
Developer Guide

Amazon Comprehend

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Comprehend Developer Guide

Amazon Comprehend: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Comprehend Developer Guide

Table of Contents

What is Amazon Comprehend? ... 1
Amazon Comprehend insights ... 2
Amazon Comprehend Custom ... 2
Flywheels .. 3
Document clustering (topic modeling) .. 3
Examples ... 3
Benefits ... 4
Amazon Comprehend pricing .. 4
Are you a first-time user of Amazon Comprehend? .. 5

How it works .. 6
Insights .. 6

Entities ... 7
Events ... 9
Key phrases .. 17
Dominant language .. 18
Sentiment ... 25
Targeted sentiment .. 26
Syntax analysis .. 42

Amazon Comprehend Custom ... 47
Topic modeling ... 47
Document processing modes ... 51

Single-document processing .. 52
Multiple document synchronous processing ... 52
Asynchronous batch processing ... 55

Supported languages .. 56
Supported languages .. 56
Languages supported by Amazon Comprehend features .. 57

Setting up .. 59
Sign up for an AWS account ... 59
Create an administrative user ... 59
Set up the AWS CLI ... 60
Grant programmatic access ... 61

Getting started .. 63
Using the console .. 64

iii

Amazon Comprehend Developer Guide

Real-time analysis .. 64
Entities ... 65
Key phrases .. 66
Language .. 67
Personally identifiable information (PII) .. 68
Sentiment ... 70
Targeted sentiment .. 71
Syntax .. 73

Analysis jobs (console) .. 74
Using the API ... 77

Working with AWS SDKs .. 77
Real-time analysis (API) .. 78

Detecting the dominant language .. 79
Detecting named entities .. 80
Detecting key phrases .. 81
Determining sentiment .. 82
Real-time analysis for targeted sentiment .. 83
Detecting syntax ... 86
Real-time batch APIs .. 88

Async analysis jobs (API) .. 93
Amazon Comprehend insights ... 94
Targeted sentiment .. 100
Event detection ... 101
Topic modeling ... 106

Trust and safety ... 110
Toxicity detection ... 111

Detecting toxic content using the API ... 112
Prompt safety classification .. 114

Prompt safety classification using the API ... 114
PII detection and redaction ... 116

Personally identifiable information (PII) ... 118
Detecting PII entities ... 118

Locate PII entities ... 119
Redact PII entities .. 120
PII universal entity types .. 120
Country-specific PII entity types ... 123

iv

Amazon Comprehend Developer Guide

Labeling PII entities ... 125
Real-time analysis (Console) .. 126

Offsets ... 68
Labels ... 69

Async analysis jobs (Console) .. 128
Real-time analysis (API) .. 130

Locating PII real-time entities (API) .. 130
Labeling PII real-time entities (API) .. 131

Async analysis jobs (API) .. 132
Locating PII entities ... 133
Redacting PII entities ... 138

Document processing .. 142
Inputs for real-time analysis ... 142

Plain text documents ... 143
Semi-structured documents ... 143
Image files and scanned PDF files .. 143
Amazon Textract output ... 143
Maximum document sizes for real-time analysis ... 143
Errors in semi-structured documents ... 144

Inputs for async analysis .. 145
Plain text documents ... 145
Semi-structured documents ... 146
Image files and scanned PDF files .. 147
Amazon Textract output JSON files ... 147

Setting text extraction options ... 147
Best practices for images ... 148

Custom classification ... 150
Preparing the training data ... 150

Training file formats .. 151
Multi-class mode ... 153
Multi-label mode .. 155

Training classification models ... 159
Train custom classifiers (console) .. 160
Train custom classifiers (API) ... 164
Test the training data .. 166
Classifier training output .. 167

v

Amazon Comprehend Developer Guide

Metrics ... 172
Running real-time analysis .. 177

Real-time analysis (console) ... 177
Real-time analysis (API) ... 179
Outputs for real-time analysis ... 182

Running async analysis jobs .. 184
Input file formats ... 185
Analysis jobs (console) ... 186
Analysis jobs (API) .. 188
Outputs for analysis jobs .. 189

Custom entity recognition .. 194
Preparing the training data ... 195

When to use annotations vs entity lists .. 196
Entity lists .. 197
Annotations .. 199

Training recognizer models .. 212
Train custom recognizers (console) ... 213
Train custom recognizers (API) .. 219
Metrics ... 222

Running real-time analysis .. 225
Real-time analysis (console) ... 226
Real-time analysis (API) ... 228
Outputs for real-time analysis ... 230

Running async analysis jobs .. 237
Analysis jobs (console) ... 238
Analysis jobs (API) .. 239
Outputs for analysis jobs .. 243

Managing custom models ... 248
Model versioning with Amazon Comprehend .. 248
Copying custom models between AWS accounts ... 251

Sharing a custom model ... 252
Importing a custom model .. 261

Flywheels ... 268
Flywheel overview ... 268

Flywheel datasets ... 269
Flywheel creation ... 269

vi

Amazon Comprehend Developer Guide

Flywheel states ... 270
Flywheel iterations ... 271

Flywheel data lakes ... 271
Data lake folder structure .. 271
Data lake management ... 272

IAM policies and permissions .. 273
Configure IAM user permissions .. 273
Configure permissions for AWS KMS keys .. 274
Create a data access role .. 274

Configuring flywheels (Console) ... 274
Create a flywheel ... 275
Update a flywheel .. 277
Delete a flywheel ... 278

Configuring flywheels (API) ... 278
Create a flywheel for an existing model ... 278
Create a flywheel for a new model .. 279
Describe a flywheel .. 280
Update a flywheel .. 280
Delete a flywheel ... 281
List the flywheels ... 281

Configuring datasets ... 282
Creating a dataset (console) .. 282
Creating a dataset (API) .. 283
Describe a dataset .. 283

Flywheel iterations .. 284
Iteration workflow .. 284
Managing iterations (console) .. 285
Managing iterations (API) ... 286

Using flywheels .. 288
Real-time analysis ... 289
Asynchronous jobs .. 289

Managing endpoints .. 290
Endpoints overview ... 290
Using endpoints ... 291
Monitoring endpoints ... 292
Updating endpoints ... 295

vii

Amazon Comprehend Developer Guide

Using Trusted Advisor ... 297
Amazon Comprehend underutilized endpoints .. 297
Amazon Comprehend endpoint access risk .. 299

Deleting endpoints .. 301
Auto scaling with endpoints .. 302

Target tracking .. 303
Scheduled scaling ... 306

Tagging ... 310
Tagging a new resource ... 311
Viewing, editing, and deleting tags ... 312

Code examples ... 314
Actions .. 315

Create a document classifier .. 316
Delete a document classifier .. 321
Describe a document classification job .. 323
Describe a document classifier .. 326
Describe a topic modeling job ... 328
Detect entities in a document ... 331
Detect key phrases in a document ... 338
Detect personally identifiable information in a document .. 345
Detect syntactical elements of a document ... 350
Detect the dominant language in a document .. 357
Detect the sentiment of a document .. 362
List document classification jobs .. 367
List document classifiers ... 370
List topic modeling jobs ... 373
Start a document classification job .. 376
Start a topic modeling job ... 380

Scenarios .. 386
Detect document elements .. 386
Run a topic modeling job on sample data .. 392
Train a custom classifier and classify documents .. 396

Cross-service examples ... 409
Build an Amazon Transcribe streaming app ... 409
Building an Amazon Lex chatbot .. 410
Create a messaging application .. 411

viii

Amazon Comprehend Developer Guide

Create an application to analyze customer feedback ... 412
Detect entities in text extracted from an image ... 418

Security .. 420
Data protection .. 420

KMS encryption in Amazon Comprehend ... 422
Cross-service confused deputy prevention ... 424
Using a Virtual Private Cloud (VPC) ... 427
VPC endpoints (AWS PrivateLink) ... 433

Identity and Access Management .. 435
Audience ... 436
Authenticating with identities ... 436
Managing access using policies ... 440
How Amazon Comprehend works with IAM ... 442
Identity-based policy examples ... 450
AWS managed policies .. 462
Troubleshooting .. 466

Logging Amazon Comprehend API calls with AWS CloudTrail ... 467
Amazon Comprehend information in CloudTrail ... 468
Example: Amazon Comprehend log file entries ... 471

Compliance validation .. 472
Resilience ... 473
Infrastructure security ... 473

Guidelines and quotas .. 474
Supported Regions .. 474
Quotas for built-in models .. 475

Real-time (synchronous) analysis .. 475
Asynchronous analysis ... 476

Quotas for custom models .. 480
General quotas .. 480
Quotas for endpoints .. 480
Document classification .. 481
Custom entity recognition .. 485

Quotas for flywheels ... 489
General quotas for flywheels ... 489
Dataset quotas for custom classification models .. 490
Dataset quotas for custom entity recognition models ... 490

ix

Amazon Comprehend Developer Guide

Tutorials ... 492
Analyzing insights from reviews ... 492

Prerequisites .. 494
Step 1: Adding documents to Amazon S3 .. 495
Step 2: (CLI only) creating an IAM role .. 500
Step 3: Running analysis jobs .. 504
Step 4: Preparing the output ... 507
Step 5: Visualizing the output ... 519

Using S3 object Lambda access points for PII ... 525
Controlling access to documents with PII ... 526
Redacting PII from documents .. 528

Analyzing text with OpenSearch .. 530
API reference ... 531
Document history .. 532
AWS Glossary ... 547

x

Amazon Comprehend Developer Guide

What is Amazon Comprehend?

Amazon Comprehend uses natural language processing (NLP) to extract insights about the content
of documents. It develops insights by recognizing the entities, key phrases, language, sentiments,
and other common elements in a document. Use Amazon Comprehend to create new products
based on understanding the structure of documents. For example, using Amazon Comprehend you
can search social networking feeds for mentions of products or scan an entire document repository
for key phrases.

You can access Amazon Comprehend document analysis capabilities using the Amazon
Comprehend console or using the Amazon Comprehend APIs. You can run real-time analysis for
small workloads or you can start asynchronous analysis jobs for large document sets. You can use
the pre-trained models that Amazon Comprehend provides, or you can train your own custom
models for classification and entity recognition.

Amazon Comprehend may store your content to continuously improve the quality of its pre-trained
models. See the Amazon Comprehend FAQ to learn more.

All of the Amazon Comprehend features accept UTF-8 text documents as the input. In addition,
custom classification and custom entity recognition accept image files, PDF files, and Word files as
input.

Amazon Comprehend can examine and analyze documents in a variety of languages, depending
on the specific feature. For more information, see Languages supported in Amazon Comprehend.
Amazon Comprehend's Dominant language capability can examine documents and determine the
dominant language for a far wider selection of languages.

Topics

• Amazon Comprehend insights

• Amazon Comprehend Custom

• Flywheels

• Document clustering (topic modeling)

• Examples

• Benefits

• Amazon Comprehend pricing

• Are you a first-time user of Amazon Comprehend?

1

https://aws.amazon.com/comprehend/faqs/

Amazon Comprehend Developer Guide

Amazon Comprehend insights

Amazon Comprehend uses a pre-trained model to examine and analyze a document or set of
documents to gather insights about it. This model is continuously trained on a large body of text so
that there is no need for you to provide training data.

Amazon Comprehend analyzes the following types of insights:

• Entities – References to the names of people, places, items, and locations contained in a
document.

• Key phrases – Phrases that appear in a document. For example, a document about a basketball
game might return the names of the teams, the name of the venue, and the final score.

• Personally Identifiable Information (PII) – Personal data that can identify an individual, such as
an address, bank account number, or phone number.

• Language – The dominant language of a document.

• Sentiment – The dominant sentiment of a document, which can be positive, neutral, negative, or
mixed.

• Targeted sentiment – The sentiments associated with specific entities in a document. The
sentiment for each entity occurrence can be positive, negative, neutral or mixed.

• Syntax – The parts of speech for each word in the document.

For more information, see Insights.

Amazon Comprehend Custom

You can customize Amazon Comprehend for your specific requirements without the skillset
required to build machine learning-based NLP solutions. Using automatic machine learning, or
AutoML, Amazon Comprehend Custom builds customized NLP models on your behalf, using data
you already have.

Custom classification – Create custom classification models (classifiers) to organize your
documents into your own categories.

Custom entity recognition – Create custom entity recognition models (recognizers) that can
analyze text for your specific terms and noun-based phrases.

For more information, see Amazon Comprehend Custom.

Amazon Comprehend insights 2

Amazon Comprehend Developer Guide

Flywheels

Use flywheels to simplify the process of training and managing custom model versions over time.
A flywheel helps to orchestrate the tasks associated with training and evaluating new versions of
a model. Flywheels support plain-text custom models for custom classification and custom entity
recognition. For more information, see Flywheels.

Document clustering (topic modeling)

You can also use Amazon Comprehend to examine a corpus of documents to organize them based
on similar keywords within them. Document clustering (topic modeling) is useful to organize a
large corpus of documents into topics or clusters that are similar based on word frequency. For
more information, see Topic modeling.

Examples

The following examples show how you might use the Amazon Comprehend operations in your
applications.

Example 1: Find documents about a subject

Find the documents about a particular subject using Amazon Comprehend topic modeling. Scan
a set of documents to determine the topics discussed, and to find the documents associated with
each topic. You can specify the number of topics that Amazon Comprehend should return from the
document set.

Example 2: Find out how customers feel about your products

If your company publishes a catalog, let Amazon Comprehend tell you what customers think of
your products. Send each customer comment to the DetectSentiment operation and it will tell
you whether customers feel positive, negative, neutral, or mixed about a product.

Example 3: Discover what matters to your customers

Use Amazon Comprehend topic modeling to discover the topics that your customers are talking
about on your forums and message boards, then use entity detection to determine the people,
places, and things that they associate with the topic. Use sentiment analysis to determine how your
customers feel about a topic.

Flywheels 3

Amazon Comprehend Developer Guide

Benefits

Benefits of using Amazon Comprehend include:

• Integrate powerful natural language processing into your apps – Amazon Comprehend
removes the complexity of building text analysis capabilities into your applications by making
powerful and accurate natural language processing available with a simple API. You don't need
textual analysis expertise to take advantage of the insights that Amazon Comprehend produces.

• Deep learning based natural language processing – Amazon Comprehend uses deep learning
technology to accurately analyze text. Our models are constantly trained with new data across
multiple domains to improve accuracy.

• Scalable natural language processing – Amazon Comprehend enables you to analyze millions
of documents so that you can discover the insights that they contain.

• Integrated with other AWS services – Amazon Comprehend is designed to work seamlessly
with other AWS services like Amazon S3, AWS KMS, and AWS Lambda. Store your documents
in Amazon S3, or analyze real-time data with Firehose. Support for AWS Identity and Access
Management (IAM) makes it easy to securely control access to Amazon Comprehend operations.
Using IAM, you can create and manage users and groups to grant the appropriate access to your
developers and end users.

• Encryption of output results and volume data – Amazon S3 already enables you to encrypt
your input documents, and Amazon Comprehend extends this even farther. By using your own
KMS key, you can encrypt the output results of your job and the data on the storage volume
attached to the compute instance that processes the analysis job. The result is significantly
enhanced security.

• Low cost – With Amazon Comprehend, there are no minimum fees or upfront commitments. You
pay for the documents that you analyze and custom models that you train.

Amazon Comprehend pricing

With Amazon Comprehend, you pay only for the resources that you use. If you are a new AWS
customer, you can get started with Amazon Comprehend for free. For more information, see AWS
free usage tier.

There is a usage charge for running real-time or asynchronous analysis jobs. You pay to train
custom models, and you pay for custom model management. For real-time requests using custom
models, you pay for the endpoint from the time that you start your endpoint until you delete the

Benefits 4

https://aws.amazon.com/free/
https://aws.amazon.com/free/

Amazon Comprehend Developer Guide

endpoint. There is no additional charge for using flywheels. However, when you run a flywheel
iteration, you incur the standard charges for training a new model version and storing the model
data.

For the rates and additional detailed information, see Amazon Comprehend Pricing.

Are you a first-time user of Amazon Comprehend?

If you are a first-time user of Amazon Comprehend, we recommend that you read the following
sections in order:

1. How it works – This section introduces Amazon Comprehend concepts.

2. Setting up – In this section, you create an account and set up the AWS CLI.

3. Getting started with Amazon Comprehend – In this section, you run a Amazon Comprehend
analysis job.

4. Tutorial: Analyzing insights from customer reviews with Amazon Comprehend – In this
section, you perform sentiment and entities analysis and visualize the results.

5. Amazon Comprehend API Reference – Reference documentation for Amazon Comprehend
operations.

AWS provides the following resources for learning about the Amazon Comprehend service:

• The AWS Machine Learning Blog includes useful articles about Amazon Comprehend.

• Amazon Comprehend Resources provides useful videos and tutorials about Amazon
Comprehend.

Are you a first-time user of Amazon Comprehend? 5

https://aws.amazon.com/comprehend/pricing
https://docs.aws.amazon.com/comprehend/latest/APIReference/welcome.html
https://aws.amazon.com/blogs/machine-learning/
https://aws.amazon.com/comprehend/resources/

Amazon Comprehend Developer Guide

How it works

Amazon Comprehend uses a pre-trained model to gather insights about a document or a set of
documents. This model is continuously trained on a large body of text so that there is no need for
you to provide training data.

You can use Amazon Comprehend to build your own custom models for custom classification and
custom entity recognition. You can use Flywheels to help manage the custom models.

Amazon Comprehend provides topic modeling using a built-in model. Topic modeling examines a
corpus of documents and organizes the documents based on similar keywords within them.

Amazon Comprehend provides synchronous and asynchronous document processing modes.
Use synchronous mode for processing one document or a batch of up to 25 documents. Use an
asynchronous job to process a large number of documents.

Amazon Comprehend works with AWS Key Management Service (AWS KMS) to provide enhanced
encryption for your data. For more information, see KMS encryption in Amazon Comprehend.

Key concepts

• Insights

• Amazon Comprehend Custom

• Topic modeling

• Document processing modes

Insights

Amazon Comprehend can analyze a document or set of documents to gather insights about it.
Some of the insights that Amazon Comprehend develops about a document include:

• Entities – Amazon Comprehend returns a list of entities, such as people, places, and locations,
identified in a document.

• Events – Amazon Comprehend detects specific types of events and related details.

• Key phrases – Amazon Comprehend extracts key phrases that appear in a document. For
example, a document about a basketball game might return the names of the teams, the name
of the venue, and the final score.

Insights 6

Amazon Comprehend Developer Guide

• Personally identifiable information (PII) – Amazon Comprehend analyzes documents to detect
personal data that identify an individual, such as an address, bank account number, or phone
number.

• Dominant language – Amazon Comprehend identifies the dominant language in a document.
Amazon Comprehend can identify 100 languages.

• Sentiment – Amazon Comprehend determines the dominant sentiment of a document.
Sentiment can be positive, neutral, negative, or mixed.

• Targeted Sentiment – Amazon Comprehend determines the sentiment of specific entities
mentioned in a document. The sentiment of each mention can be positive, neutral, negative, or
mixed.

• Syntax analysis – Amazon Comprehend parses each word in your document and determines the
part of speech for the word. For example, in the sentence "It is raining today in Seattle," "it" is
identified as a pronoun, "raining" is identified as a verb, and "Seattle" is identified as a proper
noun.

Entities

An entity is a textual reference to the unique name of a real-world object such as people, places,
and commercial items, and to precise references to measures such as dates and quantities.

For example, in the text "John moved to 1313 Mockingbird Lane in 2012," "John" might be
recognized as a PERSON, "1313 Mockingbird Lane" might be recognized as a LOCATION, and "2012"
might be recognized as a DATE.

Each entity also has a score that indicates the level of confidence that Amazon Comprehend has
that it correctly detected the entity type. You can filter out the entities with lower scores to reduce
the risk of using incorrect detections.

The following table lists the entity types.

Type Description

COMMERCIAL_ITEM A branded product

DATE A full date (for example, 11/25/2017), day (Tuesday), month (May),
or time (8:30 a.m.)

Entities 7

Amazon Comprehend Developer Guide

Type Description

EVENT An event, such as a festival, concert, election, etc.

LOCATION A specific location, such as a country, city, lake, building, etc.

ORGANIZATION Large organizations, such as a government, company, religion,
sports team, etc.

OTHER Entities that don't fit into any of the other entity categories

PERSON Individuals, groups of people, nicknames, fictional characters

QUANTITY A quantified amount, such as currency, percentages, numbers,
bytes, etc.

TITLE An official name given to any creation or creative work, such as
movies, books, songs, etc.

Detect entities operations can be performed using any of the primary languages supported by
Amazon Comprehend. This includes only predefined (non-custom) entity detection. All documents
must be in the same language.

You can use any of the following API operations to detect entities in a document or set of
documents.

• DetectEntities

• BatchDetectEntities

• StartEntitiesDetectionJob

The operations return a list of API Entity objects, one for each entity in the document. The
BatchDetectEntities operation returns a list of Entity objects, one list for each document
in the batch. The StartEntitiesDetectionJob operation starts an asynchronous job that
produces a file containing a list of Entity objects for each document in the job.

The following example is the response from the DetectEntities operation.

{

Entities 8

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_Entity.html

Amazon Comprehend Developer Guide

 "Entities": [
 {
 "Text": "today",
 "Score": 0.97,
 "Type": "DATE",
 "BeginOffset": 14,
 "EndOffset": 19
 },
 {
 "Text": "Seattle",
 "Score": 0.95,
 "Type": "LOCATION",
 "BeginOffset": 23,
 "EndOffset": 30
 }
],
 "LanguageCode": "en"
}

Events

Use event detection to analyze text documents for specific types of events and their related
entities. Amazon Comprehend supports event detection across large collections of documents
using asynchronous analysis jobs. For more information about events, including example event
analysis jobs, see Announcing the launch of Amazon Comprehend Events

Entities

From the input text, Amazon Comprehend extracts a list of entities that are related to the detected
event. An entity can be a real-world object, such as a person, place, or location; an entity can also
be a concept, such as a measurement, date, or quantity. Each occurrence of an entity is identified
by a mention, which is a textual reference to the entity in the input text. For each unique entity, all
mentions are grouped into a list. This list provides details for each location in the input text where
the entity occurs. Amazon Comprehend detects only the entities associated with supported event
types.

Each entity associated with a supported event type returns with the following related details:

• Mentions: Details for each occurrence of the same entity in the input text.

• BeginOffset: A character offset in the input text that shows where the mention begins (the
first character is at position 0).

Events 9

https://aws.amazon.com/blogs/machine-learning/announcing-the-launch-of-amazon-comprehend-events/

Amazon Comprehend Developer Guide

• EndOffset: A character offset in the input text that shows where the mention ends.

• Score: The level of confidence that Amazon Comprehend has in the accuracy of the entity's
type.

• GroupScore: The level of confidence from Amazon Comprehend that the mention is correctly
grouped with other mentions of the same entity.

• Text: The text of the entity.

• Type: The entity's type. For all supported entity types, see Entity types.

Events

Amazon Comprehend returns the list of events (of supported event types) that it detects in the
input text. Each event returns with the following related details:

• Type: The event's type. For all supported event types, see Event types.

• Arguments: A list of arguments that are related to the detected event. An argument consists of
an entity that is related to the detected event. The argument's role describes the relationship,
such as who did what, where and when.

• EntityIndex: An index value that identifies an entity from the list of entities that Amazon
Comprehend returned for this analysis.

• Role: The argument type, which describes how the entity for this argument is related to the
event. For all supported argument types, see Argument types.

• Score: The level of confidence that Amazon Comprehend has in the accuracy of the role
detection.

• Triggers: A list of triggers for the detected event. A trigger is a single word or phrase that
indicates the occurrence of the event.

• BeginOffset: A character offset in the input text that shows where the trigger begins (the first
character is at position 0).

• EndOffset: A character offset in the input text that shows where the trigger ends.

• Score: The level of confidence that Amazon Comprehend has in the accuracy of the detection.

• Text: The text of the trigger.

• GroupScore: The level of confidence from Amazon Comprehend that the trigger is correctly
grouped with other triggers for the same event.

• Type: The type of event that this trigger indicates.
Events 10

Amazon Comprehend Developer Guide

Detect events results format

When your event detection job completes, Amazon Comprehend writes the analysis results to the
Amazon S3 output location that you specified when you started the job.

For each detected event, the output provides details in the following format:

{
 "Entities": [
 {
 "Mentions": [
 {
 "BeginOffset": number,
 "EndOffset": number,
 "Score": number,
 "GroupScore": number,
 "Text": "string",
 "Type": "string"
 }, ...
]
 }, ...
],
 "Events": [
 {
 "Type": "string",
 "Arguments": [
 {
 "EntityIndex": number,
 "Role": "string",
 "Score": number
 }, ...
],
 "Triggers": [
 {
 "BeginOffset": number,
 "EndOffset": number,
 "Score": number,
 "Text": "string",
 "GroupScore": number,
 "Type": "string"
 }, ...
]
 }, ...

Events 11

Amazon Comprehend Developer Guide

]
 }

Supported types for entities, events, and arguments

Entity types

Type Description

DATE Any reference to a date or time, whether
specific or general.

FACILITY Buildings, airports, highways, bridges, and
other permanent man-made structures and
real estate improvements.

LOCATION Physical locations such as streets, cities, states,
countries, bodies of water, or geographic
coordinates.

MONETARY_VALUE The value of something in US or other
currency. The value can be specific or
approximate.

ORGANIZATION Companies and other groups of people
defined by an established organizational
structure.

PERSON The names or nicknames of individuals or
fictional characters.

PERSON_TITLE Any title which describes a person, which is
usually an employment category (such as CEO)
or honorific (such as Mr.).

QUANTITY A number or value and the unit of measureme
nt.

STOCK_CODE A stock ticker symbol, such as AMZN, an
International Securities Identification Number

Events 12

Amazon Comprehend Developer Guide

Type Description

(ISIN), Committee on Uniform Securities
Identification Procedures (CUSIP), or Stock
Exchange Daily Official List (SEDOL).

Event types

Type Description

BANKRUPTCY A legal proceeding involving a person or
company unable to repay outstanding debts.

EMPLOYMENT Occurs when an employee is hired, fired,
retired, or otherwise changes employment
state.

CORPORATE_ACQUISTION Occurs when a company obtains the possessio
n of most or all of another company's shares
or physical assets to gain control of that
company.

INVESTMENT_GENERAL Occurs when a person or company purchases
an asset with the prospect of generating
future income or appreciation.

CORPORATE_MERGER Occurs when two or more companies unite to
create a new legal entity.

IPO An initial public offering (IPO) of shares of
a private corporation to the public in a new
stock issuance.

RIGHTS_ISSUE A group of rights offered to existing sharehold
ers to purchase additional stock shares, known
as subscription warrants, in proportion to their
existing holdings.

Events 13

Amazon Comprehend Developer Guide

Type Description

SECONDARY_OFFERING An offer of securities by a shareholder of a
company.

SHELF_OFFERING A Securities and Exchange Commission (SEC)
provision that allows an issuer to register a
new issue of security and sell portions of the
issue over a period of time without re-regist
ering the security or incurring penalties. Also
known as a shelf registration.

TENDER_OFFERING An offer to purchase some or all of sharehold
ers' shares in a company.

STOCK_SPLIT Occurs when a company's board of directors
increases the number of shares that are
outstanding by issuing more shares to current
shareholders. This event also applies to
reverse stock splits.

Argument types

Argument types for BANKRUPTCY

Argument type Description

FILER The person or company filing the bankruptcy.

DATE The date or time of bankruptcy.

PLACE Location or facility where (or nearest to where)
the bankruptcy took place.

Events 14

Amazon Comprehend Developer Guide

Argument types for EMPLOYMENT

Type Description

EMPLOYEE The person employed by a company.

EMPLOYEE_TITLE The title of the employee.

EMPLOYER The person or company employing the
employee.

START_DATE The start date or time of the employment.

END_DATE The end date or time of the employment.

Argument types for CORPORATE_ACQUISTION, INVESTMENT_GENERAL

Type Description

AMOUNT The monetary value associated with the
transaction.

INVESTEE The person or company associated with the
investment.

INVESTOR The person or company investing in the asset.

DATE The date or time of the acquisition or
investment.

PLACE Location where (or nearest to where) the
acquisition or investment took place.

Argument types for CORPORATE_MERGER

Type Description

DATE The date or time of the merger.

Events 15

Amazon Comprehend Developer Guide

Type Description

NEW_COMPANY The new legal entity resulting from the
merger.

PARTICIPANT The company involved in the merger.

Argument types for IPO, RIGHTS_ISSUE, SECONDARY_OFFERING, SHELF_OFFERING,
TENDER_OFFERING

Type Description

EXPIRE_DATE The expiration date or time of the offering.

INVESTOR The person or company investing in the asset.

OFFEREE The person or company receiving the offering.

OFFERING_AMOUNT The monetary value associated with the
offering.

OFFERING_DATE The date or time of the offering.

OFFEROR The person or company initiating the offering.

OFFEROR_TOTAL_VALUE The total monetary value associated with the
offering.

RECORD_DATE The record date or time of the offering.

SELLING_AGENT The person or company facilitating the sale of
the offering.

SHARE_PRICE The monetary value associated with the share
price.

SHARE_QUANTITY The number of shares associated with the
offering.

Events 16

Amazon Comprehend Developer Guide

Type Description

UNDERWRITERS The company associated with the underwrit
ing of the offering.

Argument types for STOCK_SPLIT

Type Description

COMPANY The company issuing shares of the stock split.

DATE The date or time of the stock split.

SPLIT_RATIO The ratio of the increased new number of
shares outstanding to the current number of
shares before the stock split.

Key phrases

A key phrase is a string containing a noun phrase that describes a particular thing. It generally
consists of a noun and the modifiers that distinguish it. For example, "day" is a noun; "a beautiful
day" is a noun phrase that includes an article ("a") and an adjective ("beautiful"). Each key phrase
includes a score that indicates the level of confidence that Amazon Comprehend has that the string
is a noun phrase. You can use the score to determine if the detection has high enough confidence
for your application.

Detect key phrases operations can be performed using any of the primary languages supported by
Amazon Comprehend. All documents must be in the same language.

You can use any of the following operations to detect key phrases in a document or set of
documents.

• DetectKeyPhrases

• BatchDetectKeyPhrases

• StartKeyPhrasesDetectionJob

Key phrases 17

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectKeyPhrases.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectKeyPhrases.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartKeyPhrasesDetectionJob.html

Amazon Comprehend Developer Guide

The operations return a list of KeyPhrase objects, one for each key phrase in the document. The
BatchDetectKeyPhrases operation returns a list of KeyPhrase objects, one for each document
in the batch. The StartKeyPhrasesDetectionJob operation starts an asynchronous job that
produces a file containing a list of KeyPhrase objects for each document in the job.

The following example is the response from the DetectKeyPhrases operation.

{
 "LanguageCode": "en",
 "KeyPhrases": [
 {
 "Text": "today",
 "Score": 0.89,
 "BeginOffset": 14,
 "EndOffset": 19
 },
 {
 "Text": "Seattle",
 "Score": 0.91,
 "BeginOffset": 23,
 "EndOffset": 30
 }
]
}

Dominant language

You can use Amazon Comprehend to examine text to determine the dominant language. Amazon
Comprehend identifies the language using identifiers from RFC 5646 — if there is a 2-letter ISO
639-1 identifier, with a regional subtag if necessary, it uses that. Otherwise, it uses the ISO 639-2
3-letter code.

For more information about RFC 5646, see Tags for identifying languages on the IETF Tools web
site.

The response includes a score that indicates the confidence level that Amazon Comprehend has
that a particular language is the dominant language in the document. Each score is independent of
the other scores. The score doesn't indicate that a language makes up a particular percentage of a
document.

Dominant language 18

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_KeyPhrase.html
https://tools.ietf.org/html/rfc5646

Amazon Comprehend Developer Guide

If a long document (such as a book) contains multiple languages, you can break the long document
into smaller pieces and run the DetectDominantLanguage operation on the individual pieces.
You can then aggregate the results to determine the percentage of each language in the longer
document.

Amazon Comprehend language detection has the following limitations:

• It doesn't support phonetic language detection. For example, it doesn't detect "arigato" as
Japanese or "nihao" as Chinese.

• It may have diffuculty distinguishing close language pairs, such as Indonesian and Malay; or
Bosnian, Croatian, and Serbian.

• For best results, provide at least 20 characters of input text.

Amazon Comprehend detects the following languages.

Code Language

af Afrikaans

am Amharic

ar Arabic

as Assamese

az Azerbaijani

ba Bashkir

be Belarusian

bn Bengali

bs Bosnian

bg Bulgarian

ca Catalan

ceb Cebuano

Dominant language 19

Amazon Comprehend Developer Guide

Code Language

cs Czech

cv Chuvash

cy Welsh

da Danish

de German

el Greek

en English

eo Esperanto

et Estonian

eu Basque

fa Persian

fi Finnish

fr French

gd Scottish Gaelic

ga Irish

gl Galician

gu Gujarati

ht Haitian

he Hebrew

ha Hausa

Dominant language 20

Amazon Comprehend Developer Guide

Code Language

hi Hindi

hr Croatian

hu Hungarian

hy Armenian

ilo Iloko

id Indonesian

is Icelandic

it Italian

jv Javanese

ja Japanese

kn Kannada

ka Georgian

kk Kazakh

km Central Khmer

ky Kirghiz

ko Korean

ku Kurdish

lo Lao

la Latin

lv Latvian

Dominant language 21

Amazon Comprehend Developer Guide

Code Language

lt Lithuanian

lb Luxembourgish

ml Malayalam

mt Maltese

mr Marathi

mk Macedonian

mg Malagasy

mn Mongolian

ms Malay

my Burmese

ne Nepali

new Newari

nl Dutch

no Norwegian

or Oriya

om Oromo

pa Punjabi

pl Polish

pt Portuguese

ps Pushto

Dominant language 22

Amazon Comprehend Developer Guide

Code Language

qu Quechua

ro Romanian

ru Russian

sa Sanskrit

si Sinhala

sk Slovak

sl Slovenian

sd Sindhi

so Somali

es Spanish

sq Albanian

sr Serbian

su Sundanese

sw Swahili

sv Swedish

ta Tamil

tt Tatar

te Telugu

tg Tajik

tl Tagalog

Dominant language 23

Amazon Comprehend Developer Guide

Code Language

th Thai

tk Turkmen

tr Turkish

ug Uighur

uk Ukrainian

ur Urdu

uz Uzbek

vi Vietnamese

yi Yiddish

yo Yoruba

zh Chinese (Simplified)

zh-TW Chinese (Traditional)

You can use any of the following operations to detect the dominant language in a document or set
of documents.

• DetectDominantLanguage

• BatchDetectDominantLanguage

• StartDominantLanguageDetectionJob

The DetectDominantLanguage operation returns a DominantLanguage object. The
BatchDetectDominantLanguage operation returns a list of DominantLanguage objects, one
for each document in the batch. The StartDominantLanguageDetectionJob operation starts
an asynchronous job that produces a file containing a list of DominantLanguage objects, one for
each document in the job.

Dominant language 24

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectDominantLanguage.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectDominantLanguage.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DominantLanguage.html

Amazon Comprehend Developer Guide

The following example is the response from the DetectDominantLanguage operation.

{
 "Languages": [
 {
 "LanguageCode": "en",
 "Score": 0.9793661236763
 }
]
}

Sentiment

Use Amazon Comprehend to determine the sentiment of content in UTF-8 encoded text
documents. For example, you can use sentiment analysis to determine the sentiments of comments
on a blog posting to determine if your readers liked the post.

You can determine sentiment for documents in any of the primary languages supported by
Amazon Comprehend. All documents in one job must be in the same language.

Sentiment determination returns the following values:

• Positive – The text expresses an overall positive sentiment.

• Negative – The text expresses an overall negative sentiment.

• Mixed – The text expresses both positive and negative sentiments.

• Neutral – The text does not express either positive or negative sentiments.

You can use any of the following API operations to detect the sentiment of a document or a set of
documents.

• DetectSentiment

• BatchDetectSentiment

• StartSentimentDetectionJob

The operations return the most likely sentiment for the text and the scores for each of the
sentiments. The score represents the likelihood that the sentiment was correctly detected. For
example, in the example below it is 95 percent likely that the text has a Positive sentiment.

Sentiment 25

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartSentimentDetectionJob.html

Amazon Comprehend Developer Guide

There is a less than 1 percent likelihood that the text has a Negative sentiment. You can use
the SentimentScore to determine if the accuracy of the detection meets the needs of your
application.

The DetectSentiment operation returns an object that contains the detected sentiment
and a SentimentScore object. The BatchDetectSentiment operation returns a list
of sentiments and SentimentScore objects, one for each document in the batch. The
StartSentimentDetectionJob operation starts an asynchronous job that produces a file
containing a list of sentiments and SentimentScore objects, one for each document in the job.

The following example is the response from the DetectSentiment operation.

{
"SentimentScore": {
 "Mixed": 0.030585512690246105,
 "Positive": 0.94992071056365967,
 "Neutral": 0.0141543131828308,
 "Negative": 0.00893945890665054
 },
 "Sentiment": "POSITIVE",
 "LanguageCode": "en"
}

Targeted sentiment

Targeted sentiment provides a granular understanding of the sentiments associated with specific
entities (such as brands or products) in your input documents.

The difference between targeted sentiment and sentiment is the level of granularity in the output
data. Sentiment analysis determines the dominant sentiment for each input document, but
doesn't provide data for further analysis. Targeted sentiment analysis determines the entity-
level sentiment for specific entities in each input document. You can analyze the output data to
determine the specific products and services that get positive or negative feedback.

For example, in a set of restaurant reviews, a customer provides the following review: "The tacos
were delicious and the staff was friendly.” Analysis of this review produces the following results:

• Sentiment analysis determines whether the overall sentiment of each restaurant review is
positive, negative, neutral, or mixed. In this example, the overall sentiment is positive.

Targeted sentiment 26

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_SentimentScore.html

Amazon Comprehend Developer Guide

• Targeted sentiment analysis determines sentiment for entities and attributes of the restaurant
that customers mention in the reviews. In this example, the customer made positive comments
about “tacos” and “staff”.

Targeted sentiment provides the following outputs for each analysis job:

• Identity of the entities mentioned in the documents.

• Classification of the entity type for each entity mention.

• The sentiment and a sentiment score for each entity mention.

• Groups of mentions (co-reference groups) that correspond to a single entity.

You can use the console or the API to run targeted sentiment analysis. The console and the API
support real-time analysis and asynchronous analysis for targeted sentiment.

Amazon Comprehend supports targeted sentiment for documents in the English language.

For additional information about targeted sentiment, including a tutorial, see Extract granular
sentiment in text with Amazon Comprehend Targeted Sentiment in the AWS machine learning
blog.

Topics

• Entity types

• Co-reference group

• Output file organization

• Real time analysis using the console

• Targeted sentiment output example

Entity types

Targeted sentiment identifies the following entity types. It assigns entity type OTHER if the entity
doesn’t belong in any other category. Each entity mention in the output file includes the entity
type, such as "Type": "PERSON".

Targeted sentiment 27

https://aws.amazon.com/blogs/machine-learning/extract-granular-sentiment-in-text-with-amazon-comprehend-targeted-sentiment/
https://aws.amazon.com/blogs/machine-learning/extract-granular-sentiment-in-text-with-amazon-comprehend-targeted-sentiment/

Amazon Comprehend Developer Guide

Entity type definitions

Entity Type Definition

PERSON Examples include individuals, groups of people, nicknames, fictional
characters, and animal names.

LOCATION Geographical locations such as countries, cities, states, addresses,
geological formations, bodies of water, natural landmarks, and astronomi
cal locations.

ORGANIZATION Examples include governments, companies, sports teams, and religions.

FACILITY Buildings, airports, highways, bridges, and other permanent man-made
structures and real estate improvements.

BRAND Organization, group, or producer of a specific commercial item or line of
products.

COMMERCIAL_ITEM Any non-generic purchasable or acquirable item, including vehicles, and
large products that had only one item produced.

MOVIE A movie or television show. Entity could be the full name, a nickname, or
a subtitle.

MUSIC A song, full or partial. Also, collections of individual music creations, such
as an album or an anthology.

BOOK A book, published professionally or self-published.

SOFTWARE An officially released software product.

GAME A game, such as video games, board games, common games, or sports.

PERSONAL_TITLE Official titles and honorifics such as President, PhD, or Dr.

EVENT Examples include festival, concert, election, war, conference, and
promotional event.

DATE Any reference to a date or time, whether specific or general, whether
absolute or relative.

Targeted sentiment 28

Amazon Comprehend Developer Guide

Entity Type Definition

QUANTITY All measurements along with their units (currency, percent, number,
bytes, etc.).

ATTRIBUTE An attribute, characteristic, or trait of an entity, such as the "quality" of a
product, the "price" of a phone, or the "speed" of a CPU.

OTHER Entities that don’t belong in any of the other categories.

Co-reference group

Targeted sentiment identifies co-reference groups in each input document. A co-reference group is
a group of mentions in a document that correspond to one real-world entity.

Example

In the following example of a customer review, “spa” is the entity, which has entity type FACILITY.
The entity has two additional mentions as a pronoun ("it").

Output file organization

The targeted sentiment analysis job creates a JSON text output file. The file contains one JSON
object for each of the input documents. Each JSON object contains the following fields:

• Entities – An array of entities found in the document.

• File – The file name of the input document.

Targeted sentiment 29

Amazon Comprehend Developer Guide

• Line – If the input file is one document per line, Entities contains the line number of the
document in the file.

Note

If targeted sentiment doesn't identify any entities in the input text, it returns an empty
array as the Entities result.

The following example shows Entities for an input file with three lines of input. The input format is
ONE_DOC_PER_LINE, so each line of input is a document.

{ "Entities":[
 {entityA},
 {entityB},
 {entityC}
],
 "File": "TargetSentimentInputDocs.txt",
 "Line": 0
}
{ "Entities": [
 {entityD},
 {entityE}
],
 "File": "TargetSentimentInputDocs.txt",
 "Line": 1
}
{ "Entities": [
 {entityF},
 {entityG}
],
 "File": "TargetSentimentInputDocs.txt",
 "Line": 2
}

An entity in the Entities array includes a logical grouping (called a co-reference group) of the entity
mentions detected in the document. Each entity has the following overall structure:

{"DescriptiveMentionIndex": [0],
 "Mentions": [

Targeted sentiment 30

Amazon Comprehend Developer Guide

 {mentionD},
 {mentionE}
]
}

An entity contains these fields:

• Mentions – An array of mentions of the entity in the document. The array represents a co-
reference group. See the section called “Co-reference group” for an example. The order of
mentions in the Mentions array is the order of their location (offset) in the document. Each
mention includes the sentiment score and group score for that mention. The group score
indicates the confidence level that these mentions belong to the same entity.

• DescriptiveMentionIndex – One or more index into the Mentions array that provides the
best name for the entity group. For example, an entity could have three mentions with
Text values "ABC Hotel," “ABC Hotel,” and “it.” The best name is “ABC Hotel,” which has a
DescriptiveMentionIndex value of [0,1].

Each mention includes the following fields

• BeginOffset – The offset into the document text where the mention begins.

• EndOffset – The offset into the document text where the mention ends.

• GroupScore – The confidence that all the entities mentioned in the group relate to the same
entity.

• Text – The text in the document that identifies the entity.

• Type – The type of the entity. Amazon Comprehend supports a variety of entity types.

• Score – Model confidence that the entity is relevant. Value range is zero to one, where one is
highest confidence.

• MentionSentiment – Contains the sentiment and sentiment score for the mention.

• Sentiment – The sentiment of the mention. Values include: POSITIVE, NEUTRAL, NEGATIVE, and
MIXED.

• SentimentScore – Provides model confidence for each of the possible sentiments. Value range is
zero to one, where one is highest confidence.

The Sentiment values have the following meaning:

• Positive – The entity mention expresses a positive sentiment.

Targeted sentiment 31

Amazon Comprehend Developer Guide

• Negative – The entity mention expresses a negative sentiment.

• Mixed – The entity mention expresses both positive and negative sentiments.

• Neutral – The entity mention does not express either positive or negative sentiments.

In the following example, an entity has only one mention in the input document, so the
DescriptiveMentionIndex is zero (the first mention in the Mentions array). The identified entity is a
PERSON with the name "I." The sentiment score is neutral.

{"Entities":[
 {
 "DescriptiveMentionIndex": [0],
 "Mentions": [
 {
 "BeginOffset": 0,
 "EndOffset": 1,
 "Score": 0.999997,
 "GroupScore": 1,
 "Text": "I",
 "Type": "PERSON",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0,
 "Neutral": 1,
 "Positive": 0
 }
 }
 }
]
 }
],
 "File": "Input.txt",
 "Line": 0
}

Real time analysis using the console

You can use the Amazon Comprehend console to run the section called “Targeted sentiment” in
real-time. Use the sample text or paste your own text into the input text box, then choose Analyze.

Targeted sentiment 32

Amazon Comprehend Developer Guide

In the Insights panel, the console displays three views of the targeted sentiment analysis:

• Analyzed text – Displays the analyzed text and underlines each entity. The color of the underline
indicates the sentiment value (positive, neutral, negative, or mixed) that the analysis assigned
to the entity. The console displays the color mappings at the top right corner of the analzed
text box. If you hover your cursor over an entity, the console displays a popup panel containing
analysis values (entity type, sentiment score) for the entity.

• Results – Displays a table containing a row for each entity mention identified in the text. For
each entity, the table shows the entity and entity score. The row also includes the primary
sentiment and the score for each sentiment value. If there are multiple mentions of the same
entity, known as a the section called “Co-reference group”, the table displays these mentions as a
collapsible set of rows associated with the main entity.

If you hover over an entity row in the Results table, the console highlights the entity mention in
the Analyzed text panel.

• Application integration – Displays the parameter values of the API request and the structure of
the JSON object returned in the API response. For a description of the fields in the JSON object,
see the section called “Output file organization”.

Console real-time analysis example

This example uses the following text as input, which is the default input text that the console
provides.

Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account
 1111-0000-1111-0008 has a minimum payment
 of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw
 your payment on the due date from your
 bank account number XXXXXX1111 with the routing number XXXXX0000.
 Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at
 sunspa@mail.com.
 I enjoyed visiting the spa. It was very comfortable but it was also very expensive.
 The amenities were ok but the service made
 the spa a great experience.

The Analyzed text panel shows the following output for this example. Hover your mouse over the
text Zhang Wei to view the popup panel for this entity.

Targeted sentiment 33

Amazon Comprehend Developer Guide

The Results table provides additional detail about each entity, including the entity score, the
primary sentiment, and the score for each sentiment.

In our example, targeted sentiment analysis recognizes that each mention of your in the input
text is a reference to the person entity Zhang Wei. The console displays these mentions as a set of
collapsible rows associated with the main entity.

Targeted sentiment 34

Amazon Comprehend Developer Guide

The Application integration panel displays the JSON object that the DetectTargetedSentiment API
generates. See the following section for a full example.

Targeted sentiment output example

The following example shows the output file from a targeted sentiment analysis job. The input file
consists of three simple documents:

The burger was very flavorful and the burger bun was excellent. However, customer
 service was slow.
My burger was good, and it was warm. The burger had plenty of toppings.
The burger was cooked perfectly but it was cold. The service was OK.

The targeted sentiment analysis of this input file produces the following output.

 {"Entities":[
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 4,
 "EndOffset": 10,
 "Score": 0.999991,
 "GroupScore": 1,
 "Text": "burger",

Targeted sentiment 35

Amazon Comprehend Developer Guide

 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0,
 "Neutral": 0,
 "Positive": 1
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 38,
 "EndOffset": 44,
 "Score": 1,
 "GroupScore": 1,
 "Text": "burger",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0.000005,
 "Negative": 0.000005,
 "Neutral": 0.999591,
 "Positive": 0.000398
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 45,

Targeted sentiment 36

Amazon Comprehend Developer Guide

 "EndOffset": 48,
 "Score": 0.961575,
 "GroupScore": 1,
 "Text": "bun",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0.000327,
 "Negative": 0.000286,
 "Neutral": 0.050269,
 "Positive": 0.949118
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 73,
 "EndOffset": 89,
 "Score": 0.999988,
 "GroupScore": 1,
 "Text": "customer service",
 "Type": "ATTRIBUTE",
 "MentionSentiment": {
 "Sentiment": "NEGATIVE",
 "SentimentScore": {
 "Mixed": 0.000001,
 "Negative": 0.999976,
 "Neutral": 0.000017,
 "Positive": 0.000006
 }
 }
 }
]
 }
],
 "File": "TargetSentimentInputDocs.txt",
 "Line": 0

Targeted sentiment 37

Amazon Comprehend Developer Guide

}
{
 "Entities": [
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 0,
 "EndOffset": 2,
 "Score": 0.99995,
 "GroupScore": 1,
 "Text": "My",
 "Type": "PERSON",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0,
 "Neutral": 1,
 "Positive": 0
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0,
 2
],
 "Mentions": [
 {
 "BeginOffset": 3,
 "EndOffset": 9,
 "Score": 0.999999,
 "GroupScore": 1,
 "Text": "burger",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0.000002,

Targeted sentiment 38

Amazon Comprehend Developer Guide

 "Negative": 0.000001,
 "Neutral": 0.000003,
 "Positive": 0.999994
 }
 }
 },
 {
 "BeginOffset": 24,
 "EndOffset": 26,
 "Score": 0.999756,
 "GroupScore": 0.999314,
 "Text": "it",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0.000003,
 "Neutral": 0.000006,
 "Positive": 0.999991
 }
 }
 },
 {
 "BeginOffset": 41,
 "EndOffset": 47,
 "Score": 1,
 "GroupScore": 0.531342,
 "Text": "burger",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0.000215,
 "Negative": 0.000094,
 "Neutral": 0.00008,
 "Positive": 0.999611
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [

Targeted sentiment 39

Amazon Comprehend Developer Guide

 0
],
 "Mentions": [
 {
 "BeginOffset": 52,
 "EndOffset": 58,
 "Score": 0.965462,
 "GroupScore": 1,
 "Text": "plenty",
 "Type": "QUANTITY",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0,
 "Neutral": 1,
 "Positive": 0
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 62,
 "EndOffset": 70,
 "Score": 0.998353,
 "GroupScore": 1,
 "Text": "toppings",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0,
 "Neutral": 0.999964,
 "Positive": 0.000036
 }
 }
 }

Targeted sentiment 40

Amazon Comprehend Developer Guide

]
 }
],
 "File": "TargetSentimentInputDocs.txt",
 "Line": 1
}
{
 "Entities": [
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 4,
 "EndOffset": 10,
 "Score": 1,
 "GroupScore": 1,
 "Text": "burger",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0.001515,
 "Negative": 0.000822,
 "Neutral": 0.000243,
 "Positive": 0.99742
 }
 }
 },
 {
 "BeginOffset": 36,
 "EndOffset": 38,
 "Score": 0.999843,
 "GroupScore": 0.999661,
 "Text": "it",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "NEGATIVE",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0.999996,
 "Neutral": 0.000004,
 "Positive": 0

Targeted sentiment 41

Amazon Comprehend Developer Guide

 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 53,
 "EndOffset": 60,
 "Score": 1,
 "GroupScore": 1,
 "Text": "service",
 "Type": "ATTRIBUTE",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0.000033,
 "Negative": 0.000089,
 "Neutral": 0.993325,
 "Positive": 0.006553
 }
 }
 }
]
 }
],
 "File": "TargetSentimentInputDocs.txt",
 "Line": 2
}
 }

Syntax analysis

Use syntax analysis to parse the words from the document and return the part of speech, or
syntactic function, for each word in the document. You can identify the nouns, verbs, adjectives
and so on in your document. Use this information to gain a richer understanding of the content of
your documents, and to understand the relationship of the words in the document.

Syntax analysis 42

Amazon Comprehend Developer Guide

For example, you can look for the nouns in a document and then look for the verbs related to
those nouns. In a sentence like "My grandmother moved her couch" you can see the nouns,
"grandmother" and "couch," and the verb, "moved." You can use this information to build
applications for analyzing text for word combinations that you are interested in.

To start the analysis, Amazon Comprehend parses the source text to find the individual words
in the text. After the text is parsed, each word is assigned the part of speech that it takes in the
source text.

Amazon Comprehend can identify the following parts of speech.

Token Part of speech

ADJ Adjective

Words that typically modify
nouns.

ADP Adposition

The head of a prepositional or
postpositional phrase.

ADV Adverb

Words that typically modify
verbs. They may also modify
adjectives and other adverbs.

AUX Auxiliary

Function words that
accompanies the verb of a
verb phrase.

CCONJ Coordinating conjunction

A coordinating conjunction
connects words, phrases, or
clauses in a sentence without

Syntax analysis 43

Amazon Comprehend Developer Guide

Token Part of speech

subordinating one to the
other.

CONJ Conjunction

A conjunction connects
words, phrases, or clauses in a
sentence.

DET Determiner

Articles and other words that
specify a particular noun
phrase.

INTJ Interjection

Words used as an exclamation
or part of an exclamation.

NOUN Noun

Words that specify a person,
place, thing, animal, or idea.

NUM Numeral

Words, typically determiners,
adjectives, or pronouns, that
express a number.

O Other

Words that can't be assigned
a part of speech category.

Syntax analysis 44

Amazon Comprehend Developer Guide

Token Part of speech

PART Particle

Function words associated
with another word or phrase
to impart meaning.

PRON Pronoun

Words that substitute for
nouns or noun phrases.

PROPN Proper noun

A noun that is the name of a
specific individual, place or
object.

PUNCT Punctuation

Non-alphabetical characters
that delimit text.

SCONJ Subordinating conjunction

A conjunction that joins
a dependent clause to a
sentence. An example of a
subordinating conjunction is
"because".

SYM Symbol

Word-like entities such as the
dollar sign ($) or mathemati
cal symbols.

Syntax analysis 45

Amazon Comprehend Developer Guide

Token Part of speech

VERB Verb

Words that signal events and
actions.

For more information about the parts of speech, see Universal POS tags at the Universal
Dependencies website.

The operations return tokens that identify the word and the part of speech that the word
represents in the text. Each token represents a word in the source text. It provides the location
of the word in the source, the part of speech that the word takes in the text, the confidence that
Amazon Comprehend has that the part of speech was correctly identified, and the word that was
parsed from the source text.

The following is the structure of the list of syntax tokens. One syntax token is generated for each
word in the document.

{
 "SyntaxTokens": [
 {
 "BeginOffset": number,
 "EndOffset": number,
 "PartOfSpeech": {
 "Score": number,
 "Tag": "string"
 },
 "Text": "string",
 "TokenId": number
 }
]
}

Each token provides the following information:

• BeginOffset and EndOffset—Provides the location of the word in the input text.

Syntax analysis 46

http://universaldependencies.org/u/pos/

Amazon Comprehend Developer Guide

• PartOfSpeech—Provides two pieces of information, the Tag that identifies the part of speech
and the Score that represents the confidence that Amazon Comprehend Syntax has that the
part of speech was correctly identifies.

• Text—Provides the word that was identified.

• TokenId—Provides an identifier for the token. The identifier is the position of the token in the
list of tokens.

Amazon Comprehend Custom

You can customize Amazon Comprehend for your specific requirements without the skillset
required to build machine learning-based NLP solutions. Using automatic machine learning, or
AutoML, Comprehend Custom builds customized NLP models on your behalf, using training data
that you provide.

Input document processing – Amazon Comprehend supports one-step document processing for
custom classification and custom entity recognition. For example, you can input a mix of plain text
documents and semi-structured documents (such as PDF documents, Microsoft Word documents,
and images) to a custom analysis job. For more information, see Document processing.

Custom classification – Create custom classification models (classifiers) to organize your
documents into your own categories. For each classification label, provide a set of documents that
best represent that label and train your classifier on it. Once trained, a classifier can be used on any
number of unlabeled document sets. You can use the console for a code-free experience or install
the latest AWS SDK. For more information, see Custom classification.

Custom entity recognition – Create custom entity recognition models (recognizers) that can
analyze text for your specific terms and noun-based phrases. You can train recognizers to extract
terms like policy numbers, or phrases that imply a customer escalation. To train the model, you
provide a list of the entities and a set of documents that contain them. Once the model is trained,
you can submit analysis jobs against it to extract their custom entities. For more information, see
Custom entity recognition.

Topic modeling

You can use Amazon Comprehend to examine the content of a collection of documents to
determine common themes. For example, you can give Amazon Comprehend a collection of news

Amazon Comprehend Custom 47

Amazon Comprehend Developer Guide

articles, and it will determine the subjects, such as sports, politics, or entertainment. The text in the
documents doesn't need to be annotated.

Amazon Comprehend uses a Latent dirichlet allocation-based learning model to determine the
topics in a set of documents. It examines each document to determine the context and meaning of
a word. The set of words that frequently belong to the same context across the entire document
set make up a topic.

A word is associated to a topic in a document based on how prevalent that topic is in a document
and how much affinity the topic has to the word. The same word can be associated with different
topics in different documents based on the topic distribution in a particular document.

For example, the word "glucose" in an article that talks predominantly about sports can be
assigned to the topic "sports," while the same word in an article about "medicine" will be assigned
to the topic "medicine."

Each word associated with a topic is given a weight that indicates how much the word helps define
the topic. The weight is an indication of how many times the word occurs in the topic compared to
other words in the topic, across the entire document set.

For the most accurate results you should provide Amazon Comprehend with the largest possible
corpus to work with. For best results:

• You should use at least 1,000 documents in each topic modeling job.

• Each document should be at least 3 sentences long.

• If a document consists of mostly numeric data, you should remove it from the corpus.

Topic modeling is an asynchronous process. You submit your list of documents to Amazon
Comprehend from an Amazon S3 bucket using the StartTopicsDetectionJob operation. The
response is sent to an Amazon S3 bucket. You can configure both the input and output buckets.
Get a list of the topic modeling jobs that you have submitted using the ListTopicsDetectionJobs
operation and view information about a job using the DescribeTopicsDetectionJob operation.
Content delivered to Amazon S3 buckets might contain customer content. For more information
about removing sensitive data, see How Do I Empty an S3 Bucket? or How Do I Delete an S3
Bucket?.

Documents must be in UTF-8 formatted text files. You can submit your documents two ways. The
following table shows the options.

Topic modeling 48

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTopicsDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListTopicsDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeTopicsDetectionJob.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

Amazon Comprehend Developer Guide

Format Description

One document per file Each file contains one input document. This is
best for collections of large documents.

One document per line The input is a single file. Each line in the file is
considered a document. This is best for short
documents, such as social media postings.

Each line must end with a line feed (LF, \n), a
carriage return (CR, \r), or both (CRLF, \r\n).
The Unicode line separator (u+2028) can't be
used to end a line.

For more information, see the InputDataConfig data type.

After Amazon Comprehend processes your document collection, it returns a compressed archive
containing two files, topic-terms.csv and doc-topics.csv. For more information about the
output file, see OutputDataConfig.

The first output file, topic-terms.csv, is a list of topics in the collection. For each topic, the
list includes, by default, the top terms by topic according to their weight. For example, if you give
Amazon Comprehend a collection of newspaper articles, it might return the following to describe
the first two topics in the collection:

Topic Term Weight

000 team 0.118533

000 game 0.106072

000 player 0.031625

000 season 0.023633

000 play 0.021118

000 yard 0.024454

Topic modeling 49

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_InputDataConfig.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_OutputDataConfig.html

Amazon Comprehend Developer Guide

Topic Term Weight

000 coach 0.016012

000 games 0.016191

000 football 0.015049

000 quarterback 0.014239

001 cup 0.205236

001 food 0.040686

001 minutes 0.036062

001 add 0.029697

001 tablespoon 0.028789

001 oil 0.021254

001 pepper 0.022205

001 teaspoon 0.020040

001 wine 0.016588

001 sugar 0.015101

The weights represent a probability distribution over the words in a given topic. Since Amazon
Comprehend returns only the top 10 words for each topic the weights won't sum to 1.0. In the rare
cases where there are less than 10 words in a topic, the weights will sum to 1.0.

The words are sorted by their discriminative power by looking at their occurrence across all topics.
Typically this is the same as their weight, but in some cases, such as the words "play" and "yard" in
the table, this results in an order that is not the same as the weight.

You can specify the number of topics to return. For example, if you ask Amazon Comprehend to
return 25 topics, it returns the 25 most prominent topics in the collection. Amazon Comprehend

Topic modeling 50

Amazon Comprehend Developer Guide

can detect up to 100 topics in a collection. Choose the number of topics based on your knowledge
of the domain. It may take some experimentation to arrive at the correct number.

The second file, doc-topics.csv, lists the documents associated with a topic and the proportion
of the document that is concerned with the topic. If you specified ONE_DOC_PER_FILE the
document is identified by the file name. If you specified ONE_DOC_PER_LINE the document is
identified by the file name and the 0-indexed line number within the file. For example, Amazon
Comprehend might return the following for a collection of documents submitted with one
document per file:

Document Topic Proportion

sample-doc1 000 0.999330137

sample-doc2 000 0.998532187

sample-doc3 000 0.998384574

...

sample-docN 000 3.57E-04

Amazon Comprehend utilizes information from the Lemmatization Lists Dataset by MBM, which is
made available here under the Open database license (ODbL) v1.0.

