",
 "category": "Deploy",
 "provider": "CodeDeploy",
 "version": 1
 },
 "pipeline-execution-attempt": 1
 "input-artifacts": [
 {
 "name": "SourceArtifact",
 "s3location": {
 "bucket": "codepipeline-us-east-1-BUCKETEXAMPLE",
 "key": "myPipeline/SourceArti/KEYEXAMPLE"
 }
 }
]
 }
}

Processed event

{

Action-level events API Version 2015-07-09 676

AWS CodePipeline User Guide

 "account": "123456789012",
 "detailType": "CodePipeline Action Execution State Change",
 "region": "us-west-2",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:45:44Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:51:09.981Z",
 "stage": "Deploy",
 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "Deploy",
 "input-artifacts": [
 {
 "name": "SourceArtifact",
 "s3location": {
 "bucket": "codepipeline-us-east-1-EXAMPLE",
 "key": "myPipeline/SourceArti/EXAMPLE"
 }
 }
],
 "state": "STARTED",
 "region": "us-east-1",
 "type": {
 "owner": "AWS",
 "provider": "CodeDeploy",
 "category": "Deploy",
 "version": "1"
 },
 "version": 1,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-east-1:123456789012:myPipeline"
],
 "additionalAttributes": {}
}

Action-level events API Version 2015-07-09 677

AWS CodePipeline User Guide

Action SUCCEEDED event

When an action execution succeeds, it emits an event that sends notifications with the following
content. This example is for the pipeline named "myPipeline" in the us-west-2 Region, for
the source action "Source". For this event type, there are two different region fields. The event
region field specifies the Region for the pipeline event. The region field under the detail
section specifies the Region for the action.

Emitted event

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Action Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-24T22:03:11Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:51:09.981Z",
 "stage": "Source",
 "execution-result": {
 "external-execution-url": "https://us-west-2.console.aws.amazon.com/
codecommit/home#/repository/my-repo/commit/8cf40f2EXAMPLE",
 "external-execution-summary": "Added LICENSE.txt",
 "external-execution-id": "8cf40fEXAMPLE"
 },
 "output-artifacts": [
 {
 "name": "SourceArtifact",
 "s3location": {
 "bucket": "codepipeline-us-west-2-BUCKETEXAMPLE",
 "key": "myPipeline/SourceArti/KEYEXAMPLE"
 }
 }
],
 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "Source",

Action-level events API Version 2015-07-09 678

AWS CodePipeline User Guide

 "state": "SUCCEEDED",
 "region": "us-west-2",
 "type": {
 "owner": "AWS",
 "provider": "CodeCommit",
 "category": "Source",
 "version": "1"
 },
 "version": 3,
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Action Execution State Change",
 "region": "us-west-2",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:45:44Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:ACCOUNT:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "arn:aws:codepipeline:us-west-2:123456789012:myPipeline",
 "start-time": "2023-10-26T13:51:09.981Z",
 "stage": "Source",
 "execution-result": {
 "external-execution-url": "https://us-west-2.console.aws.amazon.com/
codecommit/home#/repository/my-repo/commit/8cf40f2EXAMPLE",
 "external-execution-summary": "Edited index.html",
 "external-execution-id": "36ab3ab7EXAMPLE"
 },
 "output-artifacts": [
 {
 "name": "SourceArtifact",
 "s3location": {
 "bucket": "codepipeline-us-west-2-EXAMPLE",
 "key": "myPipeline/SourceArti/EXAMPLE"
 }
 }
],

Action-level events API Version 2015-07-09 679

AWS CodePipeline User Guide

 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "Source",
 "state": "SUCCEEDED",
 "region": "us-west-2",
 "type": {
 "owner": "AWS",
 "provider": "CodeCommit",
 "category": "Source",
 "version": "1"
 },
 "version": 1,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "additionalAttributes": {}
}

Action FAILED event

When an action execution fails, it emits an event that sends notifications with the following
content. This example is for the pipeline named "myPipeline" in the us-west-2 Region, for the
action "Deploy".

Emitted event

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Action Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-31T18:55:43Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "start-time": "2023-10-26T13:51:09.981Z",

Action-level events API Version 2015-07-09 680

AWS CodePipeline User Guide

 "stage": "Deploy",
 "execution-result": {
 "external-execution-url": "https://us-west-2.console.aws.amazon.com/
codedeploy/home?#/deployments/<ID>",
 "external-execution-summary": "Deployment <ID> failed",
 "external-execution-id": "<ID>",
 "error-code": "JobFailed"
 },
 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "Deploy",
 "state": "FAILED",
 "region": "us-west-2",
 "type": {
 "owner": "AWS",
 "provider": "CodeDeploy",
 "category": "Deploy",
 "version": "1"
 },
 "version": 4,
 "pipeline-execution-attempt": 1
 }
}

Processed event

{
 "account": "123456789012",
 "detailType": "CodePipeline Action Execution State Change",
 "region": "us-west-2",
 "source": "aws.codepipeline",
 "time": "2021-06-24T00:46:16Z",
 "notificationRuleArn": "arn:aws:codestar-notifications:us-
west-2:123456789012:notificationrule/a69c62c21EXAMPLE",
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",
 "stage": "Deploy",
 "execution-result": {
 "external-execution-url": "https://console.aws.amazon.com/codedeploy/
home?region=us-west-2#/deployments/<ID>",
 "external-execution-summary": "Deployment <ID> failed",
 "external-execution-id": "<ID>",
 "error-code": "JobFailed"

Action-level events API Version 2015-07-09 681

AWS CodePipeline User Guide

 },
 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "Deploy",
 "state": "FAILED",
 "region": "us-west-2",
 "type": {
 "owner": "AWS",
 "provider": "CodeDeploy",
 "category": "Deploy",
 "version": "1"
 },
 "version": 13,
 "pipeline-execution-attempt": 1
 },
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "additionalAttributes": {
 "additionalInformation": "Deployment <ID> failed"
 }
}

Action ABANDONED event

When an action execution is abandoned, it emits an event that sends notifications with the
following content. This example is for the pipeline named "myPipeline" in the us-west-2
Region, for the action "Deploy".

{
 "version": "0",
 "id": "01234567-EXAMPLE",
 "detail-type": "CodePipeline Action Execution State Change",
 "source": "aws.codepipeline",
 "account": "123456789012",
 "time": "2020-01-31T18:21:39Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:codepipeline:us-west-2:123456789012:myPipeline"
],
 "detail": {
 "pipeline": "myPipeline",
 "execution-id": "12345678-1234-5678-abcd-12345678abcd",

Action-level events API Version 2015-07-09 682

AWS CodePipeline User Guide

 "stage": "Deploy",
 "action-execution-id": "47f821c5-a902-44b2-ae61-b878d31ecd21",
 "action": "Deploy",
 "state": "ABANDONED",
 "region": "us-west-2",
 "type": {
 "owner": "AWS",
 "provider": "CodeDeploy",
 "category": "Deploy",
 "version": "1"
 },
 "version": 3,
 "pipeline-execution-attempt": 1
 }
}

Create a Rule That Sends a Notification on a Pipeline Event

A rule watches for certain events and then routes them to AWS targets that you choose. You can
create a rule that performs an AWS action automatically when another AWS action happens, or a
rule that performs an AWS action regularly on a set schedule.

Topics

• Send a Notification When Pipeline State Changes (Console)

• Send a Notification When Pipeline State Changes (CLI)

Send a Notification When Pipeline State Changes (Console)

These steps show how to use the EventBridge console to create a rule to send notifications of
changes in CodePipeline.

To create an EventBridge rule that targets your pipeline with an Amazon S3 source

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules. Leave the default bus selected or choose an event bus.
Choose Create rule.

3. In Name, enter a name for your rule.

4. Under Rule type, choose Rule with an event pattern. Choose Next.

5. Under Event pattern, choose AWS services.

Create a Rule That Sends a Notification on a Pipeline Event API Version 2015-07-09 683

https://console.aws.amazon.com/events/

AWS CodePipeline User Guide

6. From the Event Type drop-down list, choose the level of state change for the notification.

• For a rule that applies to pipeline-level events, choose CodePipeline Pipeline Execution
State Change.

• For a rule that applies to stage-level events, choose CodePipeline Stage Execution State
Change.

• For a rule that applies to action-level events, choose CodePipeline Action Execution State
Change.

7. Specify the state changes the rule applies to:

• For a rule that applies to all state changes, choose Any state.

• For a rule that applies to some state changes only, choose Specific state(s), and then choose
one or more state values from the list.

8. For event patterns that are more detailed than the selectors allow, you can also use the Edit
pattern option in the Event pattern window to designate an event pattern in JSON format.

Note

If not otherwise specified, then the event pattern is created for all pipelines/stages/
actions and states.

For more detailed event patterns, you can copy and paste the following example event
patterns into the Event pattern window.

• Example

Use this sample event pattern to capture failed deploy and build actions across all the
pipelines.

{
"source": [
 "aws.codepipeline"
],
 "detail-type": [
 "CodePipeline Action Execution State Change"
],
 "detail": {
 "state": [

Create a Rule That Sends a Notification on a Pipeline Event API Version 2015-07-09 684

AWS CodePipeline User Guide

 "FAILED"
],
 "type": {
 "category": ["Deploy", "Build"]
 }
 }
}

• Example

Use this sample event pattern to capture all rejected or failed approval actions across all the
pipelines.

{
 "source": [
 "aws.codepipeline"
],
 "detail-type": [
 "CodePipeline Action Execution State Change"
],
 "detail": {
 "state": [
 "FAILED"
],
 "type": {
 "category": ["Approval"]
 }
 }
}

• Example

Use this sample event pattern to capture all the events from the specified pipelines.

{
"source": [
 "aws.codepipeline"
],
 "detail-type": [
 "CodePipeline Pipeline Execution State Change",
 "CodePipeline Action Execution State Change",
 "CodePipeline Stage Execution State Change"
],

Create a Rule That Sends a Notification on a Pipeline Event API Version 2015-07-09 685

AWS CodePipeline User Guide

 "detail": {
 "pipeline": ["myPipeline", "my2ndPipeline"]
 }
}

9. Choose Next.

10. In Target types, choose AWS service.

11. In Select a target, choose CodePipeline. In Pipeline ARN, enter the pipeline ARN for the
pipeline to be started by this rule.

Note

To get the pipeline ARN, run the get-pipeline command. The pipeline ARN appears in
the output. It is constructed in this format:
arn:aws:codepipeline:region:account:pipeline-name
Sample pipeline ARN:
arn:aws:codepipeline:us-east-2:80398EXAMPLE:MyFirstPipeline

12. To create or specify an IAM service role that grants EventBridge permissions to invoke the
target associated with your EventBridge rule (in this case, the target is CodePipeline):

• Choose Create a new role for this specific resource to create a service role that gives
EventBridge permissions to your start your pipeline executions.

• Choose Use existing role to enter a service role that gives EventBridge permissions to your
start your pipeline executions.

13. Choose Next.

14. On the Tags page, choose Next.

15. On the Review and create page, review the rule configuration. If you're satisfied with the rule,
choose Create rule.

Send a Notification When Pipeline State Changes (CLI)

These steps show how to use the CLI to create an CloudWatch Events rule to send notifications of
changes in CodePipeline.

To use the AWS CLI to create a rule, call the put-rule command, specifying:

Create a Rule That Sends a Notification on a Pipeline Event API Version 2015-07-09 686

AWS CodePipeline User Guide

• A name that uniquely identifies the rule you are creating. This name must be unique across all of
the pipelines you create with CodePipeline associated with your AWS account.

• The event pattern for the source and detail fields used by the rule. For more information, see
Amazon EventBridge and Event Patterns.

To create an EventBridge rule with CodePipeline as the event source

1. Call the put-rule command to create a rule specifying the event pattern. (See the preceding
tables for valid states.)

The following sample command uses --event-pattern to create a rule called
“MyPipelineStateChanges” that emits the CloudWatch event when a pipeline execution
fails for the pipeline named "myPipeline."

aws events put-rule --name "MyPipelineStateChanges" --event-pattern "{\"source\":
[\"aws.codepipeline\"],\"detail-type\":[\"CodePipeline Pipeline Execution State
 Change\"],\"detail\":{\"pipeline\":[\"myPipeline\"],\"state\":[\"FAILED\"]}}"

2. Call the put-targets command and include the following parameters:

• The --rule parameter is used with the rule_name you created by using put-rule.

• The --targets parameter is used with the list Id of the target in the list of targets and the
ARN of the Amazon SNS topic.

The following sample command specifies that for the rule called MyPipelineStateChanges,
the target Id is composed of the number one, indicating that in a list of targets for the rule,
this is target 1. The sample command also specifies an example ARN for the Amazon SNS topic.

aws events put-targets --rule MyPipelineStateChanges --targets
 Id=1,Arn=arn:aws:sns:us-west-2:11111EXAMPLE:MyNotificationTopic

3. Add permissions for EventBridge to use the designated target service to invoke the
notification. For more information, see Using resource-based policies for Amazon EventBridge.

Create a Rule That Sends a Notification on a Pipeline Event API Version 2015-07-09 687

http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
http://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html

AWS CodePipeline User Guide

Events placeholder bucket reference

This section is a reference only. For information about creating a pipeline with event detection
resources, see Source actions and change detection methods.

Source actions provided by Amazon S3 and CodeCommit use event-based change detection
resources to trigger your pipeline when a change is made in the source bucket or repository. These
resources are the CloudWatch Events rules that are configured to respond to events in the pipeline
source, such as a code change to the CodeCommit repository. When you use CloudWatch Events
for an Amazon S3 source, you must turn on CloudTrail so the events are logged. CloudTrail requires
an S3 bucket where it can send its digests. You can access the log files for your CloudWatch Events
resources from the custom bucket, but you cannot access the data from the placeholder bucket.

• If you used the CLI or AWS CloudFormation to set up the CloudWatch Events resources, you can
find your CloudTrail files in the bucket that you specified when you set up your pipeline.

• If you used the console to set up your pipeline with an S3 source, the console uses a CloudTrail
placeholder bucket when it creates your CloudWatch Events resources for you. CloudTrail digests
are stored in the placeholder bucket in the AWS Region where the pipeline is created.

You can change the configuration if you want to use a bucket other than the placeholder bucket.

Note

Data written to CloudTrail placeholder buckets automatically expires after one day and is
not retained.

For more information about finding and managing your CloudTrail log files, see Getting and
Viewing Your CloudTrail Log Files.

Topics

• Events placeholder bucket names by Region

Events placeholder bucket names by Region

This table lists the names of the S3 placeholder buckets that contain log files that track change
detection events for pipelines with Amazon S3 source actions.

Events placeholder bucket reference API Version 2015-07-09 688

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/get-and-view-cloudtrail-log-files.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/get-and-view-cloudtrail-log-files.html

AWS CodePipeline User Guide

Region name Placeholder bucket name Region identifier

US East (Ohio) codepipeline-cloudtrail-pla
ceholder-bucket-us-east-2

us-east-2

US East (N. Virginia) codepipeline-cloudtrail-pla
ceholder-bucket-us-east-1

us-east-1

US West (N. California) codepipeline-cloudtrail-pla
ceholder-bucket-us-west-1

us-west-1

US West (Oregon) codepipeline-cloudtrail-pla
ceholder-bucket-us-west-2

us-west-2

Canada (Central) codepipeline-cloudtrail-pla
ceholder-bucket-ca-central-1

ca-central-1

Europe (Frankfurt) codepipeline-cloudtrail-pla
ceholder-bucket-eu-central-1

eu-central-1

Europe (Ireland) codepipeline-cloudtrail-pla
ceholder-bucket-eu-west-1

eu-west-1

Europe (London) codepipeline-cloudtrail-pla
ceholder-bucket-eu-west-2

eu-west-2

Europe (Paris) codepipeline-cloudtrail-pla
ceholder-bucket-eu-west-3

eu-west-3

Europe (Stockholm) codepipeline-cloudtrail-pla
ceholder-bucket-eu-north-1

eu-north-1

Asia Pacific (Hong Kong) codepipeline-cloudtrail-pla
ceholder-bucket-ap-east-1

ap-east-1

Asia Pacific (Hyderabad) codepipeline-cloudtrail-pla
ceholder-bucket-ap-south-2

ap-south-2

Events placeholder bucket names by Region API Version 2015-07-09 689

AWS CodePipeline User Guide

Region name Placeholder bucket name Region identifier

Asia Pacific (Jakarta) codepipeline-cloudtrail-pla
ceholder-bucket-ap-southeas
t-3

ap-southeast-3

Asia Pacific (Melbourne) codepipeline-cloudtrail-pla
ceholder-bucket-ap-southeas
t-4

ap-southeast-4

Asia Pacific (Mumbai) codepipeline-cloudtrail-pla
ceholder-bucket-ap-south-1

ap-south-1

Asia Pacific (Osaka) codepipeline-cloudtrail-pla
ceholder-bucket-ap-northeas
t-3-prod

ap-northeast-3

Asia Pacific (Tokyo) codepipeline-cloudtrail-pla
ceholder-bucket-ap-northeas
t-1

ap-northeast-1

Asia Pacific (Seoul) codepipeline-cloudtrail-pla
ceholder-bucket-ap-northeas
t-2

ap-northeast-2

Asia Pacific (Singapore) codepipeline-cloudtrail-pla
ceholder-bucket-ap-southeas
t-1

ap-southeast-1

Asia Pacific (Sydney) codepipeline-cloudtrail-pla
ceholder-bucket-ap-southeas
t-2

ap-southeast-2

Asia Pacific (Tokyo) codepipeline-cloudtrail-pla
ceholder-bucket-ap-northeas
t-1

ap-northeast-1

Canada (Central) codepipeline-cloudtrail-pla
ceholder-bucket-ca-central-1

ca-central-1

Events placeholder bucket names by Region API Version 2015-07-09 690

AWS CodePipeline User Guide

Region name Placeholder bucket name Region identifier

Europe (Frankfurt) codepipeline-cloudtrail-pla
ceholder-bucket-eu-central-1

eu-central-1

Europe (Ireland) codepipeline-cloudtrail-pla
ceholder-bucket-eu-west-1

eu-west-1

Europe (London) codepipeline-cloudtrail-pla
ceholder-bucket-eu-west-2

eu-west-2

Europe (Milan) codepipeline-cloudtrail-pla
ceholder-bucket-eu-south-1

eu-south-1

Europe (Paris) codepipeline-cloudtrail-pla
ceholder-bucket-eu-west-3

eu-west-3

Europe (Spain) codepipeline-cloudtrail-pla
ceholder-bucket-eu-south-2

eu-south-2

Europe (Stockholm) codepipeline-cloudtrail-pla
ceholder-bucket-eu-north-1

eu-north-1

Europe (Zurich)* codepipeline-cloudtrail-pla
ceholder-bucket-eu-central-2

eu-central-2

Israel (Tel Aviv) codepipeline-cloudtrail-pla
ceholder-bucket-il-central-1

il-central-1

Middle East (Bahrain)* codepipeline-cloudtrail-pla
ceholder-bucket-me-south-1

me-south-1

Middle East (UAE) codepipeline-cloudtrail-pla
ceholder-bucket-me-central-1

me-central-1

South America (São Paulo) codepipeline-cloudtrail-pla
ceholder-bucket-sa-east-1

sa-east-1

Events placeholder bucket names by Region API Version 2015-07-09 691

AWS CodePipeline User Guide

Logging CodePipeline API calls with AWS CloudTrail

AWS CodePipeline is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in CodePipeline;. CloudTrail captures all API calls for
CodePipeline as events. The calls captured include calls from the CodePipeline console and code
calls to the CodePipeline API operations. If you create a trail, you can enable continuous delivery
of CloudTrail events to an Amazon S3 bucket, including events for CodePipeline. If you don't
configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to CodePipeline, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

CodePipeline information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
CodePipeline, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account , including events for CodePipeline, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All CodePipeline actions are logged by CloudTrail and are documented in the CodePipeline
API Reference. For example, calls to the CreatePipeline, GetPipelineExecution and
UpdatePipeline actions generate entries in the CloudTrail log files.

Logging API calls with AWS CloudTrail API Version 2015-07-09 692

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/codepipeline/latest/APIReference
http://docs.aws.amazon.com/codepipeline/latest/APIReference

AWS CodePipeline User Guide

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM)
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding CodePipeline log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry for an update pipeline event, where a pipeline
named MyFirstPipeline has been edited by the user named JaneDoe-CodePipeline with the account
ID 80398EXAMPLE. The user changed the name of the source stage of a pipeline from Source to
MySourceStage. Because both the requestParameters and the responseElements elements
in the CloudTrail log contain the entire structure of the edited pipeline, those elements have been
abbreviated in the following example. Emphasis has been added to the requestParameters
portion of the pipeline where the change occurred, the previous version number of the pipeline,
and the responseElements portion, which shows the version number incremented by 1. Edited
portions are marked with ellipses (...) to illustrate where more data appears in a real log entry.

{
 "eventVersion":"1.03",
 "userIdentity": {
 "type":"IAMUser",
 "principalId":"AKIAI44QH8DHBEXAMPLE",
 "arn":"arn:aws:iam::80398EXAMPLE:user/JaneDoe-CodePipeline",
 "accountId":"80398EXAMPLE",
 "accessKeyId":"AKIAIOSFODNN7EXAMPLE",
 "userName":"JaneDoe-CodePipeline",
 "sessionContext": {
 "attributes":{

Understanding CodePipeline log file entries API Version 2015-07-09 693

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS CodePipeline User Guide

 "mfaAuthenticated":"false",
 "creationDate":"2015-06-17T14:44:03Z"
 }
 },
 "invokedBy":"signin.amazonaws.com"},
 "eventTime":"2015-06-17T19:12:20Z",
 "eventSource":"codepipeline.amazonaws.com",
 "eventName":"UpdatePipeline",
 "awsRegion":"us-east-2",
 "sourceIPAddress":"192.0.2.64",
 "userAgent":"signin.amazonaws.com",
 "requestParameters":{
 "pipeline":{
 "version":1,
 "roleArn":"arn:aws:iam::80398EXAMPLE:role/CodePipeline_Service_Role",
 "name":"MyFirstPipeline",
 "stages":[
 {
 "actions":[
 {
 "name":"MySourceStage",
 "actionType":{
 "owner":"AWS",
 "version":"1",
 "category":"Source",
 "provider":"S3"
 },
 "inputArtifacts":[],
 "outputArtifacts":[
 {"name":"MyApp"}
],
 "runOrder":1,
 "configuration":{
 "S3Bucket":"awscodepipeline-demobucket-example-date",
 "S3ObjectKey":"sampleapp_linux.zip"
 }
 }
],
 "name":"Source"
 },
 (...)
 },
 "responseElements":{
 "pipeline":{

Understanding CodePipeline log file entries API Version 2015-07-09 694

AWS CodePipeline User Guide

 "version":2,
 (...)
 },
 "requestID":"2c4af5c9-7ce8-EXAMPLE",
 "eventID":""c53dbd42-This-Is-An-Example"",
 "eventType":"AwsApiCall",
 "recipientAccountId":"80398EXAMPLE"
 }
]
}

Understanding CodePipeline log file entries API Version 2015-07-09 695

AWS CodePipeline User Guide

Troubleshooting CodePipeline

The following information might help you troubleshoot common issues in AWS CodePipeline.

Topics

• Pipeline error: A pipeline configured with AWS Elastic Beanstalk returns an error
message: "Deployment failed. The provided role does not have sufficient permissions:
Service:AmazonElasticLoadBalancing"

• Deployment error: A pipeline configured with an AWS Elastic Beanstalk deploy action hangs
instead of failing if the "DescribeEvents" permission is missing

• Pipeline error: A source action returns the insufficient permissions message: "Could not access
the CodeCommit repository repository-name. Make sure that the pipeline IAM role has sufficient
permissions to access the repository."

• Pipeline error: A Jenkins build or test action runs for a long time and then fails due to lack of
credentials or permissions

• Pipeline error: A pipeline created in one AWS Region using a bucket created in another AWS
Region returns an "InternalError" with the code "JobFailed"

• Deployment error: A ZIP file that contains a WAR file is deployed successfully to AWS Elastic
Beanstalk, but the application URL reports a 404 not found error

• Pipeline artifact folder names appear to be truncated

• Add CodeBuild GitClone permissions for connections to Bitbucket, GitHub, GitHub Enterprise
Server, or GitLab.com

• Add CodeBuild GitClone permissions for CodeCommit source actions

• Pipeline error: A deployment with the CodeDeployToECS action returns an error message:
"Exception while trying to read the task definition artifact file from: <source artifact name>"

• GitHub version 1 source action: Repository list shows different repositories

• GitHub version 2 source action: Unable to complete the connection for a repository

• Amazon S3 error: CodePipeline service role <ARN> is getting S3 access denied for the S3 bucket
<BucketName>

• Pipelines with an Amazon S3, Amazon ECR, or CodeCommit source no longer start automatically

• Connections error when connecting to GitHub: "A problem occurred, make sure cookies are
enabled in your browser" or "An organization owner must install the GitHub app"

API Version 2015-07-09 696

AWS CodePipeline User Guide

• Error when the CloudFormationStackSet or CloudFormationStackInstances actions are not
available in a Region

• Pipelines with execution mode changed to QUEUED or PARALLEL mode fails when run limit
reached

• Pipelines in PARALLEL mode have an outdated pipeline definition if edited when changing to
QUEUED or SUPERSEDED mode

• Pipelines changed from PARALLEL mode will display a previous execution mode

• Pipelines with connections that use trigger filtering by file paths might not start at branch
creation

• Pipelines with connections that use trigger filtering by file paths might not start when file limit is
reached

• Need help with a different issue?

Pipeline error: A pipeline configured with AWS Elastic
Beanstalk returns an error message: "Deployment failed.
The provided role does not have sufficient permissions:
Service:AmazonElasticLoadBalancing"

Problem: The service role for CodePipeline does not have sufficient permissions for AWS Elastic
Beanstalk, including, but not limited to, some operations in Elastic Load Balancing. The service
role for CodePipeline was updated on August 6, 2015 to address this issue. Customers who created
their service role before this date must modify the policy statement for their service role to add the
required permissions.

Possible fixes: The easiest solution is to edit the policy statement for your service role as detailed
in Add permissions to the CodePipeline service role.

After you apply the edited policy, follow the steps in Start a pipeline manually to manually rerun
any pipelines that use Elastic Beanstalk.

Depending on your security needs, you can modify the permissions in other ways, too.

Pipeline error: A pipeline configured with AWS Elastic Beanstalk returns an error message: "Deployment
failed. The provided role does not have sufficient permissions: Service:AmazonElasticLoadBalancing"

API Version 2015-07-09 697

AWS CodePipeline User Guide

Deployment error: A pipeline configured with an AWS Elastic
Beanstalk deploy action hangs instead of failing if the
"DescribeEvents" permission is missing

Problem: The service role for CodePipeline must include the
"elasticbeanstalk:DescribeEvents" action for any pipelines that use AWS Elastic
Beanstalk. Without this permission, AWS Elastic Beanstalk deploy actions hang without failing or
indicating an error. If this action is missing from your service role, then CodePipeline does not have
permissions to run the pipeline deployment stage in AWS Elastic Beanstalk on your behalf.

Possible fixes: Review your CodePipeline service role. If the
"elasticbeanstalk:DescribeEvents" action is missing, use the steps in Add permissions to
the CodePipeline service role to add it using the Edit Policy feature in the IAM console.

After you apply the edited policy, follow the steps in Start a pipeline manually to manually rerun
any pipelines that use Elastic Beanstalk.

Pipeline error: A source action returns the insufficient
permissions message: "Could not access the CodeCommit
repository repository-name. Make sure that the pipeline IAM
role has sufficient permissions to access the repository."

Problem: The service role for CodePipeline does not have sufficient permissions for CodeCommit
and likely was created before support for using CodeCommit repositories was added on April 18,
2016. Customers who created their service role before this date must modify the policy statement
for their service role to add the required permissions.

Possible fixes: Add the required permissions for CodeCommit to your CodePipeline service role's
policy. For more information, see Add permissions to the CodePipeline service role.

Pipeline error: A Jenkins build or test action runs for a long
time and then fails due to lack of credentials or permissions

Problem: If the Jenkins server is installed on an Amazon EC2 instance, the instance might not have
been created with an instance role that has the permissions required for CodePipeline. If you are

Deployment error: A pipeline configured with an AWS Elastic Beanstalk deploy action hangs instead of
failing if the "DescribeEvents" permission is missing

API Version 2015-07-09 698

AWS CodePipeline User Guide

using an IAM user on a Jenkins server, an on-premises instance, or an Amazon EC2 instance created
without the required IAM role, the IAM user either does not have the required permissions, or the
Jenkins server cannot access those credentials through the profile configured on the server.

Possible fixes: Make sure that Amazon EC2 instance role or IAM user is configured with the
AWSCodePipelineCustomActionAccess managed policy or with the equivalent permissions.
For more information, see AWS managed policies for AWS CodePipeline.

If you are using an IAM user, make sure the AWS profile configured on the instance uses the IAM
user configured with the correct permissions. You might have to provide the IAM user credentials
you configured for integration between Jenkins and CodePipeline directly into the Jenkins UI. This
is not a recommended best practice. If you must do so, be sure the Jenkins server is secured and
uses HTTPS instead of HTTP.

Pipeline error: A pipeline created in one AWS Region
using a bucket created in another AWS Region returns an
"InternalError" with the code "JobFailed"

Problem: The download of an artifact stored in an Amazon S3 bucket will fail if the pipeline and
bucket are created in different AWS Regions.

Possible fixes: Make sure the Amazon S3 bucket where your artifact is stored is in the same AWS
Region as the pipeline you have created.

Deployment error: A ZIP file that contains a WAR file is
deployed successfully to AWS Elastic Beanstalk, but the
application URL reports a 404 not found error

Problem: A WAR file is deployed successfully to an AWS Elastic Beanstalk environment, but the
application URL returns a 404 Not Found error.

Possible fixes: AWS Elastic Beanstalk can unpack a ZIP file, but not a WAR file contained in a ZIP
file. Instead of specifying a WAR file in your buildspec.yml file, specify a folder that contains the
content to be deployed. For example:

version: 0.2

Pipeline error: A pipeline created in one AWS Region using a bucket created in another AWS Region
returns an "InternalError" with the code "JobFailed"

API Version 2015-07-09 699

AWS CodePipeline User Guide

phases:
 post_build:
 commands:
 - mvn package
 - mv target/my-web-app ./
artifacts:
 files:
 - my-web-app/**/*
 discard-paths: yes

For an example, see AWS Elastic Beanstalk Sample for CodeBuild.

Pipeline artifact folder names appear to be truncated

Problem: When you view pipeline artifact names in CodePipeline, the names appear to be
truncated. This can make the names appear to be similar or seem to no longer contain the entire
pipeline name.

Explanation: CodePipeline truncates artifact names to ensure that the full Amazon S3 path does
not exceed policy size limits when CodePipeline generates temporary credentials for job workers.

Even though the artifact name appears to be truncated, CodePipeline maps to the artifact bucket
in a way that is not affected by artifacts with truncated names. The pipeline can function normally.
This is not an issue with the folder or artifacts. There is a 100-character limit to pipeline names.
Although the artifact folder name might appear to be shortened, it is still unique for your pipeline.

Add CodeBuild GitClone permissions for connections to
Bitbucket, GitHub, GitHub Enterprise Server, or GitLab.com

When you use an AWS CodeStar connection in a source action and a CodeBuild action, there are
two ways the input artifact can be passed to the build:

• The default: The source action produces a zip file that contains the code that CodeBuild
downloads.

• Git clone: The source code can be directly downloaded to the build environment.

The Git clone mode allows you to interact with the source code as a working Git repository. To
use this mode, you must grant your CodeBuild environment permissions to use the connection.

Pipeline artifact folder names appear to be truncated API Version 2015-07-09 700

https://docs.aws.amazon.com/codebuild/latest/userguide/sample-elastic-beanstalk.html

AWS CodePipeline User Guide

To add permissions to your CodeBuild service role policy, you create a customer-managed policy
that you attach to your CodeBuild service role. The following steps create a policy where the
UseConnection permission is specified in the action field, and the connection ARN is specified
in the Resource field.

To use the console to add the UseConnection permissions

1. To find the connection ARN for your pipeline, open your pipeline and click the (i) icon on your
source action. You add the connection ARN to your CodeBuild service role policy.

An example connection ARN is:

arn:aws:codestar-connections:eu-central-1:123456789123:connection/
sample-1908-4932-9ecc-2ddacee15095

2. To find your CodeBuild service role, open the build project used in your pipeline and navigate
to the Build details tab.

3. Choose the Service role link. This opens the IAM console where you can add a new policy that
grants access to your connection.

4. In the IAM console, choose Attach policies, and then choose Create policy.

Use the following sample policy template. Add your connection ARN in the Resource field, as
shown in this example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codestar-connections:UseConnection",
 "Resource": "insert connection ARN here"
 }
]
}

On the JSON tab, paste your policy.

5. Choose Review policy. Enter a name for the policy (for example, connection-
permissions), and then choose Create policy.

Add CodeBuild GitClone permissions for connections to Bitbucket, GitHub, GitHub Enterprise Server, or
GitLab.com

API Version 2015-07-09 701

AWS CodePipeline User Guide

6. Return to the page where you were attaching permissions, refresh the policy list, and select
the policy you just created. Choose Attach policies.

Add CodeBuild GitClone permissions for CodeCommit source
actions

When your pipeline has a CodeCommit source action, there are two ways you can pass the input
artifact to the build:

• Default – The source action produces a zip file that contains the code that CodeBuild downloads.

• Full clone – The source code can be directly downloaded to the build environment.

The Full clone option allows you to interact with the source code as a working Git repository.
To use this mode, you must add permissions for your CodeBuild environment to pull from your
repository.

To add permissions to your CodeBuild service role policy, you create a customer-managed policy
that you attach to your CodeBuild service role. The following steps create a policy that specifies the
codecommit:GitPull permission in the action field.

To use the console to add the GitPull permissions

1. To find your CodeBuild service role, open the build project used in your pipeline and navigate
to the Build details tab.

2. Choose the Service role link. This opens the IAM console where you can add a new policy that
grants access to your repository.

3. In the IAM console, choose Attach policies, and then choose Create policy.

4. On the JSON tab, paste the following sample policy.

Add CodeBuild GitClone permissions for CodeCommit source actions API Version 2015-07-09 702

AWS CodePipeline User Guide

{
 "Action": [
 "codecommit:GitPull"
],
 "Resource": "*",
 "Effect": "Allow"
},

5. Choose Review policy. Enter a name for the policy (for example, codecommit-gitpull), and
then choose Create policy.

6. Return to the page where you were attaching permissions, refresh the policy list, and select
the policy you just created. Choose Attach policies.

Pipeline error: A deployment with the CodeDeployToECS action
returns an error message: "Exception while trying to read the
task definition artifact file from: <source artifact name>"

Problem:

The task definition file is a required artifact for the CodePipeline deploy action to Amazon ECS
through CodeDeploy (the CodeDeployToECS action). The maximum artifact ZIP size in the
CodeDeployToECS deploy action is 3 MB. The following error message is returned when the file is
not found or the artifact size exceeds 3 MB:

Exception while trying to read the task definition artifact file from: <source artifact name>

Possible fixes: Make sure the task definition file is included as an artifact. If the file already exists,
makes sure the compressed size is less than 3 MB.

GitHub version 1 source action: Repository list shows different
repositories

Problem:

After a successful authorization for a GitHub version 1 action in the CodePipeline console, you
can choose from a list of your GitHub repositories. If the list does not include the repositories you
expected to see, then you can troubleshoot the account used for authorization.

Pipeline error: A deployment with the CodeDeployToECS action returns an error message: "Exception
while trying to read the task definition artifact file from: <source artifact name>"

API Version 2015-07-09 703

AWS CodePipeline User Guide

Possible fixes: The list of repositories provided in the CodePipeline console are based on the
GitHub organization the authorized account belongs to. Verify that the account you are using
to authorize with GitHub is the account associated with the GitHub organization where your
repository is created.

GitHub version 2 source action: Unable to complete the
connection for a repository

Problem:

Because a connection to a GitHub repository uses the AWS Connector for GitHub, you need
organization owner permissions or admin permissions to the repository to create the connection.

Possible fixes: For information about permission levels for a GitHub repository, see https://
docs.github.com/en/free-pro-team@latest/github/setting-up-and-managing-organizations-and-
teams/permission-levels-for-an-organization.

Amazon S3 error: CodePipeline service role <ARN> is getting S3
access denied for the S3 bucket <BucketName>

Problem:

While in progress, the CodeCommit action in CodePipeline checks that the pipeline artifact bucket
exists. If the action does not have permission to check, an AccessDenied error occurs in Amazon
S3 and the following error message displays in CodePipeline:

CodePipeline service role "arn:aws:iam::AccountID:role/service-role/RoleID" is getting S3 access
denied for the S3 bucket "BucketName"

The CloudTrail logs for the action also log the AccessDenied error.

Possible fixes: Do the following:

• For the policy attached to your CodePipeline service role, add s3:ListBucket to the list of
actions in your policy. For instructions on to view your service role policy, see View the pipeline
ARN and service role ARN (console). Edit the policy statement for your service role as detailed in
Add permissions to the CodePipeline service role.

GitHub version 2 source action: Unable to complete the connection for a repository API Version 2015-07-09 704

https://docs.github.com/en/free-pro-team@latest/github/setting-up-and-managing-organizations-and-teams/permission-levels-for-an-organization
https://docs.github.com/en/free-pro-team@latest/github/setting-up-and-managing-organizations-and-teams/permission-levels-for-an-organization
https://docs.github.com/en/free-pro-team@latest/github/setting-up-and-managing-organizations-and-teams/permission-levels-for-an-organization

AWS CodePipeline User Guide

• For the resource-based policy attached to the Amazon S3 artifact bucket for your pipeline, also
called the artifact bucket policy, add a statement to allow the s3:ListBucket permission to be
used by your CodePipeline service role.

To add your policy to the artifact bucket

1. Follow the steps in View the pipeline ARN and service role ARN (console) to choose your
artifact bucket on the pipeline Settings page and then view it in the Amazon S3 console.

2. Choose Permissions.

3. Under Bucket policy, choose Edit.

4. In the Policy text field, enter a new bucket policy, or edit the existing policy as shown in the
following example. The bucket policy is a JSON file, so you must enter valid JSON.

The following example shows a bucket policy statement for an artifact bucket where the
example role ID for the service role is AROAEXAMPLEID.

{
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::BucketName",
 "Condition": {
 "StringLike": {
 "aws:userid": "AROAEXAMPLEID:*"
 }
 }
}

The following example shows the same bucket policy statement after the permission is
added.

{
 "Version": "2012-10-17",
 "Id": "SSEAndSSLPolicy",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890",

Amazon S3 error: CodePipeline service role <ARN> is getting S3 access denied for the S3 bucket
<BucketName>

API Version 2015-07-09 705

AWS CodePipeline User Guide

 "Condition": {
 "StringLike": {
 "aws:userid": "AROAEXAMPLEID:*"
 }
 }
 },
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": false
 }
 }
 }
]
}

For more information, see the steps in https://aws.amazon.com/blogs/security/writing-iam-
policies-how-to-grant-access-to-an-amazon-s3-bucket/.

5. Choose Save.

After you apply the edited policy, follow the steps in Start a pipeline manually to manually rerun
your pipeline.

Amazon S3 error: CodePipeline service role <ARN> is getting S3 access denied for the S3 bucket
<BucketName>

API Version 2015-07-09 706

https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/

AWS CodePipeline User Guide

Pipelines with an Amazon S3, Amazon ECR, or CodeCommit
source no longer start automatically

Problem:

After making a change to configuration settings for an action that uses event rules (EventBridge
or CloudWatch Events) for change detection, the console might not detect a change where source
trigger identifiers are similar and have identical initial characters. Because the new event rule is not
created by the console, the pipeline no longer starts automatically.

An example of a minor change at the end of the parameter name for CodeCommit would be
changing your CodeCommit branch name MyTestBranch-1 to MyTestBranch-2. Because the
change is at the end of the branch name, the event rule for the source action might not update or
create a rule for the new source settings.

This applies to source actions that use CWE events for change detection as follows:

Source action Parameters / trigger identifiers (console)

Amazon ECR Repository name

Image tag

Amazon S3 Bucket

S3 object key

CodeCommit Repository name

Branch name

Possible fixes:

Do one of the following:

• Change the CodeCommit/S3/ECR configuration settings so that changes are made to the
starting portion of the parameter value.

Example: Change your branch name release-branch to 2nd-release-branch. Avoid a
change at the end of the name, such as release-branch-2.

Pipelines with an Amazon S3, Amazon ECR, or CodeCommit source no longer start automatically API Version 2015-07-09 707

AWS CodePipeline User Guide

• Change the CodeCommit/S3/ECR configuration settings for each pipeline.

Example: Change your branch name myRepo/myBranch to myDeployRepo/myDeployBranch.
Avoid a change at the end of the name, such as myRepo/myBranch2.

• Instead of the console, use the CLI or AWS CloudFormation to create and update your change-
detection event rules. For instructions on creating event rules for an S3 source action, see
Amazon S3 source actions and EventBridge with AWS CloudTrail. For instructions on creating
event rules for an Amazon ECR action, see Amazon ECR source actions and EventBridge
resources. For instructions on creating event rules for a CodeCommit action, see CodeCommit
source actions and EventBridge.

After you edit your action configuration in the console, accept the updated change-detection
resources created by the console.

Connections error when connecting to GitHub: "A problem
occurred, make sure cookies are enabled in your browser" or
"An organization owner must install the GitHub app"

Problem:

To create the connection for a GitHub source action in CodePipeline, you must be the GitHub
organization owner. For repositories that are not under an organization, you must be the repository
owner. When a connection is created by someone other than the organization owner, a request is
created for the organization owner, and one of the following errors display:

A problem occurred, make sure cookies are enabled in your browser

OR

An organization owner must install the GitHub app

Possible fixes: For repositories in a GitHub organization, the organization owner must create the
connection to the GitHub repository. For repositories that are not under an organization, you must
be the repository owner.

Connections error when connecting to GitHub: "A problem occurred, make sure cookies are enabled in
your browser" or "An organization owner must install the GitHub app"

API Version 2015-07-09 708

AWS CodePipeline User Guide

Error when the CloudFormationStackSet or
CloudFormationStackInstances actions are not available in
a Region

Problem: The presence of CodePipeline in a Region doesn't mean that all actions are available in
that Region. For example, when a pipeline runs the CloudFormationStackSet action in a Region
where the action is not available, such as Africa (Cape Town), the following errors displays:

InvalidActionDeclarationException: ActionType (Category: 'Deploy',
Provider: 'CloudFormationStackSet', Owner: 'AWS, Version: '1') in action
'Deploy' is not available in region 'AF_SOUTH_1'

Possible fixes: Reference the following note to use the action in a Region where the action is
available.

Note

The CloudFormationStackSet and CloudFormationStackInstances actions are
not available in the Asia Pacific (Hong Kong), Europe (Zurich), Europe (Milan), Africa (Cape
Town), and Middle East (Bahrain) Regions. To reference other available actions, see Product
and service integrations with CodePipeline.

For more information about the action, see AWS CloudFormation StackSets.

Pipelines with execution mode changed to QUEUED or
PARALLEL mode fails when run limit reached

Problem: The maximum number of concurrent executions for a pipeline in QUEUED mode is 50
executions. When this limit is reached, the pipeline fails without a status message.

Possible fixes: When editing the pipeline definition for execution mode, make the edit separately
from other edit actions.

For more information about QUEUED or PARALLEL execution mode, see CodePipeline concepts.

Error when the CloudFormationStackSet or CloudFormationStackInstances actions are not
available in a Region

API Version 2015-07-09 709

AWS CodePipeline User Guide

Pipelines in PARALLEL mode have an outdated pipeline
definition if edited when changing to QUEUED or SUPERSEDED
mode

Problem: For pipelines in parallel mode, when editing the pipeline execution mode to QUEUED
or SUPERSEDED, the pipeline definition for PARALLEL mode will not be updated. The updated
pipeline definition when updating PARALLEL mode is not used in the SUPERSEDED or QUEUED
mode

Possible fixes: For pipelines in parallel mode, when editing the pipeline execution mode to
QUEUED or SUPERSEDED, avoid updating the pipeline definition at the same time.

For more information about QUEUED or PARALLEL execution mode, see CodePipeline concepts.

Pipelines changed from PARALLEL mode will display a previous
execution mode

Problem: For pipelines in PARALLEL mode, when editing the pipeline execution mode to QUEUED
or SUPERSEDED, the pipeline state will not display the updated state as PARALLEL. If the pipeline
changed from PARALLEL to QUEUED or SUPERSEDED, the state for the pipeline in SUPERSEDED or
QUEUED mode will be the last known state in either of those modes. If the pipeline was never run
in that mode before, then the state will be empty.

Possible fixes: For pipelines in parallel mode, when editing the pipeline execution mode to
QUEUED or SUPERSEDED, note that the execution mode display will not show the PARALLEL state.

For more information about QUEUED or PARALLEL execution mode, see CodePipeline concepts.

Pipelines with connections that use trigger filtering by file
paths might not start at branch creation

Description: For pipelines with source actions that use connections, such as a BitBucket source
action, you can set up a trigger with a Git configuration that allows you to filter by file paths to
start your pipeline. In certain cases, for pipelines with triggers that are filtered on file paths, the
pipeline might not start when a branch with a file path filter is first created, since this does not
allow the AWS CodeStar Connections connection to resolve the files that changed. When the Git

Pipelines in PARALLEL mode have an outdated pipeline definition if edited when changing to QUEUED
or SUPERSEDED mode

API Version 2015-07-09 710

AWS CodePipeline User Guide

configuration for the trigger is set up to filter on file paths the pipeline will not start when the
branch with the filter has just been created in the source repository, For more information about
filtering on file paths, see Filter triggers on code push or pull requests.

Result: For example, pipelines in CodePipeline that have a file path filter on a branch "B" will not
be triggered when branch "B" is created. If there are no file path filters, the pipeline will still start.

Pipelines with connections that use trigger filtering by file
paths might not start when file limit is reached

Description: For pipelines with source actions that use connections, such as a BitBucket source
action, you can set up a trigger with a Git configuration that allows you to filter by file paths
to start your pipeline. CodePipeline retrieves up to the first 100 files; therefore, when the Git
configuration for the trigger is set up to filter on file paths, the pipeline might not start if there are
over 100 files, For more information about filtering on file paths, see Filter triggers on code push or
pull requests.

Result: For example, if a diff contains 150 files, CodePipeline looks at the first 100 files (in no
particular order) to check against the file path filter specified. If the file that matches the file path
filter is not among the 100 files retrieved by CodePipeline, the pipeline will not be invoked

Need help with a different issue?

Try these other resources:

• Contact AWS Support.

• Ask a question in the CodePipeline forum.

• Request a quota increase. For more information, see Quotas in AWS CodePipeline.

Note

It can take up to two weeks to process requests for a quota increase.

Pipelines with connections that use trigger filtering by file paths might not start when file limit is
reached

API Version 2015-07-09 711

https://aws.amazon.com/contact-us/
https://forums.aws.amazon.com/forum.jspa?forumID=197
https://console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase

AWS CodePipeline User Guide

Security in AWS CodePipeline

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is bui lt to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS CodePipeline,
see AWS service in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors, including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using CodePipeline. The following topics show you how to configure CodePipeline to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your CodePipeline resources.

Topics

• Data protection in AWS CodePipeline

• Identity and access management for AWS CodePipeline

• Logging and monitoring in CodePipeline

• Compliance validation for AWS CodePipeline

• Resilience in AWS CodePipeline

• Infrastructure security in AWS CodePipeline

• Security best practices

API Version 2015-07-09 712

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS CodePipeline User Guide

Data protection in AWS CodePipeline

The AWS shared responsibility model applies to data protection in AWS CodePipeline. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with CodePipeline or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

The following security best practices also address data protection in CodePipeline:

• Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline

• Use AWS Secrets Manager to track database passwords or third-party API keys

Data protection API Version 2015-07-09 713

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS CodePipeline User Guide

Internetwork traffic privacy

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network
(virtual private cloud) that you define. CodePipeline supports Amazon VPC endpoints powered by
AWS PrivateLink, an AWS technology that facilitates private communication between AWS services
using an elastic network interface with private IP addresses. This means you can connect directly
to CodePipeline through a private endpoint in your VPC, keeping all traffic inside your VPC and the
AWS network. Previously, applications running inside a VPC required internet access to connect to
CodePipeline. With a VPC, you have control over your network settings, such as:

• IP address range,

• Subnets,

• Route tables, and

• Network gateways.

To connect your VPC to CodePipeline, you define an interface VPC endpoint for CodePipeline. This
type of endpoint makes it possible for you to connect your VPC to AWS services. The endpoint
provides reliable, scalable connectivity to CodePipeline without requiring an internet gateway,
network address translation (NAT) instance, or VPN connection. For information about setting up a
VPC, see the VPC User Guide.

Encryption at rest

Data in CodePipeline is encrypted at rest using AWS KMS keys. Code artifacts are stored in a
customer-owned S3 bucket and encrypted with either the AWS managed key or a customer
managed key. For more information, see Configure server-side encryption for artifacts stored in
Amazon S3 for CodePipeline.

Encryption in transit

All service-to-service communication is encrypted in transit using SSL/TLS.

Encryption key management

If you choose the default option for encrypting code artifacts, CodePipeline uses the AWS managed
key. You cannot change or delete this AWS managed key. If you use a customer managed key in
AWS KMS to encrypt or decrypt artifacts in the S3 bucket, you can change or rotate this customer
managed key as necessary.

Internetwork traffic privacy API Version 2015-07-09 714

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS CodePipeline User Guide

Important

CodePipeline only supports symmetric KMS keys. Do not use an asymmetric KMS key to
encrypt the data in your S3 bucket.

Configure server-side encryption for artifacts stored in Amazon S3 for
CodePipeline

There are two ways to configure server-side encryption for Amazon S3 artifacts:

• CodePipeline creates an S3 artifact bucket and default AWS managed key when you create a
pipeline using the Create Pipeline wizard. The AWS managed key is encrypted along with object
data and managed by AWS.

• You can create and manage your own customer managed key.

Important

CodePipeline only supports symmetric KMS keys. Do not use an asymmetric KMS key to
encrypt the data in your S3 bucket.

If you are using the default S3 key, you cannot change or delete this AWS managed key. If you are
using a customer managed key in AWS KMS to encrypt or decrypt artifacts in the S3 bucket, you
can change or rotate this customer managed key as necessary.

Amazon S3 supports bucket policies that you can use if you require server-side encryption for all
objects that are stored in your bucket. For example, the following bucket policy denies upload
object (s3:PutObject) permission to everyone if the request does not include the x-amz-
server-side-encryption header requesting server-side encryption with SSE-KMS.

{
 "Version": "2012-10-17",
 "Id": "SSEAndSSLPolicy",
 "Statement": [
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",

Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline API Version 2015-07-09 715

AWS CodePipeline User Guide

 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::codepipeline-us-west-2-89050EXAMPLE/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::codepipeline-us-west-2-89050EXAMPLE/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "false"
 }
 }
 }
]
}

For more information about server-side encryption and AWS KMS, see Protecting Data Using
Server-Side Encryption and Protecting data using server-side encryption with KMS keys stored in
AWS Key Management Service (SSE-KMS).

For more information about AWS KMS, see the AWS Key Management Service Developer Guide.

Topics

• View your AWS managed key

• Configure server-side encryption for S3 buckets using AWS CloudFormation or the AWS CLI

View your AWS managed key

When you use the Create Pipeline wizard to create your first pipeline, an S3 bucket is created for
you in the same Region you created the pipeline. The bucket is used to store pipeline artifacts.
When a pipeline runs, artifacts are put into and retrieved from the S3 bucket. By default,
CodePipeline uses server-side encryption with AWS KMS using the AWS managed key for Amazon
S3 (the aws/s3 key). This AWS managed key is created and stored in your AWS account. When

Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline API Version 2015-07-09 716

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS CodePipeline User Guide

artifacts are retrieved from the S3 bucket, CodePipeline uses the same SSE-KMS process to decrypt
the artifact.

To view information about your AWS managed key

1. Sign in to the AWS Management Console and open the AWS KMS console.

2. If a welcome page appears, choose Get started now.

3. In the service navigation pane, choose AWS managed keys.

4. Choose the Region for your pipeline. For example, if the pipeline was created in us-east-2,
make sure that the filter is set to US East (Ohio).

For more information about the Regions and endpoints available for CodePipeline, see AWS
CodePipeline endpoints and quotas.

5. In the list, choose the key with the alias used for your pipeline (by default, aws/s3). Basic
information about the key is displayed.

Configure server-side encryption for S3 buckets using AWS CloudFormation or
the AWS CLI

When you use AWS CloudFormation or the AWS CLI to create a pipeline, you must configure server-
side encryption manually. Use the sample bucket policy above, and then create your owncustomer
managed key. You can also use your own keys instead of the AWS managed key. Some reasons to
choose your own key include:

• You want to rotate the key on a schedule to meet business or security requirements for your
organization.

• You want to create a pipeline that uses resources associated with another AWS account. This
requires the use of a customer managed key. For more information, see Create a pipeline in
CodePipeline that uses resources from another AWS account.

Cryptographic best practices discourage extensive reuse of encryption keys. As a best practice,
rotate your key on a regular basis. To create new cryptographic material for your AWS KMS keys,
you can create a customer managed key, and then change your applications or aliases to use the
new customer managed key. Or, you can enable automatic key rotation for an existing customer
managed key.

Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline API Version 2015-07-09 717

https://docs.aws.amazon.com/general/latest/gr/codepipeline.html
https://docs.aws.amazon.com/general/latest/gr/codepipeline.html

AWS CodePipeline User Guide

To rotate your customer managed key, see Rotating keys.

Important

CodePipeline only supports symmetric KMS keys. Do not use an asymmetric KMS key to
encrypt the data in your S3 bucket.

Use AWS Secrets Manager to track database passwords or third-party
API keys

We recommend that you use AWS Secrets Manager to rotate, manage, and retrieve database
credentials, API keys, and other secrets throughout their lifecycle. Secrets Manager enables you
to replace hardcoded credentials in your code (including passwords) with an API call to Secrets
Manager to retrieve the secret programmatically. For more information, see What Is AWS Secrets
Manager? in the AWS Secrets Manager User Guide.

For pipelines where you pass parameters that are secrets (such as OAuth credentials) in an AWS
CloudFormation template, you should include dynamic references in your template that access
the secrets you have stored in Secrets Manager. For the reference ID pattern and examples,
see Secrets Manager Secrets in the AWS CloudFormation User Guide. For an example that uses
dynamic references in a template snippet for GitHub webhook in a pipeline, see Webhook Resource
Configuration.

See also

The following related resources can help you as you work with managing secrets.

• Secrets Manager can rotate database credentials automatically, such as for rotation of Amazon
RDS secrets. For more information, see Rotating Your AWS Secrets Manager Secrets in the AWS
Secrets Manager User Guide.

• To view instructions for adding Secrets Manager dynamic references to your AWS
CloudFormation templates, see https://aws.amazon.com/blogs/security/how-to-create-and-
retrieve-secrets-managed-in-aws-secrets-manager-using-aws-cloudformation-template/.

Use AWS Secrets Manager to track database passwords or third-party API keys API Version 2015-07-09 718

https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codepipeline-webhook.html#aws-resource-codepipeline-webhook--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codepipeline-webhook.html#aws-resource-codepipeline-webhook--examples
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://aws.amazon.com/blogs/security/how-to-create-and-retrieve-secrets-managed-in-aws-secrets-manager-using-aws-cloudformation-template/
https://aws.amazon.com/blogs/security/how-to-create-and-retrieve-secrets-managed-in-aws-secrets-manager-using-aws-cloudformation-template/

AWS CodePipeline User Guide

Identity and access management for AWS CodePipeline

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use CodePipeline resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS CodePipeline works with IAM

• AWS CodePipeline identity-based policy examples

• AWS CodePipeline resource-based policy examples

• Troubleshooting AWS CodePipeline identity and access

• CodePipeline permissions reference

• Manage the CodePipeline service role

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in CodePipeline.

Service user – If you use the CodePipeline service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more CodePipeline features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
CodePipeline, see Troubleshooting AWS CodePipeline identity and access.

Service administrator – If you're in charge of CodePipeline resources at your company, you
probably have full access to CodePipeline. It's your job to determine which CodePipeline features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
CodePipeline, see How AWS CodePipeline works with IAM.

Identity and access management API Version 2015-07-09 719

AWS CodePipeline User Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to CodePipeline. To view example CodePipeline identity-based
policies that you can use in IAM, see AWS CodePipeline identity-based policy examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For

Authenticating with identities API Version 2015-07-09 720

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS CodePipeline User Guide

the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

Authenticating with identities API Version 2015-07-09 721

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS CodePipeline User Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using

Authenticating with identities API Version 2015-07-09 722

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS CodePipeline User Guide

an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose

Managing access using policies API Version 2015-07-09 723

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS CodePipeline User Guide

between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session

Managing access using policies API Version 2015-07-09 724

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html

AWS CodePipeline User Guide

policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

How AWS CodePipeline works with IAM

Before you use IAM to manage access to CodePipeline, you should understand what IAM features
are available to use with CodePipeline. To get a high-level view of how CodePipeline and other
AWS services that work with IAM, see AWS services that work with IAM in the IAM User Guide.

Topics

• CodePipeline identity-based policies

• CodePipeline resource-based policies

• Authorization based on CodePipeline tags

• CodePipeline IAM roles

CodePipeline identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as
well as the conditions under which actions are allowed or denied. CodePipeline supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a JSON
policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in CodePipeline use the following prefix before the action: codepipeline:.

For example, to grant someone permission to view the existing pipelines in the account, you
include the codepipeline:GetPipeline action in their policy. Policy statements must include

How AWS CodePipeline works with IAM API Version 2015-07-09 725

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS CodePipeline User Guide

either an Action or NotAction element. CodePipeline defines its own set of actions that describe
tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "codepipeline:action1",
 "codepipeline:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "codepipeline:Get*"

For a list of CodePipeline actions, see Actions Defined by AWS CodePipeline in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

CodePipeline resources and operations

In CodePipeline, the primary resource is a pipeline. In a policy, you use an Amazon Resource Name
(ARN) to identify the resource that the policy applies to. CodePipeline supports other resources
that can be used with the primary resource, such as stages, actions, and custom actions. These
are referred to as subresources. These resources and subresources have unique Amazon Resource
Names (ARNs) associated with them. For more information about ARNs, see Amazon Resource

How AWS CodePipeline works with IAM API Version 2015-07-09 726

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awscodepipeline.html#awscodepipeline-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS CodePipeline User Guide

Names (ARN) and AWS service namespaces in the Amazon Web Services General Reference. To get
the pipeline ARN associated with your pipeline, you can find the pipeline ARN under Settings in the
console. For more information, see View the pipeline ARN and service role ARN (console).

Resource Type ARN Format

Pipeline arn:aws:codepipeline:region:account:pipeline-name

Stage arn:aws:codepipeline:region:account:pipeline-name /stage-
name

Action arn:aws:codepipeline:region:account:pipeline-name /stage-
name /action-name

Custom action arn:aws:codepipeline:region:account:actionty
pe:owner/category/provider/version

All CodePipeline
resources

arn:aws:codepipeline:*

All CodePipeline
resources owned by the
specified account in the
specified Region

arn:aws:codepipeline:region:account:*

Note

Most services in AWS treat a colon (:) or a forward slash (/) as the same character in ARNs.
However, CodePipeline uses an exact match in event patterns and rules. Be sure to use the
correct ARN characters when creating event patterns so that they match the ARN syntax in
the pipeline you want to match.

In CodePipeline, there are API calls that support resource-level permissions. Resource-level
permissions indicate whether an API call can specify a resource ARN, or whether the API call can
only specify all resources using the wildcard. See CodePipeline permissions reference for a detailed
description of resource-level permissions and a listing of the CodePipeline API calls that support
resource-level permissions.

How AWS CodePipeline works with IAM API Version 2015-07-09 727

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS CodePipeline User Guide

For example, you can indicate a specific pipeline (myPipeline) in your statement using its ARN as
follows:

"Resource": "arn:aws:codepipeline:us-east-2:111222333444:myPipeline"

You can also specify all pipelines that belong to a specific account by using the (*) wildcard
character as follows:

"Resource": "arn:aws:codepipeline:us-east-2:111222333444:*"

To specify all resources, or if a specific API action does not support ARNs, use the (*) wildcard
character in the Resource element as follows:

"Resource": "*"

Note

When you create IAM policies, follow the standard security advice of granting least
privilege—that is, granting only the permissions required to perform a task. If an API call
supports ARNs, then it supports resource-level permissions, and you do not need to use the
(*) wildcard character.

Some CodePipeline API calls accept multiple resources (for example, GetPipeline). To specify
multiple resources in a single statement, separate their ARNs with commas, as follows:

"Resource": ["arn1", "arn2"]

CodePipeline provides a set of operations to work with the CodePipeline resources. For a list of
available operations, see CodePipeline permissions reference.

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use

How AWS CodePipeline works with IAM API Version 2015-07-09 728

AWS CodePipeline User Guide

condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

CodePipeline defines its own set of condition keys and also supports using some global condition
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User
Guide.

All Amazon EC2 actions support the aws:RequestedRegion and ec2:Region condition keys. For
more information, see Example: Restricting Access to a Specific Region.

To see a list of CodePipeline condition keys, see Condition Keys for AWS CodePipeline in the IAM
User Guide. To learn with which actions and resources you can use a condition key, see Actions
Defined by AWS CodePipeline.

Examples

To view examples of CodePipeline identity-based policies, see AWS CodePipeline identity-based
policy examples.

CodePipeline resource-based policies

CodePipeline does not support resource-based policies. However, a resource-based policy example
for the S3 service related to CodePipeline is provided.

Examples

How AWS CodePipeline works with IAM API Version 2015-07-09 729

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-region
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awscodepipeline.html#awscodepipeline-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awscodepipeline.html#awscodepipeline-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awscodepipeline.html#awscodepipeline-actions-as-permissions

AWS CodePipeline User Guide

To view examples of CodePipeline resource-based policies, see AWS CodePipeline resource-based
policy examples,

Authorization based on CodePipeline tags

You can attach tags to CodePipeline resources or pass tags in a request to CodePipeline. To control
access based on tags, you provide tag information in the condition element of a policy using the
codepipeline:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging CodePipeline resources, see Tagging resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Using tags to control access to CodePipeline resources.

CodePipeline IAM roles

An IAM role is an entity in your AWS account that has specific permissions.

Using temporary credentials with CodePipeline

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

CodePipeline supports the use of temporary credentials.

Service roles

CodePipeline allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

CodePipeline supports service roles.

AWS CodePipeline identity-based policy examples

By default, IAM users and roles don't have permission to create or modify CodePipeline resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. The administrator must then attach those
policies to the IAM users or groups that require those permissions.

Identity-based policy examples API Version 2015-07-09 730

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role

AWS CodePipeline User Guide

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

To learn how to create a pipeline that uses resources from another account, and for the related
example policies, see Create a pipeline in CodePipeline that uses resources from another AWS
account.

Topics

• Policy best practices

• Viewing resources in the console

• Allow users to view their own permissions

• Identity-based policies (IAM) examples

• Using tags to control access to CodePipeline resources

• Permissions required to use the CodePipeline console

• AWS managed policies for AWS CodePipeline

• Customer managed policy examples

Policy best practices

Identity-based policies determine whether someone can create, access, or delete CodePipeline
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to

Identity-based policy examples API Version 2015-07-09 731

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS CodePipeline User Guide

specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Viewing resources in the console

The CodePipeline console requires the ListRepositories permission to display a list of
repositories for your AWS account in the AWS Region where you are signed in. The console also
includes a Go to resource function to quickly perform a case insensitive search for resources. This
search is performed in your AWS account in the AWS Region where you are signed in. The following
resources are displayed across the following services:

• AWS CodeBuild: Build projects

• AWS CodeCommit: Repositories

• AWS CodeDeploy: Applications

• AWS CodePipeline: Pipelines

To perform this search across resources in all services, you must have the following permissions:

• CodeBuild: ListProjects

• CodeCommit: ListRepositories

• CodeDeploy: ListApplications

Identity-based policy examples API Version 2015-07-09 732

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS CodePipeline User Guide

• CodePipeline: ListPipelines

Results are not returned for a service's resources if you do not have permissions for that service.
Even if you have permissions for viewing resources, some resources are not returned if there is an
explicit Deny to view those resources.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }

Identity-based policy examples API Version 2015-07-09 733

AWS CodePipeline User Guide

]
}

Identity-based policies (IAM) examples

You can attach policies to IAM identities. For example, you can do the following:

• Attach a permissions policy to a user or a group in your account – To grant a user permissions
to view pipelines in the CodePipeline console, you can attach a permissions policy to a user or
group that the user belongs to.

• Attach a permissions policy to a role (grant cross-account permissions) – You can attach
an identity-based permissions policy to an IAM role to grant cross-account permissions. For
example, the administrator in Account A can create a role to grant cross-account permissions to
another AWS account (for example, Account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in Account A.

2. Account A administrator attaches a trust policy to the role identifying Account B as the
principal who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in
Account B. Doing this allows users in Account B to create or access resources in Account A. The
principal in the trust policy can also be an AWS service principal if you want to grant an AWS
service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the
IAM User Guide.

The following shows an example of a permissions policy that grants permissions to disable and
enable transitions between all stages in the pipeline named MyFirstPipeline in the us-west-2
region:

{
 "Version": "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "codepipeline:EnableStageTransition",
 "codepipeline:DisableStageTransition"

Identity-based policy examples API Version 2015-07-09 734

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

AWS CodePipeline User Guide

],
 "Resource" : [
 "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline/*"
]
 }
]
}

The following example shows a policy in the 111222333444 account that allows users to view,
but not change, the pipeline named MyFirstPipeline in the CodePipeline console. This policy
is based on the AWSCodePipeline_ReadOnlyAccess managed policy, but because it is specific
to the MyFirstPipeline pipeline, it cannot use the managed policy directly. If you do not want
to restrict the policy to a specific pipeline, consider using one of the managed policies created
and maintained by CodePipeline. For more information, see Working with Managed Policies.
You must attach this policy to an IAM role you create for access, for example, a role named
CrossAccountPipelineViewers:

{
 "Statement": [
 {
 "Action": [
 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:GetPipelineExecution",
 "codepipeline:ListPipelineExecutions",
 "codepipeline:ListActionExecutions",
 "codepipeline:ListActionTypes",
 "codepipeline:ListPipelines",
 "codepipeline:ListTagsForResource",
 "iam:ListRoles",
 "s3:ListAllMyBuckets",
 "codecommit:ListRepositories",
 "codedeploy:ListApplications",
 "lambda:ListFunctions",
 "codestar-notifications:ListNotificationRules",
 "codestar-notifications:ListEventTypes",
 "codestar-notifications:ListTargets"
],
 "Effect": "Allow",
 "Resource": "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline"
 },
 {

Identity-based policy examples API Version 2015-07-09 735

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html

AWS CodePipeline User Guide

 "Action": [
 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:GetPipelineExecution",
 "codepipeline:ListPipelineExecutions",
 "codepipeline:ListActionExecutions",
 "codepipeline:ListActionTypes",
 "codepipeline:ListPipelines",
 "codepipeline:ListTagsForResource",
 "iam:ListRoles",
 "s3:GetBucketPolicy",
 "s3:GetObject",
 "s3:ListBucket",
 "codecommit:ListBranches",
 "codedeploy:GetApplication",
 "codedeploy:GetDeploymentGroup",
 "codedeploy:ListDeploymentGroups",
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEnvironments",
 "lambda:GetFunctionConfiguration",
 "opsworks:DescribeApps",
 "opsworks:DescribeLayers",
 "opsworks:DescribeStacks"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "CodeStarNotificationsReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:DescribeNotificationRule"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "codestar-notifications:NotificationsForResource": "arn:aws:codepipeline:*"
 }
 }
 }
],
 "Version": "2012-10-17"
}

Identity-based policy examples API Version 2015-07-09 736

AWS CodePipeline User Guide

After you create this policy, create the IAM role in the 111222333444 account and attach the
policy to that role. In the role's trust relationships, you must add the AWS account that will assume
this role. The following example shows a policy that allows users from the 111111111111 AWS
account to assume roles defined in the 111222333444 account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The following example shows a policy created in the 111111111111 AWS account that allows
users to assume the role named CrossAccountPipelineViewers in the 111222333444
account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::111222333444:role/CrossAccountPipelineViewers"
 }
]
}

You can create IAM policies to restrict the calls and resources that users in your account have access
to, and then attach those policies to your administrative user. For more information about how to
create IAM roles and to explore example IAM policy statements for CodePipeline, see Customer
managed policy examples.

Identity-based policy examples API Version 2015-07-09 737

AWS CodePipeline User Guide

Using tags to control access to CodePipeline resources

Conditions in IAM policy statements are part of the syntax that you use to specify permissions to
resources required by CodePipeline actions. Using tags in conditions is one way to control access
to resources and requests. For information about tagging CodePipeline resources, see Tagging
resources. This topic discusses tag-based access control.

When you design IAM policies, you might be setting granular permissions by granting access to
specific resources. As the number of resources that you manage grows, this task becomes more
difficult. Tagging resources and using tags in policy statement conditions can make this task easier.
You grant access in bulk to any resource with a certain tag. Then you repeatedly apply this tag to
relevant resources, during creation or later.

Tags can be attached to the resource or passed in the request to services that support tagging. In
CodePipeline, resources can have tags, and some actions can include tags. When you create an IAM
policy, you can use tag condition keys to control:

• Which users can perform actions on a pipeline resource, based on tags that it already has.

• Which tags can be passed in an action's request.

• Whether specific tag keys can be used in a request.

String condition operators let you construct Condition elements that restrict access based on
comparing a key to a string value. You can add IfExists to the end of any condition operator
name except the Null condition. You do this to say "If the policy key is present in the context of the
request, process the key as specified in the policy. If the key is not present, evaluate the condition
element as true." For example, you can use StringEqualsIfExists to restrict by condition keys
that might not be present on other types of resources.

For the complete syntax and semantics of tag condition keys, see Controlling Access Using Tags.
For additional information about condition keys, see the following resources. The CodePipeline
policy examples in this section align with the following information about condition keys and
expand on it with examples of nuances for CodePipeline such as nesting of resources.

• String condition operators

• AWS services that work with IAM

• SCP syntax

• IAM JSON policy elements: Condition

Identity-based policy examples API Version 2015-07-09 738

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/orgs_manage_policies_scps_syntax.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS CodePipeline User Guide

• aws:RequestTag/tag-key

• Condition keys for CodePipeline

The following examples demonstrate how to specify tag conditions in policies for CodePipeline
users.

Example 1: Limit actions based on tags in the request

The AWSCodePipeline_FullAccess managed user policy gives users unlimited permission to
perform any CodePipeline action on any resource.

The following policy limits this power and denies unauthorized users permission to create pipelines
where specific tags are listed in the request. To do that, it denies the CreatePipeline action if
the request specifies a tag named Project with one of the values ProjectA or ProjectB. (The
aws:RequestTag condition key is used to control which tags can be passed in an IAM request.)

In the following example, the intent of the policy is to deny unauthorized users permission to
create a pipeline with the tag values specified. However, creating a pipeline requires accessing
resources in addition to the pipeline itself (for example, pipeline actions and stages). Because the
'Resource' specified in the policy is '*', the policy is evaluated against every resource that has
an ARN and is created when the pipeline is being created. These additional resources do not have
the tag condition key, so the StringEquals check fails, and the user is not granted the ability to
create any pipeline. To address this, use the StringEqualsIfExists condition operator instead.
This way, the test only happens if the condition key exists.

You could read the following as: "If the resource being checked has a tag "RequestTag/Project"
condition key, then allow the action only if the key value begins with projectA. If the resource
being checked does not have that condition key, then don't worry about it."

In addition, the policy prevents these unauthorized users from tampering with the resources by
using the aws:TagKeys condition key to not allow tag modification actions to include these same
tag values. A customer's administrator must attach this IAM policy to unauthorized administrative
users, in addition to the managed user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [

Identity-based policy examples API Version 2015-07-09 739

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awscodepipeline.html#awscodepipeline-policy-keys

AWS CodePipeline User Guide

 "codepipeline:CreatePipeline",
 "codepipeline:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIfExists": {
 "aws:RequestTag/Project": ["ProjectA", "ProjectB"]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "codepipeline:UntagResource"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["Project"]
 }
 }
 }
]
}

Example 2: Limit tagging actions based on resource tags

The AWSCodePipeline_FullAccess managed user policy gives users unlimited permission to
perform any CodePipeline action on any resource.

The following policy limits this power and denies unauthorized users permission to perform actions
on specified project pipelines. To do that, it denies some actions if the resource has a tag named
Project with one of the values ProjectA or ProjectB. (The aws:ResourceTag condition
key is used to control access to the resources based on the tags on those resources.) A customer's
administrator must attach this IAM policy to unauthorized IAM users, in addition to the managed
user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",

Identity-based policy examples API Version 2015-07-09 740

AWS CodePipeline User Guide

 "Action": [
 "codepipeline:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": ["ProjectA", "ProjectB"]
 }
 }
 }
]
}

Example 3: Allow actions based on tags in the request

The following policy grants users permission to create development pipelines in CodePipeline.

To do that, it allows the CreatePipeline and TagResource actions if the request specifies a tag
named Project with the value ProjectA. In other words, the only tag key which can be specified
is Project, and its value must be ProjectA.

The aws:RequestTag condition key is used to control which tags can be passed in an IAM request.
The aws:TagKeys condition ensures tag key case sensitivity. This policy is useful for users or
roles who don't have the AWSCodePipeline_FullAccess managed user policy attached. The
managed policy gives users unlimited permission to perform any CodePipeline action on any
resource.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:CreatePipeline",
 "codepipeline:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Project": "ProjectA"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["Project"]

Identity-based policy examples API Version 2015-07-09 741

AWS CodePipeline User Guide

 }
 }
 }
]
}

Example 4: Limit untagging actions based on resource tags

The AWSCodePipeline_FullAccess managed user policy gives users unlimited permission to
perform any CodePipeline action on any resource.

The following policy limits this power and denies unauthorized users permission to perform actions
on specified project pipelines. To do that, it denies some actions if the resource has a tag named
Project with one of the values ProjectA or ProjectB.

Also, the policy prevents these unauthorized users from tampering with the resources by using
the aws:TagKeys condition key to not allow tag modification actions to completely remove the
Project tag. A customer's administrator must attach this IAM policy to unauthorized users or
roles, in addition to the managed user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "codepipeline:UntagResource"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["Project"]
 }
 }
 }
]
}

Permissions required to use the CodePipeline console

To use CodePipeline in the CodePipeline console, you must have a minimum set of permissions
from the following services:

Identity-based policy examples API Version 2015-07-09 742

AWS CodePipeline User Guide

• AWS Identity and Access Management

• Amazon Simple Storage Service

These permissions allow you to describe other AWS resources for your AWS account.

Depending on the other services you incorporate into your pipelines, you might need permissions
from one or more of the following:

• AWS CodeCommit

• CodeBuild

• AWS CloudFormation

• AWS CodeDeploy

• AWS Elastic Beanstalk

• AWS Lambda

• AWS OpsWorks

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console won't function as intended for users with that IAM policy. To ensure that those users
can still use the CodePipeline console, also attach the AWSCodePipeline_ReadOnlyAccess
managed policy to the user, as described in AWS managed policies for AWS CodePipeline.

You don't need to allow minimum console permissions for users who are making calls to the AWS
CLI or the CodePipeline API.

AWS managed policies for AWS CodePipeline

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

Identity-based policy examples API Version 2015-07-09 743

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

AWS CodePipeline User Guide

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

Important

The AWS managed policies AWSCodePipelineFullAccess and
AWSCodePipelineReadOnlyAccess have been replaced. Use the
AWSCodePipeline_FullAccess and AWSCodePipeline_ReadOnlyAccess policies.

AWS managed policy: AWSCodePipeline_FullAccess

This is a policy that grants full access to CodePipeline. To view the JSON policy document in the
IAM console, see AWSCodePipeline_FullAccess.

Permissions details

This policy includes the following permissions.

• codepipeline – Grants permissions to CodePipeline.

• chatbot – Grants permissions to allow principals to manage resources in AWS Chatbot.

• cloudformation – Grants permissions to allow principals to manage resource stacks in AWS
CloudFormation.

• cloudtrail – Grants permissions to allow principals to manage logging resources in CloudTrail.

• codebuild – Grants permissions to allow principals to access build resources in CodeBuild.

• codecommit – Grants permissions to allow principals to access source resources in CodeCommit.

Identity-based policy examples API Version 2015-07-09 744

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSCodePipeline_FullAccess

AWS CodePipeline User Guide

• codedeploy – Grants permissions to allow principals to access deployment resources in
CodeDeploy.

• codestar-notifications – Grants permissions to allow principals to access resources in AWS
CodeStar Notifications.

• ec2 – Grants permissions to allow deployments in CodeCatalyst to manage elastic load
balancing in Amazon EC2.

• ecr – Grants permissions to allow access to resources in Amazon ECR.

• elasticbeanstalk – Grants permissions to allow principals to access resources in Elastic
Beanstalk.

• iam – Grants permissions to allow principals to manage roles and policies in IAM.

• lambda – Grants permissions to allow principals to manage resources in Lambda.

• events – Grants permissions to allow principals to manage resources in CloudWatch Events.

• opsworks – Grants permissions to allow principals to manage resources in AWS OpsWorks.

• s3 – Grants permissions to allow principals to manage resources in Amazon S3.

• sns – Grants permissions to allow principals to manage notification resources in Amazon SNS.

• states – Grants permissions to allow principals to view state machines in AWS Step Functions. A
state machine consists of a collection of states that manage tasks and transition between states.

{
 "Statement": [
 {
 "Action": [
 "codepipeline:*",
 "cloudformation:DescribeStacks",
 "cloudformation:ListStacks",
 "cloudformation:ListChangeSets",
 "cloudtrail:DescribeTrails",
 "codebuild:BatchGetProjects",
 "codebuild:CreateProject",
 "codebuild:ListCuratedEnvironmentImages",
 "codebuild:ListProjects",
 "codecommit:ListBranches",
 "codecommit:GetReferences",
 "codecommit:ListRepositories",
 "codedeploy:BatchGetDeploymentGroups",
 "codedeploy:ListApplications",

Identity-based policy examples API Version 2015-07-09 745

AWS CodePipeline User Guide

 "codedeploy:ListDeploymentGroups",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ecr:DescribeRepositories",
 "ecr:ListImages",
 "ecs:ListClusters",
 "ecs:ListServices",
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEnvironments",
 "iam:ListRoles",
 "iam:GetRole",
 "lambda:ListFunctions",
 "events:ListRules",
 "events:ListTargetsByRule",
 "events:DescribeRule",
 "opsworks:DescribeApps",
 "opsworks:DescribeLayers",
 "opsworks:DescribeStacks",
 "s3:ListAllMyBuckets",
 "sns:ListTopics",
 "codestar-notifications:ListNotificationRules",
 "codestar-notifications:ListTargets",
 "codestar-notifications:ListTagsforResource",
 "codestar-notifications:ListEventTypes",
 "states:ListStateMachines"
],
 "Effect": "Allow",
 "Resource": "*",
 "Sid": "CodePipelineAuthoringAccess"
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetBucketPolicy",
 "s3:GetBucketVersioning",
 "s3:GetObjectVersion",
 "s3:CreateBucket",
 "s3:PutBucketPolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3::*:codepipeline-*",
 "Sid": "CodePipelineArtifactsReadWriteAccess"

Identity-based policy examples API Version 2015-07-09 746

AWS CodePipeline User Guide

 },
 {
 "Action": [
 "cloudtrail:PutEventSelectors",
 "cloudtrail:CreateTrail",
 "cloudtrail:GetEventSelectors",
 "cloudtrail:StartLogging"
],
 "Effect": "Allow",
 "Resource": "arn:aws:cloudtrail:*:*:trail/codepipeline-source-trail",
 "Sid": "CodePipelineSourceTrailReadWriteAccess"
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::*:role/service-role/cwe-role-*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "events.amazonaws.com"
]
 }
 },
 "Sid": "EventsIAMPassRole"
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "codepipeline.amazonaws.com"
]
 }
 },
 "Sid": "CodePipelineIAMPassRole"
 },

Identity-based policy examples API Version 2015-07-09 747

AWS CodePipeline User Guide

 {
 "Action": [
 "events:PutRule",
 "events:PutTargets",
 "events:DeleteRule",
 "events:DisableRule",
 "events:RemoveTargets"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:events:*:*:rule/codepipeline-*"
],
 "Sid": "CodePipelineEventsReadWriteAccess"
 },
 {
 "Sid": "CodeStarNotificationsReadWriteAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:CreateNotificationRule",
 "codestar-notifications:DescribeNotificationRule",
 "codestar-notifications:UpdateNotificationRule",
 "codestar-notifications:DeleteNotificationRule",
 "codestar-notifications:Subscribe",
 "codestar-notifications:Unsubscribe"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "codestar-notifications:NotificationsForResource":
 "arn:aws:codepipeline:*"
 }
 }
 },
 {
 "Sid": "CodeStarNotificationsSNSTopicCreateAccess",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",
 "sns:SetTopicAttributes"
],
 "Resource": "arn:aws:sns:*:*:codestar-notifications*"
 },
 {
 "Sid": "CodeStarNotificationsChatbotAccess",

Identity-based policy examples API Version 2015-07-09 748

AWS CodePipeline User Guide

 "Effect": "Allow",
 "Action": [
 "chatbot:DescribeSlackChannelConfigurations",
 "chatbot:ListMicrosoftTeamsChannelConfigurations"
],
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

AWS managed policy: AWSCodePipeline_ReadOnlyAccess

This is a policy that grants read-only access to CodePipeline. To view the JSON policy document in
the IAM console, see AWSCodePipeline_ReadOnlyAccess.

Permissions details

This policy includes the following permissions.

• codepipeline – Grants permissions to actions in CodePipeline.

• codestar-notifications – Grants permissions to allow principals to access resources in AWS
CodeStar Notifications.

• s3 – Grants permissions to allow principals to manage resources in Amazon S3.

• sns – Grants permissions to allow principals to manage notification resources in Amazon SNS.

{
 "Statement": [
 {
 "Action": [
 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:GetPipelineExecution",
 "codepipeline:ListPipelineExecutions",
 "codepipeline:ListActionExecutions",
 "codepipeline:ListActionTypes",
 "codepipeline:ListPipelines",

Identity-based policy examples API Version 2015-07-09 749

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSCodePipeline_ReadOnlyAccess

AWS CodePipeline User Guide

 "codepipeline:ListTagsForResource",
 "s3:ListAllMyBuckets",
 "codestar-notifications:ListNotificationRules",
 "codestar-notifications:ListEventTypes",
 "codestar-notifications:ListTargets"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetBucketPolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3::*:codepipeline-*"
 },
 {
 "Sid": "CodeStarNotificationsReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:DescribeNotificationRule"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "codestar-notifications:NotificationsForResource":
 "arn:aws:codepipeline:*"
 }
 }
 }
],
 "Version": "2012-10-17"
}

AWS managed policy: AWSCodePipelineApproverAccess

This is a policy that grants permission to approve or reject a manual approval action. To view the
JSON policy document in the IAM console, see AWSCodePipelineApproverAccess..

Permissions details

Identity-based policy examples API Version 2015-07-09 750

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSCodePipelineApproverAccess

AWS CodePipeline User Guide

This policy includes the following permissions.

• codepipeline – Grants permissions to actions in CodePipeline.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:GetPipelineExecution",
 "codepipeline:ListPipelineExecutions",
 "codepipeline:ListPipelines",
 "codepipeline:PutApprovalResult"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AWS managed policy: AWSCodePipelineCustomActionAccess

This is a policy that grants permission to to create custom actions in CodePipeline or integrate
Jenkins resources for build or test actions. To view the JSON policy document in the IAM console,
see AWSCodePipelineCustomActionAccess.

Permissions details

This policy includes the following permissions.

• codepipeline – Grants permissions to actions in CodePipeline.

{

Identity-based policy examples API Version 2015-07-09 751

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSCodePipelineApproverAccess

AWS CodePipeline User Guide

 "Statement": [
 {
 "Action": [
 "codepipeline:AcknowledgeJob",
 "codepipeline:GetJobDetails",
 "codepipeline:PollForJobs",
 "codepipeline:PutJobFailureResult",
 "codepipeline:PutJobSuccessResult"
],
 "Effect": "Allow",
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

CodePipeline managed policies and notifications

CodePipeline supports notifications, which can notify users of important changes to pipelines.
Managed policies for CodePipeline include policy statements for notification functionality. For
more information, see What are notifications?.

Permissions related to notifications in full access managed policies

This managed policy grants permissions for CodePipeline along with the related services
CodeCommit, CodeBuild, CodeDeploy, and AWS CodeStar Notifications. The policy also grants
permissions that you need for working with other services that integrate with your pipelines, such
as Amazon S3, Elastic Beanstalk, CloudTrail, Amazon EC2, and AWS CloudFormation. Users with
this managed policy applied can also create and manage Amazon SNS topics for notifications,
subscribe and unsubscribe users to topics, list topics to choose as targets for notification rules, and
list AWS Chatbot clients configured for Slack.

The AWSCodePipeline_FullAccess managed policy includes the following statements to allow
full access to notifications.

 {
 "Sid": "CodeStarNotificationsReadWriteAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:CreateNotificationRule",
 "codestar-notifications:DescribeNotificationRule",
 "codestar-notifications:UpdateNotificationRule",

Identity-based policy examples API Version 2015-07-09 752

https://docs.aws.amazon.com/codestar-notifications/latest/userguide/welcome.html

AWS CodePipeline User Guide

 "codestar-notifications:DeleteNotificationRule",
 "codestar-notifications:Subscribe",
 "codestar-notifications:Unsubscribe"
],
 "Resource": "*",
 "Condition" : {
 "StringLike" : {"codestar-notifications:NotificationsForResource" :
 "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline"}
 }
 },
 {
 "Sid": "CodeStarNotificationsListAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:ListNotificationRules",
 "codestar-notifications:ListTargets",
 "codestar-notifications:ListTagsforResource",
 "codestar-notifications:ListEventTypes"
],
 "Resource": "*"
 },
 {
 "Sid": "CodeStarNotificationsSNSTopicCreateAccess",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",
 "sns:SetTopicAttributes"
],
 "Resource": "arn:aws:sns:*:*:codestar-notifications*"
 },
 {
 "Sid": "SNSTopicListAccess",
 "Effect": "Allow",
 "Action": [
 "sns:ListTopics"
],
 "Resource": "*"
 },
 {
 "Sid": "CodeStarNotificationsChatbotAccess",
 "Effect": "Allow",
 "Action": [
 "chatbot:DescribeSlackChannelConfigurations",
 "chatbot:ListMicrosoftTeamsChannelConfigurations"

Identity-based policy examples API Version 2015-07-09 753

AWS CodePipeline User Guide

],
 "Resource": "*"
 }

Permissions related to notifications in read-only managed policies

The AWSCodePipeline_ReadOnlyAccess managed policy includes the following statements
to allow read-only access to notifications. Users with this policy applied can view notifications for
resources, but cannot create, manage, or subscribe to them.

 {
 "Sid": "CodeStarNotificationsPowerUserAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:DescribeNotificationRule"
],
 "Resource": "*",
 "Condition" : {
 "StringLike" : {"codestar-notifications:NotificationsForResource" :
 "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline"}
 }
 },
 {
 "Sid": "CodeStarNotificationsListAccess",
 "Effect": "Allow",
 "Action": [
 "codestar-notifications:ListNotificationRules",
 "codestar-notifications:ListEventTypes",
 "codestar-notifications:ListTargets"
],
 "Resource": "*"
 }

For more information about IAM and notifications, see Identity and Access Management for AWS
CodeStar Notifications.

AWS CodePipeline updates to AWS managed policies

View details about updates to AWS managed policies for CodePipeline since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the CodePipeline Document history page.

Identity-based policy examples API Version 2015-07-09 754

https://docs.aws.amazon.com/codestar-notifications/latest/userguide/security-iam.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/security-iam.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/history.html

AWS CodePipeline User Guide

Change Description Date

AWSCodePipeline_FullAccess
– Updates to existing policy

CodePipeline added a
permission to this policy to
support ListStacks in
AWS CloudFormation.

March 15, 2024

AWSCodePipeline_FullAccess
– Updates to existing policy

This policy was updated
to add permissions for
AWS Chatbot. For more
information, see CodePipel
ine managed policies and
notifications.

June 21, 2023

AWSCodePipeline_FullAccess
and AWSCodePipeline_Re
adOnlyAccess managed
policies – Updates to existing
policy

CodePipeline added a
permission to these policies
to support an additiona
l notification type using
AWS Chatbot, chatbot:L
istMicrosoftTeamsC
hannelConfiguratio
ns .

May 16, 2023

AWSCodePipelineFullAccess
– Deprecated

This policy has been replaced
by AWSCodePipeline_Fu
llAccess .

After November 17, 2022,
this policy can not be
attached to any new users,
groups, or roles. For more
information, see AWS
managed policies for AWS
CodePipeline.

November 17, 2022

AWSCodePipelineRea
dOnlyAccess – Deprecated

This policy has been replaced
by AWSCodePipeline_Re
adOnlyAccess .

November 17, 2022

Identity-based policy examples API Version 2015-07-09 755

AWS CodePipeline User Guide

Change Description Date

After November 17, 2022,
this policy can not be
attached to any new users,
groups, or roles. For more
information, see AWS
managed policies for AWS
CodePipeline.

CodePipeline started tracking
changes

CodePipeline started tracking
changes for its AWS managed
policies.

March 12, 2021

Customer managed policy examples

In this section, you can find example user policies that grant permissions for various CodePipeline
actions. These policies work when you are using the CodePipeline API, AWS SDKs, or the AWS CLI.
When you are using the console, you must grant additional permissions specific to the console. For
more information, see Permissions required to use the CodePipeline console.

Note

All examples use the US West (Oregon) Region (us-west-2) and contain fictitious account
IDs.

Examples

• Example 1: Grant permissions to get the state of a pipeline

• Example 2: Grant permissions to enable and disable transitions between stages

• Example 3: Grant permissions to get a list of all available action types

• Example 4: Grant permissions to approve or reject manual approval actions

• Example 5: Grant permissions to poll for jobs for a custom action

• Example 6: Attach or edit a policy for Jenkins integration with AWS CodePipeline

• Example 7: Configure cross-account access to a pipeline

Identity-based policy examples API Version 2015-07-09 756

AWS CodePipeline User Guide

• Example 8: Use AWS resources associated with another account in a pipeline

Example 1: Grant permissions to get the state of a pipeline

The following example grants permissions to get the state of the pipeline named
MyFirstPipeline:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:GetPipelineState"
],
 "Resource": "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline"
 }
]
}

Example 2: Grant permissions to enable and disable transitions between stages

The following example grants permissions to disable and enable transitions between all stages in
the pipeline named MyFirstPipeline:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:DisableStageTransition",
 "codepipeline:EnableStageTransition"
],
 "Resource": "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline/*"
 }
]
}

Identity-based policy examples API Version 2015-07-09 757

AWS CodePipeline User Guide

To allow the user to disable and enable transitions for a single stage in a pipeline, you must specify
the stage. For example, to allow the user to enable and disable transitions for a stage named
Staging in a pipeline named MyFirstPipeline:

"Resource": "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline/Staging"

Example 3: Grant permissions to get a list of all available action types

The following example grants permissions to get a list of all available action types available for
pipelines in the us-west-2 Region:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:ListActionTypes"
],
 "Resource": "arn:aws:codepipeline:us-west-2:111222333444:actiontype:*"
 }
]
}

Example 4: Grant permissions to approve or reject manual approval actions

The following example grants permissions to approve or reject manual approval actions in a stage
named Staging in a pipeline named MyFirstPipeline:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:PutApprovalResult"
],
 "Resource": "arn:aws:codepipeline:us-west-2:111222333444:MyFirstPipeline/
Staging/*"
 }
]

Identity-based policy examples API Version 2015-07-09 758

AWS CodePipeline User Guide

}

Example 5: Grant permissions to poll for jobs for a custom action

The following example grants permissions to poll for jobs for the custom action named
TestProvider, which is a Test action type in its first version, across all pipelines:

Note

The job worker for a custom action might be configured under a different AWS account or
require a specific IAM role in order to function.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:PollForJobs"
],
 "Resource": [
 "arn:aws:codepipeline:us-
west-2:111222333444:actionType:Custom/Test/TestProvider/1"
]
 }
]
}

Example 6: Attach or edit a policy for Jenkins integration with AWS CodePipeline

If you configure a pipeline to use Jenkins for build or test, create a separate identity for
that integration and attach an IAM policy that has the minimum permissions required
for integration between Jenkins and CodePipeline. This policy is the same as the
AWSCodePipelineCustomActionAccess managed policy. The following example shows a policy
for Jenkins integration:

{
 "Statement": [
 {
 "Effect": "Allow",

Identity-based policy examples API Version 2015-07-09 759

AWS CodePipeline User Guide

 "Action": [
 "codepipeline:AcknowledgeJob",
 "codepipeline:GetJobDetails",
 "codepipeline:PollForJobs",
 "codepipeline:PutJobFailureResult",
 "codepipeline:PutJobSuccessResult"
],
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

Example 7: Configure cross-account access to a pipeline

You can configure access to pipelines for users and groups in another AWS account. The
recommended way is to create a role in the account where the pipeline was created. The role
should allow users from the other AWS account to assume that role and access the pipeline. For
more information, see Walkthrough: Cross-Account Access Using Roles.

The following example shows a policy in the 80398EXAMPLE account that allows users to view,
but not change, the pipeline named MyFirstPipeline in the CodePipeline console. This policy
is based on the AWSCodePipeline_ReadOnlyAccess managed policy, but because it is specific
to the MyFirstPipeline pipeline, it cannot use the managed policy directly. If you do not want
to restrict the policy to a specific pipeline, consider using one of the managed policies created
and maintained by CodePipeline. For more information, see Working with Managed Policies.
You must attach this policy to an IAM role you create for access, for example, a role named
CrossAccountPipelineViewers:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:ListActionTypes",
 "codepipeline:ListPipelines",
 "iam:ListRoles",
 "s3:GetBucketPolicy",
 "s3:GetObject",
 "s3:ListAllMyBuckets",

Identity-based policy examples API Version 2015-07-09 760

https://docs.aws.amazon.com/IAM/latest/UserGuide/walkthru_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html

AWS CodePipeline User Guide

 "s3:ListBucket",
 "codedeploy:GetApplication",
 "codedeploy:GetDeploymentGroup",
 "codedeploy:ListApplications",
 "codedeploy:ListDeploymentGroups",
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEnvironments",
 "lambda:GetFunctionConfiguration",
 "lambda:ListFunctions"
],
 "Resource": "arn:aws:codepipeline:us-east-2:80398EXAMPLE:MyFirstPipeline"
 }
],
 "Version": "2012-10-17"
}

After you create this policy, create the IAM role in the 80398EXAMPLE account and attach the
policy to that role. In the role's trust relationships, you must add the AWS account that assumes
this role. The following example shows a policy that allows users from the 111111111111 AWS
account to assume roles defined in the 80398EXAMPLE account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The following example shows a policy created in the 111111111111 AWS account that allows
users to assume the role named CrossAccountPipelineViewers in the 80398EXAMPLE
account:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples API Version 2015-07-09 761

AWS CodePipeline User Guide

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::80398EXAMPLE:role/CrossAccountPipelineViewers"
 }
]
}

Example 8: Use AWS resources associated with another account in a pipeline

You can configure policies that allow a user to create a pipeline that uses resources in another AWS
account. This requires configuring policies and roles in both the account that creates the pipeline
(AccountA) and the account that created the resources to be used in the pipeline (AccountB).
You must also create a customer managed key in AWS Key Management Service to use for
cross-account access. For more information and step-by-step examples, see Create a pipeline in
CodePipeline that uses resources from another AWS account and Configure server-side encryption
for artifacts stored in Amazon S3 for CodePipeline.

The following example shows a policy configured by AccountA for an S3 bucket used to
store pipeline artifacts. The policy grants access to AccountB. In the following example, the
ARN for AccountB is 012ID_ACCOUNT_B. The ARN for the S3 bucket is codepipeline-us-
east-2-1234567890. Replace these ARNs with the ARNs for the S3 bucket and the account you
want to allow access:

{
 "Version": "2012-10-17",
 "Id": "SSEAndSSLPolicy",
 "Statement": [
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",

Identity-based policy examples API Version 2015-07-09 762

AWS CodePipeline User Guide

 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": false
 }
 }
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::012ID_ACCOUNT_B:root"
 },
 "Action": [
 "s3:Get*",
 "s3:Put*"
],
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*"
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::012ID_ACCOUNT_B:root"
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890"
 }
]
}

The following example shows a policy configured by AccountA that allows AccountB
to assume a role. This policy must be applied to the service role for CodePipeline
(CodePipeline_Service_Role). For more information about how to apply policies to roles in
IAM, see Modifying a Role. In the following example, 012ID_ACCOUNT_B is the ARN for AccountB:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",

Identity-based policy examples API Version 2015-07-09 763

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing.html

AWS CodePipeline User Guide

 "Resource": [
 "arn:aws:iam::012ID_ACCOUNT_B:role/*"
]
 }
}

The following example shows a policy configured by AccountB and applied to the EC2 instance
role for CodeDeploy. This policy grants access to the S3 bucket used by AccountA to store pipeline
artifacts (codepipeline-us-east-2-1234567890):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*"
],
 "Resource": [
 "arn:aws:s3:::codepipeline-us-east-2-1234567890/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::codepipeline-us-east-2-1234567890"
]
 }
]
}

The following example shows a policy for AWS KMS where arn:aws:kms:us-
east-1:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE is the ARN of the
customer managed key created in AccountA and configured to allow AccountB to use it:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples API Version 2015-07-09 764

https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/how-to-create-iam-instance-profile.html

AWS CodePipeline User Guide

 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*",
 "kms:Encrypt",
 "kms:ReEncrypt*",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-
east-1:012ID_ACCOUNT_A:key/2222222-3333333-4444-556677EXAMPLE"
]
 }
]
}

The following example shows an inline policy for an IAM role (CrossAccount_Role) created by
AccountB that allows access to CodeDeploy actions required by the pipeline in AccountA.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:GetApplicationRevision",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": "*"
 }
]
}

The following example shows an inline policy for an IAM role (CrossAccount_Role) created
by AccountB that allows access to the S3 bucket to download input artifacts and upload output
artifacts:

{
 "Version": "2012-10-17",

Identity-based policy examples API Version 2015-07-09 765

AWS CodePipeline User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::codepipeline-us-east-2-1234567890/*"
]
 }
]
}

For more information about how to edit a pipeline for cross-account access to resources, see Step
2: Edit the pipeline .

AWS CodePipeline resource-based policy examples

Other services, such as Amazon S3, also support resource-based permissions policies. For example,
you can attach a policy to an S3 bucket to manage access permissions to that bucket. Although
CodePipeline doesn't support resource-based policies, it does store artifacts to be used in pipelines
in versioned S3 buckets.

Example To create a policy for an S3 bucket to use as the artifact store for CodePipeline

You can use any versioned S3 bucket as the artifact store for CodePipeline. If you use the Create
Pipeline wizard to create your first pipeline, this S3 bucket is created for you to ensure that all
objects uploaded to the artifact store are encrypted and connections to the bucket are secure.
If you create your own S3 bucket, as a best practice, consider adding the following policy or
its elements to the bucket. In this policy, the ARN for the S3 bucket is codepipeline-us-
east-2-1234567890. Replace this ARN with the ARN for your S3 bucket:

{
 "Version": "2012-10-17",
 "Id": "SSEAndSSLPolicy",
 "Statement": [
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",

Resource-based policy examples API Version 2015-07-09 766

AWS CodePipeline User Guide

 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyInsecureConnections",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::codepipeline-us-east-2-1234567890/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": false
 }
 }
 }
]
}

Troubleshooting AWS CodePipeline identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with CodePipeline and IAM.

Topics

• I am not authorized to perform an action in CodePipeline

• I am not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access CodePipeline

• I want to allow people outside of my AWS account to access my CodePipeline resources

I am not authorized to perform an action in CodePipeline

If the AWS Management Console tells you that you're not authorized to perform an action, you
must contact your administrator for assistance. Your administrator is the person who provided you
with your user name and password.

Troubleshooting API Version 2015-07-09 767

AWS CodePipeline User Guide

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about a pipeline, but does not have codepipeline:GetPipeline permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 codepipeline:GetPipeline on resource: my-pipeline

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
pipeline resource using the codepipeline:GetPipeline action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, you must
contact your administrator for assistance. Your administrator is the person who provided you with
your user name and password. Ask that person to update your policies to allow you to pass a role
to CodePipeline.

Some AWS services allow you to pass an existing role to that service, instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in CodePipeline. However, the action requires the service to have permissions
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

I'm an administrator and want to allow others to access CodePipeline

To allow others to access CodePipeline, you must create an IAM entity (user or role) for the person
or application that needs access. They will use the credentials for that entity to access AWS. You
must then attach a policy to the entity that grants them the correct permissions in CodePipeline.

To get started right away, see Creating your first IAM delegated user and group in the IAM User
Guide.

Troubleshooting API Version 2015-07-09 768

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html

AWS CodePipeline User Guide

I want to allow people outside of my AWS account to access my CodePipeline
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether CodePipeline supports these features, see How AWS CodePipeline works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

CodePipeline permissions reference

Use the following table as a reference when you are setting up access control and writing
permissions policies that you can attach to an IAM identity (identity-based policies). The table
lists each CodePipeline API operation and the corresponding actions for which you can grant
permissions to perform the action. For operations that support resource-level permissions, the
table lists the AWS resource for which you can grant the permissions. You specify the actions in the
policy's Action field.

Resource-level permissions are those that allow you to specify which resources users are allowed to
perform actions on. AWS CodePipeline provides partial support for resource-level permissions. This
means that for some AWS CodePipeline API calls, you can control when users are allowed to use
those actions based on conditions that must be met, or which resources users are allowed to use.
For example, you can grant users permission to list pipeline execution information, but only for a
specific pipeline or pipelines.

CodePipeline permissions reference API Version 2015-07-09 769

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS CodePipeline User Guide

Note

The Resources column lists the resource required for API calls that support resource-level
permissions. For API calls that do not support resource-level permissions, you can grant
users permission to use it, but you have to specify a wildcard (*) for the resource element of
your policy statement.

CodePipeline API Operations and Required Permissions for Actions

AcknowledgeJob

Action: codepipeline:AcknowledgeJob

Required to view information about a specified job and whether that job has been received by
the job worker. Used for custom actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

AcknowledgeThirdPartyJob

Action: codepipeline:AcknowledgeThirdPartyJob

Required to confirms a job worker has received the specified job. Used for partner actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

CreateCustomActionType

Action: codepipeline:CreateCustomActionType

Required to create a new custom action that can be used in all pipelines associated with the
AWS account. Used for custom actions only.

Resources:

Action Type

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

CreatePipeline

Action: codepipeline:CreatePipeline

CodePipeline permissions reference API Version 2015-07-09 770

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_AcknowledgeJob.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_AcknowledgeThirdPartyJob.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_CreateCustomActionType.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_CreatePipeline.html

AWS CodePipeline User Guide

Required to create a pipeline.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

DeleteCustomActionType

Action: codepipeline:DeleteCustomActionType

Required to mark a custom action as deleted. PollForJobs for the custom action fails after
the action is marked for deletion. Used for custom actions only.

Resources:

Action Type

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

DeletePipeline

Action: codepipeline:DeletePipeline

Required to delete a pipeline.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

DeleteWebhook

Action:codepipeline:DeleteWebhook

Required to delete a webhook.

Resources:

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

CodePipeline permissions reference API Version 2015-07-09 771

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_DeleteCustomActionType.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_DeletePipeline.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_DeleteWebhook.html

AWS CodePipeline User Guide

DeregisterWebhookWithThirdParty

Action:codepipeline:DeregisterWebhookWithThirdParty

Before a webhook is deleted, required to remove the connection between the webhook that
was created by CodePipeline and the external tool with events to be detected. Currently
supported only for webhooks that target an action type of GitHub.