Document processing modes

Amazon Comprehend supports three document processing modes. Your choice of mode depends
on the number documents you need to process and how immediately you need to view the results:

• Single-document synchronous – You call Amazon Comprehend with a single document and
receive a synchronous response, delivered to your application (or the console) right away.

• Multi-document synchronous – You call the Amazon Comprehend API with a collection of up to
25 documents and receive a synchronous response.

• Asynchronous batch – For a large collection of documents, put the documents into an Amazon
S3 bucket and start an asynchronous job (using console or API operations) to analyze the
documents. Amazon Comprehend stores the results of the analysis in the S3 bucket/folder that
you specify in the request.

Document processing modes 51

https://github.com/michmech/lemmatization-lists
https://opendatacommons.org/licenses/odbl/1-0/

Amazon Comprehend Developer Guide

Topics

• Single-document processing

• Multiple document synchronous processing

• Asynchronous batch processing

Single-document processing

Single-document operations are synchronous operations that return the results of the document
analysis directly to your application. Use single-document synchronous operations when you are
creating an interactive application that works on one document at a time.

For more information about the synchronous API operations, see Real-time analysis using the built-
in models (for console) and Real-time analysis using the API.

Multiple document synchronous processing

When you have multiple documents that you want to process, you can use the Batch* API
operations to send more than one document to Amazon Comprehend at a time. You can send up
to 25 documents in each request. Amazon Comprehend sends back a list of responses, one for each
document in the request. Requests made with these operations are synchronous. Your application
calls the operation and then waits for the response from the service.

Using the Batch* operations is identical to calling the single document APIs for each of the
documents in the request. Using these APIs can result in better performance for your applications.

The input to each of the APIs is a JSON structure containing the documents to process. For all
operations except BatchDetectDominantLanguage, you must set the input language. You
can set only one input language for each request. For example, the following is the input to the
BatchDetectEntities operation. It contains two documents and is in English.

{
 "LanguageCode": "en",
 "TextList": [
 "I have been living in Seattle for almost 4 years",
 "It is raining today in Seattle"
]
}

Single-document processing 52

Amazon Comprehend Developer Guide

The response from a Batch* operation contains two lists, the ResultList and the ErrorList.
The ResultList contains one record for each document that was successfully processed. The
result for each document in the request is identical to the result you would get if you ran a single
document operation on the document. The results for each document are assigned an index based
on the order of the documents in the input file. The response from the BatchDetectEntities
operation is:

{
 "ResultList" : [
 {
 "Index": 0,
 "Entities": [
 {
 "Text": "Seattle",
 "Score": 0.95,
 "Type": "LOCATION",
 "BeginOffset": 22,
 "EndOffset": 29
 },
 {
 "Text": "almost 4 years",
 "Score": 0.89,
 "Type": "QUANTITY",
 "BeginOffset": 34,
 "EndOffset": 48
 }
]
 },
 {
 "Index": 1,
 "Entities": [
 {
 "Text": "today",
 "Score": 0.87,
 "Type": "DATE",
 "BeginOffset": 14,
 "EndOffset": 19
 },
 {
 "Text": "Seattle",
 "Score": 0.96,
 "Type": "LOCATION",
 "BeginOffset": 23,

Multiple document synchronous processing 53

Amazon Comprehend Developer Guide

 "EndOffset": 30
 }
]
 }
],
 "ErrorList": []
}

When an error occurs in the request the response contains an ErrorList that identifies the
documents that contained an error. The document is identified by its index in the input list. For
example, the following input to the BatchDetectLanguage operation contains a document that
cannot be processed:

{
 "TextList": [
 "hello friend",
 "$$$$$$",
 "hola amigo"
]
}

The response from Amazon Comprehend includes an error list that identifies the document that
contained an error:

{
 "ResultList": [
 {
 "Index": 0,
 "Languages":[
 {
 "LanguageCode":"en",
 "Score": 0.99
 }
]
 },
 {
 "Index": 2
 "Languages":[
 {
 "LanguageCode":"es",
 "Score": 0.82
 }

Multiple document synchronous processing 54

Amazon Comprehend Developer Guide

]
 }
],
 "ErrorList": [
 {
 "Index": 1,
 "ErrorCode": "InternalServerException",
 "ErrorMessage": "Unexpected Server Error. Please try again."
 }
]
}

For more information about the synchronous batch API operations, see Real-time batch APIs.

Asynchronous batch processing

To analyze large documents and large collections of documents, use the Amazon Comprehend
asynchronous operations.

To analyze a collection of documents, you typically perform the following steps:

1. Store the documents in an Amazon S3 bucket.

2. Start one or more analysis jobs to analyze the documents.

3. Monitor the progress of the analysis jobs.

4. Retrieve the results of the analysis from an S3 bucket when the job is complete.

For more information about using the asynchronous API operations, see Running analysis jobs
using the console (console) and Async analysis jobs using the API.

Asynchronous batch processing 55

Amazon Comprehend Developer Guide

Languages supported in Amazon Comprehend

Amazon Comprehend supports a wide variety of languages for its various features. The languages
supported and the features that support them can be seen in the following tables.

Topics

• Supported languages

• Languages supported by Amazon Comprehend features

Supported languages

Amazon Comprehend (except the detect dominant language feature) supports the following
languages for one or more features.

Code Language

de German

en English

es Spanish

it Italian

pt Portuguese

fr French

ja Japanese

ko Korean

hi Hindi

ar Arabic

zh Chinese (simplified)

zh-TW Chinese (traditional)

Supported languages 56

Amazon Comprehend Developer Guide

Note

Amazon Comprehend identifies the language using identifiers from RFC 5646 — if there is
a 2-letter ISO 639-1 identifier, with a regional subtag./ If necessary, it uses that. Otherwise,
it uses the ISO 639-2 3-letter code.
For more information about RFC 5646, see Tags for identifying languages on the IETF Tools
web site.

Languages supported by Amazon Comprehend features

Feature Supported languages

Dominant language See Dominant language.

Entities All supported languages.

Key phrases All supported languages.

Detecting PII entities English and Spanish.

Labeling PII entities English and Spanish.

Sentiment All supported languages.

Targeted sentiment English.

Syntax analysis German (de), English (en), Spanish (es), French
(fr), Italian (it), and Portuguese (pt).

Topic modeling Not dependent on the language used. Doesn't
support character-based languages such as
Chinese, Japanese, and Korean.

Custom classification Plain-text models support the following
languages: German (de), English (en), Spanish
(es), French (fr), Italian (it), and Portuguese
(pt).

Languages supported by Amazon Comprehend features 57

https://tools.ietf.org/html/rfc5646

Amazon Comprehend Developer Guide

Feature Supported languages

Native document models support English
documents only.

Custom entity recognition German (de), English (en), Spanish (es), French
(fr), Italian (it), and Portuguese (pt).

Custom Entity Recognition for PDF and Word
supports English documents only.

Languages supported by Amazon Comprehend features 58

Amazon Comprehend Developer Guide

Setting up

Before you use Amazon Comprehend for the first time, complete the following tasks.

Setting up tasks

• Sign up for an AWS account

• Create an administrative user

• Set up the AWS Command Line Interface (AWS CLI)

• Grant programmatic access

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account 59

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

Amazon Comprehend Developer Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Set up the AWS Command Line Interface (AWS CLI)

You don't need the AWS CLI to perform the steps in the Getting Started exercises. However, some
of the other exercises in this guide do require it. If you prefer, you can skip this step and go to
Getting started with Amazon Comprehend, and set up the AWS CLI later.

Set up the AWS CLI 60

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon Comprehend Developer Guide

To install and configure the AWS CLI

1. Install the AWS CLI. For instructions, see the following topic in the AWS Command Line
Interface User Guide:

Installing or updating the latest version of the AWS Command Line Interface

2. Configure the AWS CLI. For instructions, see the following topic in the AWS Command Line
Interface User Guide:

Configuring the AWS Command Line Interface

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Grant programmatic access 61

https://docs.aws.amazon.com/cli/latest/userguide/cli-getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Amazon Comprehend Developer Guide

Which user needs
programmatic access?

To By

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Grant programmatic access 62

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Comprehend Developer Guide

Getting started with Amazon Comprehend

The following exercise uses the Amazon Comprehend console to create and run an asynchronous
entity detection job. This exercise assumes that you are familiar with Amazon Simple Storage
Service (Amazon S3). For a simpler example, see Real-time analysis using the built-in models.

To create a entity detection job

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Analysis Jobs and then choose Create job.

3. Under Job settings, give the job a name. The name must be unique within the Region and
account.

4. For Analysis Type, choose Entities.

5. For Language, choose the language of the input documents.

6. Under Input data, for Data source, choose Example documents. The console sets S3 location
to be the folder containing the public samples.

7. Under Output data, in S3 location, paste the URL or folder location in Amazon S3 for the
output files.

8. Under Access permissions section, select Create an IAM role. The console creates a new IAM
role with the proper permissions for Amazon Comprehend to access the input and output
buckets.

9. When you have finished filling out the form, choose Create job to create and start the topic
detection job.

The new job appears in the job list with the status field showing the status of the job. The
field can be IN_PROGRESS for a job that is processing, COMPLETED for a job that has finished
successfully, and FAILED for a job that has an error.

10. Choose the job to open the Job details panel.

11. Under Output, in Output data location choose the link to open the Amazon S3 console.

12. In the Amazon S3 console, choose Download and save the output.tar.gz file.

13. Decompress the file and save it as a Json file.

14. See the section called “Entities” for a description of the entity types and the fields for each
detected entity.

63

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

Analysis using the Amazon Comprehend console

You can use the Amazon Comprehend console to analyze documents in real-time or to run
asynchronous analysis jobs.

Using real-time analysis with built-in models, you can recognize entities, extract key phrases,
detect primary language, detect PII, determine sentiment, analyze targeted sentiment, and analyze
syntax.

You can run analysis jobs using the built-in models to find insights such as entities, events, phrases,
primary language, sentiment, targeted sentiment, and personally identifiable information (PII). You
can also run topic-modeling jobs.

The console also supports real-time and asynchronous analysis using custom models. For more
information, see Custom classification and Custom entity recognition.

Topics

• Real-time analysis using the built-in models

• Running analysis jobs using the console

Real-time analysis using the built-in models

You can use the Amazon Comprehend console to run real-time analysis of a UTF-8 encoded text
document. The document can be English or one of the other languages supported by Amazon
Comprehend. The results are shown in the console so that you can review the analysis.

To start analyzing documents, sign in to the AWS Management Console and open the Amazon
Comprehend console.

You can replace the sample text with your own text and then choose Analyze to get an analysis of
your text. Below the text being analyzed, the Results pane shows more information about the text.

Run real-time analysis using the built-in model

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Real-time analysis.

Real-time analysis 64

https://console.aws.amazon.com/comprehend/home?region=us-east-1#api-explorer:
https://console.aws.amazon.com/comprehend/home?region=us-east-1#api-explorer:
https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

3. Under Input type, choose Built-in for Analysis type.

4. Enter the text you want to analyze.

5. Choose Analyze. The console displays the text analysis results in the Insights panel. The
Insights panel includes a tab for each of the insight types. The following sections describe the
results for insight type.

Topics

• Entities

• Key phrases

• Language

• Personally identifiable information (PII)

• Sentiment

• Targeted sentiment

• Syntax

Entities

The Entities tab lists each entity, its category, and the level of confidence that Amazon
Comprehend has detected in the input text. The results are color-coded to indicate different entity
types such as organizations, locations, dates, and persons. For more information, see Entities.

Entities 65

Amazon Comprehend Developer Guide

Key phrases

The Key phrases tab lists key noun phrases that Amazon Comprehend detected in the input text
and the associated confidence level. For more information, see Key phrases.

Key phrases 66

Amazon Comprehend Developer Guide

Language

The Language tab shows the dominant language of the text and Amazon Comprehend's level
of confidence that it has detected the dominant language correctly. Amazon Comprehend can
recognize 100 languages. For more information, see Dominant language.

Language 67

Amazon Comprehend Developer Guide

Personally identifiable information (PII)

The PII tab lists entities in your input text that contain personally identifiable information (PII). A
PII entity is a textual reference to personal data that could be used to identify an individual, such
as an address, bank account number, or phone number. For more information, see Detecting PII
entities.

The PII tab provides two analysis modes:

• Offsets

• Labels

Offsets

The Offsets analysis mode identifies the location of PII in your text documents. For more
information, see Locate PII entities.

Personally identifiable information (PII) 68

Amazon Comprehend Developer Guide

Labels

The Labels analysis mode checks for the presence of PII in your text document and returns the
labels of identified PII entity types. For more information, see Labeling PII entities.

Personally identifiable information (PII) 69

Amazon Comprehend Developer Guide

Sentiment

The Sentiment tab shows the dominant sentiment of the text. Sentiment can be rated neutral,
positive, negative, or mixed. In this case, each sentiment has a confidence rating, providing an
estimate by Amazon Comprehend for that sentiment being dominant. For more information, see
Sentiment.

Sentiment 70

Amazon Comprehend Developer Guide

Targeted sentiment

Targeted sentiment analysis identifies the sentiments expressed about entities mentioned in the
text. Amazon Comprehend assigns a sentiment rating to each mention of an entity, along with a
confidence rating and other information. A sentiment rating can be neutral, positive, negative, or
mixed.

In the Analyzed text panel, the console underlines each of analyzed entities. The color of the
underlined text indicates the overall sentiment of the entity. If you hover your cursor over an entity,
the console displays additional information in a pop-up window.

Targeted sentiment 71

Amazon Comprehend Developer Guide

The Results table provides additional detail about each entity. If there are multiple mentions of the
same entity, called a co-reference group, the table displays these mentions as a collapsible set of
rows associated with the main entity.

In the following example, the entity is a person named Zhang Wei. The targeted sentiment analysis
recognizes that each mention of your is a reference to the same person. The console displays these
mentions as sub-entries of the main entity.

Targeted sentiment 72

Amazon Comprehend Developer Guide

If the text you are analyzing doesn't include any targeted sentiment Entity types, the targeted
sentiment analysis displays an empty results field.

For more information about how to use the console for targeted sentiment real-time analysis, see
Real time analysis using the console.

Syntax

The Syntax tab shows a breakdown of each element in the text, along with its part of speech and
the associated confidence score. For more information, see Syntax analysis.

Syntax 73

Amazon Comprehend Developer Guide

Running analysis jobs using the console

You can use the Amazon Comprehend console to create and manage asynchronous analysis jobs.
Your job analyzes documents stored in Amazon S3 to find entities such as events, phrases, primary
language, sentiment, or personally identifiable information (PII).

Analysis jobs (console) 74

Amazon Comprehend Developer Guide

To create an analysis job

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Analysis jobs and then choose Create job.

3. Under Job settings, give the analysis job a unique name.

4. For Analysis type, choose one of the Built-in analysis types.

If you choose Primary langugage or Topic modeling, you can skip the next step.

5. Depending on the Analysis type that you choose, the console displays one or more of the
following additional fields:

• Language is required for all built-in analysis types except Primary langugage and Topic
modeling.

Choose the language of your input documents.

• Target event types is required for the Events analysis type.

Select the types of events to detect in your input documents. For more information about
supported event types, see Event types.

• PII detection settings is required for the PII analysis type.

Select the output mode. For more information about PII detection settings, see Detecting PII
entities.

6. Under Input data, specify where the input documents are located in Amazon S3:

• To analyze your own documents, choose My documents, and choose Browse S3 to provide
the path to the bucket or folder that contains your files.

• To analyze samples that are provided by Amazon Comprehend, choose Example
documents. In this case, Amazon Comprehend uses a bucket that is managed by AWS, and
you don't specify the location.

7. (Optional) For Input format, specify one of the following formats for your input files:

• One document per file – Each file contains one input document. This is best for collections
of large documents.

• One document per line – The input is one or more files. Each line in a file is considered a
document. This is best for short documents, such as social media postings. Each line must

Analysis jobs (console) 75

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

end with a line feed (LF, \n), a carriage return (CR, \r), or both (CRLF, \r\n). You can't use the
UTF-8 line separator (u+2028) to end a line.

8. Under Output data, choose Browse S3. Choose the Amazon S3 bucket or folder where you
want Amazon Comprehend to write the output data that is produced by the analysis.

9. (Optional) To encrypt the output result from your job, choose Encryption. Then, choose
whether to use a KMS key associated with the current account or one from another account:

• If you are using a key associated with the current account, choose the key alias or ID for
KMS key ID.

• If you are using a key associated with a different account, enter the ARN for the key alias
or ID under KMS key ID.

Note

For more information on creating and using KMS keys and the associated
encryption, see Key management service (KMS).

10. Under Access permissions, provide an IAM role that:

• Grants read access to the Amazon S3 location of your input documents.

• Grants write access to the Amazon S3 location of your output documents.

• Includes a trust policy that allows the comprehend.amazonaws.com service principal to
assume the role and gain its permissions.

If you don't already have an IAM role with these permissions and an appropriate trust policy,
choose Create an IAM role to create one.

11. When you have finished filling out the form, choose Create job to create and start the topic
detection job.

The new job appears in the job list with the status field showing the status of the job. The field can
be IN_PROGRESS for a job that is processing, COMPLETED for a job that has finished successfully,
and FAILED for a job that has an error. You can click on a job to get more information about the
job, including any error messages.

When the job is completed, Amazon Comprehend stores the analysis results in the output Amazon
S3 location that you specified for the job. For a description of the analysis results for each insight
type, see Insights.

Analysis jobs (console) 76

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

Using the Amazon Comprehend API

The Amazon Comprehend API supports operations to perform real-time (synchronous) analysis and
operations to start and manage asynchronous analysis jobs.

You can use the Amazon Comprehend API operators directly, or you can use the CLI or one of the
SDKs. The examples in this chapter use the CLI, the Python SDK, and Java SDK.

To run the AWS CLI and Python examples, you must install the AWS CLI. For more information, see
Set up the AWS Command Line Interface (AWS CLI).

To run the Java examples, you must install the AWS SDK for Java. For instructions for installing the
SDK for Java, see Set up the AWS SDK for Java.

Topics

• Using Amazon Comprehend with an AWS SDK

• Real-time analysis using the API

• Async analysis jobs using the API

Using Amazon Comprehend with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

Working with AWS SDKs 77

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3

Amazon Comprehend Developer Guide

SDK documentation Code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Real-time analysis using the API

The following examples demonstrate how to use Amazon Comprehend API for real-time analysis,
using the AWS CLI, and the AWS SDKs for .NET, Java, and Python. Use the examples to learn about
the Amazon Comprehend synchronous operations and as building blocks for your own applications.

The .NET examples in this section use the AWS SDK for .NET. You can use the AWS Toolkit for
Visual Studio to develop AWS applications using .NET. It includes helpful templates and the AWS
Explorer for deploying applications and managing services. For a .NET developer perspective of
AWS, see the AWS guide for .NET developers.

Topics

• Detecting the dominant language

• Detecting named entities

• Detecting key phrases

• Determining sentiment

• Real-time analysis for targeted sentiment

Real-time analysis (API) 78

https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/welcome.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/welcome.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/welcome.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/welcome.html

Amazon Comprehend Developer Guide

• Detecting syntax

• Real-time batch APIs

Detecting the dominant language

To determine the dominant language used in text, use the DetectDominantLanguage
operation. To detect the dominant language in up to 25 documents in a batch, use the
BatchDetectDominantLanguage operation. For more information, see Real-time batch APIs.

Topics

• Using the AWS Command Line Interface

• Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

Using the AWS Command Line Interface

The following example demonstrates using the DetectDominantLanguage operation with the
AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-dominant-language \
 --region region \
 --text "It is raining today in Seattle."

Amazon Comprehend responds with the following:

{
 "Languages": [
 {
 "LanguageCode": "en",
 "Score": 0.9793661236763
 }
]
}

Detecting the dominant language 79

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectDominantLanguage.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectDominantLanguage.html

Amazon Comprehend Developer Guide

Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

For SDK examples of how to determine the dominant language, see Detect the dominant language
in a document with Amazon Comprehend using an AWS SDK.

Detecting named entities

To determine the named entities in a document, use the DetectEntities operation. To detect
entities in up to 25 documents in a batch, use the BatchDetectEntities operation. For more
information, see Real-time batch APIs.

Topics

• Using the AWS Command Line Interface

• Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

Using the AWS Command Line Interface

The following example demonstrates using the DetectEntities operation using the AWS CLI.
You must specify the language of the input text.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-entities \
 --region region \
 --language-code "en" \
 --text "It is raining today in Seattle."

Amazon Comprehend responds with the following:

{
 "Entities": [
 {
 "Text": "today",
 "Score": 0.97,
 "Type": "DATE",
 "BeginOffset": 14,
 "EndOffset": 19
 },
 {

Detecting named entities 80

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectEntities.html

Amazon Comprehend Developer Guide

 "Text": "Seattle",
 "Score": 0.95,
 "Type": "LOCATION",
 "BeginOffset": 23,
 "EndOffset": 30
 }
],
 "LanguageCode": "en"
}

Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

For SDK examples of how to determine the dominant language, see Detect entities in a document
with Amazon Comprehend using an AWS SDK.

Detecting key phrases

To determine the key noun phrases used in text, use the DetectKeyPhrases operation. To detect the
key noun phrases in up to 25 documents in a batch, use the BatchDetectKeyPhrases operation. For
more information, see Real-time batch APIs.

Topics

• Using the AWS Command Line Interface

• Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

Using the AWS Command Line Interface

The following example demonstrates using the DetectKeyPhrases operation with the AWS CLI.
You must specify the language of the input text.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-key-phrases \
 --region region \
 --language-code "en" \
 --text "It is raining today in Seattle."

Amazon Comprehend responds with the following:

Detecting key phrases 81

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectKeyPhrases.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectKeyPhrases.html

Amazon Comprehend Developer Guide

{
 "LanguageCode": "en",
 "KeyPhrases": [
 {
 "Text": "today",
 "Score": 0.89,
 "BeginOffset": 14,
 "EndOffset": 19
 },
 {
 "Text": "Seattle",
 "Score": 0.91,
 "BeginOffset": 23,
 "EndOffset": 30
 }
]
}

Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

For SDK examples that detect key phrases, see Detect key phrases in a document with Amazon
Comprehend using an AWS SDK.

Determining sentiment

Amazon Comprehend provides the following API operations for analyzing sentiment:

• DetectSentiment – Determines the overall emotional sentiment of a document.

• BatchDetectSentiment – Determine the overall sentiment in up to 25 documents in a batch. For
more information, see Real-time batch APIs

• StartSentimentDetectionJob – Starts an asynchronous sentiment detection job for a collection of
documents.

• ListSentimentDetectionJobs – Returns the list of sentiment detection jobs that you have
submitted.

• DescribeSentimentDetectionJob – Gets the properties (including status) associated with the
specified sentiment detection job.

• StopSentimentDetectionJob – Stops the specified in-progress sentiment job.

Topics

Determining sentiment 82

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListSentimentDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopSentimentDetectionJob.html

Amazon Comprehend Developer Guide

• Using the AWS Command Line Interface

• Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

Using the AWS Command Line Interface

The following example demonstrates using the DetectSentiment operation with the AWS CLI.
This example specifies the language of the input text.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-sentiment \
 --region region \
 --language-code "en" \
 --text "It is raining today in Seattle."

Amazon Comprehend responds with the following:

{
 "SentimentScore": {
 "Mixed": 0.014585512690246105,
 "Positive": 0.31592071056365967,
 "Neutral": 0.5985543131828308,
 "Negative": 0.07093945890665054
 },
 "Sentiment": "NEUTRAL",
 "LanguageCode": "en"
}

Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

For SDK examples that determine the sentiment of input text, see Detect the sentiment of a
document with Amazon Comprehend using an AWS SDK.

Real-time analysis for targeted sentiment

Amazon Comprehend provides the following API operations for targeted sentiment real-time
analysis:

• DetectTargetedSentiment – Analyzes sentiment of the entities mentioned in a document.

Real-time analysis for targeted sentiment 83

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectTargetedSentiment.html

Amazon Comprehend Developer Guide

• BatchDetectTargetedSentiment – Analyzes targeted sentiment for up to 25 documents in a
batch. For more information, see Real-time batch APIs

If the text you are analyzing doesn't include any targeted sentiment Entity types, the API returns an
empty Entities array.

Using the AWS Command Line Interface

The following example demonstrates using the DetectTargetedSentiment operation with the
AWS CLI. This example specifies the language of the input text.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-targeted-sentiment \
 --region region \
 --language-code "en" \
 --text "The burger was cooked perfectly but it was cold. The service was OK."

Amazon Comprehend responds with the following:

{
"Entities": [
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 4,
 "EndOffset": 10,
 "Score": 1,
 "GroupScore": 1,
 "Text": "burger",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Mixed": 0.001515,
 "Negative": 0.000822,
 "Neutral": 0.000243,
 "Positive": 0.99742

Real-time analysis for targeted sentiment 84

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectTargetedSentiment.html

Amazon Comprehend Developer Guide

 }
 }
 },
 {
 "BeginOffset": 36,
 "EndOffset": 38,
 "Score": 0.999843,
 "GroupScore": 0.999661,
 "Text": "it",
 "Type": "OTHER",
 "MentionSentiment": {
 "Sentiment": "NEGATIVE",
 "SentimentScore": {
 "Mixed": 0,
 "Negative": 0.999996,
 "Neutral": 0.000004,
 "Positive": 0
 }
 }
 }
]
 },
 {
 "DescriptiveMentionIndex": [
 0
],
 "Mentions": [
 {
 "BeginOffset": 53,
 "EndOffset": 60,
 "Score": 1,
 "GroupScore": 1,
 "Text": "service",
 "Type": "ATTRIBUTE",
 "MentionSentiment": {
 "Sentiment": "NEUTRAL",
 "SentimentScore": {
 "Mixed": 0.000033,
 "Negative": 0.000089,
 "Neutral": 0.993325,
 "Positive": 0.006553
 }
 }
 }

Real-time analysis for targeted sentiment 85

Amazon Comprehend Developer Guide

]
 }
]
}

Detecting syntax

To parse text to extract the individual words and determine the parts of speech for each word,
use the DetectSyntax operation. To parse the syntax of up to 25 documents in a batch, use the
BatchDetectSyntax operation. For more information, see Real-time batch APIs.

Topics

• Using the AWS Command Line Interface.

• Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

Using the AWS Command Line Interface.

The following example demonstrates using the DetectSyntax operation with the AWS CLI. This
example specifies the language of the input text.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-syntax \
 --region region \
 --language-code "en" \
 --text "It is raining today in Seattle."

Amazon Comprehend responds with the following:

{
 "SyntaxTokens": [
 {
 "Text": "It",
 "EndOffset": 2,
 "BeginOffset": 0,
 "PartOfSpeech": {
 "Tag": "PRON",
 "Score": 0.8389829397201538
 },

Detecting syntax 86

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectSyntax.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectSyntax.html

Amazon Comprehend Developer Guide

 "TokenId": 1
 },
 {
 "Text": "is",
 "EndOffset": 5,
 "BeginOffset": 3,
 "PartOfSpeech": {
 "Tag": "AUX",
 "Score": 0.9189288020133972
 },
 "TokenId": 2
 },
 {
 "Text": "raining",
 "EndOffset": 13,
 "BeginOffset": 6,
 "PartOfSpeech": {
 "Tag": "VERB",
 "Score": 0.9977611303329468
 },
 "TokenId": 3
 },
 {
 "Text": "today",
 "EndOffset": 19,
 "BeginOffset": 14,
 "PartOfSpeech": {
 "Tag": "NOUN",
 "Score": 0.9993606209754944
 },
 "TokenId": 4
 },
 {
 "Text": "in",
 "EndOffset": 22,
 "BeginOffset": 20,
 "PartOfSpeech": {
 "Tag": "ADP",
 "Score": 0.9999061822891235
 },
 "TokenId": 5
 },
 {
 "Text": "Seattle",

Detecting syntax 87

Amazon Comprehend Developer Guide

 "EndOffset": 30,
 "BeginOffset": 23,
 "PartOfSpeech": {
 "Tag": "PROPN",
 "Score": 0.9940338730812073
 },
 "TokenId": 6
 },
 {
 "Text": ".",
 "EndOffset": 31,
 "BeginOffset": 30,
 "PartOfSpeech": {
 "Tag": "PUNCT",
 "Score": 0.9999997615814209
 },
 "TokenId": 7
 }
]
}

Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

For SDK examples that detect the syntax of input text, see Detect syntactial elements of a
document with Amazon Comprehend using an AWS SDK.

Real-time batch APIs

To send batches of up to 25 documents, you can use the Amazon Comprehend real-time
batch operations. Calling a batch operation is identical to calling the single document APIs for
each document in the request. Using the batch APIs can result in better performance for your
applications. For more information, see Multiple document synchronous processing.

Topics

• Batch processing with the AWS CLI

• Batch processing with the AWS SDK for .NET

Real-time batch APIs 88

Amazon Comprehend Developer Guide

Batch processing with the AWS CLI

These examples show how to use the batch API operations using the AWS Command Line Interface.
All of the operations except BatchDetectDominantLanguage use the following JSON file called
process.json as input. For that operation the LanguageCode entity is not included.

The third document in the JSON file ("$$$$$$$$") will cause an error during batch processing. It is
included so that the operations will include an BatchItemError in the response.

{
 "LanguageCode": "en",
 "TextList": [
 "I have been living in Seattle for almost 4 years",
 "It is raining today in Seattle",
 "$$$$$$$$"
]
}

The examples are formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\)
Unix continuation character at the end of each line with a caret (^).

Topics

• Detect the dominant language using a batch (AWS CLI)

• Detect entities using a batch (AWS CLI)

• Detect key phrases using a batch (AWS CLI)

• Detect sentiment using a batch (AWS CLI)

Detect the dominant language using a batch (AWS CLI)

The BatchDetectDominantLanguage operation determines the dominant language of each
document in a batch. For a list of the languages that Amazon Comprehend can detect, see
Dominant language. The following AWS CLI command calls the BatchDetectDominantLanguage
operation.

aws comprehend batch-detect-dominant-language \
 --endpoint endpoint \
 --region region \
 --cli-input-json file://path to input file/process.json

Real-time batch APIs 89

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchItemError.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectDominantLanguage.html

Amazon Comprehend Developer Guide

The following is the response from the BatchDetectDominantLanguage operation:

{
 "ResultList": [
 {
 "Index": 0,
 "Languages":[
 {
 "LanguageCode":"en",
 "Score": 0.99
 }
]
 },
 {
 "Index": 1
 "Languages":[
 {
 "LanguageCode":"en",
 "Score": 0.82
 }
]
 }
],
 "ErrorList": [
 {
 "Index": 2,
 "ErrorCode": "InternalServerException",
 "ErrorMessage": "Unexpected Server Error. Please try again."
 }
]
}

Detect entities using a batch (AWS CLI)

Use the BatchDetectEntities operation to find the entities present in a batch of documents.
For more information about entities, see Entities. The following AWS CLI command calls the
BatchDetectEntities operation.

aws comprehend batch-detect-entities \
 --endpoint endpoint \
 --region region \
 --cli-input-json file://path to input file/process.json

Real-time batch APIs 90

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectEntities.html

Amazon Comprehend Developer Guide

Detect key phrases using a batch (AWS CLI)

The BatchDetectKeyPhrases operation returns the key noun phrases in a batch of documents. The
following AWS CLI command calls the BatchDetectKeyNounPhrases operation.

aws comprehend batch-detect-key-phrases
 --endpoint endpoint
 --region region
 --cli-input-json file://path to input file/process.json

Detect sentiment using a batch (AWS CLI)

Detect the overall sentiment of a batch of documents using the BatchDetectSentiment operation.
The following AWS CLI command calls the BatchDetectSentiment operation.

aws comprehend batch-detect-sentiment \
 --endpoint endpoint \
 --region region \
 --cli-input-json file://path to input file/process.json

Batch processing with the AWS SDK for .NET

The following sample program shows how to use the BatchDetectEntities operation with the AWS
SDK for .NET. The response from the server contains a BatchDetectEntitiesItemResult object for
each document that was successfully processed. If there is an error processing a document, there
will be a record in the error list in the response. The example gets each of the documents with an
error and resends them.

The .NET example in this section uses the AWS SDK for .NET. You can use the AWS Toolkit for
Visual Studio to develop AWS applications using .NET. It includes helpful templates and the AWS
Explorer for deploying applications and managing services. For a .NET developer perspective of
AWS, see the AWS guide for .NET developers.

using System;
using System.Collections.Generic;
using Amazon.Comprehend;
using Amazon.Comprehend.Model;

namespace Comprehend
{
 class Program

Real-time batch APIs 91

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectKeyPhrases.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectEntitiesItemResult.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/welcome.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/welcome.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/welcome.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/welcome.html

Amazon Comprehend Developer Guide

 {
 // Helper method for printing properties
 static private void PrintEntity(Entity entity)
 {
 Console.WriteLine(" Text: {0}, Type: {1}, Score: {2}, BeginOffset: {3}
 EndOffset: {4}",
 entity.Text, entity.Type, entity.Score, entity.BeginOffset,
 entity.EndOffset);
 }

 static void Main(string[] args)
 {
 AmazonComprehendClient comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 List<String> textList = new List<String>()
 {
 { "I love Seattle" },
 { "Today is Sunday" },
 { "Tomorrow is Monday" },
 { "I love Seattle" }
 };

 // Call detectEntities API
 Console.WriteLine("Calling BatchDetectEntities");
 BatchDetectEntitiesRequest batchDetectEntitiesRequest = new
 BatchDetectEntitiesRequest()
 {
 TextList = textList,
 LanguageCode = "en"
 };
 BatchDetectEntitiesResponse batchDetectEntitiesResponse =
 comprehendClient.BatchDetectEntities(batchDetectEntitiesRequest);

 foreach (BatchDetectEntitiesItemResult item in
 batchDetectEntitiesResponse.ResultList)
 {
 Console.WriteLine("Entities in {0}:", textList[item.Index]);
 foreach (Entity entity in item.Entities)
 PrintEntity(entity);
 }

 // check if we need to retry failed requests
 if (batchDetectEntitiesResponse.ErrorList.Count != 0)

Real-time batch APIs 92

Amazon Comprehend Developer Guide

 {
 Console.WriteLine("Retrying Failed Requests");
 List<String> textToRetry = new List<String>();
 foreach(BatchItemError errorItem in
 batchDetectEntitiesResponse.ErrorList)
 textToRetry.Add(textList[errorItem.Index]);

 batchDetectEntitiesRequest = new BatchDetectEntitiesRequest()
 {
 TextList = textToRetry,
 LanguageCode = "en"
 };

 batchDetectEntitiesResponse =
 comprehendClient.BatchDetectEntities(batchDetectEntitiesRequest);

 foreach(BatchDetectEntitiesItemResult item in
 batchDetectEntitiesResponse.ResultList)
 {
 Console.WriteLine("Entities in {0}:", textList[item.Index]);
 foreach (Entity entity in item.Entities)
 PrintEntity(entity);
 }
 }
 Console.WriteLine("End of DetectEntities");
 }
 }
}

Async analysis jobs using the API

The following examples use the Amazon Comprehend asynchronous APIs to create and manage
analysis jobs, using the AWS CLI.

Topics

• Async analysis for Amazon Comprehend insights

• Async analysis for targeted sentiment

• Async analysis for event detection

• Async analysis for topic modeling

Async analysis jobs (API) 93

Amazon Comprehend Developer Guide

Async analysis for Amazon Comprehend insights

The following sections use the Amazon Comprehend API to run asynchronous operations to
analyze Amazon Comprehend insights.

Topics

• Prerequisites

• Starting an analysis job

• Monitoring analysis jobs

• Getting analysis results

Prerequisites

Documents must be in UTF-8-formatted text files. You can submit your documents in two formats.
The format you use depends on the type of documents you want to analyze, as described in the
following table.

Description Format

Each file contains one input document. This is
best for collections of large documents.

One document per file

The input is one or more files. Each line in
a file is considered a document. This is best
for short documents, such as social media
postings.

Each line must end with a line feed (LF, \n),
a carriage return (CR, \r), or both (CRLF, \r
\n). You can't use the UTF-8 line separator (u
+2028) to end a line.

One document per line

When you start an analysis job, you specify the S3 location for your input data. The URI must be
in the same AWS Region as the API endpoint that you are calling. The URI can point to a single file
or it can be the prefix for a collection of data files. For more information, see the InputDataConfig
data type.

Amazon Comprehend insights 94

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_InputDataConfig.html

Amazon Comprehend Developer Guide

You must grant Amazon Comprehend access to the Amazon S3 bucket that contains your
document collection and output files. For more information, see Role-based permissions required
for asynchronous operations.

Starting an analysis job

To submit an analysis job, use either the Amazon Comprehend console or the appropriate Start*
operation:

• StartDominantLanguageDetectionJob — Start a job to detect the dominant language in each
document in the collection. For more information about the dominant language in a document,
see Dominant language.

• StartEntitiesDetectionJob — Start a job to detect entities in each document in the collection. For
more information about entities, see Entities.

• StartKeyPhrasesDetectionJob — Start a job to detect key phrases in each document in the
collection. For more information about key phrases, see Key phrases.

• StartPiiEntitiesDetectionJob — Start a job to detect personally identifiable information (PII) in
each document in the collection. For more information about PII, see Detecting PII entities.

• StartSentimentDetectionJob — Start a job to detect the sentiment in each document in the
collection. For more information about sentiments, see Sentiment.

Monitoring analysis jobs

The Start* operation returns an ID that you can use to monitor the job's progress.

To monitor progress using the API, you use one of two operations, depending on whether you want
to monitor the progress of an individual job or multiple jobs.

To monitor the progress of an individual analysis job, use the Describe* operations. You provide
the job ID returned by the Start* operation. The response from the Describe* operation
contains the JobStatus field with the job's status.

To monitor the progress of multiple analysis jobs, use the List* operations. List* operations
return a list of jobs that you submitted to Amazon Comprehend. The response includes a
JobStatus field for each job that tells you the status of the job.

If the status field is set to COMPLETED or FAILED, job processing has completed.

Amazon Comprehend insights 95

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartPiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartSentimentDetectionJob.html

Amazon Comprehend Developer Guide

To get the status of individual jobs, use the Describe* operation for the analysis that you are
performing.

• DescribeDominantLanguageDetectionJob

• DescribeEntitiesDetectionJob

• DescribeKeyPhrasesDetectionJob

• DescribePiiEntitiesDetectionJob

• DescribeSentimentDetectionJob

To get the status of a multiple jobs, use the List* operation for the analysis that you are
performing.

• ListDominantLanguageDetectionJobs

• ListEntitiesDetectionJobs

• ListKeyPhrasesDetectionJobs

• ListPiiEntitiesDetectionJobs

• ListSentimentDetectionJobs

To restrict the results to jobs that match certain criteria, use the List* operations' Filter
parameter. You can filter on the job name, the job status, and the date and time that the job was
submitted. For more information, see the Filter parameter for each of the List* operations in
the Amazon Comprehend API reference.

Getting analysis results

After an analysis job has finished, use a Describe* operation to get the location of the results.
If the job status is COMPLETED, the response includes an OutputDataConfig field that contains
a field with the Amazon S3 location of the output file. The file, output.tar.gz, is a compressed
archive that contains the results of the analysis.

If the status of a job is FAILED, the response contains a Message field that describes the reason
that the analysis job didn't complete successfully.

To get the status of individual jobs, use the appropriate Describe* operation:

• DescribeDominantLanguageDetectionJob

Amazon Comprehend insights 96

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribePiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListDominantLanguageDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListEntitiesDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListKeyPhrasesDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListPiiEntitiesDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListSentimentDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDominantLanguageDetectionJob.html

Amazon Comprehend Developer Guide

• DescribeEntitiesDetectionJob

• DescribeKeyPhrasesDetectionJob

• DescribeSentimentDetectionJob

The results are returned in a single file, with one JSON structure for each document. Each response
file also includes error messages for any job with the status field set to FAILED.

Each of the following sections shows examples of output for the two input formats.

Getting dominant language detection results

The following is an example of an output file from an analysis that detected the dominant
language. The format of the input is one document per line. For more information, see the
DetectDominantLanguage operation.

{"File": "0_doc", "Languages": [{"LanguageCode": "en", "Score": 0.9514502286911011},
 {"LanguageCode": "de", "Score": 0.02374090999364853}, {"LanguageCode": "nl", "Score":
 0.003208699868991971}, "Line": 0}
{"File": "1_doc", "Languages": [{"LanguageCode": "en", "Score": 0.9822712540626526},
 {"LanguageCode": "de", "Score": 0.002621392020955682}, {"LanguageCode": "es", "Score":
 0.002386554144322872}], "Line": 1}

The following is an example of output from an analysis where the format of the input is one
document per file:

{"File": "small_doc", "Languages": [{"LanguageCode": "en", "Score":
 0.9728053212165833}, {"LanguageCode": "de", "Score": 0.007670710328966379},
 {"LanguageCode": "es", "Score": 0.0028472368139773607}]}
{"File": "huge_doc", "Languages": [{"LanguageCode": "en", "Score": 0.984955906867981},
 {"LanguageCode": "de", "Score": 0.0026436643674969673}, {"LanguageCode": "fr",
 "Score": 0.0014206881169229746}]}

Getting entity detection results

The following is an example of an output file from an analysis that detected entities in documents.
The format of the input is one document per line. For more information, see the DetectEntities
operation. The output contains two error messages, one for a document that is too long and one
for a document that isn't in UTF-8 format.

Amazon Comprehend insights 97

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectDominantLanguage.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html

Amazon Comprehend Developer Guide

{"File": "50_docs", "Line": 0, "Entities": [{"BeginOffset": 0, "EndOffset": 22,
 "Score": 0.9763959646224976, "Text": "Cluj-NapocaCluj-Napoca", "Type": "LOCATION"}"]}
{"File": "50_docs", "Line": 1, "Entities": [{"BeginOffset": 11, "EndOffset": 15,
 "Score": 0.9615424871444702, "Text": "Maat", "Type": "PERSON"}}]}
{"File": "50_docs", "Line": 2, "ErrorCode": "DOCUMENT_SIZE_EXCEEDED", "ErrorMessage":
 "Document size exceeds maximum size limit 102400 bytes."}
{"File": "50_docs", "Line": 3, "ErrorCode": "UNSUPPORTED_ENCODING", "ErrorMessage":
 "Document is not in UTF-8 format and all subsequent lines are ignored."}

The following is an example of output from an analysis where the format of the input is one
document per file. The output contains two error messages, one for a document that is too long
and one for a document that isn't in UTF-8 format.

{"File": "non_utf8.txt", "ErrorCode": "UNSUPPORTED_ENCODING", "ErrorMessage": "Document
 is not in UTF-8 format and all subsequent line are ignored."}
{"File": "small_doc", "Entities": [{"BeginOffset": 0, "EndOffset": 4, "Score":
 0.645766019821167, "Text": "Maat", "Type": "PERSON"}]}
{"File": "huge_doc", "ErrorCode": "DOCUMENT_SIZE_EXCEEDED", "ErrorMessage": "Document
 size exceeds size limit 102400 bytes."}

Getting key phrase detection results

The following is an example of an output file from an analysis that detected key phrases in a
document. The format of the input is one document per line. For more information, see the
DetectKeyPhrases operation.

{"File": "50_docs", "KeyPhrases": [{"BeginOffset": 0, "EndOffset": 22, "Score":
 0.8948641419410706, "Text": "Cluj-NapocaCluj-Napoca"}, {"BeginOffset": 45,
 "EndOffset": 49, "Score": 0.9989854693412781, "Text": "Cluj"}], "Line": 0}

The following is an example of the output from an analysis where the format of the input is one
document per file.

{"File": "1_doc", "KeyPhrases": [{"BeginOffset": 0, "EndOffset": 22, "Score":
 0.8948641419410706, "Text": "Cluj-NapocaCluj-Napoca"}, {"BeginOffset": 45,
 "EndOffset": 49, "Score": 0.9989854693412781, "Text": "Cluj"}]}

Getting personally identifiable information (PII) detection results

The following is an example an output file from an analysis job that detected PII entities in
documents. The format of the input is one document per line.

Amazon Comprehend insights 98

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectKeyPhrases.html

Amazon Comprehend Developer Guide

{"Entities":[{"Type":"NAME","BeginOffset":40,"EndOffset":69,"Score":0.999995},
{"Type":"ADDRESS","BeginOffset":247,"EndOffset":253,"Score":0.998828},
{"Type":"BANK_ACCOUNT_NUMBER","BeginOffset":406,"EndOffset":411,"Score":0.693283}],"File":"doc.txt","Line":0}
{"Entities":[{"Type":"SSN","BeginOffset":1114,"EndOffset":1124,"Score":0.999999},
{"Type":"EMAIL","BeginOffset":3742,"EndOffset":3775,"Score":0.999993},
{"Type":"PIN","BeginOffset":4098,"EndOffset":4102,"Score":0.999995}],"File":"doc.txt","Line":1}

The following is an example of output from an analysis where the format of the input is one
document per file.

{"Entities":[{"Type":"NAME","BeginOffset":40,"EndOffset":69,"Score":0.999995},
{"Type":"ADDRESS","BeginOffset":247,"EndOffset":253,"Score":0.998828},
{"Type":"BANK_ROUTING","BeginOffset":279,"EndOffset":289,"Score":0.999999}],"File":"doc.txt"}

Getting sentiment detection results

The following is an example of an output file from an analysis that detected the sentiment
expressed in a document. It includes an error message because one document is too long. The
format of the input is one document per line. For more information, see the DetectSentiment
operation.

{"File": "50_docs", "Line": 0, "Sentiment": "NEUTRAL", "SentimentScore": {"Mixed":
 0.002734508365392685, "Negative": 0.008935936726629734, "Neutral": 0.9841893315315247,
 "Positive": 0.004140198230743408}}
{"File": "50_docs", "Line": 1, "ErrorCode": "DOCUMENT_SIZE_EXCEEDED", "ErrorMessage":
 "Document size is exceeded maximum size limit 5120 bytes."}
{"File": "50_docs", "Line": 2, "Sentiment": "NEUTRAL", "SentimentScore":
 {"Mixed": 0.0023119584657251835, "Negative": 0.0029857370536774397, "Neutral":
 0.9866572022438049, "Positive": 0.008045154623687267}}

The following is an example of the output from an analysis where the format of the input is one
document per file.

{"File": "small_doc", "Sentiment": "NEUTRAL", "SentimentScore": {"Mixed":
 0.0023450672160834074, "Negative": 0.0009663937962614, "Neutral": 0.9795311689376831,
 "Positive": 0.017157377675175667}}
{"File": "huge_doc", "ErrorCode": "DOCUMENT_SIZE_EXCEEDED", "ErrorMessage": "Document
 size is exceeds the limit of 5120 bytes."}

Amazon Comprehend insights 99

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectSentiment.html

Amazon Comprehend Developer Guide

Async analysis for targeted sentiment

For information about real-time analysis for Targeted sentiment, see the section called “Real-time
analysis for targeted sentiment”.

Amazon Comprehend provides the following API operations to start and manage asynchronous
targeted sentiment analysis:

• StartTargetedSentimentDetectionJob – Starts an asynchronous targeted sentiment detection job
for a collection of documents.

• ListTargetedSentimentDetectionJobs – Returns the list of targeted sentiment detection jobs that
you have submitted.

• DescribeTargetedSentimentDetectionJob – Gets the properties (including status) associated with
the specified targeted sentiment detection job.

• StopTargetedSentimentDetectionJob – Stops the specified in-progress targeted sentiment job.

Topics

• Before you start

• Analyzing targeted sentiment using the AWS CLI

Before you start

Before you start, make sure that you have:

• Input and output buckets—Identify the Amazon S3 buckets that you want to use for input and
output. The buckets must be in the same Region as the API that you are calling.

• IAM service role—You must have an IAM service role with permission to access your input and
output buckets. For more information, see Role-based permissions required for asynchronous
operations.

Analyzing targeted sentiment using the AWS CLI

The following example demonstrates using the StartTargetedSentimentDetectionJob
operation with the AWS CLI. This example specifies the language of the input text.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

Targeted sentiment 100

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListTargetedSentimentDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopTargetedSentimentDetectionJob.html

Amazon Comprehend Developer Guide

aws comprehend start-targeted-sentiment-detection-job \
 --job-name "job name" \
 --language-code "en" \
 --cli-input-json file://path to JSON input file

For the cli-input-json parameter you supply the path to a JSON file that contains the request
data, as shown in the following example.

{
 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_FILE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role"
}

If the request to start the job was successful, you will receive the following response:

{
 "JobStatus": "SUBMITTED",
 "JobArn": "job ARN"
 "JobId": "job ID"
}

Async analysis for event detection

Topics

• Before you start

• Detect events using the AWS CLI

• List events using the AWS CLI

• Describe events using the AWS CLI

• Get events detection results

To detect events in a document set, use the StartEventsDetectionJob to start an asynchronous job.

Event detection 101

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEventsDetectionJob.html

Amazon Comprehend Developer Guide

Before you start

Before you start, make sure that you have:

• Input and output buckets—Identify the Amazon S3 buckets that you want to use for input and
output. The buckets must be in the same Region as the API that you are calling.

• IAM service role—You must have an IAM service role with permission to access your input and
output buckets. For more information, see Role-based permissions required for asynchronous
operations.

Detect events using the AWS CLI

The following example demonstrates using the StartEventsDetectionJob operation with the AWS
CLI

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend start-events-detection-job \
 --region region \
 --job-name job name \
 --cli-input-json file://path to JSON input file

For the cli-input-json parameter you supply the path to a JSON file that contains the request
data, as shown in the following example.

{
 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role"
 "LanguageCode": "en",
 "TargetEventTypes": [
 "BANKRUPTCY",
 "EMPLOYMENT",
 "CORPORATE_ACQUISITION",

Event detection 102

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEventsDetectionJob.html

Amazon Comprehend Developer Guide

 "INVESTMENT_GENERAL",
 "CORPORATE_MERGER",
 "IPO",
 "RIGHTS_ISSUE",
 "SECONDARY_OFFERING",
 "SHELF_OFFERING",
 "TENDER_OFFERING",
 "STOCK_SPLIT"
]
}

If the request to start the events detection job was successful, you will receive the following
response:

{
 "JobStatus": "SUBMITTED",
 "JobId": "job ID"
}

List events using the AWS CLI

Use the ListEventsDetectionJobs operation to see a list of the events detection jobs that you have
submitted. The list includes information about the input and output locations that you used and
the status of each of the detection jobs. The example is formatted for Unix, Linux, and macOS. For
Windows, replace the backslash (\) Unix continuation character at the end of each line with a caret
(^).

aws comprehend list-events-detection-jobs --region region

You will get JSON similar to the following in response:

{
 "EventsDetectionJobPropertiesList": [
 {
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role",
 "EndTime": timestamp,
 "InputDataConfig": {
 "InputFormat": "ONE_DOC_PER_LINE",
 "S3Uri": "s3://input bucket/input path"
 },
 "JobId": "job ID",

Event detection 103

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListEventsDetectionJobs.html

Amazon Comprehend Developer Guide

 "JobName": "job name",
 "JobStatus": "COMPLETED",
 "LanguageCode": "en",
 "Message": "message",
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/ouput path"
 },
 "SubmitTime": timestamp,
 "TargetEventTypes": [
 "BANKRUPTCY",
 "EMPLOYMENT",
 "CORPORATE_ACQUISITION",
 "INVESTMENT_GENERAL",
 "CORPORATE_MERGER",
 "IPO",
 "RIGHTS_ISSUE",
 "SECONDARY_OFFERING",
 "SHELF_OFFERING",
 "TENDER_OFFERING",
 "STOCK_SPLIT"
]
 }
],
 "NextToken": "next token"
}

Describe events using the AWS CLI

You can use the DescribeEventsDetectionJob operation to get the status of an existing job. The
example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend describe-events-detection-job \
 --region region \
 --job-id job ID

You will get the following JSON in response:

{
 "EventsDetectionJobProperties": {
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role",

Event detection 104

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEventsDetectionJob.html

Amazon Comprehend Developer Guide

 "EndTime": timestamp,
 "InputDataConfig": {
 "InputFormat": "ONE_DOC_PER_LINE",
 "S3Uri": "S3Uri": "s3://input bucket/input path"
 },
 "JobId": "job ID",
 "JobName": "job name",
 "JobStatus": "job status",
 "LanguageCode": "en",
 "Message": "message",
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "SubmitTime": timestamp,
 "TargetEventTypes": [
 "BANKRUPTCY",
 "EMPLOYMENT",
 "CORPORATE_ACQUISITION",
 "INVESTMENT_GENERAL",
 "CORPORATE_MERGER",
 "IPO",
 "RIGHTS_ISSUE",
 "SECONDARY_OFFERING",
 "SHELF_OFFERING",
 "TENDER_OFFERING",
 "STOCK_SPLIT"
]
 }
}

Get events detection results

The following is an example an output file from an analysis job that detected events in documents.
The format of the input is one document per line.

{"Entities": [{"Mentions": [{"BeginOffset": 12, "EndOffset": 27, "GroupScore":
 1.0, "Score": 0.916355, "Text": "over a year ago", "Type": "DATE"}]}, {"Mentions":
 [{"BeginOffset": 33, "EndOffset": 39, "GroupScore": 1.0, "Score": 0.996603,
 "Text": "Amazon", "Type": "ORGANIZATION"}]}, {"Mentions": [{"BeginOffset":
 66, "EndOffset": 77, "GroupScore": 1.0, "Score": 0.999283, "Text": "Whole
 Foods", "Type": "ORGANIZATION"}]}], "Events": [{"Arguments": [{"EntityIndex":
 2, "Role": "INVESTEE", "Score": 0.999283}, {"EntityIndex": 0, "Role": "DATE",
 "Score": 0.916355}, {"EntityIndex": 1, "Role": "INVESTOR", "Score": 0.996603}],

Event detection 105

Amazon Comprehend Developer Guide

 "Triggers": [{"BeginOffset": 373, "EndOffset": 380, "GroupScore": 0.999984,
 "Score": 0.999955, "Text": "acquire", "Type": "CORPORATE_ACQUISITION"}], "Type":
 "CORPORATE_ACQUISITION"}, {"Arguments": [{"EntityIndex": 2, "Role": "PARTICIPANT",
 "Score": 0.999283}], "Triggers": [{"BeginOffset": 115, "EndOffset": 123, "GroupScore":
 1.0, "Score": 0.999967, "Text": "combined", "Type": "CORPORATE_MERGER"}], "Type":
 "CORPORATE_MERGER"}], "File": "doc.txt", "Line": 0}

For more information about events output file structure and supported event types, see Events.

Async analysis for topic modeling

To determine the topics in a document set, use the StartTopicsDetectionJob to start an
asynchronous job. You can monitor topics in documents written in English or Spanish.

Topics

• Before you start

• Using the AWS Command Line Interface

• Using the SDK for Python or AWS SDK for .NET

Before you start

Before you start, make sure that you have:

• Input and output buckets—Identify the Amazon S3 buckets that you want to use for input and
output. The buckets must be in the same Region as the API that you are calling.

• IAM service role—You must have an IAM service role with permission to access your input and
output buckets. For more information, see Role-based permissions required for asynchronous
operations.

Using the AWS Command Line Interface

The following example demonstrates using the StartTopicsDetectionJob operation with the
AWS CLI

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend start-topics-detection-job \

Topic modeling 106

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTopicsDetectionJob.html

Amazon Comprehend Developer Guide

 --number-of-topics topics to return \
 --job-name "job name" \
 --region region \
 --cli-input-json file://path to JSON input file

For the cli-input-json parameter you supply the path to a JSON file that contains the request
data, as shown in the following example.

{
 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_FILE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role"
}

If the request to start the topic detection job was successful, you will receive the following
response:

{
 "JobStatus": "SUBMITTED",
 "JobId": "job ID"
}

Use the ListTopicsDetectionJobs operation to see a list of the topic detection jobs that you have
submitted. The list includes information about the input and output locations that you used and
the status of each of the detection jobs. The example is formatted for Unix, Linux, and macOS. For
Windows, replace the backslash (\) Unix continuation character at the end of each line with a caret
(^).

aws comprehend list-topics-detection-jobs \-- region

You will get JSON similar to the following in response:

{
 "TopicsDetectionJobPropertiesList": [
 {

Topic modeling 107

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListTopicsDetectionJobs.html

Amazon Comprehend Developer Guide

 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "NumberOfTopics": topics to return,
 "JobId": "job ID",
 "JobStatus": "COMPLETED",
 "JobName": "job name",
 "SubmitTime": timestamp,
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "EndTime": timestamp
 },
 {
 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "NumberOfTopics": topics to return,
 "JobId": "job ID",
 "JobStatus": "RUNNING",
 "JobName": "job name",
 "SubmitTime": timestamp,
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 }
 }
]
}

You can use the DescribeTopicsDetectionJob operation to get the status of an existing job. The
example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend describe-topics-detection-job --job-id job ID

You will get the following JSON in response:

{
 "TopicsDetectionJobProperties": {
 "InputDataConfig": {

Topic modeling 108

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeTopicsDetectionJob.html

Amazon Comprehend Developer Guide

 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "NumberOfTopics": topics to return,
 "JobId": "job ID",
 "JobStatus": "COMPLETED",
 "JobName": "job name",
 "SubmitTime": timestamp,
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/ouput path"
 },
 "EndTime": timestamp
 }
}

Using the SDK for Python or AWS SDK for .NET

For SDK examples of how to start a topic modeling job, see Start an Amazon Comprehend topic
modeling job using an AWS SDK.

Topic modeling 109

Amazon Comprehend Developer Guide

Trust and safety

Users generate large amounts of text content through online applications (such as peer-to-
peer chats and forum discussions), comments posted on websites, and through generative AI
applications (input prompts and outputs from generative AI models). The Amazon Comprehend
Trust and Safety features can help you moderate this content, to provide a safe and inclusive
environment for your users.

Benefits of using the Amazon Comprehend trust and safety features include:

• Faster moderation: Quickly and accurately moderate large volume of text to keep your online
platforms free from inappropriate content.

• Customizable: Customize the moderation thresholds in API responses to suit your application
needs.

• Easy to use: Configure the trust and safety features through LangChain integration or using the
AWS CLI or SDKs.

Amazon Comprehend trust and safety address the following aspects of content moderation:

• Toxicity detection – Detect content that may be harmful, offensive, or inappropriate. Examples
include hate speech, threats, or abuse.

• Intent classification – Detect content that has explicit or implicit malicious intent. Examples
include discriminatory or illegal content, or content that expresses or requests advice on medical,
legal, political, controversial, personal or financial subjects.

• Privacy protection – Users can inadvertently provide content that may reveal personally
identifiable information (PII). Amazon Comprehend PII provides the ability to detect and redact
PII.

Topics

• Toxicity detection

• Prompt safety classification

• PII detection and redaction

110

Amazon Comprehend Developer Guide

Toxicity detection

Amazon Comprehend toxicity detection provides real-time detection of toxic content in text-
based interactions. You can use toxicity detection to moderate peer-to-peer conversations in online
platforms or to monitor generative AI inputs and outputs.

Toxicity detection detects the following categories of offensive content:

GRAPHIC

Graphic speech uses visually descriptive, detailed, and unpleasantly vivid imagery. Such
language is often made verbose to amplify an insult, discomfort or harm to the recipient.

HARASSMENT_OR_ABUSE

Speech that imposes disruptive power dynamics between the speaker and hearer, regardless of
intent, seeks to affect the psychological well-being of the recipient, or objectifies a person.

HATE_SPEECH

Speech that criticizes, insults, denounces or dehumanizes a person or a group on the basis of an
identity, be it race, ethnicity, gender identity, religion, sexual orientation, ability, national origin,
or another identity-group.

INSULT

Speech that includes demeaning, humiliating, mocking, insulting, or belittling language.

PROFANITY

Speech that contains words, phrases or acronyms that are impolite, vulgar, or offensive is
considered as profane.

SEXUAL

Speech that indicates sexual interest, activity or arousal by using direct or indirect references to
body parts or physical traits or sex .

VIOLENCE_OR_THREAT

Speech that includes threats which seek to inflict pain, injury or hostility towards a person or
group.

TOXICITY

Speech that contains words, phrases or acronyms that might be considered toxic in nature
across any of the above categories.

Toxicity detection 111

Amazon Comprehend Developer Guide

Detecting toxic content using the API

To detect toxic content in text, use the synchronous DetectToxicContent operation. This operation
performs analysis on a list of text strings that you provide as input. The API response contains a
results list that matches the size of the input list.

Currently, toxic content detection supports only the English language. For input text, you can
provide a list of up to 10 text strings. Each string has a maximum size of 1KB.

The toxic content detection returns a list of analysis results, one entry in the list for each input
string. An entry contains a list of toxic content types identified in the text string, along with a
confidence score for each content type. The entry also includes a toxicity score for the string.

The following examples show how to use the DetectToxicContent operation using the AWS CLI
and Python.

AWS CLI

You can detect toxic content using the following command in the AWS CLI:

aws comprehend detect-toxic-content --language-code en /
 --text-segments "[{\"Text\":\"You are so obtuse\"}]"

The AWS CLI responds with the following result. The text segment receives a high confidence
score in the INSULT category, with a resulting high toxicity score:

{
 "ResultList": [
 {
 "Labels": [
 {
 "Name": "PROFANITY",
 "Score": 0.0006000000284984708
 },
 {
 "Name": "HATE_SPEECH",
 "Score": 0.00930000003427267
 },
 {
 "Name": "INSULT",
 "Score": 0.9204999804496765

Detecting toxic content using the API 112

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectToxicContent.html

Amazon Comprehend Developer Guide

 },
 {
 "Name": "GRAPHIC",
 "Score": 9.999999747378752e-05
 },
 {
 "Name": "HARASSMENT_OR_ABUSE",
 "Score": 0.0052999998442828655
 },
 {
 "Name": "SEXUAL",
 "Score": 0.01549999974668026
 },
 {
 "Name": "VIOLENCE_OR_THREAT",
 "Score": 0.007799999788403511
 }
],
 "Toxicity": 0.7192999720573425
 }
]
}

You can input up to 10 text strings, using the following format for the text-segments
parameter:

 --text-segments "[{\"Text\":\"text string 1\"},
 {\"Text\":\"text string2\"},
 {\"Text\":\"text string3\"}]"

The AWS CLI responds with the following results:

{
 "ResultList": [
 {
 "Labels": [(truncated)],
 "Toxicity": 0.3192999720573425
 },
 {
 "Labels": [(truncated)],
 "Toxicity": 0.1192999720573425

Detecting toxic content using the API 113

Amazon Comprehend Developer Guide

 },
 {
 "Labels": [(truncated)],
 "Toxicity": 0.0192999720573425
 }
]
}

Python (Boto)

The following example demonstrates how to detect toxic content using Python:

import boto3
client = boto3.client(
 service_name='comprehend',
 region_name=region) # For example, 'us-west-2'

response = client.detect_toxic_content(
 LanguageCode='en',
 TextSegments=[{'Text': 'You are so obtuse'}]
)
print("Response: %s\n" % response)

Prompt safety classification

Amazon Comprehend provides a pre-trained binary classifier to classify plain text input prompts
for large language models (LLM) or other generative AI models.

The prompt safety classifier analyses the input prompt and assigns a confidence score to whether
the prompt is safe or unsafe.

An unsafe prompt is an input prompt that express malicious intent such as requesting personal or
private information, generating offensive or illegal content, or requesting advice on medical, legal,
political, or financial subjects.

Prompt safety classification using the API

To run prompt safety classification for a text string, use the synchronous ClassifyDocument
operation. For input, you provide an English plain text string. The string has a maximum size of 10
KB.

Prompt safety classification 114

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

The response includes two classes (SAFE and UNSAFE), along with a confidence score for each class.
The value range of the score is zero to one, where one is the highest confidence.

The following examples show how to use prompt safety classification with the AWS CLI and
Python.

AWS CLI

The following example demonstrates how to use the prompt safety classifier with the AWS CLI:

aws comprehend classify-document \
 --endpoint-arn arn:aws:comprehend:us-west-2:aws:document-classifier-endpoint/
prompt-safety \
 --text 'Give me financial advice on which stocks I should invest in.'

The AWS CLI responds with the following output:

{
 "Classes": [
 {
 "Score": 0.6312999725341797,
 "Name": "UNSAFE_PROMPT"
 },
 {
 "Score": 0.3686999976634979,
 "Name": "SAFE_PROMPT"
 }
]
}

Note

When you use the classify-document command, for the --endpoint-arn
parameter, you must pass an ARN that uses the same AWS Region as your AWS CLI
configuration. To configure the AWS CLI, run the aws configure command. In this
example, the endpoint ARN has the Region code us-west-2. You can use the prompt
safety classifier in any of the following Regions:

• us-east-1

• us-west-2

• eu-west-1

Prompt safety classification using the API 115

Amazon Comprehend Developer Guide

• ap-southeast-2

Python (Boto)

The following example demonstrates how to use the prompt safety classifier with Python:

import boto3
client = boto3.client(service_name='comprehend', region_name='us-west-2')

response = client.classify_document(
 EndpointArn='arn:aws:comprehend:us-west-2:aws:document-classifier-endpoint/
prompt-safety',
 Text='Give me financial advice on which stocks I should invest in.'
)
print("Response: %s\n" % response)

Note

When you use the classify_document method, for the EndpointArn argument,
you must pass an ARN that uses the same AWS Region as your boto3 SDK client. In this
example, the client and endpoint ARN both use us-west-2. You can use the prompt
safety classifier in any of the following Regions:

• us-east-1

• us-west-2

• eu-west-1

• ap-southeast-2

PII detection and redaction

You can use the Amazon Comprehend console or APIs to detect personally identifiable information
(PII) in English or Spanish text documents. PII is a textual reference to personal data that can
identify an individual. PII examples include addresses, bank account numbers, and phone numbers.

You can detect or redact the PII entities in the text. To detect PII entities, you can use real-time
analysis or an asynchronous batch job. To redact the PII entities, you must use an asynchronous
batch job.

PII detection and redaction 116

Amazon Comprehend Developer Guide

For more information, see Personally identifiable information (PII) .

PII detection and redaction 117

Amazon Comprehend Developer Guide

Personally identifiable information (PII)

You can use the Amazon Comprehend console or APIs to detect personally identifiable information
(PII) in English or Spanish text documents. PII is a textual reference to personal data that could be
used to identify an individual. PII examples include addresses, bank account numbers, and phone
numbers.

With PII detection, you have the choice of locating the PII entities or redacting the PII entities in the
text. To locate PII entities, you can use real-time analysis or an asynchronous batch job. To redact
the PII entities, you must use an asynchronous batch job.

You can use Amazon S3 Object Lambda Access Points for personally identifiable information (PII)
to control the retrieval of documents from your Amazon S3 bucket. You can control access to
documents that contain PII and redact personally identifiable information from the documents. For
more information, see Using Amazon S3 object Lambda access points for personally identifiable
information (PII).

Topics

• Detecting PII entities

• Labeling PII entities

• PII real-time analysis (Console)

• PII asynchronous analysis jobs (Console)

• PII real-time analysis (API)

• PII asynchronous analysis jobs (API)

Detecting PII entities

You can use Amazon Comprehend to detect PII entities in English or Spanish text documents. A PII
entity is a specific type of personally identifiable information (PII). Use PII detection to locate the
PII entities or redact the PII entities in the text.

Topics

• Locate PII entities

• Redact PII entities

• PII universal entity types

Detecting PII entities 118

Amazon Comprehend Developer Guide

• Country-specific PII entity types

Locate PII entities

To locate the PII entities in your text, you can quickly analyze a single document using real-time
analysis.You also can start an asynchronous batch job on a collection of documents.

You can use the console or the API for real-time analysis of a single document. Your input text can
include up to 100 kilobytes of UTF-8 encoded characters.

For example, you can submit the following input text to locate the PII entities:

Hello Paulo Santos. The latest statement for your credit card account 1111-0000-1111-0000 was
mailed to 123 Any Street, Seattle, WA 98109.

The output includes the information that "Paul Santos" has the type NAME,
"1111-0000-1111-0000" has the type CREDIT_DEBIT_NUMBER, and "123 Any Street, Seattle, WA
98109" has the type ADDRESS.

Amazon Comprehend returns a list of detected PII entities, with the following information for each
PII entity:

• A score that estimates the probability that the detected text span is the detected entity type.

• The PII entity type.

• The location of the PII entity in the document, specified as character offsets for the start and the
end of the entity.

For example, the input text mentioned previously produces the following response:

{
 "Entities": [
 {
 "Score": 0.9999669790267944,
 "Type": "NAME",
 "BeginOffset": 6,
 "EndOffset": 18
 },
 {
 "Score": 0.8905550241470337,
 "Type": "CREDIT_DEBIT_NUMBER",

Locate PII entities 119

Amazon Comprehend Developer Guide

 "BeginOffset": 69,
 "EndOffset": 88
 },
 {
 "Score": 0.9999889731407166,
 "Type": "ADDRESS",
 "BeginOffset": 103,
 "EndOffset": 138
 }
]
}

Redact PII entities

To redact the PII entities in your text, you can use the console or the API to start an asynchronous
batch job. Amazon Comprehend returns a copy of the input text with redactions for each PII entity.

For example, you can submit the following input text to redact the PII entities:

Hello Paulo Santos. The latest statement for your credit card account 1111-0000-1111-0000 was
mailed to 123 Any Street, Seattle, WA 98109.

The output file includes the following text:

Hello ***** ******. The latest statement for your credit card account ******************* was mailed to ***
*** ******* ******** ** *****.

PII universal entity types

Some PII entity types are universal (not specific to individual countries), such as email addresses
and credit card numbers. Amazon Comprehend detects the following types of universal PII entities:

ADDRESS

A physical address, such as "100 Main Street, Anytown, USA" or "Suite #12, Building 123".
An address can include information such as the street, building, location, city, state, country,
county, zip code, precinct, and neighborhood.

AGE

An individual's age, including the quantity and unit of time. For example, in the phrase "I am 40
years old," Amazon Comprehend recognizes "40 years" as an age.

Redact PII entities 120

Amazon Comprehend Developer Guide

AWS_ACCESS_KEY

A unique identifier that's associated with a secret access key; you use the access key ID and
secret access key to sign programmatic AWS requests cryptographically.

AWS_SECRET_KEY

A unique identifier that's associated with an access key. You use the access key ID and secret
access key to sign programmatic AWS requests cryptographically.

CREDIT_DEBIT_CVV

A three-digit card verification code (CVV) that is present on VISA, MasterCard, and Discover
credit and debit cards. For American Express credit or debit cards, the CVV is a four-digit
numeric code.

CREDIT_DEBIT_EXPIRY

The expiration date for a credit or debit card. This number is usually four digits long and is often
formatted as month/year or MM/YY. Amazon Comprehend recognizes expiration dates such as
01/21, 01/2021, and Jan 2021.

CREDIT_DEBIT_NUMBER

The number for a credit or debit card. These numbers can vary from 13 to 16 digits in length.
However, Amazon Comprehend also recognizes credit or debit card numbers when only the last
four digits are present.

DATE_TIME

A date can include a year, month, day, day of week, or time of day. For example, Amazon
Comprehend recognizes "January 19, 2020" or "11 am" as dates. Amazon Comprehend will
recognize partial dates, date ranges, and date intervals. It will also recognize decades, such as
"the 1990s".

DRIVER_ID

The number assigned to a driver's license, which is an official document permitting an individual
to operate one or more motorized vehicles on a public road. A driver's license number consists
of alphanumeric characters.

EMAIL

An email address, such as marymajor@email.com.

PII universal entity types 121

Amazon Comprehend Developer Guide

INTERNATIONAL_BANK_ACCOUNT_NUMBER

An International Bank Account Number has specific formats in each country. See
www.iban.com/structure.

IP_ADDRESS

An IPv4 address, such as 198.51.100.0.

LICENSE_PLATE

A license plate for a vehicle is issued by the state or country where the vehicle is registered. The
format for passenger vehicles is typically five to eight digits, consisting of upper-case letters
and numbers. The format varies depending on the location of the issuing state or country.

MAC_ADDRESS

A media access control (MAC) address is a unique identifier assigned to a network interface
controller (NIC).

NAME

An individual's name. This entity type does not include titles, such as Dr., Mr., Mrs., or Miss.
Amazon Comprehend does not apply this entity type to names that are part of organizations
or addresses. For example, Amazon Comprehend recognizes the "John Doe Organization" as an
organization, and it recognizes "Jane Doe Street" as an address.

PASSWORD

An alphanumeric string that is used as a password, such as "*very20special#pass*".

PHONE

A phone number. This entity type also includes fax and pager numbers.

PIN

A four-digit personal identification number (PIN) with which you can access your bank account.

SWIFT_CODE

A SWIFT code is a standard format of Bank Identifier Code (BIC) used to specify a particular
bank or branch. Banks use these codes for money transfers such as international wire transfers.

SWIFT codes consist of eight or 11 characters. The 11-digit codes refer to specific branches,
while eight-digit codes (or 11-digit codes ending in 'XXX') refer to the head or primary office.

PII universal entity types 122

https://www.iban.com/structure

Amazon Comprehend Developer Guide

URL

A web address, such as www.example.com.

USERNAME

A user name that identifies an account, such as a login name, screen name, nick name, or
handle.

VEHICLE_IDENTIFICATION_NUMBER

A Vehicle Identification Number (VIN) uniquely identifies a vehicle. VIN content and format are
defined in the ISO 3779 specification. Each country has specific codes and formats for VINs.

Country-specific PII entity types

Some PII entity types are country-specific, such as passport numbers and other government-issued
ID numbers. Amazon Comprehend detects the following types of country-specific PII entities:

CA_HEALTH_NUMBER

A Canadian Health Service Number is a 10-digit unique identifier, required for individuals to
access healthcare benefits.

CA_SOCIAL_INSURANCE_NUMBER

A Canadian Social Insurance Number (SIN) is a nine-digit unique identifier, required for
individuals to access government programs and benefits.

The SIN is formatted as three groups of three digits, such as 123-456-789. A SIN can be
validated through a simple check-digit process called the Luhn algorithm.

IN_AADHAAR

An Indian Aadhaar is a 12-digit unique identification number issued by the Indian government
to the residents of India. The Aadhaar format has a space or hyphen after the fourth and eighth
digit.

IN_NREGA

An Indian National Rural Employment Guarantee Act (NREGA) number consists of two letters
followed by 14 numbers.

Country-specific PII entity types 123

https://www.wikipedia.org/wiki/Luhn_algorithm

Amazon Comprehend Developer Guide

IN_PERMANENT_ACCOUNT_NUMBER

An Indian Permanent Account Number is a 10-digit unique alphanumeric number issued by the
Income Tax Department.

IN_VOTER_NUMBER

An Indian Voter ID consists of three letters followed by seven numbers.

UK_NATIONAL_HEALTH_SERVICE_NUMBER

A UK National Health Service Number is a 10-17 digit number, such as 485 777 3456. The
current system formats the 10-digit number with spaces after the third and sixth digits. The
final digit is an error-detecting checksum.

The 17-digit number format has spaces after the 10th and 13th digits.

UK_NATIONAL_INSURANCE_NUMBER

A UK National Insurance Number (NINO) provides individuals with access to National Insurance
(social security) benefits. It is also used for some purposes in the UK tax system.

The number is nine digits long and starts with two letters, followed by six numbers and one
letter. A NINO can be formatted with a space or a dash after the two letters and after the
second, forth, and sixth digits.

UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER

A UK Unique Taxpayer Reference (UTR) is a 10-digit number that identifies a taxpayer or a
business.

BANK_ACCOUNT_NUMBER

A US bank account number, which is typically 10 to 12 digits long. Amazon Comprehend also
recognizes bank account numbers when only the last four digits are present.

BANK_ROUTING

A US bank account routing number. These are typically nine digits long, but Amazon
Comprehend also recognizes routing numbers when only the last four digits are present.

PASSPORT_NUMBER

A US passport number. Passport numbers range from six to nine alphanumeric characters.

Country-specific PII entity types 124

Amazon Comprehend Developer Guide

US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER

A US Individual Taxpayer Identification Number (ITIN) is a nine-digit number that starts with a
"9" and contain a "7" or "8" as the fourth digit. An ITIN can be formatted with a space or a dash
after the third and forth digits.

SSN

A US Social Security Number (SSN) is a nine-digit number that is issued to US citizens,
permanent residents, and temporary working residents. Amazon Comprehend also recognizes
Social Security Numbers when only the last four digits are present.

Labeling PII entities

When you run PII detection, Amazon Comprehend returns the labels of identified PII entity types.
For example, if you submit the following input text to Amazon Comprehend:

Hello Paulo Santos. The latest statement for your credit card account 1111-0000-1111-0000 was
mailed to 123 Any Street, Seattle, WA 98109.

The output includes labels that represent PII entity types along with a confidence score of the
accuracy. In this case, the document text "Paul Santos", "1111-0000-1111-0000" and "123 Any
Street, Seattle, WA 98109" generate the labels NAME, CREDIT_DEBIT_NUMBER, and ADDRESS
respectively as PII entity types. For more information about supported entity types, see PII
universal entity types.

Amazon Comprehend provides the following information for each label:

• The label name of the PII entity type.

• A score that estimates the probability that the detected text is labeled as a PII entity type.

The input text example above results in the following JSON output.

{
 "Labels": [
 {
 "Name": "NAME",
 "Score": 0.9149109721183777
 },

Labeling PII entities 125

Amazon Comprehend Developer Guide

 {
 "Name": "CREDIT_DEBIT_NUMBER",
 "Score": 0.5698626637458801
 }
 {
 "Name": "ADDRESS",
 "Score": 0.9951046109199524
 }
]
}

PII real-time analysis (Console)

You can use the console to run PII real-time detection of a text document. The maximum text size
is 100 kilobytes of UTF-8 encoded characters. The console displays the results so that you can
review the analysis.

Run PII detection real-time analysis using the built-in model

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Real-time analysis.

3. Under Input type, choose Built-in for Analysis type.

4. Enter the text you want to analyze.

5. Choose Analyze. The console displays the text analysis results in the Insights panel. The PII
tab lists the PII entities detected in your input text.

In the Insights panel, the PII tab displays results for two analysis modes:

• Offsets – identifies the location of PII in the text document.

• Labels – identifies the labels of identified PII entity types.

Offsets

The Offsets analysis mode identifies the location of PII in your text documents. For more
information, see Locate PII entities.

Real-time analysis (Console) 126

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

Labels

The Labels analysis mode returns the labels of identified PII entity types. For more information, see
Labeling PII entities.

Labels 127

Amazon Comprehend Developer Guide

PII asynchronous analysis jobs (Console)

You can use the console to create async analysis jobs to detect PII entities. For more information
about PII entity types, see Detecting PII entities.

To create an analysis job

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Analysis jobs and then choose Create job.

3. Under Job settings, give the analysis job a unique name.

4. For Analysis type, choose Personally identifiable information (PII).

5. For Language, choose one of the supported languages (English or Spanish).

6. From Output mode, select one of the following choices:

Async analysis jobs (Console) 128

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

• Offsets – The job output returns the location of each PII entity.

• Redactions – The job output returns a copy of the input text with each PII entry redacted.

7. (Optional)If you choose Redactions as the output mode, you can select the PII entity types to
redact.

8. Under Input data, specify where the input documents are located in Amazon S3:

• To analyze your own documents, choose My documents, and choose Browse S3 to provide
the path to the bucket or folder that contains your files.

• To analyze samples that are provided by Amazon Comprehend, choose Example
documents. In this case, Amazon Comprehend uses a bucket that is managed by AWS, and
you don't specify the location.

9. (Optional) For Input format, specify one of the following formats for your input files:

• One document per file – Each file contains one input document. This is best for collections
of large documents.

• One document per line – The input is one or more files. Each line in a file is considered a
document. This is best for short documents, such as social media postings. Each line must
end with a line feed (LF, \n), a carriage return (CR, \r), or both (CRLF, \r\n). You can't use the
UTF-8 line separator (u+2028) to end a line.

10. Under Output data, choose Browse S3. Choose the Amazon S3 bucket or folder where you
want Amazon Comprehend to write the output data that is produced by the analysis.

11. (Optional) To encrypt the output result from your job, choose Encryption. Then, choose
whether to use a KMS key associated with the current account or one from another account:

• If you are using a key associated with the current account, choose the key alias or ID for
KMS key ID.

• If you are using a key associated with a different account, enter the ARN for the key alias
or ID under KMS key ID.

Note

For more information on creating and using KMS keys and the associated
encryption, see Key management service (KMS).

12. Under Access permissions, provide an IAM role that:

• Grants read access to the Amazon S3 location of your input documents.

Async analysis jobs (Console) 129

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

• Grants write access to the Amazon S3 location of your output documents.

• Includes a trust policy that allows the comprehend.amazonaws.com service principal to
assume the role and gain its permissions.

If you don't already have an IAM role with these permissions and an appropriate trust policy,
choose Create an IAM role to create one.

13. When you have finished filling out the form, choose Create job to create and start the topic
detection job.

The new job appears in the job list with the status field showing the status of the job. The field can
be IN_PROGRESS for a job that is processing, COMPLETED for a job that has finished successfully,
and FAILED for a job that has an error. You can click on a job to get more information about the
job, including any error messages.

When the job is completed, Amazon Comprehend stores the analysis results in the output Amazon
S3 location that you specified for the job. For a description of the analysis results, see Detecting PII
entities.

PII real-time analysis (API)

Amazon Comprehend provides real-time synchronous API operations to analyze personally
identifiable information (PII) in a document.

Topics

• Locating PII real-time entities (API)

• Labeling PII real-time entities (API)

Locating PII real-time entities (API)

To locate PII in a single document, you can use the Amazon Comprehend DetectPiiEntities
operation. Your input text can include up to 100 kilobytes of UTF-8 encoded characters. Supported
languages include English and Spanish.

Locating PII using (CLI)

The following example uses the DetectPiiEntities operation with the AWS CLI.

Real-time analysis (API) 130

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectPiiEntities.html

Amazon Comprehend Developer Guide

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend detect-pii-entities \
 --text "Hello Paul Santos. The latest statement for your credit card \
 account 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA \
 98109." \
 --language-code en

Amazon Comprehend responds with the following:

{
 "Entities": [
 {
 "Score": 0.9999669790267944,
 "Type": "NAME",
 "BeginOffset": 6,
 "EndOffset": 18
 },
 {
 "Score": 0.8905550241470337,
 "Type": "CREDIT_DEBIT_NUMBER",
 "BeginOffset": 69,
 "EndOffset": 88
 },
 {
 "Score": 0.9999889731407166,
 "Type": "ADDRESS",
 "BeginOffset": 103,
 "EndOffset": 138
 }
]
 }

Labeling PII real-time entities (API)

You can use real-time synchronous API operations to return the labels of identified PII entity types.
For more information, see Labeling PII entities.

Labeling PII entities (CLI)

The following example uses the ContainsPiiEntities operation with the AWS CLI.

Labeling PII real-time entities (API) 131

Amazon Comprehend Developer Guide

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend contains-pii-entities \
--text "Hello Paul Santos. The latest statement for your credit card \
account 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA \
 98109." \
--language-code en

Amazon Comprehend responds with the following:

{
 "Labels": [
 {
 "Name": "NAME",
 "Score": 0.9149109721183777
 },
 {
 "Name": "CREDIT_DEBIT_NUMBER",
 "Score": 0.8905550241470337
 }
 {
 "Name": "ADDRESS",
 "Score": 0.9951046109199524
 }
]
}

PII asynchronous analysis jobs (API)

PII async analysis (API)

You can use asynchronous API operations to create analysis jobs to locate or redact PII entities. For
more information about PII entity types, see Detecting PII entities.

Topics

• Locating PII entities with asynchronous jobs (API)

• Redacting PII entities with asynchronous jobs (API)

Async analysis jobs (API) 132

Amazon Comprehend Developer Guide

Locating PII entities with asynchronous jobs (API)

Run an asynchronous batch job to locate PII in a collection of documents. To run the job, upload
your documents to Amazon S3, and submit an StartPiiEntitiesDetectionJob request.

Topics

• Before you start

• Input parameters

• Async Job methods

• Output file format

• Async analysis using the AWS Command Line Interface

Before you start

Before you start, make sure that you have:

• Input and output buckets—Identify the Amazon S3 buckets that you want to use for input files
and output files. The buckets must be in the same Region as the API that you are calling.

• IAM service role—You must have an IAM service role with permission to access your input and
output buckets. For more information, see Role-based permissions required for asynchronous
operations.

Input parameters

In your request, include the following required parameters:

• InputDataConfig – Provide an InputDataConfig definition for your request, which includes the
input properties for the job. For the S3Uri parameter, specify the Amazon S3 location of your
input documents.

• OutputDataConfig – Provide an OutputDataConfig definition for your request, which includes
the output properties for the job. For the S3Uri parameter, specify the Amazon S3 location
where Amazon Comprehend writes the results of its analysis.

• DataAccessRoleArn – Provide the Amazon Resource Name (ARN) of an AWS Identity and
Access Management role. This role must grant Amazon Comprehend read access to your input
data and write access to your output location in Amazon S3. For more information, see Role-
based permissions required for asynchronous operations.

Locating PII entities 133

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartPiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_InputDataConfig.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_OutputDataConfig.html

Amazon Comprehend Developer Guide

• Mode – Set this parameter to ONLY_OFFSETS. With this setting, the output provides the
character offsets that locate each PII entity in the input text. The output also includes confidence
scores and PII entity types.

• LanguageCode – Set this parameter to en or es. Amazon Comprehend supports PII detection in
English or Spanish text.

Async Job methods

The StartPiiEntitiesDetectionJob returns a job ID, so that you can monitor the progress of
the job and retrieve the job status when it completes.

To monitor the progress of an analysis job, provide the job ID to
the DescribePiiEntitiesDetectionJob operation. The response from
DescribePiiEntitiesDetectionJob contains the JobStatus field with the current status of
the job. A successful job transitions through the following states:

SUBMITTED -> IN_PROGRESS -> COMPLETED.

After an analysis job has finished (JobStatus is COMPLETED, FAILED, or STOPPED), use
DescribePiiEntitiesDetectionJob to get the location of the results. If the job status is
COMPLETED, the response includes an OutputDataConfig field that contains a field with the
Amazon S3 location of the output file.

For additional details about the steps to follow for Amazon Comprehend async analysis, see
Asynchronous batch processing.

Output file format

The output file uses the name of the input file, with .out appended at the end. It contains the
results of the analysis.

The following is an example an output file from an analysis job that detected PII entities in
documents. The format of the input is one document per line.

{
 "Entities": [
 {
 "Type": "NAME",
 "BeginOffset": 40,
 "EndOffset": 69,
 "Score": 0.999995

Locating PII entities 134

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribePiiEntitiesDetectionJob.html

Amazon Comprehend Developer Guide

 },
 {
 "Type": "ADDRESS",
 "BeginOffset": 247,
 "EndOffset": 253,
 "Score": 0.998828
 },
 {
 "Type": "BANK_ACCOUNT_NUMBER",
 "BeginOffset": 406,
 "EndOffset": 411,
 "Score": 0.693283
 }
],
 "File": "doc.txt",
 "Line": 0
},
{
 "Entities": [
 {
 "Type": "SSN",
 "BeginOffset": 1114,
 "EndOffset": 1124,
 "Score": 0.999999
 },
 {
 "Type": "EMAIL",
 "BeginOffset": 3742,
 "EndOffset": 3775,
 "Score": 0.999993
 },
 {
 "Type": "PIN",
 "BeginOffset": 4098,
 "EndOffset": 4102,
 "Score": 0.999995
 }
],
 "File": "doc.txt",
 "Line": 1
 }

Locating PII entities 135

Amazon Comprehend Developer Guide

The following is an example of output from an analysis where the format of the input is one
document per file.

{
 "Entities": [
 {
 "Type": "NAME",
 "BeginOffset": 40,
 "EndOffset": 69,
 "Score": 0.999995
 },
 {
 "Type": "ADDRESS",
 "BeginOffset": 247,
 "EndOffset": 253,
 "Score": 0.998828
 },
 {
 "Type": "BANK_ROUTING",
 "BeginOffset": 279,
 "EndOffset": 289,
 "Score": 0.999999
 }
],
 "File": "doc.txt"
}

Async analysis using the AWS Command Line Interface

The following example uses the StartPiiEntitiesDetectionJob operation with the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend start-pii-entities-detection-job \
 --region region \
 --job-name job name \
 --cli-input-json file://path to JSON input file

For the cli-input-json parameter you supply the path to a JSON file that contains the request
data, as shown in the following example.

Locating PII entities 136

Amazon Comprehend Developer Guide

{
 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role"
 "LanguageCode": "en",
 "Mode": "ONLY_OFFSETS"
}

If the request to start the events detection job was successful, you will receive a response similar to
the following:

{
 "JobId": "5d2fbe6e...e2c"
 "JobArn": "arn:aws:comprehend:us-west-2:123456789012:pii-entities-detection-
job/5d2fbe6e...e2c"
 "JobStatus": "SUBMITTED",
}

You can use the DescribeEventsDetectionJob operation to get the status of an existing job. If the
request to start the events detection job was successful, you will receive a response similar to the
following:

aws comprehend describe-pii-entities-detection-job \
 --region region \
 --job-id job ID

When the job completes successfully, you receive a response similar to the following:

{
 "PiiEntitiesDetectionJobProperties": {
 "JobId": "5d2fbe6e...e2c"
 "JobArn": "arn:aws:comprehend:us-west-2:123456789012:pii-entities-detection-
job/5d2fbe6e...e2c"
 "JobName": "piiCLItest3",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2022-05-05T14:54:06.169000-07:00",

Locating PII entities 137

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEventsDetectionJob.html

Amazon Comprehend Developer Guide

 "EndTime": "2022-05-05T15:00:17.007000-07:00",
 "InputDataConfig": {
 (identical to the input data that you provided with the request)
 }
}

Redacting PII entities with asynchronous jobs (API)

To redact the PII entities in your text, you start an asynchronous batch job. To run the job, upload
your documents to Amazon S3, and submit a StartPiiEntitiesDetectionJob request.

Topics

• Before you start

• Input parameters

• Output file format

• PII redaction using the AWS Command Line Interface

Before you start

Before you start, make sure that you have:

• Input and output buckets—Identify the Amazon S3 buckets that you want to use for input files
and output files. The buckets must be in the same Region as the API that you are calling.

• IAM service role—You must have an IAM service role with permission to access your input and
output buckets. For more information, see Role-based permissions required for asynchronous
operations.

Input parameters

In your request, include the following required parameters:

• InputDataConfig – Provide an InputDataConfig definition for your request, which includes the
input properties for the job. For the S3Uri parameter, specify the Amazon S3 location of your
input documents.

• OutputDataConfig – Provide an OutputDataConfig definition for your request, which includes
the output properties for the job. For the S3Uri parameter, specify the Amazon S3 location
where Amazon Comprehend writes the results of its analysis.

Redacting PII entities 138

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartPiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_InputDataConfig.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_OutputDataConfig.html

Amazon Comprehend Developer Guide

• DataAccessRoleArn – Provide the Amazon Resource Name (ARN) of an AWS Identity and
Access Management role. This role must grant Amazon Comprehend read access to your input
data and write access to your output location in Amazon S3. For more information, see Role-
based permissions required for asynchronous operations.

• Mode – Set this parameter to ONLY_REDACTION. With this setting, Amazon Comprehend writes a
copy of your input documents to the output location in Amazon S3. In this copy, each PII entity is
redacted.

• RedactionConfig – Provide an RedactionConfig definition for your request, which includes
the configuration parameters for the redaction. Specify the types of PII to redact, and specify
whether each PII entity is replaced with the name of its type or a character of your choice:

• Specify the PII entity types to redact in the PiiEntityTypes array. To redact all entity types,
set the array value to ["ALL"].

• To replace each PII entity with its type, set the MaskMode parameter to
REPLACE_WITH_PII_ENTITY_TYPE. For example, with this setting, the PII entity "Jane Doe"
is replaced with "[NAME]".

• To replace the characters in each PII entity with a character of your choice, set the MaskMode
parameter to MASK, and set the MaskCharacter parameter to the replacement character.
Provide only a single character. Valid characters are !, #, $, %, &, *, and @. For example, with
this setting, the PII entity "Jane Doe" can be replaced with "**** ***"

• LanguageCode – Set this parameter to en or es. Amazon Comprehend supports PII detection in
English or Spanish text.

Output file format

The following example shows the input and output files from an analysis job that redacts PII. The
format of the input is one document per line.

{
Managing Your Accounts Primary Branch Canton John Doe Phone Number 443-573-4800 123
 Main StreetBaltimore, MD 21224
Online Banking HowardBank.com Telephone 1-877-527-2703 Bank 3301 Boston Street,
 Baltimore, MD 21224

The analysis job to redact this input file produces the following output file.

Redacting PII entities 139

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_RedactionConfig.html

Amazon Comprehend Developer Guide

{
Managing Your Accounts Primary Branch ****** ******** Phone Number ************

Online Banking ************** Telephone ************** Bank

 }

PII redaction using the AWS Command Line Interface

The following example uses the StartPiiEntitiesDetectionJob operation with the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend start-pii-entities-detection-job \
 --region region \
 --job-name job name \
 --cli-input-json file://path to JSON input file

For the cli-input-json parameter you supply the path to a JSON file that contains the request
data, as shown in the following example.

{
 "InputDataConfig": {
 "S3Uri": "s3://input bucket/input path",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://output bucket/output path"
 },
 "DataAccessRoleArn": "arn:aws:iam::account ID:role/data access role"
 "LanguageCode": "en",
 "Mode": "ONLY_REDACTION"
 "RedactionConfig": {
 "MaskCharacter": "*",
 "MaskMode": "MASK",
 "PiiEntityTypes": ["ALL"]
 }
}

Redacting PII entities 140

Amazon Comprehend Developer Guide

If the request to start the events detection job was successful, you will receive a response similar to
the following:

{
 "JobId": "7c4fbe6e...e5b"
 "JobArn": "arn:aws:comprehend:us-west-2:123456789012:pii-entities-detection-
job/7c4fbe6e...e5b"
 "JobStatus": "SUBMITTED",
}

You can use the DescribeEventsDetectionJob operation to get the status of an existing job.

aws comprehend describe-pii-entities-detection-job \
 --region region \
 --job-id job ID

When the job completes successfully, you receive a response similar to the following:

{
 "PiiEntitiesDetectionJobProperties": {
 "JobId": "7c4fbe6e...e5b"
 "JobArn": "arn:aws:comprehend:us-west-2:123456789012:pii-entities-detection-
job/7c4fbe6e...e5b"
 "JobName": "piiCLIredtest1",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2022-05-05T14:54:06.169000-07:00",
 "EndTime": "2022-05-05T15:00:17.007000-07:00",
 "InputDataConfig": {
 (identical to the input data that you provided with the request)
 }
}

Redacting PII entities 141

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEventsDetectionJob.html

Amazon Comprehend Developer Guide

Document processing

Amazon Comprehend supports one-step document processing for custom classification and
custom entity recognition. For example, you can input a mix of plain text documents and semi-
structured documents (such as PDF documents, Microsoft Word documents, and images) to a
custom analysis job.

For input files that require text extraction, Amazon Comprehend automatically performs the text
extraction before running the analysis. To extract the text content, Amazon Comprehend uses an
internal parser for native semi-structured documents and uses Amazon Textract APIs for images
and scanned documents.

Amazon Comprehend document processing is available in each of the Amazon Comprehend
Supported Regions, except Asia Pacific (Tokyo) and AWS GovCloud (US-West) support only plain-
text models for custom classification.

The following topics provide details about the input document types that Amazon Comprehend
supports for custom analysis.

Topics

• Inputs for real-time custom analysis

• Inputs for asynchronous custom analysis

• Setting text extraction options

• Best practices for images

Inputs for real-time custom analysis

Real-time analysis using custom models takes a single document as input. The following topics
describe the input document types that you can use.

Topics

• Plain text documents

• Semi-structured documents

• Image files and scanned PDF files

• Amazon Textract output

• Maximum document sizes for real-time analysis

Inputs for real-time analysis 142

Amazon Comprehend Developer Guide

• Errors in semi-structured documents

Plain text documents

Provide the input document as UTF-8-formatted text.

Semi-structured documents

Semi-structured documents include native PDF documents and Word documents.

By default, real-time custom analysis uses the Amazon Comprehend parser to extract the text
from Word files and digital PDF files. For PDF files, you can override this default and use Amazon
Textract to extract the text. See Setting text extraction options.

Image files and scanned PDF files

Supported image types include JPEG, PNG, and TIFF.

By default, custom entity recognition uses the Amazon Textract DetectDocumentText API
operation to extract the text from image files and scanned PDF files. You can override this default
to use the AnalyzeDocument API operation instead. See Setting text extraction options.

Amazon Textract output

You can provide the JSON output from the Amazon Textract DetectDocumentText API or
AnalyzeDocument API as input to the real-time API operations for custom classification and
custom entity recognition. Amazon Comprehend supports this input type for the real-time API
operations, but not for the console.

Maximum document sizes for real-time analysis

For all input document types, the input file maximum is one page, with no more than 10,000
characters.

The following table shows the maximum file sizes for input documents.

File type Maximum size (API) Maximum size
(console)

UTF-8 text documents 10 KB 10 KB

Plain text documents 143

Amazon Comprehend Developer Guide

File type Maximum size (API) Maximum size
(console)

PDF documents 10 MB 5 MB

Word documents 10 MB 1 MB

Image files 10 MB 5 MB

Textract output files 1 MB n/a

Errors in semi-structured documents

The ClassifyDocument or DetectEntities API operation can encounter document-level or page-level
errors while extracting text from a semi-structured document or an image file.

Page-level errors

If the ClassifyDocument or DetectEntities API operation encounters errors while processing a page
in the input document, the API response includes an entry in the Errors list for each error.

The ErrorCode in the error list entry contains one of the following values:

• TEXTRACT_BAD_PAGE – Amazon Textract cannot read the page. For more information about
page limits in Amazon Textract, see Page Quotas in Amazon Textract.

• TEXTRACT_PROVISIONED_THROUGHPUT_EXCEEDED – The number of requests exceeded your
throughput limit. For more information about throughput quotas in Amazon Textract, see
Default quotas in Amazon Textract.

• PAGE_CHARACTERS_EXCEEDED – Too many text characters on the page (10,000 characters
maximum).

• PAGE_SIZE_EXCEEDED – The maximum page size is 10 MB.

• INTERNAL_SERVER_ERROR – The request encountered a service issue. Try the API request again.

Document-level errors

If the ClassifyDocument or DetectEntities API operation detects a document-level error in your
input document, the API returns an InvalidRequestException error response.

Errors in semi-structured documents 144

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ErrorsListItem.html
https://docs.aws.amazon.com/textract/latest/dg/limits-document.html
https://docs.aws.amazon.com/textract/latest/dg/limits-quotas-explained.html
https://docs.aws.amazon.com/textract/latest/dg/limits-quotas-explained.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html

Amazon Comprehend Developer Guide

In the error response, the Reason field contains the value INVALID_DOCUMENT.

The Detail field contains one of the following values:

• DOCUMENT_SIZE_EXCEEDED – Document size is too large. Check the size of your file and
resubmit the request.

• UNSUPPORTED_DOC_TYPE – Document type is not supported. Check the file type and resubmit
the request.

• PAGE_LIMIT_EXCEEDED – Too many pages in the document. Check the number of pages in your
file and resubmit the request.

• TEXTRACT_ACCESS_DENIED_EXCEPTION – Access denied to Amazon Textract. Verify that your
account has permission to use the Amazon Textract DetectDocumentText and AnalyzeDocument
API operations and resubmit the request.

Inputs for asynchronous custom analysis

You can input multiple documents to a custom async analysis job. The following topics describe
the input document types that you can use. The maximum file size varies depending on the type of
input document.

Topics

• Plain text documents

• Semi-structured documents

• Image files and scanned PDF files

• Amazon Textract output JSON files

Plain text documents

Provide all plain-text input documents as UTF-8-formatted text. The following table lists the
maximum file sizes and other guidelines.

Note

These limits apply when all the input files are plain text.

Inputs for async analysis 145

https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html
https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html

Amazon Comprehend Developer Guide

Description Quota/Guideline

Maximum file size for one document per file format (Custom
classification)

1 byte–10 MB

Document size (Custom entity recognition) 1 byte–1 MB

Maximum number of files, one document per file 1,000,000

Maximum number of lines, one document per line (for all files
in request)

1,000,000

Document corpus size (all docs in plaintext combined) 1 byte–5 GB

Semi-structured documents

Semi-structured documents include native PDF documents and Word documents.

The following table lists the maximum file sizes and other guidelines.

Description Quota/Guideline

Document size (PDF) 1 byte–50 MB

Document size (Docx) 1 byte–5 MB

Maximum number of files 500

Maximum number of pages for a PDF or Docx file 100

Document corpus size after text extraction (plaintext, all files
combined)

1 byte–5 GB

By default, custom analysis uses the Amazon Comprehend parser to extract the text from Word
files and digital PDF files. For PDF files, you can override this default and use Amazon Textract to
extract the text. See Setting text extraction options.

Semi-structured documents 146

Amazon Comprehend Developer Guide

Image files and scanned PDF files

Custom analysis supports JPEG, PNG, and TIFF images.

The following table lists the maximum file sizes for images. Scanned PDF files are subject to the
same maximum sizes as native PDF files.

Description Quota/Guideline

Image size (JPG or PNG) 1 byte–10 MB

Image size (TIFF) 1 byte–10 MB. Maximum one
page.

For additional information about images, see Best practices for images.

By default, Amazon Comprehend uses the Amazon Textract DetectDocumentText API operation
to extract the text from image files and scanned PDF files. You can override this default to use the
AnalyzeDocument API operation instead. See Setting text extraction options.

Amazon Textract output JSON files

For custom entity recognition, but not custom classification, you can provide the output file from
the Amazon Textract AnalyzeDocument API operation as input to analysis jobs.

Setting text extraction options

By default, Amazon Comprehend performs the following actions to extract text from a file, based
on the input file type:

• Word files – Amazon Comprehend parser extracts the text.

• Digital PDF files – Amazon Comprehend parser extracts the text.

• Image files and scanned PDF files – Amazon Comprehend uses the Amazon Textract
DetectDocumentText API to extract the text.

For image files and PDF files, you can use the DocumentReaderConfig parameter to override
these default extraction actions. This parameter is available when you use the Amazon
Comprehend console or API for real-time or asynchronous custom analysis.

Image files and scanned PDF files 147

Amazon Comprehend Developer Guide

The DocumentReaderConfig parameter contains three fields:

• DocumentReadMode – Set to SERVICE_DEFAULT for Amazon Comprehend to perform the
default actions.

Set to FORCE_DOCUMENT_READ_ACTION to use Amazon Textract to parse digital PDF files.

• DocumentReadAction – Sets the Amazon Textract API (DetectDocumentText or
AnalyzeDocument) to use when Amazon Comprehend uses Amazon Textract for text extraction.

• FeatureTypes – If you set DocumentReadAction to use the AnalyzeDocument API operation, you
can add one or both of the FeatureTypes (TABLES, FORMS). These features provide additional
information about the tables and forms in the document. For more information about these
features, see Amazon Textract Document Analysis Response Objects.

The following examples show how to configure DocumentReaderConfig for specific use cases:

1. Use Amazon Textract for all PDF files.

a. DocumentReadMode – Set to FORCE_DOCUMENT_READ_ACTION.

b. DocumentReadAction – Set to TEXTRACT_DETECT_DOCUMENT_TEXT.

c. FeatureTypes – Not required.

2. Use Amazon Textract AnalyzeDocument API for all PDF and image files.

a. DocumentReadMode – Set to FORCE_DOCUMENT_READ_ACTION.

b. DocumentReadAction – Set to TEXTRACT_ANALYZE_DOCUMENT.

c. FeatureTypes – Set to TABLES, FORMS or both features.

3. Use Amazon Textract AnalyzeDocument API for scanned PDF files and all image files.

a. DocumentReadMode – Set to SERVICE_DEFAULT.

b. DocumentReadAction – Set to TEXTRACT_ANALYZE_DOCUMENT.

c. FeatureTypes – Set to TABLES, FORMS or both features.

For more information about the Amazon Textract options, see DocumentReaderConfig.

Best practices for images

When you use image files for custom classification or custom entity recognition, use the following
guidelines to achieve the best results:

Best practices for images 148

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-document-layout.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DocumentReaderConfig.html

Amazon Comprehend Developer Guide

• Provide a high quality image, ideally at least 150 DPI.

• If the image file uses one of the supported formats (TIFF, JPEG, or PNG), don't convert or
downsample the file before uploading it to Amazon S3.

For the best results when extracting text from tables in documents, follow these practices:

• Tables in your document are visually separated from surrounding elements on the page. For
example, the table isn't overlaid onto an image or complex pattern.

• Text within the table is upright. For example, the text isn't rotated relative to other text on the
page.

When extracting text from tables, you might see inconsistent results for the following cases:

• Merged table cells span multiple columns.

• Tables have cells, rows, or columns that are different than other parts of the same table.

Best practices for images 149

Amazon Comprehend Developer Guide

Custom classification

Use custom classification to organize your documents into categories (classes) that you define.
Custom classification is a two-step process. First, you train a custom classification model (also
called a classifier) to recognize the classes that are of interest to you. Then you use your model to
classify any number of document sets.

For example, you can categorize the content of support requests so that you can route the request
to the proper support team. Or you can categorize emails received from customers to provide
guidance based on the type of customer request. You can combine Amazon Comprehend with
Amazon Transcribe to convert speech to text and then classify the requests coming from support
phone calls.

You can run custom classification on a single document synchronously (in real time) or start an
asynchronous job to classify a set of documents. You can have multiple custom classifiers in
your account, each trained using different data. Custom classification supports a variety of input
document types, such as plain text, PDF, Word, and images.

When you submit a classification job, you choose the classifier model to use, based on the type of
documents that you need to analyze. For example, to analyze plain-text documents, you achieve
the most accurate results by using a model that you trained with plain-text documents. To analyze
semi-structured documents (such as PDF, Word, images, Amazon Textract output, or scanned files) ,
you achieve the most accurate results by using a model that you trained with native documents.

Topics

• Preparing classifier training data

• Training classification models

• Running real-time analysis

• Running asynchronous jobs

Preparing classifier training data

For custom classification, you train the model in either multi-class mode or multi-label mode.
Multi-class mode associates a single class with each document. Multi-label mode associates one or
more classes with each document. The input file formats are different for each mode, so choose the
mode to use before you create the training data.

Preparing the training data 150

Amazon Comprehend Developer Guide

Note

The Amazon Comprehend console refers to multi-class mode as single-label mode.

Custom classification supports models that you train with plain-text documents and models that
you train with native documents (such as PDF, Word, or images). For more information about
classifier models and their supported document types, see Training classification models.

To prepare data to train a custom classifier model:

1. Identify the classes that you want this classifier to analyze. Decide which mode to use (multi-
class or multi-label).

2. Decide on the classifier model type, based on whether the model is for analyzing plain-text
documents or semi-structured documents.

3. Gather examples of documents for each of the classes. For minimum training requirements, see
General quotas for document classification.

4. For a plain-text model, choose the training file format to use (CSV file or augmented manifest
file). To train a native document model, you always use a CSV file.

Topics

• Classifier training file formats

• Multi-class mode

• Multi-label mode

Classifier training file formats

For a plain-text model, you can provide classifier training data as a CSV file or as an augmented
manifest file that you create using SageMaker Ground Truth. The CSV file or augmented manifest
file includes the text for each training document, and its associated labels.

For a native document model, you provide Classifier training data as a CSV file. The CSV file
includes the file name for each training document, and its associated labels. You include the
training documents in the Amazon S3 input folder for the training job.

Training file formats 151

Amazon Comprehend Developer Guide

CSV files

You provide labeled training data as UTF-8 encoded text in a CSV file. Don't include a header row.
Adding a header row in your file may cause runtime errors.

For each row in the CSV file, the first column contains one or more class labels, A class label can
be any valid UTF-8 string. We recommend using clear class names that don't overlap in meaning.
The name can include white space, and can consist of multiple words connected by underscores or
hyphens.

Do not leave any space characters before or after the commas that separate the values in a row.

The exact content of the CSV file depends on the classifier mode and the type of training data. For
details, see the sections on Multi-class mode and Multi-label mode.

Augmented manifest file

An augmented manifest file is a labeled dataset that you create using SageMaker Ground Truth.
Ground Truth is a data labeling service that helps you—or a workforce that you employ—to build
training datasets for machine learning models.

For more information about Ground Truth and the output that it produces, see Use SageMaker
Ground Truth to Label Data in the Amazon SageMaker Developer Guide.

Augmented manifest files are in JSON lines format. In these files, each line is a complete JSON
object that contains a training document and its associated labels. The exact content of each line
depends on the classifier mode. For details, see the sections on Multi-class mode and Multi-label
mode.

When you provide your training data to Amazon Comprehend, you specify one or more label
attribute names. How many attribute names you specify depends on whether your augmented
manifest file is the output of a single labeling job or a chained labeling job.

If your file is the output of a single labeling job, specify the single label attribute name from the
Ground Truth job.

If your file is the output of a chained labeling job, specify the label attribute name for one or more
jobs in the chain. Each label attribute name provides the annotations from an individual job. You
can specify up to 5 of these attributes for augmented manifest files from chained labeling jobs.

Training file formats 152

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html

Amazon Comprehend Developer Guide

For more information about chained labeling jobs, and for examples of the output that they
produce, see Chaining Labeling Jobs in the Amazon SageMaker Developer Guide.

Multi-class mode

In multi-class mode, classification assigns one class for each document. The individual classes are
mutually exclusive. For example, you can classify a movie as comedy or science fiction, but not
both.

Note

The Amazon Comprehend console refers to multi-class mode as single-label mode.

Topics

• Plain-text models

• Native document models

Plain-text models

To train a plain-text model, you can provide labeled training data as a CSV file or as an augmented
manifest file from SageMaker Ground Truth.

CSV file

For general information about using CSV files for training classifiers, see CSV files.

Provide the training data as a two-column CSV file. For each row, the first column contains the class
label value. The second column contains an example text document for that class. Each row must
end with \n or \r\n characters.

The following example shows a CSV file containing three documents.

CLASS,Text of document 1
CLASS,Text of document 2
CLASS,Text of document 3

The following example shows one row of a CSV file that trains a custom classifier to detect whether
an email message is spam:

Multi-class mode 153

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-reusing-data.html

Amazon Comprehend Developer Guide

SPAM,"Paulo, your $1000 award is waiting for you! Claim it while you still can at
 http://example.com."

Augmented manifest file

For general information about using augmented manifest files for training classifiers, see
Augmented manifest file.

For plain-text documents, each line of the augmented manifest file is a complete JSON object that
contains a training document, a single class name, and other metadata from Ground Truth. The
following example is an augmented manifest file for training a custom classifier to recognize spam
email messages:

{"source":"Document 1 text", "MultiClassJob":0, "MultiClassJob-metadata":
{"confidence":0.62, "job-name":"labeling-job/multiclassjob", "class-name":"not_spam",
 "human-annotated":"yes", "creation-date":"2020-05-21T17:36:45.814354",
 "type":"groundtruth/text-classification"}}
{"source":"Document 2 text", "MultiClassJob":1, "MultiClassJob-metadata":
{"confidence":0.81, "job-name":"labeling-job/multiclassjob", "class-name":"spam",
 "human-annotated":"yes", "creation-date":"2020-05-21T17:37:51.970530",
 "type":"groundtruth/text-classification"}}
{"source":"Document 3 text", "MultiClassJob":1, "MultiClassJob-metadata":
{"confidence":0.81, "job-name":"labeling-job/multiclassjob", "class-name":"spam",
 "human-annotated":"yes", "creation-date":"2020-05-21T17:37:51.970566",
 "type":"groundtruth/text-classification"}}

The following example shows one JSON object from the augmented manifest file, formatted for
readability:

{
 "source": "Paulo, your $1000 award is waiting for you! Claim it while you still can
 at http://example.com.",
 "MultiClassJob": 0,
 "MultiClassJob-metadata": {
 "confidence": 0.98,
 "job-name": "labeling-job/multiclassjob",
 "class-name": "spam",
 "human-annotated": "yes",
 "creation-date": "2020-05-21T17:36:45.814354",
 "type": "groundtruth/text-classification"
 }

Multi-class mode 154

Amazon Comprehend Developer Guide

}

In this example, the source attribute provides the text of the training document, and the
MultiClassJob attribute assigns the index of a class from a classification list. The job-name
attribute is the name that you defined for the labeling job in Ground Truth.

When you start the classifier training job in Amazon Comprehend, you specify the same labeling
job name.

Native document models

A native document model is a model that you train with native documents (such as PDF, DOCX ,
and images). You provide the training data as a CSV file.

CSV file

For general information about using CSV files for training classifiers, see CSV files.

Provide the training data as a three-column CSV file. For each row, the first column contains the
class label value. The second column contains the file name of an example document for this class.
The third column contains the page number. The page number is optional if the example document
is an image.

The following example shows a CSV file that references three input documents.

CLASS,input-doc-1.pdf,3
CLASS,input-doc-2.docx,1
CLASS,input-doc-3.png

The following example shows one row of a CSV file that trains a custom classifier to detect whether
an email message is spam. Page 2 of the PDF file contains the spam example.

SPAM,email-content-3.pdf,2

Multi-label mode

In multi-label mode, individual classes represent different categories that aren't mutually exclusive.
Multi-label classification assigns one or more classes to each document. For example, you can
classify one movie as Documentary, and another movie as Science fiction, Action, and Comedy.

Multi-label mode 155

Amazon Comprehend Developer Guide

For training, multi-label mode supports up to 1 million examples containing up to 100 unique
classes.

Topics

• Plain-text models

• Native document models

Plain-text models

To train a plain-text model, you can provide labeled training data as a CSV file or as an augmented
manifest file from SageMaker Ground Truth.

CSV file

For general information about using CSV files for training classifiers, see CSV files.

Provide the training data as a two-column CSV file. For each row, the first column contains the class
label values, and the second column contains an example text document for these classes. To enter
more than one class in the first column, use a delimiter (such as a |) between each class.

CLASS,Text of document 1
CLASS,Text of document 2
CLASS|CLASS|CLASS,Text of document 3

The following example shows one row of a CSV file that trains a custom classifier to detect genres
in movie abstracts:

COMEDY|MYSTERY|SCIENCE_FICTION|TEEN,"A band of misfit teens become unlikely detectives
 when they discover troubling clues about their high school English teacher. Could the
 strange Mrs. Doe be an alien from outer space?"

The default delimiter between class names is a pipe (|). However, you can use a different character
as a delimiter. The delimiter must be distinct from all characters in your class names. For example,
if your classes are CLASS_1, CLASS_2, and CLASS_3, the underscore (_) is part of the class name. So
don't use an underscore as the delimiter for separating class names.

Augmented manifest file

For general information about using augmented manifest files for training classifiers, see
Augmented manifest file.

Multi-label mode 156

Amazon Comprehend Developer Guide

For plain-text documents, each line of the augmented manifest file is a complete JSON object. It
contains a training document, class names, and other metadata from Ground Truth. The following
example is an augmented manifest file for training a custom classifier to detect genres in movie
abstracts:

{"source":"Document 1 text", "MultiLabelJob":[0,4], "MultiLabelJob-metadata":{"job-
name":"labeling-job/multilabeljob", "class-map":{"0":"action", "4":"drama"}, "human-
annotated":"yes", "creation-date":"2020-05-21T19:02:21.521882", "confidence-map":
{"0":0.66}, "type":"groundtruth/text-classification-multilabel"}}
{"source":"Document 2 text", "MultiLabelJob":[3,6], "MultiLabelJob-metadata":{"job-
name":"labeling-job/multilabeljob", "class-map":{"3":"comedy", "6":"horror"}, "human-
annotated":"yes", "creation-date":"2020-05-21T19:00:01.291202", "confidence-map":
{"1":0.61,"0":0.61}, "type":"groundtruth/text-classification-multilabel"}}
{"source":"Document 3 text", "MultiLabelJob":[1], "MultiLabelJob-metadata":
{"job-name":"labeling-job/multilabeljob", "class-map":{"1":"action"}, "human-
annotated":"yes", "creation-date":"2020-05-21T18:58:51.662050", "confidence-map":
{"1":0.68}, "type":"groundtruth/text-classification-multilabel"}}

The following example shows one JSON object from the augmented manifest file, formatted for
readability:

{
 "source": "A band of misfit teens become unlikely detectives when
 they discover troubling clues about their high school English
 teacher.
 Could the strange Mrs. Doe be an alien from outer space?",
 "MultiLabelJob": [
 3,
 8,
 10,
 11
],
 "MultiLabelJob-metadata": {
 "job-name": "labeling-job/multilabeljob",
 "class-map": {
 "3": "comedy",
 "8": "mystery",
 "10": "science_fiction",
 "11": "teen"
 },
 "human-annotated": "yes",
 "creation-date": "2020-05-21T19:00:01.291202",

Multi-label mode 157

Amazon Comprehend Developer Guide

 "confidence-map": {
 "3": 0.95,
 "8": 0.77,
 "10": 0.83,
 "11": 0.92
 },
 "type": "groundtruth/text-classification-multilabel"
 }
 }

In this example, the source attribute provides the text of the training document, and the
MultiLabelJob attribute assigns the indexes of several classes from a classification list. The
job-name in the MultiLabelJob metadata is the name that you defined for the labeling job in
Ground Truth.

Native document models

A native document model is a model that you train with native documents (such as PDF, DOCX ,
and image files). You provide labeled training data as a CSV file.

CSV file

For general information about using CSV files for training classifiers, see CSV files.

Provide the training data as a three-column CSV file. For each row, the first column contains the
class label values. The second column contains the file name of an example document for these
classes. The third column contains the page number. The page number is optional if the example
document is an image.

To enter more than one class in the first column, use a delimiter (such as a |) between each class.

CLASS,input-doc-1.pdf,3
CLASS,input-doc-2.docx,1
CLASS|CLASS|CLASS,input-doc-3.png,2

The following example shows one row of a CSV file that trains a custom classifier to detect genres
in movie abstracts. Page 2 of the PDF file contains the example of a comedy/teen movie.

COMEDY|TEEN,movie-summary-1.pdf,2

Multi-label mode 158

Amazon Comprehend Developer Guide

The default delimiter between class names is a pipe (|). However, you can use a different character
as a delimiter. The delimiter must be distinct from all characters in your class names. For example,
if your classes are CLASS_1, CLASS_2, and CLASS_3, the underscore (_) is part of the class name. So
don't use an underscore as the delimiter for separating class names.

Training classification models

To train a model for custom classification, you define the categories and provide example
documents to train the custom model. You train the model in either multi-class or multi-label
mode. Multi-class mode associates a single class with each document. Multi-label mode associates
one or more classes with each document.

Custom classification supports two types of classifier models: plain-text models and native
document models. A plain-text model classifies documents based on their text content. A native
document model also classifies documents based on text content. A native document model can
also use additional signals, such as from the layout of the document. You train a native document
model with native documents for the model to learn the layout information.

Plain-text models have the following characteristics:

• You train the model using UTF-8 encoded text documents.

• You can train the model using documents in one of following languages: English, Spanish,
German, Italian, French, or Portuguese.

• The training documents for a given classifier must all use the same language.

• Training documents are plain text, so there are no additional charges for text extraction.

Native document models have the following characteristics:

• You train the model using semi-structured documents, which includes the following document
types:

• Digital and scanned PDF documents.

• Word documents (DOCX).

• Images: JPG files, PNG files, and single-page TIFF files.

• Textract API output JSON files.

• You train the model using English documents.

Training classification models 159

Amazon Comprehend Developer Guide

• If your training documents include scanned document files, you incur additional charges for text
extraction. See the Amazon Comprehend Pricing page for details.

You can classify any of the supported document types using either type of model. However, for the
most accurate results, we recommend using a plain-text model to classify plain-text documents
and a native document model to classify semi-structured documents.

Topics

• Train custom classifiers (console)

• Train custom classifiers (API)

• Test the training data

• Classifier training output

• Custom classifier metrics

Train custom classifiers (console)

You can create and train a custom classifier using the console, and then use the custom classifier to
analyze your documents.

To train a custom classifier, you need a set of training documents. You label these documents with
the categories that you want the document classifier to recognize. For information about preparing
your training documents, see Preparing classifier training data.

To create and train a document classifier model

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Customization and then choose Custom Classification.

3. Choose Create new model.

4. Under Model settings, enter a model name for the classifier. The name must be unique within
your account and current Region.

(Optional) Enter a version name. The name must be unique within your account and current
Region.

Train custom classifiers (console) 160

https://aws.amazon.com/comprehend/pricing
https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

5. Select the language of the training documents. To see the languages that classifiers support,
see Training classification models.

6. (Optional) If you want to encrypt the data in the storage volume while Amazon Comprehend
processes your training job, choose Classifier encryption. Then choose whether to use a KMS
key associated with your current account, or one from another account.

• If you are using a key associated with the current account, choose the key ID for KMS key ID.

• If you are using a key associated with a different account, enter the ARN for the key ID under
KMS key ARN.

Note

For more information on creating and using KMS keys and the associated encryption,
see AWS Key Management Service (AWS KMS).

7. Under Data specifications, choose the Training model type to use.

• Plain text documents: Choose this option to create a plain text model. Train the model
using plain text documents.

• Native documents: Choose this option to create a native document model. Train the model
using native documents (PDF, Word, images).