Resources:

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

DisableStageTransition

Action: codepipeline:DisableStageTransition

Required to prevent artifacts in a pipeline from transitioning to the next stage in the pipeline.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

EnableStageTransition

Action: codepipeline:EnableStageTransition

Required to enable artifacts in a pipeline to transition to a stage in a pipeline.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

GetJobDetails

Action: codepipeline:GetJobDetails

Required to retrieve information about a job. Only used for custom actions.

Resources: No resource required.

CodePipeline permissions reference API Version 2015-07-09 772

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_DeregisterWebhookWithThirdParty.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_DisableStageTransition.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_EnableStageTransition.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_GetJobDetails.html

AWS CodePipeline User Guide

GetPipeline

Action: codepipeline:GetPipeline

Required to retrieve the structure, stages, actions, and metadata of a pipeline, including the
pipeline ARN.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

GetPipelineExecution

Action: codepipeline:GetPipelineExecution

Required to retrieve information about an execution of a pipeline, including details about
artifacts, the pipeline execution ID, and the name, version, and status of the pipeline.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

GetPipelineState

Action: codepipeline:GetPipelineState

Required to retrieve information about the state of a pipeline, including the stages and actions.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

GetThirdPartyJobDetails

Action: codepipeline:GetThirdPartyJobDetails

Required to request the details of a job for a third-party action. Used for partner actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

CodePipeline permissions reference API Version 2015-07-09 773

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_GetPipeline.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_GetPipelineExecution.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_GetPipelineState.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_GetThirdPartyJobDetails.html

AWS CodePipeline User Guide

ListActionTypes

Action: codepipeline:ListActionTypes

Required to generate a summary of all CodePipeline action types associated with your account.

Resources:

Action Type

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

ListPipelineExecutions

Action: codepipeline:ListPipelineExecutions

Required to generate a summary of the most recent executions for a pipeline.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

ListPipelines

Action: codepipeline:ListPipelines

Required to generate a summary of all of the pipelines associated with your account.

Resources:

Pipeline ARN with wildcard (resource-level permissions at the pipeline name level are not
supported)

arn:aws:codepipeline:region:account:*

ListTagsForResource

Action: codepipeline:ListTagsForResource

Required to list tags for a specified resource.

Resources:

Action Type

CodePipeline permissions reference API Version 2015-07-09 774

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ListActionTypes.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ListPipelineExecutions.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ListPipelines.html

AWS CodePipeline User Guide

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

ListWebhooks

Action:codepipeline:ListWebhooks

Required to list all of the webhooks in the account for that Region.

Resources:

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

PollForJobs

Action(s): codepipeline:PollForJobs

Required to retrieve information about any jobs for CodePipeline to act on.

Resources:

Action Type

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

PollForThirdPartyJobs

Action: codepipeline:PollForThirdPartyJobs

Required to determine whether there are any third-party jobs for a job worker to act on. Used
for partner actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

PutActionRevision

Action: codepipeline:PutActionRevision

CodePipeline permissions reference API Version 2015-07-09 775

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ListWebhooks.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PollForJobs.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PollForThirdPartyJobs.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutActionRevision.html

AWS CodePipeline User Guide

Required to report information to CodePipeline about new revisions to a source.

Resources:

Action

arn:aws:codepipeline:region:account:pipeline-name/stage-name/action-name

PutApprovalResult

Action: codepipeline:PutApprovalResult

Required to report the response to a manual approval request to CodePipeline. Valid responses
are Approved and Rejected.

Resources:

Action

arn:aws:codepipeline:region:account:pipeline-name/stage-name/action-name

Note

This API call supports resource-level permissions. However, you might encounter
an error if you use the IAM console or Policy Generator to create policies with
"codepipeline:PutApprovalResult" that specify a resource ARN. If you encounter
an error, you can use the JSON tab in the IAM console or the CLI to create a policy.

PutJobFailureResult

Action: codepipeline:PutJobFailureResult

Required to report the failure of a job as returned to the pipeline by a job worker. Used for
custom actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

PutJobSuccessResult

Action: codepipeline:PutJobSuccessResult

Required to report the success of a job as returned to the pipeline by a job worker. Used for
custom actions only.

CodePipeline permissions reference API Version 2015-07-09 776

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutApprovalResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobFailureResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobSuccessResult.html

AWS CodePipeline User Guide

Resources: Supports only a wildcard (*) in the policy Resource element.

PutThirdPartyJobFailureResult

Action: codepipeline:PutThirdPartyJobFailureResult

Required to report the failure of a third-party job as returned to the pipeline by a job worker.
Used for partner actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

PutThirdPartyJobSuccessResult

Action: codepipeline:PutThirdPartyJobSuccessResult

Required to report the success of a third-party job as returned to the pipeline by a job worker.
Used for partner actions only.

Resources: Supports only a wildcard (*) in the policy Resource element.

PutWebhook

Action:codepipeline:PutWebhook

Required to create a webhook.

Resources:

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

RegisterWebhookWithThirdParty

Action:codepipeline:RegisterWebhookWithThirdParty

Resources:

After a webhook is created, required to configure supported third parties to call the generated
webhook URL.

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

CodePipeline permissions reference API Version 2015-07-09 777

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutThirdPartyJobFailureResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutThirdPartyJobSuccessResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutWebhook.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_RegisterWebhookWithThirdParty.html

AWS CodePipeline User Guide

RetryStageExecution

Action: codepipeline:RetryStageExecution

Required to resume the pipeline execution by retrying the last failed actions in a stage.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

StartPipelineExecution

Action: codepipeline:StartPipelineExecution

Required to start the specified pipeline (specifically, to start processing the latest commit to the
source location specified as part of the pipeline).

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

TagResource

Action: codepipeline:TagResource

Required to tag the specified resource.

Resources:

Action Type

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

CodePipeline permissions reference API Version 2015-07-09 778

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_RetryStageExecution.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_StartPipelineExecution.html

AWS CodePipeline User Guide

UntagResource

Action: codepipeline:UntagResource

Required to tag the specified resource.

Resources:

Action Type

arn:aws:codepipeline:region:account:actiontype:owner/category/provider/version

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

Webhook

arn:aws:codepipeline:region:account:webhook:webhook-name

UpdatePipeline

Action: codepipeline:UpdatePipeline

Required to update a specified pipeline with edits or changes to its structure.

Resources:

Pipeline

arn:aws:codepipeline:region:account:pipeline-name

Manage the CodePipeline service role

The CodePipeline service role is configured with one or more policies that control access to the
AWS resources used by the pipeline. You might want to attach more policies to this role, edit the
policy attached to the role, or configure policies for other service roles in AWS. You might also want
to attach a policy to a role when you configure cross-account access to your pipeline.

Important

Modifying a policy statement or attaching another policy to the role can prevent your
pipelines from functioning. Be sure that you understand the implications before you

Manage the CodePipeline service role API Version 2015-07-09 779

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_UpdatePipeline.html

AWS CodePipeline User Guide

modify the service role for CodePipeline in any way. Make sure you test your pipelines after
you make any change to the service role.

Note

In the console, service roles created before September 2018 are created with the name
oneClick_AWS-CodePipeline-Service_ID-Number.
Service roles created after September 2018 use the service role name format
AWSCodePipelineServiceRole-Region-Pipeline_Name. For example, for a
pipeline named MyFirstPipeline in eu-west-2, the console names the role and policy
AWSCodePipelineServiceRole-eu-west-2-MyFirstPipeline.

Remove permissions from the CodePipeline service role

You can edit the service role statement to remove access to resources you do not use. For example,
if none of your pipelines include Elastic Beanstalk, you can edit the policy statement to remove the
section that grants access to Elastic Beanstalk resources.

Similarly, if none of your pipelines includes CodeDeploy, you can edit the policy statement to
remove the section that grants access to CodeDeploy resources:

 {
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetApplicationRevision",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": "*",
 "Effect": "Allow"
},

Add permissions to the CodePipeline service role

You must update your service role policy statement with permissions for an AWS service not
already included in the default service role policy statement before you can use it in your pipelines.

Manage the CodePipeline service role API Version 2015-07-09 780

AWS CodePipeline User Guide

This is especially important if the service role you use for your pipelines was created before support
was added to CodePipeline for an AWS service.

The following table shows when support was added for other AWS services.

AWS service CodePipeline support date

AWS CloudFormation StackSets actions December 30, 2020

CodeCommit full clone output artifact format November 11, 2020

CodeBuild batch builds July 30, 2020

AWS AppConfig June 22, 2020

AWS Step Functions May 27, 2020

AWS CodeStar Connections December 18, 2019

The CodeDeployToECS action November 27, 2018

Amazon ECR November 27, 2018

Service Catalog October 16, 2018

AWS Device Farm July 19, 2018

Amazon ECS December 12, 2017 / Update for opt in for
tagging authorization on July 21, 2017

CodeCommit April 18, 2016

AWS OpsWorks June 2, 2016

AWS CloudFormation November 3, 2016

AWS CodeBuild December 1, 2016

Elastic Beanstalk Initial service launch

Follow these steps to add permissions for a supported service:

Manage the CodePipeline service role API Version 2015-07-09 781

AWS CodePipeline User Guide

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the IAM console, in the navigation pane, choose Roles, and then choose your AWS-
CodePipeline-Service role from the list of roles.

3. On the Permissions tab, in Inline policies, in the row for your service role policy, choose Edit
Policy.

4. Add the required permissions in the Policy document box.

Note

When you create IAM policies, follow the standard security advice of granting least
privilege—that is, granting only the permissions required to perform a task. Some API
calls support resource-based permissions and allow access to be limited. For example,
in this case, to limit permissions when calling DescribeTasks and ListTasks, you
can replace the wildcard character (*) with a resource ARN or with a resource ARN that
contains a wildcard character (*). For more information about creating a policy that
grants least-privilege access, see https://docs.aws.amazon.com/IAM/latest/UserGuide/
best-practices.html#grant-least-privilege.

For example, for CodeCommit support, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "codecommit:GetBranch",
 "codecommit:GetCommit",
 "codecommit:UploadArchive",
 "codecommit:GetUploadArchiveStatus",
 "codecommit:CancelUploadArchive"
],
 "Resource": "resource_ARN"
},

For AWS OpsWorks support, add the following to your policy statement:

{
 "Effect": "Allow",

Manage the CodePipeline service role API Version 2015-07-09 782

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS CodePipeline User Guide

 "Action": [
 "opsworks:CreateDeployment",
 "opsworks:DescribeApps",
 "opsworks:DescribeCommands",
 "opsworks:DescribeDeployments",
 "opsworks:DescribeInstances",
 "opsworks:DescribeStacks",
 "opsworks:UpdateApp",
 "opsworks:UpdateStack"
],
 "Resource": "resource_ARN"
},

For AWS CloudFormation support, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStacks",
 "cloudformation:UpdateStack",
 "cloudformation:CreateChangeSet",
 "cloudformation:DeleteChangeSet",
 "cloudformation:DescribeChangeSet",
 "cloudformation:ExecuteChangeSet",
 "cloudformation:SetStackPolicy",
 "cloudformation:ValidateTemplate",
 "iam:PassRole"
],
 "Resource": "resource_ARN"
},

Note that the cloudformation:DescribeStackEvents permission is optional. It allows
the AWS CloudFormation action to show a more detailed error message. This permission can
be revoked from the IAM role if you don't want resource details surfaced in the pipeline error
messages. For more information, see AWS CloudFormation.

For CodeBuild support, add the following to your policy statement:

{

Manage the CodePipeline service role API Version 2015-07-09 783

AWS CodePipeline User Guide

 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource": "resource_ARN"
},

Note

Support for batch builds was added at a later date. See step 11 for the permissions to
add to the service role for batch builds.

For AWS Device Farm support, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "devicefarm:ListProjects",
 "devicefarm:ListDevicePools",
 "devicefarm:GetRun",
 "devicefarm:GetUpload",
 "devicefarm:CreateUpload",
 "devicefarm:ScheduleRun"
],
 "Resource": "resource_ARN"
},

For Service Catalog support, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "servicecatalog:ListProvisioningArtifacts",
 "servicecatalog:CreateProvisioningArtifact",
 "servicecatalog:DescribeProvisioningArtifact",
 "servicecatalog:DeleteProvisioningArtifact",
 "servicecatalog:UpdateProduct"
],
 "Resource": "resource_ARN"

Manage the CodePipeline service role API Version 2015-07-09 784

AWS CodePipeline User Guide

},
{
 "Effect": "Allow",
 "Action": [
 "cloudformation:ValidateTemplate"
],
 "Resource": "resource_ARN"
}

5. For Amazon ECR support, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "ecr:DescribeImages"
],
 "Resource": "resource_ARN"
},

6. For Amazon ECS, the following are the minimum permissions needed to create pipelines with an
Amazon ECS deploy action.

{
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeServices",
 "ecs:DescribeTaskDefinition",
 "ecs:DescribeTasks",
 "ecs:ListTasks",
 "ecs:RegisterTaskDefinition",
 "ecs:TagResource",
 "ecs:UpdateService"
],
 "Resource": "resource_ARN"
},

You can opt in to using tagging authorization in Amazon ECS. By opting in, you must grant the
following permissions: ecs:TagResource. For more information about how to opt in and to
determine whether the permission is required and tag authorization is enforced, see Tagging
authorization timeline in the Amazon Elastic Container Service Developer Guide.

Manage the CodePipeline service role API Version 2015-07-09 785

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#tag-resources-timeline
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#tag-resources-timeline

AWS CodePipeline User Guide

You must also add the iam:PassRole permissions to use IAM roles for tasks. For more
information, see Amazon ECS task execution IAM role and IAM Roles for Tasks. Use the following
policy text.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [

 "arn:aws:iam::aws_account_ID:role/ecsTaskExecutionRole_or_TaskRole_name"
]
 }
]
}

7. For the CodeDeployToECS action (blue/green deployments), the following are the minimum
permissions needed to create pipelines with a CodeDeploy to Amazon ECS blue/green
deployment action.

{
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateDeployment",
 "codedeploy:GetDeployment",
 "codedeploy:GetApplication",
 "codedeploy:GetApplicationRevision",
 "codedeploy:RegisterApplicationRevision",
 "codedeploy:GetDeploymentConfig",
 "ecs:RegisterTaskDefinition",
 "ecs:TagResource"
],
 "Resource": "resource_ARN"
},

You can opt in to using tagging authorization in Amazon ECS. By opting in, you must grant the
following permissions: ecs:TagResource. For more information about how to opt in and to

Manage the CodePipeline service role API Version 2015-07-09 786

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS CodePipeline User Guide

determine whether the permission is required and tag authorization is enforced, see Tagging
authorization timeline in the Amazon Elastic Container Service Developer Guide.

You must also add the iam:PassRole permissions to use IAM roles for tasks. For more
information, see Amazon ECS task execution IAM role and IAM Roles for Tasks. Use the following
policy text.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [

 "arn:aws:iam::aws_account_ID:role/ecsTaskExecutionRole_or_TaskRole_name"
]
 }
]
}

You can also add ecs-tasks.amazonaws.com to the list of services under the
iam:PassedToService condition, as shown in this example.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "resource_ARN",
 "Condition": {
 "StringEqualsIfExists": {
 "iam:PassedToService": [
 "cloudformation.amazonaws.com",
 "elasticbeanstalk.amazonaws.com",
 "ec2.amazonaws.com",
 "ecs-tasks.amazonaws.com"
]
 }
 }

Manage the CodePipeline service role API Version 2015-07-09 787

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#tag-resources-timeline
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#tag-resources-timeline
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS CodePipeline User Guide

 },

8. For AWS CodeStar connections, the following permission is required to create pipelines with a
source that uses a connection, such as Bitbucket Cloud.

{
 "Effect": "Allow",
 "Action": [
 "codestar-connections:UseConnection"
],
 "Resource": "resource_ARN"
},

For more information about the IAM permissions for connections, see Connections permissions
reference.

9. For the StepFunctions action, the following are the minimum permissions needed to create
pipelines with a Step Functions invoke action.

{
 "Effect": "Allow",
 "Action": [
 "states:DescribeStateMachine",
 "states:DescribeExecution",
 "states:StartExecution"
],
 "Resource": "resource_ARN"
},

10.For the AppConfig action, the following are the minimum permissions needed to create
pipelines with an AWS AppConfig invoke action.

{
 "Effect": "Allow",
 "Action": [
 "appconfig:StartDeployment",
 "appconfig:GetDeployment",
 "appconfig:StopDeployment"
],
 "Resource": "resource_ARN"
},

Manage the CodePipeline service role API Version 2015-07-09 788

https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam.html#permissions-reference-connections
https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam.html#permissions-reference-connections

AWS CodePipeline User Guide

11.For CodeBuild support for batch builds, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuildBatches",
 "codebuild:StartBuildBatch"
],
 "Resource": "resource_ARN"
},

12.For AWS CloudFormation StackSets actions, the following minimum permissions are required.

• For the CloudFormationStackSet action, add the following to your policy statement:

{
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStackSet",
 "cloudformation:UpdateStackSet",
 "cloudformation:CreateStackInstances",
 "cloudformation:DescribeStackSetOperation",
 "cloudformation:DescribeStackSet",
 "cloudformation:ListStackInstances"
],
 "Resource": "resource_ARN"
},

• For the CloudFormationStackInstances action, add the following to your policy
statement:

{
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStackInstances",
 "cloudformation:DescribeStackSetOperation"
],
 "Resource": "resource_ARN"
},

13.For CodeCommit support for the full clone option, add the following to your policy statement:

{

Manage the CodePipeline service role API Version 2015-07-09 789

AWS CodePipeline User Guide

 "Effect": "Allow",
 "Action": [
 "codecommit:GetRepository"
],
 "Resource": "resource_ARN"
},

Note

To make sure your CodeBuild action can use the full clone option with a CodeCommit
source, you must also add the codecommit:GitPull permission to the policy
statement for your project's CodeBuild service role.

14.For Elastic Beanstalk, the following are the minimum permissions needed to create pipelines
with an ElasticBeanstalk deploy action.

{
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "rds:*",
 "sqs:*",
 "ecs:*"
],
 "Resource": "resource_ARN"
},

Note

You should replace wildcards in the resource policy with the resources for the account
you want to limit access to. For more information about creating a policy that grants

Manage the CodePipeline service role API Version 2015-07-09 790

AWS CodePipeline User Guide

least-privilege access, see https://docs.aws.amazon.com/IAM/latest/UserGuide/best-
practices.html#grant-least-privilege.

15.For a pipeline that you want to configure for CloudWatch Logs, the following are the minimum
permissions that you need to add to the CodePipeline service role.

{
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups",
 "logs:PutRetentionPolicy"
],
 "Resource": "resource_ARN"
},

Note

You should replace wildcards in the resource policy with the resources for the account
you want to limit access to. For more information about creating a policy that grants
least-privilege access, see https://docs.aws.amazon.com/IAM/latest/UserGuide/best-
practices.html#grant-least-privilege.

16.Choose Review policy to ensure the policy contains no errors. When the policy is error-free,
choose Apply policy.

Logging and monitoring in CodePipeline

You can use logging features in AWS to determine the actions users have taken in your account and
the resources that were used. The log files show:

• The time and date of actions.

• The source IP address for an action.

• Which actions failed due to inadequate permissions.

Logging features are available in the following AWS services:

Incident response API Version 2015-07-09 791

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS CodePipeline User Guide

• AWS CloudTrail can be used to log AWS API calls and related events made by or on behalf of an
AWS account. For more information, see Logging CodePipeline API calls with AWS CloudTrail.

• Amazon CloudWatch Events can be used to monitor your AWS Cloud resources and the
applications you run on AWS. You can create alerts in Amazon CloudWatch Events based on
metrics that you define. For more information, see Monitoring CodePipeline events.

Compliance validation for AWS CodePipeline

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

Compliance validation API Version 2015-07-09 792

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

AWS CodePipeline User Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS CodePipeline

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in AWS CodePipeline

As a managed service, AWS CodePipeline is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access CodePipeline through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Resilience API Version 2015-07-09 793

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS CodePipeline User Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Security best practices

CodePipeline provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

You use encryption and authentication for the source repositories that connect to your pipelines.
These are the CodePipeline best practices for security:

• If you create a pipeline or action configuration that needs to include secrets, such as tokens or
passwords, do not enter secrets directly in the action configuration, or default values of variables
defined at pipeline level or AWS CloudFormation configuration, because the information will
display in logs. Use Secrets Manager to set up and store secrets, and then use the referenced
secret in the pipeline and action configuration, as described in Use AWS Secrets Manager to
track database passwords or third-party API keys.

• If you create a pipeline that uses an S3 source bucket, configure server-side encryption for
artifacts stored in Amazon S3 for CodePipeline by managing AWS KMS keys, as described in
Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline.

• If you are using the Jenkins action provider, when you use a Jenkins build provider for your
pipeline’s build or test action, install Jenkins on an EC2 instance and configure a separate EC2
instance profile. Make sure that the instance profile grants Jenkins only the AWS permissions
required to perform tasks for your project, such as retrieving files from Amazon S3. To learn how
to create the role for your Jenkins instance profile, see the steps in Create an IAM role to use for
Jenkins integration.

Security best practices API Version 2015-07-09 794

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS CodePipeline User Guide

AWS CodePipeline command line reference

Use this reference when working with the AWS CodePipeline commands and as a supplement to
information documented in the AWS CLI User Guide and the AWS CLI Reference.

Before you use the AWS CLI, make sure you complete the prerequisites in Getting started with
CodePipeline.

To view a list of all available CodePipeline commands, run the following command:

aws codepipeline help

To view information about a specific CodePipeline command, run the following command, where
command-name is the name of one of the commands listed below (for example, create-pipeline):

aws codepipeline command-name help

To begin learning how to use the commands in the CodePipeline extension to the AWS CLI, go to
one or more of the following sections:

• Create a custom action

• Create a pipeline (CLI)

• Delete a pipeline (CLI)

• Disable or enable transitions (CLI)

• View pipeline details and history (CLI)

• Retry failed actions (CLI)

• Start a pipeline manually (CLI)

• Edit a pipeline (AWS CLI)

You can also view examples of how to use most of these commands in CodePipeline tutorials.

API Version 2015-07-09 795

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/

AWS CodePipeline User Guide

CodePipeline pipeline structure reference

By default, any pipeline you successfully create in AWS CodePipeline has a valid structure. However,
if you manually create or edit a JSON file to create a pipeline or update a pipeline from the AWS
CLI, you might inadvertently create a structure that is not valid. The following reference can help
you better understand the requirements for your pipeline structure and how to troubleshoot issues.
See the constraints in Quotas in AWS CodePipeline, which apply to all pipelines.

Topics

• Valid action types and providers in CodePipeline

• Pipeline and stage structure requirements in CodePipeline

• Action structure requirements in CodePipeline

Valid action types and providers in CodePipeline

The pipeline structure format is used to build actions and stages in a pipeline. An action type
consists of an action category and provider type.

The following are the valid action categories in CodePipeline:

• Source

• Build

• Test

• Deploy

• Approval

• Invoke

Each action category has a designated set of providers. Each action provider, such as Amazon S3,
has a provider name, such as S3, that must be used in the Provider field in the action category in
your pipeline structure.

There are three valid values for the Owner field in the action category section in your pipeline
structure: AWS, ThirdParty, and Custom.

To find the provider name and owner information for your action provider, see Action structure
reference or Number of input and output artifacts for each action type.

Valid action types and providers in CodePipeline API Version 2015-07-09 796

AWS CodePipeline User Guide

This table lists valid providers by action type.

Note

For Bitbucket Cloud, GitHub, GitHub Enterprise Server, or GitLab.com actions, refer to
the CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server,
GitLab.com, and GitLab self-managed actions action reference topic.

Valid action providers by action type

Action category Valid action providers Action reference

Amazon S3 Amazon S3
source action

Amazon ECR Amazon ECR

CodeCommit CodeCommit

Source

CodeStarSourceConnection (for Bitbucket Cloud,
GitHub, GitHub Enterprise Server, or GitLab.com
actions)

CodeStarS
ourceConn
ection for
Bitbucket Cloud,
GitHub, GitHub
Enterprise
Server, GitLab.co
m, and GitLab
self-managed
actions

CodeBuild AWS CodeBuild

Custom CloudBees Number of input
and output
artifacts for each
action type

Build

Custom Jenkins Number of input
and output

Valid action types and providers in CodePipeline API Version 2015-07-09 797

AWS CodePipeline User Guide

Action category Valid action providers Action reference

artifacts for each
action type

Custom TeamCity Number of input
and output
artifacts for each
action type

CodeBuild AWS CodeBuild

AWS Device Farm Number of input
and output
artifacts for each
action type

ThirdParty GhostInspector Number of input
and output
artifacts for each
action type

Custom Jenkins Number of input
and output
artifacts for each
action type

ThirdParty Micro Focus StormRunner Load Number of input
and output
artifacts for each
action type

Test

ThirdParty Nouvola Number of input
and output
artifacts for each
action type

Deploy Amazon S3 Amazon S3
deploy action

Valid action types and providers in CodePipeline API Version 2015-07-09 798

AWS CodePipeline User Guide

Action category Valid action providers Action reference

AWS CloudFormation AWS CloudForm
ation

AWS CloudFormation StackSets (includes the
CloudFormationStackSet and CloudForm
ationStackInstances actions)

AWS CloudForm
ation StackSets

CodeDeploy Number of input
and output
artifacts for each
action type

Amazon ECS Number of input
and output
artifacts for each
action type

Amazon ECS (Blue/Green) (this is the CodeDeplo
yToECS action)

Number of input
and output
artifacts for each
action type

Elastic Beanstalk Number of input
and output
artifacts for each
action type

AWS AppConfig AWS AppConfig

AWS OpsWorks Number of input
and output
artifacts for each
action type

Valid action types and providers in CodePipeline API Version 2015-07-09 799

AWS CodePipeline User Guide

Action category Valid action providers Action reference

Service Catalog Number of input
and output
artifacts for each
action type

Amazon Alexa Number of input
and output
artifacts for each
action type

Custom XebiaLabs Number of input
and output
artifacts for each
action type

Approval Manual Number of input
and output
artifacts for each
action type

AWS Lambda AWS LambdaInvoke

AWS Step Functions AWS Step
Functions

Some action types in CodePipeline are available in select AWS Regions only. It is possible that an
action type is available in an AWS Region, but an AWS provider for that action type is not available.

For more information about each action provider, see Integrations with CodePipeline action types.

The following sections provide examples for provider information and configuration properties for
each action type.

Pipeline and stage structure requirements in CodePipeline

A two-stage pipeline has the following basic structure:

Pipeline and stage structure requirements in CodePipeline API Version 2015-07-09 800

AWS CodePipeline User Guide

{
 "roleArn": "An IAM ARN for a service role, such as arn:aws:iam::80398EXAMPLE:role/
CodePipeline_Service_Role",
 "stages": [
 {
 "name": "SourceStageName",
 "actions": [
 ... See Action structure requirements in CodePipeline ...
]
 },
 {
 "name": "NextStageName",
 "actions": [
 ... See Action structure requirements in CodePipeline ...
]
 }
],
 "artifactStore": {
 "type": "S3",
 "location": "The name of the Amazon S3 bucket automatically generated for you
 the first time you create a pipeline
 using the console, such as codepipeline-us-east-2-1234567890, or any Amazon
 S3 bucket you provision for this purpose"
 },
 "name": "YourPipelineName",
 "version": 1
}

The pipeline structure has the following requirements:

• A pipeline must contain at least two stages.

• The first stage of a pipeline must contain at least one source action. It can contain source actions
only.

• Only the first stage of a pipeline can contain source actions.

• At least one stage in each pipeline must contain an action that is not a source action.

• All stage names in a pipeline must be unique.

• Stage names cannot be edited in the CodePipeline console. If you edit a stage name by using the
AWS CLI, and the stage contains an action with one or more secret parameters (such as an OAuth
token), the value of those secret parameters is not preserved. You must manually enter the value

Pipeline and stage structure requirements in CodePipeline API Version 2015-07-09 801

AWS CodePipeline User Guide

of the parameters (which are masked by four asterisks in the JSON returned by the AWS CLI) and
include them in the JSON structure.

• The artifactStore field contains the artifact bucket type and location for a pipeline with all
actions in the same AWS Region. If you add actions in a Region different from your pipeline, the
artifactStores mapping is used to list the artifact bucket for each AWS Region where actions
are executed. When you create or edit a pipeline, you must have an artifact bucket in the pipeline
Region and then you must have one artifact bucket per Region where you plan to execute an
action.

The following example shows the basic structure for a pipeline with cross-Region actions that
uses the artifactStores parameter:

 "pipeline": {
 "name": "YourPipelineName",
 "roleArn": "CodePipeline_Service_Role",
 "artifactStores": {
 "us-east-1": {
 "type": "S3",
 "location": "S3 artifact bucket name, such as codepipeline-us-
east-1-1234567890"
 },
 "us-west-2": {
 "type": "S3",
 "location": "S3 artifact bucket name, such as codepipeline-us-
west-2-1234567890"
 }
 },
 "stages": [
 {

...

• The pipeline metadata fields are distinct from the pipeline structure and cannot be edited. When
you update a pipeline, the date in the updated metadata field changes automatically.

• When you edit or update a pipeline, the pipeline name cannot be changed.

Note

If you want to rename an existing pipeline, you can use the CLI get-pipeline
command to build a JSON file that contains your pipeline's structure. You can then use

Pipeline and stage structure requirements in CodePipeline API Version 2015-07-09 802

AWS CodePipeline User Guide

the CLI create-pipeline command to create a pipeline with that structure and give it
a new name.

The version number of a pipeline is automatically generated and updated every time you update
the pipeline.

Action structure requirements in CodePipeline

An action has the following high-level structure:

[
 {
 "inputArtifacts": [
 An input artifact structure, if supported for the action
 category
],
 "name": "ActionName",
 "region": "Region",
 "namespace": "source_namespace",
 "actionTypeId": {
 "category": "An action category",
 "owner": "AWS",
 "version": "1"
 "provider": "A provider type for the action category",
 },
 "outputArtifacts": [
 An output artifact structure, if supported for the action
 category
],
 "configuration": {
 Configuration details appropriate to the provider type
 },
 "runOrder": A positive integer that indicates the run order within
 the stage,
 }
]

For a list of example configuration details appropriate to the provider type, see Configuration
details by provider type.

Action structure requirements in CodePipeline API Version 2015-07-09 803

AWS CodePipeline User Guide

The action structure has the following requirements:

• All action names within a stage must be unique.

• The input artifact of an action must exactly match the output artifact declared in a preceding
action. For example, if a preceding action includes the following declaration:

"outputArtifacts": [
 {
 "MyApp"
 }
],

and there are no other output artifacts, then the input artifact of a following action must be:

"inputArtifacts": [
 {
 "MyApp"
 }
],

This is true for all actions, whether they are in the same stage or in following stages, but
the input artifact does not have to be the next action in strict sequence from the action that
provided the output artifact. Actions in parallel can declare different output artifact bundles,
which are, in turn, consumed by different following actions.

• Output artifact names must be unique in a pipeline. For example, a pipeline can include one
action that has an output artifact named "MyApp" and another action that has an output
artifact named "MyBuiltApp". However, a pipeline cannot include two actions that both have
an output artifact named "MyApp".

• Cross-Region actions use the Region field to designate the AWS Region where the actions are
to be created. The AWS resources created for this action must be created in the same Region
provided in the region field. You cannot create cross-Region actions for the following action
types:

• Source actions

• Actions by third-party providers

• Actions by custom providers

Action structure requirements in CodePipeline API Version 2015-07-09 804

AWS CodePipeline User Guide

• Actions can be configured with variables. You use the namespace field to set the namespace and
variable information for execution variables. For reference information about execution variables
and action output variables, see Variables.

• For all currently supported action types, the only valid owner string is AWS, ThirdParty, or
Custom. For more information, see the CodePipeline API Reference.

• The default runOrder value for an action is 1. The value must be a positive integer (natural
number). You cannot use fractions, decimals, negative numbers, or zero. To specify a serial
sequence of actions, use the smallest number for the first action and larger numbers for each
of the rest of the actions in sequence. To specify parallel actions, use the same integer for each
action you want to run in parallel. In the console, you can specify a serial sequence for an action
by choosing Add action group at the level in the stage where you want it to run, or you can
specify a parallel sequence by choosing Add action. Action group refers to a run order of one or
more actions at the same level.

For example, if you want three actions to run in sequence in a stage, you would give the first
action the runOrder value of 1, the second action the runOrder value of 2, and the third the
runOrder value of 3. However, if you want the second and third actions to run in parallel, you
would give the first action the runOrder value of 1 and both the second and third actions the
runOrder value of 2.

Note

The numbering of serial actions do not have to be in strict sequence. For example, if you
have three actions in a sequence and decide to remove the second action, you do not
need to renumber the runOrder value of the third action. Because the runOrder value
of that action (3) is higher than the runOrder value of the first action (1), it runs serially
after the first action in the stage.

• When you use an Amazon S3 bucket as a deployment location, you also specify an object key. An
object key can be a file name (object) or a combination of a prefix (folder path) and file name.
You can use variables to specify the location name you want the pipeline to use. Amazon S3
deployment actions support the use of the following variables in Amazon S3 object keys.

Action structure requirements in CodePipeline API Version 2015-07-09 805

http://docs.aws.amazon.com/codepipeline/latest/APIReference

AWS CodePipeline User Guide

Using variables in Amazon S3

Variable Example of console input Output

datetime js-application/{datetime}.zip UTC timestamp in this format:
<YYYY>-<MM>-DD>_<HH>-<MM>-
<SS>

Example:

js-application/2019-01-10_07-39-57.z
ip

uuid js-application/{uuid}.zip The UUID is a globally unique identifie
r that is guaranteed to be different
from any other identifier. The UUID is
in this format (all digits in hexadecim
al format): <8-digits>-<4-digits>-4-
digits>-<4-digits>-<12-digits>

Example:

js-application/54a60075-b96
a-4bf3-9013-db3a9EXAMPLE.zip

• These are the valid actionTypeId categories for CodePipeline:

• Source

• Build

• Approval

• Deploy

• Test

• Invoke

Some provider types and configuration options are provided here.

• Valid provider types for an action category depend on the category. For example, for a source
action type, a valid provider type is S3, GitHub, CodeCommit, or Amazon ECR. This example
shows the structure for a source action with an S3 provider:

Action structure requirements in CodePipeline API Version 2015-07-09 806

AWS CodePipeline User Guide

"actionTypeId": {
 "category": "Source",
 "owner": "AWS",
 "version": "1",
 "provider": "S3"},

• Every action must have a valid action configuration, which depends on the provider type for
that action. The following table lists the required action configuration elements for each valid
provider type:

Action configuration properties for provider types

Name of
provider

Provider name in
action type

Configuration properties Required
property?

Amazon
S3 (Deploy
action
provider)

For more information, including examples related to Amazon S3 deploy action
parameters, see Amazon S3 deploy action.

Amazon
S3 (Source
action
provider)

For more information, including examples related to Amazon S3 source action
parameters, see Amazon S3 source action.

Amazon
ECR

For more information, including examples related to Amazon ECR parameters,
see Amazon ECR.

CodeCommi
t

For more information, including examples related to CodeCommit parameters,
see CodeCommit.

GitHub For more information, including examples related to GitHub parameters, see
GitHub version 1 source action structure reference.

AWS
CloudForm
ation

For more information, including examples related to AWS CloudFormation
parameters, see AWS CloudFormation.

Action structure requirements in CodePipeline API Version 2015-07-09 807

AWS CodePipeline User Guide

Name of
provider

Provider name in
action type

Configuration properties Required
property?

CodeBuild For more description and examples related to CodeBuild parameters, see AWS
CodeBuild.

CodeDeplo
y

For more description and examples related to CodeDeploy parameters, see
AWS CodeDeploy.

AWS Device
Farm

For more description and examples related to AWS Device Farm parameters,
see AWS Device Farm.

ApplicationName RequiredAWS Elastic
Beanstalk

ElasticBe
anstalk

EnvironmentName Required

AWS
Lambda

For more information, including examples related to AWS Lambda parameters,
see AWS Lambda.

Stack Required

Layer Optional

AWS
OpsWorks
Stacks

OpsWorks

App Required

Amazon
ECS

For more description and examples related to Amazon ECS parameters, see
Amazon Elastic Container Service.

Amazon
ECS and
CodeDeplo
y(Blue/Gr
een)

For more description and examples related to Amazon ECS and CodeDeploy
blue/green parameters, see Amazon Elastic Container Service and CodeDeploy
blue-green.

TemplateFilePath Required

ProductVersionName Required

Service
Catalog

ServiceCatalog

ProductType Required

Action structure requirements in CodePipeline API Version 2015-07-09 808

AWS CodePipeline User Guide

Name of
provider

Provider name in
action type

Configuration properties Required
property?

ProductVersionDescription Optional

ProductId Required

ClientId Required

ClientSecret Required

RefreshToken Required

Alexa Skills
Kit

AlexaSkillsKit

SkillId Required

Jenkins The name of the
action you provided
in the CodePipeline
Plugin for Jenkins
(for example,
MyJenkins
ProviderName)

ProjectName Required

CustomData Optional

ExternalEntityLink Optional

Manual
Approval

Manual

NotificationArn Optional

Topics

• Number of input and output artifacts for each action type

• Default settings for the PollForSourceChanges parameter

• Configuration details by provider type

Number of input and output artifacts for each action type

Depending on the action type, you can have the following number of input and output artifacts:

Number of input and output artifacts for each action type API Version 2015-07-09 809

AWS CodePipeline User Guide

Action type constraints for artifacts

Owner Type of action Provider Valid number of
input artifacts

Valid number of
output artifacts

AWS Source Amazon S3 0 1

AWS Source CodeCommit 0 1

AWS Source Amazon ECR 0 1

ThirdParty Source GitHub 0 1

AWS Build CodeBuild 1 to 5 0 to 5

AWS Test CodeBuild 1 to 5 0 to 5

AWS Test AWS Device
Farm

1 0

AWS Approval Manual 0 0

AWS Deploy Amazon S3 1 0

AWS Deploy AWS CloudForm
ation

0 to 10 0 to 1

AWS Deploy CodeDeploy 1 0

AWS Deploy AWS Elastic
Beanstalk

1 0

AWS Deploy AWS OpsWorks
Stacks

1 0

AWS Deploy Amazon ECS 1 0

AWS Deploy Service Catalog 1 0

AWS Invoke AWS Lambda 0 to 5 0 to 5

ThirdParty Deploy Alexa Skills Kit 1 to 2 0

Number of input and output artifacts for each action type API Version 2015-07-09 810

AWS CodePipeline User Guide

Owner Type of action Provider Valid number of
input artifacts

Valid number of
output artifacts

Custom Build Jenkins 0 to 5 0 to 5

Custom Test Jenkins 0 to 5 0 to 5

Custom Any supported
category

As specified
in the custom
action

0 to 5 0 to 5

Default settings for the PollForSourceChanges parameter

The PollForSourceChanges parameter default is determined by the method used to create
the pipeline, as described in the following table. In many cases, the PollForSourceChanges
parameter defaults to true and must be disabled.

When the PollForSourceChanges parameter defaults to true, you should do the following:

• Add the PollForSourceChanges parameter to the JSON file or AWS CloudFormation
template.

• Create change detection resources (CloudWatch Events rule, as applicable).

• Set the PollForSourceChanges parameter to false.

Note

If you create a CloudWatch Events rule or webhook, you must set the parameter to false
to avoid triggering the pipeline more than once.

The PollForSourceChanges parameter is not used for Amazon ECR source actions.

Default settings for the PollForSourceChanges parameter API Version 2015-07-09 811

AWS CodePipeline User Guide

• PollForSourceChanges parameter defaults

Source Creation method Example "configuration"
JSON structure output

Pipeline is created with the console (and
change detection resources are created by
the console). The parameter is displayed in
the pipeline structure output and defaults to
false.

BranchName": "main",
"PollForSourceCha
nges": "false",
"RepositoryName": "my-
repo"

CodeCommit

Pipeline is created with the CLI or AWS
CloudFormation, and the PollForSo
urceChanges parameter is not displayed
in JSON output, but it sets to true.²

BranchName": "main",
"RepositoryName": "my-
repo"

Pipeline is created with the console (and
change detection resources are created by
the console). The parameter is displayed in
the pipeline structure output and defaults to
false.

"S3Bucket": "my-bucke
t",
"S3ObjectKey":
 "object.zip",
"PollForSourceChanges"
: "false"

Amazon S3

Pipeline is created with the CLI or AWS
CloudFormation, and the PollForSo
urceChanges parameter is not displayed
in JSON output, but it sets to true.²

"S3Bucket": "my-bucke
t",
"S3ObjectKey":
 "object.zip"

GitHub Pipeline is created with the console (and
change detection resources are created by
the console). The parameter is displayed in
the pipeline structure output and defaults to
false.

"Owner": "MyGitHubA
ccountName ",
"Repo": " MyGitHubR
epositoryName "
"PollForSourceCh
anges": "false",
"Branch": " main"
"OAuthToken": " ****"

Default settings for the PollForSourceChanges parameter API Version 2015-07-09 812

AWS CodePipeline User Guide

Source Creation method Example "configuration"
JSON structure output

Pipeline is created with the CLI or AWS
CloudFormation, and the PollForSo
urceChanges parameter is not displayed
in JSON output, but it sets to true.²

"Owner": "MyGitHubA
ccountName ",
"Repo": "MyGitHubR
epositoryName ",
"Branch": " main",
"OAuthToken": " ****"

 ² If PollForSourceChanges has been added at any point to the JSON
structure or the AWS CloudFormation template, it is displayed as shown:

"PollForSourceChanges": "true",

³ For information about the change detection resources that apply to each
source provider, see Change Detection Methods.

Configuration details by provider type

This section lists valid configuration parameters for each action provider.

The following example shows a valid configuration for a deploy action that uses Service Catalog,
for a pipeline that was created in the console without a separate configuration file:

"configuration": {
 "TemplateFilePath": "S3_template.json",
 "ProductVersionName": "devops S3 v2",
 "ProductType": "CLOUD_FORMATION_TEMPLATE",
 "ProductVersionDescription": "Product version description",
 "ProductId": "prod-example123456"
}

The following example shows a valid configuration for a deploy action that uses Service Catalog,
for a pipeline that was created in the console with a separate sample_config.json configuration
file:

Configuration details by provider type API Version 2015-07-09 813

AWS CodePipeline User Guide

"configuration": {
 "ConfigurationFilePath": "sample_config.json",
 "ProductId": "prod-example123456"
}

The following example shows a valid configuration for a deploy action that uses Alexa Skills Kit:

"configuration": {
 "ClientId": "amzn1.application-oa2-client.aadEXAMPLE",
 "ClientSecret": "****",
 "RefreshToken": "****",
 "SkillId": "amzn1.ask.skill.22649d8f-0451-4b4b-9ed9-bfb6cEXAMPLE"
}

The following example shows a valid configuration for a manual approval:

"configuration": {
 "CustomData": "Comments on the manual approval",
 "ExternalEntityLink": "http://my-url.com",
 "NotificationArn": "arn:aws:sns:us-west-2:12345EXAMPLE:Notification"
}

Configuration details by provider type API Version 2015-07-09 814

AWS CodePipeline User Guide

Action structure reference

This section is a reference for action configuration only. For a conceptual overview of the pipeline
structure, see CodePipeline pipeline structure reference.

Each action provider in CodePipeline uses a set of required and optional configuration fields in the
pipeline structure. This section provides the following reference information by action provider:

• Valid values for the ActionType fields included in the pipeline structure action block, such as
Owner and Provider.

• Descriptions and other reference information for the Configuration parameters (required and
optional) included in the pipeline structure action section.

• Valid example JSON and YAML action fields.

This section is updated periodically with more action providers. Reference information is currently
available for the following action providers:

Topics

• Amazon ECR

• Amazon Elastic Container Service and CodeDeploy blue-green

• Amazon Elastic Container Service

• Amazon S3 deploy action

• Amazon S3 source action

• AWS AppConfig

• AWS CloudFormation

• AWS CloudFormation StackSets

• AWS CodeBuild

• CodeCommit

• AWS CodeDeploy

• CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions

• AWS Device Farm

API Version 2015-07-09 815

AWS CodePipeline User Guide

• AWS Lambda

• Snyk action structure reference

• AWS Step Functions

Amazon ECR

Triggers the pipeline when a new image is pushed to the Amazon ECR repository. This action
provides an image definitions file referencing the URI for the image that was pushed to
Amazon ECR. This source action is often used in conjunction with another source action, such as
CodeCommit, to allow a source location for all other source artifacts. For more information, see
Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment.

When you use the console to create or edit your pipeline, CodePipeline creates a CloudWatch
Events rule that starts your pipeline when a change occurs in the repository.

You must have already created an Amazon ECR repository and pushed an image before you
connect the pipeline through an Amazon ECR action.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Action declaration (Amazon ECR example)

• See also

Action type

• Category: Source

• Owner: AWS

• Provider: ECR

• Version: 1

Amazon ECR API Version 2015-07-09 816

AWS CodePipeline User Guide

Configuration parameters

RepositoryName

Required: Yes

The name of the Amazon ECR repository where the image was pushed.

ImageTag

Required: No

The tag used for the image.

Note

If a value for ImageTag is not specified, the value defaults to latest.

Input artifacts

• Number of artifacts: 0

• Description: Input artifacts do not apply for this action type.

Output artifacts

• Number of artifacts: 1

• Description: This action produces an artifact that contains an imageDetail.json file that
contains the URI for the image that triggered the pipeline execution. For information about the
imageDetail.json file, see imageDetail.json file for Amazon ECS blue/green deployment
actions.

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. This action produces variables which can be viewed as
output variables, even if the action doesn't have a namespace. You configure an action with a
namespace to make those variables available to the configuration of downstream actions.

Configuration parameters API Version 2015-07-09 817

AWS CodePipeline User Guide

For more information, see Variables.

RegistryId

The AWS account ID associated with the registry that contains the repository.

RepositoryName

The name of the Amazon ECR repository where the image was pushed.

ImageTag

The tag used for the image.

ImageDigest

The sha256 digest of the image manifest.

ImageURI

The URI for the image.

Action declaration (Amazon ECR example)

YAML

Name: Source
Actions:
 - InputArtifacts: []
 ActionTypeId:
 Version: '1'
 Owner: AWS
 Category: Source
 Provider: ECR
 OutputArtifacts:
 - Name: SourceArtifact
 RunOrder: 1
 Configuration:
 ImageTag: latest
 RepositoryName: my-image-repo

 Name: ImageSource

Action declaration (Amazon ECR example) API Version 2015-07-09 818

AWS CodePipeline User Guide

JSON

{
 "Name": "Source",
 "Actions": [
 {
 "InputArtifacts": [],
 "ActionTypeId": {
 "Version": "1",
 "Owner": "AWS",
 "Category": "Source",
 "Provider": "ECR"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "RunOrder": 1,
 "Configuration": {
 "ImageTag": "latest",
 "RepositoryName": "my-image-repo"
 },
 "Name": "ImageSource"
 }
]
},

See also

The following related resources can help you as you work with this action.

• Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment
– This tutorial provides a sample app spec file and sample CodeDeploy application and
deployment group to create a pipeline with a CodeCommit and Amazon ECR source that deploys
to Amazon ECS instances.

See also API Version 2015-07-09 819

AWS CodePipeline User Guide

Amazon Elastic Container Service and CodeDeploy blue-green

You can configure a pipeline in AWS CodePipeline that deploys container applications using a blue/
green deployment. In a blue/green deployment, you can launch a new version of your application
alongside the old version, and you can test the new version before you reroute traffic to it. You can
also monitor the deployment process and rapidly roll back if there is an issue.

The completed pipeline detects changes to your images or task definition file and and uses
CodeDeploy to route and deploy traffic to an Amazon ECS cluster and load balancer. CodeDeploy
creates a new listener on your load balancer which can target your new task through a special port.
You can also configure the pipeline to use a source location, such as a CodeCommit repository,
where your Amazon ECS task definition is stored.

Before you create your pipeline, you must have already created the Amazon ECS resources, the
CodeDeploy resources, and the load balancer and target group. You must have already tagged and
stored the image in your image repository, and uploaded the task definition and AppSpec file to
your file repository.

Note

This topic describes the Amazon ECS to CodeDeploy blue/green deployment action for
CodePipeline. For reference information about Amazon ECS standard deployment actions
in CodePipeline, see Amazon Elastic Container Service.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Action declaration

• See also

Action type

• Category: Deploy

Amazon ECS and CodeDeploy blue-green API Version 2015-07-09 820

AWS CodePipeline User Guide

• Owner: AWS

• Provider: CodeDeployToECS

• Version: 1

Configuration parameters

ApplicationName

Required: Yes

The name of the application in CodeDeploy. Before you create your pipeline, you must have
already created the application in CodeDeploy.

DeploymentGroupName

Required: Yes

The deployment group specified for Amazon ECS task sets that you created for your
CodeDeploy application. Before you create your pipeline, you must have already created the
deployment group in CodeDeploy.

TaskDefinitionTemplateArtifact

Required: Yes

The name of the input artifact that provides the task definition file to the deployment action.
This is generally the name of the output artifact from the source action. When you use the
console, the default name for the source action output artifact is SourceArtifact.

AppSpecTemplateArtifact

Required: Yes

The name of the input artifact that provides the AppSpec file to the deployment action. This
value is updated when your pipeline runs. This is generally the name of the output artifact
from the source action. When you use the console, the default name for the source action
output artifact is SourceArtifact. For TaskDefinition in AppSpec file, you can keep the
<TASK_DEFINITION> placeholder text as shown here.

AppSpecTemplatePath

Required: No

Configuration parameters API Version 2015-07-09 821

AWS CodePipeline User Guide

The file name of the AppSpec file stored in the pipeline source file location, such as your
pipeline's CodeCommit repository. The default file name is appspec.yaml. If your AppSpec
file has the same name and is stored at the root level in your file repository, you do not need to
provide the file name. If the path is not the default, enter the path and file name.

TaskDefinitionTemplatePath

Required: No

The file name of the task definition stored in the pipeline file source location, such as your
pipeline's CodeCommit repository. The default file name is taskdef.json. If your task
definition file has the same name and is stored at the root level in your file repository, you do
not need to provide the file name. If the path is not the default, enter the path and file name.

Image<Number>ArtifactName

Required: No

The name of the input artifact that provides the image to the deployment action. This is
generally the image repository's output artifact, such as output from the Amazon ECR source
action.

Available values for <Number> are 1 through 4.

Image<Number>ContainerName

Required: No

The name of the image available from the image repository, such as the Amazon ECR source
repository.

Available values for <Number> are 1 through 4.

Input artifacts

• Number of Artifacts: 1 to 5

• Description: The CodeDeployToECS action first looks for the task definition file and the
AppSpec file in the source file repository, next looks for the image in the image repository, then
dynamically generates a new revision of task definition, and finallyruns the AppSpec commands
to deploy the task set and container to the cluster.

Input artifacts API Version 2015-07-09 822

AWS CodePipeline User Guide

The CodeDeployToECS action looks for an imageDetail.json file that maps the image URI to
the image. When you commit a change to your Amazon ECR image repository, the pipeline ECR
source action creates an imageDetail.json file for that commit. You can also manually add an
imageDetail.json file for a pipeline where the action is not automated. For information about
the imageDetail.json file, see imageDetail.json file for Amazon ECS blue/green deployment
actions.

The CodeDeployToECS action dynamically generates a new revision of the task definition.
In this phase, this action replaces placeholders in task definition file into image URI retrieved
from imageDetail.json files. For example, if you set IMAGE1_NAME as Image1ContainerName
parameter, you should specify the placeholder <IMAGE1_NAME> as the value of image field
in your task definition file. In this case, the CodeDeployToECS action replaces the placeholder
<IMAGE1_NAME> into actual image URI retrieved from imageDetail.json in the artifact which you
specify as Image1ArtifactName.

For task definition updates, the CodeDeploy AppSpec.yaml file contains the TaskDefinition
property.

TaskDefinition: <TASK_DEFINITION>

This property will be updated by the CodeDeployToECS action after the new task definition is
created.