8. Choose the Data format of your training data. For information about the data formats, see
Classifier training file formats.

• CSV file: Choose this option if your training data uses the CSV file format.

• Augmented manifest: Choose this option if you used Ground Truth to create augmented
manifest files for your training data. This format is available if you chose Plain text
documents as the training model type.

9. Choose the Classifier mode to use.

• Single-label mode: Choose this mode if the categories you're assigning to documents are
mutually exclusive and you're training your classifier to assign one label to each document.
In the Amazon Comprehend API, single-label mode is known as multi-class mode.

• Multi-label mode: Choose this mode if multiple categories can be applied to a document
at the same time, and you are training your classifier to assign one or more labels to each
document.

Train custom classifiers (console) 161

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

10. If you choose Multi-label mode, you can select the Delimiter for labels. Use this delimiter
character to separate labels when there are multiple classes for a training document. The
default delimiter is the pipe character.

11. (Optional) If you chose Augmented manifest as the data format, you can input up to five
augmented manifest files. Each augmented manifest file contains either a training dataset or a
test dataset. You must provide at least one training dataset. Test datasets are optional. Use the
following steps to configure the augmented manifest files:

a. Under Training and test dataset, expand the Input location panel.

b. In Dataset type, choose Training data or Test data.

c. For the SageMaker Ground Truth augmented manifest file S3 location, enter the
location of the Amazon S3 bucket that contains the manifest file or navigate to it by
choosing Browse S3. The IAM role that you're using for access permissions for the training
job must have read permissions for the S3 bucket.

d. For the Attribute names, enter the name of the attribute that contains your annotations.
If the file contains annotations from multiple chained labeling jobs, add an attribute for
each job.

e. To add another input location, choose Add input location and then configure the next
location.

12. (Optional) If you chose CSV file as the data format, use the following steps to configure the
training dataset and optional test dataset:

a. Under Training dataset, enter the location of the Amazon S3 bucket that contains your
training data CSV file or navigate to it by choosing Browse S3. The IAM role that you're
using for access permissions for the training job must have read permissions for the S3
bucket.

(Optional) If you chose Native documents as the training model type, you also provide the
URL of the Amazon S3 folder that contains the training example files.

b. Under Test dataset, select whether you are providing extra data for Amazon Comprehend
to test the trained model.

• Autosplit: Autosplit automatically selects 10% of your training data to reserve for use
as testing data.

• (Optional) Customer provided: Enter the URL of the test data CSV file in Amazon S3.
You can also navigate to its location in Amazon S3 and choose Select folder.

Train custom classifiers (console) 162

Amazon Comprehend Developer Guide

(Optional) If you chose Native documents as the training model type, you also provide
the URL of the Amazon S3 folder that contains the test files.

13. (Optional) For Document read mode, you can override the default text extraction actions.
This option isn't required for plain-text models, as it applies to text extraction for scanned
documents. For more information, see Setting text extraction options.

14. (Optional for plain-text models) For Output data, enter the location of an Amazon S3
bucket to save training output data, such as the confusion matrix. For more information, see
Confusion matrix.

(Optional) If you choose to encrypt the output result from your training job, choose
Encryption. Then choose whether to use a KMS key associated with the current account, or
one from another account.

• If you are using a key associated with the current account, choose the key alias for KMS key
ID.

• If you are using a key associated with a different account, enter the ARN for the key alias or
ID under KMS key ID.

15. For IAM role, choose Choose an existing IAM role, and then choose an existing IAM role that
has read permissions for the S3 bucket that contains your training documents. The role must
have a trust policy that begins with comprehend.amazonaws.com to be valid.

If you don't already have an IAM role with these permissions, choose Create an IAM role to
make one. Choose the access permissions to grant this role, and then choose a name suffix to
distinguish the role from IAM roles in your account.

Note

For encrypted input documents, the IAM role used must also have kms:Decrypt
permission. For more information, see Permissions required to use KMS encryption.

16. (Optional) To launch your resources into Amazon Comprehend from a VPC, enter the VPC ID
under VPC or choose the ID from the dropdown list.

1. Choose the subnet under Subnets(s). After you select the first subnet, you can choose
additional ones.

2. Under Security Group(s), choose the security group to use if you specified one. After you
select the first security group, you can choose additional ones.

Train custom classifiers (console) 163

Amazon Comprehend Developer Guide

Note

When you use a VPC with your classification job, the DataAccessRole used for the
Create and Start operations must have permissions to the VPC that accesses the input
documents and the output bucket.

17. (Optional) To add a tag to the custom classifier, enter a key-value pair under Tags. Choose
Add tag. To remove this pair before creating the classifier, choose Remove tag. For more
information, see Tagging your resources.

18. Choose Create.

The console displays the Classifiers page. The new classifier appears in the table, showing
Submitted as its status. When the classifier starts processing the training documents, the
status changes to Training. When a classifier is ready to use, the status changes to Trained or
Trained with warnings. If the status is TRAINED_WITH_WARNINGS, review the skipped files
folder in the Classifier training output.

If Amazon Comprehend encountered errors during creation or training, the status changes to In
error. You can choose a classifier job in the table to get more information about the classifier,
including any error messages.

Train custom classifiers (API)

To create and train a custom classifier, use the CreateDocumentClassifier operation.

Train custom classifiers (API) 164

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateDocumentClassifier.html

Amazon Comprehend Developer Guide

You can monitor the progress of the request using the DescribeDocumentClassifier operation.
After the Status field transitions to TRAINED, you can use the classifier to classify documents. If
the status is TRAINED_WITH_WARNINGS, review the skipped files folder in the Classifier training
output from the CreateDocumentClassifier operation.

Topics

• Training custom classification using the AWS Command Line Interface

• Using the AWS SDK for Java or SDK for Python

Training custom classification using the AWS Command Line Interface

The following examples show how to use the CreateDocumentClassifier operation, the
DescribeDocumentClassificationJob operation, and other custom classifier APIs with the
AWS CLI.

The examples are formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\)
Unix continuation character at the end of each line with a caret (^).

Create a plain-text custom classifier using the create-document-classifier operation.

aws comprehend create-document-classifier \
 --region region \
 --document-classifier-name testDelete \
 --language-code en \
 --input-data-config S3Uri=s3://S3Bucket/docclass/file name \
 --data-access-role-arn arn:aws:iam::account number:role/testFlywheelDataAccess

To create a native custom classifier, provide the following additional parameters in the create-
document-classifier request.

1. DocumentType: set the value to SEMI_STRUCTURED_DOCUMENT.

2. Documents: the S3 location for the training documents (and, optionally, the test documents).

3. OutputDataConfig: provide the S3 location for the output documents (and an optional KMS key).

4. DocumentReaderConfig: Optional field for text extraction settings.

aws comprehend create-document-classifier \
 --region region \

Train custom classifiers (API) 165

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDocumentClassifier.html

Amazon Comprehend Developer Guide

 --document-classifier-name testDelete \
 --language-code en \
 --input-data-config
 S3Uri=s3://S3Bucket/docclass/file name \
 DocumentType \
 Documents \
 --output-data-config S3Uri=s3://S3Bucket/docclass/file name \
 --data-access-role-arn arn:aws:iam::account number:role/testFlywheelDataAccess

Get information on a custom classifier with the document classifier ARN using the
DescribeDocumentClassifier operation.

aws comprehend describe-document-classifier \
 --region region \
 --document-classifier-arn arn:aws:comprehend:region:account number:document-
classifier/file name

Delete a custom classifier using the DeleteDocumentClassifier operation.

aws comprehend delete-document-classifier \
 --region region \
 --document-classifier-arn arn:aws:comprehend:region:account number:document-
classifier/testDelete

List all custom classifiers in the account using the ListDocumentClassifiers operation.

aws comprehend list-document-classifiers
 --region region

Using the AWS SDK for Java or SDK for Python

For SDK examples of how to create and train a custom classifier , see Create an Amazon
Comprehend document classifier using an AWS SDK.

Test the training data

After training the model, Amazon Comprehend tests the custom classifier model. If you don't
provide a test dataset, Amazon Comprehend trains the model with 90 percent of the training data.
It reserves 10 percent of the training data to use for testing. If you do provide a test dataset, the
test data must include at least one example for each unique label in the training dataset.

Test the training data 166

Amazon Comprehend Developer Guide

Testing the model provides you with metrics that you can use to estimate the accuracy of the
model. The console displays the metrics in the Classifier performance section of the Classifier
details page in the console. They're also returned in the Metrics fields returned by the
DescribeDocumentClassifier operation.

In the following example training data, there are five labels, DOCUMENTARY, DOCUMENTARY,
SCIENCE_FICTION, DOCUMENTARY, ROMANTIC_COMEDY. There are three unique classes:
DOCUMENTARY, SCIENCE_FICTION, ROMANTIC_COMEDY.

Column 1 Column 2

DOCUMENTARY document text 1

DOCUMENTARY document text 2

SCIENCE_FICTION document text 3

DOCUMENTARY document text 4

ROMANTIC_COMEDY document text 5

For auto split (where Amazon Comprehend reserves 10 percent of the training data to use
for testing), if the training data contains limited examples of a specific label, the test dataset
may contain zero examples of that label. For instance, if the training dataset contains 1000
instances of the DOCUMENTARY class, 900 instances of SCIENCE_FICTION, and a single instance
of the ROMANTIC_COMEDY class, the test dataset might contain 100 DOCUMENTARY and 90
SCIENCE_FICTION instances, but no ROMANTIC_COMEDY instances, as there is a single example
available.

After you finish training your model, the training metrics provide information that you can use to
decide if the model is sufficiently accurate for your needs.

Classifier training output

After Amazon Comprehend completes the custom classifier model training, it creates output files
in the Amazon S3 output location that you specified in the CreateDocumentClassifier API request
or the equivalent console request.

Classifier training output 167

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateDocumentClassifier.html

Amazon Comprehend Developer Guide

Amazon Comprehend creates a confusion matrix when you train a plain-text model or a native
document model. It can create additional output files when you train a native document model.

Topics

• Confusion matrix

• Additional outputs for native document models

Confusion matrix

When you train a custom classifier model, Amazon Comprehend creates a confusion matrix that
provides metrics on how well the model performed in training. This matrix shows a matrix of labels
that the model predicted, compared to the actual document labels. Amazon Comprehend uses a
portion of the training data to create the confusion matrix.

A confusion matrix provides an indication of which classes could use more data to improve model
performance. A class with a high fraction of correct predictions has the highest number of results
along the diagonal of the matrix. If the number on the diagonal is a lower number, the class has a
lower fraction of correct predictions. You can add more training examples for this class and train
the model again. For example, if 40 percent of label A samples get classified as label D, adding
more samples for label A and label D enhances the classifier's performance.

After Amazon Comprehend creates the classifier model, the confusion matrix is available in the
confusion_matrix.json file in the S3 output location.

The format of the confusion matrix varies, depending on whether you trained your classifier using
multi-class mode or multi-label mode.

Topics

• Confusion matrix for multi-class mode

• Confusion matrix for multi-label mode

Confusion matrix for multi-class mode

In multi-class mode, the individual classes are mutually exclusive, so classification assigns one label
to each document. For example, an animal can be a dog or a cat, but not both at the same time.

Consider the following example of a confusion matrix for a multi-class trained classifier:

 A B X Y <-(predicted label)

Classifier training output 168

Amazon Comprehend Developer Guide

A 1 2 0 4
B 0 3 0 1
X 0 0 1 0
Y 1 1 1 1
^
|
(actual label)

In this case, the model predicted the following:

• One "A" label was accurately predicted, two "A" labels were incorrectly predicted as "B" labels,
and four "A" labels were incorrectly predicted as "Y" labels.

• Three "B" labels were accurately predicted, and one "B" label was incorrectly predicted as a "Y"
label.

• One "X" was accurately predicted.

• One "Y" label was accurately predicted, one was incorrectly predicted as an "A" label, one was
incorrectly predicted as a "B" label, and one was incorrectly predicted as an "X" label.

The diagonal line in the matrix (A:A, B:B, X:X, and Y:Y) shows the accurate predictions. The
prediction errors are the values outside of the diagonal. In this case, the matrix shows the following
prediction error rates:

• A labels: 86%

• B labels: 25%

• X labels: 0%

• Y labels: 75%

The classifier returns the confusion matrix as a file in JSON format. The following JSON file
represents the matrix for the previous example.

{
 "type": "multi_class",
 "confusion_matrix": [
 [1, 2, 0,4],
 [0, 3, 0, 1],
 [0, 0, 1, 0],
 [1, 1, 1, 1]],
 "labels": ["A", "B", "X", "Y"],

Classifier training output 169

Amazon Comprehend Developer Guide

 "all_labels": ["A", "B", "X", "Y"]
}

Confusion matrix for multi-label mode

In multi-label mode, classification can assign one or more classes to a document. Consider the
following example of a confusion matrix for a multi-class trained classifier.

In this example, there are three possible labels: Comedy, Action, and Drama. The multi-label
confusion matrix creates one 2x2 matrix for each label.

Comedy Action Drama
 No Yes No Yes No Yes <-(predicted label)

 No 2 1 No 1 1 No 3 0

Yes 0 2 Yes 2 1 Yes 1 1
 ^ ^ ^
 | | |
 |-----------(was this label actually used)--------|

In this case, the model returned the following for the Comedy label:

• Two instances where a Comedy label was accurately predicted to be present. True positive (TP).

• Two instances where a Comedy label was accurately predicted to be absent. True negative (TN).

• Zero instances where a Comedy label was incorrectly predicted to be present. False positive (FP).

• One instance where a Comedy label was incorrectly predicted to be absent. False negative (FN).

As with a multi-class confusion matrix, the diagonal line in each matrix shows the accurate
predictions.

In this case, the model accurately predicted Comedy labels 80% of the time (TP plus TN) and
incorrectly predicted them 20% of the time (FP plus FN).

The classifier returns the confusion matrix as a file in JSON format. The following JSON file
represents the matrix for the previous example.

{
"type": "multi_label",

Classifier training output 170

Amazon Comprehend Developer Guide

"confusion_matrix": [
 [[2, 1],
 [0, 2]],
 [[1, 1],
 [2, 1]],
 [[3, 0],
 [1, 1]]
],
"labels": ["Comedy", "Action", "Drama"]
"all_labels": ["Comedy", "Action", "Drama"]
}

Additional outputs for native document models

Amazon Comprehend can create additional output files when you train a native document model.

Amazon Textract output

If Amazon Comprehend invoked the Amazon Textract APIs to extract text for any of the training
documents, it saves the Amazon Textract output files in the S3 output location. It uses the
following directory structure:

• Training documents:

amazon-textract-output/train/<file_name>/<page_num>/textract_output.json

• Test documents:

amazon-textract-output/test/<file_name>/<page_num>/textract_output.json

Amazon Comprehend populates the test folder if you provided test documents in the API request.

Document annotation failures

Amazon Comprehend creates the following files in the Amazon S3 output location (in the
skipped_documents/ folder) if there are any failed annotations:

• failed_annotations_train.jsonl

File exists if any annotations failed in the training data.

• failed_annotations_test.jsonl

File exists if the request included test data and any annotations failed in the test data.

Classifier training output 171

Amazon Comprehend Developer Guide

The failed annotation files are JSONL files with the following format:

{
 "File": "String", "Page": Number, "ErrorCode": "...", "ErrorMessage": "..."}
 {"File": "String", "Page": Number, "ErrorCode": "...", "ErrorMessage": "..."
 }

Custom classifier metrics

Amazon Comprehend provides metrics to help you estimate how well a custom classifier performs.
Amazon Comprehend calculates the metrics using the test data from the classifier training job. The
metrics accurately represent the performance of the model during training, so they approximate
the model performance for classification of similar data.

Use API operations such as DescribeDocumentClassifier to retrieve the metrics for a custom
classifier.

Note

Refer to Metrics: Precision, recall, and FScore for an understanding of the underlying
Precision, Recall, and F1 score metrics. These metrics are defined at a class level. Amazon
Comprehend uses macro averaging to combine these metrics into the test set P,R, and F1,
as discussed in the following.

Topics

• Metrics

• Improving your custom classifier's performance

Metrics

Amazon Comprehend supports the following metrics:

Topics

• Accuracy

• Precision (macro precision)

• Recall (macro recall)

• F1 score (macro F1 score)

Metrics 172

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDocumentClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html

Amazon Comprehend Developer Guide

• Hamming loss

• Micro precision

• Micro recall

• Micro F1 score

To view the metrics for a Classifier, open the Classifier Details page in the console.

Accuracy

Accuracy indicates the percentage of labels from the test data that the model predicted accurately.
To compute accuracy, divide the number of accurately predicted labels in the test documents by
the total number of labels in the test documents.

For example

Actual label Predicted label Accurate/Incorrect

1 1 Accurate

0 1 Incorrect

2 3 Incorrect

3 3 Accurate

2 2 Accurate

1 1 Accurate

Metrics 173

Amazon Comprehend Developer Guide

Actual label Predicted label Accurate/Incorrect

3 3 Accurate

The accuracy consists of the number of accurate predictions divided by the number of overall test
samples = 5/7 = 0.714, or 71.4%

Precision (macro precision)

Precision is a measure of the usefulness of the classifier results in the test data. It's defined as the
number of documents accurately classified, divided by the total number of classifications for the
class. High precision means that the classifier returned significantly more relevant results than
irrelevant ones.

The Precision metric is also known as Macro Precision.

The following example shows precision results for a test set.

Label Sample size Label precision

Label_1 400 0.75

Label_2 300 0.80

Label_3 30000 0.90

Label_4 20 0.50

Label_5 10 0.40

The Precision (Macro Precision) metric for the model is therefore:

Macro Precision = (0.75 + 0.80 + 0.90 + 0.50 + 0.40)/5 = 0.67

Recall (macro recall)

This indicates the percentage of correct categories in your text that the model can predict. This
metric comes from averaging the recall scores of all available labels. Recall is a measure of how
complete the classifier results are for the test data.

Metrics 174

Amazon Comprehend Developer Guide

High recall means that the classifier returned most of the relevant results.

The Recall metric is also known as Macro Recall.

The following example shows recall results for a test set.

Label Sample size Label recall

Label_1 400 0.70

Label_2 300 0.70

Label_3 30000 0.98

Label_4 20 0.80

Label_5 10 0.10

The Recall (Macro Recall) metric for the model is therefore:

Macro Recall = (0.70 + 0.70 + 0.98 + 0.80 + 0.10)/5 = 0.656

F1 score (macro F1 score)

The F1 score is derived from the Precision and Recall values. It measures the overall accuracy
of the classifier. The highest score is 1, and the lowest score is 0.

Amazon Comprehend calculates the Macro F1 Score. It's the unweighted average of the label F1
scores. Using the following test set as an example:

Label Sample size Label F1 score

Label_1 400 0.724

Label_2 300 0.824

Label_3 30000 0.94

Label_4 20 0.62

Metrics 175

Amazon Comprehend Developer Guide

Label Sample size Label F1 score

Label_5 10 0.16

The F1 Score (Macro F1 Score) for the model is calculated as follows:

Macro F1 Score = (0.724 + 0.824 + 0.94 + 0.62 + 0.16)/5 = 0.6536

Hamming loss

The fraction of labels that are incorrectly predicted. Also seen as the fraction of incorrect labels
compared to the total number of labels. Scores closer to zero are better.

Micro precision

Original:

Similar to the precision metric, except that micro precision is based on the overall score of all
precision scores added together.

Micro recall

Similar to the recall metric, except that micro recall is based on the overall score of all recall scores
added together.

Micro F1 score

The Micro F1 score is a combination of the Micro Precision and Micro Recall metrics.

Improving your custom classifier's performance

The metrics provide an insight into how your custom classifier performs during a classification job.
If the metrics are low, the classification model might not be effective for your use case. You have
several options to improve your classifier performance:

1. In your training data, provide concrete examples that define clear separation of the categories.
For example, provide documents that use unique words/sentences to represent the category.

2. Add more data for under-represented labels in your training data.

3. Try to reduce skew in the categories. If the largest label in your data has more than 10 times
the documents in the smallest label, try increasing the number of documents for the smallest

Metrics 176

Amazon Comprehend Developer Guide

label. Make sure to reduce the skew ratio to at most 10:1 between highly represented and least
represented classes. You can also try removing input documents from the highly represented
classes.

Running real-time analysis

After you train a custom classifier, you can classify documents using real-time analysis. Real-
time analysis takes a single document as input and returns the results synchronously. Custom
classification accepts a variety of document types as inputs for real-time analysis. For details, see
Inputs for real-time custom analysis.

If you plan to analyze image files or scanned PDF documents, your IAM policy must
grant permissions to use two Amazon Textract API methods (DetectDocumentText and
AnalyzeDocument). Amazon Comprehend invokes these methods during text extraction. For an
example policy, see Permissions required to perform document analysis actions.

You must create an endpoint to run real-time analysis using a custom classification model.

Topics

• Real-time analysis for custom classification (console)

• Real-time analysis for custom classification (API)

• Outputs for real-time analysis

Real-time analysis for custom classification (console)

You can use the Amazon Comprehend console to run real-time analysis using a custom
classification model.

You create an endpoint to run the real-time analysis. An endpoint includes managed resources that
makes your custom model available for real-time inference.

For information about provisioning endpoint throughput, and the associated costs, see Using
Amazon Comprehend endpoints.

Topics

• Creating an endpoint for custom classification

• Running real-time custom classification

Running real-time analysis 177

Amazon Comprehend Developer Guide

Creating an endpoint for custom classification

To create an endpoint (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Endpoints and choose the Create endpoint button. A Create
endpoint screen opens.

3. Give the endpoint a name. The name must be unique within the current Region and account.

4. Choose a custom model that you want to attach the new endpoint to. From the dropdown, you
can search by model name.

Note

You must create a model before you can attach an endpoint to it. If you don't have a
model yet, see Training classification models.

5. (Optional) to add a tag to the endpoint, enter a key-value pair under Tags and choose Add tag.
To remove this pair before creating the endpoint, choose Remove tag

6. Enter the number of inference units (IUs) to assign to the endpoint. Each unit represents a
throughput of 100 characters per second for up to two documents per second. For information
about endpoint throughput, see Using Amazon Comprehend endpoints.

7. (Optional) If you are creating a new endpoint, you have the option to use the IU estimator.
Depending on the throughput, or the number of characters you want to analyze per second,
it can be hard to know how many inference units you need. This optional step can help you
determine how the number of IUs to request.

8. From the Purchase summary, review your estimated hourly, daily, and monthly endpoint cost.

9. Select the check box if you understand that your account incurs charges for the endpoint from
the time it starts until you delete it.

10. Choose Create endpoint

Running real-time custom classification

Once you've created an endpoint, you can run real-time analysis using your custom model. There
are two ways to run real-time analysis from the console. You can input text or upload a file, as
shown in the following.

Real-time analysis (console) 178

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

To run real-time analysis using a custom model (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Real-time analysis.

3. Under Input type, choose Custom for Analysis type.

4. Under Custom model type, choose Custom classification.

5. For Endpoint, choose the endpoint that you want to use. This endpoint links to a specific
custom model.

6. To specify the input data for analysis, you can input text or upload a file.

• To enter text:

a. Choose Input text.

b. Enter the text that you want to analyze.

• To upload a file:

a. Choose Upload file and enter the file name to upload.

b. (Optional) Under Advanced read actions, you can override the default actions for text
extraction. For details, see Setting text extraction options

For best results, match the type of input to the classifier model type. The console displays
a warning if you submit a native document to a plain-text model, or plain text to a native
document model. For more information, see Training classification models.

7. Choose Analyze. Amazon Comprehend analyzes the input data using your custom model.
Amazon Comprehend displays the discovered classes, along with a confidence assessment for
each class.

Real-time analysis for custom classification (API)

You can use the Amazon Comprehend API to run real-time classification with a custom model. First,
you create an endpoint to run the real-time analysis. After you create the endpoint, you run the
real-time classification.

The examples in this section use command formats for Unix, Linux, and macOS. For Windows,
replace the backslash (\) Unix continuation character at the end of each line with a caret (^).

Real-time analysis (API) 179

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

For information about provisioning endpoint throughput, and the associated costs, see Using
Amazon Comprehend endpoints.

Topics

• Creating an endpoint for custom classification

• Running real-time custom classification

Creating an endpoint for custom classification

The following example shows the CreateEndpoint API operation using the AWS CLI.

aws comprehend create-endpoint \
 --desired-inference-units number of inference units \
 --endpoint-name endpoint name \
 --model-arn arn:aws:comprehend:region:account-id:model/example \
 --tags Key=My1stTag,Value=Value1

Amazon Comprehend responds with the following:

{
 "EndpointArn": "Arn"
}

Running real-time custom classification

After you create an endpoint for your custom classification model, you use the endpoint to run the
ClassifyDocument API operation. You can provide text input using the text or bytes parameter.
Enter the other input types using the bytes parameter.

For image files and PDF files, you can use the DocumentReaderConfig parameter to override the
default text extraction actions. For details, see Setting text extraction options

For best results, match the type of input to the classifier model type. The API response includes
a warning if you submit a native document to a plain-text model, or a plain-text file to a native
document model. For more information, see Training classification models.

Using the AWS Command Line Interface

The following examples demonstrate how to use the classify-document CLI command.

Real-time analysis (API) 180

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

Classify text using the AWS CLI

The following example runs real-time classification on a block of text.

aws comprehend classify-document \
 --endpoint-arn arn:aws:comprehend:region:account-id:endpoint/endpoint name \
 --text 'From the Tuesday, April 16th, 1912 edition of The Guardian newspaper: The
 maiden voyage of the White Star liner Titanic,
 the largest ship ever launched ended in disaster. The Titanic started her trip
 from Southampton for New York on Wednesday. Late
 on Sunday night she struck an iceberg off the Grand Banks of Newfoundland. By
 wireless telegraphy she sent out signals of distress,
 and several liners were near enough to catch and respond to the call.'

Amazon Comprehend responds with the following:

{
 "Classes": [
 {
 "Name": "string",
 "Score": 0.9793661236763
 }
]
 }

Classify a semi-structured document using the AWS CLI

To analyze custom classification for a PDF, Word, or image file, run the classify-document
command with the input file in the bytes parameter.

The following example uses an image as the input file. It uses the fileb option to base-64 encode
the image file bytes. For more information, see Binary large objects in the AWS Command Line
Interface User Guide.

This example also passes in a JSON file named config.json to set the text extraction options.

$ aws comprehend classify-document \
> --endpoint-arn arn \
> --language-code en \
> --bytes fileb://image1.jpg \
> --document-reader-config file://config.json

Real-time analysis (API) 181

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-types.html#parameter-type-blob

Amazon Comprehend Developer Guide

The config.json file contains the following content.

 {
 "DocumentReadMode": "FORCE_DOCUMENT_READ_ACTION",
 "DocumentReadAction": "TEXTRACT_DETECT_DOCUMENT_TEXT"
 }

Amazon Comprehend responds with the following:

{
 "Classes": [
 {
 "Name": "string",
 "Score": 0.9793661236763
 }
]
 }

For more information, see ClassifyDocument in the Amazon Comprehend API Reference.

Outputs for real-time analysis

Outputs for text inputs

For text inputs, the output includes the list of classes or labels identified by the classifier analysis.
The following example shows a list with two classes.

"Classes": [
 {
 "Name": "abc",
 "Score": 0.2757999897003174,
 "Page": 1
 },
 {
 "Name": "xyz",
 "Score": 0.2721000015735626,
 "Page": 1

Outputs for real-time analysis 182

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

 }
]

Outputs for semi-structured inputs

For a semi-structured input document, or a text file, the output can include the following
additional fields:

• DocumentMetadata – Extraction information about the document. The metadata includes a list
of pages in the document, with the number of characters extracted from each page. This field is
present in the response if the request included the Byte parameter.

• DocumentType – The document type for each page in the input document. This field is present in
the response if the request included the Byte parameter.

• Errors – Page-level errors that the system detected while processing the input document. The
field is empty if the system encountered no errors.

• Warnings – Warnings detected while processing the input document. The response includes a
warning if there is a mismatch between the input document type and the model type associated
with the endpoint that you specified. The field is empty if the system generated no warnings.

For more details about these output fields, see ClassifyDocument in the Amazon Comprehend API
Reference.

The following example shows the output for a one-page native PDF input document.

{
 "Classes": [
 {
 "Name": "123",
 "Score": 0.39570000767707825,
 "Page": 1
 },
 {
 "Name": "abc",
 "Score": 0.2757999897003174,
 "Page": 1
 },
 {
 "Name": "xyz",
 "Score": 0.2721000015735626,

Outputs for real-time analysis 183

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

 "Page": 1
 }
],
 "DocumentMetadata": {
 "Pages": 1,
 "ExtractedCharacters": [
 {
 "Page": 1,
 "Count": 2013
 }
]
 },
 "DocumentType": [
 {
 "Page": 1,
 "Type": "NATIVE_PDF"
 }
]
}

Running asynchronous jobs

After you train a custom classifier, you can use asynchronous jobs to analyze large documents or
multiple documents in one batch.

Custom classification accepts a variety of input document types. For details, see Inputs for
asynchronous custom analysis.

If you plan to analyze image files or scanned PDF documents, your IAM policy must
grant permissions to use two Amazon Textract API methods (DetectDocumentText and
AnalyzeDocument). Amazon Comprehend invokes these methods during text extraction. For an
example policy, see Permissions required to perform document analysis actions.

For classification of semi-structured documents (image, PDF, or Docx files) using a
plain-text model, use the one document per file input format. Also, include the
DocumentReaderConfig parameter in your StartDocumentClassificationJob request.

Topics

• File formats for async analysis

• Analysis jobs for custom classification (console)

Running async analysis jobs 184

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html

Amazon Comprehend Developer Guide

• Analysis jobs for custom classification (API)

• Outputs for asynchronous analysis jobs

File formats for async analysis

When you run async analysis with your model, you have a choice of formats for input documents:
One document per line or one document per file. The format you use depends on the
type of documents you want to analyze, as described in the following table.

Description Format

The input contains multiple files. Each file
contains one input document. This format is
best for collections of large documents, such
as newspaper articles or scientific papers.

Also, use this format for semi-structured
documents (image, PDF, or Docx files) using a
native document classifier.

One document per file

The input is one or more files. Each line in
the file is a separate input document. This
format is best for short documents, such as
text messages or social media posts.

One document per line

One document per file

With one document per file format, each file represents one input document.

One document per line

With the One document per line format, each document is placed on a separate line and no
header is used. The label is not included on each line (since you don't yet know the label for the
document). Each line of the file (the end of the individual document) must end with a line feed (LF,
\n), a carriage return (CR, \r), or both (CRLF, \r\n). Don't use the UTF-8 line separator (u+2028) to
end a line.

The following example shows the format of the input file.

Input file formats 185

Amazon Comprehend Developer Guide

Text of document 1 \n
Text of document 2 \n
Text of document 3 \n
Text of document 4 \n

For either format, use UTF-8 encoding for text files. After you prepare the files, place them in the
S3 bucket that you're using for input data.

When you start a classification job, you specify this Amazon S3 location for your input data. The
URI must be in the same Region as the API endpoint that you are calling. The URI can point to
a single file (as when using the "one document per line" method, or it can be the prefix for a
collection of data files.

For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon
Comprehend uses that file as input. If more than one file begins with the prefix, Amazon
Comprehend uses all of them as input.

Grant Amazon Comprehend access to the S3 bucket that contains your document collection
and output files. For more information, see Role-based permissions required for asynchronous
operations.

Analysis jobs for custom classification (console)

After you create and train a custom document classifier, you can use the console to run custom
classification jobs with the model.

To create a custom classification job (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Analysis jobs and then choose Create job.

3. Give the classification job a name. The name must be unique to your account and current
Region.

4. Under Analysis type, choose Custom classification.

5. From Select classifier, choose the custom classifier to use.

6. (Optional) If you choose to encrypt the data that Amazon Comprehend uses while processing
your job, choose Job encryption. Then choose whether to use a KMS key associated with the
current account, or one from another account.

Analysis jobs (console) 186

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

• If you are using a key associated with the current account, choose the key ID for KMS key ID.

• If you are using a key associated with a different account, enter the ARN for the key ID under
KMS key ARN.

Note

For more information on creating and using KMS keys and the associated encryption,
see Key management service (KMS).

7. Under Input data, enter the location of the Amazon S3 bucket that contains your input
documents or navigate to it by choosing Browse S3. This bucket must be in the same Region
as the API that you are calling. The IAM role that you're using for access permissions for the
classification job must have reading permissions for the S3 bucket.

To achieve the highest level of accuracy in training a model, match the type of input to the
classifier model type. The classifier job returns a warning if you submit native documents to a
plain-text model, or plain text documents to a native document model. For more information,
see Training classification models.

8. (Optional) For Input format, you can choose the format of the input documents. The format
can be one document per file, or one document per line in a single file. One document per line
applies only to text documents.

9. (Optional) For Document read mode, you can override the default text extraction actions. For
more information, see Setting text extraction options.

10. Under Output data, enter the location of the Amazon S3 bucket where Amazon Comprehend
should write the job's output data or navigate to it by choosing Browse S3. This bucket must
be in the same Region as the API that you are calling. The IAM role that you're using for access
permissions for the classification job must have write permissions for the S3 bucket.

11. (Optional) If you choose to encrypt the output result from your job, choose Encryption. Then
choose whether to use a KMS key associated with the current account, or one from another
account.

• If you are using a key associated with the current account, choose the key alias or ID for KMS
key ID.

• If you are using a key associated with a different account, enter the ARN for the key alias or
ID under KMS key ID.

Analysis jobs (console) 187

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

12. (Optional) To launch your resources into Amazon Comprehend from a VPC, enter the VPC ID
under VPC or choose the ID from the drop-down list.

1. Choose the subnet under Subnet(s). After you select the first subnet, you can choose
additional ones.

2. Under Security Group(s), choose the security group to use if you specified one. After you
select the first security group, you can choose additional ones.

Note

When you use a VPC with your classification job, the DataAccessRole used for the
Create and Start operations must grant permissions to the VPC that accesses the
output bucket.

13. Choose Create job to create the document classification job.

Analysis jobs for custom classification (API)

After you create and train a custom document classifier, you can use the classifier to run analysis
jobs.

Use the StartDocumentClassificationJob operation to start classifying unlabeled documents. You
specify the S3 bucket that contains the input documents, the S3 bucket for the output documents,
and the classifier to use.

To achieve the highest level of accuracy in training a model, match the type of input to the
classifier model type. The classifier job returns a warning if you submit native documents to a
plain-text model, or plain text documents to a native document model. For more information, see
Training classification models.

StartDocumentClassificationJob is asynchronous. Once you have started the job, use the
DescribeDocumentClassificationJob operation to monitor its progress. When the Status field in
the response shows COMPLETED, you can access the output in the location that you specified.

Topics

• Using the AWS Command Line Interface

• Using the AWS SDK for Java or SDK for Python

Analysis jobs (API) 188

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDocumentClassificationJob.html

Amazon Comprehend Developer Guide

Using the AWS Command Line Interface

The following examples the StartDocumentClassificationJob operation, and other custom
classifier APIs with the AWS CLI.

The following examples use the command format for Unix, Linux, and macOS. For Windows,
replace the backslash (\) Unix continuation character at the end of each line with a caret (^).

Run a custom classification job using the StartDocumentClassificationJob operation.

aws comprehend start-document-classification-job \
 --region region \
 --document-classifier-arn arn:aws:comprehend:region:account number:document-
classifier/testDelete \
 --input-data-config S3Uri=s3://S3Bucket/docclass/file
 name,InputFormat=ONE_DOC_PER_LINE \
 --output-data-config S3Uri=s3://S3Bucket/output \
 --data-access-role-arn arn:aws:iam::account number:role/resource name

Get information on a custom classifier with the job id using the
DescribeDocumentClassificationJob operation.

aws comprehend describe-document-classification-job \
 --region region \
 --job-id job id

List all custom classification jobs in your account using the ListDocumentClassificationJobs
operation.

aws comprehend list-document-classification-jobs
 --region region

Using the AWS SDK for Java or SDK for Python

For SDK examples of how to start a custom classifier job, see Start an Amazon Comprehend
document classification job using an AWS SDK.

Outputs for asynchronous analysis jobs

After an analysis job completes, it stores the results in the S3 bucket that you specified in the
request.

Outputs for analysis jobs 189

Amazon Comprehend Developer Guide

Outputs for text inputs

For either format of text input documents (multi-class or multi-label), the job output consists of a
single file named output.tar.gz. It's a compressed archive file that contains a text file with the
output.

Multi-class output

When you use a classifier trained in multi-class mode, your results show classes. Each of these
classes is the class used to create the set of categories when training your classifier.

For more details about these output fields, see ClassifyDocument in the Amazon Comprehend API
Reference.

The following examples use the following mutually exclusive classes.

DOCUMENTARY
SCIENCE_FICTION
ROMANTIC_COMEDY
SERIOUS_DRAMA
OTHER

If your input data format is one document per line, the output file contains one line for each line
in the input. Each line includes the file name, the zero-based line number of the input line, and the
class or classes found in the document. It ends with the confidence that Amazon Comprehend has
that the individual instance was correctly classified.

For example:

{"File": "file1.txt", "Line": "0", "Classes": [{"Name": "Documentary", "Score":
 0.8642}, {"Name": "Other", "Score": 0.0381}, {"Name": "Serious_Drama", "Score":
 0.0372}]}
{"File": "file1.txt", "Line": "1", "Classes": [{"Name": "Science_Fiction", "Score":
 0.5}, {"Name": "Science_Fiction", "Score": 0.0381}, {"Name": "Science_Fiction",
 "Score": 0.0372}]}
{"File": "file2.txt", "Line": "2", "Classes": [{"Name": "Documentary", "Score": 0.1},
 {"Name": "Documentary", "Score": 0.0381}, {"Name": "Documentary", "Score": 0.0372}]}
{"File": "file2.txt", "Line": "3", "Classes": [{"Name": "Serious_Drama", "Score":
 0.3141}, {"Name": "Other", "Score": 0.0381}, {"Name": "Other", "Score": 0.0372}]}

Outputs for analysis jobs 190

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

If your input data format is one document per file, the output file contains one line for each
document. Each line has the name of the file and the class or classes found in the document. It
ends with the confidence that Amazon Comprehend classified the individual instance accurately.

For example:

{"File": "file0.txt", "Classes": [{"Name": "Documentary", "Score": 0.8642}, {"Name":
 "Other", "Score": 0.0381}, {"Name": "Serious_Drama", "Score": 0.0372}]}
{"File": "file1.txt", "Classes": [{"Name": "Science_Fiction", "Score": 0.5}, {"Name":
 "Science_Fiction", "Score": 0.0381}, {"Name": "Science_Fiction", "Score": 0.0372}]}
{"File": "file2.txt", "Classes": [{"Name": "Documentary", "Score": 0.1}, {"Name":
 "Documentary", "Score": 0.0381}, {"Name": "Domentary", "Score": 0.0372}]}
{"File": "file3.txt", "Classes": [{"Name": "Serious_Drama", "Score": 0.3141}, {"Name":
 "Other", "Score": 0.0381}, {"Name": "Other", "Score": 0.0372}]}

Multi-label output

When you use a classifier trained in multi-label mode, your results show labels. Each of these
labels is the label used to create the set of categories when training your classifier.

The following examples use these unique labels.

SCIENCE_FICTION
ACTION
DRAMA
COMEDY
ROMANCE

If your input data format is one document per line, the output file contains one line for each line
in the input. Each line includes the file name, the zero-based line number of the input line, and the
class or classes found in the document. It ends with the confidence that Amazon Comprehend has
that the individual instance was correctly classified.

For example:

{"File": "file1.txt", "Line": "0", "Labels": [{"Name": "Action", "Score": 0.8642},
 {"Name": "Drama", "Score": 0.650}, {"Name": "Science Fiction", "Score": 0.0372}]}
{"File": "file1.txt", "Line": "1", "Labels": [{"Name": "Comedy", "Score": 0.5},
 {"Name": "Action", "Score": 0.0381}, {"Name": "Drama", "Score": 0.0372}]}
{"File": "file1.txt", "Line": "2", "Labels": [{"Name": "Action", "Score": 0.9934},
 {"Name": "Drama", "Score": 0.0381}, {"Name": "Action", "Score": 0.0372}]}

Outputs for analysis jobs 191

Amazon Comprehend Developer Guide

{"File": "file1.txt", "Line": "3", "Labels": [{"Name": "Romance", "Score": 0.9845},
 {"Name": "Comedy", "Score": 0.8756}, {"Name": "Drama", "Score": 0.7723}, {"Name":
 "Science_Fiction", "Score": 0.6157}]}

If your input data format is one document per file, the output file contains one line for each
document. Each line has the name of the file and the class or classes found in the document. It
ends with the confidence that Amazon Comprehend classified the individual instance accurately.

For example:

{"File": "file0.txt", "Labels": [{"Name": "Action", "Score": 0.8642}, {"Name": "Drama",
 "Score": 0.650}, {"Name": "Science Fiction", "Score": 0.0372}]}
{"File": "file1.txt", "Labels": [{"Name": "Comedy", "Score": 0.5}, {"Name": "Action",
 "Score": 0.0381}, {"Name": "Drama", "Score": 0.0372}]}
{"File": "file2.txt", "Labels": [{"Name": "Action", "Score": 0.9934}, {"Name": "Drama",
 "Score": 0.0381}, {"Name": "Action", "Score": 0.0372}]}
{"File": "file3.txt”, "Labels": [{"Name": "Romance", "Score": 0.9845}, {"Name":
 "Comedy", "Score": 0.8756}, {"Name": "Drama", "Score": 0.7723}, {"Name":
 "Science_Fiction", "Score": 0.6157}]}

Outputs for semi-structured input documents

For semi-structured input documents, the output can include the following additional fields:

• DocumentMetadata – Extraction information about the document. The metadata includes a list
of pages in the document, with the number of characters extracted from each page. This field is
present in the response if the request included the Byte parameter.

• DocumentType – The document type for each page in the input document. This field is present in
the response if the request included the Byte parameter.

• Errors – Page-level errors that the system detected while processing the input document. The
field is empty if the system encountered no errors.

For more details about these output fields, see ClassifyDocument in the Amazon Comprehend API
Reference.

The following example shows output for a two-page scanned PDF file.

[{ #First page output

Outputs for analysis jobs 192

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

 "Classes": [
 {
 "Name": "__label__2 ",
 "Score": 0.9993996620178223
 },
 {
 "Name": "__label__3 ",
 "Score": 0.0004330444789957255
 }
],
 "DocumentMetadata": {
 "PageNumber": 1,
 "Pages": 2
 },
 "DocumentType": "ScannedPDF",
 "File": "file.pdf",
 "Version": "VERSION_NUMBER"
},
#Second page output
{
 "Classes": [
 {
 "Name": "__label__2 ",
 "Score": 0.9993996620178223
 },
 {
 "Name": "__label__3 ",
 "Score": 0.0004330444789957255
 }
],
 "DocumentMetadata": {
 "PageNumber": 2,
 "Pages": 2
 },
 "DocumentType": "ScannedPDF",
 "File": "file.pdf",
 "Version": "VERSION_NUMBER"
}]

Outputs for analysis jobs 193

Amazon Comprehend Developer Guide

Custom entity recognition

Custom entity recognition extends the capability of Amazon Comprehend by helping you identify
your specific new entity types that are not in the preset generic entity types. This means that you
can analyze documents and extract entities like product codes or business-specific entities that fit
your particular needs.

Building an accurate custom entity recognizer on your own can be a complex process, requiring
preparation of large sets of manually annotated training documents and the selection of the
right algorithms and parameters for model training. Amazon Comprehend helps to reduce the
complexity by providing automatic annotation and model development to create a custom entity
recognition model.

Creating a custom entity recognition model is a more effective approach than using string
matching or regular expressions to extract entities from documents. For example, to extract
ENGINEER names in a document, it is difficult to enumerate all possible names. Additionally,
without context, it is challenging to distinguish between ENGINEER names and ANALYST names.
A custom entity recognition model can learn the context where those names are likely to appear.
Additionally, string matching will not detect entities that have typos or follow new naming
conventions, while this is possible using a custom model.

You have two options for creating a custom model:

1. Annotations – provide a data set containing annotated entities for model training.

2. Entity lists (plaintext only) – provide a list of entities and their type label (such as
PRODUCT_CODES and a set of unannotated documents containing those entities for model
training.

When you create a custom entity recognizer using annotated PDF files, you can use that recognizer
with a variety of input file formats: plaintext, image files (JPG, PNG, TIFF), PDF files, and Word
documents, with no pre-processing or doc flattening required. Amazon Comprehend doesn't
support annotation of image files or Word documents.

Note

A custom entity recognizer using annotated PDF files supports English documents only.

194

https://docs.aws.amazon.com/comprehend/latest/dg/how-entities.html

Amazon Comprehend Developer Guide

You can train a model on up to 25 custom entities at once. For more details, see the Guidelines and
quotas page.

After your model is trained, you can use the model for real-time entity detection and in entity
detection jobs.

Topics

• Preparing entity recognizer training data

• Training custom entity recognizer models

• Running real-time custom recognizer analysis

• Running analysis jobs for custom entity recognition

Preparing entity recognizer training data

To train a successful custom entity recognition model, it's important to supply the model trainer
with high quality data as input. Without good data, the model won't learn how to correctly identify
entities.

You can choose one of two ways to provide data to Amazon Comprehend in order to train a custom
entity recognition model:

• Entity list – Lists the specific entities so Amazon Comprehend can train to identify your custom
entities. Note: Entity lists can only be used for plaintext documents.

• Annotations – Provides the location of your entities in a number of documents so Amazon
Comprehend can train on both the entity and its context. To create a model for analyzing image
files, PDFs, or Word documents, you must train your recognizer using PDF annotations.

In both cases, Amazon Comprehend learns about the kind of documents and the context where
the entities occur and builds a recognizer that can generalize to detect the new entities when you
analyze documents.

When you create a custom model (or train a new version), you can provide a test dataset. If you
do not provide test data, Amazon Comprehend reserves 10% of the input documents to test the
model. Amazon Comprehend trains the model with the remaining documents.

If you provide a test dataset for your annotations training set, the test data must include at least
one annotation for each of the entity types specified in the creation request.

Preparing the training data 195

https://docs.aws.amazon.com/comprehend/latest/dg/guidelines-and-limits.html
https://docs.aws.amazon.com/comprehend/latest/dg/guidelines-and-limits.html

Amazon Comprehend Developer Guide

Topics

• When to use annotations vs entity lists

• Entity lists (plaintext only)

• Annotations

When to use annotations vs entity lists

Creating annotations takes more work than creating an entity list, but the resulting model can
be significantly more accurate. Using an entity list is quicker and less work-intensive, but the
results are less refined and less accurate. This is because the annotations provide more context for
Amazon Comprehend to use when training the model. Without that context, Amazon Comprehend
will have a higher number of false positives when trying to identify the entities.

There are scenarios when it makes more business sense to avoid the higher expense and workload
of using annotations. For example, the name John Johnson is significant to your search, but
whether it's the exact individual isn't relevant. Or the metrics when using the entity list are good
enough to provide you with the recognizer results that you need. In such instances, using an entity
list instead can be the more effective choice.

We recommend using the annotations mode in the following cases:

• If you plan to run inferences for image files, PDFs, or Word documents. In this scenario, you train
a model using annotated PDF files and use the model to run inference jobs for image files, PDFs,
and Word documents.

• When the meaning of the entities could be ambiguous and context-dependent. For example, the
term Amazon could either refer to the river in Brazil, or the online retailer Amazon.com. When
you build a custom entity recognizer to identify business entities such as Amazon, you should
use annotations instead of an entity list because this method is better able to use context to find
entities.

• When you are comfortable setting up a process to acquire annotations, which can require some
effort.

We recommend using an entity list in the following cases:

• When you already have a list of entities or when it is relatively easy to compose a comprehensive
list of entities. If you use an entity list, the list should be complete or at least covers the majority
of valid entities that might appear in the documents you provide for training.

When to use annotations vs entity lists 196

Amazon Comprehend Developer Guide

• For first-time users, it is generally recommended to use an entity list because this requires a
smaller effort than constructing annotations. However, it is important to note that the trained
model might not be as accurate as if you used annotations.

Entity lists (plaintext only)

To train a model using an entity list, you provide two pieces of information: a list of the entity
names with their corresponding custom entity types and a collection of unannotated documents in
which you expect your entities to appear.

When you provide an Entity List, Amazon Comprehend uses an intelligent algorithm to detect
occurrences of the entity in the documents to serve as the basis for training the custom entity
recognizer model.

For entity lists, provide at least 25 entity matches per entity type in the entity list.

An entity list for custom entity recognition needs a comma-separated value (CSV) file, with the
following columns:

• Text— The text of an entry example exactly as seen in the accompanying document corpus.

• Type—The customer-defined entity type. Entity types must an uppercase, underscore separated
string such as MANAGER or SENIOR_MANAGER. Up to 25 entity types can be trained per model.

The file documents.txt contains four lines:

Jo Brown is an engineer in the high tech industry.
John Doe has been a engineer for 14 years.
Emilio Johnson is a judge on the Washington Supreme Court.
Our latest new employee, Jane Smith, has been a manager in the industry for 4 years.

The CSV file with the list of entities has the following lines:

Text, Type
Jo Brown, ENGINEER
John Doe, ENGINEER
Jane Smith, MANAGER

Entity lists 197

Amazon Comprehend Developer Guide

Note

In the entities list, the entry for Emilio Johnson is not present because it does not contain
either the ENGINEER or MANAGER entity.

Creating your data files

It is important that your entity list be in a properly configured CSV file so your chance of having
problems with your entity list file is minimal. To manually configure your CSV file, the following
must be true:

• UTF-8 encoding must be explicitly specified, even if its used as a default in most cases.

• It must include the column names: Type and Text.

We highly recommended that CSV input files are generated programmatically to avoid potential
issues.

The following example uses Python to generate a CSV for the annotations shown above:

import csv
with open("./entitylist/entitylist.csv", "w", encoding="utf-8") as csv_file:
 csv_writer = csv.writer(csv_file)
 csv_writer.writerow(["Text", "Type"])
 csv_writer.writerow(["Jo Brown", " ENGINEER"])
 csv_writer.writerow(["John Doe", " ENGINEER"])
 csv_writer.writerow(["Jane Smith", " MANAGER"])

Best practices

There are a number of things to consider to get the best result when using an entity list, including:

• The order of the entities in your list has no effects on model training.

• Use entity list items that cover 80%-100% of positive entity examples mentioned in the
unannotated corpus of documents.

• Avoid entity examples that match non-entities in the document corpus by removing common
words and phrases. Even a handful of incorrect matches can significantly affect the accuracy of
your resulting model. For example, a word like the in the entity list will result in a high number of

Entity lists 198

Amazon Comprehend Developer Guide

matches which are unlikely to be the entities you are looking for and thus will significantly affect
your accuracy.

• Input data should not contain duplicates. Presence of duplicate samples might result into test set
contamination and therefore negatively affect training process, model metrics, and behavior.

• Provide documents that resemble real use cases as closely as possible. Don't use toy data or
synthesized data for production systems. The input data should be as diverse as possible to avoid
overfitting and help underlying model better generalize on real examples.

• The entity list is case sensitive, and regular expressions are not currently supported. However, the
trained model can often still recognize entities even if they do not match exactly to the casing
provided in the entity list.

• If you have an entity that is a substring of another entity (such as “Smith” and “Jane Smith”),
provide both in the entity list.

Additional suggestions can be found at Improving custom entity recognizer performance

Annotations

Annotations label entities in context by associating your custom entity types with the locations
where they occur in your training documents.

By submitting annotation along with your documents, you can increase the accuracy of the model.
With Annotations, you're not simply providing the location of the entity you're looking for, but
you're also providing more accurate context to the custom entity you're seeking.

For instance, if you're searching for the name John Johnson, with the entity type JUDGE, providing
your annotation might help the model to learn that the person you want to find is a judge. If it is
able to use the context, then Amazon Comprehend won't find people named John Johnson who
are attorneys or witnesses. Without providing annotations, Amazon Comprehend will create its
own version of an annotation, but won't be as effective at including only judges. Providing your
own annotations might help to achieve better results and to generate models that are capable of
better leverage context when extracting custom entities.

Topics

• Minimum number of annotations

• Annotation best practices

• Plain-text annotation files

Annotations 199

Amazon Comprehend Developer Guide

• PDF annotation files

• Annotating PDF files

Minimum number of annotations

The minimum number of input documents and annotations required to train a model depends on
the type of annotations.

PDF annotations

To create a model for analyzing image files, PDFs, or Word documents, train your recognizer
using PDF annotations. For PDF annotations, provide at least 250 input documents and at least
100 annotations per entity.

If you provide a test dataset, the test data must include at least one annotation for each of the
entity types specified in the creation request.

Plain-text annotations

To create a model for analyzing text documents, you can train your recognizer using plain-text
annotations.

For plain-text annotations, provide at least three annotated input documents and at least 25
annotations per entity. If you provide less than 50 annotations total, Amazon Comprehend
reserves more than 10% of the input documents to test the model (unless you provided a test
dataset in the training request). Don't forget that the minimum document corpus size is 5 KB.

If your input contains only a few training documents, you may encounter an error that the
training input data contains too few documents that mention one of the entities. Submit the
job again with additional documents that mention the entity.

If you provide a test dataset, the test data must include at least one annotation for each of the
entity types specified in the creation request.

For an example of how to benchmark a model with a small dataset, see Amazon Comprehend
announces lower annotation limits for custom entity recognition on the AWS blog site.

Annotation best practices

There are a number of things to consider to get the best result when using annotations, including:

Annotations 200

https://aws.amazon.com/blogs/machine-learning/amazon-comprehend-announces-lower-annotation-limits-for-custom-entity-recognition/
https://aws.amazon.com/blogs/machine-learning/amazon-comprehend-announces-lower-annotation-limits-for-custom-entity-recognition/

Amazon Comprehend Developer Guide

• Annotate your data with care and verify that you annotate every mention of the entity. Imprecise
annotations can lead to poor results.

• Input data should not contain duplicates, like a duplicate of a PDF you are going to annotate.
Presence of a duplicate sample might result in test set contamination and could negatively affect
the training process, model metrics, and model behavior.

• Make sure that all of your documents are annotated, and that the documents without
annotations are due to lack of legitimate entities, not due to negligence. For example, if you
have a document that says "J Doe has been an engineer for 14 years", you should also provide an
annotation for "J Doe" as well as "John Doe". Failing to do so confuses the model and can result
in the model not recognizing "J Doe" as ENGINEER. This should be consistent within the same
document and across documents.

• In general, more annotations lead to better results.

• You can train a model with the minimum number of documents and annotations, but adding
data usually improves the model. We recommend increasing the volume of annotated data
by 10% to increase the accuracy of the model. You can run inference on a test dataset which
remains unchanged and can be tested by different model versions. You can then compare the
metrics for successive model versions.

• Provide documents that resemble real use cases as closely as possible. Synthesized data with
repetitive patterns should be avoided. The input data should be as diverse as possible to avoid
overfitting and help the underlying model better generalize on real examples.

• It is important that documents should be diverse in terms of word count. For example, if all
documents in the training data are short, the resulting model may have difficulty predicting
entities in longer documents.

• Try and give the same data distribution for training as you expect to be using when you're
actually detecting your custom entities (inference time). For example, at inference time, if you
expect to be sending us documents that have no entities in them, this should also be part of your
training document set.

For additional suggestions, see Improving custom entity recognizer performance.

Plain-text annotation files

For plain-text annotations, you create a comma-separated value (CSV) file that contains a list of
annotations. The CSV file must contain the following columns if your training file input format is
one document per line.

Annotations 201

https://docs.aws.amazon.com/comprehend/latest/dg/cer-metrics.html#cer-performance

Amazon Comprehend Developer Guide

File Line Begin offset End offset Type

The name of the
file containing
the document.
For example,
if one of the
document files
is located at
s3://my-S
3-bucket/
test-file
s/documen
ts.txt ,
the value
in the File
column will be
documents
.txt . You
must include the
file extension (in
this case '.txt')
as part of the
file name.

The line number
containing the
entity. Omit this
column if your
input format is
one document
per file.

The character
offset in the
input text
(relative to the
beginning of the
line) that shows
where the entity
begins. The first
character is at
position 0.

The character
offset in the
input text that
shows where the
entity ends.

The customer-
defined entity
type. Entity
types must be
an uppercase
, underscore-
separated string.
We recommend
using descriptive
entity types such
as MANAGER,
SENIOR_MA
NAGER , or
PRODUCT_C
ODE . Up to 25
entity types can
be trained per
model.

If your training file input format is one document per file, you omit the line number column and
the Begin offset and End offset values are the offsets of the entity from the start of the document.

The following example is for one document per line. The file documents.txt contains four lines
(rows 0, 1, 2, and 3):

Diego Ramirez is an engineer in the high tech industry.
Emilio Johnson has been an engineer for 14 years.
J Doe is a judge on the Washington Supreme Court.
Our latest new employee, Mateo Jackson, has been a manager in the industry for 4 years.

Annotations 202

Amazon Comprehend Developer Guide

The CSV file with the list of annotations is as follows:

File, Line, Begin Offset, End Offset, Type
documents.txt, 0, 0, 13, ENGINEER
documents.txt, 1, 0, 14, ENGINEER
documents.txt, 3, 25, 38, MANAGER

Note

In the annotations file, the line number containing the entity starts with line 0. In this
example, the CSV file contains no entry for line 2 because there is no entity in line 2 of
documents.txt.

Creating your data files

It's important to put your annotations in a properly configured CSV file to reduce the risk of errors.
To manually configure your CSV file, the following must be true:

• UTF-8 encoding must be explicitly specified, even if its used as a default in most cases.

• The first line contains the column headers: File, Line (optional), Begin Offset, End Offset,
Type.

We highly recommended that you generate the CSV input files programmatically to avoid potential
issues.

The following example uses Python to generate a CSV for the annotations shown earlier:

import csv
with open("./annotations/annotations.csv", "w", encoding="utf-8") as csv_file:
 csv_writer = csv.writer(csv_file)
 csv_writer.writerow(["File", "Line", "Begin Offset", "End Offset", "Type"])
 csv_writer.writerow(["documents.txt", 0, 0, 11, "ENGINEER"])
 csv_writer.writerow(["documents.txt", 1, 0, 5, "ENGINEER"])
 csv_writer.writerow(["documents.txt", 3, 25, 30, "MANAGER"])

PDF annotation files

For PDF annotations, you use SageMaker Ground Truth to create a labeled dataset in an
augmented manifest file. Ground Truth is a data labeling service that helps you (or a workforce

Annotations 203

Amazon Comprehend Developer Guide

that you employ) to build training datasets for machine learning models. Amazon Comprehend
accepts augmented manifest files as training data for custom models. You can provide these files
when you create a custom entity recognizer by using the Amazon Comprehend console or the
CreateEntityRecognizer API action.

You can use the Ground Truth built-in task type, Named Entity Recognition, to create a labeling
job to have workers identify entities in text. To learn more, see Named Entity Recognition in the
Amazon SageMaker Developer Guide. To learn more about Amazon SageMaker Ground Truth, see
Use Amazon SageMaker Ground Truth to Label Data.

Note

Using Ground Truth, you can define overlapping labels (text that you associate with more
than one label). However, Amazon Comprehend entity recognition does not support
overlapping labels.

Augmented manifest files are in JSON lines format. In these files, each line is a complete JSON
object that contains a training document and its associated labels. The following example is an
augmented manifest file that trains an entity recognizer to detect the professions of individuals
who are mentioned in the text:

{"source":"Diego Ramirez is an engineer in the high tech
 industry.","NamedEntityRecognitionDemo":{"annotations":{"entities":
[{"endOffset":13,"startOffset":0,"label":"ENGINEER"}],"labels":
[{"label":"ENGINEER"}]}},"NamedEntityRecognitionDemo-metadata":
{"entities":[{"confidence":0.92}],"job-name":"labeling-job/
namedentityrecognitiondemo","type":"groundtruth/text-span","creation-
date":"2020-05-14T21:45:27.175903","human-annotated":"yes"}}
{"source":"J Doe is a judge on the Washington Supreme
 Court.","NamedEntityRecognitionDemo":{"annotations":{"entities":
[{"endOffset":5,"startOffset":0,"label":"JUDGE"}],"labels":
[{"label":"JUDGE"}]}},"NamedEntityRecognitionDemo-metadata":
{"entities":[{"confidence":0.72}],"job-name":"labeling-job/
namedentityrecognitiondemo","type":"groundtruth/text-span","creation-
date":"2020-05-14T21:45:27.174910","human-annotated":"yes"}}
{"source":"Our latest new employee, Mateo Jackson, has been a manager in
 the industry for 4 years.","NamedEntityRecognitionDemo":{"annotations":
{"entities":[{"endOffset":38,"startOffset":26,"label":"MANAGER"}],"labels":
[{"label":"MANAGER"}]}},"NamedEntityRecognitionDemo-metadata":
{"entities":[{"confidence":0.91}],"job-name":"labeling-job/

Annotations 204

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-console
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html

Amazon Comprehend Developer Guide

namedentityrecognitiondemo","type":"groundtruth/text-span","creation-
date":"2020-05-14T21:45:27.174035","human-annotated":"yes"}}

Each line in this JSON lines file is a complete JSON object, where the attributes include the
document text, the annotations, and other metadata from Ground Truth. The following example is
a single JSON object in the augmented manifest file, but it's formatted for readability:

{
 "source": "Diego Ramirez is an engineer in the high tech industry.",
 "NamedEntityRecognitionDemo": {
 "annotations": {
 "entities": [
 {
 "endOffset": 13,
 "startOffset": 0,
 "label": "ENGINEER"
 }
],
 "labels": [
 {
 "label": "ENGINEER"
 }
]
 }
 },
 "NamedEntityRecognitionDemo-metadata": {
 "entities": [
 {
 "confidence": 0.92
 }
],
 "job-name": "labeling-job/namedentityrecognitiondemo",
 "type": "groundtruth/text-span",
 "creation-date": "2020-05-14T21:45:27.175903",
 "human-annotated": "yes"
 }
}

In this example, the source attribute provides the text of the training document, and the
NamedEntityRecognitionDemo attribute provides the annotations for the entities in the text.
The name of the NamedEntityRecognitionDemo attribute is arbitrary, and you provide a name
of your choice when you define the labeling job in Ground Truth.

Annotations 205

Amazon Comprehend Developer Guide

In this example, the NamedEntityRecognitionDemo attribute is the label attribute name, which
is the attribute that provides the labels that a Ground Truth worker assigns to the training data.
When you provide your training data to Amazon Comprehend, you must specify one or more
label attribute names. The number of attribute names that you specify depends on whether your
augmented manifest file is the output of a single labeling job or a chained labeling job.

If your file is the output of a single labeling job, specify the single label attribute name that was
used when the job was created in Ground Truth.

If your file is the output of a chained labeling job, specify the label attribute name for one or more
jobs in the chain. Each label attribute name provides the annotations from an individual job. You
can specify up to 5 of these attributes for augmented manifest files that are produced by chained
labeling jobs.

In an augmented manifest file, the label attribute name typically follows the source key. If the file
is the output of a chained job, there will be multiple label attribute names. When you provide your
training data to Amazon Comprehend, provide only those attributes that contain annotations that
are relevant for your model. Do not specify the attributes that end with "-metadata".

For more information about chained labeling jobs, and for examples of the output that they
produce, see Chaining Labeling Jobs in the Amazon SageMaker Developer Guide.

Annotating PDF files

Before you can annotate your training PDFs in SageMaker Ground Truth, complete the following
prerequisites:

• Install python3.8.x

• Install jq

• Install the AWS CLI

If you're using the us-east-1 Region, you can skip installing the AWS CLI because it's already
installed with your Python environment. In this case, you create a virtual environment to use
Python 3.8 in AWS Cloud9.

• Configure your AWS credentials

• Create a private SageMaker Ground Truth workforce to support annotation

Make sure to record the workteam name you choose in your new private workforce, as you use it
during installation.

Annotations 206

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-reusing-data.html
https://stedolan.github.io/jq/download/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private-use-cognito.html

Amazon Comprehend Developer Guide

Topics

• Setting up your environment

• Uploading a PDF to an S3 bucket

• Creating an annotation job

• Annotating with SageMaker Ground Truth

Setting up your environment

1. If using Windows, install Cygwin; if using Linux or Mac, skip this step.

2. Download the annotation artifacts from GitHub. Unzip the file.

3. From your terminal window, navigate to the unzipped folder (amazon-comprehend-semi-
structured-documents-annotation-tools-main).

4. This folder includes a choice of Makefiles that you run to install dependencies, setup a
Python virtualenv, and deploy the required resources. Review the readme file to make your
choice.

5. The recommended option uses a single command to install all dependencies into a virtualenv,
builds the AWS CloudFormation stack from the template, and deploys the stack to your AWS
account with interactive guidance. Run the following command:

make ready-and-deploy-guided

This command presents a set of configuration options. Be sure your AWS Region is correct. For
all other fields, you can either accept the default values or fill in custom values. If you modify
the AWS CloudFormation stack name, write it down as you need it in the next steps.

The CloudFormation stack creates and manage the AWS lambdas, AWS IAM roles, and AWS S3
buckets required for the annotation tool.

Annotations 207

https://cygwin.com/install.html
http://github.com/aws-samples/amazon-comprehend-semi-structured-documents-annotation-tools
https://aws.amazon.com/lambda/
https://aws.amazon.com/iam/
https://aws.amazon.com/s3/

Amazon Comprehend Developer Guide

You can review each of these resources in the stack details page in the CloudFormation
console.

6. The command prompts you to start the deployment. CloudFormation creates all the resources
in the specified Region.

When the CloudFormation stack status transitions to create-complete, the resources are ready
to use.

Uploading a PDF to an S3 bucket

In the Setting up section, you deployed a CloudFormation stack that creates an S3 bucket named
comprehend-semi-structured-documents-${AWS::Region}-${AWS::AccountId}. You now upload
your source PDF documents into this bucket.

Note

This bucket contains the data required for your labeling job. The Lambda Execution Role
policy grants permission for the Lambda function to access this bucket.
You can find the S3 bucket name in the CloudFormation Stack details using the
'SemiStructuredDocumentsS3Bucket' key.

1. Create a new folder in the S3 bucket. Name this new folder 'src'.

2. Add your PDF source files to your 'src' folder. In a later step, you annotate these files to train
your recognizer.

3. (Optional) Here's an AWS CLI example you can use to upload your source documents from a
local directory into an S3 bucket:

Annotations 208

Amazon Comprehend Developer Guide

aws s3 cp --recursive local-path-to-your-source-docs s3://deploy-
guided/src/

Or, with your Region and Account ID:

aws s3 cp --recursive local-path-to-your-source-docs s3://deploy-
guided-Region-AccountID/src/

4. You now have a private SageMaker Ground Truth workforce and have uploaded your source
files to the S3 bucket, deploy-guided/src/; you're ready to start annotating.

Creating an annotation job

The comprehend-ssie-annotation-tool-cli.py script in the bin directory is a simple wrapper
command that streamlines the creation of a SageMaker Ground Truth labeling job. The python
script reads the source documents from your S3 bucket and creates a corresponding single-page
manifest file with one source document per line. The script then creates a labeling job, which
requires the manifest file as an input.

The python script uses the S3 bucket and CloudFormation stack that you configured in the Setting
up section. Required input parameters for the script include:

• input-s3-path: S3 Uri to the source documents you uploaded to your S3 bucket. For example:
s3://deploy-guided/src/. You can also add your Region and Account ID to this path. For
example: s3://deploy-guided-Region-AccountID/src/.

• cfn-name: The CloudFormation stack name. If you used the default value for the stack name,
your cfn-name is sam-app.

• work-team-name: The workforce name you created when you built out the private workforce in
SageMaker Ground Truth.

• job-name-prefix: The prefix for the SageMaker Ground Truth labeling job. Note that there is a
29-character limit for this field. A timestamp is appended to this value. For example: my-job-
name-20210902T232116.

• entity-types: The entities you want to use during your labeling job, separated by commas. This
list must include all entities that you want to annotate in your training dataset. The Ground Truth
labeling job displays only these entities for annotators to label content in the PDF documents.

To view additional arguments the script supports, use the -h option to display the help content.

Annotations 209

Amazon Comprehend Developer Guide

• Run the following script with the input parameters as described in the previous list.

python bin/comprehend-ssie-annotation-tool-cli.py \
--input-s3-path s3://deploy-guided-Region-AccountID/src/ \
--cfn-name sam-app \
--work-team-name my-work-team-name \
--region us-east-1 \
--job-name-prefix my-job-name-20210902T232116 \
--entity-types "EntityA, EntityB, EntityC" \
--annotator-metadata "key=info,value=sample,key=Due Date,value=12/12/2021"

The script produces the following output:

Downloaded files to temp local directory /tmp/a1dc0c47-0f8c-42eb-9033-74a988ccc5aa
Deleted downloaded temp files from /tmp/a1dc0c47-0f8c-42eb-9033-74a988ccc5aa
Uploaded input manifest file to s3://comprehend-semi-structured-documents-
us-west-2-123456789012/input-manifest/my-job-name-20220203-labeling-
job-20220203T183118.manifest
Uploaded schema file to s3://comprehend-semi-structured-documents-us-
west-2-123456789012/comprehend-semi-structured-docs-ui-template/my-job-
name-20220203-labeling-job-20220203T183118/ui-template/schema.json
Uploaded template UI to s3://comprehend-semi-structured-documents-us-
west-2-123456789012/comprehend-semi-structured-docs-ui-template/my-job-
name-20220203-labeling-job-20220203T183118/ui-template/template-2021-04-15.liquid
Sagemaker GroundTruth Labeling Job submitted: arn:aws:sagemaker:us-
west-2:123456789012:labeling-job/my-job-name-20220203-labeling-job-20220203t183118
(amazon-comprehend-semi-structured-documents-annotation-tools-main)
 user@3c063014d632 amazon-comprehend-semi-structured-documents-annotation-tools-
main %

Annotating with SageMaker Ground Truth

Now that you have configured the required resources and created a labeling job, you can log in to
the labeling portal and annotate your PDFs.

1. Log in to the SageMaker console using either Chrome or Firefox web browsers.

2. Select Labeling workforces and choose Private.

3. Under Private workforce summary, select the labeling portal sign-in URL that you created
with your private workforce. Sign in with the appropriate credentials.

Annotations 210

https://console.aws.amazon.com/sagemaker

Amazon Comprehend Developer Guide

If you don't see any jobs listed, don't worry—it can take a while to update, depending on the
number of files you uploaded for annotation.

4. Select your task and, in the top right corner, choose Start working to open the annotation
screen.

You'll see one of your documents open in the annotation screen and, above it, the entity types
you provided during set up. To the right of your entity types, there is an arrow you can use to
navigate through your documents.

Annotate the open document. You can also remove, undo, or auto tag your annotations on
each document; these options are available in the right panel of the annotation tool.

Annotations 211

Amazon Comprehend Developer Guide

To use auto tag, annotate an instance of one of your entities; all other instances of that
specific word are then automatically annotated with that entity type.

Once you've finished, select Submit on the bottom right, then use the navigation arrows to
move to the next document. Repeat this until you've annotated all your PDFs.

After you annotate all the training documents, you can find the annotations in JSON format in the
Amazon S3 bucket at this location:

/output/your labeling job name/annotations/

The output folder also contains an output manifest file, which lists all the annotations within your
training documents. You can find your output manifest file at the following location.

/output/your labeling job name/manifests/

Training custom entity recognizer models

A custom entity recognizer identifies only the entity types that you include when you train the
model. It does not automatically include the preset entity types. If you want to also identify the

Training recognizer models 212

Amazon Comprehend Developer Guide

preset entity types,such as LOCATION, DATE, or PERSON, you need to provide additional training
data for those entities.

When you create a custom entity recognizer using annotated PDF files, you can use the recognizer
with a variety of input file formats: plaintext, image files (JPG, PNG, TIFF), PDF files, and Word
documents, with no pre-processing or doc flattening required. Amazon Comprehend doesn't
support annotation of image files or Word documents.

Note

A custom entity recognizer using annotated PDF files supports English documents only.

After you create a custom entity recognizer, you can monitor the progress of the request using the
DescribeEntityRecognizer operation. Once the Status field is TRAINED, the recognizer model is
ready to use for custom entity recognition.

Topics

• Train custom recognizers (console)

• Train custom entity recognizers (API)

• Custom entity recognizer metrics

Train custom recognizers (console)

You can create custom entity recognizers using the Amazon Comprehend console. This section
shows you how to create and train a custom entity recognizer.

Creating a custom entity recognizer using the console - CSV format

To create the custom entity recognizer, first provide a dataset to train your model. With this
dataset, include one of the following: a set of annotated documents or a list of entities and their
type label, along with a set of documents containing those entities. For more information, see
Custom entity recognition

To train a custom entity recognizer with a CSV file

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

Train custom recognizers (console) 213

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEntityRecognizer.html
https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

2. From the left menu, choose Customization and then choose Custom entity recognition.

3. Choose Create new model.

4. Give the recognizer a name. The name must be unique within the Region and account.

5. Select the language.

6. Under Custom entity type, enter a custom label that you want the recognizer to find in the
dataset.

The entity type must be uppercase, and if it consists of more than one word, separate the
words with an underscore.

7. Choose Add type.

8. If you want to add an additional entity type, enter it, and then choose Add type. If you want to
remove one of the entity types you've added, choose Remove type and then choose the entity
type to remove from the list. A maximum of 25 entity types can be listed.

9. To encrypt your training job, choose Recognizer encryption and then choose whether to use a
KMS key associated with the current account, or one from another account.

• If you are using a key associated with the current account, for KMS key ID choose the key ID.

• If you are using a key associated with a different account, for KMS key ARN enter the ARN
for the key ID.

Note

For more information on creating and using KMS keys and the associated encryption,
see AWS Key Management Service.

10. Under Data specifications, choose the format of your training documents:

• CSV file — A CSV file that supplements your training documents. The CSV file contains
information about the custom entities that your trained model will detect. The required
format of the file depends on whether you are providing annotations or an entity list.

• Augmented manifest — A labeled dataset that is produced by Amazon SageMaker Ground
Truth. This file is in JSON lines format. Each line is a complete JSON object that contains
a training document and its labels. Each label annotates a named entity in the training
document. You can provide up to 5 augmented manifest files.

Train custom recognizers (console) 214

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

For more information about available formats, and for examples, see Training custom entity
recognizer models.

11. Under Training type, choose the training type to use:

• Using annotations and training docs

• Using entity list and training docs

If choosing annotations, enter the URL of the annotations file in Amazon S3. You can also
navigate to the bucket or folder in Amazon S3 where the annotation files are located and
choose Browse S3.

If choosing entity list, enter the URL of the entity list in Amazon S3. You can also navigate to
the bucket or folder in Amazon S3 where the entity list is located and choose Browse S3.

12. Enter the URL of an input dataset containing the training documents in Amazon S3. You can
also navigate to the bucket or folder in Amazon S3 where the training documents are located
and choose Select folder.

13. Under Test dataset select how you want to evaluate the performance of your trained model -
you can do this for both annotations and entity list training types.

• Autosplit: Autosplit automatically selects 10% of your provided training data to use as
testing data

• (Optional) Customer provided: When you select customer provided, you can specify exactly
what test data you want to use.

14. If you select Customer provided test dataset, enter the URL of the annotations file in Amazon
S3. You can also navigate to the bucket or folder in Amazon S3 where the annotation files are
located and choose Select folder.

15. In the Choose an IAM role section, either select an existing IAM role or create a new one.

• Choose an existing IAM role – Select this option if you already have an IAM role with
permissions to access the input and output Amazon S3 buckets.

• Create a new IAM role – Select this option when you want to create a new IAM role with the
proper permissions for Amazon Comprehend to access the input and output buckets.

Train custom recognizers (console) 215

Amazon Comprehend Developer Guide

Note

If the input documents are encrypted, the IAM role used must have kms:Decrypt
permission. For more information, see Permissions required to use KMS encryption.

16. (Optional) To launch your resources into Amazon Comprehend from a VPC, enter the VPC ID
under VPC or choose the ID from the drop-down list.

1. Choose the subnet under Subnet(s). After you select the first subnet, you can choose
additional ones.

2. Under Security Group(s), choose the security group to use if you specified one. After you
select the first security group, you can choose additional ones.

Note

When you use a VPC with your custom entity recognition job, the DataAccessRole
used for the Create and Start operations must have permissions to the VPC from which
the input documents and the output bucket are accessed.

17. (Optional) To add a tag to the custom entity recognizer, enter a key-value pair under Tags.
Choose Add tag. To remove this pair before creating the recognizer, choose Remove tag.

18. Choose Train.

The new recognizer will then appear in the list, showing its status. It will first show as Submitted.
It will then show Training for a classifier that is processing training documents, Trained for a
classifier that is ready to use, and In error for a classifier that has an error. You can click on a job
to get more information about the recognizer, including any error messages.

Creating a custom entity recognizer using the console - augmented manifest

To train a custom entity recognizer with a plaintext, PDF, or word document

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Customization and then choose Custom entity recognition.

3. Choose Train recognizer.

4. Give the recognizer a name. The name must be unique within the Region and account.

Train custom recognizers (console) 216

https://console.aws.amazon.com/comprehend/home?region=us-east-1#api-explorer:

Amazon Comprehend Developer Guide

5. Select the language. Note: If you're training a PDF or Word document, English is the supported
language.

6. Under Custom entity type, enter a custom label that you want the recognizer to find in the
dataset.

The entity type must be uppercase, and if it consists of more than one word, separate the
words with an underscore.

7. Choose Add type.

8. If you want to add an additional entity type, enter it, and then choose Add type. If you want to
remove one of the entity types you've added, choose Remove type and then choose the entity
type to remove from the list. A maximum of 25 entity types can be listed.

9. To encrypt your training job, choose Recognizer encryption and then choose whether to use a
KMS key associated with the current account, or one from another account.

• If you are using a key associated with the current account, for KMS key ID choose the key ID.

• If you are using a key associated with a different account, for KMS key ARN enter the ARN
for the key ID.

Note

For more information on creating and using KMS keys and the associated encryption,
see AWS Key Management Service.

10. Under Training data, choose Augmented manifest as your data format:

• Augmented manifest — is a labeled dataset that is produced by Amazon SageMaker Ground
Truth. This file is in JSON lines format. Each line in the file is a complete JSON object that
contains a training document and its labels. Each label annotates a named entity in the
training document. You can provide up to 5 augmented manifest files. If you are using PDF
documents for training data, you must select Augmented manifest. You can provide up to
5 augmented manifest files. For each file, you can name up to 5 attributes to use as training
data.

For more information about available formats, and for examples, see Training custom entity
recognizer models.

11. Select the training model type.

Train custom recognizers (console) 217

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

If you selected Plaintext documents, under Input location, enter the Amazon S3URL of the
Amazon SageMakerGround Truth augmented manifest file. You can also navigate to the bucket
or folder in Amazon S3 where the augmented manifest(s) is located and choose Select folder.

12. Under Attribute name, enter the name of the attribute that contains your annotations. If the
file contains annotations from multiple chained labeling jobs, add an attribute for each job.
In this case, each attribute contains the set of annotations from a labeling job. Note: You can
provide up to 5 attribute names for each file.

13. Select Add.

14. If you selected PDF, Word documents under Input location, enter the Amazon S3URL of
the Amazon SageMaker Ground Truth augmented manifest file. You can also navigate to the
bucket or folder in Amazon S3 where the augmented manifest(s) is located and choose Select
folder.

15. Enter the S3 prefix for your Annotation data files. These are the PDF documents that you
labled.

16. Enter the S3 prefix for your Source documents. These are the original PDF documents (data
objects) that you provided to Ground Truth for your labeling job.

17. Enter the attribute names that contain your annotations. Note: You can provide up to 5
attribute names for each file. Any attributes in your file that you don't specify are ignored.

18. In the IAM role section, either select an existing IAM role or create a new one.

• Choose an existing IAM role – Select this option if you already have an IAM role with
permissions to access the input and output Amazon S3 buckets.

• Create a new IAM role – Select this option when you want to create a new IAM role with the
proper permissions for Amazon Comprehend to access the input and output buckets.

Note

If the input documents are encrypted, the IAM role used must have kms:Decrypt
permission. For more information, see Permissions required to use KMS encryption.

19. (Optional) To launch your resources into Amazon Comprehend from a VPC, enter the VPC ID
under VPC or choose the ID from the drop-down list.

1. Choose the subnet under Subnet(s). After you select the first subnet, you can choose
additional ones.

Train custom recognizers (console) 218

Amazon Comprehend Developer Guide

2. Under Security Group(s), choose the security group to use if you specified one. After you
select the first security group, you can choose additional ones.

Note

When you use a VPC with your custom entity recognition job, the DataAccessRole
used for the Create and Start operations must have permissions to the VPC from which
the input documents and the output bucket are accessed.

20. (Optional) To add a tag to the custom entity recognizer, enter a key-value pair under Tags.
Choose Add tag. To remove this pair before creating the recognizer, choose Remove tag.

21. Choose Train.

The new recognizer will then appear in the list, showing its status. It will first show as Submitted.
It will then show Training for a classifier that is processing training documents, Trained for a
classifier that is ready to use, and In error for a classifier that has an error. You can click on a job
to get more information about the recognizer, including any error messages.

Train custom entity recognizers (API)

To create and train a custom entity recognition model, use the Amazon Comprehend
CreateEntityRecognizer API operation

Topics

• Training custom entity recognizers using the AWS Command Line Interface

• Training custom entity recognizers using the AWS SDK for Java

• Training custom entity recognizers using Python (Boto3)

Training custom entity recognizers using the AWS Command Line Interface

The following examples demonstrate using the CreateEntityRecognizer operation and other
associated APIs with the AWS CLI.

The examples are formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\)
Unix continuation character at the end of each line with a caret (^).

Train custom recognizers (API) 219

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html

Amazon Comprehend Developer Guide

Create a custom entity recognizer using the create-entity-recognizer CLI command. For
information about the input-data-config parameter, see CreateEntityRecognizer in the Amazon
Comprehend API Reference.

aws comprehend create-entity-recognizer \
 --language-code en \
 --recognizer-name test-6 \
 --data-access-role-arn "arn:aws:iam::account number:role/service-role/
AmazonComprehendServiceRole-role" \
 --input-data-config "EntityTypes=[{Type=PERSON}],Documents={S3Uri=s3://Bucket
 Name/Bucket Path/documents},
 Annotations={S3Uri=s3://Bucket Name/Bucket Path/annotations}" \
 --region region

List all entity recognizers in a Region using the list-entity-recognizers CLI command..

aws comprehend list-entity-recognizers \
 --region region

Check Job Status of custom entity recognizers using the describe-entity-recognizer CLI
command..

aws comprehend describe-entity-recognizer \
 --entity-recognizer-arn arn:aws:comprehend:region:account number:entity-
recognizer/test-6 \
 --region region

Training custom entity recognizers using the AWS SDK for Java

This example creates a custom entity recognizer and trains the model, using Java

For Amazon Comprehend examples that use Java, see Amazon Comprehend Java examples.

Training custom entity recognizers using Python (Boto3)

Instantiate Boto3 SDK:

import boto3
import uuid

Train custom recognizers (API) 220

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend

Amazon Comprehend Developer Guide

comprehend = boto3.client("comprehend", region_name="region")

Create entity recognizer:

response = comprehend.create_entity_recognizer(
 RecognizerName="Recognizer-Name-Goes-Here-{}".format(str(uuid.uuid4())),
 LanguageCode="en",
 DataAccessRoleArn="Role ARN",
 InputDataConfig={
 "EntityTypes": [
 {
 "Type": "ENTITY_TYPE"
 }
],
 "Documents": {
 "S3Uri": "s3://Bucket Name/Bucket Path/documents"
 },
 "Annotations": {
 "S3Uri": "s3://Bucket Name/Bucket Path/annotations"
 }
 }
)
recognizer_arn = response["EntityRecognizerArn"]

List all recognizers:

response = comprehend.list_entity_recognizers()

Wait for recognizer to reach TRAINED status:

while True:
 response = comprehend.describe_entity_recognizer(
 EntityRecognizerArn=recognizer_arn
)

 status = response["EntityRecognizerProperties"]["Status"]
 if "IN_ERROR" == status:
 sys.exit(1)
 if "TRAINED" == status:
 break

 time.sleep(10)

Train custom recognizers (API) 221

Amazon Comprehend Developer Guide

Custom entity recognizer metrics

Amazon Comprehend provides you with metrics to help you estimate how well an entity recognizer
should work for your job. They are based on training the recognizer model, and so while they
accurately represent the performance of the model during training, they are only an approximation
of the API performance during entity discovery.

Metrics are returned any time metadata from a trained entity recognizer is returned.

Amazon Comprehend supports training a model on up to 25 entities at a time. When metrics are
returned from a trained entity recognizer, scores are computed against both the recognizer as a
whole (global metrics) and for each individual entity (entity metrics).

Three metrics are available, both as global and entity metrics:

• Precision

This indicates the fraction of entities produced by the system that are correctly identified and
correctly labled. This shows how many times the model's entity identification is truly a good
identification. It is a percentage of the total number of identifications.

In other words, precision is based on true positives (tp) and false positives (fp) and it is calculated
as precision = tp / (tp + fp).

For example, if a model predicts that two examples of an entity are present in a document,
where there's actually only one, the result is one true positive and one false positive. In this case,
precision = 1 / (1 + 1). The precision is 50%, as one entity is correct out of the two identified by
the model.

• Recall

This indicates the fraction of entities present in the documents that are correctly identified and
labeled by the system. Mathematically, this is defined in terms of the total number of correct
identifications true positives (tp) and missed identifcations false negatives (fn).

It is calculated as recall = tp / (tp + fn). For example if a model correctly identifies one entity, but
misses two other instances where that entity is present, the result is one true positive and two
false negatives. In this case, recall = 1 / (1 + 2). The recall is 33.33%, as one entity is correct out
of a possible three examples.

Metrics 222

Amazon Comprehend Developer Guide

• F1 score

This is a combination of the Precision and Recall metrics, which measures the overall accuracy of
the model for custom entity recognition. The F1 score is the harmonic mean of the Precision and
Recall metrics: F1 = 2 * Precision * Recall / (Precision + Recall) .

Note

Intuitively, the harmonic mean penalizes the extremes more than the simple average
or other means (example: precision = 0, recall = 1 could be achieved trivially by
predicting all possible spans. Here, the simple average would be 0.5, but F1 would
penalize it as 0).

In the examples above, precision = 50% and recall = 33.33%, therefore F1 = 2 * 0.5 *
0.3333 / (0.5 + 0.3333). The F1 Score is .3975, or 39.75%.

Global and individual entity metrics

The relationship between global and individual entity metrics can be seen when analyzing the
following sentence for entities that are either a place or a person

John Washington and his friend Smith live in San Francisco, work in San Diego, and own
 a house in Seattle.

In our example, the model makes the following predictions.

John Washington = Person
Smith = Place
San Francisco = Place
San Diego = Place
Seattle = Person

However, the predictions should have been the following.

John Washington = Person
Smith = Person
San Francisco = Place
San Diego = Place

Metrics 223

Amazon Comprehend Developer Guide

Seattle = Place

The individual entity metrics for this would be:

entity: Person
 True positive (TP) = 1 (because John Washington is correctly predicted to be a
 Person).
 False positive (FP) = 1 (because Seattle is incorrectly predicted to be a Person,
 but is actually a Place).
 False negative (FN) = 1 (because Smith is incorrectly predicted to be a Place, but
 is actually a Person).
 Precision = 1 / (1 + 1) = 0.5 or 50%
 Recall = 1 / (1+1) = 0.5 or 50%
 F1 Score = 2 * 0.5 * 0.5 / (0.5 + 0.5) = 0.5 or 50%

entity: Place
 TP = 2 (because San Francisco and San Diego are each correctly predicted to be a
 Place).
 FP = 1 (because Smith is incorrectly predicted to be a Place, but is actually a
 Person).
 FN = 1 (because Seattle is incorrectly predicted to be a Person, but is actually a
 Place).
 Precision = 2 / (2+1) = 0.6667 or 66.67%
 Recall = 2 / (2+1) = 0.6667 or 66.67%
 F1 Score = 2 * 0.6667 * 0.6667 / (0.6667 + 0.6667) = 0.6667 or 66.67%

The global metrics for this would be:

Global:

Global:
 TP = 3 (because John Washington, San Francisco and San Diego are predicted
 correctly.
 This is also the sum of all individual entity TP).
 FP = 2 (because Seattle is predicted as Person and Smith is predicted as Place. This
 is the sum of all individual entity FP).
 FN = 2 (because Seattle is predicted as Person and Smith is predicted as Place. This
 is the sum of all individual FN).
 Global Precision = 3 / (3+2) = 0.6 or 60%
 (Global Precision = Global TP / (Global TP + Global FP))
 Global Recall = 3 / (3+2) = 0.6 or 60%
 (Global Recall = Global TP / (Global TP + Global FN))
 Global F1Score = 2 * 0.6 * 0.6 / (0.6 + 0.6) = 0.6 or 60%

Metrics 224

Amazon Comprehend Developer Guide

 (Global F1Score = 2 * Global Precision * Global Recall / (Global Precision +
 Global Recall))

Improving custom entity recognizer performance

These metrics provide an insight into how accurately the trained model will perform when you use
it to identify entities. Here are a few options you can use to improve your metrics if they are lower
than your expectations:

1. Depending on whether you use Annotations or Entity lists (plaintext only), make sure to follow
the guidelines in the respective documentation to improve data quality. If you observe better
metrics after improving your data and re-training the model, you can keep iterating and
improving data quality to achieve better model performance.

2. If you are using an Entity List, consider using Annotations instead. Manual annotations can often
improve your results.

3. If you are sure there is not a data quality issue, and yet the metrics remain unreasonably low,
please submit a support request.

Running real-time custom recognizer analysis

Real-time analysis is useful for applications that process small documents as they arrive. For
example, you can detect custom entities in social media posts, support tickets, or customer reviews.

Before you begin

You need a custom entity recognition model (also known as a recognizer) before you can
detect custom entities. For more information about these models, see the section called
“Training recognizer models”.

A recognizer that is trained with plain-text annotations supports entity detection for plain-text
documents only. A recognizer that is trained with PDF document annotations supports entity
detection for plain-text documents, images, PDF files, and Word documents. For information about
the input files, see Inputs for real-time custom analysis.

If you plan to analyze image files or scanned PDF documents, your IAM policy must
grant permissions to use two Amazon Textract API methods (DetectDocumentText and

Running real-time analysis 225

Amazon Comprehend Developer Guide

AnalyzeDocument). Amazon Comprehend invokes these methods during text extraction. For an
example policy, see Permissions required to perform document analysis actions.

Topics

• Real-time analysis for custom entity recognition (console)

• Real-time analysis for custom entity recognition (API)

• Outputs for real-time analysis

Real-time analysis for custom entity recognition (console)

You can use the Amazon Comprehend console to run real-time analysis with a custom model. First,
you create an endpoint to run the real-time analysis. After you create the endpoint, you run the
real-time analysis.

For information about provisioning endpoint throughput, and the associated costs, see Using
Amazon Comprehend endpoints.

Topics

• Creating an endpoint for custom entity detection

• Running real-time custom entity detection

Creating an endpoint for custom entity detection

To create an endpoint (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Endpoints and choose the Create endpoint button. A Create
endpoint screen opens.

3. Give the endpoint a name. The name must be unique within the current Region and account.

4. Choose a custom model that you want to attach the new endpoint to. From the dropdown, you
can search by model name.

Real-time analysis (console) 226

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

Note

You must create a model before you can attach an endpoint to it. If you don't have a
model yet, see Training custom entity recognizer models.

5. (Optional) To add a tag to the endpoint, enter a key-value pair under Tags and choose Add
tag. To remove this pair before creating the endpoint, choose Remove tag.

6. Enter the number of inference units (IUs) to assign to the endpoint. Each unit represents a
throughput of 100 characters per second for up to two documents per second. For more
information about endpoint throughput, see Using Amazon Comprehend endpoints.

7. (Optional) If you are creating a new endpoint, you have the option to use the IU estimator. The
estimator can help you determine the number of IUs to request. The number of inference units
depends on the throughput or the number of characters that you want to analyze per second.

8. From the Purchase summary, review your estimated hourly, daily, and monthly endpoint cost.

9. Select the check box if you understand that your account accrues charges for the endpoint
from the time it starts until you delete it.

10. Choose Create endpoint.

Running real-time custom entity detection

After you create an endpoint for your custom entity recognizer model, you can run real-time
analysis to detect entities in individual documents.

Complete the following steps to detect custom entities in your text by using the Amazon
Comprehend console.

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Real-time analysis.

3. In the Input text section, for Analysis type, choose Custom.

4. For Select endpoint, choose the endpoint that is associated with the entity-detection model
that you want to use.

5. To specify the input data for analysis, you can input text or upload a file.

• To enter text:

Real-time analysis (console) 227

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

a. Choose Input text.

b. Enter the text that you want to analyze.

• To upload a file:

a. Choose Upload file and enter the filename to upload.

b. (Optional) Under Advanced read actions, you can override the default actions for text
extraction. For details, see Setting text extraction options.

6. Choose Analyze. The console displays the output of the analysis, along with a confidence
assessment.

Real-time analysis for custom entity recognition (API)

You can use the Amazon Comprehend API to run real-time analysis with a custom model. First, you
create an endpoint to run the real-time analysis. After you create the endpoint, you run the real-
time analysis.

For information about provisioning endpoint throughput, and the associated costs, see Using
Amazon Comprehend endpoints.

Topics

• Creating an endpoint for custom entity detection

• Running real-time custom entity detection

Creating an endpoint for custom entity detection

For information about the costs associated with endpoints, see Using Amazon Comprehend
endpoints.

Creating an Endpoint with the AWS CLI

To create an endpoint by using the AWS CLI, use the create-endpoint command:

$ aws comprehend create-endpoint \
> --desired-inference-units number of inference units \
> --endpoint-name endpoint name \
> --model-arn arn:aws:comprehend:region:account-id:model/example \

Real-time analysis (API) 228

Amazon Comprehend Developer Guide

> --tags Key=Key,Value=Value

If your command succeeds, Amazon Comprehend responds with the endpoint ARN:

{
 "EndpointArn": "Arn"
}

For more information about this command, its parameter arguments, and its output, see create-
endpoint in the AWS CLI Command Reference.

Running real-time custom entity detection

After you create an endpoint for your custom entity recognizer model, you use the endpoint to run
the DetectEntities API operation. You can provide text input using the text or bytes parameter.
Enter the other input types using the bytes parameter.

For image files and PDF files, you can use the DocumentReaderConfig parameter to override the
default text extraction actions. For details, see Setting text extraction options.

Detecting entities in text using the AWS CLI

To detect custom entities in text, run the detect-entities command with the input text in the
text parameter.

Example : Use the CLI to detect entities in input text

$ aws comprehend detect-entities \
> --endpoint-arn arn \
> --language-code en \
> --text "Andy Jassy is the CEO of Amazon."

If your command succeeds, Amazon Comprehend responds with the analysis. For each entity that
Amazon Comprehend detects, it provides the entity type, text, location, and confidence score.

Detecting entities in semi-structured documents using the AWS CLI

To detect custom entities in PDF, Word, or image file, run the detect-entities command with
the input file in the bytes parameter.

Real-time analysis (API) 229

https://docs.aws.amazon.com/cli/latest/reference/comprehend/create-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/comprehend/create-endpoint.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html

Amazon Comprehend Developer Guide

Example : Use the CLI to detect entities in an image file

This example shows how to pass in the image file using the fileb option to base64 encode the
image bytes. For more information, see Binary large objects in the AWS Command Line Interface
User Guide.

This example also passes in a JSON file named config.json to set the text extraction options.

$ aws comprehend detect-entities \
> --endpoint-arn arn \
> --language-code en \
> --bytes fileb://image1.jpg \
> --document-reader-config file://config.json

The config.json file contains the following content.

 {
 "DocumentReadMode": "FORCE_DOCUMENT_READ_ACTION",
 "DocumentReadAction": "TEXTRACT_DETECT_DOCUMENT_TEXT"
 }

For more information about the command syntax, see DetectEntities in the Amazon Comprehend
API Reference.

Outputs for real-time analysis

Outputs for text inputs

If you input text using the Text parameter, the output consists of an array of entities that the
analysis detected. The following example shows an analysis that detected two JUDGE entities.

{
 "Entities":
 [
 {
 "BeginOffset": 0,
 "EndOffset": 22,
 "Score": 0.9763959646224976,
 "Text": "John Johnson",

Outputs for real-time analysis 230

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-types.html#parameter-type-blob
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html

Amazon Comprehend Developer Guide

 "Type": "JUDGE"
 },
 {
 "BeginOffset": 11,
 "EndOffset": 15,
 "Score": 0.9615424871444702,
 "Text": "Thomas Kincaid",
 "Type": "JUDGE"
 }
]
 }

Outputs for semi-structured inputs

For a semi-structured input document, or a text file, the output can include the following
additional fields:

• DocumentMetadata – Extraction information about the document. The metadata includes a list
of pages in the document, with the number of characters extracted from each page. This field is
present in the response if the request included the Byte parameter.

• DocumentType – The document type for each page in the input document. This field is present in
the response for a request that included the Byte parameter.

• Blocks – Information about each block of text in the input document. Blocks are nested. A page
block contains a block for each line of text, which contains a block for each word. This field is
present in the response for a request that included the Byte parameter.

• BlockReferences – A reference to each block for this entity. This field is present in the response
for a request that included the Byte parameter. The field is not present for text files.

• Errors – Page-level errors that the system detected while processing the input document. The
field is empty if the system encountered no errors.

For descriptions of these output fields, see DetectEntities in the Amazon Comprehend API
Reference. For more information about the layout elements, see Amazon Textract analysis objects
in the Amazon Textract Developer Guide.

The following example shows the output for a one-page scanned PDF input document.

{
 "Entities": [{
 "Score": 0.9984670877456665,

Outputs for real-time analysis 231

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/textract/latest/dg/how-it-works-document-layout.html

Amazon Comprehend Developer Guide

 "Type": "DATE-TIME",
 "Text": "September 4,",
 "BlockReferences": [{
 "BlockId": "42dcaaee-c484-4b5d-9e3f-ae0be928b3e1",
 "BeginOffset": 0,
 "EndOffset": 12,
 "ChildBlocks": [{
 "ChildBlockId": "6e9cbb43-f8be-4da0-9a4b-ff9a6c350a14",
 "BeginOffset": 0,
 "EndOffset": 9
 },
 {
 "ChildBlockId": "599e0d53-ae9f-491b-a762-459b22c79ff5",
 "BeginOffset": 0,
 "EndOffset": 2
 },
 {
 "ChildBlockId": "599e0d53-ae9f-491b-a762-459b22c79ff5",
 "BeginOffset": 0,
 "EndOffset": 2
 }
]
 }]
 }],
 "DocumentMetadata": {
 "Pages": 1,
 "ExtractedCharacters": [{
 "Page": 1,
 "Count": 609
 }]
 },
 "DocumentType": [{
 "Page": 1,
 "Type": "SCANNED_PDF"
 }],
 "Blocks": [{
 "Id": "ee82edf3-28de-4d63-8883-40e2e4938ccb",
 "BlockType": "LINE",
 "Text": "Your Band",
 "Page": 1,
 "Geometry": {
 "BoundingBox": {
 "Height": 0.024125460535287857,
 "Left": 0.11745482683181763,

Outputs for real-time analysis 232

Amazon Comprehend Developer Guide

 "Top": 0.06821706146001816,
 "Width": 0.12074867635965347
 },
 "Polygon": [{
 "X": 0.11745482683181763,
 "Y": 0.06821706146001816
 },
 {
 "X": 0.2382034957408905,
 "Y": 0.06821706146001816
 },
 {
 "X": 0.2382034957408905,
 "Y": 0.09234252572059631
 },
 {
 "X": 0.11745482683181763,
 "Y": 0.09234252572059631
 }
]
 },
 "Relationships": [{
 "Ids": [
 "b105c561-c8d9-485a-a728-7a5b1a308935",
 "60ecb119-3173-4de2-8c5d-de182a5f86a5"
],
 "Type": "CHILD"
 }]
 }]
}

The following example shows the output for analysis of a native PDF document.

Example Example output from a custom entity recognition analysis of a PDF document

{
 "Blocks":
 [
 {
 "BlockType": "LINE",
 "Geometry":
 {
 "BoundingBox":
 {

Outputs for real-time analysis 233

Amazon Comprehend Developer Guide

 "Height": 0.012575757575757575,
 "Left": 0.0,
 "Top": 0.0015063131313131314,
 "Width": 0.02262091503267974
 },
 "Polygon":
 [
 {
 "X": 0.0,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.014082070707070706
 },
 {
 "X": 0.0,
 "Y": 0.014082070707070706
 }
]
 },
 "Id": "4330efed-6334-4fc4-ba48-e050afa95c8d",
 "Page": 1,
 "Relationships":
 [
 {
 "ids":
 [
 "f343ce48-583d-4abe-b84b-a232e266450f"
],
 "type": "CHILD"
 }
],
 "Text": "S-3"
 },
 {
 "BlockType": "WORD",
 "Geometry":
 {
 "BoundingBox":

Outputs for real-time analysis 234

Amazon Comprehend Developer Guide

 {
 "Height": 0.012575757575757575,
 "Left": 0.0,
 "Top": 0.0015063131313131314,
 "Width": 0.02262091503267974
 },
 "Polygon":
 [
 {
 "X": 0.0,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.014082070707070706
 },
 {
 "X": 0.0,
 "Y": 0.014082070707070706
 }
]
 },
 "Id": "f343ce48-583d-4abe-b84b-a232e266450f",
 "Page": 1,
 "Relationships":
 [],
 "Text": "S-3"
 }
],
 "DocumentMetadata":
 {
 "PageNumber": 1,
 "Pages": 1
 },
 "DocumentType": "NativePDF",
 "Entities":
 [
 {
 "BlockReferences":
 [

Outputs for real-time analysis 235

Amazon Comprehend Developer Guide

 {
 "BeginOffset": 25,
 "BlockId": "4330efed-6334-4fc4-ba48-e050afa95c8d",
 "ChildBlocks":
 [
 {
 "BeginOffset": 1,
 "ChildBlockId": "cbba5534-ac69-4bc4-beef-306c659f70a6",
 "EndOffset": 6
 }
],
 "EndOffset": 30
 }
],
 "Score": 0.9998825926329088,
 "Text": "0.001",
 "Type": "OFFERING_PRICE"
 },
 {
 "BlockReferences":
 [
 {
 "BeginOffset": 41,
 "BlockId": "f343ce48-583d-4abe-b84b-a232e266450f",
 "ChildBlocks":
 [
 {
 "BeginOffset": 0,
 "ChildBlockId": "292a2e26-21f0-401b-a2bf-03aa4c47f787",
 "EndOffset": 9
 }
],
 "EndOffset": 50
 }
],
 "Score": 0.9809727537330395,
 "Text": "6,097,560",
 "Type": "OFFERED_SHARES"
 }
],
 "File": "example.pdf",
 "Version": "2021-04-30"
 }

Outputs for real-time analysis 236

Amazon Comprehend Developer Guide

Running analysis jobs for custom entity recognition

You can run an asynchronous analysis job to detect custom entities in a set of one or more
documents.

Before you begin

You need a custom entity recognition model (also known as a recognizer) before you can
detect custom entities. For more information about these models, see the section called
“Training recognizer models”.

A recognizer that is trained with plain-text annotations supports entity detection for plain-text
documents only. A recognizer that is trained with PDF document annotations supports entity
detection for plain-text documents, images, PDF files, and Word documents. For files other
than text files, Amazon Comprehend performs text extraction before running the analysis. For
information about the input files, see Inputs for asynchronous custom analysis.

If you plan to analyze image files or scanned PDF documents, your IAM policy must
grant permissions to use two Amazon Textract API methods (DetectDocumentText and
AnalyzeDocument). Amazon Comprehend invokes these methods during text extraction. For an
example policy, see Permissions required to perform document analysis actions.

To run an async analysis job, you perform the following overall steps:

1. Store the documents in an Amazon S3 bucket.

2. Use the API or console to start the analysis job.

3. Monitor the progress of the analysis job.

4. After the job runs to completion, retrieve the results of the analysis from the S3 bucket that you
specified when you started the job.

Topics

• Starting a custom entity detection job (console)

• Starting a custom entity detection job (API)

• Outputs for asynchronous analysis jobs

Running async analysis jobs 237

Amazon Comprehend Developer Guide

Starting a custom entity detection job (console)

You can use the console to start and monitor an async analysis job for custom entity recognition.

To start an async analysis job

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Analysis jobs and then choose Create job.

3. Give the classification job a name. The name must be unique your account and current Region.

4. Under Analysis type, choose Custom entity recognition.

5. From Recognizer model, choose the custom entity recognizer to use.

6. From Version, choose the recognizer version to use.

7. (Optional) If you choose to encrypt the data that Amazon Comprehend uses while processing
your job, choose Job encryption. Then choose whether to use a KMS key associated with the
current account, or one from another account.

• If you are using a key associated with the current account, choose the key ID for KMS key ID.

• If you are using a key associated with a different account, enter the ARN for the key ID under
KMS key ARN.

Note

For more information on creating and using KMS keys and the associated encryption,
see Key management service (KMS).

8. Under Input data, enter the location of the Amazon S3 bucket that contains your input
documents or navigate to it by choosing Browse S3. This bucket must be in the same Region
as the API that you are calling. The IAM role that you're using for access permissions for the
analysis job must have reading permissions for the S3 bucket.

9. (Optional) for Input format, you can choose the format of the input documents. The format
can be one document per file, or one document per line in a single file. One document per line
applies only to text documents.

10. (Optional) For Document read mode, you can override the default text extraction actions. For
more information, see Setting text extraction options.

Analysis jobs (console) 238

https://console.aws.amazon.com/comprehend/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

11. Under Output data, enter the location of the Amazon S3 bucket where Amazon Comprehend
should write the job's output data or navigate to it by choosing Browse S3. This bucket must
be in the same Region as the API that you are calling. The IAM role you're using for access
permissions for the classification job must have write permissions for the S3 bucket.

12. (Optional) if you choose to encrypt the output result from your job, choose Encryption. Then
choose whether to use a KMS key associated with the current account, or one from another
account.

• If you are using a key associated with the current account, choose the key alias or ID for KMS
key ID.

• If you are using a key associated with a different account, enter the ARN for the key alias or
ID under KMS key ID.

13. (Optional) To launch your resources into Amazon Comprehend from a VPC, enter the VPC ID
under VPC or choose the ID from the drop-down list.

1. Choose the subnet under Subnet(s). After you select the first subnet, you can choose
additional ones.

2. Under Security Group(s), choose the security group to use if you specified one. After you
select the first security group, you can choose additional ones.

Note

When you use a VPC with your analysis job, the DataAccessRole used for the Create
and Start operations must have permissions to the VPC that accesses the output
bucket.

14. Choose Create job to create the entity recognition job.

Starting a custom entity detection job (API)

You can use the API to start and monitor an async analysis job for custom entity recognition.

To start a custom entity detection job with the StartEntitiesDetectionJob operation, you provide
the EntityRecognizerArn, which is the Amazon Resource Name (ARN) of the trained model. You can
find this ARN in the response to the CreateEntityRecognizer operation.

Topics

Analysis jobs (API) 239

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html

Amazon Comprehend Developer Guide

• Detecting custom entities using the AWS Command Line Interface

• Detecting custom entities using the AWS SDK for Java

• Detecting custom entities using the AWS SDK for Python (Boto3)

• Overriding API actions for PDF files

Detecting custom entities using the AWS Command Line Interface

Use the following example for Unix, Linux, and macOS environments. For Windows, replace the
backslash (\) Unix continuation character at the end of each line with a caret (^). To detect custom
entities in a document set, use the following request syntax:

aws comprehend start-entities-detection-job \
 --entity-recognizer-arn "arn:aws:comprehend:region:account number:entity-
recognizer/test-6" \
 --job-name infer-1 \
 --data-access-role-arn "arn:aws:iam::account number:role/service-role/
AmazonComprehendServiceRole-role" \
 --language-code en \
 --input-data-config "S3Uri=s3://Bucket Name/Bucket Path" \
 --output-data-config "S3Uri=s3://Bucket Name/Bucket Path/" \
 --region region

Amazon Comprehend responds with the JobID and JobStatus and will return the output from
the job in the S3 bucket that you specified in the request.

Detecting custom entities using the AWS SDK for Java

For Amazon Comprehend examples that use Java, see Amazon Comprehend Java examples.

Detecting custom entities using the AWS SDK for Python (Boto3)

This example creates a custom entity recognizer, trains the model, and then runs it in an entity
recognizer job using the AWS SDK for Python (Boto3).

Instantiate the SDK for Python.

import boto3
import uuid

Analysis jobs (API) 240

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend

Amazon Comprehend Developer Guide

comprehend = boto3.client("comprehend", region_name="region")

Create an entity recognizer:

response = comprehend.create_entity_recognizer(
 RecognizerName="Recognizer-Name-Goes-Here-{}".format(str(uuid.uuid4())),
 LanguageCode="en",
 DataAccessRoleArn="Role ARN",
 InputDataConfig={
 "EntityTypes": [
 {
 "Type": "ENTITY_TYPE"
 }
],
 "Documents": {
 "S3Uri": "s3://Bucket Name/Bucket Path/documents"
 },
 "Annotations": {
 "S3Uri": "s3://Bucket Name/Bucket Path/annotations"
 }
 }
)
recognizer_arn = response["EntityRecognizerArn"]

List all recognizers:

response = comprehend.list_entity_recognizers()

Wait for the entity recognizer to reach TRAINED status:

while True:
 response = comprehend.describe_entity_recognizer(
 EntityRecognizerArn=recognizer_arn
)

 status = response["EntityRecognizerProperties"]["Status"]
 if "IN_ERROR" == status:
 sys.exit(1)
 if "TRAINED" == status:
 break

 time.sleep(10)

Analysis jobs (API) 241

Amazon Comprehend Developer Guide

Start a custom entities detection job:

response = comprehend.start_entities_detection_job(
 EntityRecognizerArn=recognizer_arn,
 JobName="Detection-Job-Name-{}".format(str(uuid.uuid4())),
 LanguageCode="en",
 DataAccessRoleArn="Role ARN",
 InputDataConfig={
 "InputFormat": "ONE_DOC_PER_LINE",
 "S3Uri": "s3://Bucket Name/Bucket Path/documents"
 },
 OutputDataConfig={
 "S3Uri": "s3://Bucket Name/Bucket Path/output"
 }
)

Overriding API actions for PDF files

For image files and PDF files, you can override the default extraction actions using the
DocumentReaderConfig parameter in InputDataConfig.

The following example defines a JSON file named myInputDataConfig.json to set the
InputDataConfig values. It sets DocumentReadConfig to use the Amazon Textract
DetectDocumentText API for all PDF files.

Example

"InputDataConfig": {
 "S3Uri": s3://Bucket Name/Bucket Path",
 "InputFormat": "ONE_DOC_PER_FILE",
 "DocumentReaderConfig": {
 "DocumentReadAction": "TEXTRACT_DETECT_DOCUMENT_TEXT",
 "DocumentReadMode": "FORCE_DOCUMENT_READ_ACTION"
 }
}

In the StartEntitiesDetectionJob operation, specify the myInputDataConfig.json file as the
InputDataConfig parameter:

 --input-data-config file://myInputDataConfig.json

Analysis jobs (API) 242

Amazon Comprehend Developer Guide

For more information about the DocumentReaderConfig parameters, see Setting text extraction
options.

Outputs for asynchronous analysis jobs

After an analysis job completes, it stores the results in the S3 bucket that you specified in the
request.

Outputs for text inputs

For text input files, the output consists of a list of entities for each input document.

The following example shows the output for two documents from an input file named 50_docs,
using one document per line format.

{
 "File": "50_docs",
 "Line": 0,
 "Entities":
 [
 {
 "BeginOffset": 0,
 "EndOffset": 22,
 "Score": 0.9763959646224976,
 "Text": "John Johnson",
 "Type": "JUDGE"
 }
]
 }
 {
 "File": "50_docs",
 "Line": 1,
 "Entities":
 [
 {
 "BeginOffset": 11,
 "EndOffset": 15,
 "Score": 0.9615424871444702,
 "Text": "Thomas Kincaid",
 "Type": "JUDGE"
 }
]
 }

Outputs for analysis jobs 243

Amazon Comprehend Developer Guide

Outputs for semi-structured inputs

For semi-structured input documents, the output can include the following additional fields:

• DocumentMetadata – Extraction information about the document. The metadata includes a list
of pages in the document, with the number of characters extracted from each page. This field is
present in the response if the request included the Byte parameter.

• DocumentType – The document type for each page in the input document. This field is present in
the response for a request that included the Byte parameter.

• Blocks – Information about each block of text in the input document. Blocks can nest within a
block. A page block contains a block for each line of text, which contains a block for each word.
This field is present in the response for a request that included the Byte parameter.

• BlockReferences – A reference to each block for this entity. This field is present in the response
for a request that included the Byte parameter. The field isn't present for text files.

• Errors – Page-level errors that the system detected while processing the input document. The
field is empty if the system encountered no errors.

For more details about these output fields, see DetectEntities in the Amazon Comprehend API
Reference

The following example shows the output for a one-page native PDF input document.

Example Example output from a custom entity recognition analysis of a PDF document

{
 "Blocks":
 [
 {
 "BlockType": "LINE",
 "Geometry":
 {
 "BoundingBox":
 {
 "Height": 0.012575757575757575,
 "Left": 0.0,
 "Top": 0.0015063131313131314,
 "Width": 0.02262091503267974
 },
 "Polygon":
 [

Outputs for analysis jobs 244

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html

Amazon Comprehend Developer Guide

 {
 "X": 0.0,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.014082070707070706
 },
 {
 "X": 0.0,
 "Y": 0.014082070707070706
 }
]
 },
 "Id": "4330efed-6334-4fc4-ba48-e050afa95c8d",
 "Page": 1,
 "Relationships":
 [
 {
 "ids":
 [
 "f343ce48-583d-4abe-b84b-a232e266450f"
],
 "type": "CHILD"
 }
],
 "Text": "S-3"
 },
 {
 "BlockType": "WORD",
 "Geometry":
 {
 "BoundingBox":
 {
 "Height": 0.012575757575757575,
 "Left": 0.0,
 "Top": 0.0015063131313131314,
 "Width": 0.02262091503267974
 },
 "Polygon":

Outputs for analysis jobs 245

Amazon Comprehend Developer Guide

 [
 {
 "X": 0.0,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.0015063131313131314
 },
 {
 "X": 0.02262091503267974,
 "Y": 0.014082070707070706
 },
 {
 "X": 0.0,
 "Y": 0.014082070707070706
 }
]
 },
 "Id": "f343ce48-583d-4abe-b84b-a232e266450f",
 "Page": 1,
 "Relationships":
 [],
 "Text": "S-3"
 }
],
 "DocumentMetadata":
 {
 "PageNumber": 1,
 "Pages": 1
 },
 "DocumentType": "NativePDF",
 "Entities":
 [
 {
 "BlockReferences":
 [
 {
 "BeginOffset": 25,
 "BlockId": "4330efed-6334-4fc4-ba48-e050afa95c8d",
 "ChildBlocks":
 [
 {
 "BeginOffset": 1,

Outputs for analysis jobs 246

Amazon Comprehend Developer Guide

 "ChildBlockId": "cbba5534-ac69-4bc4-beef-306c659f70a6",
 "EndOffset": 6
 }
],
 "EndOffset": 30
 }
],
 "Score": 0.9998825926329088,
 "Text": "0.001",
 "Type": "OFFERING_PRICE"
 },
 {
 "BlockReferences":
 [
 {
 "BeginOffset": 41,
 "BlockId": "f343ce48-583d-4abe-b84b-a232e266450f",
 "ChildBlocks":
 [
 {
 "BeginOffset": 0,
 "ChildBlockId": "292a2e26-21f0-401b-a2bf-03aa4c47f787",
 "EndOffset": 9
 }
],
 "EndOffset": 50
 }
],
 "Score": 0.9809727537330395,
 "Text": "6,097,560",
 "Type": "OFFERED_SHARES"
 }
],
 "File": "example.pdf",
 "Version": "2021-04-30"
 }

Outputs for analysis jobs 247

Amazon Comprehend Developer Guide

Creating and managing custom models

Amazon Comprehend includes built-in NLP (natural language processing) models that you can use
for analyzing insights or topic modeling. You can also use Amazon Comprehend to create custom
models for entity recognition and document classification.

You can use model versioning to keep track of your model's history. When you create and train a
new model version, you can make changes to the training dataset. Amazon Comprehend displays
details (including model performance) for each model version on the model details page. Over
time, you can see how model performance changes as you make changes to your training dataset.

You can create model versions using the Amazon Comprehend console or API. As an alternative,
Amazon Comprehend provides Flywheels to simplify the tasks associated with training and
evaluating new custom model versions.

After you create a custom model, you can share the model with other users by allowing other AWS
accounts to import a copy of your model.

Topics

• Model versioning with Amazon Comprehend

• Copying custom models between AWS accounts

Model versioning with Amazon Comprehend

Artificial intelligence and machine learning (AI/ML) is all about rapid experimentation. With
Amazon Comprehend, you train and build out models which you use to gain insight on your
data. With model versioning you can keep track of your modeling history and scores associated
with running results of your models as you provide more or different sets of data. You can use
versioning with your custom classification models or your custom entity recognition models.
Taking a look at your different versions over time you can gain insight on how successful they've
performed and gain insight on what parameters you used to get to your state of success.

When you train a new version of an existing custom classifier model or entity recognition model, all
you need to do is create a new version from the model details page and all the details populate for
you. The new version will have the same name as your earlier model — what we call the versionID
— although you will give it a unique version name during creation. As you add new versions to a
model, you can see all the previous versions and their details in one view from the model details

Model versioning with Amazon Comprehend 248

Amazon Comprehend Developer Guide

page. With versioning, you can see how model performance changes as you make changes to your
training dataset.

Create a new Custom classifier version (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Customization and then choose Custom classification.

3. From the Classifiers list, choose the name of the custom model from which you want to create
a new version. The custom model details page is displayed.

4. On the top right, select Create new model. A screen opens with prepopulated details from the
parent custom classification model.

5. Under Version name add a unique name to the new version.

6. Under version details, you can change the language and number of labels associated with your
new model.

7. Under the Data specifications section configure how you want to provide the data to your new
version— make sure to provide full data, which includes documents from your previous model
and your new documents. You can change the Classifier mode (single-label, or multi-label),

Model versioning with Amazon Comprehend 249

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

Data format (CSV file, Augmented manifest), your Training dataset, and your Test dataset
(autosplit, or your custom test data configuration).

8. (Optional) update the S3 location for your output data

9. Under Access permissions, create or use an existing IAM role.

10. (Optional) Update your VPC settings

11. (Optional) Add tags to your new version to help keep track of the details.

For more information about creating custom classifiers, see Create a Custom Classifier

Create a new Custom entity recognizer version (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Customization and then choose Custom entity recognition.

3. From the Recognizer model list, choose the name of the recognizer from which you want to
create a new version. The details page is displayed.

4. On the top right, select Train new version. A screen opens with prepopulated details from the
parent entity recognizer.

5. Under Version name add a unique name to the new version.

6. Under Custom entity type, add the custom labels or label you want the recognizer to identify
in your dataset and select Add type. Choose a custom entity type from the annotations or
entity list you've provided. The recognizer will then use all of the included entity types to
identify entities in the data set when running your job. Each entity type must be upper-
case and separated by and underscore if it uses multiple words. A maximum of 25 types are
allowed.

7. (Optional) Select Recognizer encryption to encrypt the data in the storage volume while your
job is being processed.

8. Under the Training data section, specify the Annotation and data format details (CSV
file, Augmented manifest)single-label, or multi-label), Data format (CSV, Augmented
manifest), your Training dataset, and your Test dataset (autosplit, or your custom test data
configuration).

9. (Optional) update the S3 location for your output data

10. Under Access permissions, create or use an existing IAM role.

11. (Optional) Update your VPC settings

Model versioning with Amazon Comprehend 250

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

12. (Optional) Add tags to your new version to help keep track of the details.

To learn more about custom entity recognizers, see Custom Entity Recognition and Creating a
Custom Entity Recognizer Using the Console.

Copying custom models between AWS accounts

Amazon Comprehend users can copy trained custom models between AWS accounts in a two-step
process. First, a user in one AWS account (account A), shares a custom model that's in their account.
Then, a user in another AWS account (account B) imports the model into their account. The account
B user does not need to train the model, and does not need to copy (or access) the original training
data or test data.

To share a custom model in account A, the user attaches an AWS Identity and Access Management
(IAM) policy to a model version. This policy authorizes an entity in account B, such as a user or role,
to import the model version into Amazon Comprehend in their AWS account. The account B user
must import the model into the same AWS Region as the original model.

To import the model in account B, the user of this account provides Amazon Comprehend with the
necessary details, such as the Amazon Resource Name (ARN) of the model. By importing the model,
this user creates a new custom model in their AWS account that replicates the model that they
imported. This model is fully trained and ready for inference jobs, such as document classification
or named entity recognition.

Copying a custom model is useful if:

• You belong to an organization that uses multiple AWS accounts. For example, your organization
might have an AWS account for each phase of development, such as build, stage, test, and
deploy. Or, it might have distinct AWS accounts for business functions, such as data science and
engineering.

• Your organization works with another, such as an AWS Partner, that trains custom models in
Amazon Comprehend and provides them to you as their client.