For the value of the TaskDefinition field, the placeholder text must be <TASK_DEFINITION>.
The CodeDeployToECS action replaces this placeholder with the actual ARN of the dynamically
generated task definition.

Output artifacts

• Number of Artifacts: 0

• Description: Output artifacts do not apply for this action type.

Output artifacts API Version 2015-07-09 823

AWS CodePipeline User Guide

Action declaration

YAML

Name: Deploy
Actions:
 - Name: Deploy
 ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CodeDeployToECS
 Version: '1'
 RunOrder: 1
 Configuration:
 AppSpecTemplateArtifact: SourceArtifact
 ApplicationName: ecs-cd-application
 DeploymentGroupName: ecs-deployment-group
 Image1ArtifactName: MyImage
 Image1ContainerName: IMAGE1_NAME
 TaskDefinitionTemplatePath: taskdef.json
 AppSpecTemplatePath: appspec.yaml
 TaskDefinitionTemplateArtifact: SourceArtifact
 OutputArtifacts: []
 InputArtifacts:
 - Name: SourceArtifact
 - Name: MyImage
 Region: us-west-2
 Namespace: DeployVariables

JSON

{
 "Name": "Deploy",
 "Actions": [
 {
 "Name": "Deploy",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CodeDeployToECS",
 "Version": "1"
 },
 "RunOrder": 1,

Action declaration API Version 2015-07-09 824

AWS CodePipeline User Guide

 "Configuration": {
 "AppSpecTemplateArtifact": "SourceArtifact",
 "ApplicationName": "ecs-cd-application",
 "DeploymentGroupName": "ecs-deployment-group",
 "Image1ArtifactName": "MyImage",
 "Image1ContainerName": "IMAGE1_NAME",
 "TaskDefinitionTemplatePath": "taskdef.json",
 "AppSpecTemplatePath": "appspec.yaml",
 "TaskDefinitionTemplateArtifact": "SourceArtifact"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 },
 {
 "Name": "MyImage"
 }
],
 "Region": "us-west-2",
 "Namespace": "DeployVariables"
 }
]
}

See also

The following related resources can help you as you work with this action.

• Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment –
This tutorial walks you through creation of the CodeDeploy and Amazon ECS resources you need
for a blue/green deployment. The tutorial shows you how to push a Docker image to Amazon
ECR and create an Amazon ECS task definition that lists your Docker image name, container
name, Amazon ECS service name, and load balancer configuration. The tutorial then walks you
through creating the AppSpec file and pipeline for your deployment.

See also API Version 2015-07-09 825

AWS CodePipeline User Guide

Note

This topic and tutorial describe the CodeDeploy/ECS blue/green action for CodePipeline.
For information about ECS standard actions in CodePipeline, see Tutorial: Continuous
Deployment with CodePipeline.

• AWS CodeDeploy User Guide – For information about how to use the load balancer, production
listener, target groups, and your Amazon ECS application in a blue/green deployment, see
Tutorial: Deploy an Amazon ECS Service. This reference information in the AWS CodeDeploy User
Guide provides an overview for blue/green deployments with Amazon ECS and AWS CodeDeploy.

• Amazon Elastic Container Service Developer Guide – For information about working with Docker
images and containers, ECS services and clusters, and ECS task sets, see What Is Amazon ECS?

Amazon Elastic Container Service

You can use an Amazon ECS action to deploy an Amazon ECS service and task set. An Amazon
ECS service is a container application that is deployed to an Amazon ECS cluster. An Amazon
ECS cluster is a collection of instances that host your container application in the cloud. The
deployment requires a task definition that you create in Amazon ECS and an image definitions file
that CodePipeline uses to deploy the image.

Important

The Amazon ECS standard deployment action for CodePipeline creates its own revision
of the task definition based on the the revision used by the Amazon ECS service. If you
create new revisions for the task definition without updating the Amazon ECS service, the
deployment action will ignore those revisions.

Before you create your pipeline, you must have already created the Amazon ECS resources, tagged
and stored the image in your image repository, and uploaded the BuildSpec file to your file
repository.

Amazon Elastic Container Service API Version 2015-07-09 826

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-ecs-deployment.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/

AWS CodePipeline User Guide

Note

This reference topic describes the Amazon ECS standard deployment action for
CodePipeline. For reference information about Amazon ECS to CodeDeploy blue/green
deployment actions in CodePipeline, see Amazon Elastic Container Service and CodeDeploy
blue-green.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Action declaration

• See also

Action type

• Category: Deploy

• Owner: AWS

• Provider: ECS

• Version: 1

Configuration parameters

ClusterName

Required: Yes

The Amazon ECS cluster in Amazon ECS.

ServiceName

Required: Yes

The Amazon ECS service that you created in Amazon ECS.

Action type API Version 2015-07-09 827

AWS CodePipeline User Guide

FileName

Required: No

The name of your image definitions file, the JSON file that describes your service's container
name and the image and tag. You use this file for ECS standard deployments. For more
information, see Input artifacts and imagedefinitions.json file for Amazon ECS standard
deployment actions.

DeploymentTimeout

Required: No

The Amazon ECS deployment action timeout in minutes. The timeout is configurable up to the
maximum default timeout for this action. For example:

"DeploymentTimeout": "15"

Input artifacts

• Number of artifacts: 1

• Description: The action looks for an imagedefinitions.json file in the source file
repository for the pipeline. An image definitions document is a JSON file that describes
your Amazon ECS container name and the image and tag. CodePipeline uses the file to
retrieve the image from your image repository such as Amazon ECR. You can manually add
an imagedefinitions.json file for a pipeline where the action is not automated. For
information about the imagedefinitions.json file, see imagedefinitions.json file for Amazon
ECS standard deployment actions.

The action requires an existing image that has already been pushed to your image repository.
Because the image mapping is provided by the imagedefinitions.json file, the action does
not require that the Amazon ECR source be included as a source action in the pipeline.

Output artifacts

• Number of artifacts: 0

• Description: Output artifacts do not apply for this action type.

Input artifacts API Version 2015-07-09 828

AWS CodePipeline User Guide

Action declaration

YAML

Name: DeployECS
ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: ECS
 Version: '1'
RunOrder: 2
Configuration:
 ClusterName: my-ecs-cluster
 ServiceName: sample-app-service
 FileName: imagedefinitions.json
 DeploymentTimeout: '15'
OutputArtifacts: []
InputArtifacts:
 - Name: my-image

JSON

{
 "Name": "DeployECS",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "ECS",
 "Version": "1"
 },
 "RunOrder": 2,
 "Configuration": {
 "ClusterName": "my-ecs-cluster",
 "ServiceName": "sample-app-service",
 "FileName": "imagedefinitions.json",
 "DeploymentTimeout": "15"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "my-image"
 }
]

Action declaration API Version 2015-07-09 829

AWS CodePipeline User Guide

},

See also

The following related resources can help you as you work with this action.

• Tutorial: Continuous Deployment with CodePipeline – This tutorial shows you how to create a
Dockerfile that you store in a source file repository such as CodeCommit. Next, the tutorial shows
you how to incorporate a CodeBuild BuildSpec file that builds and pushes your Docker image
to Amazon ECR and creates your imagedefinitions.json file. Finally, you create an Amazon ECS
service and task definition, and then you create your pipeline with an Amazon ECS deployment
action.

Note

This topic and tutorial describe the Amazon ECS standard deployment action for
CodePipeline. For information about Amazon ECS to CodeDeploy blue/green deployment
actions in CodePipeline, see Tutorial: Create a pipeline with an Amazon ECR source and
ECS-to-CodeDeploy deployment.

• Amazon Elastic Container Service Developer Guide – For information about working with Docker
images and containers, Amazon ECS services and clusters, and Amazon ECS task sets, see What Is
Amazon ECS?

Amazon S3 deploy action

You use an Amazon S3 deploy action to deploy files to an Amazon S3 bucket for static web site
hosting or archive. You can specify whether to extract deployment files before upload to your
bucket.

Note

This reference topic describes the Amazon S3 deployment action for CodePipeline where
the deployment platform is an Amazon S3 bucket configured for hosting. For reference
information about the Amazon S3 source action in CodePipeline, see Amazon S3 source
action.

See also API Version 2015-07-09 830

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/

AWS CodePipeline User Guide

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Example action configuration

• See also

Action type

• Category: Deploy

• Owner: AWS

• Provider: S3

• Version: 1

Configuration parameters

BucketName

Required: Yes

The name of the Amazon S3 bucket where files are to be deployed.

Extract

Required: Yes

If true, specifies that files are to be extracted before upload. Otherwise, application files remain
zipped for upload, such as in the case of a hosted static web site. If false, then the ObjectKey
is required.

ObjectKey

Conditional. Required if Extract = false

The name of the Amazon S3 object key that uniquely identifies the object in the S3 bucket.

KMSEncryptionKeyARN

Required: No

Action type API Version 2015-07-09 831

AWS CodePipeline User Guide

The ARN of the AWS KMS encryption key for the host bucket. The KMSEncryptionKeyARN
parameter encrypts uploaded artifacts with the provided AWS KMS key. For a KMS key, you can
use the key ID, the key ARN, or the alias ARN.

Note

Aliases are recognized only in the account that created the KMS key. For cross-account
actions, you can only use the key ID or key ARN to identify the key. Cross-account
actions involve using the role from the other account (AccountB), so specifying the key
ID will use the key from the other account (AccountB).

Important

CodePipeline only supports symmetric KMS keys. Do not use an asymmetric KMS key to
encrypt the data in your S3 bucket.

CannedACL

Required: No

The CannedACL parameter applies the specified canned ACL to objects deployed to Amazon S3.
This overwrites any existing ACL that was applied to the object.

CacheControl

Required: No

The CacheControl parameter controls caching behavior for requests/responses for objects in
the bucket. For a list of valid values, see the Cache-Control header field for HTTP operations.
To enter multiple values in CacheControl, use a comma between each value. You can add a
space after each comma (optional), as shown in this example for the CLI:

"CacheControl": "public, max-age=0, no-transform"

Input artifacts

• Number of Artifacts: 1

Input artifacts API Version 2015-07-09 832

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

AWS CodePipeline User Guide

• Description: The files for deployment or archive are obtained from the source repository, zipped,
and uploaded by CodePipeline.

Output artifacts

• Number of artifacts: 0

• Description: Output artifacts do not apply for this action type.

Example action configuration

The following show examples for the action configuration.

Example configuration when Extract is set to false

The following example shows the default action configuration when the action is created with the
Extract field set to false.

YAML

Name: Deploy
Actions:
 - Name: Deploy
 ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: S3
 Version: '1'
 RunOrder: 1
 Configuration:
 BucketName: website-bucket
 Extract: 'false'
 OutputArtifacts: []
 InputArtifacts:
 - Name: SourceArtifact
 Region: us-west-2
 Namespace: DeployVariables

JSON

{

Output artifacts API Version 2015-07-09 833

AWS CodePipeline User Guide

 "Name": "Deploy",
 "Actions": [
 {
 "Name": "Deploy",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "S3",
 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "BucketName": "website-bucket",
 "Extract": "false"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "us-west-2",
 "Namespace": "DeployVariables"
 }
]
},

Example configuration when Extract is set to true

The following example shows the default action configuration when the action is created with the
Extract field set to true.

YAML

Name: Deploy
Actions:
 - Name: Deploy
 ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: S3
 Version: '1'

Example action configuration API Version 2015-07-09 834

AWS CodePipeline User Guide

 RunOrder: 1
 Configuration:
 BucketName: website-bucket
 Extract: 'true'
 ObjectKey: MyWebsite
 OutputArtifacts: []
 InputArtifacts:
 - Name: SourceArtifact
 Region: us-west-2
 Namespace: DeployVariables

JSON

{
 "Name": "Deploy",
 "Actions": [
 {
 "Name": "Deploy",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "S3",
 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "BucketName": "website-bucket",
 "Extract": "true",
 "ObjectKey": "MyWebsite"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "us-west-2",
 "Namespace": "DeployVariables"
 }
]
},

Example action configuration API Version 2015-07-09 835

AWS CodePipeline User Guide

See also

The following related resources can help you as you work with this action.

• Tutorial: Create a pipeline that uses Amazon S3 as a deployment provider – This tutorial walks
you through two examples for creating a pipeline with an S3 deploy action. You download
sample files, upload the files to your CodeCommit repository, create your S3 bucket, and
configure your bucket for hosting. Next, you use the CodePipeline console to create your pipeline
and specify an Amazon S3 deployment configuration.

• Amazon S3 source action – This action reference provides reference information and examples
for Amazon S3 source actions in CodePipeline.

Amazon S3 source action

Triggers the pipeline when a new object is uploaded to the configured bucket and object key.

Note

This reference topic describes the Amazon S3 source action for CodePipeline where
the source location is an Amazon S3 bucket configured for versioning. For reference
information about the Amazon S3 deploy action in CodePipeline, see Amazon S3 deploy
action.

You can create an Amazon S3 bucket to use as the source location for your application files.

Note

When you create your source bucket, make sure you enable versioning on the bucket. If you
want to use an existing Amazon S3 bucket, see Using versioning to enable versioning on an
existing bucket.

If you use the console to create or edit your pipeline, CodePipeline creates a CloudWatch Events
rule that starts your pipeline when a change occurs in the S3 source bucket.

You must have already created an Amazon S3 source bucket and uploaded the source files as a
single ZIP file before you connect the pipeline through an Amazon S3 action.

See also API Version 2015-07-09 836

http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS CodePipeline User Guide

Note

When Amazon S3 is the source provider for your pipeline, you may zip your source file or
files into a single .zip and upload the .zip to your source bucket. You may also upload a
single unzipped file; however, downstream actions that expect a .zip file will fail.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Action declaration

• See also

Action type

• Category: Source

• Owner: AWS

• Provider: S3

• Version: 1

Configuration parameters

S3Bucket

Required: Yes

The name of the Amazon S3 bucket where source changes are to be detected.

S3ObjectKey

Required: Yes

The name of the Amazon S3 object key where source changes are to be detected.

Action type API Version 2015-07-09 837

AWS CodePipeline User Guide

PollForSourceChanges

Required: No

PollForSourceChanges controls whether CodePipeline polls the Amazon S3 source bucket
for source changes. We recommend that you use CloudWatch Events and CloudTrail to detect
source changes instead. For more information about configuring CloudWatch Events, see
Migrate polling pipelines with an S3 source and CloudTrail trail (CLI) or Migrate polling pipelines
with an S3 source and CloudTrail trail (AWS CloudFormation template).

Important

If you intend to configure CloudWatch Events, you must set PollForSourceChanges
to false to avoid duplicate pipeline executions.

Valid values for this parameter:

• true: If set, CodePipeline polls your source location for source changes.

Note

If you omit PollForSourceChanges, CodePipeline defaults to polling your source
location for source changes. This behavior is the same as if PollForSourceChanges
is included and set to true.

• false: If set, CodePipeline does not poll your source location for source changes. Use this
setting if you intend to configure a CloudWatch Events rule to detect source changes.

Input artifacts

• Number of Artifacts: 0

• Description: Input artifacts do not apply for this action type.

Output artifacts

• Number of artifacts: 1

Input artifacts API Version 2015-07-09 838

AWS CodePipeline User Guide

• Description: Provides the artifacts that are available in the source bucket configured to connect
to the pipeline. The artifacts generated from the bucket are the output artifacts for the Amazon
S3 action. The Amazon S3 object metadata (ETag and version ID) is displayed in CodePipeline as
the source revision for the triggered pipeline execution.

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. This action produces variables which can be viewed as
output variables, even if the action doesn't have a namespace. You configure an action with a
namespace to make those variables available to the configuration of downstream actions.

For more information about variables in CodePipeline, see Variables.

ETag

The entity tag for the object related to the source change that triggered the pipeline. The ETag
is an MD5 hash of the object. ETag reflects only changes to the contents of an object, not its
metadata.

VersionId

The version ID for the version of the object related to the source change that triggered the
pipeline.

Action declaration

YAML

Name: Source
Actions:
 - RunOrder: 1
 OutputArtifacts:
 - Name: SourceArtifact
 ActionTypeId:
 Provider: S3
 Owner: AWS
 Version: '1'
 Category: Source
 Region: us-west-2

Output variables API Version 2015-07-09 839

AWS CodePipeline User Guide

 Name: Source
 Configuration:
 S3Bucket: my-bucket-oregon
 S3ObjectKey: my-application.zip
 PollForSourceChanges: 'false'
 InputArtifacts: []

JSON

{
 "Name": "Source",
 "Actions": [
 {
 "RunOrder": 1,
 "OutputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "ActionTypeId": {
 "Provider": "S3",
 "Owner": "AWS",
 "Version": "1",
 "Category": "Source"
 },
 "Region": "us-west-2",
 "Name": "Source",
 "Configuration": {
 "S3Bucket": "my-bucket-oregon",
 "S3ObjectKey": "my-application.zip",
 "PollForSourceChanges": "false"
 },
 "InputArtifacts": []
 }
]
},

See also

The following related resources can help you as you work with this action.

See also API Version 2015-07-09 840

AWS CodePipeline User Guide

• Tutorial: Create a simple pipeline (S3 bucket) – This tutorial provides a sample app spec file and
sample CodeDeploy application and deployment group. Use this tutorial to create a pipeline with
an Amazon S3 source that deploys to Amazon EC2 instances.

AWS AppConfig

AWS AppConfig is a capability of AWS Systems Manager. AppConfig supports controlled
deployments to applications of any size and includes built-in validation checks and monitoring. You
can use AppConfig with applications hosted on Amazon EC2 instances, AWS Lambda, containers,
mobile applications, or IoT devices.

The AppConfig deploy action is an AWS CodePipeline action that deploys configurations stored in
your pipeline source location to a specified AppConfig application, environment, and configuration
profile. It uses the preferences defined in an AppConfig deployment strategy.

Action type

• Category: Deploy

• Owner: AWS

• Provider: AppConfig

• Version: 1

Configuration parameters

Application

Required: Yes

The ID of the AWS AppConfig application with the details for your configuration and
deployment.

Environment

Required: Yes

The ID of the AWS AppConfig environment where the configuration is deployed.

ConfigurationProfile

Required: Yes

AWS AppConfig API Version 2015-07-09 841

AWS CodePipeline User Guide

The ID of the AWS AppConfig configuration profile to deploy.

InputArtifactConfigurationPath

Required: Yes

The file path of the configuration data within the input artifact to deploy.

DeploymentStrategy

Required: No

The AWS AppConfig deployment strategy to use for deployment.

Input artifacts

• Number of artifacts: 1

• Description: The input artifact for the deploy action.

Output artifacts

Not applicable.

Example action configuration

YAML

name: Deploy
actions:
 - name: Deploy
 actionTypeId:
 category: Deploy
 owner: AWS
 provider: AppConfig
 version: '1'
 runOrder: 1
 configuration:
 Application: 2s2qv57
 ConfigurationProfile: PvjrpU
 DeploymentStrategy: frqt7ir
 Environment: 9tm27yd
 InputArtifactConfigurationPath: /

Input artifacts API Version 2015-07-09 842

AWS CodePipeline User Guide

 outputArtifacts: []
 inputArtifacts:
 - name: SourceArtifact
 region: us-west-2
 namespace: DeployVariables

JSON

{
 "name": "Deploy",
 "actions": [
 {
 "name": "Deploy",
 "actionTypeId": {
 "category": "Deploy",
 "owner": "AWS",
 "provider": "AppConfig",
 "version": "1"
 },
 "runOrder": 1,
 "configuration": {
 "Application": "2s2qv57",
 "ConfigurationProfile": "PvjrpU",
 "DeploymentStrategy": "frqt7ir",
 "Environment": "9tm27yd",
 "InputArtifactConfigurationPath": "/"
 },
 "outputArtifacts": [],
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "region": "us-west-2",
 "namespace": "DeployVariables"
 }
]
}

See also

The following related resources can help you as you work with this action.

See also API Version 2015-07-09 843

AWS CodePipeline User Guide

• AWS AppConfig – For information about AWS AppConfig deployments, see the AWS Systems
Manager User Guide.

• Tutorial: Create a pipeline that uses AWS AppConfig as a deployment provider – This tutorial
gets you started setting up simple deployment configuration files and AppConfig resources,
and shows you how to use the console to create a pipeline with an AWS AppConfig deployment
action.

AWS CloudFormation

Executes an operation on an AWS CloudFormation stack. A stack is a collection of AWS resources
that you can manage as a single unit. The resources in a stack are defined by the stack's AWS
CloudFormation template. A change set creates a comparison that can be viewed without altering
the original stack. For information about the types of AWS CloudFormation actions that can be
performed on stacks and change sets, see the ActionMode parameter.

To construct an error message for an AWS CloudFormation action where a stack operation has
failed, CodePipeline calls the AWS CloudFormation DescribeStackEvents API. If an action IAM
role has permission to access that API, the details about the first failed resource will be included
in the CodePipeline error message. Otherwise, if the role policy does not have the appropriate
permission, CodePipeline will ignore accessing the API and show a generic error message instead.
To do this, the cloudformation:DescribeStackEvents permission must be added to the
service role or other IAM roles for the pipeline.

If you do not want the resource details surfaced in the pipeline error messages, you can revoke this
permission for the action IAM role by removing the cloudformation:DescribeStackEvents
permission.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Action declaration

• See also

AWS CloudFormation API Version 2015-07-09 844

https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig.html

AWS CodePipeline User Guide

Action type

• Category: Deploy

• Owner: AWS

• Provider: CloudFormation

• Version: 1

Configuration parameters

ActionMode

Required: Yes

ActionMode is the name of the action AWS CloudFormation performs on a stack or change set.
The following action modes are available:

• CHANGE_SET_EXECUTE executes a change set for the resource stack that is based on a set of
specified resource updates. With this action, AWS CloudFormation starts to alter the stack.

• CHANGE_SET_REPLACE creates the change set, if it doesn't exist, based on the stack name
and template that you submit. If the change set exists, AWS CloudFormation deletes it, and
then creates a new one.

• CREATE_UPDATE creates the stack if it doesn't exist. If the stack exists, AWS CloudFormation
updates the stack. Use this action to update existing stacks. Unlike REPLACE_ON_FAILURE, if
the stack exists and is in a failed state, CodePipeline won't delete and replace the stack.

• DELETE_ONLY deletes a stack. If you specify a stack that doesn't exist, the action is
completed successfully without deleting a stack.

• REPLACE_ON_FAILURE creates a stack, if it doesn't exist. If the stack exists and is in a failed
state, AWS CloudFormation deletes the stack, and then creates a new stack. If the stack isn't
in a failed state, AWS CloudFormation updates it.

The stack is in a failed state when any of the following status types are displayed in AWS
CloudFormation:

• ROLLBACK_FAILED

• CREATE_FAILED

• DELETE_FAILED

• UPDATE_ROLLBACK_FAILED

Action type API Version 2015-07-09 845

AWS CodePipeline User Guide

Use this action to automatically replace failed stacks without recovering or troubleshooting
them.

Important

We recommend that you use REPLACE_ON_FAILURE for testing purposes only
because it might delete your stack.

StackName

Required: Yes

StackName is the name of an existing stack or a stack that you want to create.

Capabilities

Required: Conditional

Use of Capabilities acknowledges that the template might have the capabilities to create
and update some resources on its own, and that these capabilities are determined based on the
types of resources in the template.

This property is required if you have IAM resources in your stack template or you create a stack
directly from a template containing macros. In order for the AWS CloudFormation action to
successfully operate in this way, you must explicitly acknowledge that you would like it to do so
with one of the following capabilities:

• CAPABILITY_IAM

• CAPABILITY_NAMED_IAM

• CAPABILITY_AUTO_EXPAND

You can specify more than one capability by using a comma (no space) between capabilities.
The example in Action declaration shows an entry with both the CAPABILITY_IAM and
CAPABILITY_AUTO_EXPAND properties.

For more information about Capabilities, see the properties under UpdateStack in the AWS
CloudFormation API Reference.

ChangeSetName

Required: Conditional

Configuration parameters API Version 2015-07-09 846

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_UpdateStack.html

AWS CodePipeline User Guide

ChangeSetName is the name of an existing change set or a new change set that you want to
create for the specified stack.

This property is required for the following action modes: CHANGE_SET_REPLACE and
CHANGE_SET_EXECUTE. For all other action modes, this property is ignored.

RoleArn

Required: Conditional

The RoleArn is the ARN of the IAM service role that AWS CloudFormation assumes when it
operates on resources in the specified stack. RoleArn is not applied when executing a change
set. If you do not use CodePipeline to create the change set, make sure that the change set or
stack has an associated role.

Note

This role must be in the same account as the role for the action that is running, as
configured in the action declaration RoleArn.

This property is required for the following action modes:

• CREATE_UPDATE

• REPLACE_ON_FAILURE

• DELETE_ONLY

• CHANGE_SET_REPLACE

Note

AWS CloudFormation is given an S3-signed URL to the template; therefore, this
RoleArn does not need permission to access the artifact bucket. However, the action
RoleArn does need permission to access the artifact bucket, in order to generate the
signed URL.

TemplatePath

Required: Conditional

Configuration parameters API Version 2015-07-09 847

AWS CodePipeline User Guide

TemplatePath represents the AWS CloudFormation template file. You include the file in an
input artifact to this action. The file name follows this format:

Artifactname::TemplateFileName

Artifactname is the input artifact name as it appears in CodePipeline. For example, a source
stage with the artifact name of SourceArtifact and a template-export.json file name
creates a TemplatePath name, as shown in this example:

"TemplatePath": "SourceArtifact::template-export.json"

This property is required for the following action modes:

• CREATE_UPDATE

• REPLACE_ON_FAILURE

• CHANGE_SET_REPLACE

For all other action modes, this property is ignored.

Note

The AWS CloudFormation template file containing the template body has a minimum
length of 1 byte and a maximum length of 1 MB. For AWS CloudFormation deployment
actions in CodePipeline, the maximum input artifact size is always 256 MB. For more
information, see Quotas in AWS CodePipeline and AWS CloudFormation Limits.

OutputFileName

Required: No

Use OutputFileName to specify an output file name, such as CreateStackOutput.json,
that CodePipeline adds to the pipeline output artifact for this action. The JSON file contains the
contents of the Outputs section from the AWS CloudFormation stack.

If you don't specify a name, CodePipeline doesn't generate an output file or artifact.

ParameterOverrides

Required: No

Configuration parameters API Version 2015-07-09 848

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

AWS CodePipeline User Guide

Parameters are defined in your stack template and allow you to provide values for them at
the time of stack creation or update. You can use a JSON object to set parameter values in
your template. (These values override those set in the template configuration file.) For more
information about using parameter overrides, see Configuration Properties (JSON Object).

We recommend that you use the template configuration file for most of your parameter values.
Use parameter overrides only for values that aren't known until the pipeline is running. For
more information, see Using Parameter Override Functions with CodePipeline Pipelines in the
AWS CloudFormation User Guide.

Note

All parameter names must be present in the stack template.

TemplateConfiguration

Required: No

TemplateConfiguration is the template configuration file. You include the file in an input
artifact to this action. It can contain template parameter values and a stack policy. For more
information about the template configuration file format, see AWS CloudFormation Artifacts.

The template configuration file name follows this format:

Artifactname::TemplateConfigurationFileName

Artifactname is the input artifact name as it appears in CodePipeline. For example, a source
stage with the artifact name of SourceArtifact and a test-configuration.json file
name creates a TemplateConfiguration name as shown in this example:

"TemplateConfiguration": "SourceArtifact::test-configuration.json"

Input artifacts

• Number of artifacts: 0 to 10

• Description: As input, the AWS CloudFormation action optionally accepts artifacts for these
purposes:

• To provide the stack template file to execute. (See the TemplatePath parameter.)

Input artifacts API Version 2015-07-09 849

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-action-reference.html#w4363ab1c13c13b9
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-parameter-override-functions.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-cfn-artifacts.html

AWS CodePipeline User Guide

• To provide the template configuration file to use. (See the TemplateConfiguration
parameter.) For more information about the template configuration file format, see AWS
CloudFormation Artifacts.

• To provide the artifact for a Lambda function to be deployed as part of the AWS
CloudFormation stack.

Output artifacts

• Number of artifacts: 0 to 1

• Description: If the OutputFileName parameter is specified, there is an output artifact produced
by this action that contains a JSON file with the specified name. The JSON file contains the
contents of the Outputs section from the AWS CloudFormation stack.

For more information about the outputs section you can create for your AWS CloudFormation
action, see Outputs.

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. You configure an action with a namespace to make those
variables available to the configuration of downstream actions.

For AWS CloudFormation actions, variables are produced from any values designated in the
Outputs section of a stack template. Note that the only CloudFormation action modes that
generate outputs are those that result in creating or updating a stack, such as stack creation, stack
updates, and change set execution. The corresponding action modes that generate variables are:

• CHANGE_SET_EXECUTE

• CHANGE_SET_REPLACE

• CREATE_UPDATE

• REPLACE_ON_FAILURE

For more information, see Variables. For a tutorial that shows you how to create a pipeline with a
CloudFormation deployment action in a pipeline that uses CloudFormation output variables, see
Tutorial: Create a pipeline that uses variables from AWS CloudFormation deployment actions.

Output artifacts API Version 2015-07-09 850

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-cfn-artifacts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-cfn-artifacts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html

AWS CodePipeline User Guide

Action declaration

YAML

Name: ExecuteChangeSet
ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CloudFormation
 Version: '1'
RunOrder: 2
Configuration:
 ActionMode: CHANGE_SET_EXECUTE
 Capabilities: CAPABILITY_NAMED_IAM,CAPABILITY_AUTO_EXPAND
 ChangeSetName: pipeline-changeset
 ParameterOverrides: '{"ProjectId": "my-project","CodeDeployRole":
 "CodeDeploy_Role_ARN"}'
 RoleArn: CloudFormation_Role_ARN
 StackName: my-project--lambda
 TemplateConfiguration: 'my-project--BuildArtifact::template-configuration.json'
 TemplatePath: 'my-project--BuildArtifact::template-export.yml'
OutputArtifacts: []
InputArtifacts:
 - Name: my-project-BuildArtifact

JSON

{
 "Name": "ExecuteChangeSet",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CloudFormation",
 "Version": "1"
 },
 "RunOrder": 2,
 "Configuration": {
 "ActionMode": "CHANGE_SET_EXECUTE",
 "Capabilities": "CAPABILITY_NAMED_IAM,CAPABILITY_AUTO_EXPAND",
 "ChangeSetName": "pipeline-changeset",
 "ParameterOverrides": "{\"ProjectId\": \"my-project\",\"CodeDeployRole\":
 \"CodeDeploy_Role_ARN\"}",
 "RoleArn": "CloudFormation_Role_ARN",

Action declaration API Version 2015-07-09 851

AWS CodePipeline User Guide

 "StackName": "my-project--lambda",
 "TemplateConfiguration": "my-project--BuildArtifact::template-
configuration.json",
 "TemplatePath": "my-project--BuildArtifact::template-export.yml"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "my-project-BuildArtifact"
 }
]
},

See also

The following related resources can help you as you work with this action.

• Configuration Properties Reference – This reference chapter in the AWS CloudFormation User
Guide provides more descriptions and examples for these CodePipeline parameters.

• AWS CloudFormation API Reference – The CreateStack parameter in the AWS CloudFormation API
Reference describes stack parameters for AWS CloudFormation templates.

AWS CloudFormation StackSets

CodePipeline offers the ability to perform AWS CloudFormation StackSets operations as part of
your CI/CD process. You use a stack set to create stacks in AWS accounts across AWS Regions by
using a single AWS CloudFormation template. All the resources included in each stack are defined
by the stack set’s AWS CloudFormation template. When you create the stack set, you specify the
template to use, as well as any parameters and capabilities that the template requires.

Note

You must use the AWS Organizations management account to deploy with AWS
CloudFormation StackSets. You cannot use a delegated administration account for this
action.

See also API Version 2015-07-09 852

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-action-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateStack.html

AWS CodePipeline User Guide

For more information about concepts for AWS CloudFormation StackSets, see StackSets concepts
in the AWS CloudFormation User Guide.

You integrate your pipeline with AWS CloudFormation StackSets through two distinct action types
that you use together:

• The CloudFormationStackSet action creates or updates a stack set or stack instances from
the template stored in the pipeline source location. Each time a stack set is created or updated,
it initiates a deployment of those changes to specified instances. In the console, you can choose
the CloudFormation Stack Set action provider when you create or edit your pipeline.

• The CloudFormationStackInstances action deploys changes from the
CloudFormationStackSet action to specified instances, creates new stack instances,
and defines parameter overrides to specified instances. In the console, you can choose the
CloudFormation Stack Instances action provider when you edit an existing pipeline.

Note

The CloudFormationStackSet and CloudFormationStackInstances actions are
not available in the Asia Pacific (Hong Kong), Europe (Zurich), Europe (Milan), Africa (Cape
Town), and Middle East (Bahrain) Regions. To reference other available actions, see Product
and service integrations with CodePipeline.

You can use these actions to deploy to target AWS accounts or target AWS Organizations
organizational unit IDs.

Note

To deploy to target AWS Organizations accounts or organizational unit IDs and use the
service-managed permissions model, you must enable trusted access between AWS
CloudFormation StackSets and AWS Organizations. For more information, see Enabling
trusted access with AWS CloudFormation Stacksets.

Topics

• How AWS CloudFormation StackSets actions work

• How to structure StackSets actions in a pipeline

AWS CloudFormation StackSets API Version 2015-07-09 853

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-concepts.html
https://docs.aws.amazon.com/organizations/latest/userguide/services-that-can-integrate-cloudformation.html#integrate-enable-ta-cloudformation
https://docs.aws.amazon.com/organizations/latest/userguide/services-that-can-integrate-cloudformation.html#integrate-enable-ta-cloudformation

AWS CodePipeline User Guide

• The CloudFormationStackSet action

• The CloudFormationStackInstances action

• Permissions models for stack set operations

• Template parameter data types

• See also

How AWS CloudFormation StackSets actions work

A CloudFormationStackSet action creates or updates resources depending on whether the
action is running for the first time.

The CloudFormationStackSet action creates or updates the stack set and deploys those
changes to specified instances.

Note

If you use this action to make an update that includes adding stack instances, the new
instances are deployed first and the update is completed last. The new instances first
receive the old version, and then the update is applied to all instances.

• Create: When no instances are specified and the stack set does not exist, the
CloudFormationStackSet action creates the stack set without creating any instances.

• Update: When the CloudFormationStackSet action is run for a stack set that is already created,
the action updates the stack set. If no instances are specified and the stack set already exists, all
instances are updated. If this action is used to update specific instances, all remaining instances
move to an OUTDATED status.

You can use the CloudFormationStackSet action to update the stack set in the following ways.

• Update the template on some or all instances.

• Update parameters on some or all instances.

• Update the execution role for the stack set (this must match the execution role specified in the
Administrator role).

• Change the permissions model (only if no instances have been created).

• Enable/Disable AutoDeployment if the stack set permissions model is Service Managed.

How AWS CloudFormation StackSets actions work API Version 2015-07-09 854

AWS CodePipeline User Guide

• Update the Administrator role.

• Update the description on the stack set.

• Add deployment targets to the stack set update to create new stack instances.

The CloudFormationStackInstances action creates new stack instances or updates outdated
stack instances. An instance becomes outdated when a stack set is updated, but not all instances
within it are updated.

• Create: If the stack already exists, the CloudFormationStackInstances action only updates
instances and does not create stack instances.

• Update: After the CloudFormationStackSet action is performed, if the template or
parameters have been updated in only some instances, the rest will be marked OUTDATED. In
later pipeline stages, CloudFormationStackInstances updates the rest of the instances in
the stack set in waves so that all instances are marked CURRENT. This action can also be used to
add additional instances or override parameters on new or existing instances.

As part of an update, the CloudFormationStackSet and CloudFormationStackInstances
actions can specify new deployment targets, which creates new stack instances.

As part of an update, the CloudFormationStackSet and CloudFormationStackInstances
actions do not delete stack sets, instances, or resources. When the action updates a stack but
does not specify all instances to be updated, the instances that were not specified for update are
removed from the update and set to a status of OUTDATED.

During a deployment, stack instances can also show a status of OUTDATED if the deployment to
instances failed.

How to structure StackSets actions in a pipeline

As a best practice, you should construct your pipeline so that the stack set is created and initially
deploys to a subset or a single instance. After you test your deployment and view the generated
stack set, then add the CloudFormationStackInstances action so that the remaining instances
are created and updated.

Use the console or the CLI to create the recommended pipeline structure as follows:

1. Create a pipeline with a source action (required) and the CloudFormationStackSet action as
the deploy action. Run your pipeline.

How to structure StackSets actions in a pipeline API Version 2015-07-09 855

AWS CodePipeline User Guide

2. When your pipeline first runs, the CloudFormationStackSet action creates your stack set
and at least one initial instance. Verify the stack set creation and review the deployment to
your initial instance. For example, for initial stack set creation for account Account-A where us-
east-1 is the specified Region, the stack instance is created with the stack set:

Stack instance Region Status

StackInstanceID-1 us-east-1 CURRENT

3. Edit your pipeline to add CloudFormationStackInstances as the second deployment
action to create/update stack instances for the targets you designate. For example, for stack
instance creation for account Account-A where the us-east-2 and eu-central-1 Regions
are specified, the remaining stack instances are created and the initial instance remains updated
as follows:

Stack instance Region Status

StackInstanceID-1 us-east-1 CURRENT

StackInstanceID-2 us-east-2 CURRENT

StackInstanceID-3 eu-central-1 CURRENT

4. Run your pipeline as needed to update your stack set and update or create stack instances.

When you initiate a stack update where you have removed deployment targets from the action
configuration, then the stack instances that were not designated for update are removed from
the deployment and move into an OUTDATED status. For example, for stack instance update for
account Account-A where the us-east-2 Region is removed from the action configuration, the
remaining stack instances are created and the removed instance is set to OUTDATED as follows:

Stack instance Region Status

StackInstanceID-1 us-east-1 CURRENT

StackInstanceID-2 us-east-2 OUTDATED

StackInstanceID-3 eu-central-1 CURRENT

How to structure StackSets actions in a pipeline API Version 2015-07-09 856

AWS CodePipeline User Guide

For more information about best practices for deploying stack sets, see Best practices for StackSets
in the AWS CloudFormation User Guide.

The CloudFormationStackSet action

This action creates or updates a stack set from the template stored in the pipeline source location.

After you define a stack set, you can create, update, or delete stacks in the target accounts and
Regions specified in the configuration parameters. When creating, updating and deleting stacks,
you can specify other preferences, such as the order of Regions for operations to be performed, the
failure tolerance percentage beyond which stack operations stop, and the number of accounts in
which operations are performed on stacks concurrently.

A stack set is a regional resource. If you create a stack set in one AWS Region, you cannot access it
from other Regions.

When this action is used as an update action to the stack set, updates to the stack are not allowed
without a deployment to at least one stack instance.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Example CloudFormationStackSet action configuration

Action type

• Category: Deploy

• Owner: AWS

• Provider: CloudFormationStackSet

• Version: 1

The CloudFormationStackSet action API Version 2015-07-09 857

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-bestpractices.html

AWS CodePipeline User Guide

Configuration parameters

StackSetName

Required: Yes

The name to associate with the stack set. This name must be unique in the Region where it is
created.

The name may only contain alphanumeric and hyphen characters. It must begin with an
alphabetic character and be 128 characters or fewer.

Description

Required: No

A description of the stack set. You can use this to describe the stack set’s purpose or other
relevant information.

TemplatePath

Required: Yes

The location of the template that defines the resources in the stack set. This must point to a
template with a maximum size of 460,800 bytes.

Enter the path to the source artifact name and template file in the format
"InputArtifactName::TemplateFileName", as shown in the following example.

SourceArtifact::template.txt

Parameters

Required: No

A list of template parameters for your stack set that update during a deployment.

You can provide parameters as a literal list or a file path:

• You can enter parameters in the following shorthand syntax format:
ParameterKey=string,ParameterValue=string,UsePreviousValue=boolean,ResolvedValue=string
ParameterKey=string,ParameterValue=string,UsePreviousValue=boolean,ResolvedValue=string.
For more information about these data types, see Template parameter data types.

The following example shows a parameter named BucketName with the value my-bucket.

The CloudFormationStackSet action API Version 2015-07-09 858

AWS CodePipeline User Guide

ParameterKey=BucketName,ParameterValue=my-bucket

The following example shows an entry with multiple parameters:

 ParameterKey=BucketName,ParameterValue=my-bucket
 ParameterKey=Asset1,ParameterValue=true
 ParameterKey=Asset2,ParameterValue=true

• You can enter the location of the file containing a list of template parameter overrides
entered in the format "InputArtifactName::ParametersFileName", as shown in the
following example.

SourceArtifact::parameters.txt

The following example shows the file contents for parameters.txt.

[
 {
 "ParameterKey": "KeyName",
 "ParameterValue": "true"
 },
 {
 "ParameterKey": "KeyName",
 "ParameterValue": "true"
 }
]

Capabilities

Required: No

Indicates that the template can create and update resources, depending on the types of
resources in the template.

You must use this property if you have IAM resources in your stack template or you create
a stack directly from a template containing macros. For the AWS CloudFormation action to
successfully operate in this way, you must use one of the following capabilities:

• CAPABILITY_IAM

The CloudFormationStackSet action API Version 2015-07-09 859

AWS CodePipeline User Guide

• CAPABILITY_NAMED_IAM

You can specify more than one capability by using a comma and no spaces between capabilities.
The example in Example CloudFormationStackSet action configuration shows an entry with
multiple capabilities.

PermissionModel

Required: No

Determines how IAM roles are created and managed. If the field is not specified, the default is
used. For information, see Permissions models for stack set operations.

Valid values are:

• SELF_MANAGED (default): You must create administrator and execution roles to deploy to
target accounts.

• SERVICE_MANAGED: AWS CloudFormation StackSets automatically creates the IAM roles
required to deploy to accounts managed by AWS Organizations. This requires an account to
be a member of an Organization.

Note

This parameter can only be changed when no stack instances exist in the stack set.

AdministrationRoleArn

Note

Because AWS CloudFormation StackSets performs operations across multiple accounts,
you must define the necessary permissions in those accounts before you can create the
stack set.

Required: No

Note

This parameter is optional for the SELF_MANAGED permissions model and is not used
for the SERVICE_MANAGED permissions model.

The CloudFormationStackSet action API Version 2015-07-09 860

AWS CodePipeline User Guide

The ARN of the IAM role in the administrator account used to perform stack set operations.

The name may contain alphanumeric characters, any of the following characters: _+=,.@-, and
no spaces. The name is not case sensitive. This role name must be a minimum length of 20
characters and maximum length of 2048 characters. Role names must be unique within the
account. The role name specified here must be an existing role name. If you do not specify
the role name, it is set to AWSCloudFormationStackSetAdministrationRole. If you specify
ServiceManaged, you must not define a role name.

ExecutionRoleName

Note

Because AWS CloudFormation StackSets performs operations across multiple accounts,
you must define the necessary permissions in those accounts before you can create the
stack set.

Required: No

Note

This parameter is optional for the SELF_MANAGED permissions model and is not used
for the SERVICE_MANAGED permissions model.

The name of the IAM role in the target accounts used to perform stack set operations. The
name may contain alphanumeric characters, any of the following characters: _+=,.@-, and
no spaces. The name is not case sensitive. This role name must be a minimum length of 1
character and maximum length of 64 characters. Role names must be unique within the
account. The role name specified here must be an existing role name. Do not specify this role
if you are using customized execution roles. If you do not specify the role name, it is set to
AWSCloudFormationStackSetExecutionRole. If you set Service_Managed to true, you
must not define a role name.

OrganizationsAutoDeployment

Required: No

The CloudFormationStackSet action API Version 2015-07-09 861

AWS CodePipeline User Guide

Note

This parameter is optional for the SERVICE_MANAGED permissions model and is not
used for the SELF_MANAGED permissions model.

Describes whether AWS CloudFormation StackSets automatically deploys to AWS
Organizations accounts that are added to a target organization or organizational unit (OU).
If OrganizationsAutoDeployment is specified, do not specify DeploymentTargets and
Regions.

Note

If no input is provided for OrganizationsAutoDeployment, then the default value is
Disabled.

Valid values are:

• Enabled. Required: No.

StackSets automatically deploys additional stack instances to AWS Organizations accounts
that are added to a target organization or organizational unit (OU) in the specified Regions.
If an account is removed from a target organization or OU, AWS CloudFormation StackSets
deletes stack instances from the account in the specified Regions.

• Disabled. Required: No.

StackSets does not automatically deploy additional stack instances to AWS Organizations
accounts that are added to a target organization or organizational unit (OU) in the specified
Regions.

• EnabledWithStackRetention. Required: No.

Stack resources are retained when an account is removed from a target organization or OU.

DeploymentTargets

Required: No

The CloudFormationStackSet action API Version 2015-07-09 862

AWS CodePipeline User Guide

Note

For the SERVICE_MANAGED permissions model, you can provide either the organization
root ID or organizational Unit IDs for deployment targets. For the SELF_MANAGED
permissions model, you can only provide accounts.

Note

When this parameter is selected, you must also select Regions.

A list of AWS accounts or organizational unit IDs where stack set instances should be created/
updated.

• Accounts:

You can provide accounts as a literal list or a file path:

• Literal: Enter parameters in the shorthand syntax format account_ID,account_ID, as
shown in the following example.

111111222222,333333444444

• File path: The location of the file containing a list of AWS accounts where
stack set instances should be created/updated, entered in the format
InputArtifactName::AccountsFileName. If you use file path to specify either
accounts or OrganizationalUnitIds, the file format must be in JSON, as shown in the
following example.

SourceArtifact::accounts.txt

The following example shows the file contents for accounts.txt.

[
 "111111222222"
]

The following example shows the file contents for accounts.txt when listing more than
one account:

The CloudFormationStackSet action API Version 2015-07-09 863

AWS CodePipeline User Guide

[
 "111111222222","333333444444"
]

• OrganizationalUnitIds:

Note

This parameter is optional for the SERVICE_MANAGED permissions model and is
not used for the SELF_MANAGED permissions model. Do not use this if you select
OrganizationsAutoDeployment.

The AWS organizational units in which to update associated stack instances.

You can provide organizational unit IDs as a literal list or a file path:

• Literal: Enter an array of strings separated by commas, as shown in the following example.

ou-examplerootid111-exampleouid111,ou-examplerootid222-exampleouid222

• File path: The location of the file containing a list of OrganizationalUnitIds in which
to create or update stack set instances. If you use file path to specify either accounts
or OrganizationalUnitIds, the file format must be in JSON, as shown in the following
example.

Enter a path to the file in the format
InputArtifactName::OrganizationalUnitIdsFileName.

SourceArtifact::OU-IDs.txt

The following example shows the file contents for OU-IDs.txt:

[
 "ou-examplerootid111-exampleouid111","ou-examplerootid222-exampleouid222"
]

Regions

Required: No

The CloudFormationStackSet action API Version 2015-07-09 864

AWS CodePipeline User Guide

Note

When this parameter is selected, you must also select DeploymentTargets.

A list of AWS Regions where stack set instances are created or updated. Regions are updated in
the order in which they are entered.

Enter a list of valid AWS Regions in the format Region1,Region2, as shown in the following
example.

us-west-2,us-east-1

FailureTolerancePercentage

Required: No

The percentage of accounts per Region for which this stack operation can fail before AWS
CloudFormation stops the operation in that Region. If the operation is stopped in a Region, AWS
CloudFormation doesn't attempt the operation in subsequent Regions. When calculating the
number of accounts based on the specified percentage, AWS CloudFormation rounds down to
the next whole number.

MaxConcurrentPercentage

Required: No

The maximum percentage of accounts in which to perform this operation at one time. When
calculating the number of accounts based on the specified percentage, AWS CloudFormation
rounds down to the next whole number. If rounding down would result in zero, AWS
CloudFormation sets the number as one instead. Although you use this setting to specify the
maximum, for large deployments the actual number of accounts acted upon concurrently may
be lower due to service throttling.

RegionConcurrencyType

Required: No

You can specify if the stack set should deploy across AWS Regions sequentially or in parallel
by configuring the Region concurrency deployment parameter. When the Region concurrency
is specified to deploy stacks across multiple AWS Regions in parallel, this can result in faster
overall deployment times.

The CloudFormationStackSet action API Version 2015-07-09 865

AWS CodePipeline User Guide

• Parallel: Stack set deployments will be conducted at the same time, as long as a Region's
deployment failures don't exceed a specified failure tolerance.

• Sequential: Stack set deployments will be conducted one at a time, as long as a Region's
deployment failures don't exceed a specified failure tolerance. Sequential deployment is the
default selection.

ConcurrencyMode

Required: No

The concurrency mode allows you to choose how the concurrency level behaves during stack
set operations, whether with strict or soft failure tolerance. Strict Failure Tolerance lowers
the deployment speed as stack set operation failures occur because concurrency decreases for
each failure. Soft Failure Tolerance prioritizes deployment speed while still leveraging AWS
CloudFormation safety capabilities.

• STRICT_FAILURE_TOLERANCE: This option dynamically lowers the concurrency level to
ensure the number of failed accounts never exceeds a particular failure tolerance. This is the
default behavior.

• SOFT_FAILURE_TOLERANCE: This option decouples failure tolerance from the actual
concurrency. This allows stack set operations to run at a set concurrency level, regardless of
the number of failures.

Input artifacts

You must include at least one input artifact that contains the template for the stack set in a
CloudFormationStackSet action. You can include more input artifacts for lists of deployment
targets, accounts, and parameters.

• Number of artifacts: 1 to 3

• Description: You can include artifacts to provide:

• The stack template file. (See the TemplatePath parameter.)

• The parameters file. (See the Parameters parameter.)

• The accounts file. (See the DeploymentTargets parameter.)

Output artifacts

• Number of artifacts: 0

The CloudFormationStackSet action API Version 2015-07-09 866

AWS CodePipeline User Guide

• Description: Output artifacts do not apply for this action type.

Output variables

If you configure this action, it produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. You configure an action with a namespace to make those
variables available to the configuration of downstream actions.

• StackSetId: The ID of the stack set.

• OperationId: The ID of the stack set operation.

For more information, see Variables.

Example CloudFormationStackSet action configuration

The following examples show the action configuration for the CloudFormationStackSet action.

Example for the self-managed permissions model

The following example shows a CloudFormationStackSet action where the deployment target
entered is an AWS account ID.

YAML

Name: CreateStackSet
ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CloudFormationStackSet
 Version: '1'
RunOrder: 1
Configuration:
 DeploymentTargets: '111111222222'
 FailureTolerancePercentage: '20'
 MaxConcurrentPercentage: '25'
 PermissionModel: SELF_MANAGED
 Regions: us-east-1
 StackSetName: my-stackset
 TemplatePath: 'SourceArtifact::template.json'
OutputArtifacts: []

The CloudFormationStackSet action API Version 2015-07-09 867

AWS CodePipeline User Guide

InputArtifacts:
 - Name: SourceArtifact
Region: us-west-2
Namespace: DeployVariables

JSON

{
 "Name": "CreateStackSet",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CloudFormationStackSet",
 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "DeploymentTargets": "111111222222",
 "FailureTolerancePercentage": "20",
 "MaxConcurrentPercentage": "25",
 "PermissionModel": "SELF_MANAGED",
 "Regions": "us-east-1",
 "StackSetName": "my-stackset",
 "TemplatePath": "SourceArtifact::template.json"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "us-west-2",
 "Namespace": "DeployVariables"
}

Example for the service-managed permissions model

The following example shows a CloudFormationStackSet action for the service-managed
permissions model where the option for auto deployment to AWS Organizations is enabled with
stack retention.