In scenarios like these, you can quickly copy a trained custom entity recognizer or document
classifier from one AWS account to another. Copying a model in this way is easier than the
alternative, where you copy training data between AWS accounts to train duplicate models.

Topics

Copying custom models between AWS accounts 251

Amazon Comprehend Developer Guide

• Sharing a custom model with another AWS account

• Importing a custom model from another AWS account

Sharing a custom model with another AWS account

With Amazon Comprehend, you can share your custom models with others, so they can import
your models into their AWS accounts. When a user imports one of your custom models, they create
a new custom model in their account. Their new model duplicates the one that you shared.

To share a custom model, you attach a policy to it that authorizes others to import it. Then, you
provide those users with the details that they need.

Note

When other users import a custom model that you've shared, they must use the same AWS
Region —for example, US East (N. Virginia)— that contains your model.

Topics

• Before you begin

• Resource-based policies for custom models

• Step 1: Add a resource-based policy to a custom model

• Step 2: Provide the details that others need to import

Before you begin

Before you can share a model, you must have a trained custom classifier or custom entity
recognizer in Amazon Comprehend in your AWS account. For more information about training
custom models, see Custom classification or Custom entity recognition.

Required permissions

IAM policy statement

Before you can add a resource-based policy to a custom model, you require permissions in AWS
Identity and Access Management (IAM). Your user, group, or role must have a policy attached so
you can create, get, and delete model policies, as shown in the following example.

Sharing a custom model 252

Amazon Comprehend Developer Guide

Example IAM policy to manage resource-based policies for custom models

{
 "Effect": "Allow",
 "Action": [
 "comprehend:PutResourcePolicy",
 "comprehend:DeleteResourcePolicy",
 "comprehend:DescribeResourcePolicy"
],
 "Resource": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/foo/
version/*"
}

For information about creating an IAM policy, see Creating IAM policies in the IAM User Guide. For
information about attaching an IAM policy, see Adding and removing IAM identity permissions in
the IAM User Guide.

AWS KMS key policy statement

If you are sharing an encrypted model, then you might need to add permissions for AWS KMS.
This requirement depends on the type of KMS key that you use to encrypt the model in Amazon
Comprehend.

An AWS owned key is owned and managed by an AWS service. If you use an AWS owned key, you
do not need to add permissions for AWS KMS, and you can skip this section.

A Customer managed key is a key that you create, own, and manage in your AWS account. If you
use a customer managed key, you must add a statement to your KMS key policy.

The policy statement authorizes one or more entities (such as users or accounts) to perform the
AWS KMS operations required to decrypt the model.

You use condition keys to help prevent the confused deputy problem. For more information, see
the section called “Cross-service confused deputy prevention”.

Use the following condition keys in the policy to validate the entities that access your KMS key.
When a user imports the model, AWS KMS checks that the ARN of the source model version
matches the condition. If you do not include a condition in the policy, the specified principals can
use your KMS key to decrypt any model version:

• aws:SourceArn – Use this condition key with the kms:GenerateDataKey and kms:Decrypt
actions.

Sharing a custom model 253

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn

Amazon Comprehend Developer Guide

• kms:EncryptionContext – Use this condition key with the kms:GenerateDataKey,
kms:Decrypt, and kms:CreateGrant actions.

In the following example, the policy authorizes AWS account 444455556666 to use version 1 of
the specified classifier model owned by AWS account 111122223333.

Example KMS key policy to access a specific classifier model version

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS":
 "arn:aws:iam::444455556666:root"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn":
 "arn:aws:comprehend:us-west-2:111122223333:document-
classifier/classifierName/version/1"
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:comprehend:arn":
 "arn:aws:comprehend:us-west-2:111122223333:document-
classifier/classifierName/version/1"

Sharing a custom model 254

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context

Amazon Comprehend Developer Guide

 }
 }
 }
]
}

The following example policy authorizes user ExampleUser from AWS account 444455556666
and ExampleRole from AWS account 123456789012 to access this KMS key via the Amazon
Comprehend service.

Example KMS key policy to allow access to the Amazon Comprehend service (alternative 1).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:user/ExampleUser",
 "arn:aws:iam::123456789012:role/ExampleRole"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:comprehend:*"

 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:user/ExampleUser",
 "arn:aws:iam::123456789012:role/ExampleRole"
]
 },

Sharing a custom model 255

Amazon Comprehend Developer Guide

 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:EncryptionContext:aws:comprehend:arn": "arn:aws:comprehend:*"
 }
 }
 }
]
}

The following example policy authorizes AWS account 444455556666 to access this KMS key via
the Amazon Comprehend service, using an alternative syntax to the previous example.

Example KMS key policy to allow access to the Amazon Comprehend service (alternative 2).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:CreateGrant"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:EncryptionContext:aws:comprehend:arn": "arn:aws:comprehend:*"
 }
 }
 }
]
}

For more information, see Key policies in AWS KMS in the AWS Key Management Service Developer
Guide.

Sharing a custom model 256

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon Comprehend Developer Guide

Resource-based policies for custom models

Before an Amazon Comprehend user in another AWS account can import a custom model from
your AWS account, you must authorize them to do so. To authorize them, you add a resource-based
policy to the model version that you want to share. A resource-based policy is an IAM policy that
you attach to a resource in AWS.

When you attach a resource policy to a custom model version, the policy authorizes users, groups,
or roles to perform the comprehend:ImportModel action on the model version.

Example Resource-based policy for a custom model version

This example specifies the authorized entities in the Principal attribute. Resource "*" refers to
the specific model version that you attach the policy to.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "comprehend:ImportModel",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:user/ExampleUser",
 "arn:aws:iam::123456789012:role/ExampleRole"
]
 }
 }
]
}

For policies that you attach to custom models, comprehend:ImportModel is the only action that
Amazon Comprehend supports.

For more information about resource-based policies, see Identity-based policies and resource-
based policies in the IAM User Guide.

Sharing a custom model 257

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon Comprehend Developer Guide

Step 1: Add a resource-based policy to a custom model

You can add a resource-based policy by using the AWS Management Console, AWS CLI, or Amazon
Comprehend API.

AWS Management Console

You can use Amazon Comprehend in the AWS Management Console.

To add a resource-based policy

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. In the navigation menu on the left, under Customization, choose the page that contains your
custom model:

a. If you are sharing a custom document classifier, choose Custom classification.

b. If you are sharing a custom entity recognizer, choose Custom entity recognition.

3. In the list of models, choose the model name to open its details page.

4. Under Versions, choose the name of the model version that you want to share.

5. On the version details page, choose the Tags, VPC & Policy tab.

6. In the Resource-based policy section, choose Edit.

7. On the Edit resource-based policy page, do the following:

a. For Policy name, enter a name that will help you recognize the policy after you create it.

b. Under Authorize, specify one or more of the following entities to authorize them to
import your model:

Field Definition and examples

Service principals Service principal identifiers for the services that can
access this model version. For example:

comprehend.amazonaws.com

AWS account IDs AWS accounts that can access this model version.
Authorizes all users who belong to the account. For
example:

Sharing a custom model 258

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

Field Definition and examples

111122223333, 123456789012

IAM entities ARNs for users or roles that can access this model
version. For example:

arn:aws:iam::111122223333:user/ExampleUser,
arn:aws:iam::444455556666:role/ExampleRole

8. Under Share, you can copy the ARN of the model version to help you share it with the person
who will import your model. When someone imports a custom model from a different AWS
account, the model version ARN is required.

9. Choose Save. Amazon Comprehend creates your resource-based policy and attaches it to your
model.

AWS CLI

To add a resource-based policy to a custom model with the AWS CLI, use the PutResourcePolicy
command. The command takes the following parameters:

• resource-arn – The ARN of the custom model, including the model version.

• resource-policy – A JSON file that defines the resource-based policy to attach to your
custom model.

You can also provide the policy as an inline JSON string. To provide valid JSON for your policy,
enclose the attribute names and values in double quotes. If the JSON body is also enclosed in
double quotes, you escape the double quotes that are inside the policy.

• policy-revision-id – The revision ID that Amazon Comprehend assigned to the policy
that you are updating. If you are creating a new policy that has no prior version, don't use this
parameter. Amazon Comprehend creates the revision ID for you.

Example Add a resource-based policy to a custom model using the put-resource-policy
command

This example defines a policy in a JSON file named policyFile.json and associates the policy to a
model. The model is version v2 of a classifier named mycf1.

Sharing a custom model 259

https://docs.aws.amazon.com/comprehend/latest/dg/API_PutResourcePolicy.html

Amazon Comprehend Developer Guide

$ aws comprehend put-resource-policy \
> --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/mycf1/
version/v2 \
> --resource-policy file://policyFile.json \
> --policy-revision-id revision-id

The JSON file for the resource policy contains the following contents:

• Action – The policy authorizes the named principals to use comprehend:ImportModel.

• Resource – The ARN of the custom model. Resource "*" refers to the model version that you
specify in the put-resource-policy command.

• Principal – The policy authorizes user jane from AWS account 444455556666 and all users from
AWS account 123456789012.

{
"Version":"2012-10-17",
 "Statement":[
 {"Sid":"ResourcePolicyForImportModel",
 "Effect":"Allow",
 "Action":["comprehend:ImportModel"],
 "Resource":"*",
 "Principal":
 {"AWS":
 ["arn:aws:iam::444455556666:user/jane",
 "123456789012"]
 }
 }
]
}

Amazon Comprehend API

To add a resource-based policy to a custom model by using the Amazon Comprehend API, use the
PutResourcePolicy API operation.

You can also add a policy to a custom model in the API request that creates the model.
To do this, provide the policy JSON for the ModelPolicy parameter when you submit a
CreateDocumentClassifier or CreateEntityRecognizer request.

Sharing a custom model 260

https://docs.aws.amazon.com/comprehend/latest/dg/API_PutResourcePolicy.html
https://docs.aws.amazon.com/comprehend/latest/dg/API_CreateDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/dg/API_CreateEntityRecognizer.html

Amazon Comprehend Developer Guide

Step 2: Provide the details that others need to import

Now that you have added the resource-based policy to your custom model, you have authorized
other Amazon Comprehend users to import your model into their AWS accounts. However, before
they can import, you must provide them with the following details:

• The Amazon Resource Name (ARN) of the model version.

• The AWS Region that contains the model. Anyone who imports your model must use the same
AWS Region .

• Whether the model is encrypted, and if it is, the type of AWS KMS key that you use: AWS owned
key or customer managed key.

• If your model is encrypted with a customer managed key, then you must provide the ARN of
the KMS key. Anyone who imports your model must include the ARN in an IAM service role in
their AWS account. This role authorizes Amazon Comprehend to use the KMS key to decrypt the
model during the import.

For more information about how other users import your model, see Importing a custom model
from another AWS account.

Importing a custom model from another AWS account

In Amazon Comprehend, you can import a custom model that's in another AWS account. When you
import a model, you create a new custom model in your account. Your new custom model is a fully-
trained duplicate of the model that you imported.

Topics

• Before you begin

• Importing a custom model

Before you begin

Before you can import a custom model from another AWS account, ensure that the person who
shared the model with you does the following:

• Authorizes you to do the import. This authorization is granted in the resource-based policy that
is attached to the model version. For more information, see Resource-based policies for custom
models.

Importing a custom model 261

Amazon Comprehend Developer Guide

• Provides you with the following information:

• The Amazon Resource Name (ARN) of the model version.

• The AWS Region that contains the model. You must use the same AWS Region when you
import.

• Whether the model is encrypted with an AWS KMS key and, if it is, the type of key that is used.

If the model is encrypted, you might need to take additional steps, depending on the type of KMS
key that is used:

• AWS owned key – This type of KMS key is owned and managed by AWS. If the model is
encrypted with an AWS owned key, no additional steps are needed.

• Customer managed key – This type of KMS key is created, owned, and managed by an AWS
customer in their AWS account. If the model is encrypted with a customer managed key, then the
person who shared the model must:

• Authorize you to decrypt the model. This authorization is granted in the KMS key policy for the
customer managed key. For more information, see AWS KMS key policy statement.

• Provide the ARN of the customer managed key. You use this ARN when you create an IAM
service role. This role authorizes Amazon Comprehend to use the KMS key to decrypt the
model.

Required permissions

Before you can import a custom model, you or your administrator must authorize the required
actions in AWS Identity and Access Management (IAM). As an Amazon Comprehend user, you must
be authorized to import by an IAM policy statement. If encryption or decryption is required during
the import, then Amazon Comprehend must be authorized to use the necessary AWS KMS keys.

IAM policy statement

Your user, group or role must have a policy attached that allows the ImportModel action, as
shown in the following example.

Example IAM policy to import a custom model

{
 "Effect": "Allow",
 "Action": [

Importing a custom model 262

Amazon Comprehend Developer Guide

 "comprehend:ImportModel"
],
 "Resource": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/foo/
version/*"
}

For information about creating an IAM policy, see Creating IAM policies in the IAM User Guide. For
information about attaching an IAM policy, see Adding and removing IAM identity permissions in
the IAM User Guide.

IAM service role for AWS KMS encryption

When you import a custom model, you must authorize Amazon Comprehend to use AWS KMS keys
in either of the following cases:

• You are importing a custom model that is encrypted with a customer managed key in AWS KMS.
In this case, Amazon Comprehend needs access to the KMS key so that it can decrypt the model
during the import.

• You want to encrypt the new custom model that you create with the import, and you want to
use a customer managed key. In this case, Amazon Comprehend needs access to your KMS key so
that it can encrypt the new model.

To authorize Amazon Comprehend to use these AWS KMS keys, you create an IAM service role.
This type of IAM role allows an AWS service to access resources in other services on your behalf.
For more information about service roles, see Creating a role to delegate permissions to an AWS
service in the IAM User Guide.

If you use the Amazon Comprehend console to import, you can have Amazon Comprehend create
the service role for you. Otherwise, you must create a service role in IAM before you import.

The IAM service role must have a permissions policy and a trust policy, as shown by the following
examples.

Example permissions policy

The following permissions policy allows the AWS KMS operations that Amazon Comprehend uses
to encrypt and decrypt custom models. It grants access to two KMS keys:

• One KMS key is in the AWS account that contains the model to import. It was used to encrypt the
model, and Amazon Comprehend uses it to decrypt the model during the import.

Importing a custom model 263

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Comprehend Developer Guide

• The other KMS key is in the AWS account that imports the model. Amazon Comprehend uses this
key to encrypt the new custom model that is created by the import.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/key-id",
 "arn:aws:kms:us-west-2:444455556666:key/key-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDatakey"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/key-id",
 "arn:aws:kms:us-west-2:444455556666:key/key-id"
],
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "s3.us-west-2.amazonaws.com"
]
 }
 }
 }
]
}

Example trust policy

The following trust policy allows Amazon Comprehend to assume the role and gain its permissions.
It allows the comprehend.amazonaws.com service principal to perform the sts:AssumeRole
operation. To help with confused deputy prevention, you restrict the scope of the permission by

Importing a custom model 264

Amazon Comprehend Developer Guide

using one or more global condition context keys. For aws:SourceAccount, specify the account Id
of the user who is importing the model.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "444455556666"
 }
 }
 }
]
}

Importing a custom model

You can import a custom model by using the AWS Management Console, AWS CLI, or Amazon
Comprehend API.

AWS Management Console

You can use Amazon Comprehend in the AWS Management Console.

To import a custom model

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. In the navigation menu on the left, under Customization, choose the page for the type of
model that you are importing:

a. If you are importing a custom document classifier, choose Custom classification.

b. If you are importing a custom entity recognizer, choose Custom entity recognition.

3. Choose Import version.

4. On the Import model version page, enter the following details:

Importing a custom model 265

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

• Model version ARN – The ARN of the model version to import.

• Model name – A custom name for the new model that is created by the import.

• Version name – A custom name for the new model version that is created by the import.

5. For Model encryption, choose the type of KMS key to use to encrypt the new custom model
that you create with the import:

• Use AWS owned key – Amazon Comprehend encrypts your model by using a key in AWS Key
Management Service (AWS KMS) that is created, managed, and used on your behalf by AWS.

• Choose a different AWS KMS key (advanced) – Amazon Comprehend encrypts your model
by using a customer managed key that you manage in AWS KMS.

If you choose this option, select a KMS key that's in your AWS account, or create a new one
by choosing Create an AWS KMS key.

6. In the Service access section, grant Amazon Comprehend access to any AWS KMS keys that it
needs to:

• Decrypt the custom model that you import.

• Encrypt that the new custom model that you create with the import.

You grant access with an IAM service role that allows Amazon Comprehend to use the KMS
keys.

For Service role, do one of the following:

• If you have an existing service role that you want to use, choose Use an existing IAM role.
Then, select it under Role name.

• If you want Amazon Comprehend to create a role for you, choose Create an IAM role.

7. If you chose to have Amazon Comprehend create the role for you, do the following:

a. For Role name, enter a role name suffix that will help you recognize the role later.

b. For Source KMS key ARN, enter the ARN of the KMS key that is used to encrypt the model
that you're importing. Amazon Comprehend uses this key to decrypt the model during the
import.

8. (Optional) In the Tags section, you can add tags to the new custom model that you create by
importing. For more information about tagging custom models, see Tagging a new resource.

9. Choose Confirm.

Importing a custom model 266

Amazon Comprehend Developer Guide

AWS CLI

You can use Amazon Comprehend by running commands with the AWS CLI.

Example Import-model command

To import a custom model, use the import-model command:

$ aws comprehend import-model \
> --source-model arn:aws:comprehend:us-west-2:111122223333:document-classifier/foo/
version/bar \
> --model-name importedDocumentClassifier \
> --version-name versionOne \
> --data-access-role-arn arn:aws:iam::444455556666:role/comprehendAccessRole \
> --model-kms-key-id kms-key-id

This example uses the following parameters:

• source-model – The ARN of the custom model to import.

• model-name – A custom name for the new model that is created by the import.

• version-name – A custom name for the new model version that is created by the import.

• data-access-role-arn – The ARN of the IAM service role that allows Amazon Comprehend to
use the necessary AWS KMS keys to encrypt or decrypt the custom model.

• model-kms-key-id – The ARN or ID of the KMS key that Amazon Comprehend uses to encrypt
the custom model that you create with this import. This key must be in AWS KMS in your AWS
account.

Amazon Comprehend API

To import a custom model by using the Amazon Comprehend API, use the ImportModel API action.

Importing a custom model 267

https://docs.aws.amazon.com/comprehend/latest/dg/API_ImportModel.html

Amazon Comprehend Developer Guide

Flywheels

An Amazon Comprehend flywheel simplifies the process of improving a custom model over time.
You can use a flywheel to orchestrate the tasks associated with training and evaluating new
custom model versions. Flywheels support plain text custom models for custom classification and
custom entity recognition.

Topics

• Flywheel overview

• Flywheel data lakes

• IAM policies and permissions

• Configuring flywheels using the console

• Configuring flywheels using the API

• Configuring datasets

• Flywheel iterations

• Using flywheels for analysis

Flywheel overview

A flywheel is an Amazon Comprehend resource that orchestrates the training and evaluation of
new versions of a custom model. You can create a flywheel to use an existing trained model, or
Amazon Comprehend can create and train a new model for the flywheel. Use flywheels with plain-
text custom models for custom classification or custom entity recognition.

You can configure and manage flywheels using the Amazon Comprehend console or API. You can
also configure flywheels using AWS CloudFormation.

When you create a flywheel, Amazon Comprehend creates a data lake in your account. The data
lake stores and manages all the flywheel data, such as the training data and test data for all
versions of the model.

You set the active model version to be the version of the flywheel model that you want to use for
inference jobs or Amazon Comprehend endpoints. Initially, the flywheel contains one version of the
model. Over time, as you train new model versions, you select the best-performing version to be

Flywheel overview 268

Amazon Comprehend Developer Guide

the active model version. When a user specifies the flywheel ARN to run an inference job, Amazon
Comprehend runs the job using the flywheel's active model version.

Periodically, you obtain new labeled data (training data or test data) for the model. You make new
data available to the flywheel by creating one or more datasets. A dataset contains input data for
training or testing the custom model associated with a flywheel. Amazon Comprehend uploads the
input data to the flywheel's data lake.

To incorporate the new datasets into your custom model, you create and run a flywheel iteration.
A flywheel iteration is a workflow that uses the new datasets to evaluate the active model version
and to train a new model version. Based on the metrics for the existing and new model versions,
you can decide whether to promote the new model version to be the active version.

You can use the flywheel active model version to run custom analysis (real time or asynchronous
jobs). To use the flywheel model for real-time analysis, you must create an endpoint for the
flywheel.

There is no additional charge for using flywheels. However, when you run a flywheel iteration,
you incur the standard charges for training a new model version and storing the model data. For
detailed pricing information, see Amazon Comprehend Pricing.

Topics

• Flywheel datasets

• Flywheel creation

• Flywheel states

• Flywheel iterations

Flywheel datasets

To add new labeled data to a flywheel, you create a dataset. You configure each dataset as training
data or test data. You associate the dataset with a specific flywheel and custom model.

After you create a dataset, Amazon Comprehend uploads the data to the flywheel's data lake. For
more information, see Flywheel data lakes.

Flywheel creation

When you create a flywheel, you can associate the flywheel with an existing trained model, or the
flywheel can create a new model.

Flywheel datasets 269

https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html
https://aws.amazon.com/comprehend/pricing

Amazon Comprehend Developer Guide

When you create a flywheel with an existing model, you specify the active model version. Amazon
Comprehend copies the model's training data and test data into the flywheel's data lake. Make sure
that the model training and test data exist in the same Amazon S3 location as when you created
the model.

To create a flywheel for a new model, you provide a dataset for training data (and an optional
dataset for test data) when you create the flywheel. When you run the flywheel to create the first
flywheel iteration, the flywheel trains the new model.

When you train a custom model, you specify a list of custom labels (custom classification) or
custom entities (custom entity recognition) for the model to recognize. Note the following
important points about custom labels/entities:

• When you create a flywheel for a new model, the list of labels/entities that you provide during
flywheel creation is the final list for the flywheel.

• When you create a flywheel from an existing model, the list of labels/entities associated with
that model becomes the final list for the flywheel.

• If you associate a new dataset with the flywheel, and that dataset contains additional labels/
entities, Amazon Comprehend ignores the new labels/entities.

• You can review a flywheel's label/entity list using the DescribeFlywheel API operation.

Note

For custom classification, Amazon Comprehend populates the label list after the
flywheel status becomes ACTIVE. Wait until the flywheel is active before calling the
DescribeFlywheel API operation.

Flywheel states

A flywheel transitions between the following states:

• CREATING - Amazon Comprehend is creating the flywheel resources. You can perform read
operations on the flywheel, such as DescribeFlywheel.

• ACTIVE - The flywheel is active. You can determine if a flywheel iteration in progress and view
the status of the iteration. You can perform read actions on the flywheel and actions such as
DeleteFlywheel and UpdateFlywheel.

Flywheel states 270

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeFlywheel.html

Amazon Comprehend Developer Guide

• UPDATING - Amazon Comprehend is updating the flywheel. You can perform read operations on
the flywheel.

• DELETING - Amazon Comprehend is deleting the flywheel. You can perform read operations on
the flywheel.

• FAILED - the flywheel create operation failed.

After Amazon Comprehend deletes a flywheel, you retain access to all the model data in the
flywheel data lake. Amazon Comprehend deletes all the internal metadata required for managing
the flywheel resources. Amazon Comprehend also deletes the datasets associated with this
flywheel (the model data is saved in the data lake).

Flywheel iterations

When you obtain new training or test data for a flywheel model, you create one or more new
datasets to upload the new data to the flywheel's data lake.

You then run the flywheel to create a new flywheel iteration. The flywheel iteration evaluates
the current active model version using the new data and stores the results in the data lake. The
flywheel also creates and trains a new model version.

If the new model exhibits better performance than the current active model version, you can
promote the new model version to be the active model version. You can use the console or the
UpdateFlywheel API operation to update the active model version.

Flywheel data lakes

When you create a flywheel, Amazon Comprehend creates a data lake in your account to contain all
the flywheel data, such as the input and output data required for the model versions.

Amazon Comprehend creates the data lake in the Amazon S3 location that you specify when you
create the flywheel. You can specify the location as an Amazon S3 bucket or as a new folder in an
Amazon S3 bucket.

Data lake folder structure

When Amazon Comprehend creates the data lake, it sets up the following folder structure in the
Amazon S3 location.

Flywheel iterations 271

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateFlywheel.html

Amazon Comprehend Developer Guide

Warning

Amazon Comprehend manages the data lake folder organization and contents. Always use
the Amazon Comprehend API operations to modify the data lake folders, or your flywheel
may not operate correctly.

 Document Pool
 Annotations Pool
 Staging
 Model Datasets
 (data for each version of the model)
 VersionID-1
 Training
 Test
 ModelStats
 VersionID-2
 Training
 Test
 ModelStats

To view the training assessment of a model version, perform these steps:

1. Open the folder named Model Datasets at the root level of the data lake. This folder contains
a subfolder for each version of the model.

2. Open the folder for the model version of interest.

3. Open the folder named ModelStats to view the statistics for the model.

Data lake management

Amazon Comprehend performs the following tasks to manage the data lake on your behalf:

• Defines the folder structure of the data lake and ingests datasets into the appropriate folders.

• Manages the input documents (such as text files and annotation files) required to train the
model.

• Manages the training and evaluation output data associated with each version of the model.

• Manages encryption for files stored in the data lake.

Data lake management 272

Amazon Comprehend Developer Guide

Amazon Comprehend performs all the data creation and update operations for the data lake. You
retain full access to the data in the data lake. For example:

• You have full access to the contents of the data lake.

• The data lake remains available after you delete the flywheel.

• You can configure access logs for the Amazon S3 bucket that contains the data lake.

• You can provide encryption keys for the data. You specify these when you create the flywheel.

We recommend the following best practices:

• Don't manually add your own folders or files into the data lake. Don't modify or delete any files
in the data lake.

• Always use the Amazon Comprehend creation and update operations to add or modify data
in the data lake. For example, use CreateDataset to provide training or test data and
StartFlywheelIteration to generate evaluation data for model versions.

• The data lake structure may evolve over time. Don't create downstream scripts or programs that
rely explicitly on the data lake structure.

• When you provide a data lake location for the flywheel, we recommend creating a common
prefix for data related to all flywheels or using a different prefix for each flywheel. We don't
recommend using the complete data lake path of one flywheel as the prefix for another
flywheel.

IAM policies and permissions

You configure the following policies and permissions to use flywheels:

• the section called “Configure IAM user permissions” for users to access flywheel operations.

• (Optional) the section called “Configure permissions for AWS KMS keys” for the data lake.

• the section called “Create a data access role” that authorizes Amazon Comprehend to access the
data lake.

Configure IAM user permissions

To use flywheel capabilities, add appropriate permissions policies to your AWS Identity and Access
Management (IAM) identities (users, groups, and roles).

IAM policies and permissions 273

Amazon Comprehend Developer Guide

The following example shows permissions policy to create datasets, to create and manage
flywheels, and to run the flywheel.

Example IAM policy to manage flywheels

{
 "Effect": "Allow",
 "Action": [
 "comprehend:CreateFlywheel",
 "comprehend:DeleteFlywheel",
 "comprehend:UpdateFlywheel",
 "comprehend:ListFlywheels",
 "comprehend:DescribeFlywheel",
 "comprehend:CreateDataset",
 "comprehend:DescribeDataset",
 "comprehend:ListDatasets",
 "comprehend:StartFlywheelIteration",
 "comprehend:DescribeFlywheelIteration",
 "comprehend:ListFlywheelIterationHistory"
],
 "Resource": "*"
}

For information about creating IAM policies for Amazon Comprehend, see How Amazon
Comprehend works with IAM.

Configure permissions for AWS KMS keys

If you are using AWS KMS keys for your data in the data lake, set up the required permissions. For
information, see Permissions required to use KMS encryption .

Create a data access role

You create a data access role in IAM for Amazon Comprehend to access flywheel data in the data
lake. If you use the console to create a flywheel, the system can optionally create a new role
for this purpose. For more information, see Role-based permissions required for asynchronous
operations.

Configuring flywheels using the console

You can use the Amazon Comprehend console to create, update, and delete flywheels.

Configure permissions for AWS KMS keys 274

Amazon Comprehend Developer Guide

When you create a flywheel, Amazon Comprehend creates a data lake to hold all the data that the
flywheel needs, such as the training data and test data for each version of the model.

When you delete a flywheel, Amazon Comprehend doesn't delete the data lake or the model
associated with the flywheel.

Review the information in section Flywheel creation before you create a new flywheel.

Topics

• Create a flywheel

• Update a flywheel

• Delete a flywheel

Create a flywheel

When you create a flywheel, the required configuration fields depend on whether the flywheel is
for an existing custom model or a new model.

To create a flywheel

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Flywheels.

3. From the Flywheels table, choose Create new flywheel.

4. Under Flywheel name, enter a name for the flywheel.

5. (Optional) To create a flywheel for an existing model, configure the fields under Active model
version.

a. From the Model drop-down list, select a model

b. From the Version drop-down list, select the model version.

6. (Optional) To create a new classifier model for the flywheel, under Custom model type,
choose a Custom classification and configure the parameters in following steps.

a. Under Language, select the language for the model.

b. Under Classifier mode, choose single-label mode or multi-label mode.

c. Under Custom labels, enter one or more custom labels to use for training the model. Each
label must match one of the classes in your input training data.

Create a flywheel 275

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

7. (Optional) To create a new entity recognition model for the flywheel, under Custom model
type, choose a Custom entity recognition and configure the parameters in following steps.

a. Under Language, select the language for the model.

b. Under Custom entity type, enter up to 25 custom entities to use for training the model.
Each label must match one of the entity types in your input training data.

To create more than one label, perform the following steps multiple times.

i. Enter a custom label. The label must be all uppercase. Use an underscore as a
separator between words in the label.

ii. Choose Add type.

To remove one of the labels that you've added, choose X to the right of the label name.

8. Configure your choices for volume encryption, model encryption, and data lake encryption.
For each of these, choose whether to use an AWS owned KMS key or a key that you have
permission to use.

• If you are using an AWS owned KMS key, there are no additional parameters.

• If you are using another existing key, for KMS key ARN enter the ARN for the key ID.

• If you want to create a new key, choose Create an AWS KMS key.

For more information on creating and using KMS keys and the associated encryption, see AWS
Key Management Service.

a. Configure the Volume encryption key. Amazon Comprehend uses this key to encrypt the
data in the storage volume while your job is being processed. choose whether to use an
AWS owned KMS key or a key that you have permission to use.

b. Configure the Model encryption key. Amazon Comprehend uses this key to encrypt the
model data for this model version.

9. Configure the Data lake location. For more information, see Data lake management.

10. (Optional) Configure Data lake encryption key. Amazon Comprehend uses this key to encrypt
all files in the data lake.

11. (Optional) Configure VPC settings. Enter the VPC ID under VPC or choose the ID from the
drop-down list.

Create a flywheel 276

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

1. Choose the subnet under Subnets(s). After you select the first subnet, you can choose
additional ones.

2. Under Security Group(s), choose the security group to use if you specified one. After you
select the first security group, you can choose additional ones.

12. Configure the Service access permissions.

1. If you select Use an existing IAM role, select the role name in the drop-down list.

2. If you select Create an IAM role, Amazon Comprehend creates a new role. The console
displays the permissions that Amazon Comprehend configures for the role. Under Role
name, enter a descriptive name for the role.

13. (Optional) Configure Tags settings. To add a tag, enter a key-value pair under Tags. Choose
Add tag. To remove this pair before creating the flywheel, choose Remove tag. For more
information, see Tagging your resources.

14. Choose Create.

Update a flywheel

You can configure the flywheel name, data lake location, model type, and model configuration only
when you create the flywheel.

When you update a flywheel, you can specify a different model if the model type and configuration
options are the same as the current model. You can configure a new active model version. You can
also update encryption details, service access permissions, and VPC settings.

To update a flywheel

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Flywheels.

3. From the Flywheels table, choose the flywheel to update.

4. Under Active model version, choose a model from the Model drop-down list and choose a
model version.

The form populates the model type and model configuration.

5. (Optional) Configure Volume encryption and Model encryption settings.

6. (Optional) Configure Data lake encryption settings.

Update a flywheel 277

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

7. Configure the Service access permissions.

8. (Optional) Configure VPC settings.

9. (Optional) Configure Tags settings.

10. Choose Save.

Delete a flywheel

To delete a flywheel

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Flywheels.

3. From the Flywheels table, choose the flywheel to delete.

4. Choose Delete.

Configuring flywheels using the API

You can use the Amazon Comprehend API to create, update, and delete flywheels.

When you create a flywheel, Amazon Comprehend creates a data lake to hold all the data that the
flywheel needs, such as the training data and test data for each version of the model.

When you delete a flywheel, Amazon Comprehend doesn't delete the data lake or the model
associated with the flywheel.

The flywheel delete operation fails if the flywheel is running an iteration or creating a dataset.

Review the information in section Flywheel creation before you create a new flywheel.

Create a flywheel for an existing model

Use the CreateFlywheel operation to create a flywheel for an existing model.

Example

aws comprehend create-flywheel \
 --flywheel-name "myFlywheel2" \

Delete a flywheel 278

https://console.aws.amazon.com/comprehend/
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateFlywheel.html

Amazon Comprehend Developer Guide

 --active-model-arn "modelArn" \
 --data-access-role-arn arn:aws::iam::111122223333:role/testFlywheelDataAccess \
 --data-lake-s3-uri": "https://s3-bucket-endpoint" \

If the operation is successful, the response includes the flywheel ARN.

{
 "FlywheelArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/name",
 "ActiveModelArn": "modelArn"
}

Create a flywheel for a new model

Use the CreateFlywheel operation to create a flywheel for a new custom classification model.

Example

aws comprehend create-flywheel \
 --flywheel-name "myFlywheel2" \
 --data-access-role-arn arn:aws::iam::111122223333:role/testFlywheelDataAccess \
 --model-type "DOCUMENT_CLASSIFIER" \
 --data-lake-s3-uri "s3Uri" \
 --task-config file://taskConfig.json

The taskConfig.json file contains the following content.

{
 "LanguageCode": "en",
 "DocumentClassificationConfig": {
 "Mode": "MULTI_LABEL",
 "Labels": ["optimism", "anger"]
 }
}

The API response body includes the following content.

{
 "FlywheelArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/name",
 "ActiveModelArn": "modelArn"
}

Create a flywheel for a new model 279

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateFlywheel.html

Amazon Comprehend Developer Guide

Describe a flywheel

Use the Amazon Comprehend DescribeFlywheel operation to retrieve configured information
about a flywheel.

aws comprehend describe-flywheel \
 --flywheel-arn "flywheelArn"

The API response body includes the following content.

{
 "FlywheelProperties": {
 "FlywheelArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/
myTestFlywheel",
 "DataAccessRoleArn": "arn:aws::iam::111122223333:role/Admin",
 "TaskConfig": {
 "LanguageCode": "en",
 "DocumentClassificationConfig": {
 "Mode": "MULTI_LABEL"
 }
 },
 "DataLakeS3Uri": "s3://my-test-datalake/flywheelbasictest/myTestFlywheel/
schemaVersion=1/20220801T014326Z",
 "Status": "ACTIVE",
 "ModelType": "DOCUMENT_CLASSIFIER",
 "CreationTime": 1659318206.102,
 "LastModifiedTime": 1659318249.05
 }
}

Update a flywheel

Use the UpdateFlywheel operation to update the modifiable configuration values of the flywheel.

Some configuration fields are JSON structures with subfields. To update one or more subfields,
provide values for all the subfields (Amazon Comprehend sets the value to null for any subfield
missing in the request).

If you omit a top-level parameter in the UpdateFlywheel request, Amazon Comprehend doesn't
change the values of the parameter or any of its subfields in the flywheel.

To add or remove tags on the flywheel, use the TagResource and UntagResource operations.

Describe a flywheel 280

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeFlywheel.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateFlywheel.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UntagResource.html

Amazon Comprehend Developer Guide

You can promote a model version by setting the ActiveModelArn parameter, as shown in the
following example.

aws comprehend update-flywheel \
 --region aws-region \
 --flywheel-arn "flywheelArn" \
 --active-model-arn "modelArn" \

The API response body includes the following content.

{
 "FlywheelArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/name",
 "ActiveModelArn": "modelArn"
}

Delete a flywheel

Use the Amazon Comprehend DeleteFlywheel operation to delete flywheels.

aws comprehend delete-flywheel \
 --flywheel-arn "flywheelArn"

A successful API response contains an empty response message body

List the flywheels

Use the Amazon Comprehend ListFlywheels operation to retrieve a list of flywheels in the current
region.

aws comprehend list-flywheel \
 --region aws-region \
 --endpoint-url "uri"

The API response body includes the following content.

{
 "FlywheelSummaryList": [
 {
 "FlywheelArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/
myTestFlywheel",

Delete a flywheel 281

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DeleteFlywheel.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListFlywheels.html

Amazon Comprehend Developer Guide

 "DataLakeS3Uri": "s3://my-test-datalake/flywheelbasictest/myTestFlywheel/
schemaVersion=1/20220801T014326Z",
 "Status": "ACTIVE",
 ""ModelType": "DOCUMENT_CLASSIFIER",
 "CreationTime": 1659318206.102,
 "LastModifiedTime": 1659318249.05
 }
]
}

Configuring datasets

To add labeled training or test data to a flywheel, use the Amazon Comprehend console or API to
create a dataset.

You configure each dataset as training data or test data. You associate the dataset with a specific
flywheel and custom model. When you create a dataset, Amazon Comprehend uploads the data to
the flywheel's data lake. For details about file formats for the training data, see Preparing classifier
training data or Preparing entity recognizer training data.

When you delete the flywheel, Amazon Comprehend deletes the datasets. The uploaded data
remains available in the data lake.

Creating a dataset (console)

Create a dataset

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Flywheels and choose the flywheel where you want to add the
data.

3. Choose the Datasets tab.

4. In the Training datasets or Test datasets table, choose Create dataset.

5. Under Dataset details, enter a name for the dataset and an optional description.

6. Under Data specifications, choose the Data format and the Dataset type configuration fields.

7. (Optional) Under Input format, choose the format of the input documents.

8. Under Annotation location on S3, enter the Amazon S3 location of the annotations file.

9. Under Training data location on S3, enter the Amazon S3 location of the document files.

Configuring datasets 282

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

10. Choose Create.

Creating a dataset (API)

You can use the CreateDataset operation to create a dataset.

Example

aws comprehend create-dataset \
 --flywheel-arn "myFlywheel2" \
 --dataset-name "my-training-dataset"
 --dataset-type "TRAIN"
 --description "my training dataset"
 --cli-input-json file://inputConfig.json
}

The inputConfig.json file contains the following content.

{
 "DataFormat": "COMPREHEND_CSV",
 "DocumentClassifierInputDataConfig": {
 "S3Uri": "s3://my-comprehend-datasets/multilabel_train.csv"
 }
}

To add or remove tags on the dataset, use the TagResource and UntagResource operations.

Describe a dataset

Use the Amazon Comprehend DescribeDataset operation to retrieve configured information about
a flywheel.

aws comprehend describe-dataset \
 --dataset-arn "datasetARN"

The response contains the following content.

{
 "DatasetProperties": {
 "DatasetArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/
myTestFlywheel/dataset/train-dataset",

Creating a dataset (API) 283

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateDataset.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDataset.html

Amazon Comprehend Developer Guide

 "DatasetName": "train-dataset",
 "DatasetType": "TRAIN",
 "DatasetS3Uri": "s3://my-test-datalake/flywheelbasictest/myTestFlywheel/
schemaVersion=1/20220801T014326Z/datasets/train-dataset/20220801T194844Z",
 "Description": "Good Dataset",
 "Status": "COMPLETED",
 "NumberOfDocuments": 90,
 "CreationTime": 1659383324.297
 }
}

Flywheel iterations

Use flywheel iterations to help you create and manage new model versions.

Topics

• Iteration workflow

• Managing iterations (console)

• Managing iterations (API)

Iteration workflow

A flywheel starts out with a trained model version or uses an initial dataset to train a model
version.

Over time, as you obtain new labeled data, you train new model versions to improve the
performance of your flywheel model. When you run the flywheel, it creates a new iteration
that trains and evaluates a new model version. You can promote the new model version if its
performance is superior to the existing active model version.

The flywheel iteration workflow includes the following steps:

1. You create datasets for the new labeled data.

2. You run the flywheel to create a new iteration. The iteration follows these steps to train and
evaluate a new model version:

a. Evaluates the active model version using the new data.

b. Trains a new model version using the new data.

c. Stores the evaluation and training results in the data lake.

Flywheel iterations 284

Amazon Comprehend Developer Guide

d. Returns the F1 scores for both models.

3. After the iteration completes, you can compare the F1 scores for the existing active model and
the new model.

4. If the new model version has superior performance, you promote it to be the active model
version. You can use the console or the API to promote the new model version.

Managing iterations (console)

You can use the console to start a new iteration and query the status of an in-progress iteration.
You can also view the results of completed iterations.

Start a flywheel iteration (console)

Before you can start a new iteration, create one or more new training or test datasets. See
Configuring datasets

Start a flywheel iteration (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Flywheels.

3. From the Flywheels table, choose a flywheel.

4. Choose Run flywheel.

Analyze iteration results (Console)

After it runs the flywheel iteration, the console displays the results in the Flywheels iterations
table.

Promote new model version (Console)

From the model details page in the console, you can promote a new model version to be the active
model version.

Promote a flywheel model version to active model version (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console.

2. From the left menu, choose Flywheels.

Managing iterations (console) 285

https://console.aws.amazon.com/comprehend/
https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

3. From the Flywheels table, choose a flywheel.

4. From the Flywheel details page table, choose the version to promote from the Flywheels
iterations table.

5. Choose Make active model.

Managing iterations (API)

You can use the Amazon Comprehend API to start a new iteration and query the status of an in-
progress iteration. You can also view the results of completed iterations.

Start flywheel iteration (API)

Use the Amazon Comprehend StartFlywheelIteration operation to start a flywheel iteration.

aws comprehend start-flywheel-iteration \
 --flywheel-arn "flywheelArn"

The response contains the following content.

{
 "FlywheelIterationArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/name"
}

Promote new model version (API)

Use the UpdateFlywheel operation to promote a model version to be the active model version.

Send the UpdateFlywheel request with the ActiveModelArn parameter set to the ARN of the
new active model version.

aws comprehend update-flywheel \
 --active-model-arn "modelArn" \

The response contains the following content.

{
 "FlywheelArn": "arn:aws::comprehend:aws-region:111122223333:flywheel/name",
 "ActiveModelArn": "modelArn"

Managing iterations (API) 286

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartFlywheelIteration.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateFlywheel.html

Amazon Comprehend Developer Guide

}

Describe flywheel iteration results (API)

The Amazon Comprehend DescribeFlywheelIteration operation returns information about an
iteration after it runs to completion.

aws comprehend describe-flywheel-iteration \
 --flywheel-arn "flywheelArn" \
 --flywheel-iteration-id "flywheelIterationId" \
 --region aws-region

The response contains the followng content.

{
 "FlywheelIterationProperties": {
 "FlywheelArn": "flywheelArn",
 "FlywheelIterationId": "iterationId",
 "CreationTime": <createdAt>,
 "EndTime": <endedAt>,
 "Status": <status>,
 "Message": <message>,
 "EvaluatedModelArn": "modelArn",
 "EvaluatedModelMetrics": {
 "AverageF1Score": <value>,
 "AveragePrecision": <value>,
 "AverageRecall": <value>,
 "AverageAccuracy": <value>
 },
 "TrainedModelArn": "modelArn",
 "TrainedModelMetrics": {
 "AverageF1Score": <value>,
 "AveragePrecision": <value>,
 "AverageRecall": <value>,
 "AverageAccuracy": <value>
 }
 }
}

Get iteration history (API)

Use the ListFlywheelIterationHistory operation to get information about iteration history.

Managing iterations (API) 287

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeFlywheelIteration.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListFlywheelIterationHistory.html

Amazon Comprehend Developer Guide

aws comprehend list-flywheel-iteration-history \
 --flywheel-arn "flywheelArn"

The response contains the followng content.

{
 "FlywheelIterationPropertiesList": [
 {
 "FlywheelArn": "<flywheelArn>",
 "FlywheelIterationId": "20220907T214613Z",
 "CreationTime": 1662587173.224,
 "EndTime": 1662592043.02,
 "Status": "<status>",
 "Message": "<message>",
 "EvaluatedModelArn": "modelArn",
 "EvaluatedModelMetrics": {
 "AverageF1Score": 0.8333333333333333,
 "AveragePrecision": 0.75,
 "AverageRecall": 0.9375,
 "AverageAccuracy": 0.8125
 },
 "TrainedModelArn": "modelArn",
 "TrainedModelMetrics": {
 "AverageF1Score": 0.865497076023392,
 "AveragePrecision": 0.7636363636363637,
 "AverageRecall": 1.0,
 "AverageAccuracy": 0.84375
 }
 }
]
}

Using flywheels for analysis

You can use the flywheel's active model version to run analysis for custom classification or
entity recognition. The active model version is configurable. You can use the console or the
UpdateFlywheel API operation to set a new version of the model to be the active model version.

To use the flywheel, specify the flywheel ARN instead of a custom model ARN when you configure
the analysis task. Amazon Comprehend runs the analysis using the flywheel's active model version.

Using flywheels 288

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateFlywheel.html

Amazon Comprehend Developer Guide

Real-time analysis

You use an endpoint to run real-time analysis. When you create or update an endpoint, you can
configure it with the flywheel ARN instead of a model ARN. When you run the real-time analysis,
select the endpoint associated with the flywheel. Amazon Comprehend runs the analysis using the
active model version of the flywheel.

When you use UpdateFlywheel to set a new active model version for the flywheel, the endpoint
updates automatically to start using the new active model version. If you don't want the endpoint
to update automatically, configure the endpoint (using UpdateEndpoint) to use the model version
ARN directly. The endpoint continues to use this model version if the flywheel active model version
changes.

For custom classification, use the ClassifyDocument API operation. For custom entity recognition,
use the DetectEntities API request. Provide the endpoint of the flywheel in the EndpointArn
parameter.

You can also use the console to run real-time analysis for custom classification or custom entity
recognition.

Asynchronous jobs

For custom classification, use the StartDocumentClassificationJob API request to start an
aysnchronous job. Provide the FlywheelArn parameter instead of the DocumentClassifierArn.

For custom entity recognition, use the StartEntitiesDetectionJob API request. Provide the
FlywheelArn parameter instead of the EntityRecognizerArn.

You can use the console to run asynchronous analysis jobs for custom classification or custom
entity recognition. When you create the job, enter the flywheel ARN in the Recognizer model or
Classifier model field.

Real-time analysis 289

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateFlywheel.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html

Amazon Comprehend Developer Guide

Managing Amazon Comprehend endpoints

In Amazon Comprehend, endpoints make your custom models available for real-time classification
or entity detection. After you create an endpoint, you can make changes to it as your business
needs evolve. For example, you can monitor your endpoint utilization and apply auto scaling
to automatically set endpoint provisioning to fit your capacity needs. You can manage all your
endpoints from a single view, and when you no longer need an endpoint you can delete it to save
costs.

Before you can manage an endpoint, you must create one. For more information, see the following
procedures:

• Creating an endpoint for custom classification

• Creating an endpoint for custom entity detection

Topics

• Overview of Amazon Comprehend endpoints

• Using Amazon Comprehend endpoints

• Monitoring Amazon Comprehend endpoints

• Updating Amazon Comprehend endpoints

• Using Trusted Advisor with Amazon Comprehend

• Deleting Amazon Comprehend endpoints

• Auto scaling with endpoints

Overview of Amazon Comprehend endpoints

The endpoints page from Amazon Comprehend console provides you a global view of your
endpoints. From the endpoints overview page, you can view all of your endpoints in one place
to understand your endpoint usage versus your actual resource usage. On the top right of the
endpoints page you can specify what endpoints you want to view— all of them, custom classifier
endpoints, or your custom entity endpoints.

You can create, update, monitor, and delete endpoints from this page. From the endpoints
overview section, you can view a list of your endpoints, what custom models the endpoints are

Endpoints overview 290

Amazon Comprehend Developer Guide

hosting, their creation time, the provisioned throughput, and the status of the endpoint. When you
select a specific endpoint from the endpoint overview table, the endpoint details are displayed.

Also, if you are a AWS Business Support or an AWS Enterprise Support customer, you have access
to Trusted Advisor checks specific to your endpoints. To learn more, see Using Trusted Advisor with
Amazon Comprehend. For a complete list of checks and descriptions, see the Trusted Advisor Best
Practices.

For more information on managing your endpoints, see the following topics.

• Using Amazon Comprehend endpoints

• Monitoring Amazon Comprehend endpoints

• Updating Amazon Comprehend endpoints

• Using Trusted Advisor with Amazon Comprehend

• Deleting Amazon Comprehend endpoints

Important

The cost for real-time custom classification is based on both the throughput you set and
the length of time the endpoint is active. If you are no longer using the endpoint, or are
not using it for an extended period, you should set up an auto scaling policy to reduce
your costs. Or, if you are no longer using an endpoint you can delete the endpoint to avoid
incurring additional cost. For more information, see Auto scaling with endpoints.

Using Amazon Comprehend endpoints

You create an endpoint to run real-time analysis using a custom model. An endpoint includes
managed resources that makes your custom model available for real-time inference.

Amazon Comprehend assigns throughput to an endpoint using Inference units (IU). An IU
represents data throughput of 100 characters per second. You can provision the endpoint with up
to 10 inference units. You can scale the endpoint throughput either up or down by updating the
endpoint.

If your input documents include semi-structured documents or image files, the throughput of 100
characters per second is for the characters extracted from the input file. The number of IUs that
you provision for an endpoint depends on character density of the input documents.

Using endpoints 291

https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/

Amazon Comprehend Developer Guide

The ClassifyDocument and DetectEntities API responses include the character count for each page
of input. You can use this information to estimate the number of inference units to provision to
achieve the desired throughput.

After you have completed your real-time analysis, delete the endpoint because the charge for it
continues as long as it's active. You can create another endpoint when you are ready to run further
real-time analysis.

For more information on endpoint cost, see Amazon Comprehend Pricing.

After you create an endpoint, you can monitor it with Amazon CloudWatch, update it to change its
inference units, or delete it when no longer needed. For more information, see Monitoring Amazon
Comprehend endpoints.

Monitoring Amazon Comprehend endpoints

You can adjust the throughput of your endpoint by increasing or decreasing the number of
inference units (IUs). For more information on updating your endpoint, see the section called
“Updating endpoints”.

You can determine how to best adjust your endpoint's throughput by monitoring its usage with the
Amazon CloudWatch console.

Monitor your endpoint usage with CloudWatch

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. On the left, choose Metrics and select All metrics.

3. Under All metrics, choose Comprehend.

4. The CloudWatch console displays the dimensions for the Comprehend metrics. Choose the
EndpointArn dimension.

Monitoring endpoints 292

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://aws.amazon.com/comprehend/pricing/
https://console.aws.amazon.com/cloudwatch/

Amazon Comprehend Developer Guide

The console displays ProvisionedInferenceUnits, RequestedInferenceUnits,
ConsumedInferenceUnits, and InferenceUtilization for each of your endpoints.

Select the four metrics and navigate to the Graphed metrics tab.

5. Set the Statistic columns for RequestedInferenceUnits and ConsumedInferenceUnits to Sum.

6. Set the Statistic column for InferenceUtilization to Sum.

7. Set the Statistic column for ProvisionedInferenceUnits to Average.

8. Change the Period column for all metrics to 1 Minute.

9. Select InferenceUtilization and select the arrow to move it to a separate Y Axis.

Your graph is ready for analysis.

Monitoring endpoints 293

Amazon Comprehend Developer Guide

Based on the CloudWatch metrics, you can also set up auto scaling to automatically adjust the
throughput of your endpoint. For more information about using auto scaling with your endpoints,
see Auto scaling with endpoints.

• ProvisionedInferenceUnits - This metric represents the number of average provisioned IUs at
the time the request was made.

• RequestedInferenceUnits - This is based on the usage of each request submitted to the service
that was sent to be processed. This can be helpful to compare the request sent to be processed
to what was actually processed without getting throttling (ConsumedInferenceUnits). The value
for this metric is calculated by taking the number of characters sent to be processed and dividing
it by the number of characters that can be processed in a minute for 1 IU.

• ConsumedInferenceUnits - This is based on the usage of each request submitted to the service
that was successfully processed (not throttled). This can be helpful when you compare what
you're consuming against your provisioned IUs. The value for this metric is calculated by taking
the number of characters processed and dividing it by the number of characters that can be
processed in a minute for 1 IU.

• InferenceUtilization - This is emitted per request. This value is calculated by
taking the consumed IUs defined in ConsumedInferenceUnits and dividing it by
ProvisionedInferenceUnits and converting to a percentage out of 100.

Monitoring endpoints 294

Amazon Comprehend Developer Guide

Note

All of the metrics are emitted only for successful requests. The metric won't appear if it's
from a request that is throttled or fails with an internal server error or a customer error.

Updating Amazon Comprehend endpoints

Frequently, the level of throughput you need changes after creating an endpoint, or your first
estimation of your needs changes. When this happens, it may be necessary to update your
endpoint to adjust the throughput up or down. Throughput is governed by the number of inference
units with which you've provisioned your endpoint. Each inference unit represents a throughput of
100 characters per second for up to 2 documents per second. You might also want to update the
version of the model associated with the endpoint. When you edit an endpoint, you can choose a
different version of the model for the endpoint.

It can also be helpful to add tags to your endpoint to help keep them organized. This can also
be done while updating your endpoint. For more information on endpoints, see Tagging your
resources

To update an endpoint (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Endpoints.

3. From the Classifiers list, choose the name of the custom model from which you want to
update the endpoint and follow the link. The model details page displays.

4. From the model details page, select the version details. The endpoints list displays.

5. Select the endpoint checkbox for your endpoint. At the top right of the endpoints table, select
the Actions icon.

6. Choose Edit. You can update provisioned IUs and edit tags.

7. Save your changes.

8. To edit the number of inference units with which the endpoint is provisioned, choose Edit.

9. Enter the updated number of inference units to assign to the endpoint. Each unit represents
a throughput of 100 characters per second. You can assign up to a maximum of 10 inference
units per endpoint.

Updating endpoints 295

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

Note

The cost of using an endpoint is based on the amount of time operating and the
throughput (based on the number of inference units. Increasing the number of
inference units will thus increase the cost of operation. For more information, see
Amazon Comprehend pricing.

10. Choose Edit endpoint. The endpoint details page is displayed.

11. Confirm that the endpoint is updating by choosing the model name from the breadcrumbs
at the top of the page. On the custom model details page, navigate to the Endpoints list and
verify that it shows Updating next to the endpoint. When the update is complete, it will show
Ready.

The following example demonstrates using the UpdateEndpoint operation with the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\)
Unix continuation character at the end of each line with a caret (^).

aws comprehend update-endpoint \
 --desired-inference-units updated number of inference units \
 --desired-model-arn arn:aws:comprehend:region:account-id:model type/model name
 \
 --desired-data-access-role-arn arn:aws:iam:account id:role/role name
 --endpoint-arn arn:aws:comprehend:region:account id:endpoint/endpoint name

If the action is successful, Amazon Comprehend responds with an HTTP 200 response with an
empty HTTP body.

12. To edit the custom model attached to your endpoint, from the custom model details page,
navigate to the Endpoints list.

13. Select the endpoint you want to change and select Edit.

14. From the endpoint settings page, under Select classifier model or Select recognizer model
depending on your endpoint, you can search for a model in the dropdown. Select the model
you want.

15. Under Select version you can search for the model version you want. Select the version.

16. Select Edit endpoint to save.

Updating endpoints 296

https://aws.amazon.com/comprehend/pricing

Amazon Comprehend Developer Guide

Using Trusted Advisor with Amazon Comprehend

AWS Trusted Advisor is an online tool that provides recommendations to help you provision your
resources following AWS best practices.

If you have a Basic or Developer Support plan, you can use the Trusted Advisor console to access all
checks in the Service Limits category and six checks in the Security category. If you have a Business
or Enterprise Support Plan, you can use the Trusted Advisor console and the AWS Support API to
access all of the Trusted Advisor checks.

Amazon Comprehend supports the following Trusted Advisor checks to help customers optimize
the cost and the security of their Amazon Comprehend endpoints by providing actionable
recommendations.

Amazon Comprehend underutilized endpoints

The Amazon Comprehend underutilized endpoints check evaluates the throughput configuration
of your endpoints. This check alerts you when endpoints are not actively used for real-time
inference requests. An endpoint that isn’t used for more than 15 days is considered underutilized.
All endpoints accrue charges based on both the throughput set and the length of time that the
endpoint is active. For the endpoint not used in last 15 days, we recommend that you define a
scaling policy for the resource using Application Autoscaling. For an endpoint that hasn't been
used in the last 30 days and does have an auto scaling policy defined we recommend that you use
asynchronous inference or delete it. These check results are automatically refreshed once every day
and can be viewed under the CostOptimization category on the Trusted Advisor console.

To view the utilization status of all your endpoints and the corresponding recommendations

1. Sign in to the AWS Management Console and open the Trusted Advisor console.

2. In the navigation pane, choose the CostOptimization check category.

3. On the category page, you can view the summary for each check category:

• Action recommended (red) – Trusted Advisor recommends an action for the check.

• Investigation recommended (yellow) – Trusted Advisor detects a possible issue for the
check.

• No problems detected (green) – Trusted Advisor doesn't detect an issue for the check.

• Excluded items (gray)– The number of checks that have excluded items, such as resources
that you want a check to ignore.

Using Trusted Advisor 297

https://docs.aws.amazon.com/awssupport/latest/user/Welcome.html
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html

Amazon Comprehend Developer Guide

4. Choose Amazon Comprehend Underutilized Endpoints check to view the check description
and the following details:

• Alert Criteria – Describes the threshold when a check will change status.

• Recommended Action – Describes the recommended actions for this check.

• Resource Table: A table that lists your endpoint details and the status for each based on
your recommendations.

5. In the Resource table, if an endpoint is flagged with a Investigation Recommended because
of a Not used in last 30 days warning, you can navigate to the Endpoint Details page on the
Amazon Comprehend console.

• If you do not want to use this endpoint anymore, choose Delete.

• Choose Delete again to confirm the deletion. The custom model details page is displayed.
Confirm that the endpoint you deleted shows deleting next to it. When it has deleted, the
endpoint is removed from the Endpoints list.

6. In the Resource table on the Trusted Advisor console, if an endpoint is flagged with an
Investigation Recommended status because it hasn't been used in the last 15 days, and if
it has AutoScaling disabled, you can navigate to the Endpoint Details page on the Amazon
Comprehend console to adjust the endpoint.

• If you want to reduce the throughput configured for this endpoint, click Edit. Enter the
updated number of inference units to assign to the endpoint, then select the checkbox to
acknowledge and then choose Edit Endpoint. When the update is complete, the status
will show as Ready.

• If you want to automatically set endpoint provisioning on your endpoint instead of
manually adjusting the throughput configuration, we recommend you use Application
Autoscaling.

7. In the Resource table on the Trusted Advisor console, if an endpoint is flagged with the
No problems detected status because of the Used Actively reason, then it implies the
endpoint is being utilized actively for running real-time inference requests and no actions are
recommended.

Here's an example which shows the CostOptimization category view on the Trusted Advisor
console:

Amazon Comprehend underutilized endpoints 298

Amazon Comprehend Developer Guide

Amazon Comprehend endpoint access risk

The Amazon Comprehend endpoint access risk check evaluates the AWS Key Management Service
(AWS KMS) key permissions for an endpoint where the underlying model was encrypted using
customer managed keys. If the customer managed key is disabled or the key policy was changed
to alter the allowed permissions for Amazon Comprehend, the endpoint availability might be
affected. If the key has been disabled, we recommend that you enable it. If the key policy has been
altered and you wish to continue using this endpoint, we recommend that you update the key
policy. The check results are automatically refreshed multiple times during the day. This check can
be viewed under the Fault Tolerance category of the Trusted Advisor console.

To view the AWS KMS key status of your Amazon Comprehend endpoints

1. Sign in to the AWS Management Console and open the Trusted Advisor console.

2. In the navigation pane, choose the FaultTolerance check category.

3. On the category page, you can view the summary for each check category:

• Action recommended (red) – Trusted Advisor recommends an action for the check.

Amazon Comprehend endpoint access risk 299

Amazon Comprehend Developer Guide

• Investigation recommended (yellow)– Trusted Advisor detects a possible issue for the
check.

• No problems detected (green) – Trusted Advisor doesn't detect an issue for the check.

• Excluded items (gray) – The number of checks that have excluded items, such as resources
that you want a check to ignore.

4. Choose Amazon Comprehend Endpoint Access Risk Check and you can view the check
description and the following details:

• Alert Criteria– Describes the threshold when a check will change status.