The CloudFormationStackSet action API Version 2015-07-09 868

AWS CodePipeline User Guide

YAML

Name: Deploy
ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CloudFormationStackSet
 Version: '1'
RunOrder: 1
Configuration:
 Capabilities: 'CAPABILITY_IAM,CAPABILITY_NAMED_IAM'
 OrganizationsAutoDeployment: EnabledWithStackRetention
 PermissionModel: SERVICE_MANAGED
 StackSetName: stacks-orgs
 TemplatePath: 'SourceArtifact::template.json'
OutputArtifacts: []
InputArtifacts:
 - Name: SourceArtifact
Region: eu-central-1
Namespace: DeployVariables

JSON

{
 "Name": "Deploy",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CloudFormationStackSet",
 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "Capabilities": "CAPABILITY_IAM,CAPABILITY_NAMED_IAM",
 "OrganizationsAutoDeployment": "EnabledWithStackRetention",
 "PermissionModel": "SERVICE_MANAGED",
 "StackSetName": "stacks-orgs",
 "TemplatePath": "SourceArtifact::template.json"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"

The CloudFormationStackSet action API Version 2015-07-09 869

AWS CodePipeline User Guide

 }
],
 "Region": "eu-central-1",
 "Namespace": "DeployVariables"
}

The CloudFormationStackInstances action

This action creates new instances and deploys stack sets to specified instances. A stack instance is a
reference to a stack in a target account within a Region. A stack instance can exist without a stack;
for example, if the stack creation is not successful, the stack instance shows the reason for stack
creation failure. A stack instance is associated with only one stack set.

After the initial creation of a stack set, you can add new stack instances by using
CloudFormationStackInstances. Template parameter values can be overridden at the stack
instance level during create or update stack set instance operations.

Each stack set has one template and set of template parameters. When you update the template
or template parameters, you update them for the entire set. Then all instance statuses are set to
OUTDATED until the changes are deployed to that instance.

To override parameter values on specific instances, for example, if the template contains a
parameter for stage with a value of prod, you can override the value of that parameter to be
beta or gamma.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Example action configuration

Action type

• Category: Deploy

The CloudFormationStackInstances action API Version 2015-07-09 870

AWS CodePipeline User Guide

• Owner: AWS

• Provider: CloudFormationStackInstances

• Version: 1

Configuration parameters

StackSetName

Required: Yes

The name to associate with the stack set. This name must be unique in the Region where it is
created.

The name may only contain alphanumeric and hyphen characters. It must begin with an
alphabetic character and be 128 characters or fewer.

DeploymentTargets

Required: No

Note

For the SERVICE_MANAGED permissions model, you can provide either the organization
root ID or organizational Unit IDs for deployment targets. For the SELF_MANAGED
permissions model, you can only provide accounts.

Note

When this parameter is selected, you must also select Regions.

A list of AWS accounts or organizational unit IDs where stack set instances should be created/
updated.

• Accounts:

You can provide accounts as a literal list or a file path:

• Literal: Enter parameters in the shorthand syntax format account_ID,account_ID, as
shown in the following example.

The CloudFormationStackInstances action API Version 2015-07-09 871

AWS CodePipeline User Guide

111111222222,333333444444

• File path: The location of the file containing a list of AWS accounts where
stack set instances should be created/updated, entered in the format
InputArtifactName::AccountsFileName. If you use file path to specify either
accounts or OrganizationalUnitIds, the file format must be in JSON, as shown in the
following example.

SourceArtifact::accounts.txt

The following example shows the file contents for accounts.txt:

[
 "111111222222"
]

The following example shows the file contents for accounts.txt when listing more than
one account:

[
 "111111222222","333333444444"
]

• OrganizationalUnitIds:

Note

This parameter is optional for the SERVICE_MANAGED permissions model and is
not used for the SELF_MANAGED permissions model. Do not use this if you select
OrganizationsAutoDeployment.

The AWS organizational units in which to update associated stack instances.

You can provide organizational unit IDs as a literal list or a file path.

• Literal: Enter an array of strings separated by commas, as shown in the following example.

The CloudFormationStackInstances action API Version 2015-07-09 872

AWS CodePipeline User Guide

ou-examplerootid111-exampleouid111,ou-examplerootid222-exampleouid222

• File path: The location of the file containing a list of OrganizationalUnitIds in which
to create or update stack set instances. If you use file path to specify either accounts
or OrganizationalUnitIds, the file format must be in JSON, as shown in the following
example.

Enter a path to the file in the format
InputArtifactName::OrganizationalUnitIdsFileName.

SourceArtifact::OU-IDs.txt

The following example shows the file contents for OU-IDs.txt:

[
 "ou-examplerootid111-exampleouid111","ou-examplerootid222-exampleouid222"
]

Regions

Required: Yes

Note

When this parameter is selected, you must also select DeploymentTargets.

A list of AWS Regions where stack set instances are created or updated. Regions are updated in
the order in which they are entered.

Enter a list of valid AWS Regions in the format: Region1,Region2, as shown in the following
example.

us-west-2,us-east-1

ParameterOverrides

Required: No

The CloudFormationStackInstances action API Version 2015-07-09 873

AWS CodePipeline User Guide

A list of stack set parameters that you want to override in the selected stack instances.
Overridden parameter values are applied to all stack instances in the specified accounts and
Regions.

You can provide parameters as a literal list or a file path:

• You can enter parameters in the following shorthand syntax format:
ParameterKey=string,ParameterValue=string,UsePreviousValue=boolean,ResolvedValue=string
ParameterKey=string,ParameterValue=string,UsePreviousValue=boolean,ResolvedValue=string.
For more information about these data types, see Template parameter data types.

The following example shows a parameter named BucketName with the value my-bucket.

ParameterKey=BucketName,ParameterValue=my-bucket

The following example shows an entry with multiple parameters.

 ParameterKey=BucketName,ParameterValue=my-bucket
 ParameterKey=Asset1,ParameterValue=true
 ParameterKey=Asset2,ParameterValue=true

• You can enter the location of the file containing a list of template parameter overrides
entered in the format InputArtifactName::ParameterOverridessFileName, as shown
in the following example.

SourceArtifact::parameter-overrides.txt

The following example shows the file contents for parameter-overrides.txt.

[
 {
 "ParameterKey": "KeyName",
 "ParameterValue": "true"
 },
 {
 "ParameterKey": "KeyName",
 "ParameterValue": "true"
 }

The CloudFormationStackInstances action API Version 2015-07-09 874

AWS CodePipeline User Guide

]

FailureTolerancePercentage

Required: No

The percentage of accounts per Region for which this stack operation can fail before AWS
CloudFormation stops the operation in that Region. If the operation is stopped in a Region, AWS
CloudFormation doesn't attempt the operation in subsequent Regions. When calculating the
number of accounts based on the specified percentage, AWS CloudFormation rounds down to
the next whole number.

MaxConcurrentPercentage

Required: No

The maximum percentage of accounts on which to perform this operation at one time. When
calculating the number of accounts based on the specified percentage, AWS CloudFormation
rounds down to the next whole number. If rounding down would result in zero, AWS
CloudFormation sets the number as one instead. Although you specify the maximum, for large
deployments the actual number of accounts acted upon concurrently may be lower due to
service throttling.

RegionConcurrencyType

Required: No

You can specify if the stack set should deploy across AWS Regions sequentially or in parallel
by configuring the region concurrency deployment parameter. When the Region concurrency
is specified to deploy stacks across multiple AWS Regions in parallel, this can result in faster
overall deployment times.

• Parallel: Stack set deployments will be conducted at the same time, as long as a Region's
deployment failures don't exceed a specified failure tolerance.

• Sequential: Stack set deployments will be conducted one at a time, as long as a Region's
deployment failures don't exceed a specified failure tolerance. Sequential deployment is the
default selection.

ConcurrencyMode

Required: No

The concurrency mode allows you to choose how the concurrency level behaves during stack
set operations, whether with strict or soft failure tolerance. Strict Failure Tolerance lowers

The CloudFormationStackInstances action API Version 2015-07-09 875

AWS CodePipeline User Guide

the deployment speed as stack set operation failures occur because concurrency decreases for
each failure. Soft Failure Tolerance prioritizes deployment speed while still leveraging AWS
CloudFormation safety capabilities.

• STRICT_FAILURE_TOLERANCE: This option dynamically lowers the concurrency level to
ensure the number of failed accounts never exceeds a particular failure tolerance. This is the
default behavior.

• SOFT_FAILURE_TOLERANCE: This option decouples failure tolerance from the actual
concurrency. This allows stack set operations to run at a set concurrency level, regardless of
the number of failures.

Input artifacts

CloudFormationStackInstances can contain artifacts that list deployment targets and
parameters.

• Number of artifacts: 0 to 2

• Description: As input, the stack set action optionally accepts artifacts for these purposes:

• To provide the parameters file to use. (See the ParameterOverrides parameter.)

• To provide the target accounts file to use. (See the DeploymentTargets parameter.)

Output artifacts

• Number of artifacts: 0

• Description: Output artifacts do not apply for this action type.

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. You configure an action with a namespace to make those
variables available to the configuration of downstream actions.

• StackSetId: The ID of the stack set.

• OperationId: The ID of the stack set operation.

For more information, see Variables.

The CloudFormationStackInstances action API Version 2015-07-09 876

AWS CodePipeline User Guide

Example action configuration

The following examples show the action configuration for the CloudFormationStackInstances
action.

Example for the self-managed permissions model

The following example shows a CloudFormationStackInstances action where the deployment
target entered is an AWS account ID 111111222222.

YAML

Name: my-instances
ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CloudFormationStackInstances
 Version: '1'
RunOrder: 2
Configuration:
 DeploymentTargets: '111111222222'
 Regions: 'us-east-1,us-east-2,us-west-1,us-west-2'
 StackSetName: my-stackset
OutputArtifacts: []
InputArtifacts:
 - Name: SourceArtifact
Region: us-west-2

JSON

{
 "Name": "my-instances",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CloudFormationStackInstances",
 "Version": "1"
 },
 "RunOrder": 2,
 "Configuration": {
 "DeploymentTargets": "111111222222",
 "Regions": "us-east-1,us-east-2,us-west-1,us-west-2",
 "StackSetName": "my-stackset"

The CloudFormationStackInstances action API Version 2015-07-09 877

AWS CodePipeline User Guide

 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "us-west-2"
}

Example for the service-managed permissions model

The following example shows a CloudFormationStackInstances action for the service-managed
permissions model where the deployment target is an AWS Organizations organizational unit ID
ou-1111-1example.

YAML

Name: Instances
ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CloudFormationStackInstances
 Version: '1'
RunOrder: 2
Configuration:
 DeploymentTargets: ou-1111-1example
 Regions: us-east-1
 StackSetName: my-stackset
OutputArtifacts: []
InputArtifacts:
 - Name: SourceArtifact
Region: eu-central-1

JSON

{
 "Name": "Instances",
 "ActionTypeId": {
 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CloudFormationStackInstances",

The CloudFormationStackInstances action API Version 2015-07-09 878

AWS CodePipeline User Guide

 "Version": "1"
 },
 "RunOrder": 2,
 "Configuration": {
 "DeploymentTargets": "ou-1111-1example",
 "Regions": "us-east-1",
 "StackSetName": "my-stackset"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "eu-central-1"
}

Permissions models for stack set operations

Because AWS CloudFormation StackSets performs operations across multiple accounts, you must
define the necessary permissions in those accounts before you can create the stack set. You can
define permissions through self-managed permissions or service-managed permissions.

With self-managed permissions, you create the two IAM roles required by StackSets
- an administrator role such as the AWSCloudFormationStackSetAdministrationRole
in the account where you define the stack set and an execution role such as the
AWSCloudFormationStackSetExecutionRole in each of the accounts where you deploy stack
set instances. Using this permissions model, StackSets can deploy to any AWS account in which
the user has permissions to create an IAM role. For more information, see Grant self-managed
permissions in the AWS CloudFormation User Guide.

Note

Because AWS CloudFormation StackSets performs operations across multiple accounts, you
must define the necessary permissions in those accounts before you can create the stack
set.

With service-managed permissions, you can deploy stack instances to accounts managed by AWS
Organizations. Using this permissions model, you don't have to create the necessary IAM roles

Permissions models for stack set operations API Version 2015-07-09 879

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs-self-managed.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs-self-managed.html

AWS CodePipeline User Guide

because StackSets creates the IAM roles on your behalf. With this model, you can also enable
automatic deployments to accounts that are added to the organization in the future. See Enable
trusted access with AWS Organizations in the AWS CloudFormation User Guide.

Template parameter data types

The template parameters used in stack set operations include the following data types. For more
information, see DescribeStackSet.

ParameterKey

• Description: The key associated with the parameter. If you don't specify a key and value for
a particular parameter, AWS CloudFormation uses the default value that is specified in the
template.

• Example:

"ParameterKey=BucketName,ParameterValue=my-bucket"

ParameterValue

• Description: The input value associated with the parameter.

• Example:

"ParameterKey=BucketName,ParameterValue=my-bucket"

UsePreviousValue

• During a stack update, use the existing parameter value that the stack is using for a given
parameter key. If you specify true, do not specify a parameter value.

• Example:

"ParameterKey=Asset1,UsePreviousValue=true"

Each stack set has one template and set of template parameters. When you update the template
or template parameters, you update them for the entire set. Then all instance statuses are set to
OUTDATED until the changes are deployed to that instance.

To override parameter values on specific instances, for example, if the template contains a
parameter for stage with a value of prod, you can override the value of that parameter to be
beta or gamma.

Template parameter data types API Version 2015-07-09 880

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-orgs-enable-trusted-access.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-orgs-enable-trusted-access.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_Parameter.html

AWS CodePipeline User Guide

See also

The following related resources can help you as you work with this action.

• Parameter types – This reference chapter in the AWS CloudFormation User Guide provides more
descriptions and examples for CloudFormation template parameters.

• Best practices – For more information about best practices for deploying stack sets, see https://
docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-bestpractices.html in
the AWS CloudFormation User Guide.

• AWS CloudFormation API Reference – You can reference the following CloudFormation actions in
the AWS CloudFormation API Reference for more information about the parameters used in stack
set operations:

• The CreateStackSet action creates a stack set.

• The UpdateStackSet action updates the stack set and associated stack instances in the
specified accounts and Regions. Even if the stack set operation created by updating the stack
set fails (completely or partially, below or above a specified failure tolerance), the stack set is
updated with these changes. Subsequent CreateStackInstances calls on the specified stack set
use the updated stack set.

• The CreateStackInstances action creates a stack instance for all specified regions within all
specified accounts on a self-managed permission model, or within all specified deployment
targets on a service-managed permission model. You can override parameters for the
instances created by this action. If the instances already exist, CreateStackInstances calls
UpdateStackInstances with the same input parameters. When you use this action to create
instances, it does not change the status of other stack instances.

• The UpdateStackInstances action brings stack instances up to date with the stack set for all
specified regions within all specified accounts on a self-managed permission model, or within
all specified deployment targets on a service-managed permission model. You can override
parameters for the instances updated by this action. When you use this action to update a
subset of instances, it does not change the status of other stack instances.

• The DescribeStackSetOperation action returns the description of the specified stack set
operation.

• The DescribeStackSet action returns the description of the specified stack set.

See also API Version 2015-07-09 881

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html#parameters-section-structure-properties-type
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-bestpractices.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-bestpractices.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateStackSet.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_UpdateStackSet.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateStackInstances.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_UpdateStackInstances.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeStackSetOperation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DescribeStackSet.html

AWS CodePipeline User Guide

AWS CodeBuild

Allows you to run builds and tests as part of your pipeline. When you run a CodeBuild build or test
action, commands specified in the build spec are run inside of a CodeBuild container. All artifacts
that are specified as input artifacts to a CodeBuild action are available inside of the container
running the commands. CodeBuild can provide either a build or test action. For more information,
see the AWS CodeBuild User Guide.

When you use the CodePipeline wizard in the console to create a build project, the CodeBuild
build project shows the source provider is CodePipeline. When you create a build project in the
CodeBuild console, you cannot specify CodePipeline as the source provider, but adding the build
action to your pipeline adjusts the source in the CodeBuild console. For more information, see
ProjectSource in the AWS CodeBuild API Reference.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Action declaration (CodeBuild example)

• See also

Action type

• Category: Build or Test

• Owner: AWS

• Provider: CodeBuild

• Version: 1

Configuration parameters

ProjectName

Required: Yes

AWS CodeBuild API Version 2015-07-09 882

https://docs.aws.amazon.com/codebuild/latest/userguide/
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_ProjectSource.html

AWS CodePipeline User Guide

ProjectName is the name of the build project in CodeBuild.

PrimarySource

Required: Conditional

The value of the PrimarySource parameter must be the name of one of the input artifacts
to the action. CodeBuild looks for the build spec file and runs the build spec commands in the
directory that contains the unzipped version of this artifact.

This parameter is required if multiple input artifacts are specified for a CodeBuild action. When
there is only one source artifact for the action, the PrimarySource artifact defaults to that
artifact.

BatchEnabled

Required: No

The Boolean value of the BatchEnabled parameter allows the action to run multiple builds in
the same build execution.

When this option is enabled, the CombineArtifacts option is available.

For pipeline examples with batch builds enabled, seeCodePipeline integration with CodeBuild
and batch builds.

CombineArtifacts

Required: No

The Boolean value of the CombineArtifacts parameter combines all build artifacts from a
batch build into a single artifact file for the build action.

To use this option, the BatchEnabled parameter must be enabled.

EnvironmentVariables

Required: No

The value of this parameter is used to set environment variables for the CodeBuild action
in your pipeline. The value for the EnvironmentVariables parameter takes the form of a
JSON array of environment variable objects. See the example parameter in Action declaration
(CodeBuild example).

Configuration parameters API Version 2015-07-09 883

https://docs.aws.amazon.com/codebuild/latest/userguide/sample-pipeline-batch.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-pipeline-batch.html

AWS CodePipeline User Guide

Each object has three parts, all of which are strings:

• name: The name or key of the environment variable.

• value: The value of the environment variable. When using the PARAMETER_STORE or
SECRETS_MANAGER type, this value must be the name of a parameter you have already
stored in AWS Systems Manager Parameter Store or a secret you have already stored in AWS
Secrets Manager, respectively.

Note

We strongly discourage the use of environment variables to store sensitive values,
especially AWS credentials. When you use the CodeBuild console or AWS CLI,
environment variables are displayed in plain text. For sensitive values, we recommend
that you use the SECRETS_MANAGER type instead.

• type: (Optional) The type of environment variable. Valid values are PARAMETER_STORE,
SECRETS_MANAGER, or PLAINTEXT. When not specified, this defaults to PLAINTEXT.

Note

When you enter the name, value, and type for your environment variables
configuration, especially if the environment variable contains CodePipeline output
variable syntax, do not exceed the 1000-character limit for the configuration’s value
field. A validation error is returned when this limit is exceeded.

For more information, see EnvironmentVariable in the AWS CodeBuild API Reference. For an
example CodeBuild action with an environment variable that resolves to the GitHub branch
name, see Example: Use a BranchName variable with CodeBuild environment variables.

Input artifacts

• Number of artifacts: 1 to 5

• Description: CodeBuild looks for the build spec file and runs the build spec commands from
the directory of the primary source artifact. When more than one input source is specified for
the CodeBuild action, this artifact must be set using the PrimarySource action configuration
parameter in CodePipeline.

Input artifacts API Version 2015-07-09 884

https://docs.aws.amazon.com/codebuild/latest/APIReference/API_EnvironmentVariable.html

AWS CodePipeline User Guide

Each input artifact is extracted to its own directory, the locations of which are stored in
environment variables. The directory for the primary source artifact is made available with
$CODEBUILD_SRC_DIR. The directories for all other input artifacts are made available with
$CODEBUILD_SRC_DIR_yourInputArtifactName.

Note

The artifact configured in your CodeBuild project becomes the input artifact used by the
CodeBuild action in your pipeline.

Output artifacts

• Number of artifacts: 0 to 5

• Description: These can be used to make the artifacts that are defined in the CodeBuild build
spec file available to subsequent actions in the pipeline. When only one output artifact is
defined, this artifact can be defined directly under the artifacts section of the build spec
file. When more than one output artifact is specified, all artifacts referenced must be defined as
secondary artifacts in the build spec file. The names of the output artifacts in CodePipeline must
match the artifact identifiers in the build spec file.

Note

The artifact configured in your CodeBuild project becomes the CodePipeline input
artifact in your pipeline action.

If the CombineArtifacts parameter is selected for batch builds, the output artifact location
contains the combined artifacts from multiple builds that were run in the same execution.

Output variables

This action will produce as variables all environment variables that were exported as part of the
build. For more details on how to export environment variables, see EnvironmentVariable in the
AWS CodeBuild API Guide.

Output artifacts API Version 2015-07-09 885

https://docs.aws.amazon.com/codebuild/latest/APIReference/API_EnvironmentVariable.html

AWS CodePipeline User Guide

For more information about using CodeBuild environment variables in CodePipeline, see the
examples in CodeBuild action output variables. For a list of the environment variables you can use
in CodeBuild, see Environment variables in build environments in the AWS CodeBuild User Guide.

Action declaration (CodeBuild example)

YAML

Name: Build
Actions:
 - Name: PackageExport
 ActionTypeId:
 Category: Build
 Owner: AWS
 Provider: CodeBuild
 Version: '1'
 RunOrder: 1
 Configuration:
 BatchEnabled: 'true'
 CombineArtifacts: 'true'
 ProjectName: my-build-project
 PrimarySource: MyApplicationSource1
 EnvironmentVariables:
 '[{"name":"TEST_VARIABLE","value":"TEST_VALUE","type":"PLAINTEXT"},
{"name":"ParamStoreTest","value":"PARAMETER_NAME","type":"PARAMETER_STORE"}]'
 OutputArtifacts:
 - Name: MyPipeline-BuildArtifact
 InputArtifacts:
 - Name: MyApplicationSource1
 - Name: MyApplicationSource2

JSON

{
 "Name": "Build",
 "Actions": [
 {
 "Name": "PackageExport",
 "ActionTypeId": {
 "Category": "Build",
 "Owner": "AWS",
 "Provider": "CodeBuild",

Action declaration (CodeBuild example) API Version 2015-07-09 886

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS CodePipeline User Guide

 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "BatchEnabled": "true",
 "CombineArtifacts": "true",
 "ProjectName": "my-build-project",
 "PrimarySource": "MyApplicationSource1",
 "EnvironmentVariables": "[{\"name\":\"TEST_VARIABLE\",\"value\":
\"TEST_VALUE\",\"type\":\"PLAINTEXT\"},{\"name\":\"ParamStoreTest\",\"value\":
\"PARAMETER_NAME\",\"type\":\"PARAMETER_STORE\"}]"
 },
 "OutputArtifacts": [
 {
 "Name": "MyPipeline-BuildArtifact"
 }
],
 "InputArtifacts": [
 {
 "Name": "MyApplicationSource1"
 },
 {
 "Name": "MyApplicationSource2"
 }
]
 }
]
}

See also

The following related resources can help you as you work with this action.

• AWS CodeBuild User Guide – For an example pipeline with a CodeBuild action, see Use
CodePipeline with CodeBuild to Test Code and Run Builds. For examples of projects with multiple
input and output CodeBuild artifacts, see CodePipeline Integration with CodeBuild and Multiple
Input Sources and Output Artifacts Sample and Multiple Input Sources and Output Artifacts
Sample .

• Tutorial: Create a pipeline that builds and tests your Android app with AWS Device Farm – This
tutorial provides a sample build spec file and sample application to create a pipeline with a
GitHub source that builds and tests an Android app with CodeBuild and AWS Device Farm.

See also API Version 2015-07-09 887

https://docs.aws.amazon.com/codebuild/latest/userguide/
https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html
https://docs.aws.amazon.com/codebuild/latest/userguide/how-to-create-pipeline.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-pipeline-multi-input-output.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-pipeline-multi-input-output.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-multi-in-out.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-multi-in-out.html

AWS CodePipeline User Guide

• Build Specification Reference for CodeBuild – This reference topic provides definitions and
examples for understanding CodeBuild build spec files. For a list of the environment variables
you can use in CodeBuild, see Environment variables in build environments in the AWS CodeBuild
User Guide.

CodeCommit

Starts the pipeline when a new commit is made on the configured CodeCommit repository and
branch.

If you use the console to create or edit the pipeline, CodePipeline creates a CodeCommit
CloudWatch Events rule that starts your pipeline when a change occurs in the repository.

You must have already created a CodeCommit repository before you connect the pipeline through
a CodeCommit action.

After a code change is detected, you have the following options for passing the code to subsequent
actions:

• Default – Configures the CodeCommit source action to output a ZIP file with a shallow copy of
your commit.

• Full clone – Configures the source action to output a Git URL reference to the repository for
subsequent actions.

Currently, the Git URL reference can only be used by downstream CodeBuild actions to clone
the repo and associated Git metadata. Attempting to pass a Git URL reference to non-CodeBuild
actions results in an error.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Example action configuration

AWS CodeCommit API Version 2015-07-09 888

https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS CodePipeline User Guide

• See also

Action type

• Category: Source

• Owner: AWS

• Provider: CodeCommit

• Version: 1

Configuration parameters

RepositoryName

Required: Yes

The name of the repository where source changes are to be detected.

BranchName

Required: Yes

The name of the branch where source changes are to be detected.

PollForSourceChanges

Required: No

PollForSourceChanges controls whether CodePipeline polls the CodeCommit repository
for source changes. We recommend that you use CloudWatch Events to detect source changes
instead. For more information about configuring CloudWatch Events, see Migrate polling
pipelines (CodeCommit source) (CLI) or Migrate polling pipelines (CodeCommit source) (AWS
CloudFormation template).

Important

If you intend to configure a CloudWatch Events rule, you must set
PollForSourceChanges to false to avoid duplicate pipeline executions.

Valid values for this parameter:

Action type API Version 2015-07-09 889

AWS CodePipeline User Guide

• true: If set, CodePipeline polls your repository for source changes.

Note

If you omit PollForSourceChanges, CodePipeline defaults to polling
your repository for source changes. This behavior is the same as if
PollForSourceChanges is included and set to true.

• false: If set, CodePipeline does not poll your repository for source changes. Use this setting
if you intend to configure a CloudWatch Events rule to detect source changes.

OutputArtifactFormat

Required: No

The output artifact format. Values can be either CODEBUILD_CLONE_REF or CODE_ZIP. If
unspecified, the default is CODE_ZIP.

Important

The CODEBUILD_CLONE_REF option can only be used by CodeBuild downstream
actions.
If you choose this option, you need to add the codecommit:GitPull permission
to your CodeBuild service role as shown in Add CodeBuild GitClone permissions for
CodeCommit source actions. You also need to add the codecommit:GetRepository
permission to your CodePipeline service role as shown in Add permissions to the
CodePipeline service role. For a tutorial that shows you how to use the Full clone
option, see Tutorial: Use full clone with a CodeCommit pipeline source.

Input artifacts

• Number of artifacts: 0

• Description: Input artifacts do not apply for this action type.

Output artifacts

• Number of artifacts: 1

Input artifacts API Version 2015-07-09 890

AWS CodePipeline User Guide

• Description: The output artifact of this action is a ZIP file that contains the contents of the
configured repository and branch at the commit specified as the source revision for the
pipeline execution. The artifacts generated from the repository are the output artifacts for
the CodeCommit action. The source code commit ID is displayed in CodePipeline as the source
revision for the triggered pipeline execution.

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. This action produces variables which can be viewed as
output variables, even if the action doesn't have a namespace. You configure an action with a
namespace to make those variables available to the configuration of downstream actions.

For more information, see Variables.

CommitId

The CodeCommit commit ID that triggered the pipeline execution. Commit IDs are the full SHA
of the commit.

CommitMessage

The description message, if any, associated with the commit that triggered the pipeline
execution.

RepositoryName

The name of the CodeCommit repository where the commit that triggered the pipeline was
made.

BranchName

The name of the branch for the CodeCommit repository where the source change was made.

AuthorDate

The date when the commit was authored, in timestamp format.

For more information about the difference between an author and a committer in Git, see
Viewing the Commit History in Pro Git by Scott Chacon and Ben Straub.

CommitterDate

The date when the commit was committed, in timestamp format.

Output variables API Version 2015-07-09 891

http://git-scm.com/book/ch2-3.html

AWS CodePipeline User Guide

For more information about the difference between an author and a committer in Git, see
Viewing the Commit History in Pro Git by Scott Chacon and Ben Straub.

Example action configuration

Example for default output artifact format

YAML

Actions:
 - OutputArtifacts:
 - Name: Artifact_MyWebsiteStack
 InputArtifacts: []
 Name: source
 Configuration:
 RepositoryName: MyWebsite
 BranchName: main
 PollForSourceChanges: 'false'
 RunOrder: 1
 ActionTypeId:
 Version: '1'
 Provider: CodeCommit
 Category: Source
 Owner: AWS
 Name: Source

JSON

{
 "Actions": [
 {
 "OutputArtifacts": [
 {
 "Name": "Artifact_MyWebsiteStack"
 }
],
 "InputArtifacts": [],
 "Name": "source",
 "Configuration": {
 "RepositoryName": "MyWebsite",
 "BranchName": "main",
 "PollForSourceChanges": "false"

Example action configuration API Version 2015-07-09 892

http://git-scm.com/book/ch2-3.html

AWS CodePipeline User Guide

 },
 "RunOrder": 1,
 "ActionTypeId": {
 "Version": "1",
 "Provider": "CodeCommit",
 "Category": "Source",
 "Owner": "AWS"
 }
 }
],
 "Name": "Source"
},

Example for full clone output artifact format

YAML

name: Source
actionTypeId:
 category: Source
 owner: AWS
 provider: CodeCommit
 version: '1'
runOrder: 1
configuration:
 BranchName: main
 OutputArtifactFormat: CODEBUILD_CLONE_REF
 PollForSourceChanges: 'false'
 RepositoryName: MyWebsite
outputArtifacts:
 - name: SourceArtifact
inputArtifacts: []
region: us-west-2
namespace: SourceVariables

JSON

{
 "name": "Source",
 "actionTypeId": {
 "category": "Source",
 "owner": "AWS",

Example action configuration API Version 2015-07-09 893

AWS CodePipeline User Guide

 "provider": "CodeCommit",
 "version": "1"
 },
 "runOrder": 1,
 "configuration": {
 "BranchName": "main",
 "OutputArtifactFormat": "CODEBUILD_CLONE_REF",
 "PollForSourceChanges": "false",
 "RepositoryName": "MyWebsite"
 },
 "outputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "inputArtifacts": [],
 "region": "us-west-2",
 "namespace": "SourceVariables"
}

See also

The following related resources can help you as you work with this action.

• Tutorial: Create a simple pipeline (CodeCommit repository) – This tutorial provides a sample app
spec file and sample CodeDeploy application and deployment group. Use this tutorial to create a
pipeline with a CodeCommit source that deploys to Amazon EC2 instances.

AWS CodeDeploy

You use an AWS CodeDeploy action to deploy application code to your deployment fleet. Your
deployment fleet can consist of Amazon EC2 instances, on-premises instances, or both.

Note

This reference topic describes the CodeDeploy deployment action for CodePipeline where
the deployment platform is Amazon EC2. For reference information about Amazon Elastic
Container Service to CodeDeploy blue/green deployment actions in CodePipeline, see
Amazon Elastic Container Service and CodeDeploy blue-green.

See also API Version 2015-07-09 894

AWS CodePipeline User Guide

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Action declaration

• See also

Action type

• Category: Deploy

• Owner: AWS

• Provider: CodeDeploy

• Version: 1

Configuration parameters

ApplicationName

Required: Yes

The name of the application that you created in CodeDeploy.

DeploymentGroupName

Required: Yes

The deployment group that you created in CodeDeploy.

Input artifacts

• Number of artifacts: 1

• Description: The AppSpec file that CodeDeploy uses to determine:

• What to install onto your instances from your application revision in Amazon S3 or GitHub.

Action type API Version 2015-07-09 895

AWS CodePipeline User Guide

• Which lifecycle event hooks to run in response to deployment lifecycle events.

For more information about the AppSpec file, see the CodeDeploy AppSpec File Reference.

Output artifacts

• Number of artifacts: 0

• Description: Output artifacts do not apply for this action type.

Action declaration

YAML

Name: Deploy
Actions:
 - Name: Deploy
 ActionTypeId:
 Category: Deploy
 Owner: AWS
 Provider: CodeDeploy
 Version: '1'
 RunOrder: 1
 Configuration:
 ApplicationName: my-application
 DeploymentGroupName: my-deployment-group
 OutputArtifacts: []
 InputArtifacts:
 - Name: SourceArtifact
 Region: us-west-2
 Namespace: DeployVariables

JSON

{
 "Name": "Deploy",
 "Actions": [
 {
 "Name": "Deploy",
 "ActionTypeId": {

Output artifacts API Version 2015-07-09 896

https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html

AWS CodePipeline User Guide

 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CodeDeploy",
 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "ApplicationName": "my-application",
 "DeploymentGroupName": "my-deployment-group"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "us-west-2",
 "Namespace": "DeployVariables"
 }
]
},

See also

The following related resources can help you as you work with this action.

• Tutorial: Create a simple pipeline (S3 bucket) – This tutorial walks you through the creation of
a source bucket, EC2 instances, and CodeDeploy resources to deploy a sample application. You
then build your pipeline with a CodeDeploy deployment action that deploys code maintained in
your S3 bucket to your Amazon EC2 instance.

• Tutorial: Create a simple pipeline (CodeCommit repository) – This tutorial walks you through the
creation of your CodeCommit source repository, EC2 instances, and CodeDeploy resources to
deploy a sample application. You then build your pipeline with a CodeDeploy deployment action
that deploys code from your CodeCommit repository to your Amazon EC2 instance.

• CodeDeploy AppSpec File Reference – This reference chapter in the AWS CodeDeploy User Guide
provides reference information and examples for CodeDeploy AppSpec files.

See also API Version 2015-07-09 897

https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html

AWS CodePipeline User Guide

CodeStarSourceConnection for Bitbucket Cloud, GitHub,
GitHub Enterprise Server, GitLab.com, and GitLab self-managed
actions

Starts a pipeline when a new commit is made on a third-party source code repository. The source
action retrieves code changes when a pipeline is manually run or when a webhook event is sent
from the source provider.

You can configure actions in your pipeline to use a Git configuration that allows you to start your
pipeline with triggers. To configure the pipeline trigger configuration to filter with triggers, see
more details in Filter triggers on code push or pull requests.

Note

This feature is not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

Connections can associate your AWS resources with the following third-party repositories:

• Bitbucket Cloud (through the Bitbucket provider option in the CodePipeline console or the
Bitbucket provider in the CLI)

Note

You can create connections to a Bitbucket Cloud repository. Installed Bitbucket provider
types, such as Bitbucket Server, are not supported.

•
Note

If you are using a Bitbucket workspace, you must have administrator access to create the
connection.

CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and
GitLab self-managed actions

API Version 2015-07-09 898

AWS CodePipeline User Guide

• GitHub and GitHub Enterprise Cloud (through the GitHub (Version 2) provider option in the
CodePipeline console or the GitHub provider in the CLI)

Note

If your repository is in a GitHub organization, you must be the organization owner to
create the connection. If you are using a repository that is not in an organization, you
must be the repository owner.

• GitHub Enterprise Server (through the GitHub Enterprise Server provider option in the
CodePipeline console or the GitHub Enterprise Server provider in the CLI)

• GitLab.com (through the GitLab provider option in the CodePipeline console or the GitLab
provider in the CLI)

Note

You can create connections to a repository where you have the Owner role in GitLab, and
then the connection can be used with the repository with resources such as CodePipeline.
For repositories in groups, you do not need to be the group owner.

• Self-managed installation for GitLab (Enterprise Edition or Community Edition) (through the
GitLab self-managed provider option in the CodePipeline console or the GitLabSelfManaged
provider in the CLI)

Note

Each connection supports all of the repositories you have with that provider. You only need
to create a new connection for each provider type.

Connections allow your pipeline to detect source changes through the third-party provider's
installation app. For example, webhooks are used to subscribe to GitHub event types and can be
installed on an organization, a repository, or a GitHub App. Your connection installs a repository
webhook on your GitHub App that subscribes to GitHub push type events.

After a code change is detected, you have the following options for passing the code to subsequent
actions:

CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and
GitLab self-managed actions

API Version 2015-07-09 899

AWS CodePipeline User Guide

• Default: Like other existing CodePipeline source actions, CodeStarSourceConnection can
output a ZIP file with a shallow copy of your commit.

• Full clone: CodeStarSourceConnection can also be configured to output a URL reference to
the repo for subsequent actions.

Currently, the Git URL reference can only be used by downstream CodeBuild actions to clone
the repo and associated Git metadata. Attempting to pass a Git URL reference to non-CodeBuild
actions results in an error.

CodePipeline prompts you to add the AWS Connector installation app to your third-party account
when you create a connection. You must have already created your third-party provider account
and repository before you can connect through the CodeStarSourceConnection action.

Note

To create or attach a policy to your role with the permissions required to use AWS
CodeStar connections, see Connections permissions reference. Depending on when your
CodePipeline service role was created, you might need to update its permissions to support
AWS CodeStar connections. For instructions, see Add permissions to the CodePipeline
service role.

Note

To use connections in the Europe (Milan) AWS Region, you must:

1. Install a Region-specific app

2. Enable the Region

This Region-specific app supports connections in the Europe (Milan) Region. It is published
on the third-party provider site, and it is separate from the existing app supporting
connections for other Regions. By installing this app, you authorize third-party providers to
share your data with the service for this Region only, and you can revoke the permissions at
any time by uninstalling the app.
The service will not process or store your data unless you enable the Region. By enabling
this Region, you grant our service permissions to process and store your data.

CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and
GitLab self-managed actions

API Version 2015-07-09 900

https://docs.aws.amazon.com/dtconsole/latest/userguide/security-iam.html#permissions-reference-connections

AWS CodePipeline User Guide

Even if the Region is not enabled, third-party providers can still share your data with our
service if the Region-specific app remains installed, so make sure to uninstall the app once
you disable the Region. For more information, see Enabling a Region.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Action declaration

• Installing the installation app and creating a connection

• See also

Action type

• Category: Source

• Owner: AWS

• Provider: CodeStarSourceConnection

• Version: 1

Configuration parameters

ConnectionArn

Required: Yes

The connection ARN that is configured and authenticated for the source provider.

FullRepositoryId

Required: Yes

The owner and name of the repository where source changes are to be detected.

Action type API Version 2015-07-09 901

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable

AWS CodePipeline User Guide

Example: some-user/my-repo

Important

You must maintain the correct case for the FullRepositoryId value. For example, if
your user name is some-user and repo name is My-Repo, the recommended value of
FullRepositoryId is some-user/My-Repo.

BranchName

Required: Yes

The name of the branch where source changes are to be detected.

OutputArtifactFormat

Required: No

Specifies the output artifact format. Can be either CODEBUILD_CLONE_REF or CODE_ZIP. If
unspecified, the default is CODE_ZIP.

Important

The CODEBUILD_CLONE_REF option can only be used by CodeBuild downstream
actions.
If you choose this option, you will need to update the permissions for your CodeBuild
project service role as shown in Add CodeBuild GitClone permissions for connections to
Bitbucket, GitHub, GitHub Enterprise Server, or GitLab.com. For a tutorial that shows
you how to use the Full clone option, see Tutorial: Use full clone with a GitHub pipeline
source.

DetectChanges

Required: No

Controls automatically starting your pipeline when a new commit is made on the configured
repository and branch. If unspecified, the default value is true, and the field does not display
by default. Valid values for this parameter:

• true: CodePipeline automatically starts your pipeline on new commits.

Configuration parameters API Version 2015-07-09 902

AWS CodePipeline User Guide

• false: CodePipeline does not start your pipeline on new commits.

Input artifacts

• Number of artifacts: 0

• Description: Input artifacts do not apply for this action type.

Output artifacts

• Number of artifacts: 1

• Description: The artifacts generated from the repository are the output artifacts for the
CodeStarSourceConnection action. The source code commit ID is displayed in CodePipeline
as the source revision for the triggered pipeline execution. You can configure the output artifact
of this action in:

• A ZIP file that contains the contents of the configured repository and branch at the commit
specified as the source revision for the pipeline execution.

• A JSON file that contains a URL reference to the repository so that downstream actions can
perform Git commands directly.

Important

This option can only be used by CodeBuild downstream actions.
If you choose this option, you will need to update the permissions for your CodeBuild
project service role as shown in Troubleshooting CodePipeline. For a tutorial that
shows you how to use the Full clone option, see Tutorial: Use full clone with a GitHub
pipeline source.

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. This action produces variables which can be viewed as
output variables, even if the action doesn't have a namespace. You configure an action with a
namespace to make those variables available to the configuration of downstream actions.

For more information, see Variables.

Input artifacts API Version 2015-07-09 903

AWS CodePipeline User Guide

AuthorDate

The date when the commit was authored, in timestamp format.

BranchName

The name of the branch for the repository where the source change was made.

CommitId

The commit ID that triggered the pipeline execution.

CommitMessage

The description message, if any, associated with the commit that triggered the pipeline
execution.

ConnectionArn

The connection ARN that is configured and authenticated for the source provider.

FullRepositoryName

The name of the repository where the commit that triggered the pipeline was made.

Action declaration

In the following example, the output artifact is set to the default ZIP format of CODE_ZIP
for the connection with ARN arn:aws:codestar-connections:region:account-
id:connection/connection-id.

YAML

Name: Source
Actions:
 - InputArtifacts: []
 ActionTypeId:
 Version: '1'
 Owner: AWS
 Category: Source
 Provider: CodeStarSourceConnection
 OutputArtifacts:
 - Name: SourceArtifact

Action declaration API Version 2015-07-09 904

AWS CodePipeline User Guide

 RunOrder: 1
 Configuration:
 ConnectionArn: "arn:aws:codestar-connections:region:account-
id:connection/connection-id"
 FullRepositoryId: "some-user/my-repo"
 BranchName: "main"
 OutputArtifactFormat: "CODE_ZIP"
 Name: ApplicationSource

JSON

{
 "Name": "Source",
 "Actions": [
 {
 "InputArtifacts": [],
 "ActionTypeId": {
 "Version": "1",
 "Owner": "AWS",
 "Category": "Source",
 "Provider": "CodeStarSourceConnection"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "RunOrder": 1,
 "Configuration": {
 "ConnectionArn": "arn:aws:codestar-connections:region:account-
id:connection/connection-id",
 "FullRepositoryId": "some-user/my-repo",
 "BranchName": "main",
 "OutputArtifactFormat": "CODE_ZIP"
 },
 "Name": "ApplicationSource"
 }
]
},

Action declaration API Version 2015-07-09 905

AWS CodePipeline User Guide

Installing the installation app and creating a connection

The first time you use the console to add a new connection to a third-party repository, you must
authorize CodePipeline access to your repositories. You choose or create an installation app that
helps you connect to the account where you have created your third-party code repository.

When you use the AWS CLI or an AWS CloudFormation template, you must provide the connection
ARN of a connection that has already gone through the installation handshake. Otherwise, the
pipeline is not triggered.

Note

For a CodeStarSourceConnection source action, you do not have to set up a webhook
or default to polling. The connections action manages your source change detection for
you.

See also

The following related resources can help you as you work with this action.

• AWS::CodeStarConnections::Connection – The AWS CloudFormation template reference for the
AWS CodeStar Connections resource provides parameters and examples for connections in AWS
CloudFormation templates.

• AWS CodeStar Connections API Reference – The AWS CodeStar Connections API Reference
provides reference information for the available connections actions.

• To view the steps for creating a pipeline with source actions supported by connections, see the
following:

• For Bitbucket Cloud, use the Bitbucket option in the console or the
CodestarSourceConnection action in the CLI. See Bitbucket Cloud connections.

• For GitHub and GitHub Enterprise Cloud, use the GitHub provider option in the console or the
CodestarSourceConnection action in the CLI. See GitHub connections.

• For GitHub Enterprise Server, use the GitHub Enterprise Server provider option in the
console or the CodestarSourceConnection action in the CLI. See GitHub Enterprise Server
connections.

Installing the installation app and creating a connection API Version 2015-07-09 906

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codestarconnections-connection.html
https://docs.aws.amazon.com/codestar-connections/latest/APIReference/Welcome.html

AWS CodePipeline User Guide

• For GitLab.com, use the GitLab provider option in the console or the
CodestarSourceConnection action with the GitLab provider in the CLI. See GitLab.com
connections.

• To view a Getting Started tutorial that creates a pipeline with a Bitbucket source and a CodeBuild
action, see Getting started with connections.

• For a tutorial that shows you how to connect to a GitHub repository and use the Full clone
option with a downstream CodeBuild action, see Tutorial: Use full clone with a GitHub pipeline
source.

AWS Device Farm

In your pipeline, you can configure a test action that uses AWS Device Farm to run and test your
application on devices. Device Farm uses test pools of devices and testing frameworks to test
applications on specific devices. For information about the types of testing frameworks supported
by the Device Farm action, see Working with Test Types in AWS Device Farm.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Action declaration

• See also

Action type

• Category: Test

• Owner: AWS

• Provider: DeviceFarm

• Version: 1

AWS Device Farm API Version 2015-07-09 907

https://docs.aws.amazon.com/dtconsole/latest/userguide/getting-started-connections.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types.html

AWS CodePipeline User Guide

Configuration parameters

AppType

Required: Yes

The OS and type of application you are testing. The following is a list of valid values:

• iOS

• Android

• Web

ProjectId

Required: Yes

The Device Farm project ID.

To find your project ID, in the Device Farm console, choose your project. In the browser,
copy the URL of your new project. The URL contains the project ID. The project ID
is the value in the URL after projects/. In the following example, the project ID is
eec4905f-98f8-40aa-9afc-4c1cfexample.

https://<region-URL>/devicefarm/home?region=us-west-2#/projects/
eec4905f-98f8-40aa-9afc-4c1cfexample/runs

App

Required: Yes

The name and location of the application file in your input artifact. For example: s3-ios-
test-1.ipa

TestSpec

Conditional: Yes

The location of the test spec definition file in your input artifact. This is required for custom
mode test.

DevicePoolArn

Required: Yes

Configuration parameters API Version 2015-07-09 908

AWS CodePipeline User Guide

The Device Farm device pool ARN.

To get the available device pool ARNs for the project, including the ARN for Top Devices, use the
AWS CLI to enter the following command:

aws devicefarm list-device-pools --arn arn:aws:devicefarm:us-
west-2:account_ID:project:project_ID

TestType

Required: Yes

Specifies the supported testing framework for your test. The following is a list of valid values
for TestType:

• APPIUM_JAVA_JUNIT

• APPIUM_JAVA_TESTNG

• APPIUM_NODE

• APPIUM_RUBY

• APPIUM_PYTHON

• APPIUM_WEB_JAVA_JUNIT

• APPIUM_WEB_JAVA_TESTNG

• APPIUM_WEB_NODE

• APPIUM_WEB_RUBY

• APPIUM_WEB_PYTHON

• BUILTIN_FUZZ

• INSTRUMENTATION

• XCTEST

• XCTEST_UI

Note

The following test types are not supported by the action in CodePipeline:
WEB_PERFORMANCE_PROFILE, REMOTE_ACCESS_RECORD, and
REMOTE_ACCESS_REPLAY.

Configuration parameters API Version 2015-07-09 909

AWS CodePipeline User Guide

For information about Device Farm test types, see Working with Test Types in AWS Device Farm.

RadioBluetoothEnabled

Required: No

A Boolean value that indicates whether to enable Bluetooth at the beginning of the test.

RecordAppPerformanceData

Required: No

A Boolean value that indicates whether to record device performance data such as CPU, FPS,
and memory performance during the test.

RecordVideo

Required: No

A Boolean value that indicates whether to record video during the test.

RadioWifiEnabled

Required: No

A Boolean value that indicates whether to enable Wi-Fi at the beginning of the test.

RadioNfcEnabled

Required: No

A Boolean value that indicates whether to enable NFC at the beginning of the test.

RadioGpsEnabled

Required: No

A Boolean value that indicates whether to enable GPS at the beginning of the test.

Test

Required: No

The name and path of the test definition file in your source location. The path is relative to the
root of the input artifact for your test.

FuzzEventCount

Required: No

Configuration parameters API Version 2015-07-09 910

https://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types.html

AWS CodePipeline User Guide

The number of user interface events for the fuzz test to perform, between 1 and 10,000.

FuzzEventThrottle

Required: No

The number of milliseconds for the fuzz test to wait before performing the next user interface
event, between 1 and 1,000.

FuzzRandomizerSeed

Required: No

A seed for the fuzz test to use for randomizing user interface events. Using the same number
for subsequent fuzz tests results in identical event sequences.

CustomHostMachineArtifacts

Required: No

The location on the host machine where custom artifacts will be stored.

CustomDeviceArtifacts

Required: No

The location on the device where custom artifacts will be stored.

UnmeteredDevicesOnly

Required: No

A Boolean value that indicates whether to only use your unmetered devices when running tests
in this step.

JobTimeoutMinutes

Required: No

The number of minutes a test run will execute per device before it times out.

Latitude

Required: No

Configuration parameters API Version 2015-07-09 911

AWS CodePipeline User Guide

The latitude of the device expressed in geographic coordinate system degrees.

Longitude

Required: No

The longitude of the device expressed in geographic coordinate system degrees.

Input artifacts

• Number of artifacts: 1

• Description: The set of artifacts to be made available to the test action. Device Farm looks for
the built application and test definitions to use.

Output artifacts

• Number of Artifacts: 0

• Description: Output artifacts do not apply for this action type.

Action declaration

YAML

Name: Test
Actions:
 - Name: TestDeviceFarm
 ActionTypeId: null
 category: Test
 owner: AWS
 provider: DeviceFarm
 version: '1'
RunOrder: 1
Configuration:
 App: s3-ios-test-1.ipa
 AppType: iOS
 DevicePoolArn: >-
 arn:aws:devicefarm:us-west-2::devicepool:0EXAMPLE-d7d7-48a5-ba5c-b33d66efa1f5
 ProjectId: eec4905f-98f8-40aa-9afc-4c1cfEXAMPLE
 TestType: APPIUM_PYTHON

Input artifacts API Version 2015-07-09 912

AWS CodePipeline User Guide

 TestSpec: example-spec.yml
OutputArtifacts: []
InputArtifacts:
 - Name: SourceArtifact
Region: us-west-2

JSON

{
 "Name": "Test",
 "Actions": [
 {
 "Name": "TestDeviceFarm",
 "ActionTypeId": null,
 "category": "Test",
 "owner": "AWS",
 "provider": "DeviceFarm",
 "version": "1"
 }
],
 "RunOrder": 1,
 "Configuration": {
 "App": "s3-ios-test-1.ipa",
 "AppType": "iOS",
 "DevicePoolArn": "arn:aws:devicefarm:us-west-2::devicepool:0EXAMPLE-
d7d7-48a5-ba5c-b33d66efa1f5",
 "ProjectId": "eec4905f-98f8-40aa-9afc-4c1cfEXAMPLE",
 "TestType": "APPIUM_PYTHON",
 "TestSpec": "example-spec.yml"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "Region": "us-west-2"
},

See also

The following related resources can help you as you work with this action.

See also API Version 2015-07-09 913

AWS CodePipeline User Guide

• Working with Test Types in Device Farm – This reference chapter in the Device Farm Developer
Guide provides more description about the Android, iOS, and Web Application testing
frameworks supported by Device Farm.

• Actions in Device Farm – The API calls and parameters in the Device Farm API Reference can help
you work with Device Farm projects.

• Tutorial: Create a pipeline that builds and tests your Android app with AWS Device Farm – This
tutorial provides a sample build spec file and sample application to create a pipeline with a
GitHub source that builds and tests an Android app with CodeBuild and Device Farm.

• Tutorial: Create a pipeline that tests your iOS app with AWS Device Farm – This tutorial provides
a sample application to create a pipeline with an Amazon S3 source that tests a built iOS app
with Device Farm.

AWS Lambda

Allows you to execute a Lambda function as an action in your pipeline. Using the event object
that is an input to this function, the function has access to the action configuration, input
artifact locations, output artifact locations, and other information required to access the
artifacts. For an example event passed to a Lambda invoke function, see Example JSON event.
As part of the implementation of the Lambda function, there must be a call to either the
PutJobSuccessResult API or PutJobFailureResult API. Otherwise, the execution of this
action hangs until the action times out. If you specify output artifacts for the action, they must be
uploaded to the S3 bucket as part of the function implementation.

Important

Do not log the JSON event that CodePipeline sends to Lambda because this can result
in user credentials being logged in CloudWatch Logs. The CodePipeline role uses a JSON
event to pass temporary credentials to Lambda in the artifactCredentials field. For
an example event, see Example JSON event.