• Recommended Action – Describes the recommended actions for this check.

• Resource Table: A table that lists your KMS encrypted endpoint details and the status for
each one based on if there are recommended actions.

5. In the Resource table, if an endpoint is flagged with an Action Recommended status, select
the link in the KMS KeyId column and you will be redirected to the corresponding AWS KMS
key page.

• To enable a disabled AWS KMS key, choose Key Actions, and select Enable.

• If the Key Status is listed as Enabled, update the key policy by choosing Switch to policy
view in the Key Policy section. Edit the key policy document to provide the necessary
permissions to Amazon Comprehend and then choose Save changes.

Here's an example of the FaultTolerance category view on the Trusted Advisor console:

Amazon Comprehend endpoint access risk 300

Amazon Comprehend Developer Guide

These checks and their results can also be viewed by referring the Trusted Advisor section of the
AWS Support API.

To learn more about setting up alarms using CloudWatch, see: Creating Trusted Advisor alarms
using CloudWatch. For a full set of Trusted Advisor Best Practice Checks, see: AWS Trusted Advisor
best practice checklist.

Deleting Amazon Comprehend endpoints

Once you no longer need your endpoint, you should delete it so that you stop incurring costs from
it. You can easily create another endpoint whenever you need it from the Endpoints section.

To delete an endpoint (console)

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. From the left menu, choose Endpoints.

3. From the Endpoints table locate the endpoint you want to delete. You can search or filter all
of the endpoints to find the one you need.

Deleting endpoints 301

https://docs.aws.amazon.com/awssupport/latest/user/cloudwatch-metrics-ta.html
https://docs.aws.amazon.com/awssupport/latest/user/cloudwatch-metrics-ta.html
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

4. Select the endpoint checkbox for the endpoint you want to delete. At the top right of the
endpoints table, select the Actions icon.

5. Choose Delete.

6. Choose Delete again to confirm the deletion. The endpoints page is displayed. Confirm
that the endpoint you deleted shows Deleting next to it. When it's deleted, the endpoint is
removed from the Endpoints list.

To delete an endpoint (AWS CLI)

The following example demonstrates using the DeleteEndpoint operation with the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws comprehend delete-endpoint \
 --endpoint-arn arn:aws:comprehend:region:account-id endpoint/endpoint name

If the action is successful, Amazon Comprehend responds with an HTTP 200 response with an
empty HTTP body.

Auto scaling with endpoints

Instead of manually adjusting the number of inference units provisioned for your document
classification endpoints and entity recognizer endpoints, you can use auto scaling to automatically
set endpoint provisioning to fit your capacity needs.

There are two ways to use auto scaling to adjust the number of inference units provisioned for your
endpoint:

• Target tracking: Set auto scaling to adjust endpoint provisioning to fit capacity needs based on
usage.

• Scheduled scaling: Set auto scaling to adjust endpoint provisioning to fit capacity needs on a
specified schedule.

You can set auto scaling only with the AWS Command Line Interface (AWS CLI). For more
information about auto scaling, see What is Application Auto Scaling?

Auto scaling with endpoints 302

https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html

Amazon Comprehend Developer Guide

Target tracking

With target tracking, you can adjust endpoint provisioning to fit your capacity needs based on
usage. The number of inference units automatically adjust so that the utilized capacity is within
a target percentage of the provisioned capacity. You can use target tracking to accommodate
temporary surges of use for your document classification endpoints and entity recognizer
endpoints. For more information, see Target tracking scaling policies for Application Auto Scaling.

Note

The following examples are formatted for Unix, Linux, and macOS. For Windows, replace
the backslash (\) Unix continuation character at the end of each line with a caret (^).

Setting up target tracking

To set up target tracking for an endpoint, you use AWS CLI commands to register a scalable target
and then create a scaling policy. The scalable target defines inference units as the resource used
to adjust endpoint provisioning, and the scaling policy defines the metrics that control the auto
scaling of the provisioned capacity.

To set up target tracking

1. Register a scalable target. The following examples register a scalable target to adjust endpoint
provisioning with a minimum capacity of 1 inference unit and a maximum capacity of 2
inference units.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling register-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits \
 --min-capacity 1 \
 --max-capacity 2

For an entity recognizer endpoint, use the following AWS CLI command:

Target tracking 303

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html

Amazon Comprehend Developer Guide

aws application-autoscaling register-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits \
 --min-capacity 1 \
 --max-capacity 2

2. To verify the registration of the scalable target, use the following AWS CLI command:

aws application-autoscaling describe-scalable-targets \
 --service-namespace comprehend \
 --resource-id endpoint ARN

3. Create a target tracking configuration for the scaling policy and save the configuration in a
file called config.json. The following is an example of a target tracking configuration that
automatically adjusts the number of inference units so that utilized capacity is always 70% of
the provisioned capacity.

{
 "TargetValue": 70,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "ComprehendInferenceUtilization"
 }
}

4. Create a scaling policy. The following examples create a scaling policy based on the target
tracking configuration defined in the config.json file.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling put-scaling-policy \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits \

Target tracking 304

Amazon Comprehend Developer Guide

 --policy-name TestPolicy \
 --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration file://config.json

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling put-scaling-policy \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits \
 --policy-name TestPolicy \
 --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration file://config.json

Removing target tracking

To remove target tracking for an endpoint, you use AWS CLI commands to delete the scaling policy
and then deregister the scalable target.

To remove target tracking

1. Delete the scaling policy. The following examples delete a specified scaling policy.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling delete-scaling-policy \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits \
 --policy-name TestPolicy \

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling delete-scaling-policy \
 --service-namespace comprehend \

Target tracking 305

Amazon Comprehend Developer Guide

 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits \
 --policy-name TestPolicy

2. Deregister the scalable target. The following examples deregister a specified scalable target.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling deregister-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling deregister-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits

Scheduled scaling

With scheduled scaling, you can adjust endpoint provisioning to fit your capacity needs on
a specified schedule. Scheduled scaling automatically adjusts the number of inference units
to accommodate surges of use at specific times. You can use scheduled scaling for document
classification endpoints and entity recognizer endpoints. For additional information about
scheduled scaling, see Scheduled scaling for Application Auto Scaling.

Note

The following examples are formatted for Unix, Linux, and macOS. For Windows, replace
the backslash (\) Unix continuation character at the end of each line with a caret (^).

Scheduled scaling 306

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html

Amazon Comprehend Developer Guide

Setting up scheduled scaling

To set up scheduled scaling for an endpoint, you use AWS CLI commands to register a scalable
target and then create a scheduled action. The scalable target defines inference units as the
resource used to adjust endpoint provisioning, and the scheduled action controls the auto scaling
of the provisioned capacity at specific times.

To set up scheduled scaling

1. Register a scalable target. The following examples register a scalable target to adjust endpoint
provisioning with a minimum capacity of 1 inference unit and a maximum capacity of 2
inference units.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling register-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits \
 --min-capacity 1 \
 --max-capacity 2

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling register-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits \
 --min-capacity 1 \
 --max-capacity 2

2. Create a scheduled action. The following examples create a scheduled action to automatically
adjust the provisioned capacity every day at 12:00 UTC with a minimum of 2 inference units
and a maximum of 5 inference units. For more information about chronological expressions
and scheduled scaling, see Schedule expressions.

For a document classification endpoint, use the following AWS CLI command:

Scheduled scaling 307

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

Amazon Comprehend Developer Guide

aws application-autoscaling put-scheduled-action \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits \
 --scheduled-action-name TestScheduledAction \
 --schedule "cron(0 12 * * ? *)" \
 --scalable-target-action MinCapacity=2,MaxCapacity=5

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling put-scheduled-action \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits \
 --scheduled-action-name TestScheduledAction \
 --schedule "cron(0 12 * * ? *)" \
 --scalable-target-action MinCapacity=2,MaxCapacity=5

Removing scheduled scaling

To remove scheduled scaling for an endpoint, you use AWS CLI commands to delete the scheduled
action and then deregister the scalable target.

To remove scheduled scaling

1. Delete the scheduled action. The following examples delete a specified scheduled action.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling delete-scheduled-action \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits \
 --scheduled-action-name TestScheduledAction

Scheduled scaling 308

Amazon Comprehend Developer Guide

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling delete-scheduled-action \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits \
 --scheduled-action-name TestScheduledAction

2. Deregister the scalable target. The following examples deregister a specified scalable target.

For a document classification endpoint, use the following AWS CLI command:

aws application-autoscaling deregister-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:document-classifier-
endpoint/name \
 --scalable-dimension comprehend:document-classifier-
endpoint:DesiredInferenceUnits

For an entity recognizer endpoint, use the following AWS CLI command:

aws application-autoscaling deregister-scalable-target \
 --service-namespace comprehend \
 --resource-id arn:aws:comprehend:region:account-id:entity-recognizer-
endpoint/name \
 --scalable-dimension comprehend:entity-recognizer-
endpoint:DesiredInferenceUnits

Scheduled scaling 309

Amazon Comprehend Developer Guide

Tagging your resources

A tag is a key-value pair that you can add to an Amazon Comprehend resource as metadata. You
can use tags on Analysis jobs, Custom classification models, Custom entity recognition models,
and endpoints. Tags have two major functions: organizing your resources and providing tag-based
access control.

To organize your resources with tags, you could add the tag key 'Department' and tag values ‘Sales’
or ‘Legal'. You can then search and filter for resources that are pertinent to your company's legal
department.

To provide tag-based access control, create IAM policies with permissions based on tags. A policy
can allow or disallow an operation based on the tags provided in your request (request-tags) or
tags associated with the resource you're calling (resource-tags). For more information on using tags
with IAM, see Controlling access using tags in the IAM User Guide.

Considerations for using tags with Amazon Comprehend:

• You can add up to 50 tags per resource, and tags can be added at the time you create the
resource, or retroactively.

• A tag key is a required field but a tag value is optional.

• Tags do not have to be unique between resources, but a given resource cannot have duplicate
tag keys.

• Tag keys and values are case sensitive.

• A tag key can have a maximum of 127 characters; a tag value can have a maximum of 255
characters.

• The 'aws:' prefix is reserved for AWS use; you cannot add, edit, or delete tags whose key begins
with aws:. These tags don't count against your tags-per-resource limit of 50.

Note

If you plan to use your tagging schema across multiple AWS services and resources,
remember that other services may have different requirements for allowed characters.

Topics

310

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon Comprehend Developer Guide

• Tagging a new resource

• Viewing, editing, and deleting tags associated with a resource

Tagging a new resource

You can add tags to an Analysis job, a Custom classification model, a Custom entity recognition
model, or endpoints.

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. Select the resource (Analysis job, Custom classification, or Custom entity recognition) you want
to create from the left navigation pane.

3. Click Create job (or Create new model). This takes you to the main 'create' page for your
resource. At the bottom of this page, you'll see a 'Tags - optional' panel.

Enter a tag key and, optionally, a tag value. Choose Add tag to add another tag to the
resource. Repeat this process until all your tags are added. Note that tag keys must be unique
per resource.

4. Select the Create or Create job button to continue creating your resource.

You can also add tags using the AWS CLI. This example shows how to add tags with the start-
entities-detection-job command.

aws comprehend start-entities-detection-job \
--language-code "en" \

Tagging a new resource 311

https://console.aws.amazon.com/comprehend/
https://docs.aws.amazon.com/cli/latest/reference/comprehend/start-entities-detection-job.html
https://docs.aws.amazon.com/cli/latest/reference/comprehend/start-entities-detection-job.html

Amazon Comprehend Developer Guide

--input-data-config "{\"S3Uri\": \"s3://test-input/TEST.csv\"}" \
--output-data-config "{\"S3Uri\": \"s3://test-output\"}" \
--data-access-role-arn arn:aws:iam::123456789012:role/test \
--tags "[{\"Key\": \"color\",\"Value\": \"orange\"}]"

Viewing, editing, and deleting tags associated with a resource

You can view tags associated with an Analysis job, a Custom classification model, or a Custom
entity recognition model.

1. Sign in to the AWS Management Console and open the Amazon Comprehend console at
https://console.aws.amazon.com/comprehend/

2. Select the resource (Analysis job, Custom classification, or Custom entity recognition) that
contains the file with the tags you want to view, modify, or delete. This displays the list of
existing files for your selected resource.

3. Click the name of the file (or model) whose tags you want to view, modify, or delete. This takes
you to the details page for that file (or model). Scroll down until you see a Tags box. Here, you
can see all the tags associated with your selected file (or model).

Select Manage tags to edit or remove tags from your resource.

Viewing, editing, and deleting tags 312

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

4. Click on the text you want to modify, then edit your tag. You can also remove the tag by
selecting Remove tag. To add a new tag, select Add tag, then enter your desired text in the
blank fields.

When you're finished modifying your tags, select Save.

Viewing, editing, and deleting tags 313

Amazon Comprehend Developer Guide

Code examples for Amazon Comprehend using AWS
SDKs

The following code examples show how to use Amazon Comprehend with an AWS software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Code examples

• Actions for Amazon Comprehend using AWS SDKs

• Create an Amazon Comprehend document classifier using an AWS SDK

• Delete an Amazon Comprehend document classifier using an AWS SDK

• Describe an Amazon Comprehend document classification job using an AWS SDK

• Describe an Amazon Comprehend document classifier using an AWS SDK

• Describe an Amazon Comprehend topic modeling job using an AWS SDK

• Detect entities in a document with Amazon Comprehend using an AWS SDK

• Detect key phrases in a document with Amazon Comprehend using an AWS SDK

• Detect personally identifiable information in a document with Amazon Comprehend using an
AWS SDK

• Detect syntactial elements of a document with Amazon Comprehend using an AWS SDK

• Detect the dominant language in a document with Amazon Comprehend using an AWS SDK

• Detect the sentiment of a document with Amazon Comprehend using an AWS SDK

• List Amazon Comprehend document classification jobs using an AWS SDK
314

Amazon Comprehend Developer Guide

• List Amazon Comprehend document classifiers using an AWS SDK

• List Amazon Comprehend topic modeling jobs using an AWS SDK

• Start an Amazon Comprehend document classification job using an AWS SDK

• Start an Amazon Comprehend topic modeling job using an AWS SDK

• Scenarios for Amazon Comprehend using AWS SDKs

• Detect document elements with Amazon Comprehend and an AWS SDK

• Run an Amazon Comprehend topic modeling job on sample data using an AWS SDK

• Train a custom Amazon Comprehend classifier and classify documents using an AWS SDK

• Cross-service examples for Amazon Comprehend using AWS SDKs

• Build an Amazon Transcribe streaming app

• Create an Amazon Lex chatbot to engage your website visitors

• Create a web application that sends and retrieves messages by using Amazon SQS

• Create an application that analyzes customer feedback and synthesizes audio

• Detect entities in text extracted from an image using an AWS SDK

Actions for Amazon Comprehend using AWS SDKs

The following code examples demonstrate how to perform individual Amazon Comprehend actions
with AWS SDKs. These excerpts call the Amazon Comprehend API and are code excerpts from
larger programs that must be run in context. Each example includes a link to GitHub, where you
can find instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Comprehend API Reference.

Examples

• Create an Amazon Comprehend document classifier using an AWS SDK

• Delete an Amazon Comprehend document classifier using an AWS SDK

• Describe an Amazon Comprehend document classification job using an AWS SDK

• Describe an Amazon Comprehend document classifier using an AWS SDK

• Describe an Amazon Comprehend topic modeling job using an AWS SDK

• Detect entities in a document with Amazon Comprehend using an AWS SDK

• Detect key phrases in a document with Amazon Comprehend using an AWS SDK

Actions 315

https://docs.aws.amazon.com/comprehend/latest/APIReference/welcome.html

Amazon Comprehend Developer Guide

• Detect personally identifiable information in a document with Amazon Comprehend using an
AWS SDK

• Detect syntactial elements of a document with Amazon Comprehend using an AWS SDK

• Detect the dominant language in a document with Amazon Comprehend using an AWS SDK

• Detect the sentiment of a document with Amazon Comprehend using an AWS SDK

• List Amazon Comprehend document classification jobs using an AWS SDK

• List Amazon Comprehend document classifiers using an AWS SDK

• List Amazon Comprehend topic modeling jobs using an AWS SDK

• Start an Amazon Comprehend document classification job using an AWS SDK

• Start an Amazon Comprehend topic modeling job using an AWS SDK

Create an Amazon Comprehend document classifier using an AWS SDK

The following code examples show how to create an Amazon Comprehend document classifier.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To create a document classifier to categorize documents

The following create-document-classifier example begins the training process for
a document classifier model. The training data file, training.csv, is located at the --
input-data-config tag. training.csv is a two column document where the labels,
or, classifications are provided in the first column and the documents are provided in the
second column.

aws comprehend create-document-classifier \
 --document-classifier-name example-classifier \
 --data-access-arn arn:aws:comprehend:us-west-2:111122223333:pii-entities-
detection-job/123456abcdeb0e11022f22a11EXAMPLE \
 --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \

Create a document classifier 316

Amazon Comprehend Developer Guide

 --language-code en

Output:

{
 "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-
classifier/example-classifier"
}

For more information, see Custom Classification in the Amazon Comprehend Developer Guide.

• For API details, see CreateDocumentClassifier in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.comprehend.ComprehendClient;
import software.amazon.awssdk.services.comprehend.model.ComprehendException;
import
 software.amazon.awssdk.services.comprehend.model.CreateDocumentClassifierRequest;
import
 software.amazon.awssdk.services.comprehend.model.CreateDocumentClassifierResponse;
import
 software.amazon.awssdk.services.comprehend.model.DocumentClassifierInputDataConfig;

/**
 * Before running this code example, you can setup the necessary resources, such
 * as the CSV file and IAM Roles, by following this document:
 * https://aws.amazon.com/blogs/machine-learning/building-a-custom-classifier-
using-amazon-comprehend/
 *
 * Also, set up your development environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Create a document classifier 317

https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/create-document-classifier.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend#readme

Amazon Comprehend Developer Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DocumentClassifierDemo {
 public static void main(String[] args) {
 final String usage = """

 Usage: <dataAccessRoleArn> <s3Uri> <documentClassifierName>

 Where:
 dataAccessRoleArn - The ARN value of the role used for this
 operation.
 s3Uri - The Amazon S3 bucket that contains the CSV file.
 documentClassifierName - The name of the document classifier.
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String dataAccessRoleArn = args[0];
 String s3Uri = args[1];
 String documentClassifierName = args[2];

 Region region = Region.US_EAST_1;
 ComprehendClient comClient = ComprehendClient.builder()
 .region(region)
 .build();

 createDocumentClassifier(comClient, dataAccessRoleArn, s3Uri,
 documentClassifierName);
 comClient.close();
 }

 public static void createDocumentClassifier(ComprehendClient comClient,
 String dataAccessRoleArn, String s3Uri,
 String documentClassifierName) {
 try {
 DocumentClassifierInputDataConfig config =
 DocumentClassifierInputDataConfig.builder()
 .s3Uri(s3Uri)
 .build();

Create a document classifier 318

Amazon Comprehend Developer Guide

 CreateDocumentClassifierRequest createDocumentClassifierRequest =
 CreateDocumentClassifierRequest.builder()
 .documentClassifierName(documentClassifierName)
 .dataAccessRoleArn(dataAccessRoleArn)
 .languageCode("en")
 .inputDataConfig(config)
 .build();

 CreateDocumentClassifierResponse createDocumentClassifierResult =
 comClient
 .createDocumentClassifier(createDocumentClassifierRequest);
 String documentClassifierArn =
 createDocumentClassifierResult.documentClassifierArn();
 System.out.println("Document Classifier ARN: " +
 documentClassifierArn);

 } catch (ComprehendException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see CreateDocumentClassifier in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """

Create a document classifier 319

https://docs.aws.amazon.com/goto/SdkForJavaV2/comprehend-2017-11-27/CreateDocumentClassifier
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def create(
 self,
 name,
 language_code,
 training_bucket,
 training_key,
 data_access_role_arn,
 mode,
):
 """
 Creates a custom classifier. After the classifier is created, it
 immediately
 starts training on the data found in the specified Amazon S3 bucket.
 Training
 can take 30 minutes or longer. The `describe_document_classifier`
 function
 can be used to get training status and returns a status of TRAINED when
 the
 classifier is ready to use.

 :param name: The name of the classifier.
 :param language_code: The language the classifier can operate on.
 :param training_bucket: The Amazon S3 bucket that contains the training
 data.
 :param training_key: The prefix used to find training data in the
 training
 bucket. If multiple objects have the same prefix,
 all
 of them are used.
 :param data_access_role_arn: The Amazon Resource Name (ARN) of a role
 that
 grants Comprehend permission to read from
 the
 training bucket.
 :return: The ARN of the newly created classifier.
 """
 try:
 response = self.comprehend_client.create_document_classifier(

Create a document classifier 320

Amazon Comprehend Developer Guide

 DocumentClassifierName=name,
 LanguageCode=language_code,
 InputDataConfig={"S3Uri": f"s3://{training_bucket}/
{training_key}"},
 DataAccessRoleArn=data_access_role_arn,
 Mode=mode.value,
)
 self.classifier_arn = response["DocumentClassifierArn"]
 logger.info("Started classifier creation. Arn is: %s.",
 self.classifier_arn)
 except ClientError:
 logger.exception("Couldn't create classifier %s.", name)
 raise
 else:
 return self.classifier_arn

• For API details, see CreateDocumentClassifier in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Delete an Amazon Comprehend document classifier using an AWS SDK

The following code examples show how to delete an Amazon Comprehend document classifier.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To delete a custom document classifier

Delete a document classifier 321

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/CreateDocumentClassifier

Amazon Comprehend Developer Guide

The following delete-document-classifier example deletes a custom document
classifier model.

aws comprehend delete-document-classifier \
 --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-
classifier/example-classifer-1

This command produces no output.

For more information, see Managing Amazon Comprehend endpoints in the Amazon
Comprehend Developer Guide.

• For API details, see DeleteDocumentClassifier in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def delete(self):
 """
 Deletes the classifier.
 """
 try:
 self.comprehend_client.delete_document_classifier(

Delete a document classifier 322

https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/delete-document-classifier.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 DocumentClassifierArn=self.classifier_arn
)
 logger.info("Deleted classifier %s.", self.classifier_arn)
 self.classifier_arn = None
 except ClientError:
 logger.exception("Couldn't deleted classifier %s.",
 self.classifier_arn)
 raise

• For API details, see DeleteDocumentClassifier in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Describe an Amazon Comprehend document classification job using an
AWS SDK

The following code examples show how to describe an Amazon Comprehend document
classification job.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To describe a document classification job

The following describe-document-classification-job example gets the properties
of an asynchronous document classification job.

aws comprehend describe-document-classification-job \

Describe a document classification job 323

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DeleteDocumentClassifier

Amazon Comprehend Developer Guide

 --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{
 "DocumentClassificationJobProperties": {
 "JobId": "123456abcdeb0e11022f22a11EXAMPLE",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-
classification-job/123456abcdeb0e11022f22a11EXAMPLE",
 "JobName": "exampleclassificationjob",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2023-06-14T17:09:51.788000+00:00",
 "EndTime": "2023-06-14T17:15:58.582000+00:00",
 "DocumentClassifierArn": "arn:aws:comprehend:us-
west-2:111122223333:document-classifier/mymodel/version/1",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/
output.tar.gz"
 },
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-servicerole"
 }
}

For more information, see Custom Classification in the Amazon Comprehend Developer Guide.

• For API details, see DescribeDocumentClassificationJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Describe a document classification job 324

https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/describe-document-classification-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def describe_job(self, job_id):
 """
 Gets metadata about a classification job.

 :param job_id: The ID of the job to look up.
 :return: Metadata about the job.
 """
 try:
 response =
 self.comprehend_client.describe_document_classification_job(
 JobId=job_id
)
 job = response["DocumentClassificationJobProperties"]
 logger.info("Got classification job %s.", job["JobName"])
 except ClientError:
 logger.exception("Couldn't get classification job %s.", job_id)
 raise
 else:
 return job

• For API details, see DescribeDocumentClassificationJob in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Describe a document classification job 325

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DescribeDocumentClassificationJob

Amazon Comprehend Developer Guide

Describe an Amazon Comprehend document classifier using an AWS
SDK

The following code examples show how to describe an Amazon Comprehend document classifier.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To describe a document classifier

The following describe-document-classifier example gets the properties of a custom
document classifier model.

aws comprehend describe-document-classifier \
 --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-
classifier/example-classifier-1

Output:

{
 "DocumentClassifierProperties": {
 "DocumentClassifierArn": "arn:aws:comprehend:us-
west-2:111122223333:document-classifier/example-classifier-1",
 "LanguageCode": "en",
 "Status": "TRAINED",
 "SubmitTime": "2023-06-13T19:04:15.735000+00:00",
 "EndTime": "2023-06-13T19:42:31.752000+00:00",
 "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00",
 "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00",
 "InputDataConfig": {
 "DataFormat": "COMPREHEND_CSV",
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata"
 },
 "OutputDataConfig": {},
 "ClassifierMetadata": {

Describe a document classifier 326

Amazon Comprehend Developer Guide

 "NumberOfLabels": 3,
 "NumberOfTrainedDocuments": 5016,
 "NumberOfTestDocuments": 557,
 "EvaluationMetrics": {
 "Accuracy": 0.9856,
 "Precision": 0.9919,
 "Recall": 0.9459,
 "F1Score": 0.9673,
 "MicroPrecision": 0.9856,
 "MicroRecall": 0.9856,
 "MicroF1Score": 0.9856,
 "HammingLoss": 0.0144
 }
 },
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-example-role",
 "Mode": "MULTI_CLASS"
 }
}

For more information, see Creating and managing custom models in the Amazon
Comprehend Developer Guide.

• For API details, see DescribeDocumentClassifier in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """

Describe a document classifier 327

https://docs.aws.amazon.com/comprehend/latest/dg/manage-models.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/describe-document-classifier.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def describe(self, classifier_arn=None):
 """
 Gets metadata about a custom classifier, including its current status.

 :param classifier_arn: The ARN of the classifier to look up.
 :return: Metadata about the classifier.
 """
 if classifier_arn is not None:
 self.classifier_arn = classifier_arn
 try:
 response = self.comprehend_client.describe_document_classifier(
 DocumentClassifierArn=self.classifier_arn
)
 classifier = response["DocumentClassifierProperties"]
 logger.info("Got classifier %s.", self.classifier_arn)
 except ClientError:
 logger.exception("Couldn't get classifier %s.", self.classifier_arn)
 raise
 else:
 return classifier

• For API details, see DescribeDocumentClassifier in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Describe an Amazon Comprehend topic modeling job using an AWS
SDK

The following code examples show how to describe an Amazon Comprehend topic modeling job.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Describe a topic modeling job 328

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DescribeDocumentClassifier

Amazon Comprehend Developer Guide

• Run a topic modeling job on sample data

CLI

AWS CLI

To describe a topics detection job

The following describe-topics-detection-job example gets the properties of an
asynchronous topics detection job.

aws comprehend describe-topics-detection-job \
 --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{
 "TopicsDetectionJobProperties": {
 "JobId": "123456abcdeb0e11022f22a11EXAMPLE",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-
job/123456abcdeb0e11022f22a11EXAMPLE",
 "JobName": "example_topics_detection",
 "JobStatus": "IN_PROGRESS",
 "SubmitTime": "2023-06-09T18:44:43.414000+00:00",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/
output.tar.gz"
 },
 "NumberOfTopics": 10,
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-examplerole"
 }
}

For more information, see Async analysis for Amazon Comprehend insights in the Amazon
Comprehend Developer Guide.

Describe a topic modeling job 329

https://docs.aws.amazon.com/comprehend/latest/dg/api-async-insights.html

Amazon Comprehend Developer Guide

• For API details, see DescribeTopicsDetectionJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendTopicModeler:
 """Encapsulates a Comprehend topic modeler."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def describe_job(self, job_id):
 """
 Gets metadata about a topic modeling job.

 :param job_id: The ID of the job to look up.
 :return: Metadata about the job.
 """
 try:
 response = self.comprehend_client.describe_topics_detection_job(
 JobId=job_id
)
 job = response["TopicsDetectionJobProperties"]
 logger.info("Got topic detection job %s.", job_id)
 except ClientError:
 logger.exception("Couldn't get topic detection job %s.", job_id)
 raise
 else:
 return job

Describe a topic modeling job 330

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/describe-topics-detection-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

• For API details, see DescribeTopicsDetectionJob in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect entities in a document with Amazon Comprehend using an AWS
SDK

The following code examples show how to detect entities in a document with Amazon
Comprehend.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Detect document elements

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use the AmazonComprehend service detect any
 /// entities in submitted text.
 /// </summary>

Detect entities in a document 331

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DescribeTopicsDetectionJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 public static class DetectEntities
 {
 /// <summary>
 /// The main method calls the DetectEntitiesAsync method to find any
 /// entities in the sample code.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new AmazonComprehendClient();

 Console.WriteLine("Calling DetectEntities\n");
 var detectEntitiesRequest = new DetectEntitiesRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 var detectEntitiesResponse = await
 comprehendClient.DetectEntitiesAsync(detectEntitiesRequest);

 foreach (var e in detectEntitiesResponse.Entities)
 {
 Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score:
 {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectEntities in AWS SDK for .NET API Reference.

CLI

AWS CLI

To detect named entites in input text

The following detect-entities example analyzes the input text and returns the named
entities. The pre-trained model's confidence score is also output for each prediction.

Detect entities in a document 332

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectEntities

Amazon Comprehend Developer Guide

aws comprehend detect-entities \
 --language-code en \
 --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC
 credit card \
 account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by
 July 31st. Based on your autopay settings, \
 we will withdraw your payment on the due date from your bank account number
 XXXXXX1111 with the routing number XXXXX0000. \
 Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to
 Alice at AnySpa@example.com."

Output:

{
 "Entities": [
 {
 "Score": 0.9994556307792664,
 "Type": "PERSON",
 "Text": "Zhang Wei",
 "BeginOffset": 6,
 "EndOffset": 15
 },
 {
 "Score": 0.9981022477149963,
 "Type": "PERSON",
 "Text": "John",
 "BeginOffset": 22,
 "EndOffset": 26
 },
 {
 "Score": 0.9986887574195862,
 "Type": "ORGANIZATION",
 "Text": "AnyCompany Financial Services, LLC",
 "BeginOffset": 33,
 "EndOffset": 67
 },
 {
 "Score": 0.9959119558334351,
 "Type": "OTHER",
 "Text": "1111-XXXX-1111-XXXX",
 "BeginOffset": 88,
 "EndOffset": 107
 },

Detect entities in a document 333

Amazon Comprehend Developer Guide

 {
 "Score": 0.9708039164543152,
 "Type": "QUANTITY",
 "Text": ".53",
 "BeginOffset": 133,
 "EndOffset": 136
 },
 {
 "Score": 0.9987268447875977,
 "Type": "DATE",
 "Text": "July 31st",
 "BeginOffset": 152,
 "EndOffset": 161
 },
 {
 "Score": 0.9858865737915039,
 "Type": "OTHER",
 "Text": "XXXXXX1111",
 "BeginOffset": 271,
 "EndOffset": 281
 },
 {
 "Score": 0.9700471758842468,
 "Type": "OTHER",
 "Text": "XXXXX0000",
 "BeginOffset": 306,
 "EndOffset": 315
 },
 {
 "Score": 0.9591118693351746,
 "Type": "ORGANIZATION",
 "Text": "Sunshine Spa",
 "BeginOffset": 340,
 "EndOffset": 352
 },
 {
 "Score": 0.9797496795654297,
 "Type": "LOCATION",
 "Text": "123 Main St",
 "BeginOffset": 354,
 "EndOffset": 365
 },
 {
 "Score": 0.994929313659668,

Detect entities in a document 334

Amazon Comprehend Developer Guide

 "Type": "PERSON",
 "Text": "Alice",
 "BeginOffset": 394,
 "EndOffset": 399
 },
 {
 "Score": 0.9949769377708435,
 "Type": "OTHER",
 "Text": "AnySpa@example.com",
 "BeginOffset": 403,
 "EndOffset": 418
 }
]
}

For more information, see Entities in the Amazon Comprehend Developer Guide.

• For API details, see DetectEntities in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.comprehend.ComprehendClient;
import software.amazon.awssdk.services.comprehend.model.DetectEntitiesRequest;
import software.amazon.awssdk.services.comprehend.model.DetectEntitiesResponse;
import software.amazon.awssdk.services.comprehend.model.Entity;
import software.amazon.awssdk.services.comprehend.model.ComprehendException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Detect entities in a document 335

https://docs.aws.amazon.com/comprehend/latest/dg/how-entities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/detect-entities.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend#readme

Amazon Comprehend Developer Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DetectEntities {
 public static void main(String[] args) {
 String text = "Amazon.com, Inc. is located in Seattle, WA and was founded
 July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to
 blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable
 Seattle - based companies are Starbucks and Boeing.";
 Region region = Region.US_EAST_1;
 ComprehendClient comClient = ComprehendClient.builder()
 .region(region)
 .build();

 System.out.println("Calling DetectEntities");
 detectAllEntities(comClient, text);
 comClient.close();
 }

 public static void detectAllEntities(ComprehendClient comClient, String text)
 {
 try {
 DetectEntitiesRequest detectEntitiesRequest =
 DetectEntitiesRequest.builder()
 .text(text)
 .languageCode("en")
 .build();

 DetectEntitiesResponse detectEntitiesResult =
 comClient.detectEntities(detectEntitiesRequest);
 List<Entity> entList = detectEntitiesResult.entities();
 for (Entity entity : entList) {
 System.out.println("Entity text is " + entity.text());
 }

 } catch (ComprehendException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Detect entities in a document 336

Amazon Comprehend Developer Guide

• For API details, see DetectEntities in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def detect_entities(self, text, language_code):
 """
 Detects entities in a document. Entities can be things like people and
 places
 or other common terms.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of entities along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_entities(
 Text=text, LanguageCode=language_code
)
 entities = response["Entities"]
 logger.info("Detected %s entities.", len(entities))
 except ClientError:
 logger.exception("Couldn't detect entities.")
 raise
 else:

Detect entities in a document 337

https://docs.aws.amazon.com/goto/SdkForJavaV2/comprehend-2017-11-27/DetectEntities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 return entities

• For API details, see DetectEntities in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect key phrases in a document with Amazon Comprehend using an
AWS SDK

The following code examples show how to detect key phrases in a document with Amazon
Comprehend.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Detect document elements

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use the Amazon Comprehend service to
 /// search text for key phrases.

Detect key phrases in a document 338

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectEntities
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 /// </summary>
 public static class DetectKeyPhrase
 {
 /// <summary>
 /// This method calls the Amazon Comprehend method DetectKeyPhrasesAsync
 /// to detect any key phrases in the sample text.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 // Call DetectKeyPhrases API
 Console.WriteLine("Calling DetectKeyPhrases");
 var detectKeyPhrasesRequest = new DetectKeyPhrasesRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 var detectKeyPhrasesResponse = await
 comprehendClient.DetectKeyPhrasesAsync(detectKeyPhrasesRequest);
 foreach (var kp in detectKeyPhrasesResponse.KeyPhrases)
 {
 Console.WriteLine($"Text: {kp.Text}, Score: {kp.Score},
 BeginOffset: {kp.BeginOffset}, EndOffset: {kp.EndOffset}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectKeyPhrases in AWS SDK for .NET API Reference.

CLI

AWS CLI

To detect key phrases in input text

Detect key phrases in a document 339

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectKeyPhrases

Amazon Comprehend Developer Guide

The following detect-key-phrases example analyzes the input text and identifies the key
noun phrases. The pre-trained model's confidence score is also output for each prediction.

aws comprehend detect-key-phrases \
 --language-code en \
 --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC
 credit card \
 account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due
 by July 31st. Based on your autopay settings, \
 we will withdraw your payment on the due date from your bank account
 number XXXXXX1111 with the routing number XXXXX0000. \
 Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments
 to Alice at AnySpa@example.com."

Output:

{
 "KeyPhrases": [
 {
 "Score": 0.8996376395225525,
 "Text": "Zhang Wei",
 "BeginOffset": 6,
 "EndOffset": 15
 },
 {
 "Score": 0.9992469549179077,
 "Text": "John",
 "BeginOffset": 22,
 "EndOffset": 26
 },
 {
 "Score": 0.988385021686554,
 "Text": "Your AnyCompany Financial Services",
 "BeginOffset": 28,
 "EndOffset": 62
 },
 {
 "Score": 0.8740853071212769,
 "Text": "LLC credit card account 1111-XXXX-1111-XXXX",
 "BeginOffset": 64,
 "EndOffset": 107
 },
 {

Detect key phrases in a document 340

Amazon Comprehend Developer Guide

 "Score": 0.9999437928199768,
 "Text": "a minimum payment",
 "BeginOffset": 112,
 "EndOffset": 129
 },
 {
 "Score": 0.9998900890350342,
 "Text": ".53",
 "BeginOffset": 133,
 "EndOffset": 136
 },
 {
 "Score": 0.9979453086853027,
 "Text": "July 31st",
 "BeginOffset": 152,
 "EndOffset": 161
 },
 {
 "Score": 0.9983011484146118,
 "Text": "your autopay settings",
 "BeginOffset": 172,
 "EndOffset": 193
 },
 {
 "Score": 0.9996572136878967,
 "Text": "your payment",
 "BeginOffset": 211,
 "EndOffset": 223
 },
 {
 "Score": 0.9995037317276001,
 "Text": "the due date",
 "BeginOffset": 227,
 "EndOffset": 239
 },
 {
 "Score": 0.9702621698379517,
 "Text": "your bank account number XXXXXX1111",
 "BeginOffset": 245,
 "EndOffset": 280
 },
 {
 "Score": 0.9179925918579102,
 "Text": "the routing number XXXXX0000.Customer feedback",

Detect key phrases in a document 341

Amazon Comprehend Developer Guide

 "BeginOffset": 286,
 "EndOffset": 332
 },
 {
 "Score": 0.9978160858154297,
 "Text": "Sunshine Spa",
 "BeginOffset": 337,
 "EndOffset": 349
 },
 {
 "Score": 0.9706913232803345,
 "Text": "123 Main St",
 "BeginOffset": 351,
 "EndOffset": 362
 },
 {
 "Score": 0.9941995143890381,
 "Text": "comments",
 "BeginOffset": 379,
 "EndOffset": 387
 },
 {
 "Score": 0.9759287238121033,
 "Text": "Alice",
 "BeginOffset": 391,
 "EndOffset": 396
 },
 {
 "Score": 0.8376792669296265,
 "Text": "AnySpa@example.com",
 "BeginOffset": 400,
 "EndOffset": 415
 }
]
}

For more information, see Key Phrases in the Amazon Comprehend Developer Guide.

• For API details, see DetectKeyPhrases in AWS CLI Command Reference.

Detect key phrases in a document 342

https://docs.aws.amazon.com/comprehend/latest/dg/how-key-phrases.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/detect-key-phrases.html

Amazon Comprehend Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.comprehend.ComprehendClient;
import software.amazon.awssdk.services.comprehend.model.DetectKeyPhrasesRequest;
import software.amazon.awssdk.services.comprehend.model.DetectKeyPhrasesResponse;
import software.amazon.awssdk.services.comprehend.model.KeyPhrase;
import software.amazon.awssdk.services.comprehend.model.ComprehendException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DetectKeyPhrases {
 public static void main(String[] args) {
 String text = "Amazon.com, Inc. is located in Seattle, WA and was founded
 July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to
 blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable
 Seattle - based companies are Starbucks and Boeing.";
 Region region = Region.US_EAST_1;
 ComprehendClient comClient = ComprehendClient.builder()
 .region(region)
 .build();

 System.out.println("Calling DetectKeyPhrases");
 detectAllKeyPhrases(comClient, text);
 comClient.close();
 }

Detect key phrases in a document 343

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend#readme

Amazon Comprehend Developer Guide

 public static void detectAllKeyPhrases(ComprehendClient comClient, String
 text) {
 try {
 DetectKeyPhrasesRequest detectKeyPhrasesRequest =
 DetectKeyPhrasesRequest.builder()
 .text(text)
 .languageCode("en")
 .build();

 DetectKeyPhrasesResponse detectKeyPhrasesResult =
 comClient.detectKeyPhrases(detectKeyPhrasesRequest);
 List<KeyPhrase> phraseList = detectKeyPhrasesResult.keyPhrases();
 for (KeyPhrase keyPhrase : phraseList) {
 System.out.println("Key phrase text is " + keyPhrase.text());
 }

 } catch (ComprehendException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DetectKeyPhrases in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """

Detect key phrases in a document 344

https://docs.aws.amazon.com/goto/SdkForJavaV2/comprehend-2017-11-27/DetectKeyPhrases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def detect_key_phrases(self, text, language_code):
 """
 Detects key phrases in a document. A key phrase is typically a noun and
 its
 modifiers.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of key phrases along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_key_phrases(
 Text=text, LanguageCode=language_code
)
 phrases = response["KeyPhrases"]
 logger.info("Detected %s phrases.", len(phrases))
 except ClientError:
 logger.exception("Couldn't detect phrases.")
 raise
 else:
 return phrases

• For API details, see DetectKeyPhrases in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect personally identifiable information in a document with Amazon
Comprehend using an AWS SDK

The following code examples show how to detect personally identifiable information (PII) in a
document with Amazon Comprehend.

Detect personally identifiable information in a document 345

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectKeyPhrases

Amazon Comprehend Developer Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Detect document elements

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use the Amazon Comprehend service to find
 /// personally identifiable information (PII) within text submitted to the
 /// DetectPiiEntitiesAsync method.
 /// </summary>
 public class DetectingPII
 {
 /// <summary>
 /// This method calls the DetectPiiEntitiesAsync method to locate any
 /// personally dientifiable information within the supplied text.
 /// </summary>
 public static async Task Main()
 {
 var comprehendClient = new AmazonComprehendClient();
 var text = @"Hello Paul Santos. The latest statement for your
 credit card account 1111-0000-1111-0000 was
 mailed to 123 Any Street, Seattle, WA 98109.";

 var request = new DetectPiiEntitiesRequest
 {
 Text = text,

Detect personally identifiable information in a document 346

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 LanguageCode = "EN",
 };

 var response = await
 comprehendClient.DetectPiiEntitiesAsync(request);

 if (response.Entities.Count > 0)
 {
 foreach (var entity in response.Entities)
 {
 var entityValue = text.Substring(entity.BeginOffset,
 entity.EndOffset - entity.BeginOffset);
 Console.WriteLine($"{entity.Type}: {entityValue}");
 }
 }
 }
 }

• For API details, see DetectPiiEntities in AWS SDK for .NET API Reference.

CLI

AWS CLI

To detect pii entities in input text

The following detect-pii-entities example analyzes the input text and identifies
entities that contain personally identifiable information (PII). The pre-trained model's
confidence score is also output for each prediction.

aws comprehend detect-pii-entities \
 --language-code en \
 --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC
 credit card \
 account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due
 by July 31st. Based on your autopay settings, \
 we will withdraw your payment on the due date from your bank account
 number XXXXXX1111 with the routing number XXXXX0000. \
 Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments
 to Alice at AnySpa@example.com."

Detect personally identifiable information in a document 347

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectPiiEntities

Amazon Comprehend Developer Guide

Output:

{
 "Entities": [
 {
 "Score": 0.9998322129249573,
 "Type": "NAME",
 "BeginOffset": 6,
 "EndOffset": 15
 },
 {
 "Score": 0.9998878240585327,
 "Type": "NAME",
 "BeginOffset": 22,
 "EndOffset": 26
 },
 {
 "Score": 0.9994089603424072,
 "Type": "CREDIT_DEBIT_NUMBER",
 "BeginOffset": 88,
 "EndOffset": 107
 },
 {
 "Score": 0.9999760985374451,
 "Type": "DATE_TIME",
 "BeginOffset": 152,
 "EndOffset": 161
 },
 {
 "Score": 0.9999449253082275,
 "Type": "BANK_ACCOUNT_NUMBER",
 "BeginOffset": 271,
 "EndOffset": 281
 },
 {
 "Score": 0.9999847412109375,
 "Type": "BANK_ROUTING",
 "BeginOffset": 306,
 "EndOffset": 315
 },
 {
 "Score": 0.999925434589386,
 "Type": "ADDRESS",
 "BeginOffset": 354,

Detect personally identifiable information in a document 348

Amazon Comprehend Developer Guide

 "EndOffset": 365
 },
 {
 "Score": 0.9989161491394043,
 "Type": "NAME",
 "BeginOffset": 394,
 "EndOffset": 399
 },
 {
 "Score": 0.9994171857833862,
 "Type": "EMAIL",
 "BeginOffset": 403,
 "EndOffset": 418
 }
]
}

For more information, see Personally Identifiable Information (PII) in the Amazon
Comprehend Developer Guide.

• For API details, see DetectPiiEntities in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

Detect personally identifiable information in a document 349

https://docs.aws.amazon.com/comprehend/latest/dg/pii.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/detect-pii-entities.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 def detect_pii(self, text, language_code):
 """
 Detects personally identifiable information (PII) in a document. PII can
 be
 things like names, account numbers, or addresses.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of PII entities along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_pii_entities(
 Text=text, LanguageCode=language_code
)
 entities = response["Entities"]
 logger.info("Detected %s PII entities.", len(entities))
 except ClientError:
 logger.exception("Couldn't detect PII entities.")
 raise
 else:
 return entities

• For API details, see DetectPiiEntities in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect syntactial elements of a document with Amazon Comprehend
using an AWS SDK

The following code examples show how to detect syntactial elements of a document with Amazon
Comprehend.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Detect document elements

Detect syntactical elements of a document 350

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectPiiEntities

Amazon Comprehend Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to use Amazon Comprehend to detect syntax
 /// elements by calling the DetectSyntaxAsync method.
 /// </summary>
 public class DetectingSyntax
 {
 /// <summary>
 /// This method calls DetectSynaxAsync to identify the syntax elements
 /// in the sample text.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new AmazonComprehendClient();

 // Call DetectSyntax API
 Console.WriteLine("Calling DetectSyntaxAsync\n");
 var detectSyntaxRequest = new DetectSyntaxRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 DetectSyntaxResponse detectSyntaxResponse = await
 comprehendClient.DetectSyntaxAsync(detectSyntaxRequest);
 foreach (SyntaxToken s in detectSyntaxResponse.SyntaxTokens)
 {

Detect syntactical elements of a document 351

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 Console.WriteLine($"Text: {s.Text}, PartOfSpeech:
 {s.PartOfSpeech.Tag}, BeginOffset: {s.BeginOffset}, EndOffset: {s.EndOffset}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectSyntax in AWS SDK for .NET API Reference.

CLI

AWS CLI

To detect the parts of speech in an input text

The following detect-syntax example analyzes the syntax of the input text and returns
the different parts of speech. The pre-trained model's confidence score is also output for
each prediction.

aws comprehend detect-syntax \
 --language-code en \
 --text "It is a beautiful day in Seattle."

Output:

{
 "SyntaxTokens": [
 {
 "TokenId": 1,
 "Text": "It",
 "BeginOffset": 0,
 "EndOffset": 2,
 "PartOfSpeech": {
 "Tag": "PRON",
 "Score": 0.9999740719795227
 }
 },
 {
 "TokenId": 2,

Detect syntactical elements of a document 352

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectSyntax

Amazon Comprehend Developer Guide

 "Text": "is",
 "BeginOffset": 3,
 "EndOffset": 5,
 "PartOfSpeech": {
 "Tag": "VERB",
 "Score": 0.999901294708252
 }
 },
 {
 "TokenId": 3,
 "Text": "a",
 "BeginOffset": 6,
 "EndOffset": 7,
 "PartOfSpeech": {
 "Tag": "DET",
 "Score": 0.9999938607215881
 }
 },
 {
 "TokenId": 4,
 "Text": "beautiful",
 "BeginOffset": 8,
 "EndOffset": 17,
 "PartOfSpeech": {
 "Tag": "ADJ",
 "Score": 0.9987351894378662
 }
 },
 {
 "TokenId": 5,
 "Text": "day",
 "BeginOffset": 18,
 "EndOffset": 21,
 "PartOfSpeech": {
 "Tag": "NOUN",
 "Score": 0.9999796748161316
 }
 },
 {
 "TokenId": 6,
 "Text": "in",
 "BeginOffset": 22,
 "EndOffset": 24,
 "PartOfSpeech": {

Detect syntactical elements of a document 353

Amazon Comprehend Developer Guide

 "Tag": "ADP",
 "Score": 0.9998047947883606
 }
 },
 {
 "TokenId": 7,
 "Text": "Seattle",
 "BeginOffset": 25,
 "EndOffset": 32,
 "PartOfSpeech": {
 "Tag": "PROPN",
 "Score": 0.9940530061721802
 }
 }
]
}

For more information, see Syntax Analysis in the Amazon Comprehend Developer Guide.

• For API details, see DetectSyntax in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.comprehend.ComprehendClient;
import software.amazon.awssdk.services.comprehend.model.ComprehendException;
import software.amazon.awssdk.services.comprehend.model.DetectSyntaxRequest;
import software.amazon.awssdk.services.comprehend.model.DetectSyntaxResponse;
import software.amazon.awssdk.services.comprehend.model.SyntaxToken;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.

Detect syntactical elements of a document 354

https://docs.aws.amazon.com/comprehend/latest/dg/how-syntax.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/detect-syntax.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend#readme

Amazon Comprehend Developer Guide

 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DetectSyntax {
 public static void main(String[] args) {
 String text = "Amazon.com, Inc. is located in Seattle, WA and was founded
 July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to
 blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable
 Seattle - based companies are Starbucks and Boeing.";
 Region region = Region.US_EAST_1;
 ComprehendClient comClient = ComprehendClient.builder()
 .region(region)
 .build();

 System.out.println("Calling DetectSyntax");
 detectAllSyntax(comClient, text);
 comClient.close();
 }

 public static void detectAllSyntax(ComprehendClient comClient, String text) {
 try {
 DetectSyntaxRequest detectSyntaxRequest =
 DetectSyntaxRequest.builder()
 .text(text)
 .languageCode("en")
 .build();

 DetectSyntaxResponse detectSyntaxResult =
 comClient.detectSyntax(detectSyntaxRequest);
 List<SyntaxToken> syntaxTokens = detectSyntaxResult.syntaxTokens();
 for (SyntaxToken token : syntaxTokens) {
 System.out.println("Language is " + token.text());
 System.out.println("Part of speech is " +
 token.partOfSpeech().tagAsString());
 }

 } catch (ComprehendException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Detect syntactical elements of a document 355

Amazon Comprehend Developer Guide

}

• For API details, see DetectSyntax in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def detect_syntax(self, text, language_code):
 """
 Detects syntactical elements of a document. Syntax tokens are portions of
 text along with their use as parts of speech, such as nouns, verbs, and
 interjections.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of syntax tokens along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_syntax(
 Text=text, LanguageCode=language_code
)
 tokens = response["SyntaxTokens"]
 logger.info("Detected %s syntax tokens.", len(tokens))
 except ClientError:

Detect syntactical elements of a document 356

https://docs.aws.amazon.com/goto/SdkForJavaV2/comprehend-2017-11-27/DetectSyntax
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 logger.exception("Couldn't detect syntax.")
 raise
 else:
 return tokens

• For API details, see DetectSyntax in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect the dominant language in a document with Amazon
Comprehend using an AWS SDK

The following code examples show how to detect the dominant language in a document with
Amazon Comprehend.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Detect document elements

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

Detect the dominant language in a document 357

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectSyntax
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 /// <summary>
 /// This example calls the Amazon Comprehend service to determine the
 /// dominant language.
 /// </summary>
 public static class DetectDominantLanguage
 {
 /// <summary>
 /// Calls Amazon Comprehend to determine the dominant language used in
 /// the sample text.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle.";

 var comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 Console.WriteLine("Calling DetectDominantLanguage\n");
 var detectDominantLanguageRequest = new
 DetectDominantLanguageRequest()
 {
 Text = text,
 };

 var detectDominantLanguageResponse = await
 comprehendClient.DetectDominantLanguageAsync(detectDominantLanguageRequest);
 foreach (var dl in detectDominantLanguageResponse.Languages)
 {
 Console.WriteLine($"Language Code: {dl.LanguageCode}, Score:
 {dl.Score}");
 }

 Console.WriteLine("Done");
 }
 }

• For API details, see DetectDominantLanguage in AWS SDK for .NET API Reference.

Detect the dominant language in a document 358

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectDominantLanguage

Amazon Comprehend Developer Guide

CLI

AWS CLI

To detect the dominant language of input text

The following detect-dominant-language analyzes the input text and identifies the
dominant language. The pre-trained model's confidence score is also output.

aws comprehend detect-dominant-language \
 --text "It is a beautiful day in Seattle."

Output:

{
 "Languages": [
 {
 "LanguageCode": "en",
 "Score": 0.9877256155014038
 }
]
}

For more information, see Dominant Language in the Amazon Comprehend Developer Guide.

• For API details, see DetectDominantLanguage in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.comprehend.ComprehendClient;
import software.amazon.awssdk.services.comprehend.model.ComprehendException;

Detect the dominant language in a document 359

https://docs.aws.amazon.com/comprehend/latest/dg/how-languages.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/detect-dominant-language.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend#readme

Amazon Comprehend Developer Guide

import
 software.amazon.awssdk.services.comprehend.model.DetectDominantLanguageRequest;
import
 software.amazon.awssdk.services.comprehend.model.DetectDominantLanguageResponse;
import software.amazon.awssdk.services.comprehend.model.DominantLanguage;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DetectLanguage {
 public static void main(String[] args) {
 // Specify French text - "It is raining today in Seattle".
 String text = "Il pleut aujourd'hui à Seattle";
 Region region = Region.US_EAST_1;

 ComprehendClient comClient = ComprehendClient.builder()
 .region(region)
 .build();

 System.out.println("Calling DetectDominantLanguage");
 detectTheDominantLanguage(comClient, text);
 comClient.close();
 }

 public static void detectTheDominantLanguage(ComprehendClient comClient,
 String text) {
 try {
 DetectDominantLanguageRequest request =
 DetectDominantLanguageRequest.builder()
 .text(text)
 .build();

 DetectDominantLanguageResponse resp =
 comClient.detectDominantLanguage(request);
 List<DominantLanguage> allLanList = resp.languages();
 for (DominantLanguage lang : allLanList) {
 System.out.println("Language is " + lang.languageCode());

Detect the dominant language in a document 360

Amazon Comprehend Developer Guide

 }

 } catch (ComprehendException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DetectDominantLanguage in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def detect_languages(self, text):
 """
 Detects languages used in a document.

 :param text: The document to inspect.
 :return: The list of languages along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_dominant_language(Text=text)
 languages = response["Languages"]

Detect the dominant language in a document 361

https://docs.aws.amazon.com/goto/SdkForJavaV2/comprehend-2017-11-27/DetectDominantLanguage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 logger.info("Detected %s languages.", len(languages))
 except ClientError:
 logger.exception("Couldn't detect languages.")
 raise
 else:
 return languages

• For API details, see DetectDominantLanguage in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect the sentiment of a document with Amazon Comprehend using
an AWS SDK

The following code examples show how to detect the sentiment of a document with Amazon
Comprehend.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Detect document elements

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;

Detect the sentiment of a document 362

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectDominantLanguage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example shows how to detect the overall sentiment of the supplied
 /// text using the Amazon Comprehend service.
 /// </summary>
 public static class DetectSentiment
 {
 /// <summary>
 /// This method calls the DetetectSentimentAsync method to analyze the
 /// supplied text and determine the overal sentiment.
 /// </summary>
 public static async Task Main()
 {
 string text = "It is raining today in Seattle";

 var comprehendClient = new
 AmazonComprehendClient(Amazon.RegionEndpoint.USWest2);

 // Call DetectKeyPhrases API
 Console.WriteLine("Calling DetectSentiment");
 var detectSentimentRequest = new DetectSentimentRequest()
 {
 Text = text,
 LanguageCode = "en",
 };
 var detectSentimentResponse = await
 comprehendClient.DetectSentimentAsync(detectSentimentRequest);
 Console.WriteLine($"Sentiment: {detectSentimentResponse.Sentiment}");
 Console.WriteLine("Done");
 }
 }

• For API details, see DetectSentiment in AWS SDK for .NET API Reference.

CLI

AWS CLI

To detect the sentiment of an input text

Detect the sentiment of a document 363

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/DetectSentiment

Amazon Comprehend Developer Guide

The following detect-sentiment example analyzes the input text and returns an
inference of the prevailing sentiment (POSITIVE, NEUTRAL, MIXED, or NEGATIVE).

aws comprehend detect-sentiment \
 --language-code en \
 --text "It is a beautiful day in Seattle"

Output:

{
 "Sentiment": "POSITIVE",
 "SentimentScore": {
 "Positive": 0.9976957440376282,
 "Negative": 9.653854067437351e-05,
 "Neutral": 0.002169104292988777,
 "Mixed": 3.857641786453314e-05
 }
}

For more information, see Sentiment in the Amazon Comprehend Developer Guide

• For API details, see DetectSentiment in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.comprehend.ComprehendClient;
import software.amazon.awssdk.services.comprehend.model.ComprehendException;
import software.amazon.awssdk.services.comprehend.model.DetectSentimentRequest;
import software.amazon.awssdk.services.comprehend.model.DetectSentimentResponse;

/**
 * Before running this Java V2 code example, set up your development

Detect the sentiment of a document 364

https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/detect-sentiment.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/comprehend#readme

Amazon Comprehend Developer Guide

 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DetectSentiment {
 public static void main(String[] args) {
 String text = "Amazon.com, Inc. is located in Seattle, WA and was founded
 July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to
 blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable
 Seattle - based companies are Starbucks and Boeing.";
 Region region = Region.US_EAST_1;
 ComprehendClient comClient = ComprehendClient.builder()
 .region(region)
 .build();

 System.out.println("Calling DetectSentiment");
 detectSentiments(comClient, text);
 comClient.close();
 }

 public static void detectSentiments(ComprehendClient comClient, String text)
 {
 try {
 DetectSentimentRequest detectSentimentRequest =
 DetectSentimentRequest.builder()
 .text(text)
 .languageCode("en")
 .build();

 DetectSentimentResponse detectSentimentResult =
 comClient.detectSentiment(detectSentimentRequest);
 System.out.println("The Neutral value is " +
 detectSentimentResult.sentimentScore().neutral());

 } catch (ComprehendException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Detect the sentiment of a document 365

Amazon Comprehend Developer Guide

• For API details, see DetectSentiment in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def detect_sentiment(self, text, language_code):
 """
 Detects the overall sentiment expressed in a document. Sentiment can
 be positive, negative, neutral, or a mixture.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The sentiments along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_sentiment(
 Text=text, LanguageCode=language_code
)
 logger.info("Detected primary sentiment %s.", response["Sentiment"])
 except ClientError:
 logger.exception("Couldn't detect sentiment.")
 raise
 else:

Detect the sentiment of a document 366

https://docs.aws.amazon.com/goto/SdkForJavaV2/comprehend-2017-11-27/DetectSentiment
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 return response

• For API details, see DetectSentiment in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

List Amazon Comprehend document classification jobs using an AWS
SDK

The following code examples show how to list Amazon Comprehend document classification jobs.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To list of all document classification jobs

The following list-document-classification-jobs example lists all document
classification jobs.

aws comprehend list-document-classification-jobs

Output:

{
 "DocumentClassificationJobPropertiesList": [
 {
 "JobId": "123456abcdeb0e11022f22a11EXAMPLE",
 "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-
classification-job/123456abcdeb0e11022f22a11EXAMPLE",
 "JobName": "exampleclassificationjob",

List document classification jobs 367

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectSentiment

Amazon Comprehend Developer Guide

 "JobStatus": "COMPLETED",
 "SubmitTime": "2023-06-14T17:09:51.788000+00:00",
 "EndTime": "2023-06-14T17:15:58.582000+00:00",
 "DocumentClassifierArn": "arn:aws:comprehend:us-
west-2:1234567890101:document-classifier/mymodel/version/12",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/
output.tar.gz"
 },
 "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/
AmazonComprehendServiceRole-example-role"
 },
 {
 "JobId": "123456abcdeb0e11022f22a1EXAMPLE2",
 "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-
classification-job/123456abcdeb0e11022f22a1EXAMPLE2",
 "JobName": "exampleclassificationjob2",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2023-06-14T17:22:39.829000+00:00",
 "EndTime": "2023-06-14T17:28:46.107000+00:00",
 "DocumentClassifierArn": "arn:aws:comprehend:us-
west-2:1234567890101:document-classifier/mymodel/version/12",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/
output.tar.gz"
 },
 "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/
AmazonComprehendServiceRole-example-role"
 }
]
}

For more information, see Custom Classification in the Amazon Comprehend Developer Guide.

List document classification jobs 368

https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html

Amazon Comprehend Developer Guide

• For API details, see ListDocumentClassificationJobs in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def list_jobs(self):
 """
 Lists the classification jobs for the current account.