Action type

• Category: Invoke

• Owner: AWS

• Provider: Lambda

AWS Lambda API Version 2015-07-09 914

https://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobSuccessResult.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobFailureResult.html

AWS CodePipeline User Guide

• Version: 1

Configuration parameters

FunctionName

Required: Yes

FunctionName is the name of the function created in Lambda.

UserParameters

Required: No

A string that can be processed as input by the Lambda function.

Input artifacts

• Number of Artifacts: 0 to 5

• Description: The set of artifacts to be made available to the Lambda function.

Output artifacts

• Number of Artifacts: 0 to 5

• Description: The set of artifacts produced as output by the Lambda function.

Output variables

This action will produce as variables all key-value pairs that are included in the outputVariables
section of the PutJobSuccessResult API request.

For more information about variables in CodePipeline, see Variables.

Example action configuration

YAML

Name: Lambda

Configuration parameters API Version 2015-07-09 915

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobSuccessResult.html

AWS CodePipeline User Guide

Actions:
 - Name: Lambda
 ActionTypeId:
 Category: Invoke
 Owner: AWS
 Provider: Lambda
 Version: '1'
 RunOrder: 1
 Configuration:
 FunctionName: myLambdaFunction
 UserParameters: 'http://192.0.2.4'
 OutputArtifacts: []
 InputArtifacts: []
 Region: us-west-2

JSON

{
 "Name": "Lambda",
 "Actions": [
 {
 "Name": "Lambda",
 "ActionTypeId": {
 "Category": "Invoke",
 "Owner": "AWS",
 "Provider": "Lambda",
 "Version": "1"
 },
 "RunOrder": 1,
 "Configuration": {
 "FunctionName": "myLambdaFunction",
 "UserParameters": "http://192.0.2.4"
 },
 "OutputArtifacts": [],
 "InputArtifacts": [],
 "Region": "us-west-2"
 }
]
},

Example action configuration API Version 2015-07-09 916

AWS CodePipeline User Guide

Example JSON event

The Lambda action sends a JSON event that contains the job ID, the pipeline action configuration,
input and output artifact locations, and any encryption information for the artifacts. The job
worker accesses these details to complete the Lambda action. For more information, see job
details. The following is an example event.

{
 "CodePipeline.job": {
 "id": "11111111-abcd-1111-abcd-111111abcdef",
 "accountId": "111111111111",
 "data": {
 "actionConfiguration": {
 "configuration": {
 "FunctionName": "MyLambdaFunction",
 "UserParameters": "input_parameter"
 }
 },
 "inputArtifacts": [
 {
 "location": {
 "s3Location": {
 "bucketName": "bucket_name",
 "objectKey": "filename"
 },
 "type": "S3"
 },
 "revision": null,
 "name": "ArtifactName"
 }
],
 "outputArtifacts": [],
 "artifactCredentials": {
 "secretAccessKey": "secret_key",
 "sessionToken": "session_token",
 "accessKeyId": "access_key_ID"
 },
 "continuationToken": "token_ID",
 "encryptionKey": {
 "id": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "type": "KMS"
 }

Example JSON event API Version 2015-07-09 917

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_JobDetails.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_JobDetails.html

AWS CodePipeline User Guide

 }
 }
}

The JSON event provides the following job details for the Lambda action in CodePipeline:

• id: The unique system-generated ID of the job.

• accountId: The AWS account ID associated with the job.

• data: Other information required for a job worker to complete the job.

• actionConfiguration: The action parameters for the Lambda action. For definitions, see
Configuration parameters .

• inputArtifacts: The artifact supplied to the action.

• location: The artifact store location.

• s3Location: The input artifact location information for the action.

• bucketName: The name of the pipeline artifact store for the action (for example, an
Amazon S3 bucket named codepipeline-us-east-2-1234567890).

• objectKey: The name of the application (for example,
CodePipelineDemoApplication.zip).

• type: The type of artifact in the location. Currently, S3 is the only valid artifact type.

• revision: The artifact's revision ID. Depending on the type of object, this can be a commit
ID (GitHub) or a revision ID (Amazon Simple Storage Service). For more information, see
ArtifactRevision.

• name: The name of the artifact to be worked on, such as MyApp.

• outputArtifacts: The output of the action.

• location: The artifact store location.

• s3Location: The output artifact location information for the action.

• bucketName: The name of the pipeline artifact store for the action (for example, an
Amazon S3 bucket named codepipeline-us-east-2-1234567890).

• objectKey: The name of the application (for example,
CodePipelineDemoApplication.zip).

• type: The type of artifact in the location. Currently, S3 is the only valid artifact type.

Example JSON event API Version 2015-07-09 918

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ArtifactRevision.html

AWS CodePipeline User Guide

• revision: The artifact's revision ID. Depending on the type of object, this can be a commit
ID (GitHub) or a revision ID (Amazon Simple Storage Service). For more information, see
ArtifactRevision.

• name: The name of the output of an artifact, such as MyApp.

• artifactCredentials: The AWS session credentials used to access input and output
artifacts in the Amazon S3 bucket. These credentials are temporary credentials that are issued
by AWS Security Token Service (AWS STS).

• secretAccessKey: The secret access key for the session.

• sessionToken: The token for the session.

• accessKeyId: The secret access key for the session.

• continuationToken: A token generated by the action. Future actions use this token to
identify the running instance of the action. When the action is complete, no continuation
token should be supplied.

• encryptionKey: The encryption key used to encrypt the data in the artifact store, such as an
AWS KMS key. If this is undefined, the default key for Amazon Simple Storage Service is used.

• id: The ID used to identify the key. For an AWS KMS key, you can use the key ID, the key
ARN, or the alias ARN.

• type: The type of encryption key, such as an AWS KMS key.

See also

The following related resources can help you as you work with this action.

• AWS CloudFormation User Guide – For more information about Lambda actions and AWS
CloudFormation artifacts for pipelines, see Using Parameter Override Functions with
CodePipeline Pipelines, Automating Deployment of Lambda-based Applications, and AWS
CloudFormation Artifacts.

• Invoke an AWS Lambda function in a pipeline in CodePipeline – This procedure provides a sample
Lambda function and shows you how to use the console to create a pipeline with a Lambda
invoke action.

See also API Version 2015-07-09 919

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ArtifactRevision.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-parameter-override-functions.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-parameter-override-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/automating-deployment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-cfn-artifacts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-cfn-artifacts.html

AWS CodePipeline User Guide

Snyk action structure reference

The Snyk action in CodePipeline automates detecting and fixing security vulnerabilities in your
open source code. You can use Snyk with application source code in your third-party repository,
such as GitHub or Bitbucket Cloud, or with images for container applications. Your action will scan
and report on vulnerability levels and alerts that you configure.

Note

Topics

• Action type ID

• Input artifacts

• Output artifacts

• See also

Action type ID

• Category: Invoke

• Owner: ThirdParty

• Provider: Snyk

• Version: 1

Example:

 {
 "Category": "Invoke",
 "Owner": "ThirdParty",
 "Provider": "Snyk",
 "Version": "1"
 },

Snyk API Version 2015-07-09 920

AWS CodePipeline User Guide

Input artifacts

• Number of artifacts: 1

• Description: The files that make up the input artifact for the invoke action.

Output artifacts

• Number of artifacts: 1

• Description: The files that make up the output artifact for the invoke action.

See also

The following related resources can help you as you work with this action.

• For more information about using Snyk actions in CodePipeline, refer to Automate vulnerability
scanning in CodePipeline with Snyk.

AWS Step Functions

An AWS CodePipeline action that does the following:

• Starts an AWS Step Functions state machine execution from your pipeline.

• Provides an initial state to the state machine through either a property in the action
configuration or a file located in a pipeline artifact to be passed as input.

• Optionally sets an execution ID prefix for identifying executions originating from the action.

• Supports Standard and Express state machines.

Note

This feature is not available in the Asia Pacific (Hong Kong) and Europe (Milan) Regions. To
reference other available actions, see Product and service integrations with CodePipeline.

Input artifacts API Version 2015-07-09 921

https://snyk.io/blog/automate-vulnerability-scanning-in-aws-codepipeline-with-snyk/
https://snyk.io/blog/automate-vulnerability-scanning-in-aws-codepipeline-with-snyk/
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html

AWS CodePipeline User Guide

Action type

• Category: Invoke

• Owner: AWS

• Provider: StepFunctions

• Version: 1

Configuration parameters

StateMachineArn

Required: Yes

The Amazon Resource Name (ARN) for the state machine to be invoked.

ExecutionNamePrefix

Required: No

By default, the action execution ID is used as the state machine execution name. If a prefix is
provided, it is prepended to the action execution ID with a hyphen and together used as the
state machine execution name.

myPrefix-1624a1d1-3699-43f0-8e1e-6bafd7fde791

For an express state machine, the name should only contain 0-9, A-Z, a-z, - and _.

InputType

Required: No

• Literal (default): When specified, the value in the Input field is passed directly to the state
machine input.

Example entry for the Input field when Literal is selected:

{"action": "test"}

• FilePath: The contents of a file in the input artifact specified by the Input field is used as the
input for the state machine execution. An input artifact is required when InputType is set to
FilePath.

Action type API Version 2015-07-09 922

AWS CodePipeline User Guide

Example entry for the Input field when FilePath is selected:

assets/input.json

Input

Required: Conditional

• Literal: When InputType is set to Literal (default), this field is optional.

If provided, the Input field is used directly as the input for the state machine execution.
Otherwise, the state machine is invoked with an empty JSON object {}.

• FilePath: When InputType is set to FilePath, this field is required.

An input artifact is also required when InputType is set to FilePath.

The contents of the file in the input artifact specified are used as the input for the state
machine execution.

Input artifacts

• Number of artifacts: 0 to 1

• Description: If InputType is set to FilePath, this artifact is required and is used to source the
input for the state machine execution.

Output artifacts

• Number of artifacts: 0 to 1

• Description:

• Standard State Machines: If provided, the output artifact is populated with the output
of the state machine. This is obtained from the output property of the Step Functions
DescribeExecution API response after the state machine execution completes successfully.

• Express State Machines: Not supported.

Input artifacts API Version 2015-07-09 923

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html

AWS CodePipeline User Guide

Output variables

This action produces output variables that can be referenced by the action configuration of a
downstream action in the pipeline.

For more information, see Variables.

StateMachineArn

The ARN of the state machine.

ExecutionArn

The ARN of the execution of the state machine. Standard state machines only.

Example action configuration

Example for default input

YAML

Name: ActionName
ActionTypeId:
 Category: Invoke
 Owner: AWS
 Version: 1
 Provider: StepFunctions
OutputArtifacts:
 - Name: myOutputArtifact
Configuration:
 StateMachineArn: arn:aws:states:us-east-1:111122223333:stateMachine:HelloWorld-
StateMachine
 ExecutionNamePrefix: my-prefix

JSON

{
 "Name": "ActionName",
 "ActionTypeId": {
 "Category": "Invoke",
 "Owner": "AWS",

Output variables API Version 2015-07-09 924

AWS CodePipeline User Guide

 "Version": 1,
 "Provider": "StepFunctions"
 },
 "OutputArtifacts": [
 {
 "Name": "myOutputArtifact"
 }
],
 "Configuration": {
 "StateMachineArn": "arn:aws:states:us-
east-1:111122223333:stateMachine:HelloWorld-StateMachine",
 "ExecutionNamePrefix": "my-prefix"
 }
}

Example for literal input

YAML

Name: ActionName
ActionTypeId:
 Category: Invoke
 Owner: AWS
 Version: 1
 Provider: StepFunctions
OutputArtifacts:
 - Name: myOutputArtifact
Configuration:
 StateMachineArn: arn:aws:states:us-east-1:111122223333:stateMachine:HelloWorld-
StateMachine
 ExecutionNamePrefix: my-prefix
 Input: '{"action": "test"}'

JSON

{
 "Name": "ActionName",
 "ActionTypeId": {
 "Category": "Invoke",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "StepFunctions"

Example action configuration API Version 2015-07-09 925

AWS CodePipeline User Guide

 },
 "OutputArtifacts": [
 {
 "Name": "myOutputArtifact"
 }
],
 "Configuration": {
 "StateMachineArn": "arn:aws:states:us-
east-1:111122223333:stateMachine:HelloWorld-StateMachine",
 "ExecutionNamePrefix": "my-prefix",
 "Input": "{\"action\": \"test\"}"
 }
}

Example for input file

YAML

Name: ActionName
InputArtifacts:
 - Name: myInputArtifact
ActionTypeId:
 Category: Invoke
 Owner: AWS
 Version: 1
 Provider: StepFunctions
OutputArtifacts:
 - Name: myOutputArtifact
Configuration:
 StateMachineArn: 'arn:aws:states:us-east-1:111122223333:stateMachine:HelloWorld-
StateMachine'
 ExecutionNamePrefix: my-prefix
 InputType: FilePath
 Input: assets/input.json

JSON

{
 "Name": "ActionName",
 "InputArtifacts": [
 {
 "Name": "myInputArtifact"

Example action configuration API Version 2015-07-09 926

AWS CodePipeline User Guide

 }
],
 "ActionTypeId": {
 "Category": "Invoke",
 "Owner": "AWS",
 "Version": 1,
 "Provider": "StepFunctions"
 },
 "OutputArtifacts": [
 {
 "Name": "myOutputArtifact"
 }
],
 "Configuration": {
 "StateMachineArn": "arn:aws:states:us-
east-1:111122223333:stateMachine:HelloWorld-StateMachine",
 "ExecutionNamePrefix": "my-prefix",
 "InputType": "FilePath",
 "Input": "assets/input.json"
 }
}

Behavior

During a release, CodePipeline executes the configured state machine using the input as specified
in the action configuration.

When InputType is set to Literal, the content of the Input action configuration field is used as the
input for the state machine. When literal input is not provided, the state machine execution uses
an empty JSON object {}. For more information about running a state machine execution without
input, see the Step Functions StartExecution API.

When InputType is set to FilePath, the action unzips the input artifact and uses the content of
the file specified in the Input action configuration field as the input for the state machine. When
FilePath is specified, the Input field is required and an input artifact must exist; otherwise, the
action fails.

After a successful start execution, behavior will diverge for the two state machine types, standard
and express.

Behavior API Version 2015-07-09 927

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS CodePipeline User Guide

Standard state machines

If the standard state machine execution was successfully started, CodePipeline polls the
DescribeExecution API until the execution reaches a terminal status. If the execution completes
successfully, the action succeeds; otherwise, it fails.

If an output artifact is configured, the artifact will contain the return value of the state machine.
This is obtained from the output property of the Step Functions DescribeExecution API response
after the state machine execution completes successfully. Note that there are output length
constraints enforced on this API.

Error handling

• If the action fails to start a state machine execution, the action execution fails.

• If the state machine execution fails to reach a terminal status before the CodePipeline Step
Functions action reaches its timeout (default of 7 days), the action execution fails. The state
machine might continue despite this failure. For more information about state machine
execution timeouts in Step Functions, see Standard vs. Express Workflows.

Note

You can request a quota increase for the invoke action timeout for the account with the
action. However, the quota increase applies to all actions of this type in all Regions for
that account.

• If the state machine execution reaches a terminal status of FAILED, TIMED_OUT, or ABORTED, the
action execution fails.

Express state machines

If the express state machine execution was successfully started, the invoke action execution
completes successfully.

Considerations for actions configured for express state machines:

• You cannot designate an output artifact.

• The action does not wait for the state machine execution to complete.

• After the action execution is started in CodePipeline, the action execution succeeds even if the
state machine execution fails.

Behavior API Version 2015-07-09 928

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html

AWS CodePipeline User Guide

Error handling

• If CodePipeline fails to start a state machine execution, the action execution fails. Otherwise, the
action succeeds immediately. The action succeeds in CodePipeline regardless of how long the
state machine execution takes to complete or its outcome.

See also

The following related resources can help you as you work with this action.

• AWS Step Functions Developer Guide – For information about state machines, executions, and
inputs for state machines, see the AWS Step Functions Developer Guide.

• Tutorial: Use an AWS Step Functions invoke action in a pipeline – This tutorial gets you started
with a sample standard state machine and shows you how to use the console to update a
pipeline by adding a Step Functions invoke action.

See also API Version 2015-07-09 929

https://docs.aws.amazon.com/step-functions/latest/dg/

AWS CodePipeline User Guide

Integration model reference

There are several pre-built integrations for third-party services to help build existing customer
tools into the pipeline release process. Partners, or third-party service providers, use an integration
model to implement action types for use in CodePipeline.

Use this reference when you are planning or working with action types that are managed with a
supported integration model in CodePipeline.

To certify your third-party action type as a partner integration with CodePipeline, reference the
AWS Partner Network (APN). This information is a supplement to the AWS CLI Reference.

Topics

• How third-party action types work with the integrator

• Concepts

• Supported integration models

• Lambda integration model

• Job worker integration model

How third-party action types work with the integrator

You can add third-party action types to customer pipelines to complete tasks on customer
resources. The integrator manages job requests and runs the action with CodePipeline. The
following diagram shows a third-party action type created for customers to use in their pipeline.
After the customer configures the action, the action runs and creates job requests that are handled
by the integrator's action engine.

How third-party action types work with the integrator API Version 2015-07-09 930

https://docs.aws.amazon.com/cli/latest/reference/

AWS CodePipeline User Guide

The diagram shows the following steps:

1. The action definition is registered and made available in CodePipeline. The third-party action is
available for customers of the third-party provider.

2. The provider's customer chooses and configures the action in CodePipeline.

3. The action runs and jobs are queued in CodePipeline. When the job is ready in CodePipeline, it
sends a job request.

4. The integrator (the job worker for third-party polling APIs or the Lambda function) picks up the
job request, returns a confirmation, and works on the artifacts for the actions.

5. The integrator returns success/failure output (the job worker uses success/failure APIs or the
Lambda function sends success/failure output) with a job result and a continuation token.

For information about the steps you can use to request, view, and update an action type, see
Working with action types.

Concepts

This section uses the following terms for third-party action types:

Action type

A repeatable process that can be re-used in pipelines that performs the same continuous
delivery workloads. Action types are identified by an Owner, Category, Provider, and
Version. For example:

 {

 "Category": "Deploy",
 "Owner": "AWS",
 "Provider": "CodeDeploy",
 "Version": "1"
 },

All actions of the same type share the same implementation.

Concepts API Version 2015-07-09 931

AWS CodePipeline User Guide

Action

A single instance of an action type, one of the discrete processes that happens inside a stage of
a pipeline. This typically includes the user values specific to the pipeline that this action runs in.

Action definition

The schema for an action type that defines the properties required to configure the action and
input/output artifacts.

Action execution

A collection of jobs that have been run to determine whether the action on the customer’s
pipeline was successful or not.

Action execution engine

A property of the action execution configuration that defines the integration type used by an
action type. Valid values are JobWorker and Lambda.

Integration

Describes a piece of software run by an integrator to implement an action type. CodePipeline
supports two integration types corresponding to the two supported action engines JobWorker
and Lambda.

Integrator

The person who owns the implementation of an action type.

Job

A piece of work with pipeline and customer context to execute an integration. An action
execution is composed of one or more jobs.

Job worker

The service that processes the customer input and runs a job.

Supported integration models

CodePipeline has two integration models:

• Lambda integration model: This integration model is the preferred way to work with action
types in CodePipeline. The Lambda integration model uses a Lambda function to process job
requests when your action runs.

Supported integration models API Version 2015-07-09 932

AWS CodePipeline User Guide

• Job worker integration model: The job worker integration model is the previously used model
for third-party integrations. The job worker integration model uses a job worker configured to
contact the CodePipeline APIs to process job requests when your action runs.

For comparison, the following table describes the features of the two models:

 Lambda integration model Job worker integration model

Description The integrator writes the integrati
on as a Lambda function,
which is invoked by CodePipel
ine whenever there is a job
available for the action. The
Lambda function does not poll
for available jobs but instead
waits until the next job request is
received.

The integrator writes the
integration as a job worker that
polls constantly for available
jobs on the customer's pipelines
. The job worker then executes
the job and submits the job
result back to CodePipeline by
using CodePipeline APIs.

Infrastructure AWS Lambda Deploy job worker code to
integrator's infrastructure, like
Amazon EC2 instances.

Development effort The integration only contains the
business logic.

The integration needs to interact
with CodePipeline APIs in
addition to containing the
business logic.

Ops effort Lesser ops effort since infrastru
cture is only AWS resources.

Higher ops effort because the
job worker needs its standalone
hardware.

Max Job Run Time If the integration needs to
actively run for more than 15
minutes, this model cannot be
used. This action is for integrato
rs who need to start a process
(for example, initiate a build on
customer's code artifact) and

Very long running jobs (hours/
days) can be sustained using this
model.

Supported integration models API Version 2015-07-09 933

AWS CodePipeline User Guide

 Lambda integration model Job worker integration model

return a result when it finishes.
We do not recommend that the
integrator continue waiting on
the build to finish. Instead, return
a continuation. CodePipeline
creates a new job in another
30 seconds if a continuation is
received from the integrator's
code to check on the job until it
finishes.

Lambda integration model

The supported Lambda integration model includes creating the Lambda function and defining
output for the third-party action type.

Update your Lambda function to handle the input from CodePipeline

You can create a new Lambda function. You can add business logic to your Lambda function that
is run whenever there’s a job available on your pipeline for your action type. For instance, given
the context of the customer and pipeline, you might want to start a build in your service for the
customer.

Use the following parameters to update your Lambda function to handle the input from
CodePipeline.

Format:

• jobId:

• The unique system-generated ID of the job.

• Type: String

• Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

• accountId:

• The ID of the customer's AWS account to use when performing the job.

• Type: String

Lambda integration model API Version 2015-07-09 934

AWS CodePipeline User Guide

• Pattern: [0-9]{12}

• data:

• Other information about a job that an integration uses to complete the job.

• Contains a map of the following:

• actionConfiguration:

• The configuration data for the action. The action configuration fields are a mapping
of key-value pairs for your customer to enter values. The keys are determined by the
key parameters in the action type definition file when you set up your action. In this
example, the values are determined by the user of the action specifying information in the
Username and Password fields.

• Type: String to string map, optionally present

Example:

 "configuration": {
 "Username": "MyUser",
 "Password": "MyPassword"
 },

• encryptionKey:

• Represents information about the key used to encrypt data in the artifact store, such as an
AWS KMS key.

• Contents: Type of the data type encryptionKey, optionally present

• inputArtifacts:

• List of information about an artifact to be worked on, such as a test or build artifact.

• Contents: List of the data type Artifact, optionally present

• outputArtifacts:

• List of information about the output of an action.

• Contents: List of the data type Artifact, optionally present

• actionCredentials:

• Represents an AWS session credentials object. These credentials are temporary credentials
that are issued by AWS STS. They can be used to access input and output artifacts in the
S3 bucket used to store artifacts for the pipeline in CodePipeline.

Update your Lambda function to handle the input from CodePipeline API Version 2015-07-09 935

AWS CodePipeline User Guide

These credentials also have the same permissions as the specified policy statements
template in the action type definition file.

• Contents: Type of the data type AWSSessionCredentials, optionally present

• actionExecutionId:

• The external ID of the run of the action.

• Type: String

• continuationToken:

• A system-generated token, such as a deployment ID, required by a job to continue the job
asynchronously.

• Type: String, optionally present

Data Types:

• encryptionKey:

• id:

• The ID used to identify the key. For an AWS KMS key, you can use the key ID, the key ARN, or
the alias ARN.

• Type: String

• type:

• The type of encryption key, such as an AWS KMS key.

• Type: String

• Valid values: KMS

• Artifact:

• name:

• The artifact's name.

• Type: String, optionally present

• revision:

• The artifact's revision ID. Depending on the type of object, this could be a commit ID
(GitHub) or a revision ID (Amazon S3).

• Type: String, optionally present

• location:
Update your Lambda function to handle the input from CodePipeline API Version 2015-07-09 936

AWS CodePipeline User Guide

• The location of an artifact.

• Contents: Type of the data type ArtifactLocation, optionally present

• ArtifactLocation:

• type:

• The type of artifact in the location.

• Type: String, optionally present

• Valid values: S3

• s3Location:

• The location of the S3 bucket that contains a revision.

• Contents: Type of the data type S3Location, optionally present

• S3Location:

• bucketName:

• The name of the S3 bucket.

• Type: String

• objectKey:

• The key of the object in the S3 bucket, which uniquely identifies the object in the bucket.

• Type: String

• AWSSessionCredentials:

• accessKeyId:

• The access key for the session.

• Type: String

• secretAccessKey:

• The secret access key for the session.

• Type: String

• sessionToken:

• The token for the session.

• Type: String

Example:

{
Update your Lambda function to handle the input from CodePipeline API Version 2015-07-09 937

AWS CodePipeline User Guide

 "jobId": "01234567-abcd-abcd-abcd-012345678910",
 "accountId": "012345678910",
 "data": {
 "actionConfiguration": {
 "key1": "value1",
 "key2": "value2"
 },
 "encryptionKey": {
 "id": "123-abc",
 "type": "KMS"
 },
 "inputArtifacts": [
 {
 "name": "input-art-name",
 "location": {
 "type": "S3",
 "s3Location": {
 "bucketName": "inputBucket",
 "objectKey": "inputKey"
 }
 }
 }
],
 "outputArtifacts": [
 {
 "name": "output-art-name",
 "location": {
 "type": "S3",
 "s3Location": {
 "bucketName": "outputBucket",
 "objectKey": "outputKey"
 }
 }
 }
],
 "actionExecutionId": "actionExecutionId",
 "actionCredentials": {
 "accessKeyId": "access-id",
 "secretAccessKey": "secret-id",
 "sessionToken": "session-id"
 },
 "continuationToken": "continueId-xxyyzz"
 }

Update your Lambda function to handle the input from CodePipeline API Version 2015-07-09 938

AWS CodePipeline User Guide

}

Return the results from your Lambda function to CodePipeline

The integrator's job worker resource must return a valid payload in success, failure, or continuation
cases.

Format:

• result: The result of the job.

• Required

• Valid values (case insensitive):

• Success: Indicates a job is successful and terminal.

• Continue: Indicates a job is successful and must continue, for example if the job worker is
reinvoked for the same action execution.

• Fail: Indicates a job has failed and is terminal.

• failureType: A failure type to be associated with a failed job.

The failureType category for partner actions describes the type of failure that was
encountered while running the job. Integrators set the type along with the failure message when
returning a job failure result back to CodePipeline.

• Optional. Required if result is Fail.

• Must be null if result is Success or Continue

• Valid values:

• ConfigurationError

• JobFailed

• PermissionsError

• RevisionOutOfSync

• RevisionUnavailable

• SystemUnavailable

• continuation: Continuation state to be passed to the next job within the current action
execution.

• Optional. Required if result is Continue.

• Must be null if result is Success or Fail.
Return the results from your Lambda function to CodePipeline API Version 2015-07-09 939

AWS CodePipeline User Guide

• Properties:

• State: A hash of the state to be passed.

• status: Status of the action execution.

• Optional.

• Properties:

• ExternalExecutionId: An optional external execution ID or commit ID to associate with
the job.

• Summary: An optional summary of what occurred. In failure scenarios, this becomes the
failure message that the user sees.

• outputVariables: A set of key/value pairs to be passed to the next action execution.

• Optional.

• Must be null if result is Continue or Fail.

Example:

{
 "result": "success",
 "failureType": null,
 "continuation": null,
 "status": {
 "externalExecutionId": "my-commit-id-123",
 "summary": "everything is dandy"
 },
 "outputVariables": {
 "FirstOne": "Nice",
 "SecondOne": "Nicest",
 ...
 }
}

Use continuation tokens to wait for results from an asynchronous
process

The continuation token is part of the payload and result of your Lambda function. It is a way
to pass job state to CodePipeline and indicate that the job needs to be continued. For example,
after an integrator starts a build for the customer on their resource, it does not wait for the build

Use continuation tokens to wait for results from an asynchronous process API Version 2015-07-09 940

AWS CodePipeline User Guide

to complete, but indicates to CodePipeline that it does not havea terminal result by returning
the result as continue and returning the build’s unique ID to CodePipeline as continuation
token.

Note

Lambda functions can only run up to 15 minutes. If the job needs to run longer, you can
use continuation tokens.

The CodePipeline team invokes the integrator after 30 seconds with the same continuation
token in its payload so that it can check on it for completion. If the build completes, the integrator
returns terminal success/fail result, else continues.

Provide CodePipeline the permissions to invoke the integrator Lambda
function at runtime

You add permissions to your integrator Lambda function to provide the CodePipeline
service with permissions to invoke it using the CodePipeline service principal:
codepipeline.amazonaws.com. You can add permissions by using AWS CloudFormation or the
command line. For an example, see Working with action types.

Job worker integration model

After you have designed your high-level workflow, you can create your job worker. Although the
specifics of the third-party action determine what is needed for the job worker, most job workers
for third-party actions include the following functionality:

• Polling for jobs from CodePipeline using PollForThirdPartyJobs.

• Acknowledging jobs and returning results to CodePipeline using AcknowledgeThirdPartyJob,
PutThirdPartyJobSuccessResult, and PutThirdPartyJobFailureResult.

• Retrieving artifacts from and/or putting artifacts into the Amazon S3 bucket for the pipeline. To
download artifacts from the Amazon S3 bucket, you must create an Amazon S3 client that uses
Signature Version 4 signing (Sig V4). Sig V4 is required for AWS KMS.

To upload artifacts to the Amazon S3 bucket, you must also configure the Amazon S3
PutObject request to use encryption through AWS Key Management Service (AWS KMS).

Provide CodePipeline the permissions to invoke the integrator Lambda function at runtime API Version 2015-07-09 941

https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPPutObject.html

AWS CodePipeline User Guide

AWS KMS uses AWS KMS keys. In order to know whether to use the AWS managed key or a
customer managed key to upload artifacts, your job worker must look at the job data and check
the encryption key property. If the property is set, you should use that customer managed
key ID when configuring AWS KMS. If the key property is null, you use the AWS managed key.
CodePipeline uses the AWS managed key unless otherwise configured.

For an example that shows how to create the AWS KMS parameters in Java or .NET, see
Specifying the AWS Key Management Service in Amazon S3 Using the AWS SDKs. For more
information about the Amazon S3 bucket for CodePipeline, see CodePipeline concepts.

Choose and configure a permissions management strategy for your job
worker

To develop a job worker for your third-party action in CodePipeline, you need a strategy for the
integration of user and permission management.

The simplest strategy is to add the infrastructure you need for your job worker by creating Amazon
EC2 instances with an AWS Identity and Access Management (IAM) instance role, which allow you
to easily scale up the resources you need for your integration. You can use the built-in integration
with AWS to simplify the interaction between your job worker and CodePipeline.

Learn more about Amazon EC2 and determine whether it is the right choice for your integration.
For information, see Amazon EC2 - Virtual Server Hosting. For information about setting up an
Amazon EC2 instance, see Getting Started with Amazon EC2 Linux Instances.

Another strategy to consider is using identity federation with IAM to integrate your existing
identity provider system and resources. This strategy is useful if you already have a corporate
identity provider or are already configured to support users using web identity providers. Identity
federation allows you to grant secure access to AWS resources, including CodePipeline, without
having to create or manage IAM users. You can use features and policies for password security
requirements and credential rotation. You can use sample applications as templates for your own
design. For information, see Manage Federation.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

Choose and configure a permissions management strategy for your job worker API Version 2015-07-09 942

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_JobData.html
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_EncryptionKey.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/kms-using-sdks.html
http://aws.amazon.com/ec2
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
http://aws.amazon.com/iam/details/manage-federation/
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

AWS CodePipeline User Guide

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

The following is an example policy you might create for use with your third-party job worker. This
policy is meant as an example only and is provided as-is.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:PollForThirdPartyJobs",
 "codepipeline:AcknowledgeThirdPartyJob",
 "codepipeline:GetThirdPartyJobDetails",
 "codepipeline:PutThirdPartyJobSuccessResult",
 "codepipeline:PutThirdPartyJobFailureResult"
],
 "Resource": [
 "arn:aws:codepipeline:us-east-2::actionType:ThirdParty/Build/Provider/1/"
]
 }
]
}

Choose and configure a permissions management strategy for your job worker API Version 2015-07-09 943

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS CodePipeline User Guide

Image definitions file reference

This section is a reference only. For information about creating a pipeline with source or deploy
actions for containers, see Create a pipeline in CodePipeline.

AWS CodePipeline job workers for container actions, such as an Amazon ECR source action or
Amazon ECS deploy actions, use definitions files to map the image URI and container name to the
task definition. Each definitions file is a JSON-formatted file used by the action provider as follows:

• Amazon ECS standard deployments require an imagedefinitions.json file as an input to the
deploy action.

• Amazon ECS blue/green deployments require an imageDetail.json file as an input to the
deploy action.

• Amazon ECR source actions generate an imageDetail.json file that is provided as an output
from the source action.

Topics

• imagedefinitions.json file for Amazon ECS standard deployment actions

• imageDetail.json file for Amazon ECS blue/green deployment actions

imagedefinitions.json file for Amazon ECS standard
deployment actions

An image definitions document is a JSON file that describes your Amazon ECS container name and
the image and tag. If you are deploying container-based applications, you must generate an image
definitions file to provide the CodePipeline job worker with the Amazon ECS container and image
identification to retrieve from the image repository, such as Amazon ECR.

Note

The default file name for the file is imagedefinitions.json. If you choose to use a
different file name, you must provide it when you create the pipeline deployment stage.

Create the imagedefinitions.json file with the following considerations:

imagedefinitions.json file for Amazon ECS standard deployment actions API Version 2015-07-09 944

AWS CodePipeline User Guide

• The file must use UTF-8 encoding.

• The maximum file size limit for the image definitions file is 100 KB.

• You must create the file as a source or build artifact so that it is an input artifact for the deploy
action. In other words, make sure that the file is either uploaded to your source location, such as
your CodeCommit repository, or generated as a built output artifact.

The imagedefinitions.json file provides the container name and image URI. It must be
constructed with the following set of key-value pairs.

Key Value

name container_name

imageUri imageUri

Here is the JSON structure, where the container name is sample-app, the image URI is ecs-repo,
and the tag is latest:

[
 {
 "name": "sample-app",
 "imageUri": "11111EXAMPLE.dkr.ecr.us-west-2.amazonaws.com/ecs-repo:latest"
 }
]

You can also construct the file to list multiple container-image pairs.

JSON structure:

[
 {
 "name": "simple-app",
 "imageUri": "httpd:2.4"
 },
 {
 "name": "simple-app-1",
 "imageUri": "mysql"
 },

imagedefinitions.json file for Amazon ECS standard deployment actions API Version 2015-07-09 945

AWS CodePipeline User Guide

 {
 "name": "simple-app-2",
 "imageUri": "java1.8"
 }
]

Before you create your pipeline, use the following steps to set up the imagedefinitions.json
file.

1. As part of planning the container-based application deployment for your pipeline, plan the
source stage and the build stage, if applicable.

2. Choose one of the following:

a. If your pipeline is created so that it skips the build stage, you must manually create
the JSON file and upload it to your source repository so the source action can provide
the artifact. Create the file using a text editor, and name the file or use the default
imagedefinitions.json file name. Push the image definitions file to your source
repository.

Note

If your source repository is an Amazon S3 bucket, remember to zip the JSON file.

b. If your pipeline has a build stage, add a command to your build spec file that outputs
the image definitions file in your source repository during the build phase. The following
example uses the printf command to create an imagedefinitions.json file. List this
command in the post_build section of the buildspec.yml file:

printf '[{"name":"container_name","imageUri":"image_URI"}]' >
imagedefinitions.json

You must include the image definitions file as an output artifact in the buildspec.yml
file.

3. When you create your pipeline in the console, on the Deploy page of the Create Pipeline
wizard, in Image Filename, enter the image definitions file name.

For a step-by-step tutorial for creating a pipeline that uses Amazon ECS as the deployment
provider, see Tutorial: Continuous Deployment with CodePipeline.

imagedefinitions.json file for Amazon ECS standard deployment actions API Version 2015-07-09 946

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-cd-pipeline.html

AWS CodePipeline User Guide

imageDetail.json file for Amazon ECS blue/green deployment
actions

An imageDetail.json document is a JSON file that describes your Amazon ECS image URI. If you
are deploying container-based applications for a blue/green deployment, you must generate the
imageDetail.json file to provide the Amazon ECS and CodeDeploy job worker with the image
identification to retrieve from the image repository, such as Amazon ECR.

Note

The name of the file must be imageDetail.json.

For a description of the action and its parameters, see Amazon Elastic Container Service and
CodeDeploy blue-green.

You must create the imageDetail.json file as a source or build artifact so that it is
an input artifact for the deploy action. You can use one of these methods to provide the
imageDetail.json file in the pipeline:

• Include the imageDetail.json file in your source location so that it is provided in the pipeline
as input to your Amazon ECS blue/green deployment action.

Note

If your source repository is an Amazon S3 bucket, remember to zip the JSON file.

• Amazon ECR source actions automatically generate an imageDetail.json file as an input
artifact to the next action.

Note

Because the Amazon ECR source action creates this file, pipelines with an Amazon ECR
source action do not need to manually provide an imageDetail.json file.
For a tutorial about creating a pipeline that includes an Amazon ECR source stage,
see Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy
deployment.

imageDetail.json file for Amazon ECS blue/green deployment actions API Version 2015-07-09 947

AWS CodePipeline User Guide

The imageDetail.json file provides the image URI. It must be constructed with the following
key-value pair.

Key Value

ImageURI image_URI

imageDetail.json

Here is the JSON structure, where the image URI is ACCOUNTID.dkr.ecr.us-
west-2.amazonaws.com/dk-image-repo@sha256:example3:

{

imageDetail.json file for Amazon ECS blue/green deployment actions API Version 2015-07-09 948

AWS CodePipeline User Guide

"ImageURI": "ACCOUNTID.dkr.ecr.us-west-2.amazonaws.com/dk-image-
repo@sha256:example3"
}

imageDetail.json (generated by ECR)

An imageDetail.json file is generated automatically by the Amazon ECR source action
each time a change is pushed to the image repository. The imageDetail.json generated by
Amazon ECR source actions is provided as an output artifact from the source action to the next
action in the pipeline.

Here is the JSON structure, where the repository name is dk-image-repo, the image URI is
ecs-repo, and the image tag is latest:

{
 "ImageSizeInBytes": "44728918",
 "ImageDigest":
 "sha256:EXAMPLE11223344556677889900bfea42ea2d3b8a1ee8329ba7e68694950afd3",
 "Version": "1.0",
 "ImagePushedAt": "Mon Jan 21 20:04:00 UTC 2019",
 "RegistryId": "EXAMPLE12233",
 "RepositoryName": "dk-image-repo",
 "ImageURI": "ACCOUNTID.dkr.ecr.us-west-2.amazonaws.com/dk-image-
repo@sha256:example3",
 "ImageTags": [
 "latest"
]
}

The imageDetail.json file maps the image URI and container name to the Amazon ECS task
definition as follows:

• ImageSizeInBytes: The size, in bytes, of the image in the repository.

• ImageDigest: The sha256 digest of the image manifest.

• Version: The image version.

• ImagePushedAt: The date and time when the latest image was pushed to the repository.

• RegistryId: The AWS account ID associated with the registry that contains the repository.

• RepositoryName: The name of the Amazon ECR repository where the image was pushed.

• ImageURI: The URI for the image.

imageDetail.json file for Amazon ECS blue/green deployment actions API Version 2015-07-09 949

AWS CodePipeline User Guide

• ImageTags: The tag used for the image.

Before you create your pipeline, use the following steps to set up the imageDetail.json file.

1. As part of planning the container-based application blue/green deployment for your pipeline,
plan the source stage and the build stage, if applicable.

2. Choose one of the following:

a. If your pipeline has skipped the build stage, you must manually create the JSON file
and upload it to your source repository, such as CodeCommit, so the source action can
provide the artifact. Create the file using a text editor, and name the file or use the
default imageDetail.json file name. Push the imageDetail.json file to your source
repository.

b. If your pipeline has a build stage, perform the following:

i. Add a command to your build spec file that outputs the image definitions file in
your source repository during the build phase. The following example uses the
printf command to create an imageDetail.json file. List this command in the
post_build section of the buildspec.yml file:

printf '{"ImageURI":"image_URI"}' > imageDetail.json

You must include the imageDetail.json file as an output artifact in the
buildspec.yml file.

ii. Add the imageDetail.json as an artifact file in the buildspec.yml file.

artifacts:
 files:
 - imageDetail.json

imageDetail.json file for Amazon ECS blue/green deployment actions API Version 2015-07-09 950

AWS CodePipeline User Guide

Variables

This section is a reference only. For information about creating variables, see Working with
variables.

Variables allow you to configure your pipeline actions with values that are determined at the time
of the pipeline execution or the action execution.

Some action providers produce a defined set of variables. You choose from default variable keys for
that action provider, such as commit ID.

Important

When passing secret parameters, do not enter the value directly. The value is rendered as
plaintext and is therefore readable. For security reasons, do not use plaintext with secrets.
We strongly recommend that you use AWS Secrets Manager to store secrets.

To see step-by-step examples of using variables:

• For a tutorial with a pipeline-level variable that is passed at the time of the pipeline execution,
see Tutorial: Use pipeline-level variables.

• For a tutorial with a Lambda action that uses variables from an upstream action (CodeCommit)
and generates output variables, see Tutorial: Using variables with Lambda invoke actions.

• For a tutorial with a AWS CloudFormation action that references stack output variables from an
upstream CloudFormation action, see Tutorial: Create a pipeline that uses variables from AWS
CloudFormation deployment actions.

• For an example manual approval action with message text that references output variables
that resolve to the CodeCommit commit ID and commit message, see Example: Use variables in
manual approvals.

• For an example CodeBuild action with an environment variable that resolves to the GitHub
branch name, see Example: Use a BranchName variable with CodeBuild environment variables.

• CodeBuild actions produce as variables all environment variables that were exported as part of
the build. For more information, see CodeBuild action output variables.

Variable Limits

API Version 2015-07-09 951

AWS CodePipeline User Guide

For limit information, see Quotas in AWS CodePipeline.

Note

When you enter variable syntax in the action configuration fields, do not exceed the 1000-
character limit for the configuration fields. A validation error is returned when this limit is
exceeded.

Topics

• Concepts

• Use cases for variables

• Configuring variables

• Variable resolution

• Rules for variables

• Variables available for pipeline actions

Concepts

This section lists key terms and concepts related to variables and namespaces.

Variables

Variables are key-value pairs that can be used to dynamically configure actions in your pipeline.
There are currently three ways these variables are made available:

• There is a set of variables that are implicitly available at the start of each pipeline execution. This
set currently includes PipelineExecutionId, the ID of the current pipeline execution.

• Variables at the pipeline level are defined when the pipeline is created and resolved at pipeline
run time.

You specify pipeline-level variables when the pipeline is created, and you can provide values at
the time of the pipeline execution.

• There are action types that produce sets of variables when they are executed. You can see the
variables produced by an action by inspecting the outputVariables field that is part of the
ListActionExecutions API. For a list of available key names by action provider, see Variables

Concepts API Version 2015-07-09 952

https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_ListActionExecutions.html

AWS CodePipeline User Guide

available for pipeline actions. To see which variables each action type produces, see the
CodePipeline Action structure reference.

To reference these variables in your action configuration, you must use the variable reference
syntax with the correct namespace.

For an example variable workflow, see Configuring variables .

Namespaces

To ensure that variables can be uniquely referenced, they must be assigned to a namespace.
After you have a set of variables assigned to a namespace, they can be referenced in an action
configuration by using the namespace and variable key with the following syntax:

#{namespace.variable_key}

There are three types of namespaces under which variables can be assigned:

• The codepipeline reserved namespace

This is the namespace assigned to the set of implicit variables available at the start of each
pipeline execution. This namespace is codepipeline. Example variable reference:

#{codepipeline.PipelineExecutionId}

• The variables namespace at the pipeline level

This is the namespace assigned to variables at the pipeline level. The namespace for all variables
at the pipeline level is variables. Example variable reference:

#{variables.variable_name}

• Action assigned namespace

This is a namespace that you assign to an action. All variables produced by the action fall under
this namespace. To make the variables produced by an action available for use in a downstream
action configuration, you must configure the producing action with a namespace. Namespaces
must be unique across the pipeline definition and cannot conflict with any artifact names. Here is
an example variable reference for an action configured with a namespace of SourceVariables.

Namespaces API Version 2015-07-09 953

AWS CodePipeline User Guide

#{SourceVariables.VersionId}

Use cases for variables

The following are a few of the most common use cases for variables at the pipeline level, helping
you determine how you might use variables for your specific needs.

• Variables at the pipeline level are for CodePipeline customers who want to use the same
pipeline each time with minor variations in the inputs to the action configuration. Any developer
who starts a pipeline adds the variable value in the UI when the pipeline starts. With this
configuration, you pass parameters for that execution only.

• With pipeline-level variables, you can pass dynamic inputs to actions in the pipeline. You can
migrate your parameterized pipelines to CodePipeline without having to maintain different
versions of the same pipeline, or create complex pipelines.

• You can use pipeline-level variables to pass input parameters that allow you to re-use a pipeline
with each execution, such as when you want to specify which version you want to deploy to a
production environment, so you don’t have to duplicate pipelines.

• You can use a single pipeline to deploy resources to multiple build and deployment
environments. For example, for a pipeline with a CodeCommit repository, deploying from
a specified branch and target deployment environment can be done with CodeBuild and
CodeDeploy parameters passed at the pipeline level.

Configuring variables

You can configure variables at the pipeline level or the action level in the pipeline structure.

Configuring variables at the pipeline level

You can add one or more variables at the pipeline level. You can reference this value in the
configuration of CodePipeline actions. You can add the variable names, default values, and
descriptions when you create the pipeline. Variables are resolved at the time of execution.

Use cases for variables API Version 2015-07-09 954

AWS CodePipeline User Guide

Note

If a default value is not defined for a variable at pipeline level, the variable is considered
as required. You have to specify overrides for all required variables when you are starting a
pipeline, otherwise the pipeline execution will fail with a validation error.

You provide variables at the pipeline level using the variables attribute in the pipeline structure. In
the following example, the variable Variable1 has a value of Value1.

 "variables": [
 {
 "name": "Variable1",
 "defaultValue": "Value1",
 "description": "description"
 }
]

For an example in the pipeline JSON structure, see Create a pipeline in CodePipeline.

For a tutorial with a pipeline-level variable that is passed at the time of the pipeline execution, see
Tutorial: Use pipeline-level variables.

Note that using pipeline-level variables in any kind of Source action is not supported.

Note

If the variables namespace is already used in some of actions within the pipeline, you
must update the action definition and choose another namespace for the conflicting action.

Configuring variables at the action level

You configure an action to produce variables by declaring a namespace for the action. The action
must already be one of the action providers that generates variables. Otherwise, the variables
available are pipeline-level variables.

You declare the namespace either by:

• On the Edit action page of the console, entering a namespace in Variable namespace.

Configuring variables at the action level API Version 2015-07-09 955

AWS CodePipeline User Guide

• Entering a namespace in the namespace parameter field in the JSON pipeline structure.

In this example, you add the namespace parameter to the CodeCommit source action with the
name SourceVariables. This configures the action to produce the variables available for that
action provider, such as CommitId.

{
 "name": "Source",
 "actions": [
 {
 "outputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "name": "Source",
 "namespace": "SourceVariables",
 "configuration": {
 "RepositoryName": "MyRepo",
 "BranchName": "mainline",
 "PollForSourceChanges": "false"
 },
 "inputArtifacts": [],
 "region": "us-west-2",
 "actionTypeId": {
 "provider": "CodeCommit",
 "category": "Source",
 "version": "1",
 "owner": "AWS"
 },
 "runOrder": 1
 }
]
},

Next, you configure the downstream action to use the variables produced by the previous action.
You do this by:

• On the Edit action page of the console, entering the variable syntax (for the downstream action)
in the action configuration fields.

Configuring variables at the action level API Version 2015-07-09 956

AWS CodePipeline User Guide

• Entering the variable syntax (for the downstream action) in the action configuration fields in the
JSON pipeline structure

In this example, the build action's configuration field shows environment variables that are
updated upon the action execution. The example specifies the namespace and variable for
execution ID with #{codepipeline.PipelineExecutionId} and the namespace and variable
for commit ID with #{SourceVariables.CommitId}.

{
 "name": "Build",
 "actions": [
 {
 "outputArtifacts": [
 {
 "name": "BuildArtifact"
 }
],
 "name": "Build",
 "configuration": {
 "EnvironmentVariables": "[{\"name\":\"Release_ID\",\"value\":
\"#{codepipeline.PipelineExecutionId}\",\"type\":\"PLAINTEXT\"},{\"name\":\"Commit_ID
\",\"value\":\"#{SourceVariables.CommitId}\",\"type\":\"PLAINTEXT\"}]",
 "ProjectName": "env-var-test"
 },
 "inputArtifacts": [
 {
 "name": "SourceArtifact"
 }
],
 "region": "us-west-2",
 "actionTypeId": {
 "provider": "CodeBuild",
 "category": "Build",
 "version": "1",
 "owner": "AWS"
 },
 "runOrder": 1
 }
]
},

Configuring variables at the action level API Version 2015-07-09 957

AWS CodePipeline User Guide

Variable resolution

Each time an action is executed as part of a pipeline execution, the variables it produces are
available for use in any action that is guaranteed to occur after the producing action. To use these
variables in a consuming action, you can add them to the consuming action's configuration using
the syntax shown in the previous example. Before it performs a consuming action, CodePipeline
resolves all of the variable references present in the configuration prior to initiating the action
execution.

Rules for variables

The following rules help you with the configuration of variables:

• You specify the namespace and variable for an action through a new action property or by
editing an action.

Variable resolution API Version 2015-07-09 958

AWS CodePipeline User Guide

• When you use the pipeline creation wizard, the console generates a namespace for each action
created with the wizard.

• If the namespace isn't specified, the variables produced by that action cannot be referenced in
any action configuration.

• To reference variables produced by an action, the referencing action must occur after the action
that produces the variables. This means it is either in a later stage than the action producing the
variables, or in the same stage but at a higher run order.

Variables available for pipeline actions

The action provider determines which variables can be generated by the action.

For step-by-step procedures for managing variables, see Working with variables.

Actions with defined variable keys

Unlike a namespace which you can choose, the following actions use variable keys that cannot be
edited. For example, for the Amazon S3 action provider, only the ETag and VersionId variable
keys are available.

Each execution also has a set of CodePipeline-generated pipeline variables that contain data about
the execution, such as the pipeline release ID. These variables can be consumed by any action in the
pipeline.

Topics

• CodePipeline execution ID variable

• Amazon ECR action output variables

• AWS CloudFormation StackSets action output variables

• CodeCommit action output variables

• CodeStarSourceConnection action output variables

• GitHub action output variables (GitHub action version 1)

• S3 action output variables

Variables available for pipeline actions API Version 2015-07-09 959

AWS CodePipeline User Guide

CodePipeline execution ID variable

CodePipeline execution ID variable

Provider Variable key Example value Example variable
syntax

codepipeline PipelineE
xecutionId

8abc75f0-fbf8-4f4c-
bfEXAMPLE

#{codepip
eline.Pip
elineExec
utionId}

Amazon ECR action output variables

Amazon ECR variables

Variable key Example value Example variable syntax

ImageDigest sha256:EXAMPLE1122334455 #{SourceVariables.
ImageDigest}

ImageTag latest #{SourceVariables.
ImageTag}

ImageURI 11111EXAMPLE.dkr.ecr.us-wes
t-2.amazonaws.com/ecs-repo:
latest

#{SourceVariables.
ImageURI}

RegistryId EXAMPLE12233 #{SourceVariables.
RegistryId}

RepositoryName my-image-repo #{SourceVariables.
RepositoryName}

Actions with defined variable keys API Version 2015-07-09 960

AWS CodePipeline User Guide

AWS CloudFormation StackSets action output variables

AWS CloudFormation StackSets variables

Variable key Example value Example variable syntax

OperationId 11111111-2bbb-111-2bbb-1111
1example

#{DeployVariables.
OperationId}

StackSetId my-stackset:1111aaaa-1111-2
222-2bbb-11111example

#{DeployVariables.
StackSetId}

CodeCommit action output variables

CodeCommit variables

Variable key Example value Example variable syntax

AuthorDate 2019-10-29T03:32:21Z #{SourceVariables.
AuthorDate}

BranchName development #{SourceVariables.
BranchName}

CommitId exampleb01f91b31 #{SourceVariables.
CommitId}

CommitMessage Fixed a bug (100 KB maximum
size)

#{SourceVariables.
CommitMessage}

CommitterDate 2019-10-29T03:32:21Z #{SourceVariables.
CommitterDate}

RepositoryName myCodeCommitRepo #{SourceVariables.
RepositoryName}

Actions with defined variable keys API Version 2015-07-09 961

AWS CodePipeline User Guide

CodeStarSourceConnection action output variables

CodeStarSourceConnection variables (Bitbucket Cloud, GitHub, GitHub Enterprise
Repository, and GitLab.com)

Variable key Example value Example variable syntax

AuthorDate 2019-10-29T03:32:21Z #{SourceVariables.
AuthorDate}

BranchName development #{SourceVariables.
BranchName}

CommitId exampleb01f91b31 #{SourceVariables.
CommitId}

CommitMessage Fixed a bug (100 KB maximum
size)

#{SourceVariables.
CommitMessage}

ConnectionArn arn:aws:codestar-connection
s:region:account-id :connecti
on/connection-id

#{SourceVariables.
ConnectionArn}

FullRepositoryName username/GitHubRepo #{SourceVariables.
FullRepositoryName}

GitHub action output variables (GitHub action version 1)

GitHub variables (GitHub action version 1)

Variable key Example value Example variable syntax

AuthorDate 2019-10-29T03:32:21Z #{SourceVariables.
AuthorDate}

BranchName main #{SourceVariables.
BranchName}

Actions with defined variable keys API Version 2015-07-09 962

AWS CodePipeline User Guide

Variable key Example value Example variable syntax

CommitId exampleb01f91b31 #{SourceVariables.
CommitId}

CommitMessage Fixed a bug (100 KB maximum
size)

#{SourceVariables.
CommitMessage}

CommitterDate 2019-10-29T03:32:21Z #{SourceVariables.
CommitterDate}

CommitUrl #{SourceVariables.
CommitUrl}

RepositoryName myGitHubRepo #{SourceVariables.
RepositoryName}

S3 action output variables

S3 variables

Variable key Example value Example variable syntax

ETag example28be1c3 #{SourceVariables.
ETag}

VersionId exampleta_IUQCv #{SourceVariables.
VersionId}

Actions with user-configured variable keys

For CodeBuild, AWS CloudFormation, and Lambda actions, the variable keys are configured by the
user.

Topics

• CloudFormation action output variables

• CodeBuild action output variables

Actions with user-configured variable keys API Version 2015-07-09 963

AWS CodePipeline User Guide

• Lambda action output variables

CloudFormation action output variables

AWS CloudFormation variables

Variable key Example variable syntax

For AWS CloudFormation actions, variables are produced
from any values designated in the Outputs section of a
stack template. Note that the only CloudFormation action
modes that generate outputs are those that result in
creating or updating a stack, such as stack creation, stack
updates, and change set execution. The corresponding
action modes that generate variables are:

• CREATE_UPDATE

• CHANGE_SET_EXECUTE

• CHANGE_SET_REPLACE

• REPLACE_ON_FAILURE

For more information about these action modes, see AWS
CloudFormation. For a tutorial that shows you how to create
a pipeline with an AWS CloudFormation deployment action
in a pipeline that uses AWS CloudFormation output variables
, see Tutorial: Create a pipeline that uses variables from AWS
CloudFormation deployment actions.

#{DeployVariables.
StackName}

CodeBuild action output variables

CodeBuild variables

Variable key Example variable syntax

For CodeBuild actions, variables are produced from values
generated by exported environment variables. Set up a
CodeBuild environment variable by editing your CodeBuild

#{BuildVariables.EnvVar}

Actions with user-configured variable keys API Version 2015-07-09 964

AWS CodePipeline User Guide

Variable key Example variable syntax

 action in CodePipeline or by adding the environment
variable to the build spec.

Add instructions to your CodeBuild build spec to add the
environment variable under the exported variables section.
See env/exported-variables in the AWS CodeBuild User Guide.

Lambda action output variables

Lambda variables

Variable key Example variable syntax

The Lambda action will produce as variables all key-value
pairs that are included in the outputVariables section of
the PutJobSuccessResult API request.

For a tutorial with a Lambda action that uses variables from
an upstream action (CodeCommit) and generates output
variables, see Tutorial: Using variables with Lambda invoke
actions.

#{TestVariables.te
stRunId}

Actions with user-configured variable keys API Version 2015-07-09 965

https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html#build-spec.env.exported-variables
https://docs.aws.amazon.com/codepipeline/latest/APIReference/API_PutJobSuccessResult.html

AWS CodePipeline User Guide

Working with glob patterns in syntax

When you specify the files or paths that are used in pipeline artifacts or source locations, you can
specify the artifact depending on the action type. For example, for the S3 action, you specify the
S3 object key.

For triggers, you can specify filters. You can use glob patterns to specify filters. The following are
examples.

When the syntax is "glob" then the String representation of the path is matched using a limited
pattern language with a syntax that resembles regular expressions. For example:

• *.java Specifies a path that represents a file name ending in .java

• *.* Specifies file names containing a dot

• *.{java,class} Specifies file names ending with .java or .class

• foo.? Specifies file names starting with foo. and a single character extension

The following rules are used to interpret glob patterns:

• To specify zero or more characters of a name component in directory boundaries, use *.

• To specify zero or more characters of a name component crossing directory boundaries, use **.

• To specify one character of a name component, use ?.

• To escape characters that would otherwise be interpreted as special characters, use the backslash
character (\).

• To specify a single character out of a set of characters, use [].

• To specify a single file that is in the root of your build location or source repository location, use
my-file.jar.

• To specify a single file in a subdirectory, use directory/my-file.jar or directory/
subdirectory/my-file.jar.

• To specify all files, use "**/*". The ** glob pattern indicates to match any number of
subdirectories.

• To specify all files and directories in a directory named directory, use "directory/**/*".
The ** glob pattern indicates to match any number of subdirectories.

API Version 2015-07-09 966

AWS CodePipeline User Guide

• To specify all files in a directory named directory, but not any of its subdirectories, use
"directory/*".

• Within a bracket expression the *, ? and \ characters match themselves. The (-) character
matches itself if it is the first character within the brackets, or the first character after the ! if
negating.

• The { } characters are a group of subpatterns, where the group matches if any subpattern in the
group matches. The "," character is used to separate the subpatterns. Groups cannot be nested.

API Version 2015-07-09 967

AWS CodePipeline User Guide

Update polling pipelines to the recommended change
detection method

If you have a pipeline that uses polling to react to source changes, you can update it to use the
recommended detection method. For a migration guide with instructions for updating your polling
piplines to use the recommended event-based change detection method, see Migrate polling
pipelines to use event-based change detection.

API Version 2015-07-09 968

AWS CodePipeline User Guide

Update a GitHub version 1 source action to a GitHub
version 2 source action

In AWS CodePipeline, there are two supported versions of the GitHub source action:

• Recommended: The GitHub version 2 action uses Github app-based auth backed by a
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions resource. It installs an AWS CodeStar Connections application
into your GitHub organization so that you can manage access in GitHub.

• Not recommended: The GitHub version 1 action uses OAuth tokens to authenticate with GitHub
and uses a separate webhook to detect changes. This is no longer the recommended method.

Note

Connections are not available in the Asia Pacific (Hong Kong), Asia Pacific (Hyderabad), Asia
Pacific (Jakarta), Asia Pacific (Melbourne), Asia Pacific (Osaka), Africa (Cape Town), Middle
East (Bahrain), Middle East (UAE), Europe (Spain), Europe (Zurich), Israel (Tel Aviv), or AWS
GovCloud (US-West) Regions. To reference other available actions, see Product and service
integrations with CodePipeline. For considerations with this action in the Europe (Milan)
Region, see the note in CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub
Enterprise Server, GitLab.com, and GitLab self-managed actions.

There are some important advantages to using the GitHub version 2 action instead of the GitHub
version 1 action:

• With connections, CodePipeline no longer requires OAuth apps or personal access tokens to
access your repository. When you create a connection, you install a GitHub App that manages
authentication to your GitHub repository and allows permissions at the organization level.
You must authorize OAuth tokens as a user to access the repository. For more information
about OAuth-based GitHub access in contrast to App-based GitHub access, see https://
docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps.

• When you manage GitHub version 2 actions in the CLI or CloudFormation, you no longer have
to store your personal access token as a secret in Secrets Manager. You no longer have to
dynamically reference the stored secret in your CodePipeline action configuration. You instead

API Version 2015-07-09 969

https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps

AWS CodePipeline User Guide

add the connection ARN to your action configuration. For an example action configuration, see
CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com,
and GitLab self-managed actions.

• When you create a connection resource to use with your GitHub version 2 action in CodePipeline,
you can use the same connection resource to associate other supported services, such as
CodeGuru Reviewer, with your repository.

• In Github version 2, you can clone repositories to access git metadata in subsequent CodeBuild
actions, while in Github version 1 you can only download the source.

• An administrator installs the app for your organization's repositories. You no longer have to track
OAuth tokens that depend on the individual who created the token.

All apps installed to an organization have access to the same set of repositories. To change who can
access each repository, modify the IAM policy for each connection. For an example, see Example: A
scoped-down policy for using connections with a specified repository.

You can use the steps in this topic to delete your GitHub version 1 source action and add a GitHub
version 2 source action from the CodePipeline console.

Topics

• Step 1: Replace your version 1 GitHub action

• Step 2: Create a connection to GitHub

• Step 3: Save your GitHub source action

Step 1: Replace your version 1 GitHub action

Use the pipeline edit page to replace your version 1 GitHub action with a version 2 GitHub action.

To replace your version 1 GitHub action

1. Sign in to the CodePipeline console.

2. Choose your pipeline, and choose Edit. Choose Edit stage on your source stage. A message
displays that recommends you update your action.

3. In Action provider, choose GitHub (Version 2).

4. Do one of the following:

Step 1: Replace your version 1 GitHub action API Version 2015-07-09 970

https://docs.aws.amazon.com/dtconsole/latest/userguide/security_iam_id-based-policy-examples-connections.html#security_iam_id-based-policy-examples-connections-reposcope
https://docs.aws.amazon.com/dtconsole/latest/userguide/security_iam_id-based-policy-examples-connections.html#security_iam_id-based-policy-examples-connections-reposcope

AWS CodePipeline User Guide

• Under Connection, if you have not already created a connection to your provider, choose
Connect to GitHub. Proceed to Step 2: Create a connection to GitHub.

• Under Connection, if you have already created a connection to your provider, choose the
connection. Proceed to Step 3: Save the Source Action for Your Connection.

Step 2: Create a connection to GitHub

After you choose to create the connection, the Connect to GitHub page is shown.

To create a connection to GitHub

1. Under GitHub connection settings, your connection name is shown in Connection name.

Under GitHub Apps, choose an app installation or choose Install a new app to create one.

Note

You install one app for all of your connections to a particular provider. If you have
already installed the GitHub app, choose it and skip this step.

2. If the authorization page for GitHub displays, log in with your credentials and then choose to
continue.

3. On the app installation page, a message shows that the AWS CodeStar app is trying to connect
to your GitHub account.

Note

You only install the app once for each GitHub account. If you previously installed
the app, you can choose Configure to proceed to a modification page for your app
installation, or you can use the back button to return to the console.

4. On the Install AWS CodeStar page, choose Install.

5. On the Connect to GitHub page, the connection ID for your new installation is displayed.
Choose Connect.

Step 2: Create a connection to GitHub API Version 2015-07-09 971

AWS CodePipeline User Guide

Step 3: Save your GitHub source action

Complete your updates on the Edit action page to save your new source action.

To save your GitHub source action

1. In Repository, enter the name of your third-party repository. In Branch, enter the branch
where you want your pipeline to detect source changes.

Note

In Repository, type owner-name/repository-name as shown in this example:

my-account/my-repository

2. In Output artifact format, choose the format for your artifacts.

• To store output artifacts from the GitHub action using the default method, choose
CodePipeline default. The action accesses the files from the GitHub repository and stores
the artifacts in a ZIP file in the pipeline artifact store.

• To store a JSON file that contains a URL reference to the repository so that downstream
actions can perform Git commands directly, choose Full clone. This option can only be used
by CodeBuild downstream actions.

If you choose this option, you will need to update the permissions for your CodeBuild project
service role as shown in Add CodeBuild GitClone permissions for connections to Bitbucket,
GitHub, GitHub Enterprise Server, or GitLab.com. For a tutorial that shows you how to use
the Full clone option, see Tutorial: Use full clone with a GitHub pipeline source.

3. In Output artifacts, you can retain the name of the output artifact for this action, such as
SourceArtifact. Choose Done to close the Edit action page.

4. Choose Done to close the stage editing page. Choose Save to close the pipeline editing page.

Step 3: Save your GitHub source action API Version 2015-07-09 972

AWS CodePipeline User Guide

Quotas in AWS CodePipeline
CodePipeline has quotas for the number of pipelines, stages, actions, and webhooks that an AWS
account can have in each AWS Region. These quotas apply per Region and can be increased. To
request an increase, use the Support Center console.

It can take up to two weeks to process requests for a quota increase.

Resource Default

Length of time before an action times out
(This is configurable timeouts. See the following
table for non-configurable timeouts)

AWS CloudFormation deployment action: 3
days

CodeDeploy and CodeDeploy ECS (blue/
green) deployment actions: 5 days

AWS Lambda invoke action: 24 hours

Note

While the action is running,
CodePipeline periodically contacts
Lambda for a status. The Lambda
function replies with a status
where the action execution is either
successful, failed, or in progress.
If the Lambda function has sent
no reply after 20 minutes, the
action times out. If, during the 20
minutes, the Lambda function has
replied that the action is still in
progress, CodePipeline restarts the
20-minute timer and tries again.
If not successful after 24 hours,
CodePipeline sets the Lambda
invoke action state to failed.
Lambda has a separate timeout
for Lambda functions that is not

API Version 2015-07-09 973

https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase

AWS CodePipeline User Guide

Resource Default

related to the CodePipeline action
timeout.

Amazon S3 deployment action: 90 minutes

Note

If the upload to S3 times out
during deployment of a large ZIP
file, the action fails with a timeout
error. Try breaking up the ZIP file
into smaller files.

Manual approval action account level
default timeout: 7 days

Note

The default timeout for the manual
approval action can be overridden
for a specific action in the pipeline,
and configurable up to 86400
minutes (60 days) with a minimum
value of 5 minutes. For more
information, see the ActionDec
laration in the CodePipeline API
Reference.
When configured, this timeout is
applied for the action. Otherwise,
the account level default is used.

All other actions: 1 hour

API Version 2015-07-09 974

http://docs.aws.amazon.com/cli/latest/reference/codepipeline/API_ActionDeclaration.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline/API_ActionDeclaration.html
http://docs.aws.amazon.com/cli/latest/reference/codepipeline
http://docs.aws.amazon.com/cli/latest/reference/codepipeline

AWS CodePipeline User Guide

Resource Default

Note

The Amazon ECS deployment
action timeout is configurable up
to one hour (the default timeout).

Maximum number of total pipelines per Region in
an AWS account

1000

Note

Pipelines configured for either
polling or event-based change
detection are counted toward this
quota.

Maximum number of pipelines set to polling for
source changes, per AWS Region

300

Note

This quota is fixed and cannot be
changed. If you reach the limit
for polling pipelines, you can still
configure additional pipelines that
use event-based change detection
. For more information, see Source
actions and change detection
 methods.1

Maximum number of webhooks per Region in an
AWS account

300

Number of custom actions per Region in an AWS
account

50

API Version 2015-07-09 975

AWS CodePipeline User Guide

Resource Default

1Based on your source provider, use the following instructions to update your polling pipelines
to use event-based change detection:

• To update a CodeCommit source action, see Migrate polling pipelines (CodeCommit or
Amazon S3 source) (console).

• To update an Amazon S3 source action, see Migrate polling pipelines (CodeCommit or
Amazon S3 source) (console).

• To update a GitHub source action, see Migrate polling pipelines to webhooks (GitHub version
1 source actions) (console).

The following quotas in AWS CodePipeline apply to Region availability, naming constraints, and
allowed artifact sizes. These quotas are fixed and cannot be changed.

For a list of the CodePipeline service endpoints for each Region, see AWS CodePipeline endpoints
and quotas in the AWS General Reference.

For information about structural requirements, see CodePipeline pipeline structure reference.

AWS Regions where you can create a pipeline US East (Ohio)

US East (N. Virginia)

US West (N. California)

US West (Oregon)

Canada (Central)

Europe (Frankfurt)

Europe (Zurich)*

Israel (Tel Aviv)

Europe (Ireland)

Europe (London)

API Version 2015-07-09 976

https://docs.aws.amazon.com/general/latest/gr/codepipeline.html
https://docs.aws.amazon.com/general/latest/gr/codepipeline.html

AWS CodePipeline User Guide

Europe (Milan)*

Europe (Paris)

Europe (Spain)

Europe (Stockholm)

Africa (Cape Town)*

Asia Pacific (Hong Kong)*

Asia Pacific (Hyderabad)

Asia Pacific (Mumbai)

Asia Pacific (Tokyo)

Asia Pacific (Seoul)

Asia Pacific (Osaka)

Asia Pacific (Singapore)

Asia Pacific (Sydney)

Asia Pacific (Jakarta)

Asia Pacific (Melbourne)

South America (São Paulo)

Middle East (Bahrain)*

Middle East (UAE)

AWS GovCloud (US-West)

AWS GovCloud (US-East)

API Version 2015-07-09 977

AWS CodePipeline User Guide

Characters allowed in an action name Action names cannot exceed 100 characters.
Allowed characters include:

Lowercase letters a through z, inclusive.

Uppercase letters A through Z, inclusive.

Numbers 0 through 9, inclusive.

Special characters . (period), @ (at sign), -
(minus sign), and _ (underscore).

Any other characters, such as spaces, are not
allowed.

Characters allowed in action types Action type names cannot exceed 25 character
s. Allowed characters include:

Lowercase letters a through z, inclusive.

Uppercase letters A through Z, inclusive.

Numbers 0 through 9, inclusive.

Special characters . (period), @ (at sign), -
(minus sign), and _ (underscore).

Any other characters, such as spaces, are not
allowed.

API Version 2015-07-09 978

AWS CodePipeline User Guide

Characters allowed in artifact names Artifact names cannot exceed 100 characters.
Allowed characters include:

Lowercase letters a through z, inclusive.

Uppercase letters A through Z, inclusive.

Numbers 0 through 9, inclusive.

Special characters - (minus sign), and _
(underscore).

Any other characters, such as spaces, are not
allowed.

Characters allowed in partner action names Partner action names must follow the same
naming conventions and restrictions as other
action names in CodePipeline. Specifically,
they cannot exceed 100 characters. Allowed
characters include:

Lowercase letters a through z, inclusive.

Uppercase letters A through Z, inclusive.

Numbers 0 through 9, inclusive.

Special characters . (period), @ (at sign), -
(minus sign), and _ (underscore).

Any other characters, such as spaces, are not
allowed.

API Version 2015-07-09 979

AWS CodePipeline User Guide

Characters allowed in a pipeline name Pipeline names cannot exceed 100 characters.
Allowed characters include:

Lowercase letters a through z, inclusive.

Uppercase letters A through Z, inclusive.

Numbers 0 through 9, inclusive.

Special characters . (period), @ (at sign),-
(minus sign), and _ (underscore).

Any other characters, such as spaces, are not
allowed.

Characters allowed in a stage name Stage names cannot exceed 100 characters.
Allowed characters include:

Lowercase letters a through z, inclusive.

Uppercase letters A through Z, inclusive.

Numbers 0 through 9, inclusive.

Special characters . (period), @ (at sign), -
(minus sign), and _ (underscore).

Any other characters, such as spaces, are not
allowed.

Length of time before an action times out CodeBuild build action and test action: 8 hours

Custom actions: 24 hours

Step Functions invoke action: 7 days

Maximum length of the action configuration
key (for example, the CodeBuild configuration
keys are ProjectName , PrimarySource ,
and EnvironmentVariables)

50 characters

API Version 2015-07-09 980

AWS CodePipeline User Guide

Maximum length of the action configura
tion value (for example, the value of the
RepositoryName configuration in the
CodeCommit action configuration should be
less than 1000 characters:

"RepositoryName": "my-repo-name-
less-than-1000-characters")

1000 characters

Maximum number of actions per pipeline 500

Maximum number of concurrent pipeline
executions per pipeline (QUEUED|PARALLEL
mode)

50

Maximum number of concurrent action
executions per PARALLEL mode pipeline
execution

5

Maximum number of files for an Amazon S3
object

100,000

Maximum number of months that pipeline
execution history information is retained

12

Maximum number of parallel actions in a
stage

50

Maximum number of sequential actions in a
stage

50

API Version 2015-07-09 981

AWS CodePipeline User Guide

Maximum size of artifacts in a source stage Artifacts stored in Amazon S3 buckets: 7 GB

Artifacts stored in CodeCommit or GitHub
repositories: 1 GB

Exception: If you are using AWS Elastic
Beanstalk to deploy applications, the
maximum artifact size is always 512 MB.

Exception: If you are using AWS CloudForm
ation to deploy applications, the maximum
artifact size is always 256 MB.

Exception: If you are using the CodeDeplo
yToECS action to deploy applications, the
maximum artifact size is always 3 MB.

Maximum size of the image definitions JSON
file used in pipelines deploying Amazon ECS
containers and images

100 KB

Maximum size of input artifacts for AWS
CloudFormation actions

256 MB

Maximum size of input artifacts for the
CodeDeployToECS action

3 MB

Maximum size of the JSON object that can
be stored in the ParameterOverrides
property

For a CodePipeline deploy action with
AWS CloudFormation as the provider, the
ParameterOverrides property is used to
store a JSON object that specifies values for
the AWS CloudFormation template configura
tion file. There is a maximum size limit of
1 kilobyte for the JSON object that can be
stored in the ParameterOverrides
property.

Number of actions in a stage Minimum of 1, maximum of 50

API Version 2015-07-09 982

AWS CodePipeline User Guide

Number of artifacts allowed for each action For the number of input and output artifacts
allowed for each action, see the Number of
input and output artifacts for each action type

Number of stages in a pipeline Minimum of 2, maximum of 50

Pipeline tags Tags are case sensitive. Maximum of 50 per
resource.

Pipeline tag key names Any combination of Unicode letters, numbers,
spaces, and allowed characters in UTF-8
between 1 and 128 characters in length.
Allowed characters are + - = . _ : / @

Tag key names must be unique, and each key
can have only one value. A tag cannot:

• begin with AWS:

• consist only of spaces

• end with a space

• contain emojis or any of the following
characters: ? ^ * [\ ~ ! # $ % & * () > < | " '

Pipeline tag values Any combination of Unicode letters, numbers,
spaces, and allowed characters in UTF-8
between 1 and 256 characters in length.
Allowed characters are + - = . _ : / @

A key can have only one value, but many keys
can have the same value. A tag cannot:

• begin with AWS:

• consist only of spaces

• end with a space

• contain emojis or any of the following
characters: ? ^ * [\ ~ ! # $ % & * () > < | " '

API Version 2015-07-09 983

AWS CodePipeline User Guide

Triggers There is a maximum of 50 triggers in a
pipeline definition across the push and pull
request configuration.

There is a maximum of three filters per push
trigger and pull request trigger.

Note

Duplicates for filters in the same event
type array are not allowed.

You can add up to 8 include and 8 exclude
patterns, branches, and file paths for each
event type (push, pull request).

Allowed characters in patternvalues include all
character types.

For include and exclude patterns, there is a
maximum length of 255 characters.

For tag names, there is a maximum length of
255 characters.

Maximum size of triggers array should not
exceed 200 KB

API Version 2015-07-09 984

AWS CodePipeline User Guide

Trigger filters File paths:

• Number of patterns: You can add up to 8
include and 8 exclude patterns.

• Size of pattern: Each include or exclude
pattern’s size can be up to 255 characters.

Branches:

• Number of patterns: You can add up to 8
include and 8 exclude patterns.

• Size of pattern: Each include or exclude
pattern’s size can be up to 255 characters.

Pull requests:

Branches:

• Number of patterns: You can add up to 8
include and 8 exclude patterns.

• Size of pattern: Each include or exclude
pattern’s size can be up to 255 characters.

Uniqueness of names Within a single AWS account, each pipeline
you create in an AWS Region must have
a unique name. You can reuse names for
pipelines in different AWS Regions.

Stage names must be unique within a pipeline.

Action names must be unique within a stage.

API Version 2015-07-09 985

AWS CodePipeline User Guide

Quotas for output variables and namespaces There is a maximum size limit of 122880
bytes for all output variables combined for a
particular action.

There is a maximum size limit of 100 KB for
the total resolved action configuration for a
particular action.

Output variable names are case sensitive.

Namespaces are case sensitive.

Allowed characters include:

• Lowercase letters a through z, inclusive.

• Uppercase letters A through Z, inclusive.

• Numbers 0 through 9, inclusive.

• Special characters ^ (caret), @ (at sign), -
(minus sign), _ (underscore), [(left bracket),]
(right bracket), * (asterisk), $ (dollar sign).

Any other characters, such as spaces, are not
allowed.

API Version 2015-07-09 986

AWS CodePipeline User Guide

Quotas for variables at the pipeline level There is a maximum of 50 pipeline-level
variables per pipeline.

Variable names for variables at the pipeline
level must be:

• 128 characters maximum length

• Lowercase letters a through z, inclusive.

• Uppercase letters A through Z, inclusive.

• Numbers 0 through 9, inclusive.

• Special characters @\-_]+

Any other characters, such as spaces, are not
allowed.

For variable values, there is a maximum length
of 1000 characters

For variable values, all characters are allowed.

For variable descriptions, there is a maximum
length of 200 characters.

* You must enable this Region before you can use it.

API Version 2015-07-09 987

AWS CodePipeline User Guide

Appendix A: GitHub version 1 source actions

This appendix provides information about version 1 of the GitHub action in CodePipeline.

Note

While we don’t recommend using the GitHub version 1 action, existing pipelines with
the GitHub version 1 action will continue to work without any impact. For a pipeline with
a GitHub version 1 action, CodePipeline uses OAuth-based tokens to connect to your
GitHub repository. By contrast, the GitHub action (version 2) uses a connection resource
to associate AWS resources to your GitHub repository. The connection resource uses
app-based tokens to connect. For more information about updating your pipeline to the
recommended GitHub action that uses a connection, see Update a GitHub version 1 source
action to a GitHub version 2 source action. For more information about OAuth-based
GitHub access in contrast to app-based GitHub access, see https://docs.github.com/en/
developers/apps/differences-between-github-apps-and-oauth-apps.

To integrate with GitHub, CodePipeline uses a GitHub OAuth application for your pipeline.
CodePipeline uses webhooks to manage change detection for your pipeline with the GitHub
version 1 source action.

Note

When you configure a GitHub version 2 source action in AWS CloudFormation, you do
not include any GitHub token information or add a webhook resource. You configure a
connections resource as shown in AWS::CodeStarConnections::Connection in the AWS
CloudFormation User Guide.

This reference contains the following sections for the GitHub version 1 action:

• For information about how to add a GitHub version 1 source action and webhook to a pipeline,
see Adding a GitHub version 1 source action.

• For information about the configuration parameters and example YAML/JSON snippets for a
GitHub version 1 source action, see GitHub version 1 source action structure reference.

API Version 2015-07-09 988

https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/developers/apps/differences-between-github-apps-and-oauth-apps
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codestarconnections-connection.html

AWS CodePipeline User Guide

Topics

• Adding a GitHub version 1 source action

• GitHub version 1 source action structure reference

Adding a GitHub version 1 source action

You add GitHub version 1 source actions to CodePipeline by:

• Using the CodePipeline console Create pipeline wizard (Create a pipeline (console)) or Edit
action page to choose the GitHub provider option. The console creates a webhook that starts
your pipeline when the source changes.

• Using the CLI to add the action configuration for the GitHub action and creating additional
resources as follows:

• Using the GitHub example action configuration in GitHub version 1 source action structure
reference to create the action as shown in Create a pipeline (CLI).

• Disabling periodic checks and creating the change detection manually, because the change
detection method defaults to starting the pipeline by polling the source. You migrate your
polling pipeline to webhooks for GitHub Version 1 actions.

GitHub version 1 source action structure reference

Note

While we don’t recommend using the GitHub version 1 action, existing pipelines with the
GitHub version 1 action will continue to work without any impact. For a pipeline with a
GitHub GitHub version 1 source action, CodePipeline uses OAuth-based tokens to connect
to your GitHub repository. By contrast, the new GitHub action (version 2) uses a connection
resource to associate AWS resources to your GitHub repository. The connection resource
uses app-based tokens to connect. For more information about updating your pipeline to
the recommended GitHub action that uses a connection, see Update a GitHub version 1
source action to a GitHub version 2 source action.

Triggers the pipeline when a new commit is made on the configured GitHub repository and branch.

Adding a GitHub version 1 source action API Version 2015-07-09 989

AWS CodePipeline User Guide

To integrate with GitHub, CodePipeline uses an OAuth application or a personal access token for
your pipeline. If you use the console to create or edit your pipeline, CodePipeline creates a GitHub
webhook that starts your pipeline when a change occurs in the repository.

You must have already created a GitHub account and repository before you connect the pipeline
through a GitHub action.

If you want to limit the access CodePipeline has to repositories, create a GitHub account and grant
the account access only to those repositories you want to integrate with CodePipeline. Use that
account when you configure CodePipeline to use GitHub repositories for source stages in pipelines.

For more information, see the GitHub developer documentation on the GitHub website.

Topics

• Action type

• Configuration parameters

• Input artifacts

• Output artifacts

• Output variables

• Action declaration (GitHub example)

• Connecting to GitHub (OAuth)

• See also

Action type

• Category: Source

• Owner: ThirdParty

• Provider: GitHub

• Version: 1

Configuration parameters

Owner

Required: Yes

Action type API Version 2015-07-09 990

https://developer.github.com

AWS CodePipeline User Guide

The name of the GitHub user or organization who owns the GitHub repository.

Repo

Required: Yes

The name of the repository where source changes are to be detected.

Branch

Required: Yes

The name of the branch where source changes are to be detected.

OAuthToken

Required: Yes

Represents the GitHub authentication token that allows CodePipeline to perform operations on
your GitHub repository. The entry is always displayed as a mask of four asterisks. It represents
one of the following values:

• When you use the console to create the pipeline, CodePipeline uses an OAuth token to
register the GitHub connection.

• When you use the AWS CLI to create the pipeline, you can pass your GitHub personal access
token in this field. Replace the asterisks (****) with your personal access token copied from
GitHub. When you run get-pipeline to view the action configuration, the four-asterisk
mask is displayed for this value.

• When you use an AWS CloudFormation template to create the pipeline, you must
first store the token as a secret in AWS Secrets Manager. You include the value for
this field as a dynamic reference to the stored secret in Secrets Manager, such as
{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}.

For more information about GitHub scopes, see the GitHub Developer API Reference on the
GitHub website.

PollForSourceChanges

Required: No

PollForSourceChanges controls whether CodePipeline polls the GitHub repository for source
changes. We recommend that you use webhooks to detect source changes instead. For more
information about configuring webhooks, see Migrate polling pipelines to webhooks (GitHub

Configuration parameters API Version 2015-07-09 991

https://developer.github.com/v3/oauth/#scopes

AWS CodePipeline User Guide

version 1 source actions) (CLI) or Update pipelines for push events (GitHub version 1 source
actions) (AWS CloudFormation template).

Important

If you intend to configure webhooks, you must set PollForSourceChanges to false
to avoid duplicate pipeline executions.

Valid values for this parameter:

• True: If set, CodePipeline polls your repository for source changes.

Note

If you omit PollForSourceChanges, CodePipeline defaults to polling
your repository for source changes. This behavior is the same as if
PollForSourceChanges is set to true.

• False: If set, CodePipeline does not poll your repository for source changes. Use this setting
if you intend to configure a webhook to detect source changes.

Input artifacts

• Number of artifacts: 0

• Description: Input artifacts do not apply for this action type.

Output artifacts

• Number of artifacts: 1

• Description: The output artifact of this action is a ZIP file that contains the contents of the
configured repository and branch at the commit specified as the source revision for the pipeline
execution. The artifacts generated from the repository are the output artifacts for the GitHub
action. The source code commit ID is displayed in CodePipeline as the source revision for the
triggered pipeline execution.

Input artifacts API Version 2015-07-09 992

AWS CodePipeline User Guide

Output variables

When configured, this action produces variables that can be referenced by the action configuration
of a downstream action in the pipeline. This action produces variables which can be viewed as
output variables, even if the action doesn't have a namespace. You configure an action with a
namespace to make those variables available to the configuration of downstream actions.

For more information about variables in CodePipeline, see Variables.

CommitId

The GitHub commit ID that triggered the pipeline execution. Commit IDs are the full SHA of the
commit.

CommitMessage

The description message, if any, associated with the commit that triggered the pipeline
execution.

CommitUrl

The URL address for the commit that triggered the pipeline.

RepositoryName

The name of the GitHub repository where the commit that triggered the pipeline was made.

BranchName

The name of the branch for the GitHub repository where the source change was made.

AuthorDate

The date when the commit was authored, in timestamp format.

For more information about the difference between an author and a committer in Git, see
Viewing the Commit History in Pro Git by Scott Chacon and Ben Straub.

CommitterDate

The date when the commit was committed, in timestamp format.

For more information about the difference between an author and a committer in Git, see
Viewing the Commit History in Pro Git by Scott Chacon and Ben Straub.

Output variables API Version 2015-07-09 993

http://git-scm.com/book/ch2-3.html
http://git-scm.com/book/ch2-3.html

AWS CodePipeline User Guide

Action declaration (GitHub example)

YAML

Name: Source
Actions:
 - InputArtifacts: []
 ActionTypeId:
 Version: '1'
 Owner: ThirdParty
 Category: Source
 Provider: GitHub
 OutputArtifacts:
 - Name: SourceArtifact
 RunOrder: 1
 Configuration:
 Owner: MyGitHubAccountName
 Repo: MyGitHubRepositoryName
 PollForSourceChanges: 'false'
 Branch: main
 OAuthToken: '{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}'
 Name: ApplicationSource

JSON

{
 "Name": "Source",
 "Actions": [
 {
 "InputArtifacts": [],
 "ActionTypeId": {
 "Version": "1",
 "Owner": "ThirdParty",
 "Category": "Source",
 "Provider": "GitHub"
 },
 "OutputArtifacts": [
 {
 "Name": "SourceArtifact"
 }
],
 "RunOrder": 1,
 "Configuration": {

Action declaration (GitHub example) API Version 2015-07-09 994

AWS CodePipeline User Guide

 "Owner": "MyGitHubAccountName",
 "Repo": "MyGitHubRepositoryName",
 "PollForSourceChanges": "false",
 "Branch": "main",
 "OAuthToken":
 "{{resolve:secretsmanager:MyGitHubSecret:SecretString:token}}"
 },
 "Name": "ApplicationSource"
 }
]
},

Connecting to GitHub (OAuth)

The first time you use the console to add a GitHub repository to a pipeline, you are asked to
authorize CodePipeline access to your repositories. The token requires the following GitHub scopes:

• The repo scope, which is used for full control to read and pull artifacts from public and private
repositories into a pipeline.

• The admin:repo_hook scope, which is used for full control of repository hooks.

When you use the CLI or an AWS CloudFormation template, you must provide the value for a
personal access token that you have already created in GitHub.

See also

The following related resources can help you as you work with this action.

• Resource reference for the AWS CloudFormation User Guide AWS::CodePipeline::Webhook – This
includes field definitions, examples, and snippets for the resource in AWS CloudFormation.

• Resource reference for the AWS CloudFormation User Guide AWS::CodeStar::GitHubRepository –
This includes field definitions, examples, and snippets for the resource in AWS CloudFormation.

• Tutorial: Create a pipeline that builds and tests your Android app with AWS Device Farm – This
tutorial provides a sample build spec file and sample application to create a pipeline with a
GitHub source. It builds and tests an Android app with CodeBuild and AWS Device Farm.

Connecting to GitHub (OAuth) API Version 2015-07-09 995

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codepipeline-webhook.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codestar-githubrepository.html

AWS CodePipeline User Guide

AWS CodePipeline User Guide document history

The following table describes the important changes in each release of the CodePipeline User
Guide. For notification about updates to this documentation, you can subscribe to an RSS feed.

• API version: 2015-07-09

• Latest documentation update: March 15, 2024

Change Description Date

Updates to managed policy The AWS managed policy
AWSCodePipeline_Fu
llAccess was updated. See
AWS managed policies for
AWS CodePipeline.

March 15, 2024

Support for configurable
timeout for manual approval
actions

Quota information added for
new configurable timeout
field for manual approval
actions. For more information,
see Quotas.

February 15, 2024

Support for trigger filtering
by branches and file paths

Support added for trigger
configuration that allows
filtering on pull request
status, branches, and file
paths for V2 type pipelines
. For more information,
see Filtering triggers on
code push or pull requests
, Triggers, and Filter on
feature branches to start your
pipeline, and Quotas.

February 8, 2024

Support for new pipeline
execution modes

Support added for PARALLEL
and QUEUED pipeline

February 8, 2024

API Version 2015-07-09 996

https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-filter.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-filter.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-featurebranches.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-featurebranches.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-featurebranches.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html

AWS CodePipeline User Guide

execution modes. For more
information, see Set the
pipeline execution mode ,
How executions are processed
in QUEUED mode, How
executions are processed in
PARALLEL mode, and Quotas.

Updates to console pages
for viewing action details,
reviewing manual approval
actions, and the list pipelines
page

Console updates documente
d for new View details button
and dialog box, new manual
approval dialog, and new
columns for recent execution
s on the list pipelines page.
For more information, see
View pipelines (console), View
action details in a pipeline,
and Manage approval actions
in pipelines.

January 10, 2024

Support for GitLab self-mana
ged

Support added for configuri
ng connections for AWS
resources to interact with
GitLab self-managed. For
more information, see
Connections for GitLab self-
managed.

December 28, 2023

Updates to the CloudForm
ationStackSet and
CloudFormationStac
kInstances actions

The ConcurrencyMode
parameter was added for the
CloudFormationStac
kSet and CloudForm
ationStackInstance
s action. See the action
reference page.

December 19, 2023

API Version 2015-07-09 997

https://docs.aws.amazon.com/codepipeline/latest/userguide/execution-modes.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/execution-modes.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-executions-queued
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-executions-queued
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-executions-parallel
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-executions-parallel
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-executions-parallel
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-view.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-view.html#pipelines-view-details-console
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-view.html#pipelines-view-details-console
https://docs.aws.amazon.com/codepipeline/latest/userguide/approvals.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/approvals.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-gitlab-managed.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-gitlab-managed.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html

AWS CodePipeline User Guide

Updates to AWS Device
Farm action parameters in
CodePipeline

The parameters for the
AWS Device Farm action
in CodePipeline have been
updated. For more informati
on, see AWS Device Farm
action reference.

December 18, 2023

Support added for detailed
error messages for the AWS
CloudFormation action in
CodePipeline

AWS CloudFormation
action error messages can
now surface details about
resources that failed. For
more information, see AWS
CloudFormation action
reference.

December 15, 2023

Updates for starting a
pipeline with source revision
overrides in CodePipeline

You can now start a pipeline
with a specified source
revision. For more informati
on, see Start a pipeline with a
source revision override.

November 17, 2023

New supported Regions CodePipeline is now available
in Asia Pacific (Hyderabad),
Asia Pacific (Jakarta), Asia
Pacific (Melbourne), Asia
Pacific (Osaka), Middle East
(UAE), Europe (Spain), and
Israel (Tel Aviv) Regions. The
Events placeholder bucket
reference topic and AWS
service endpoints topic have
been updated.

November 13, 2023

API Version 2015-07-09 998

https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-DeviceFarm.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-DeviceFarm.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CloudFormation.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CloudFormation.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CloudFormation.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-trigger-source-overrides.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-trigger-source-overrides.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-ct-placeholder-buckets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-ct-placeholder-buckets.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region

AWS CodePipeline User Guide

Updates for event fields in
Amazon EventBridge

You can now view updated
event fields in Amazon
EventBridge. For more
information, see Monitoring
CodePipeline events.

November 9, 2023

Updates for new pipeline type
V2 pipelines, triggers on Git
tags, and pipeline variables in
CodePipeline

You can now choose a
pipeline type in CodePipel
ine. For a V2 type pipeline,
you can now use a trigger
configuration to start your
pipeline on Git tags. With
V2 type pipelines, you can
also use variables at the
pipeline level to pass input
parameters for a pipeline
execution. For more informati
on, see Variables, Tutorial:
Use pipeline-level variables,
and Tutorial: Use Git tags to
start your pipeline. For more
information about pipeline
types, see Pipeline types.

October 24, 2023

CodePipeline allows retrying
all actions in a failed stage

For a failed stage in CodePipel
ine, you can retry the stage
without re-running the
pipeline. You do this either
by retrying the failed actions
in a stage or by retrying all
actions in the stage starting
from the first action in the
stage. For more information,
see Retry a failed stage or
failed actions in a stage.

October 17, 2023

API Version 2015-07-09 999

https://docs.aws.amazon.com/codepipeline/latest/userguide/detect-state-changes-cloudwatch-events.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/detect-state-changes-cloudwatch-events.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-variables.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-pipeline-variables.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-pipeline-variables.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-tags.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-tags.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipeline-types.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/stage-retry.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/stage-retry.html

AWS CodePipeline User Guide

Support for GitLab groups Support added for configuri
ng connections for AWS
resources to interact with
GitLab groups. For more
information, see GitLab
connections.

September 15, 2023

CodePipeline supports
connections to GitLab.com

You can use connections to
configure AWS resources to
interact with GitLab.com.
You can also choose the full
clone option for using Git
commands and metadata
for downstream actions.
For more information, see
GitLab connections and the
CodeStarSourceConnection
action structure reference
 topic.

August 10, 2023

Update to the CloudForm
ationStackInstances
action

The RegionConcurrencyT
ype parameter was
added for the CloudForm
ationStackInstance
s action. See the action
reference page for the
CloudFormationStac
kInstances action.

August 8, 2023

Update to the CloudForm
ationStackSet action

The RegionConcurrencyT
ype parameter was
added for the CloudForm
ationStackSet action.
See the action reference
page for the CloudForm
ationStackSet action.

July 24, 2023

API Version 2015-07-09 1000

https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-gitlab.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-gitlab.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-gitlab.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html

AWS CodePipeline User Guide

Updates to managed policy The AWS managed policy
AWSCodePipeline_Fu
llAccess was updated. See
AWS managed policies for
AWS CodePipeline.

June 21, 2023

Updates to migration
procedures for polling
pipelines

The procedures to migrate
(update) polling pipelines
to use event-based change
detection have been updated
with the steps for pipelines
that use an Amazon S3 bucket
enabled for notifications
to EventBridge. For more
information, see Migrate
polling pipelines to use event-
based change detection.

June 12, 2023

Updates to managed policies The AWS managed policies
AWSCodePipeline_Fu
llAccess and AWSCodePi
peline_ReadOnlyAcc
ess have been updated with
an additional permission. For
more information, see AWS
CodePipeline updates to AWS
managed policies.

May 16, 2023

API Version 2015-07-09 1001

https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-change-detection.html#update-change-detection-S3-event
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-change-detection.html#update-change-detection-S3-event
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-change-detection.html#update-change-detection-S3-event
https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/codepipeline/latest/userguide/managed-policies.html#security-iam-awsmanpol-updates

AWS CodePipeline User Guide

Updates to managed policies The AWS managed policies
AWSCodePipelineFul
lAccess and AWSCodePi
pelineReadOnlyAcce
ss are deprecated. Use the
AWSCodePipeline_Fu
llAccess and AWSCodePi
peline_ReadOnlyAcc
ess policies. See AWS
CodePipeline updates to AWS
managed policies.

November 17, 2022

Updates to procedures that
use CloudTrail

All console procedures,
sample CLI commands, and
sample AWS CloudFormation
snippets and templates for
a pipeline with an S3 source
have been updated with the
option to choose Write and
select false for Management
events in CloudTrail. See the
updated samples in Starting
a pipeline, Tutorial: Create a
pipeline with AWS CloudForm
ation, Edit pipelines to use
push events, and Update
polling pipelines.

April 27, 2022

New supported integration
with Snyk

You can use the Snyk invoke
action in CodePipeline to
automate security scanning
for your open source code.
For more information, refer to
the Snyk action reference and
Integrations.

June 10, 2021

API Version 2015-07-09 1002

https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam-awsmanpol-updates.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam-awsmanpol-updates.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam-awsmanpol-updates.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-about-starting.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-about-starting.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-cloudformation-action.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-cloudformation-action.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-cloudformation-action.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-change-detection.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-change-detection.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/trigger-S3-migration-cwe.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/trigger-S3-migration-cwe.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-Snyk.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/integrations.html

AWS CodePipeline User Guide

New supported Region
Europe (Milan)

CodePipeline is now available
in Europe (Milan). The Limits
topic and AWS service
endpoints topic have been
updated.

January 27, 2021

Change detection can be
turned off for source actions
with connections

You can use the CLI or SDK
to update a CodeStarS
ourceConnection
source action to turn off
automatic change detection
for the source repository. The
CodeStarSourceConnection
action structure reference
 topic has been updated
with a description for the
DetectChanges parameter.

January 8, 2021

CodePipeline now supports
AWS CloudFormation
StackSets deployment actions

A new tutorial, Tutorial:
Create a pipeline that
uses AWS CloudFormation
StackSets as a deploymen
t provider, provides steps
to use AWS CloudForm
ation StackSets to create
and update your stack sets
and stack instances with
your pipeline. The AWS
CloudFormation StackSets
action structure reference
 topic has also been added.

December 30, 2020

New supported Region Asia
Pacific (Hong Kong)

CodePipeline is now available
in Asia Pacific (Hong Kong).
The Limits topic and AWS
service endpoints topic have
been updated.

December 22, 2020

API Version 2015-07-09 1003

https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodestarConnectionSource.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-stackset-deployment.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-stackset-deployment.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-stackset-deployment.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-stackset-deployment.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-stackset-deployment.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StackSets.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region

AWS CodePipeline User Guide

View updated EventBridge
event patterns in CodePipel
ine

Updated event patterns and
statuses for pipeline, stage,
and action level events have
been added to Monitoring
CodePipeline events.

December 21, 2020

View inbound pipeline
executions in CodePipeline

You can use the console
or the CLI to view inbound
executions. For more
information, see View an
inbound execution (console)
 and View inbound execution
status (CLI).

November 16, 2020

The CodeCommit source
action in CodePipeline
supports the full clone option

When you use a CodeCommit
source action, you can choose
the full clone option for using
Git commands and metadata
for downstream CodeBuild
actions. For more information,
see the CodeCommit action
reference and Tutorial: Use
full clone with a CodeCommit
pipeline source.

November 11, 2020

API Version 2015-07-09 1004

https://docs.aws.amazon.com/codepipeline/latest/userguide/detect-state-changes-cloudwatch-events.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/detect-state-changes-cloudwatch-events.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-executions-inbound-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-executions-inbound-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-executions-inbound-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-executions-inbound-cli.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-executions-inbound-cli.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodeCommit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodeCommit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-codecommit-gitclone.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-codecommit-gitclone.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-codecommit-gitclone.html

AWS CodePipeline User Guide

CodePipeline supports
connections to GitHub and
GitHub Enterprise Server

You can use connections to
configure AWS resources
to interact with GitHub,
GitHub Enterprise Cloud, and
GitHub Enterprise Server.
You can also choose the full
clone option for using Git
commands and metadata
for downstream actions. For
more information, see GitHub
connections, GitHub Enterpris
e Server connections, and
Tutorial: Use full clone with
a GitHub pipeline source. If
you have an existing pipeline
with a GitHub source action,
see Update a GitHub version
1 source action to a GitHub
version 2 source action.

September 30, 2020

The CodeBuild action
supports enabling batch
builds in AWS CodePipeline

For CodeBuild actions in
your pipeline, you can enable
batch builds to run multiple
builds in a single execution
. For more information, see
CodeBuild action structure
 reference and Create a
pipeline (console).

July 30, 2020

API Version 2015-07-09 1005

https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-github.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-github.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-ghes.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-ghes.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-gitclone.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-github-gitclone.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-github-action-connections.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-github-action-connections.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/update-github-action-connections.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodeBuild.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-CodeBuild.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html#pipelines-create-console
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html#pipelines-create-console

AWS CodePipeline User Guide

AWS CodePipeline now
supports AWS AppConfig
deployment actions

A new tutorial, Tutorial:
Create a pipeline that
uses AWS AppConfig as
a deployment provider,
provides steps to use
AWS AppConfig to deploy
configuration files with your
pipeline. The AWS AppConfig
action structure reference
 topic has also been added.

June 25, 2020

AWS CodePipeline now
supports Amazon VPC in AWS
GovCloud (US-West)

You can now connect directly
to AWS CodePipeline through
a private Amazon VPC
endpoint in AWS GovCloud
(US-West). For more informati
on, see Use CodePipeline with
Amazon Virtual Private Cloud.

June 2, 2020

AWS CodePipeline now
supports AWS Step Functions
invoke actions

You can now create a pipeline
in CodePipeline that uses
AWS Step Functions as the
invoke action provider. A new
tutorial, Tutorial: Use an AWS
Step Functions invoke action
in a pipeline, provides steps
for starting a state machine
execution from your pipeline.
The AWS Step Functions
Action Structure Reference
 topic has also been added.

May 28, 2020

View, list, and update
connections

You can list, delete, and
update connections in the
console. See List connections
in CodePipeline.

May 21, 2020

API Version 2015-07-09 1006

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-AppConfig.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/vpc-support.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/vpc-support.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-step-functions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-step-functions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-step-functions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StepFunctions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StepFunctions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StepFunctions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-list.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-list.html

AWS CodePipeline User Guide

Connections support tagging
connections resources in the
CLI

The connections resources
now support tagging in
the AWS CLI. Connections
now integrate with AWS
CodeGuru. See IAM Permissio
ns Reference for Connections.

May 6, 2020

CodePipeline is now available
in AWS GovCloud (US-West)

You can now use CodePipeline
in AWS GovCloud (US-West)
. For more information, see
Quotas.

April 8, 2020

The quotas topic shows which
CodePipeline service quotas
are configurable

The CodePipeline quotas
topic has been reformatt
ed. The documentation
shows which service quotas
are configurable and which
quotas are non-configurable.
See Quotas in AWS CodePipel
ine.

March 12, 2020

The Amazon ECS deployment
action timeout is configurable

The Amazon ECS deployment
action timeout is configurable
up to one hour (the default
timeout). See Quotas in AWS
CodePipeline.

February 5, 2020

API Version 2015-07-09 1007

https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-permissions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-permissions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html

AWS CodePipeline User Guide

New topics describe how you
can stop a pipeline execution

You can stop a pipeline
execution in CodePipeline.
You can either specify that
the execution stops after in-
progress actions are allowed
to complete, or you can
specify to stop the execution
immediately and abandon
in-progress actions. See
How pipeline executions are
stopped and Stop a pipeline
execution in CodePipeline.

January 21, 2020

CodePipeline supports
connections

You can use connections to
configure AWS resources to
interact with external code
repositories. Each connection
is a resource that can be used
by services such as CodePipel
ine to connect to a third-party
repository, such as Bitbucket
Cloud. For more information,
see Working with connections
in CodePipeline.

December 18, 2019

Updated security, authentic
ation, and access control
topics

The security, authentication,
and access control informati
on for CodePipeline has been
organized into a new Security
chapter. For more informati
on, see Security.

December 17, 2019

API Version 2015-07-09 1008

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-stopping
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html#concepts-how-it-works-stopping
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-stop.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-stop.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/security.html

AWS CodePipeline User Guide

New topics describe how
you can use variables in your
pipelines

You can now configure
namespaces for actions and
generate variables each
time the action execution
is complete. You can set
up downstream actions to
reference these namespace
s and variables. See Working
with variables and Variables.

November 14, 2019

New topics describe how
pipeline executions work, why
stages are locked during an
execution, and when pipeline
executions are superseded

A number of topics have been
added to the Welcome section
to describe how pipeline
executions work, including
why stages are locked during
an execution and what
happens when pipeline
executions are supersede
d. These topics include a
list of concepts, a DevOps
workflow example, and
recommendations for how a
pipeline should be structure
d. The following topics have
been added: Pipeline terms,
DevOps pipeline example,
and How pipeline executions
work.

November 11, 2019

CodePipeline supports
notification rules

You can now use notificat
ion rules to notify users
of important changes in
pipelines. For more informati
on, see Create a notification
rule.

November 5, 2019

API Version 2015-07-09 1009

https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-variables.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-variables.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-variables.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts.html#concepts-pipeline-terms
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-devops-example.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-how-it-works.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/concepts-how-it-works.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/notification-rule-create.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/notification-rule-create.html

AWS CodePipeline User Guide

CodeBuild environme
nt variables available in
CodePipeline

You can set CodeBuild
environment variables in the
CodeBuild build action for
your pipeline. You can use
the console or CLI to add the
EnvironmentVariables
parameter to the pipeline
structure. The Create a
pipeline (console) topic has
been updated. The action
configuration examples in
the action reference for
CodeBuild have also been
updated.

October 14, 2019

New Region CodePipeline is now available
in Europe (Stockholm). The
Limits topic and AWS service
endpoints topic have been
updated.

September 5, 2019

Specify canned ACLs and
cache control for Amazon S3
deployment actions

You can now specify canned
ACL and cache control options
when you create an Amazon
S3 deployment action in
CodePipeline. The following
topics have been updated:
Create a pipeline (console)
, CodePipeline Pipeline
structure reference, and
Tutorial: Create a pipeline
that uses Amazon S3 as a
deployment provider.

June 27, 2019

API Version 2015-07-09 1010

https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-codebuild.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/limits.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create-console.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-s3deploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-s3deploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-s3deploy.html

AWS CodePipeline User Guide

You can now add tags to
resources in AWS CodePipel
ine

You can now use tagging
to track and manage AWS
CodePipeline resources such
as pipelines, custom actions,
and webhooks. The following
new topics have been added:
Tagging resources, Using tags
to control access to CodePipel
ine resources, Tag a pipeline
in CodePipeline, Tag a custom
action in CodePipeline, and
Tag a webhook in CodePipel
ine. The following topics
have been updated to show
how to use the CLI to tag
resources: Create a pipeline
(CLI), Create a custom action
(CLI), and Create a webhook
for a GitHub source.

May 15, 2019

You can now view action
execution history in AWS
CodePipeline

You can now view details
about past executions of all
actions in a pipeline. These
details include start and
end times, duration, action
execution ID, status, input
and output artifact location
details, and external resource
details. The View pipeline
details and history topic has
been updated to reflect this
support.

March 20, 2019

API Version 2015-07-09 1011

https://docs.aws.amazon.com/codepipeline/latest/userguide/tag-resources.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#tag-based-access-control
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#tag-based-access-control
https://docs.aws.amazon.com/codepipeline/latest/userguide/security-iam.html#tag-based-access-control
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-tag.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-tag.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/customactions-tag.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/customactions-tag.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tag-webhooks.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tag-webhooks.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html#pipelines-create-cli
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html#pipelines-create-cli
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-custom-action.html#actions-create-custom-action-cli
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-custom-action.html#actions-create-custom-action-cli
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-webhooks-create.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-webhooks-create.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-view.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-view.html

AWS CodePipeline User Guide

AWS CodePipeline now
supports publishing applicati
ons to the AWS Serverless
Application Repository

You can now create a pipeline
in CodePipeline that publishes
your serverless application to
the AWS Serverless Applicati
on Repository. A new tutorial,
Tutorial: Publish applicati
ons to the AWS Serverles
s Application Repository,
provides steps for creating
and configuring a pipeline
to continuously deliver your
serverless application to the
AWS Serverless Application
Repository.

March 8, 2019

AWS CodePipeline now
supports cross-region actions
in the console

You can now manage cross-
region actions in the AWS
CodePipeline console. Add a
cross-Region action has been
updated with the steps to
add, edit, or delete an action
that is in a different AWS
Region from your pipeline.
The Create a pipeline, Edit a
pipeline, and CodePipeline
pipeline structure reference
 topics have been updated.

February 14, 2019

API Version 2015-07-09 1012

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-serverlessrepo-auto-publish.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-serverlessrepo-auto-publish.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-serverlessrepo-auto-publish.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-cross-region.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-cross-region.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-edit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-edit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html

AWS CodePipeline User Guide

AWS CodePipeline now
supports Amazon S3
deployments

You can now create a pipeline
in CodePipeline that uses
Amazon S3 as the deploymen
t action provider. A new
tutorial, Tutorial: Create a
pipeline that uses Amazon
S3 as a deployment provider,
provides steps for deploying
sample files to your Amazon
S3 bucket with CodePipeline.
The CodePipeline pipeline
structure reference topic has
also been updated.

January 16, 2019

AWS CodePipeline now
supports Alexa Skills Kit
deployments

You can now use CodePipel
ine and Alexa Skills Kit for
continuous deployment of
Alexa skills. A new tutorial,
Tutorial: Create a pipeline
that deploys an Amazon
Alexa skill, contains steps
for creating credentials that
allow AWS CodePipeline
to connect to your Alexa
Skills Kit developer account
and then creating a pipeline
that deploys a sample skill.
The CodePipeline pipeline
structure reference topic has
been updated.

December 19, 2018

API Version 2015-07-09 1013

https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-s3deploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-s3deploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-s3deploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-alexa-skills-kit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-alexa-skills-kit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-alexa-skills-kit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html

AWS CodePipeline User Guide

AWS CodePipeline now
supports Amazon VPC
endpoints powered by AWS
PrivateLink

You can now connect directly
to AWS CodePipeline through
a private endpoint in your
VPC, keeping all traffic
inside your VPC and the AWS
network. For more informati
on, see Use CodePipeline with
Amazon Virtual Private Cloud.

December 6, 2018

AWS CodePipeline now
supports Amazon ECR source
actions and ECS-to-Co
deDeploy deployment actions

You can now use CodePipel
ine and CodeDeploy with
Amazon ECR and Amazon ECS
for continuous deployment
of container-based applicati
ons. A new tutorial, Create
a pipeline with an Amazon
ECR source and ECS-to-
CodeDeploy deployment,
contains steps for using the
console to create a pipeline
that deploys container
applications stored in an
image repository to an
Amazon ECS cluster with
CodeDeploy traffic routing.
The Create a pipeline and
CodePipeline pipeline
structure reference topics
have been updated.

November 27, 2018

API Version 2015-07-09 1014

https://docs.aws.amazon.com/codepipeline/latest/userguide/vpc-support.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/vpc-support.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-ecs-ecr-codedeploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-ecs-ecr-codedeploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-ecs-ecr-codedeploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials-ecs-ecr-codedeploy.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html

AWS CodePipeline User Guide

AWS CodePipeline now
supports cross-region actions
in a pipeline

A new topic, Add a Cross-reg
ion Action, contains steps for
using the AWS CLI or AWS
CloudFormation to add an
action that is in a different
region from your pipeline.
The Create a pipeline, Edit a
pipeline, and CodePipeline
pipeline structure reference
 topics have been updated.

November 12, 2018

AWS CodePipeline now
integrates with Service
Catalog

You can now add Service
Catalog as a deployment
action to your pipeline. This
allows you to set up a pipeline
to publish product updates
to Service Catalog when you
make a change in your source
repository. The Integrati
ons topic has been updated
to reflect this support for
Service Catalog. Two Service
Catalog tutorials have been
added to the AWS CodePipel
ine tutorials section.

October 16, 2018

API Version 2015-07-09 1015

https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-cross-region.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-create-cross-region.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-create.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-edit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-edit.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/reference-pipeline-structure.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/integrations.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/integrations.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials.html

AWS CodePipeline User Guide

AWS CodePipeline now
integrates with AWS Device
Farm

You can now add AWS Device
Farm as a test action to
your pipeline. This allows
you to set up a pipeline to
test mobile applications.
The Integrations topic has
been updated to reflect this
support for AWS Device
Farm. Two AWS Device Farm
tutorials have been added
to the AWS CodePipeline
tutorials section.

July 19, 2018

AWS CodePipeline User Guide
update notifications now
available through RSS

The HTML version of the
CodePipeline User Guide
now supports an RSS feed of
updates that are documente
d in the Documentation
Update History page. The
RSS feed includes updates
made after June 30, 2018 and
later. Previously announced
updates are still available in
the Documentation Update
History page. Use the RSS
button in the top menu panel
to subscribe to the feed.

June 30, 2018

Earlier updates

The following table describes important changes in each release of the CodePipeline User Guide on
June 30, 2018 and earlier.

Earlier updates API Version 2015-07-09 1016

https://docs.aws.amazon.com/codepipeline/latest/userguide/integrations.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/tutorials.html

AWS CodePipeline User Guide

Change Description Date
changed

Use webhooks
to detect source
changes in GitHub
pipelines

When you create or edit a pipeline in the console,
CodePipeline now creates a webhook that detects
changes to your GitHub source repository and then starts
your pipeline. For information about migrating your
pipeline, see Configure Your GitHub Pipelines to Use
Webhooks for Change Detection. For more information,
see Start a Pipeline Execution in CodePipeline.

May 1, 2018

Updated topics When you create or edit a pipeline in the console,
CodePipeline now creates an Amazon CloudWatch Events
rule and an AWS CloudTrail trail that detects changes
to your Amazon S3 source bucket and then starts your
pipeline. For information about migrating your pipeline,
see Source actions and change detection methods.

The Tutorial: Create a simple pipeline (S3 bucket) has
been updated to show how the Amazon CloudWatch
Events rule and trail are created when you select an
Amazon S3 source. Create a pipeline in CodePipeline and
Edit a pipeline in CodePipeline have also been updated.

For more information, see Start a pipeline in CodePipel
ine.

March 22,
2018

Updated topic CodePipeline is now available in Europe (Paris). The
Quotas in AWS CodePipeline topic has been updated.

February
21, 2018

Updated topics You can now use CodePipeline and Amazon ECS for
continuous deployment of container-based applicati
ons. When you create a pipeline, you can select Amazon
ECS as a deployment provider. A change to code in your
source control repository triggers your pipeline to build
a new Docker image, push it to your container registry,
and then deploy the updated image to an Amazon ECS
service.

December
12, 2017

Earlier updates API Version 2015-07-09 1017

https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-webhooks-migration.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-webhooks-migration.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-about-starting.html

AWS CodePipeline User Guide

Change Description Date
changed

The topics Product and service integrations with
CodePipeline, Create a pipeline in CodePipeline, and
CodePipeline pipeline structure reference have been
updated to reflect this support for Amazon ECS.

Updated topics When you create or edit a pipeline in the console,
CodePipeline now creates an Amazon CloudWatch Events
rule that detects changes to your CodeCommit repository
and then automatically starts your pipeline. For informati
on about migrating your existing pipeline, see Source
actions and change detection methods.

The Tutorial: Create a simple pipeline (CodeCommit
repository) has been updated to show how the Amazon
CloudWatch Events rule and role are created when you
select a CodeCommit repository and branch. Create a
pipeline in CodePipeline and Edit a pipeline in CodePipel
ine have also been updated.

For more information, see Start a pipeline in CodePipel
ine.

October 11,
2017

New and updated
topics

CodePipeline now provides built-in support for pipeline
state change notifications through Amazon CloudWatch
Events and Amazon Simple Notification Service (Amazon
SNS). A new tutorial Tutorial: Set up a CloudWatch Events
rule to receive email notifications for pipeline state
changes has been added. For more information, see
Monitoring CodePipeline events.

September
8, 2017

Earlier updates API Version 2015-07-09 1018

AWS CodePipeline User Guide

Change Description Date
changed

New and updated
topics

You can now add CodePipeline as a target for Amazon
CloudWatch Events actions. Amazon CloudWatch Events
rules can be set up to detect source changes so that the
pipeline starts as soon as those changes occur, or they can
be set up to run scheduled pipeline executions. Informati
on has been added for the PollForSourceChanges source
action configuration option. For more information, see
Start a pipeline in CodePipeline.

September
5, 2017

New Regions CodePipeline is now available in Asia Pacific (Seoul) and
Asia Pacific (Mumbai). The Quotas in AWS CodePipel
ine topic and Regions and Endpoints topic have been
updated.

July 27,
2017

New Regions CodePipeline is now available in US West (N. California),
Canada (Central), and Europe (London). The Quotas in
AWS CodePipeline topic and Regions and Endpoints topic
have been updated.

June 29,
2017

Updated topics You can now view details about past executions of a
pipeline, not just the most recent execution. These details
include start and end times, duration, and execution
 ID. Details are available for a maximum of 100 pipeline
executions during the most recent 12-month period.
The topics View pipelines and details in CodePipeline,
CodePipeline permissions reference, and Quotas in AWS
CodePipeline have been updated to reflect this support.

June 22,
2017

Updated topic Nouvola has been added to the list of available actions in
Test action integrations.

May 18,
2017

Earlier updates API Version 2015-07-09 1019

https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
http://www.nouvola.com/aws-codepipeline-plugin/

AWS CodePipeline User Guide

Change Description Date
changed

Updated topics In the AWS CodePipeline wizard, the page Step 4: Beta
has been renamed Step 4: Deploy. The default name of
the stage created by this step has been changed from
"Beta" to "Staging". Numerous topics and screenshots
have been updated to reflect these changes.

April 7,
2017

Updated topics You can now add AWS CodeBuild as a test action to any
stage of a pipeline. This allows you to more easily use
AWS CodeBuild to run unit tests against your code. Prior
to this release, you could use AWS CodeBuild to run unit
tests only as part of a build action. A build action requires
a build output artifact, which unit tests typically do not
produce.

The topics Product and service integrations with
CodePipeline, Edit a pipeline in CodePipeline, and
CodePipeline pipeline structure reference have been
updated to reflect this support for AWS CodeBuild.

March 8,
2017

New and updated
topics

The table of contents has been reorganized to include
sections for pipelines, actions, and stage transitions. A
new section has been added for CodePipeline tutorials.
For better usability, Product and service integrations with
CodePipeline has been divided into shorter topics.

A new section, Authorization and Access Control, provides
comprehensive information about using AWS Identity
and Access Management (IAM) and CodePipeline to
help secure access to your resources through the use of
credentials. These credentials provide the permissions
required to access AWS resources, such as putting and
retrieving artifacts from Amazon S3 buckets and integrati
ng AWS OpsWorks stacks into your pipelines.

February 8,
2017

Earlier updates API Version 2015-07-09 1020

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS CodePipeline User Guide

Change Description Date
changed

New Region CodePipeline is now available in Asia Pacific (Tokyo).
The Quotas in AWS CodePipeline topic and Regions and
Endpoints topic have been updated.

December
14, 2016

New Region CodePipeline is now available in South America (São
Paulo). The Quotas in AWS CodePipeline topic and
Regions and Endpoints topic have been updated.

December
7, 2016

Updated topics You can now add AWS CodeBuild as a build action to any
stage of a pipeline. AWS CodeBuild is a fully managed
build service in the cloud that compiles your source code,
runs unit tests, and produces artifacts that are ready to
deploy. You can use an existing build project or create
one in the CodePipeline console. The output of the build
project can then be deployed as part of a pipeline.

The topics Product and service integrations with
CodePipeline, Create a pipeline in CodePipeline, Authentic
ation and Access Control, and CodePipeline pipeline
structure reference have been updated to reflect this
support for AWS CodeBuild.

You can now use CodePipeline with AWS CloudFormation
and the AWS Serverless Application Model to continuou
sly deliver your serverless applications. The topic Product
and service integrations with CodePipeline has been
updated to reflect this support.

Product and service integrations with CodePipeline has
been reorganized to group AWS and partner offerings by
action type.

December
1, 2016

New Region CodePipeline is now available in Europe (Frankfurt).
The Quotas in AWS CodePipeline topic and Regions and
Endpoints topic have been updated.

November
16, 2016

Earlier updates API Version 2015-07-09 1021

https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region

AWS CodePipeline User Guide

Change Description Date
changed

Updated topics AWS CloudFormation can now be selected as a
deployment provider in pipelines, enabling you to take
action on AWS CloudFormation stacks and change sets
as part of a pipeline execution. The topics Product and
service integrations with CodePipeline, Create a pipeline
in CodePipeline, Authentication and Access Control, and
CodePipeline pipeline structure reference have been
updated to reflect this support for AWS CloudFormation.

November
3, 2016

New Region CodePipeline is now available in the Asia Pacific (Sydney)
Region. The Quotas in AWS CodePipeline topic and
Regions and Endpoints topic have been updated.

October 26,
2016

New Region CodePipeline is now available in Asia Pacific (Singapore).
The Quotas in AWS CodePipeline topic and Regions and
Endpoints topic have been updated.

October 20,
2016

New Region CodePipeline is now available in the US East (Ohio)
Region. The Quotas in AWS CodePipeline topic and
Regions and Endpoints topic have been updated.

October 17,
2016

Updated topic Create a pipeline in CodePipeline has been updated to
reflect support for displaying version identifiers of custom
actions in the Source provider and Build provider lists.

September
22, 2016

Updated topic The Manage approval actions in CodePipeline section
has been updated to reflect an enhancement that lets
Approval action reviewers open the Approve or reject the
revision form directly from an email notification.

September
14, 2016

Earlier updates API Version 2015-07-09 1022

https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region

AWS CodePipeline User Guide

Change Description Date
changed

New and updated
topics

A new topic that describes how to view details about code
changes currently flowing through your software release
pipeline. Quick access to this information can be useful
when reviewing manual approval actions or troublesh
ooting failures in your pipeline.

A new section, Monitoring pipelines, provides a central
location for all topics related to monitoring the status and
progress of your pipelines.

September
08, 2016

New and updated
topics

A new section, Manage approval actions in CodePipel
ine, provides information about configuring and using
manual approval actions in pipelines. Topics in this
section provide conceptual information about the
approval process; instructions for setting up required IAM
permissions, creating approval actions, and approving
or rejecting approval actions; and samples of the JSON
data generated when an approval action is reached in a
pipeline.

July 06,
2016

New Region CodePipeline is now available in the Europe (Ireland)
Region. The Quotas in AWS CodePipeline topic and
Regions and endpoints topic have been updated.

June 23,
2016

New topic A new topic, Retry a failed action in a stage, has been
added to describe how to retry a failed action or a group
of parallel failed actions in stage.

June 22,
2016

Earlier updates API Version 2015-07-09 1023

https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region

AWS CodePipeline User Guide

Change Description Date
changed

Updated topics A number of topics, including Create a pipeline in
CodePipeline, Authentication and Access Control,
CodePipeline pipeline structure reference, and Product
and service integrations with CodePipeline, have been
updated to reflect support for configuring a pipeline to
deploy code in conjunction with custom Chef cookbooks
and applications created in AWS OpsWorks. CodePipeline
support for AWS OpsWorks is currently available in the
US East (N. Virginia) Region (us-east-1) only.

June 2,
2016

New and updated
topics

A new topic, Tutorial: Create a simple pipeline
(CodeCommit repository), has been added. This topic
provides a sample walkthrough showing how to use
a CodeCommit repository and branch as the source
location for a source action in a pipeline. Several other
topics have been updated to reflect this integration
with CodeCommit, including Authentication and Access
Control, Product and service integrations with CodePipel
ine, Tutorial: Create a four-stage pipeline, and Troublesh
ooting CodePipeline.

April 18,
2016

New topic A new topic, Invoke an AWS Lambda function in a pipeline
in CodePipeline, has been added. This topic contains
sample AWS Lambda functions and steps for adding
Lambda functions to pipelines.

January 27,
2016

Updated topic A new section has been added to Authentication and
Access Control, Resource-based Policies.

January 22,
2016

New topic A new topic, Product and service integrations with
CodePipeline, has been added. Information about
integrations with partners and other AWS services has
been moved to this topic. Links to blogs and videos have
also been added.

December
17, 2015

Earlier updates API Version 2015-07-09 1024

AWS CodePipeline User Guide

Change Description Date
changed

Updated topic Details of integration with Solano CI have been added to
Product and service integrations with CodePipeline.

November
17, 2015

Updated topic The CodePipeline Plugin for Jenkins is now available
through the Jenkins Plugin Manager as part of the library
of plugins for Jenkins. The steps for installing the plugin
have been updated in Tutorial: Create a four-stage
pipeline.

November
9, 2015

New Region CodePipeline is now available in the US West (Oregon)
Region. The Quotas in AWS CodePipeline topic has
been updated. Links have been added to Regions and
Endpoints.

October 22,
2015

New topic Two new topics, Configure server-side encryption for
artifacts stored in Amazon S3 for CodePipeline and
Create a pipeline in CodePipeline that uses resources from
another AWS account, have been added. A new section
has been added to Authentication and Access Control,
Example 8: Use AWS resources associated with another
account in a pipeline.

August 25,
2015

Updated topic The Create and add a custom action in CodePipeline topic
has been updated to reflect changes in the structure,
including inputArtifactDetails and outputArt
ifactDetails .

August 17,
2015

Updated topic The Troubleshooting CodePipeline topic has been
updated with revised steps for troubleshooting problems
with the service role and Elastic Beanstalk.

August 11,
2015

Updated topic The Authentication and Access Control topic has been
updated with the latest changes to the service role for
CodePipeline.

August 6,
2015

Earlier updates API Version 2015-07-09 1025

https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#codepipeline_region

AWS CodePipeline User Guide

Change Description Date
changed

New topic A Troubleshooting CodePipeline topic has been added.
Updated steps have been added for IAM roles and Jenkins
in Tutorial: Create a four-stage pipeline.

July 24,
2015

Topic update Updated steps have been added for downloading the
sample files in Tutorial: Create a simple pipeline (S3
bucket) and Tutorial: Create a four-stage pipeline.

July 22,
2015

Topic update A temporary workaround for download issues with
the sample files was added in Tutorial: Create a simple
pipeline (S3 bucket).

July 17,
2015

Topic update A link was added in Quotas in AWS CodePipeline to point
to information about which limits can be changed.

July 15,
2015

Topic update The managed policies section in Authentication and
Access Control was updated.

July 10,
2015

Initial Public
Release

This is the initial public release of the CodePipeline User
Guide.

July 9, 2015

Earlier updates API Version 2015-07-09 1026

AWS CodePipeline User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

API Version 2015-07-09 1027

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS CodePipeline
	Table of Contents
	What is AWS CodePipeline?
	Continuous delivery and continuous integration
	What can I do with CodePipeline?
	A quick look at CodePipeline
	How do I get started with CodePipeline?
	CodePipeline concepts
	Pipelines
	Stages
	Actions
	Pipeline executions
	Stopped executions
	Failed executions
	Execution modes

	Stage executions
	Action executions
	Action types
	Transitions
	Artifacts
	Source revisions
	Triggers
	Variables

	DevOps pipeline example
	How pipeline executions work
	How pipeline executions are started
	How pipeline executions are stopped
	How executions are processed in SUPERSEDED mode
	How executions are processed in QUEUED mode
	How executions are processed in PARALLEL mode
	Managing Pipeline Flow
	Recommended pipeline structure
	How Inbound Executions Work

	Input and output artifacts
	Pipeline types
	What type of pipeline is right for me?

	Getting started with CodePipeline
	Step 1: Create an AWS account and administrative user
	Sign up for an AWS account
	Create an administrative user

	Step 2: Apply a managed policy for administrative access to CodePipeline
	Step 3: Install the AWS CLI
	Step 4: Open the console for CodePipeline
	Next steps

	Product and service integrations with CodePipeline
	Integrations with CodePipeline action types
	Source action integrations
	Amazon ECR source actions
	Amazon S3 source actions
	Connections to Bitbucket Cloud, GitHub (version 2), GitHub Enterprise Server, GitLab.com, and GitLab self-managed
	CodeCommit source actions
	GitHub (version 1) source actions

	Build action integrations
	CodeBuild build actions
	CloudBees build actions
	Jenkins build actions
	TeamCity build actions

	Test action integrations
	CodeBuild test actions
	AWS Device Farm test actions
	Ghost Inspector test actions
	Micro Focus StormRunner Load test actions

	Deploy action integrations
	Amazon S3 deploy actions
	AWS AppConfig deploy actions
	AWS CloudFormation deploy actions
	AWS CloudFormation StackSets deploy actions
	Amazon ECS deploy actions
	Elastic Beanstalk deploy actions
	AWS OpsWorks deploy actions
	Service Catalog deploy actions
	Amazon Alexa deploy actions
	CodeDeploy deploy actions
	XebiaLabs deploy actions

	Approval action integration with Amazon Simple Notification Service
	Invoke action integrations
	Lambda invoke actions
	Snyk invoke actions
	Step Functions invoke actions

	General integrations with CodePipeline
	Examples from the community
	Integration examples: Blog posts

	CodePipeline tutorials
	Tutorial: Use Git tags to start your pipeline
	Prerequisites
	Step 1: Open CloudShell and clone your repository
	Step 2: Create a pipeline to trigger on Git tags
	Step 3: Tag your commits for release
	Step 4: Release change and view logs

	Tutorial: Filter on branch names for pull requests to start your pipeline
	Prerequisites
	Step 1: Create a pipeline to start on pull request for specified branches
	Step 2: Create and merge a pull request in GitHub.com to start your pipeline executions

	Tutorial: Use pipeline-level variables
	Prerequisites
	Step 1: Create your pipeline and build project
	Step 2: Release change and view logs

	Tutorial: Create a simple pipeline (S3 bucket)
	Step 1: Create an S3 bucket for your application
	Step 2: Create Amazon EC2 Windows instances and install the CodeDeploy agent
	Step 3: Create an application in CodeDeploy
	Step 4: Create your first pipeline in CodePipeline
	(Optional) Step 5: Add another stage to your pipeline
	Create a second deployment group in CodeDeploy
	Add the deployment group as another stage in your pipeline
	Create a third stage (console)
	Create a third stage (CLI)

	(Optional) Step 6: Disable and enable transitions between stages in CodePipeline
	Step 7: Clean up resources

	Tutorial: Create a simple pipeline (CodeCommit repository)
	Step 1: Create a CodeCommit repository
	Step 2: Add sample code to your CodeCommit repository
	Step 3: Create an Amazon EC2 Linux instance and install the CodeDeploy agent
	Step 4: Create an application in CodeDeploy
	Step 5: Create your first pipeline in CodePipeline
	Step 6: Modify code in your CodeCommit repository
	Step 7: Clean up resources
	Step 8: Further reading

	Tutorial: Create a four-stage pipeline
	Step 1: Complete prerequisites
	Copy or clone the sample into a GitHub repository
	Create an IAM role to use for Jenkins integration
	Install and configure Jenkins and the CodePipeline Plugin for Jenkins

	Step 2: Create a pipeline in CodePipeline
	Step 3: Add another stage to your pipeline
	Add a test stage to your pipeline
	Look up the IP address of an instance
	Create a Jenkins project for testing the deployment
	Create a fourth stage

	Step 4: Clean up resources

	Tutorial: Set up a CloudWatch Events rule to receive email notifications for pipeline state changes
	Step 1: Set up an email notification using Amazon SNS
	Step 2: Create a rule and add the SNS topic as the target
	Step 3: Clean up resources

	Tutorial: Create a pipeline that builds and tests your Android app with AWS Device Farm
	Configure CodePipeline to use your Device Farm tests

	Tutorial: Create a pipeline that tests your iOS app with AWS Device Farm
	Configure CodePipeline to use your Device Farm tests (Amazon S3 example)

	Tutorial: Create a pipeline that deploys to Service Catalog
	Option 1: Deploy to Service Catalog without a configuration file
	Step 1: Upload sample template file to source repository
	Step 2: Create a product in Service Catalog
	Step 3: Create your pipeline
	Step 4: Push a change and verify your product in Service Catalog

	Option 2: Deploy to Service Catalog using a configuration file
	Step 1: Upload sample template file to source repository
	Step 2: Create your product deployment configuration file
	Step 3: Create a product in Service Catalog
	Step 4: Create your pipeline
	Step 5: Push a change and verify your product in Service Catalog

	Tutorial: Create a pipeline with AWS CloudFormation
	Example 1: Create an AWS CodeCommit pipeline with AWS CloudFormation
	Example 2: Create an Amazon S3 pipeline with AWS CloudFormation

	Tutorial: Create a pipeline that uses variables from AWS CloudFormation deployment actions
	Prerequisites: Create an AWS CloudFormation service role and a CodeCommit repository
	Step 1: Download, edit, and upload the sample AWS CloudFormation template
	Step 2: Create your pipeline
	Step 3: Add an AWS CloudFormation deployment action to create the change set
	Step 4: Add a manual approval action
	Step 5: Add a CloudFormation deployment action to execute the change set
	Step 6: Add a CloudFormation deployment action to delete the stack

	Tutorial: Amazon ECS Standard Deployment with CodePipeline
	Prerequisites
	Step 1: Add a Build Specification File to Your Source Repository
	Step 2: Creating Your Continuous Deployment Pipeline
	Step 3: Add Amazon ECR Permissions to the CodeBuild Role
	Step 4: Test Your Pipeline

	Tutorial: Create a pipeline with an Amazon ECR source and ECS-to-CodeDeploy deployment
	Prerequisites
	Step 1: Create image and push to an Amazon ECR repository
	Step 2: Create task definition and AppSpec source files and push to a CodeCommit repository
	Step 3: Create your Application Load Balancer and target groups
	Step 4: Create your Amazon ECS cluster and service
	Step 5: Create your CodeDeploy application and deployment group (ECS compute platform)
	Step 6: Create your pipeline
	Step 7: Make a change to your pipeline and verify deployment

	Tutorial: Create a pipeline that deploys an Amazon Alexa skill
	Prerequisites
	Step 1: Create an Alexa developer services LWA security profile
	Step 2: Create Alexa skill source files and push to your CodeCommit repository
	Step 3: Use ASK CLI commands to create a refresh token
	Step 4: Create your pipeline
	Step 5: Make a change to any source file and verify deployment

	Tutorial: Create a pipeline that uses Amazon S3 as a deployment provider
	Option 1: Deploy static website files to Amazon S3
	Prerequisites
	Step 1: Push source files to your CodeCommit repository
	Step 2: Create your pipeline
	Step 3: Make a change to any source file and verify deployment

	Option 2: Deploy built archive files to Amazon S3 from an S3 source bucket
	Prerequisites
	Step 1: Create and upload source files to your S3 source bucket
	Step 2: Create your pipeline
	Step 3: Make a change to any source file and verify deployment

	Tutorial: Create a pipeline that publishes your serverless application to the AWS Serverless Application Repository
	Before you begin
	Step 1: Create a buildspec.yml file
	Step 2: Create and configure your pipeline
	Step 3: Deploy the publish application
	Step 4: Create the publish action

	Tutorial: Using variables with Lambda invoke actions
	Prerequisites
	Step 1: Create a Lambda function
	Step 2: Add a Lambda invoke action and manual approval action to your pipeline

	Tutorial: Use an AWS Step Functions invoke action in a pipeline
	Prerequisite: Create or choose a simple pipeline
	Step 1: Create the sample state machine
	Step 2: Add a Step Functions invoke action to your pipeline

	Tutorial: Create a pipeline that uses AWS AppConfig as a deployment provider
	Prerequisites
	Step 1: Create your AWS AppConfig resources
	Step 2: Upload files to your S3 source bucket
	Step 3: Create your pipeline
	Step 4: Make a change to any source file and verify deployment

	Tutorial: Use full clone with a GitHub pipeline source
	Prerequisites
	Step 1: Create a README file
	Step 2: Create your pipeline and build project
	Step 3: Update the CodeBuild service role policy to use connections
	Step 4: View repository commands in build output

	Tutorial: Use full clone with a CodeCommit pipeline source
	Prerequisites
	Step 1: Create a README file
	Step 2: Create your pipeline and build project
	Step 3: Update the CodeBuild service role policy to clone the repository
	Step 4: View repository commands in build output

	Tutorial: Create a pipeline with AWS CloudFormation StackSets deployment actions
	Prerequisites
	Step 1: Upload the sample AWS CloudFormation template and parameter file
	Step 2: Create your pipeline
	Step 3: View initial deployment
	Step 4: Add a CloudFormationStackInstances action
	Step 5: View stack set resources for your deployment
	Step 6: Make an update to your stack set

	CodePipeline best practices and use cases
	Use cases for CodePipeline
	Use CodePipeline with Amazon S3, AWS CodeCommit, and AWS CodeDeploy
	Use CodePipeline with third-party action providers (GitHub and Jenkins)
	Use CodePipeline with AWS CodeStar to build a pipeline in a code project
	Use CodePipeline to compile, build, and test code with CodeBuild
	Use CodePipeline with Amazon ECS for continuous delivery of container-based applications to the cloud
	Use CodePipeline with Elastic Beanstalk for continuous delivery of web applications to the cloud
	Use CodePipeline with AWS Lambda for continuous delivery of Lambda-based and serverless applications
	Use CodePipeline with AWS CloudFormation templates for continuous delivery to the cloud

	Tagging resources
	Use CodePipeline with Amazon Virtual Private Cloud
	Availability
	Create a VPC endpoint for CodePipeline
	Troubleshooting your VPC setup

	Working with pipelines in CodePipeline
	Start a pipeline in CodePipeline
	Source actions and change detection methods
	Start a pipeline manually
	Start a pipeline manually (console)
	Start a pipeline manually (CLI)

	Start a pipeline on a schedule
	Create an EventBridge rule that schedules your pipeline to start (console)
	Create an EventBridge rule that schedules your pipeline to start (CLI)

	Start a pipeline with a source revision override
	Start a pipeline with a source revision override (console)
	Start a pipeline with a source revision override (CLI)

	Stop a pipeline execution in CodePipeline
	Stop a pipeline execution (console)
	Stop an Inbound Execution (Console)
	Stop a pipeline execution (CLI)
	Stop an Inbound Execution (CLI)

	Create a pipeline in CodePipeline
	Create a pipeline (console)
	Create a pipeline (CLI)
	Amazon ECR source actions and EventBridge resources
	Create an EventBridge rule for an Amazon ECR source (console)
	Create an EventBridge rule for an Amazon ECR source (CLI)
	Create an EventBridge rule for an Amazon ECR source (AWS CloudFormation template)

	Amazon S3 source actions and EventBridge with AWS CloudTrail
	Create an EventBridge rule for an Amazon S3 source (console)
	Create an EventBridge rule for an Amazon S3 source (CLI)
	Create an EventBridge rule for an Amazon S3 source (AWS CloudFormation template)

	Bitbucket Cloud connections
	Create a connection to Bitbucket Cloud (console)
	Step 1: Create or edit your pipeline
	Step 2: Create a connection to Bitbucket Cloud
	Step 3: Save your Bitbucket Cloud source action

	Create a connection to Bitbucket Cloud (CLI)

	CodeCommit source actions and EventBridge
	Create an EventBridge rule for a CodeCommit source (console)
	Create an EventBridge rule for a CodeCommit source (CLI)
	Create an EventBridge rule for a CodeCommit source (AWS CloudFormation template)

	GitHub connections
	Create a connection to GitHub (console)
	Step 1: Create or edit your pipeline
	Step 2: Create a connection to GitHub
	Step 3: Save your GitHub source action

	Create a connection to GitHub (CLI)

	GitHub Enterprise Server connections
	Create a connection to GitHub Enterprise Server (console)
	Step 1: Create or edit your pipeline
	Create a connection to GitHub Enterprise Server
	Step 3: Save your GitHub Enterprise Server source action

	Create a host and connection to GitHub Enterprise Server (CLI)

	GitLab.com connections
	Create a connection to GitLab.com (console)
	Create a connection to GitLab.com (CLI)

	Connections for GitLab self-managed
	Create a connection to GitLab self-managed (console)
	Step 1: Create or edit your pipeline
	Create a connection to GitLab self-managed
	Step 3: Save your GitLab self-managed source action

	Create a host and connection to GitLab self-managed (CLI)

	Edit a pipeline in CodePipeline
	Edit a pipeline (console)
	Edit a pipeline (AWS CLI)

	View pipelines and details in CodePipeline
	View pipelines (console)
	View action details in a pipeline (console)
	View the pipeline ARN and service role ARN (console)
	View pipeline details and history (CLI)

	Delete a pipeline in CodePipeline
	Delete a pipeline (console)
	Delete a pipeline (CLI)

	Create a pipeline in CodePipeline that uses resources from another AWS account
	Prerequisite: Create an AWS KMS encryption key
	Step 1: Set up account policies and roles
	Configure policies and roles in the account that will create the pipeline (AccountA)
	Configure policies and roles in the account that owns the AWS resource (AccountB)

	Step 2: Edit the pipeline

	Migrate polling pipelines to use event-based change detection
	How to migrate polling pipelines
	Viewing polling pipelines in your account
	Viewing polling pipelines in your account (script)

	Migrate polling pipelines with a CodeCommit source
	Migrate polling pipelines (CodeCommit or Amazon S3 source) (console)
	Migrate polling pipelines (CodeCommit source) (CLI)
	Migrate polling pipelines (CodeCommit source) (AWS CloudFormation template)

	Migrate polling pipelines with an S3 source enabled for events
	Migrate polling pipelines with an S3 source enabled for events (CLI)
	Migrate polling pipelines with an S3 source enabled for events (AWS CloudFormation template)

	Migrate polling pipelines with an S3 source and CloudTrail trail
	Migrate polling pipelines with an S3 source and CloudTrail trail (CLI)
	Migrate polling pipelines with an S3 source and CloudTrail trail (AWS CloudFormation template)

	Migrate polling pipelines for a GitHub version 1 source action to connections
	Create a connection to GitHub (console)
	Step 1: Replace your version 1 GitHub action
	Step 2: Create a connection to GitHub
	Step 3: Save your GitHub source action

	Create a connection to GitHub (CLI)

	Migrate polling pipelines for a GitHub version 1 source action to webhooks
	Migrate polling pipelines to webhooks (GitHub version 1 source actions) (console)
	Migrate polling pipelines to webhooks (GitHub version 1 source actions) (CLI)
	Update pipelines for push events (GitHub version 1 source actions) (AWS CloudFormation template)

	Create the CodePipeline service role
	Create the CodePipeline service role (console)
	Create the CodePipeline service role (CLI)

	Tag a pipeline in CodePipeline
	Tag pipelines (console)
	Add tags to a pipeline (console)
	View tags for a pipeline (console)
	Edit tags for a pipeline (console)
	Remove tags from a pipeline (console)

	Tag pipelines (CLI)
	Add tags to a pipeline (CLI)
	View tags for a pipeline (CLI)
	Edit tags for a pipeline (CLI)
	Remove tags from a pipeline (CLI)

	Create a notification rule

	Working with triggers in CodePipeline
	Filter triggers on code push or pull requests
	Considerations for trigger filters
	Examples for trigger filters
	Filtering on push events (console)
	Filtering on pull requests (console)
	Trigger filtering in the pipeline JSON (CLI)
	Trigger filtering in AWS CloudFormation templates

	Manage executions in CodePipeline
	View executions in CodePipeline
	View pipeline execution history (console)
	View execution status (console)
	View an inbound execution (Console)
	View pipeline execution source revisions (console)
	View action executions (console)
	View action artifacts and artifact store information (console)
	View pipeline details and history (CLI)
	View execution history (CLI)
	View execution status (CLI)
	View inbound execution status (CLI)
	View source revisions (CLI)
	View action executions (CLI)

	Set the pipeline execution mode
	Set the pipeline execution mode (console)
	Set the pipeline execution mode (CLI)

	Retry a failed stage or failed actions in a stage
	Retry a failed stage (console)
	Retry a failed stage (CLI)

	Working with actions in CodePipeline
	Working with action types
	Request an action type
	Step 1: Choose your integration model
	Step 2: Create an action type definition file
	Step 3: Register Your Integration with CodePipeline
	Step 4: Activate Your New Integration

	Add an available action type to a pipeline (console)
	View an action type
	Update an action type

	Create and add a custom action in CodePipeline
	Create a custom action
	Create a job worker for your custom action
	Choose and configure a permissions management strategy for your job worker
	Develop a job worker for your custom action
	Custom job worker architecture and examples

	Add a custom action to a pipeline
	Add a custom action to an existing pipeline (CLI)

	Tag a custom action in CodePipeline
	Add tags to a custom action
	View tags for a custom action
	Edit tags for a custom action
	Remove tags from a custom action

	Invoke an AWS Lambda function in a pipeline in CodePipeline
	Step 1: Create a pipeline
	Step 2: Create the Lambda function
	Step 3: Add the Lambda function to a pipeline in the CodePipeline console
	Step 4: Test the pipeline with the Lambda function
	Step 5: Next steps
	Example JSON event
	Additional sample functions
	Sample Python function that uses an AWS CloudFormation template

	Retry a failed action in a stage
	Retry failed actions (console)
	Retry failed actions (CLI)

	Manage approval actions in CodePipeline
	Configuration options for manual approval actions in CodePipeline
	Setup and workflow overview for approval actions in CodePipeline
	Grant approval permissions to an IAM user in CodePipeline
	Grant approval permission to all pipelines and approval actions
	Specify approval permission for specific pipelines and approval actions

	Grant Amazon SNS permissions to a CodePipeline service role
	Add a manual approval action to a pipeline in CodePipeline
	Add a manual approval action to a CodePipeline pipeline (console)
	Add a manual approval action to a CodePipeline pipeline (CLI)

	Approve or reject an approval action in CodePipeline
	Approve or reject an approval action (console)
	Approve or reject an approval request (CLI)

	JSON data format for manual approval notifications in CodePipeline

	Add a cross-Region action in CodePipeline
	Manage cross-Region actions in a pipeline (console)
	Add a cross-Region action to a pipeline stage (console)
	Edit a cross-Region action in a pipeline stage (console)
	Delete a cross-Region action from a pipeline stage (console)

	Add a cross-Region action to a pipeline (CLI)
	Prerequisites
	Add a cross-Region action to a pipeline (CLI)

	Add a cross-Region action to a pipeline (AWS CloudFormation)

	Working with variables
	Configure actions for variables
	Configure actions with variables (console)
	Configure actions for variables (CLI)

	View output variables
	View variables (console)
	View variables (CLI)

	Example: Use variables in manual approvals
	Example: Use a BranchName variable with CodeBuild environment variables

	Working with stage transitions in CodePipeline
	Disable or enable transitions (console)
	Disable or enable transitions (CLI)

	Monitoring pipelines
	Monitoring CodePipeline events
	Detail types
	Pipeline-level events
	Pipeline STARTED event
	Pipeline STOPPING event
	Pipeline SUCCEEDED event
	Pipeline SUCCEEDED (example with Git tags)
	Pipeline FAILED event
	Pipeline FAILED (example with Git tags)

	Stage-level events
	Stage STARTED event
	Stage STOPPING event
	Stage STOPPED event
	Stage RESUMED after stage retry event

	Action-level events
	Action STARTED event
	Action SUCCEEDED event
	Action FAILED event
	Action ABANDONED event

	Create a Rule That Sends a Notification on a Pipeline Event
	Send a Notification When Pipeline State Changes (Console)
	Send a Notification When Pipeline State Changes (CLI)

	Events placeholder bucket reference
	Events placeholder bucket names by Region

	Logging CodePipeline API calls with AWS CloudTrail
	CodePipeline information in CloudTrail
	Understanding CodePipeline log file entries

	Troubleshooting CodePipeline
	Pipeline error: A pipeline configured with AWS Elastic Beanstalk returns an error message: "Deployment failed. The provided role does not have sufficient permissions: Service:AmazonElasticLoadBalancing"
	Deployment error: A pipeline configured with an AWS Elastic Beanstalk deploy action hangs instead of failing if the "DescribeEvents" permission is missing
	Pipeline error: A source action returns the insufficient permissions message: "Could not access the CodeCommit repository repository-name. Make sure that the pipeline IAM role has sufficient permissions to access the repository."
	Pipeline error: A Jenkins build or test action runs for a long time and then fails due to lack of credentials or permissions
	Pipeline error: A pipeline created in one AWS Region using a bucket created in another AWS Region returns an "InternalError" with the code "JobFailed"
	Deployment error: A ZIP file that contains a WAR file is deployed successfully to AWS Elastic Beanstalk, but the application URL reports a 404 not found error
	Pipeline artifact folder names appear to be truncated
	Add CodeBuild GitClone permissions for connections to Bitbucket, GitHub, GitHub Enterprise Server, or GitLab.com
	Add CodeBuild GitClone permissions for CodeCommit source actions
	Pipeline error: A deployment with the CodeDeployToECS action returns an error message: "Exception while trying to read the task definition artifact file from: <source artifact name>"
	GitHub version 1 source action: Repository list shows different repositories
	GitHub version 2 source action: Unable to complete the connection for a repository
	Amazon S3 error: CodePipeline service role <ARN> is getting S3 access denied for the S3 bucket <BucketName>
	Pipelines with an Amazon S3, Amazon ECR, or CodeCommit source no longer start automatically
	Connections error when connecting to GitHub: "A problem occurred, make sure cookies are enabled in your browser" or "An organization owner must install the GitHub app"
	Error when the CloudFormationStackSet or CloudFormationStackInstances actions are not available in a Region
	Pipelines with execution mode changed to QUEUED or PARALLEL mode fails when run limit reached
	Pipelines in PARALLEL mode have an outdated pipeline definition if edited when changing to QUEUED or SUPERSEDED mode
	Pipelines changed from PARALLEL mode will display a previous execution mode
	Pipelines with connections that use trigger filtering by file paths might not start at branch creation
	Pipelines with connections that use trigger filtering by file paths might not start when file limit is reached
	Need help with a different issue?

	Security in AWS CodePipeline
	Data protection in AWS CodePipeline
	Internetwork traffic privacy
	Encryption at rest
	Encryption in transit
	Encryption key management
	Configure server-side encryption for artifacts stored in Amazon S3 for CodePipeline
	View your AWS managed key
	Configure server-side encryption for S3 buckets using AWS CloudFormation or the AWS CLI

	Use AWS Secrets Manager to track database passwords or third-party API keys
	See also

	Identity and access management for AWS CodePipeline
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types

	How AWS CodePipeline works with IAM
	CodePipeline identity-based policies
	Actions
	Resources
	CodePipeline resources and operations

	Condition keys
	Examples

	CodePipeline resource-based policies
	Examples

	Authorization based on CodePipeline tags
	CodePipeline IAM roles
	Using temporary credentials with CodePipeline
	Service roles

	AWS CodePipeline identity-based policy examples
	Policy best practices
	Viewing resources in the console
	Allow users to view their own permissions
	Identity-based policies (IAM) examples
	Using tags to control access to CodePipeline resources
	Permissions required to use the CodePipeline console
	AWS managed policies for AWS CodePipeline
	AWS managed policy: AWSCodePipeline_FullAccess
	AWS managed policy: AWSCodePipeline_ReadOnlyAccess
	AWS managed policy: AWSCodePipelineApproverAccess
	AWS managed policy: AWSCodePipelineCustomActionAccess
	CodePipeline managed policies and notifications
	Permissions related to notifications in full access managed policies
	Permissions related to notifications in read-only managed policies

	AWS CodePipeline updates to AWS managed policies

	Customer managed policy examples
	Example 1: Grant permissions to get the state of a pipeline
	Example 2: Grant permissions to enable and disable transitions between stages
	Example 3: Grant permissions to get a list of all available action types
	Example 4: Grant permissions to approve or reject manual approval actions
	Example 5: Grant permissions to poll for jobs for a custom action
	Example 6: Attach or edit a policy for Jenkins integration with AWS CodePipeline
	Example 7: Configure cross-account access to a pipeline
	Example 8: Use AWS resources associated with another account in a pipeline

	AWS CodePipeline resource-based policy examples
	Troubleshooting AWS CodePipeline identity and access
	I am not authorized to perform an action in CodePipeline
	I am not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access CodePipeline
	I want to allow people outside of my AWS account to access my CodePipeline resources

	CodePipeline permissions reference
	Manage the CodePipeline service role
	Remove permissions from the CodePipeline service role
	Add permissions to the CodePipeline service role

	Logging and monitoring in CodePipeline
	Compliance validation for AWS CodePipeline
	Resilience in AWS CodePipeline
	Infrastructure security in AWS CodePipeline
	Security best practices

	AWS CodePipeline command line reference
	CodePipeline pipeline structure reference
	Valid action types and providers in CodePipeline
	Pipeline and stage structure requirements in CodePipeline
	Action structure requirements in CodePipeline
	Number of input and output artifacts for each action type
	Default settings for the PollForSourceChanges parameter
	Configuration details by provider type

	Action structure reference
	Amazon ECR
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Action declaration (Amazon ECR example)
	See also

	Amazon Elastic Container Service and CodeDeploy blue-green
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Action declaration
	See also

	Amazon Elastic Container Service
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Action declaration
	See also

	Amazon S3 deploy action
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Example action configuration
	Example configuration when Extract is set to false
	Example configuration when Extract is set to true

	See also

	Amazon S3 source action
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Action declaration
	See also

	AWS AppConfig
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Example action configuration
	See also

	AWS CloudFormation
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Action declaration
	See also

	AWS CloudFormation StackSets
	How AWS CloudFormation StackSets actions work
	How to structure StackSets actions in a pipeline
	The CloudFormationStackSet action
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Example CloudFormationStackSet action configuration
	Example for the self-managed permissions model
	Example for the service-managed permissions model

	The CloudFormationStackInstances action
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Example action configuration
	Example for the self-managed permissions model
	Example for the service-managed permissions model

	Permissions models for stack set operations
	Template parameter data types
	See also

	AWS CodeBuild
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Action declaration (CodeBuild example)
	See also

	CodeCommit
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Example action configuration
	Example for default output artifact format
	Example for full clone output artifact format

	See also

	AWS CodeDeploy
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Action declaration
	See also

	CodeStarSourceConnection for Bitbucket Cloud, GitHub, GitHub Enterprise Server, GitLab.com, and GitLab self-managed actions
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Action declaration
	Installing the installation app and creating a connection
	See also

	AWS Device Farm
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Action declaration
	See also

	AWS Lambda
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Example action configuration
	Example JSON event
	See also

	Snyk action structure reference
	Action type ID
	Input artifacts
	Output artifacts
	See also

	AWS Step Functions
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Example action configuration
	Example for default input
	Example for literal input
	Example for input file

	Behavior
	Standard state machines
	Error handling

	Express state machines
	Error handling

	See also

	Integration model reference
	How third-party action types work with the integrator
	Concepts
	Supported integration models
	Lambda integration model
	Update your Lambda function to handle the input from CodePipeline
	Return the results from your Lambda function to CodePipeline
	Use continuation tokens to wait for results from an asynchronous process
	Provide CodePipeline the permissions to invoke the integrator Lambda function at runtime

	Job worker integration model
	Choose and configure a permissions management strategy for your job worker

	Image definitions file reference
	imagedefinitions.json file for Amazon ECS standard deployment actions
	imageDetail.json file for Amazon ECS blue/green deployment actions

	Variables
	Concepts
	Variables
	Namespaces

	Use cases for variables
	Configuring variables
	Configuring variables at the pipeline level
	Configuring variables at the action level

	Variable resolution
	Rules for variables
	Variables available for pipeline actions
	Actions with defined variable keys
	CodePipeline execution ID variable
	Amazon ECR action output variables
	AWS CloudFormation StackSets action output variables
	CodeCommit action output variables
	CodeStarSourceConnection action output variables
	GitHub action output variables (GitHub action version 1)
	S3 action output variables

	Actions with user-configured variable keys
	CloudFormation action output variables
	CodeBuild action output variables
	Lambda action output variables

	Working with glob patterns in syntax
	Update polling pipelines to the recommended change detection method
	Update a GitHub version 1 source action to a GitHub version 2 source action
	Step 1: Replace your version 1 GitHub action
	Step 2: Create a connection to GitHub
	Step 3: Save your GitHub source action

	Quotas in AWS CodePipeline
	Appendix A: GitHub version 1 source actions
	Adding a GitHub version 1 source action
	GitHub version 1 source action structure reference
	Action type
	Configuration parameters
	Input artifacts
	Output artifacts
	Output variables
	Action declaration (GitHub example)
	Connecting to GitHub (OAuth)
	See also

	AWS CodePipeline User Guide document history
	Earlier updates

	AWS Glossary