 :return: The list of jobs.
 """
 try:
 response = self.comprehend_client.list_document_classification_jobs()
 jobs = response["DocumentClassificationJobPropertiesList"]
 logger.info("Got %s document classification jobs.", len(jobs))
 except ClientError:
 logger.exception(
 "Couldn't get document classification jobs.",
)
 raise
 else:
 return jobs

List document classification jobs 369

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/list-document-classification-jobs.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

• For API details, see ListDocumentClassificationJobs in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

List Amazon Comprehend document classifiers using an AWS SDK

The following code examples show how to list Amazon Comprehend document classifiers.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To list of all document classifiers

The following list-document-classifiers example lists all trained and in-training
document classifier models.

aws comprehend list-document-classifiers

Output:

{
 "DocumentClassifierPropertiesList": [
 {
 "DocumentClassifierArn": "arn:aws:comprehend:us-
west-2:111122223333:document-classifier/exampleclassifier1",
 "LanguageCode": "en",
 "Status": "TRAINED",
 "SubmitTime": "2023-06-13T19:04:15.735000+00:00",
 "EndTime": "2023-06-13T19:42:31.752000+00:00",
 "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00",

List document classifiers 370

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/ListDocumentClassificationJobs

Amazon Comprehend Developer Guide

 "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00",
 "InputDataConfig": {
 "DataFormat": "COMPREHEND_CSV",
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata"
 },
 "OutputDataConfig": {},
 "ClassifierMetadata": {
 "NumberOfLabels": 3,
 "NumberOfTrainedDocuments": 5016,
 "NumberOfTestDocuments": 557,
 "EvaluationMetrics": {
 "Accuracy": 0.9856,
 "Precision": 0.9919,
 "Recall": 0.9459,
 "F1Score": 0.9673,
 "MicroPrecision": 0.9856,
 "MicroRecall": 0.9856,
 "MicroF1Score": 0.9856,
 "HammingLoss": 0.0144
 }
 },
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-testorle",
 "Mode": "MULTI_CLASS"
 },
 {
 "DocumentClassifierArn": "arn:aws:comprehend:us-
west-2:111122223333:document-classifier/exampleclassifier2",
 "LanguageCode": "en",
 "Status": "TRAINING",
 "SubmitTime": "2023-06-13T21:20:28.690000+00:00",
 "InputDataConfig": {
 "DataFormat": "COMPREHEND_CSV",
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata"
 },
 "OutputDataConfig": {},
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-testorle",
 "Mode": "MULTI_CLASS"
 }
]
}

List document classifiers 371

Amazon Comprehend Developer Guide

For more information, see Creating and managing custom models in the Amazon
Comprehend Developer Guide.

• For API details, see ListDocumentClassifiers in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def list(self):
 """
 Lists custom classifiers for the current account.

 :return: The list of classifiers.
 """
 try:
 response = self.comprehend_client.list_document_classifiers()
 classifiers = response["DocumentClassifierPropertiesList"]
 logger.info("Got %s classifiers.", len(classifiers))
 except ClientError:
 logger.exception(
 "Couldn't get classifiers.",
)
 raise
 else:

List document classifiers 372

https://docs.aws.amazon.com/comprehend/latest/dg/manage-models.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/list-document-classifiers.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 return classifiers

• For API details, see ListDocumentClassifiers in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

List Amazon Comprehend topic modeling jobs using an AWS SDK

The following code examples show how to list Amazon Comprehend topic modeling jobs.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Run a topic modeling job on sample data

CLI

AWS CLI

To list all topic detection jobs

The following list-topics-detection-jobs example lists all in-progress and
completed asynchronous topics detection jobs.

aws comprehend list-topics-detection-jobs

Output:

{
 "TopicsDetectionJobPropertiesList": [
 {
 "JobId": "123456abcdeb0e11022f22a11EXAMPLE",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-
detection-job/123456abcdeb0e11022f22a11EXAMPLE",
 "JobName" "topic-analysis-1"
 "JobStatus": "IN_PROGRESS",
 "SubmitTime": "2023-06-09T18:40:35.384000+00:00",

List topic modeling jobs 373

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/ListDocumentClassifiers

Amazon Comprehend Developer Guide

 "EndTime": "2023-06-09T18:46:41.936000+00:00",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/
output.tar.gz"
 },
 "NumberOfTopics": 10,
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-example-role"
 },
 {
 "JobId": "123456abcdeb0e11022f22a1EXAMPLE2",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-
detection-job/123456abcdeb0e11022f22a1EXAMPLE2",
 "JobName": "topic-analysis-2",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2023-06-09T18:44:43.414000+00:00",
 "EndTime": "2023-06-09T18:50:50.872000+00:00",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/
output.tar.gz"
 },
 "NumberOfTopics": 10,
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-example-role"
 },
 {
 "JobId": "123456abcdeb0e11022f22a1EXAMPLE3",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-
detection-job/123456abcdeb0e11022f22a1EXAMPLE3",
 "JobName": "topic-analysis-2",
 "JobStatus": "IN_PROGRESS",
 "SubmitTime": "2023-06-09T18:50:56.737000+00:00",
 "InputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-BUCKET",

List topic modeling jobs 374

Amazon Comprehend Developer Guide

 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/
thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/
output.tar.gz"
 },
 "NumberOfTopics": 10,
 "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-example-role"
 }
]
}

For more information, see Async analysis for Amazon Comprehend insights in the Amazon
Comprehend Developer Guide.

• For API details, see ListTopicsDetectionJobs in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendTopicModeler:
 """Encapsulates a Comprehend topic modeler."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def list_jobs(self):
 """
 Lists topic modeling jobs for the current account.

List topic modeling jobs 375

https://docs.aws.amazon.com/comprehend/latest/dg/api-async-insights.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/list-topics-detection-jobs.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 :return: The list of jobs.
 """
 try:
 response = self.comprehend_client.list_topics_detection_jobs()
 jobs = response["TopicsDetectionJobPropertiesList"]
 logger.info("Got %s topic detection jobs.", len(jobs))
 except ClientError:
 logger.exception("Couldn't get topic detection jobs.")
 raise
 else:
 return jobs

• For API details, see ListTopicsDetectionJobs in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Start an Amazon Comprehend document classification job using an
AWS SDK

The following code examples show how to start an Amazon Comprehend document classification
job.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Train a custom classifier and classify documents

CLI

AWS CLI

To start document classification job

The following start-document-classification-job example starts a document
classification job with a custom model on all of the files at the address specified

Start a document classification job 376

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/ListTopicsDetectionJobs

Amazon Comprehend Developer Guide

by the --input-data-config tag. In this example, the input S3 bucket contains
SampleSMStext1.txt, SampleSMStext2.txt, and SampleSMStext3.txt. The model
was previously trained on document classifications of spam and non-spam, or, "ham", SMS
messages. When the job is complete, output.tar.gz is put at the location specified by the
--output-data-config tag. output.tar.gz contains predictions.jsonl which lists
the classification of each document. The Json output is printed on one line per file, but is
formatted here for readability.

aws comprehend start-document-classification-job \
 --job-name exampleclassificationjob \
 --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET-INPUT/jobdata/" \
 --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
 \
 --data-access-role-arn arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-example-role \
 --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-
classifier/mymodel/version/12

Contents of SampleSMStext1.txt:

"CONGRATULATIONS! TXT 2155550100 to win $5000"

Contents of SampleSMStext2.txt:

"Hi, when do you want me to pick you up from practice?"

Contents of SampleSMStext3.txt:

"Plz send bank account # to 2155550100 to claim prize!!"

Output:

{
 "JobId": "e758dd56b824aa717ceab551fEXAMPLE",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-
job/e758dd56b824aa717ceab551fEXAMPLE",
 "JobStatus": "SUBMITTED"
}

Contents of predictions.jsonl:

Start a document classification job 377

Amazon Comprehend Developer Guide

{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score":
 0.9999}, {"Name": "ham", "Score": 0.0001}]}
{"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score":
 0.9994}, {"Name": "spam", "Score": 0.0006}]}
{"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score":
 0.9999}, {"Name": "ham", "Score": 0.0001}]}

For more information, see Custom Classification in the Amazon Comprehend Developer Guide.

• For API details, see StartDocumentClassificationJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def start_job(
 self,
 job_name,
 input_bucket,
 input_key,
 input_format,
 output_bucket,
 output_key,
 data_access_role_arn,

Start a document classification job 378

https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/start-document-classification-job.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

):
 """
 Starts a classification job. The classifier must be trained or the job
 will fail. Input is read from the specified Amazon S3 input bucket and
 written to the specified output bucket. Output data is stored in a tar
 archive compressed in gzip format. The job runs asynchronously, so you
 can
 call `describe_document_classification_job` to get job status until it
 returns a status of SUCCEEDED.

 :param job_name: The name of the job.
 :param input_bucket: The Amazon S3 bucket that contains input data.
 :param input_key: The prefix used to find input data in the input
 bucket. If multiple objects have the same prefix, all
 of them are used.
 :param input_format: The format of the input data, either one document
 per
 file or one document per line.
 :param output_bucket: The Amazon S3 bucket where output data is written.
 :param output_key: The prefix prepended to the output data.
 :param data_access_role_arn: The Amazon Resource Name (ARN) of a role
 that
 grants Comprehend permission to read from
 the
 input bucket and write to the output bucket.
 :return: Information about the job, including the job ID.
 """
 try:
 response = self.comprehend_client.start_document_classification_job(
 DocumentClassifierArn=self.classifier_arn,
 JobName=job_name,
 InputDataConfig={
 "S3Uri": f"s3://{input_bucket}/{input_key}",
 "InputFormat": input_format.value,
 },
 OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"},
 DataAccessRoleArn=data_access_role_arn,
)
 logger.info(
 "Document classification job %s is %s.", job_name,
 response["JobStatus"]
)
 except ClientError:
 logger.exception("Couldn't start classification job %s.", job_name)

Start a document classification job 379

Amazon Comprehend Developer Guide

 raise
 else:
 return response

• For API details, see StartDocumentClassificationJob in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Start an Amazon Comprehend topic modeling job using an AWS SDK

The following code examples show how to start an Amazon Comprehend topic modeling job.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Run a topic modeling job on sample data

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.Comprehend;
 using Amazon.Comprehend.Model;

 /// <summary>
 /// This example scans the documents in an Amazon Simple Storage Service
 /// (Amazon S3) bucket and analyzes it for topics. The results are stored

Start a topic modeling job 380

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/StartDocumentClassificationJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Comprehend/#code-examples

Amazon Comprehend Developer Guide

 /// in another bucket and then the resulting job properties are displayed
 /// on the screen. This example was created using the AWS SDK for .NEt
 /// version 3.7 and .NET Core version 5.0.
 /// </summary>
 public static class TopicModeling
 {
 /// <summary>
 /// This methos calls a topic detection job by calling the Amazon
 /// Comprehend StartTopicsDetectionJobRequest.
 /// </summary>
 public static async Task Main()
 {
 var comprehendClient = new AmazonComprehendClient();

 string inputS3Uri = "s3://input bucket/input path";
 InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE;
 string outputS3Uri = "s3://output bucket/output path";
 string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access
 role";
 int numberOfTopics = 10;

 var startTopicsDetectionJobRequest = new
 StartTopicsDetectionJobRequest()
 {
 InputDataConfig = new InputDataConfig()
 {
 S3Uri = inputS3Uri,
 InputFormat = inputDocFormat,
 },
 OutputDataConfig = new OutputDataConfig()
 {
 S3Uri = outputS3Uri,
 },
 DataAccessRoleArn = dataAccessRoleArn,
 NumberOfTopics = numberOfTopics,
 };

 var startTopicsDetectionJobResponse = await
 comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest);

 var jobId = startTopicsDetectionJobResponse.JobId;
 Console.WriteLine("JobId: " + jobId);

Start a topic modeling job 381

Amazon Comprehend Developer Guide

 var describeTopicsDetectionJobRequest = new
 DescribeTopicsDetectionJobRequest()
 {
 JobId = jobId,
 };

 var describeTopicsDetectionJobResponse = await
 comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest);

 PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties);

 var listTopicsDetectionJobsResponse = await
 comprehendClient.ListTopicsDetectionJobsAsync(new
 ListTopicsDetectionJobsRequest());
 foreach (var props in
 listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList)
 {
 PrintJobProperties(props);
 }
 }

 /// <summary>
 /// This method is a helper method that displays the job properties
 /// from the call to StartTopicsDetectionJobRequest.
 /// </summary>
 /// <param name="props">A list of properties from the call to
 /// StartTopicsDetectionJobRequest.</param>
 private static void PrintJobProperties(TopicsDetectionJobProperties
 props)
 {
 Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName},
 JobStatus: {props.JobStatus}");
 Console.WriteLine($"NumberOfTopics:
 {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}");
 Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat},
 OutputS3Uri: {props.OutputDataConfig.S3Uri}");
 }
 }

• For API details, see StartTopicsDetectionJob in AWS SDK for .NET API Reference.

Start a topic modeling job 382

https://docs.aws.amazon.com/goto/DotNetSDKV3/comprehend-2017-11-27/StartTopicsDetectionJob

Amazon Comprehend Developer Guide

CLI

AWS CLI

To start a topics detection analysis job

The following start-topics-detection-job example starts an asynchronous topics
detection job for all files located at the address specified by the --input-data-config
tag. When the job is complete, the folder, output, is placed at the location specified by
the --ouput-data-config tag. output contains topic-terms.csv and doc-topics.csv.
The first output file, topic-terms.csv, is a list of topics in the collection. For each topic, the
list includes, by default, the top terms by topic according to their weight. The second file,
doc-topics.csv, lists the documents associated with a topic and the proportion of the
document that is concerned with the topic.

aws comprehend start-topics-detection-job \
 --job-name example_topics_detection_job \
 --language-code en \
 --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \
 --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
 \
 --data-access-role-arn arn:aws:iam::111122223333:role/service-role/
AmazonComprehendServiceRole-example-role \
 --language-code en

Output:

{
 "JobId": "123456abcdeb0e11022f22a11EXAMPLE",
 "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-
job/123456abcdeb0e11022f22a11EXAMPLE",
 "JobStatus": "SUBMITTED"
}

For more information, see Topic Modeling in the Amazon Comprehend Developer Guide.

• For API details, see StartTopicsDetectionJob in AWS CLI Command Reference.

Start a topic modeling job 383

https://docs.aws.amazon.com/comprehend/latest/dg/topic-modeling.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/comprehend/start-topics-detection-job.html

Amazon Comprehend Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ComprehendTopicModeler:
 """Encapsulates a Comprehend topic modeler."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def start_job(
 self,
 job_name,
 input_bucket,
 input_key,
 input_format,
 output_bucket,
 output_key,
 data_access_role_arn,
):
 """
 Starts a topic modeling job. Input is read from the specified Amazon S3
 input bucket and written to the specified output bucket. Output data is
 stored
 in a tar archive compressed in gzip format. The job runs asynchronously,
 so you
 can call `describe_topics_detection_job` to get job status until it
 returns a status of SUCCEEDED.

 :param job_name: The name of the job.
 :param input_bucket: An Amazon S3 bucket that contains job input.
 :param input_key: The prefix used to find input data in the input

Start a topic modeling job 384

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 bucket. If multiple objects have the same prefix,
 all
 of them are used.
 :param input_format: The format of the input data, either one document
 per
 file or one document per line.
 :param output_bucket: The Amazon S3 bucket where output data is written.
 :param output_key: The prefix prepended to the output data.
 :param data_access_role_arn: The Amazon Resource Name (ARN) of a role
 that
 grants Comprehend permission to read from
 the
 input bucket and write to the output bucket.
 :return: Information about the job, including the job ID.
 """
 try:
 response = self.comprehend_client.start_topics_detection_job(
 JobName=job_name,
 DataAccessRoleArn=data_access_role_arn,
 InputDataConfig={
 "S3Uri": f"s3://{input_bucket}/{input_key}",
 "InputFormat": input_format.value,
 },
 OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"},
)
 logger.info("Started topic modeling job %s.", response["JobId"])
 except ClientError:
 logger.exception("Couldn't start topic modeling job.")
 raise
 else:
 return response

• For API details, see StartTopicsDetectionJob in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Start a topic modeling job 385

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/StartTopicsDetectionJob

Amazon Comprehend Developer Guide

Scenarios for Amazon Comprehend using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon
Comprehend with AWS SDKs. These scenarios show you how to accomplish specific tasks by calling
multiple functions within Amazon Comprehend. Each scenario includes a link to GitHub, where you
can find instructions on how to set up and run the code.

Examples

• Detect document elements with Amazon Comprehend and an AWS SDK

• Run an Amazon Comprehend topic modeling job on sample data using an AWS SDK

• Train a custom Amazon Comprehend classifier and classify documents using an AWS SDK

Detect document elements with Amazon Comprehend and an AWS SDK

The following code example shows how to:

• Detect languages, entities, and key phrases in a document.

• Detect personally identifiable information (PII) in a document.

• Detect the sentiment of a document.

• Detect syntax elements in a document.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a class that wraps Amazon Comprehend actions.

import logging
from pprint import pprint
import boto3
from botocore.exceptions import ClientError

Scenarios 386

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

logger = logging.getLogger(__name__)

class ComprehendDetect:
 """Encapsulates Comprehend detection functions."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def detect_languages(self, text):
 """
 Detects languages used in a document.

 :param text: The document to inspect.
 :return: The list of languages along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_dominant_language(Text=text)
 languages = response["Languages"]
 logger.info("Detected %s languages.", len(languages))
 except ClientError:
 logger.exception("Couldn't detect languages.")
 raise
 else:
 return languages

 def detect_entities(self, text, language_code):
 """
 Detects entities in a document. Entities can be things like people and
 places
 or other common terms.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of entities along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_entities(
 Text=text, LanguageCode=language_code

Detect document elements 387

Amazon Comprehend Developer Guide

)
 entities = response["Entities"]
 logger.info("Detected %s entities.", len(entities))
 except ClientError:
 logger.exception("Couldn't detect entities.")
 raise
 else:
 return entities

 def detect_key_phrases(self, text, language_code):
 """
 Detects key phrases in a document. A key phrase is typically a noun and
 its
 modifiers.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of key phrases along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_key_phrases(
 Text=text, LanguageCode=language_code
)
 phrases = response["KeyPhrases"]
 logger.info("Detected %s phrases.", len(phrases))
 except ClientError:
 logger.exception("Couldn't detect phrases.")
 raise
 else:
 return phrases

 def detect_pii(self, text, language_code):
 """
 Detects personally identifiable information (PII) in a document. PII can
 be
 things like names, account numbers, or addresses.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of PII entities along with their confidence scores.
 """
 try:

Detect document elements 388

Amazon Comprehend Developer Guide

 response = self.comprehend_client.detect_pii_entities(
 Text=text, LanguageCode=language_code
)
 entities = response["Entities"]
 logger.info("Detected %s PII entities.", len(entities))
 except ClientError:
 logger.exception("Couldn't detect PII entities.")
 raise
 else:
 return entities

 def detect_sentiment(self, text, language_code):
 """
 Detects the overall sentiment expressed in a document. Sentiment can
 be positive, negative, neutral, or a mixture.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The sentiments along with their confidence scores.
 """
 try:
 response = self.comprehend_client.detect_sentiment(
 Text=text, LanguageCode=language_code
)
 logger.info("Detected primary sentiment %s.", response["Sentiment"])
 except ClientError:
 logger.exception("Couldn't detect sentiment.")
 raise
 else:
 return response

 def detect_syntax(self, text, language_code):
 """
 Detects syntactical elements of a document. Syntax tokens are portions of
 text along with their use as parts of speech, such as nouns, verbs, and
 interjections.

 :param text: The document to inspect.
 :param language_code: The language of the document.
 :return: The list of syntax tokens along with their confidence scores.
 """
 try:

Detect document elements 389

Amazon Comprehend Developer Guide

 response = self.comprehend_client.detect_syntax(
 Text=text, LanguageCode=language_code
)
 tokens = response["SyntaxTokens"]
 logger.info("Detected %s syntax tokens.", len(tokens))
 except ClientError:
 logger.exception("Couldn't detect syntax.")
 raise
 else:
 return tokens

Call functions on the wrapper class to detect entities, phrases, and more in a document.

def usage_demo():
 print("-" * 88)
 print("Welcome to the Amazon Comprehend detection demo!")
 print("-" * 88)

 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 comp_detect = ComprehendDetect(boto3.client("comprehend"))
 with open("detect_sample.txt") as sample_file:
 sample_text = sample_file.read()

 demo_size = 3

 print("Sample text used for this demo:")
 print("-" * 88)
 print(sample_text)
 print("-" * 88)

 print("Detecting languages.")
 languages = comp_detect.detect_languages(sample_text)
 pprint(languages)
 lang_code = languages[0]["LanguageCode"]

 print("Detecting entities.")
 entities = comp_detect.detect_entities(sample_text, lang_code)
 print(f"The first {demo_size} are:")
 pprint(entities[:demo_size])

Detect document elements 390

Amazon Comprehend Developer Guide

 print("Detecting key phrases.")
 phrases = comp_detect.detect_key_phrases(sample_text, lang_code)
 print(f"The first {demo_size} are:")
 pprint(phrases[:demo_size])

 print("Detecting personally identifiable information (PII).")
 pii_entities = comp_detect.detect_pii(sample_text, lang_code)
 print(f"The first {demo_size} are:")
 pprint(pii_entities[:demo_size])

 print("Detecting sentiment.")
 sentiment = comp_detect.detect_sentiment(sample_text, lang_code)
 print(f"Sentiment: {sentiment['Sentiment']}")
 print("SentimentScore:")
 pprint(sentiment["SentimentScore"])

 print("Detecting syntax elements.")
 syntax_tokens = comp_detect.detect_syntax(sample_text, lang_code)
 print(f"The first {demo_size} are:")
 pprint(syntax_tokens[:demo_size])

 print("Thanks for watching!")
 print("-" * 88)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• DetectDominantLanguage

• DetectEntities

• DetectKeyPhrases

• DetectPiiEntities

• DetectSentiment

• DetectSyntax

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect document elements 391

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectDominantLanguage
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectEntities
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectKeyPhrases
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectPiiEntities
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectSentiment
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DetectSyntax

Amazon Comprehend Developer Guide

Run an Amazon Comprehend topic modeling job on sample data using
an AWS SDK

The following code example shows how to:

• Run an Amazon Comprehend topic modeling job on sample data.

• Get information about the job.

• Extract job output data from Amazon S3.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a wrapper class to call Amazon Comprehend topic modeling actions.

class ComprehendTopicModeler:
 """Encapsulates a Comprehend topic modeler."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client

 def start_job(
 self,
 job_name,
 input_bucket,
 input_key,
 input_format,
 output_bucket,
 output_key,
 data_access_role_arn,

Run a topic modeling job on sample data 392

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

):
 """
 Starts a topic modeling job. Input is read from the specified Amazon S3
 input bucket and written to the specified output bucket. Output data is
 stored
 in a tar archive compressed in gzip format. The job runs asynchronously,
 so you
 can call `describe_topics_detection_job` to get job status until it
 returns a status of SUCCEEDED.

 :param job_name: The name of the job.
 :param input_bucket: An Amazon S3 bucket that contains job input.
 :param input_key: The prefix used to find input data in the input
 bucket. If multiple objects have the same prefix,
 all
 of them are used.
 :param input_format: The format of the input data, either one document
 per
 file or one document per line.
 :param output_bucket: The Amazon S3 bucket where output data is written.
 :param output_key: The prefix prepended to the output data.
 :param data_access_role_arn: The Amazon Resource Name (ARN) of a role
 that
 grants Comprehend permission to read from
 the
 input bucket and write to the output bucket.
 :return: Information about the job, including the job ID.
 """
 try:
 response = self.comprehend_client.start_topics_detection_job(
 JobName=job_name,
 DataAccessRoleArn=data_access_role_arn,
 InputDataConfig={
 "S3Uri": f"s3://{input_bucket}/{input_key}",
 "InputFormat": input_format.value,
 },
 OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"},
)
 logger.info("Started topic modeling job %s.", response["JobId"])
 except ClientError:
 logger.exception("Couldn't start topic modeling job.")
 raise
 else:
 return response

Run a topic modeling job on sample data 393

Amazon Comprehend Developer Guide

 def describe_job(self, job_id):
 """
 Gets metadata about a topic modeling job.

 :param job_id: The ID of the job to look up.
 :return: Metadata about the job.
 """
 try:
 response = self.comprehend_client.describe_topics_detection_job(
 JobId=job_id
)
 job = response["TopicsDetectionJobProperties"]
 logger.info("Got topic detection job %s.", job_id)
 except ClientError:
 logger.exception("Couldn't get topic detection job %s.", job_id)
 raise
 else:
 return job

 def list_jobs(self):
 """
 Lists topic modeling jobs for the current account.

 :return: The list of jobs.
 """
 try:
 response = self.comprehend_client.list_topics_detection_jobs()
 jobs = response["TopicsDetectionJobPropertiesList"]
 logger.info("Got %s topic detection jobs.", len(jobs))
 except ClientError:
 logger.exception("Couldn't get topic detection jobs.")
 raise
 else:
 return jobs

Use the wrapper class to run a topic modeling job and get job data.

Run a topic modeling job on sample data 394

Amazon Comprehend Developer Guide

def usage_demo():
 print("-" * 88)
 print("Welcome to the Amazon Comprehend topic modeling demo!")
 print("-" * 88)

 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 input_prefix = "input/"
 output_prefix = "output/"
 demo_resources = ComprehendDemoResources(
 boto3.resource("s3"), boto3.resource("iam")
)
 topic_modeler = ComprehendTopicModeler(boto3.client("comprehend"))

 print("Setting up storage and security resources needed for the demo.")
 demo_resources.setup("comprehend-topic-modeler-demo")
 print("Copying sample data from public bucket into input bucket.")
 demo_resources.bucket.copy(
 {"Bucket": "public-sample-us-west-2", "Key": "TopicModeling/Sample.txt"},
 f"{input_prefix}sample.txt",
)

 print("Starting topic modeling job on sample data.")
 job_info = topic_modeler.start_job(
 "demo-topic-modeling-job",
 demo_resources.bucket.name,
 input_prefix,
 JobInputFormat.per_line,
 demo_resources.bucket.name,
 output_prefix,
 demo_resources.data_access_role.arn,
)

 print(
 f"Waiting for job {job_info['JobId']} to complete. This typically takes "
 f"20 - 30 minutes."
)
 job_waiter = JobCompleteWaiter(topic_modeler.comprehend_client)
 job_waiter.wait(job_info["JobId"])

 job = topic_modeler.describe_job(job_info["JobId"])
 print(f"Job {job['JobId']} complete:")
 pprint(job)

Run a topic modeling job on sample data 395

Amazon Comprehend Developer Guide

 print(
 f"Getting job output data from the output Amazon S3 bucket: "
 f"{job['OutputDataConfig']['S3Uri']}."
)
 job_output = demo_resources.extract_job_output(job)
 lines = 10
 print(f"First {lines} lines of document topics output:")
 pprint(job_output["doc-topics.csv"]["data"][:lines])
 print(f"First {lines} lines of terms output:")
 pprint(job_output["topic-terms.csv"]["data"][:lines])

 print("Cleaning up resources created for the demo.")
 demo_resources.cleanup()

 print("Thanks for watching!")
 print("-" * 88)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• DescribeTopicsDetectionJob

• ListTopicsDetectionJobs

• StartTopicsDetectionJob

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Train a custom Amazon Comprehend classifier and classify documents
using an AWS SDK

The following code example shows how to:

• Create an Amazon Comprehend multi-label classifier.

• Train the classifier on sample data.

• Run a classification job on a second set of data.

• Extract the job output data from Amazon S3.

Train a custom classifier and classify documents 396

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DescribeTopicsDetectionJob
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/ListTopicsDetectionJobs
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/StartTopicsDetectionJob

Amazon Comprehend Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a wrapper class to call Amazon Comprehend document classifier actions.

class ComprehendClassifier:
 """Encapsulates an Amazon Comprehend custom classifier."""

 def __init__(self, comprehend_client):
 """
 :param comprehend_client: A Boto3 Comprehend client.
 """
 self.comprehend_client = comprehend_client
 self.classifier_arn = None

 def create(
 self,
 name,
 language_code,
 training_bucket,
 training_key,
 data_access_role_arn,
 mode,
):
 """
 Creates a custom classifier. After the classifier is created, it
 immediately
 starts training on the data found in the specified Amazon S3 bucket.
 Training
 can take 30 minutes or longer. The `describe_document_classifier`
 function
 can be used to get training status and returns a status of TRAINED when
 the
 classifier is ready to use.

Train a custom classifier and classify documents 397

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/comprehend#code-examples

Amazon Comprehend Developer Guide

 :param name: The name of the classifier.
 :param language_code: The language the classifier can operate on.
 :param training_bucket: The Amazon S3 bucket that contains the training
 data.
 :param training_key: The prefix used to find training data in the
 training
 bucket. If multiple objects have the same prefix,
 all
 of them are used.
 :param data_access_role_arn: The Amazon Resource Name (ARN) of a role
 that
 grants Comprehend permission to read from
 the
 training bucket.
 :return: The ARN of the newly created classifier.
 """
 try:
 response = self.comprehend_client.create_document_classifier(
 DocumentClassifierName=name,
 LanguageCode=language_code,
 InputDataConfig={"S3Uri": f"s3://{training_bucket}/
{training_key}"},
 DataAccessRoleArn=data_access_role_arn,
 Mode=mode.value,
)
 self.classifier_arn = response["DocumentClassifierArn"]
 logger.info("Started classifier creation. Arn is: %s.",
 self.classifier_arn)
 except ClientError:
 logger.exception("Couldn't create classifier %s.", name)
 raise
 else:
 return self.classifier_arn

 def describe(self, classifier_arn=None):
 """
 Gets metadata about a custom classifier, including its current status.

 :param classifier_arn: The ARN of the classifier to look up.
 :return: Metadata about the classifier.
 """
 if classifier_arn is not None:
 self.classifier_arn = classifier_arn

Train a custom classifier and classify documents 398

Amazon Comprehend Developer Guide

 try:
 response = self.comprehend_client.describe_document_classifier(
 DocumentClassifierArn=self.classifier_arn
)
 classifier = response["DocumentClassifierProperties"]
 logger.info("Got classifier %s.", self.classifier_arn)
 except ClientError:
 logger.exception("Couldn't get classifier %s.", self.classifier_arn)
 raise
 else:
 return classifier

 def list(self):
 """
 Lists custom classifiers for the current account.

 :return: The list of classifiers.
 """
 try:
 response = self.comprehend_client.list_document_classifiers()
 classifiers = response["DocumentClassifierPropertiesList"]
 logger.info("Got %s classifiers.", len(classifiers))
 except ClientError:
 logger.exception(
 "Couldn't get classifiers.",
)
 raise
 else:
 return classifiers

 def delete(self):
 """
 Deletes the classifier.
 """
 try:
 self.comprehend_client.delete_document_classifier(
 DocumentClassifierArn=self.classifier_arn
)
 logger.info("Deleted classifier %s.", self.classifier_arn)
 self.classifier_arn = None
 except ClientError:

Train a custom classifier and classify documents 399

Amazon Comprehend Developer Guide

 logger.exception("Couldn't deleted classifier %s.",
 self.classifier_arn)
 raise

 def start_job(
 self,
 job_name,
 input_bucket,
 input_key,
 input_format,
 output_bucket,
 output_key,
 data_access_role_arn,
):
 """
 Starts a classification job. The classifier must be trained or the job
 will fail. Input is read from the specified Amazon S3 input bucket and
 written to the specified output bucket. Output data is stored in a tar
 archive compressed in gzip format. The job runs asynchronously, so you
 can
 call `describe_document_classification_job` to get job status until it
 returns a status of SUCCEEDED.

 :param job_name: The name of the job.
 :param input_bucket: The Amazon S3 bucket that contains input data.
 :param input_key: The prefix used to find input data in the input
 bucket. If multiple objects have the same prefix, all
 of them are used.
 :param input_format: The format of the input data, either one document
 per
 file or one document per line.
 :param output_bucket: The Amazon S3 bucket where output data is written.
 :param output_key: The prefix prepended to the output data.
 :param data_access_role_arn: The Amazon Resource Name (ARN) of a role
 that
 grants Comprehend permission to read from
 the
 input bucket and write to the output bucket.
 :return: Information about the job, including the job ID.
 """
 try:
 response = self.comprehend_client.start_document_classification_job(
 DocumentClassifierArn=self.classifier_arn,

Train a custom classifier and classify documents 400

Amazon Comprehend Developer Guide

 JobName=job_name,
 InputDataConfig={
 "S3Uri": f"s3://{input_bucket}/{input_key}",
 "InputFormat": input_format.value,
 },
 OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"},
 DataAccessRoleArn=data_access_role_arn,
)
 logger.info(
 "Document classification job %s is %s.", job_name,
 response["JobStatus"]
)
 except ClientError:
 logger.exception("Couldn't start classification job %s.", job_name)
 raise
 else:
 return response

 def describe_job(self, job_id):
 """
 Gets metadata about a classification job.

 :param job_id: The ID of the job to look up.
 :return: Metadata about the job.
 """
 try:
 response =
 self.comprehend_client.describe_document_classification_job(
 JobId=job_id
)
 job = response["DocumentClassificationJobProperties"]
 logger.info("Got classification job %s.", job["JobName"])
 except ClientError:
 logger.exception("Couldn't get classification job %s.", job_id)
 raise
 else:
 return job

 def list_jobs(self):
 """
 Lists the classification jobs for the current account.

Train a custom classifier and classify documents 401

Amazon Comprehend Developer Guide

 :return: The list of jobs.
 """
 try:
 response = self.comprehend_client.list_document_classification_jobs()
 jobs = response["DocumentClassificationJobPropertiesList"]
 logger.info("Got %s document classification jobs.", len(jobs))
 except ClientError:
 logger.exception(
 "Couldn't get document classification jobs.",
)
 raise
 else:
 return jobs

Create a class to help run the scenario.

class ClassifierDemo:
 """
 Encapsulates functions used to run the demonstration.
 """

 def __init__(self, demo_resources):
 """
 :param demo_resources: A ComprehendDemoResources class that manages
 resources
 for the demonstration.
 """
 self.demo_resources = demo_resources
 self.training_prefix = "training/"
 self.input_prefix = "input/"
 self.input_format = JobInputFormat.per_line
 self.output_prefix = "output/"

 def setup(self):
 """Creates AWS resources used by the demo."""
 self.demo_resources.setup("comprehend-classifier-demo")

 def cleanup(self):
 """Deletes AWS resources used by the demo."""
 self.demo_resources.cleanup()

Train a custom classifier and classify documents 402

Amazon Comprehend Developer Guide

 @staticmethod
 def _sanitize_text(text):
 """Removes characters that cause errors for the document parser."""
 return text.replace("\r", " ").replace("\n", " ").replace(",", ";")

 @staticmethod
 def _get_issues(query, issue_count):
 """
 Gets issues from GitHub using the specified query parameters.

 :param query: The query string used to request issues from the GitHub
 API.
 :param issue_count: The number of issues to retrieve.
 :return: The list of issues retrieved from GitHub.
 """
 issues = []
 logger.info("Requesting issues from %s?%s.", GITHUB_SEARCH_URL, query)
 response = requests.get(f"{GITHUB_SEARCH_URL}?
{query}&per_page={issue_count}")
 if response.status_code == 200:
 issue_page = response.json()["items"]
 logger.info("Got %s issues.", len(issue_page))
 issues = [
 {
 "title": ClassifierDemo._sanitize_text(issue["title"]),
 "body": ClassifierDemo._sanitize_text(issue["body"]),
 "labels": {label["name"] for label in issue["labels"]},
 }
 for issue in issue_page
]
 else:
 logger.error(
 "GitHub returned error code %s with message %s.",
 response.status_code,
 response.json(),
)
 logger.info("Found %s issues.", len(issues))
 return issues

 def get_training_issues(self, training_labels):
 """
 Gets issues used for training the custom classifier. Training issues are
 closed issues from the Boto3 repo that have known labels. Comprehend

Train a custom classifier and classify documents 403

Amazon Comprehend Developer Guide

 requires a minimum of ten training issues per label.

 :param training_labels: The issue labels to use for training.
 :return: The set of issues used for training.
 """
 issues = []
 per_label_count = 15
 for label in training_labels:
 issues += self._get_issues(
 f"q=type:issue+repo:boto/boto3+state:closed+label:{label}",
 per_label_count,
)
 for issue in issues:
 issue["labels"] = issue["labels"].intersection(training_labels)
 return issues

 def get_input_issues(self, training_labels):
 """
 Gets input issues from GitHub. For demonstration purposes, input issues
 are open issues from the Boto3 repo with known labels, though in practice
 any issue could be submitted to the classifier for labeling.

 :param training_labels: The set of labels to query for.
 :return: The set of issues used for input.
 """
 issues = []
 per_label_count = 5
 for label in training_labels:
 issues += self._get_issues(
 f"q=type:issue+repo:boto/boto3+state:open+label:{label}",
 per_label_count,
)
 return issues

 def upload_issue_data(self, issues, training=False):
 """
 Uploads issue data to an Amazon S3 bucket, either for training or for
 input.
 The data is first put into the format expected by Comprehend. For
 training,
 the set of pipe-delimited labels is prepended to each document. For
 input, labels are not sent.

 :param issues: The set of issues to upload to Amazon S3.

Train a custom classifier and classify documents 404

Amazon Comprehend Developer Guide

 :param training: Indicates whether the issue data is used for training or
 input.
 """
 try:
 obj_key = (
 self.training_prefix if training else self.input_prefix
) + "issues.txt"
 if training:
 issue_strings = [
 f"{'|'.join(issue['labels'])},{issue['title']}
 {issue['body']}"
 for issue in issues
]
 else:
 issue_strings = [
 f"{issue['title']} {issue['body']}" for issue in issues
]
 issue_bytes = BytesIO("\n".join(issue_strings).encode("utf-8"))
 self.demo_resources.bucket.upload_fileobj(issue_bytes, obj_key)
 logger.info(
 "Uploaded data as %s to bucket %s.",
 obj_key,
 self.demo_resources.bucket.name,
)
 except ClientError:
 logger.exception(
 "Couldn't upload data to bucket %s.",
 self.demo_resources.bucket.name
)
 raise

 def extract_job_output(self, job):
 """Extracts job output from Amazon S3."""
 return self.demo_resources.extract_job_output(job)

 @staticmethod
 def reconcile_job_output(input_issues, output_dict):
 """
 Reconciles job output with the list of input issues. Because the input
 issues
 have known labels, these can be compared with the labels added by the
 classifier to judge the accuracy of the output.

 :param input_issues: The list of issues used as input.

Train a custom classifier and classify documents 405

Amazon Comprehend Developer Guide

 :param output_dict: The dictionary of data that is output by the
 classifier.
 :return: The list of reconciled input and output data.
 """
 reconciled = []
 for archive in output_dict.values():
 for line in archive["data"]:
 in_line = int(line["Line"])
 in_labels = input_issues[in_line]["labels"]
 out_labels = {
 label["Name"]
 for label in line["Labels"]
 if float(label["Score"]) > 0.3
 }
 reconciled.append(
 f"{line['File']}, line {in_line} has labels {in_labels}.\n"
 f"\tClassifier assigned {out_labels}."
)
 logger.info("Reconciled input and output labels.")
 return reconciled

Train a classifier on a set of GitHub issues with known labels, then send a second set of
GitHub issues to the classifier so that they can be labeled.

def usage_demo():
 print("-" * 88)
 print("Welcome to the Amazon Comprehend custom document classifier demo!")
 print("-" * 88)

 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 comp_demo = ClassifierDemo(
 ComprehendDemoResources(boto3.resource("s3"), boto3.resource("iam"))
)
 comp_classifier = ComprehendClassifier(boto3.client("comprehend"))
 classifier_trained_waiter = ClassifierTrainedWaiter(
 comp_classifier.comprehend_client
)
 training_labels = {"bug", "feature-request", "dynamodb", "s3"}

Train a custom classifier and classify documents 406

Amazon Comprehend Developer Guide

 print("Setting up storage and security resources needed for the demo.")
 comp_demo.setup()

 print("Getting training data from GitHub and uploading it to Amazon S3.")
 training_issues = comp_demo.get_training_issues(training_labels)
 comp_demo.upload_issue_data(training_issues, True)

 classifier_name = "doc-example-classifier"
 print(f"Creating document classifier {classifier_name}.")
 comp_classifier.create(
 classifier_name,
 "en",
 comp_demo.demo_resources.bucket.name,
 comp_demo.training_prefix,
 comp_demo.demo_resources.data_access_role.arn,
 ClassifierMode.multi_label,
)
 print(
 f"Waiting until {classifier_name} is trained. This typically takes "
 f"30–40 minutes."
)
 classifier_trained_waiter.wait(comp_classifier.classifier_arn)

 print(f"Classifier {classifier_name} is trained:")
 pprint(comp_classifier.describe())

 print("Getting input data from GitHub and uploading it to Amazon S3.")
 input_issues = comp_demo.get_input_issues(training_labels)
 comp_demo.upload_issue_data(input_issues)

 print("Starting classification job on input data.")
 job_info = comp_classifier.start_job(
 "issue_classification_job",
 comp_demo.demo_resources.bucket.name,
 comp_demo.input_prefix,
 comp_demo.input_format,
 comp_demo.demo_resources.bucket.name,
 comp_demo.output_prefix,
 comp_demo.demo_resources.data_access_role.arn,
)
 print(f"Waiting for job {job_info['JobId']} to complete.")
 job_waiter = JobCompleteWaiter(comp_classifier.comprehend_client)
 job_waiter.wait(job_info["JobId"])

Train a custom classifier and classify documents 407

Amazon Comprehend Developer Guide

 job = comp_classifier.describe_job(job_info["JobId"])
 print(f"Job {job['JobId']} complete:")
 pprint(job)

 print(
 f"Getting job output data from Amazon S3: "
 f"{job['OutputDataConfig']['S3Uri']}."
)
 job_output = comp_demo.extract_job_output(job)
 print("Job output:")
 pprint(job_output)

 print("Reconciling job output with labels from GitHub:")
 reconciled_output = comp_demo.reconcile_job_output(input_issues, job_output)
 print(*reconciled_output, sep="\n")

 answer = input(f"Do you want to delete the classifier {classifier_name} (y/
n)? ")
 if answer.lower() == "y":
 print(f"Deleting {classifier_name}.")
 comp_classifier.delete()

 print("Cleaning up resources created for the demo.")
 comp_demo.cleanup()

 print("Thanks for watching!")
 print("-" * 88)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateDocumentClassifier

• DeleteDocumentClassifier

• DescribeDocumentClassificationJob

• DescribeDocumentClassifier

• ListDocumentClassificationJobs

• ListDocumentClassifiers

• StartDocumentClassificationJob

Train a custom classifier and classify documents 408

https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/CreateDocumentClassifier
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DeleteDocumentClassifier
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DescribeDocumentClassificationJob
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/DescribeDocumentClassifier
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/ListDocumentClassificationJobs
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/ListDocumentClassifiers
https://docs.aws.amazon.com/goto/boto3/comprehend-2017-11-27/StartDocumentClassificationJob

Amazon Comprehend Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Cross-service examples for Amazon Comprehend using AWS
SDKs

The following sample applications use AWS SDKs to combine Amazon Comprehend with other
AWS services. Each example includes a link to GitHub, where you can find instructions on how to
set up and run the application.

Examples

• Build an Amazon Transcribe streaming app

• Create an Amazon Lex chatbot to engage your website visitors

• Create a web application that sends and retrieves messages by using Amazon SQS

• Create an application that analyzes customer feedback and synthesizes audio

• Detect entities in text extracted from an image using an AWS SDK

Build an Amazon Transcribe streaming app

The following code example shows how to build an app that records, transcribes, and translates
live audio in real-time, and emails the results.

JavaScript

SDK for JavaScript (v3)

Shows how to use Amazon Transcribe to build an app that records, transcribes, and
translates live audio in real-time, and emails the results using Amazon Simple Email Service
(Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SES

Cross-service examples 409

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/transcribe-streaming-app

Amazon Comprehend Developer Guide

• Amazon Transcribe

• Amazon Translate

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Create an Amazon Lex chatbot to engage your website visitors

The following code examples show how to create a chatbot to engage your website visitors.

Java

SDK for Java 2.x

Shows how to use the Amazon Lex API to create a Chatbot within a web application to
engage your web site visitors.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon Lex

• Amazon Translate

JavaScript

SDK for JavaScript (v3)

Shows how to use the Amazon Lex API to create a Chatbot within a web application to
engage your web site visitors.

For complete source code and instructions on how to set up and run, see the full example
Building an Amazon Lex chatbot in the AWS SDK for JavaScript developer guide.

Services used in this example

• Amazon Comprehend

Building an Amazon Lex chatbot 410

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lex_chatbot
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/lex-bot-example.html

Amazon Comprehend Developer Guide

• Amazon Lex

• Amazon Translate

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Create a web application that sends and retrieves messages by using
Amazon SQS

The following code examples show how to create a messaging application by using Amazon SQS.

Java

SDK for Java 2.x

Shows how to use the Amazon SQS API to develop a Spring REST API that sends and
retrieves messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SQS

Kotlin

SDK for Kotlin

Shows how to use the Amazon SQS API to develop a Spring REST API that sends and
retrieves messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

Create a messaging application 411

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_message_application
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_message_application

Amazon Comprehend Developer Guide

• Amazon SQS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Create an application that analyzes customer feedback and synthesizes
audio

The following code examples show how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

.NET

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Create an application to analyze customer feedback 412

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer

Amazon Comprehend Developer Guide

Java

SDK for Java 2.x

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

JavaScript

SDK for JavaScript (v3)

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

Create an application to analyze customer feedback 413

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_fsa_app

Amazon Comprehend Developer Guide

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub. The following excerpts show how the AWS SDK for
JavaScript is used inside of Lambda functions.

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,

Create an application to analyze customer feedback 414

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

Amazon Comprehend Developer Guide

 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

Create an application to analyze customer feedback 415

Amazon Comprehend Developer Guide

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**

Create an application to analyze customer feedback 416

Amazon Comprehend Developer Guide

 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Ruby

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

Create an application to analyze customer feedback 417

Amazon Comprehend Developer Guide

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect entities in text extracted from an image using an AWS SDK

The following code example shows how to use Amazon Comprehend to detect entities in text
extracted by Amazon Textract from an image that is stored in Amazon S3.

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) in a Jupyter notebook to detect entities
in text that is extracted from an image. This example uses Amazon Textract to extract
text from an image stored in Amazon Simple Storage Service (Amazon S3) and Amazon
Comprehend to detect entities in the extracted text.

This example is a Jupyter notebook and must be run in an environment that can host
notebooks. For instructions on how to run the example using Amazon SageMaker, see the
directions in TextractAndComprehendNotebook.ipynb.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

Detect entities in text extracted from an image 418

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_comprehend_notebook/TextractAndComprehendNotebook.ipynb
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_comprehend_notebook#readme

Amazon Comprehend Developer Guide

• Amazon S3

• Amazon Textract

For a complete list of AWS SDK developer guides and code examples, see Using Amazon
Comprehend with an AWS SDK. This topic also includes information about getting started and
details about previous SDK versions.

Detect entities in text extracted from an image 419

Amazon Comprehend Developer Guide

Security in Amazon Comprehend

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS Compliance Programs. To learn about the compliance programs that apply to Amazon
Comprehend, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Comprehend. The following topics show you how to configure Amazon Comprehend
to meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Amazon Comprehend resources.

Topics

• Data protection in Amazon Comprehend

• Identity and Access Management for Amazon Comprehend

• Logging Amazon Comprehend API calls with AWS CloudTrail

• Compliance validation for Amazon Comprehend

• Resilience in Amazon Comprehend

• Infrastructure security in Amazon Comprehend

Data protection in Amazon Comprehend

The AWS shared responsibility model applies to data protection in Amazon Comprehend. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all

Data protection 420

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Comprehend Developer Guide

of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon Comprehend or other AWS services using the console, API, AWS
CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may
be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Topics

• KMS encryption in Amazon Comprehend

• Cross-service confused deputy prevention

• Protect jobs by using an Amazon Virtual Private Cloud

• Amazon Comprehend and interface VPC endpoints (AWS PrivateLink)

Data protection 421

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Comprehend Developer Guide

KMS encryption in Amazon Comprehend

Amazon Comprehend works with AWS Key Management Service (AWS KMS) to provide enhanced
encryption for your data. Amazon S3 already enables you to encrypt your input documents when
creating a text analysis, topic modeling, or custom Amazon Comprehend job. Integration with
AWS KMS enables you to encrypt the data in the storage volume for Start* and Create* jobs, and it
encrypts the output results of Start* jobs using your own KMS key.

For the AWS Management Console, Amazon Comprehend encrypts custom models with its own
KMS key. For the AWS CLI, Amazon Comprehend can encrypt custom models using either its own
KMS key or a provided customer managed key (CMK).

KMS encryption using the AWS Management Console

Two encryption options are available when using the console:

• Volume encryption

• Output result encryption

To enable volume encryption

1. Under Job Settings, choose the Job encryption option.

2. Choose whether the KMS customer-managed key (CMK) is from the account you're currently
using or from a different account. If you want to use a key from the current account, choose
the key alias from KMS key ID. If you're using a key from a different account, you must enter
the key's ARN.

To enable output result encryption

1. Under Output Settings, choose the Encryption option.

KMS encryption in Amazon Comprehend 422

Amazon Comprehend Developer Guide

2. Choose whether the customer-managed key (CMK) is from the account you're currently using
or from a different account. If you want to use a key from the current account, choose the key
ID from KMS key ID. If you're using a key from a different account, you must enter the key's
ARN.

If you have previously setup encryption using SSE-KMS on the your S3 input documents, this
can provide you with additional security. However, if you do this, the IAM role used must have
kms:Decrypt permission for the KMS key with which the input documents are encrypted. For
more information, see Permissions required to use KMS encryption.

KMS encryption with API operations

All Amazon Comprehend Start* and Create* API operations support KMS encrypted input
documents. Describe* and List* API operations return the KmsKeyId in OutputDataConfig
if the original job had KmsKeyId provided as an input. If it was not provided as input, it isn't
returned.

This can be seen in the following AWS CLI example using the StartEntitiesDetectionJob operation:

aws comprehend start-entities-detection-job \
 --region region \
 --data-access-role-arn "data access role arn" \
 --entity-recognizer-arn "entity recognizer arn" \
 --input-data-config "S3Uri=s3://Bucket Name/Bucket Path" \
 --job-name job name \
 --language-code en \
 --output-data-config "KmsKeyId=Output S3 KMS key ID" "S3Uri=s3://Bucket
 Name/Bucket Path/" \
 --volumekmskeyid "Volume KMS key ID"

KMS encryption in Amazon Comprehend 423

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html

Amazon Comprehend Developer Guide

Note

This example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash
(\) Unix continuation character at the end of each line with a caret (^).

Customer Managed Key (CMK) encryption with API operations

Amazon Comprehend custom model API operations, CreateEntityRecognizer,
CreateDocumentClassifier, and CreateEndpoint, support encryption using customer
managed keys via the AWS CLI.

You need an IAM policy to allow a principal to use or manage customer managed keys. These keys
are specified in the Resource element of the policy statement. As best practice, limit customer
managed keys to only those that the principals must use in your policy statement.

The following AWS CLI example creates a custom entity recognizer with model encryption using
the CreateEntityRecognizer operation:

aws comprehend create-entity-recognizer \
 --recognizer-name name \
 --data-access-role-arn data access role arn \
 --language-code en \
 --model-kms-key-id Model KMS Key ID \
 --input-data-config file:///path/input-data-config.json

Note

This example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash
(\) Unix continuation character at the end of each line with a caret (^).

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur

Cross-service confused deputy prevention 424

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html

Amazon Comprehend Developer Guide

when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that Amazon Comprehend gives another service
to the resource. If you use both global condition context keys, the aws:SourceAccount value and
the account in the aws:SourceArn value must use the same account ID when used in the same
policy statement.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:servicename::123456789012:*.

Using source account

The following example shows how you can use the aws:SourceAccount global condition context
key in Amazon Comprehend.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount":"111122223333"
 }
 }
 }
}

Cross-service confused deputy prevention 425

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Comprehend Developer Guide

Trust policy for endpoints of encrypted models

You need to create a trust policy to create or update an endpoint for an encrypted model. Set
the aws:SourceAccount value to your account ID. If you use the ArnEquals condition, set the
aws:SourceArn value to the ARN of the endpoint.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-
classifier-endpoint/endpoint-name"
 }
 }
 }
]
}

Create custom model

You need to create a trust policy to create a custom model. Set the aws:SourceAccount value to
your account ID. If you use the ArnEquals condition, set the aws:SourceArn value to the ARN of
the custom model version.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {

Cross-service confused deputy prevention 426

Amazon Comprehend Developer Guide

 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:comprehend:us-west-2:111122223333:
 document-classifier/smallest-classifier-test/
version/version-name"
 }
 }
 }
]
}

Protect jobs by using an Amazon Virtual Private Cloud

Amazon Comprehend uses a variety of security measures to ensure the safety of your data with our
job containers where it's stored while being used by Amazon Comprehend. However, job containers
access AWS resources—such as the Amazon S3 buckets where you store data and model artifacts—
over the internet.

To control access to your data, we recommend that you create a virtual private cloud (VPC) and
configure it so that the data and containers aren't accessible over the internet. For information
about creating and configuring a VPC, see Getting Started With Amazon VPC in the Amazon VPC
User Guide. Using a VPC helps to protect your data because you can configure your VPC so that it
is not connected to the internet. Using a VPC also allows you to monitor all network traffic in and
out of our job containers by using VPC flow logs. For more information, see VPC Flow Logs in the
Amazon VPC User Guide.

You specify your VPC configuration when you create a job, by specifying the subnets and security
groups. When you specify the subnets and security groups, Amazon Comprehend creates elastic
network interfaces (ENIs) that are associated with your security groups in one of the subnets. ENIs
allow our job containers to connect to resources in your VPC. For information about ENIs, see
Elastic Network Interfaces in the Amazon VPC User Guide.

Using a Virtual Private Cloud (VPC) 427

https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Amazon Comprehend Developer Guide

Note

For jobs, you can only configure subnets with a default tenancy VPC in which your instance
runs on shared hardware. For more information on the tenancy attribute for VPCs, see
Dedicated Instances in the Amazon EC2 User Guide for Linux Instances.

Configure a job for Amazon VPC access

To specify subnets and security groups in your VPC, use the VpcConfig request parameter of
the applicable API, or provide this information when you create a job in the Amazon Comprehend
console. Amazon Comprehend uses this information to create ENIs and attach them to our job
containers. The ENIs provide our job containers with a network connection within your VPC that is
not connected to the internet.

The following APIs contain the VpcConfig request parameter:

• Create* APIs: CreateDocumentClassifier, CreateEntityRecognizer

• Start* APIs: StartDocumentClassificationJob,
StartDominantLanguageDetectionJob, StartEntitiesDetectionJob,
StartKeyPhrasesDetectionJob, StartSentimentDetectionJob,
StartTargetedSentimentDetectionJob, StartTopicsDetectionJob

The following is an example of the VpcConfig parameter that you include in your API call:

"VpcConfig": {
 "SecurityGroupIds": [
 " sg-0123456789abcdef0"
],
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
]
 }

To configure a VPC from the Amazon Comprehend console, choose the configuration details from
the optional VPC Settings section when creating the job.

Using a Virtual Private Cloud (VPC) 428

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTopicsDetectionJob.html

Amazon Comprehend Developer Guide

Configure your VPC for Amazon Comprehend jobs

When configuring the VPC for your Amazon Comprehend jobs, use the following guidelines. For
information about setting up a VPC, see Working with VPCs and Subnets in the Amazon VPC User
Guide.

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each instance in a job. For more
information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that job containers don't have access to the internet, they can't
connect to the Amazon S3 buckets that contain your data unless you create a VPC endpoint that
allows access. By creating a VPC endpoint, you allow the job containers to access your data during
training and analysis jobs.

When you create the VPC endpoint, configure these values:

• Select the service category as AWS Services

• Specify the service as com.amazonaws.region.s3

• Select Gateway as the VPC Endpoint type

Using a Virtual Private Cloud (VPC) 429

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4

Amazon Comprehend Developer Guide

If you're using AWS CloudFormation to create the VPC endpoint, follow the AWS CloudFormation
VPCEndpoint documentation. The following example shows the VPCEndpoint configuration in a
AWS CloudFormation template.

 VpcEndpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Action:
 - s3:GetObject
 - s3:PutObject
 - s3:ListBucket
 - s3:GetBucketLocation
 - s3:DeleteObject
 - s3:ListMultipartUploadParts
 - s3:AbortMultipartUpload
 Effect: Allow
 Resource:
 - "*"
 Principal: "*"
 RouteTableIds:
 - Ref: RouteTable
 ServiceName:
 Fn::Join:
 - ''
 - - com.amazonaws.
 - Ref: AWS::Region
 - ".s3"
 VpcId:
 Ref: VPC

We recommend that you also create a custom policy that allows only requests from your VPC to
access to your S3 buckets. For more information, see Endpoints for Amazon S3 in the Amazon VPC
User Guide.

The following policy allows access to S3 buckets. Edit this policy to allow access only the resources
that your job needs.

Using a Virtual Private Cloud (VPC) 430

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html

Amazon Comprehend Developer Guide

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:DeleteObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": "*"
 }
]
}

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example, http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default
DNS settings, ensure that the URLs that you use to specify the locations of the data in your jobs
resolve by configuring the endpoint route tables. For information about VPC endpoint route tables,
see Routing for Gateway Endpoints in the Amazon VPC User Guide.

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon
Linux 2 repositories on our jobs container. If you don't want users to install packages from that
repository, create a custom endpoint policy that explicitly denies access to the Amazon Linux and
Amazon Linux 2 repositories. Comprehend itself doesn't need any such packages, so there won't
be any functionality impact. The following is an example of a policy that denies access to these
repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],

Using a Virtual Private Cloud (VPC) 431

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-gateway.html#vpc-endpoints-routing

Amazon Comprehend Developer Guide

 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Permissions for the DataAccessRole

When you use a VPC with your analysis job, the DataAccessRole used for the Create* and
Start* operations must also have permissions to the VPC from which the input documents and
the output bucket are accessed.

The following policy provides the access needed to the DataAccessRole used for the Create*
and Start* operations.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",

Using a Virtual Private Cloud (VPC) 432

Amazon Comprehend Developer Guide

 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 }
]
}

Configure the VPC security group

With distributed jobs, you must allow communication between the different job containers in the
same job. To do that, configure a rule for your security group that allows inbound connections
between members of the same security group. For information, see Security Group Rules in the
Amazon VPC User Guide.

Connect to resources outside your VPC

If you configure your VPC so that it doesn't have internet access, jobs that use that VPC do not
have access to resources outside your VPC. If your jobs need access to resources outside your VPC,
provide access with one of the following options:

• If your job needs access to an AWS service that supports interface VPC endpoints, create an
endpoint to connect to that service. For a list of services that support interface endpoints, see
VPC Endpoints in the Amazon VPC User Guide. For information about creating an interface VPC
endpoint, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

• If your job needs access to an AWS service that doesn't support interface VPC endpoints or to
a resource outside of AWS, create a NAT gateway and configure your security groups to allow
outbound connections. For information about setting up a NAT gateway for your VPC, see
Scenario 2: VPC with Public and Private Subnets (NAT) in the Amazon VPC User Guide.

Amazon Comprehend and interface VPC endpoints (AWS PrivateLink)

You can establish a private connection between your VPC and Amazon Comprehend by creating
an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology
that enables you to privately access Amazon Comprehend APIs without an internet gateway, NAT
device, VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need

VPC endpoints (AWS PrivateLink) 433

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://aws.amazon.com/privatelink

Amazon Comprehend Developer Guide

public IP addresses to communicate with Amazon Comprehend APIs. Traffic between your VPC and
Amazon Comprehend does not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic network interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Considerations for Amazon Comprehend VPC endpoints

Before you set up an interface VPC endpoint for Amazon Comprehend, ensure that you review
Interface endpoint properties and limitations in the Amazon VPC User Guide.

Amazon Comprehend endpoints are not available in all availability zones in a region. When you
create the endpoint, use the following command to list the availability zones.

aws ec2 describe-vpc-endpoint-services \
 --service-names com.amazonaws.us-west-2.comprehend

Amazon Comprehend supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for Amazon Comprehend

You can create a VPC endpoint for the Amazon Comprehend service using either the Amazon VPC
console or the AWS Command Line Interface (AWS CLI). For more information, see Creating an
interface endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for Amazon Comprehend using the following service name:

• com.amazonaws.region.comprehend

If you enable private DNS for the endpoint, you can make API requests to Amazon
Comprehend using its default DNS name for the Region, for example, comprehend.us-
east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for Amazon Comprehend

You can attach an endpoint policy to your VPC endpoint that controls access to Amazon
Comprehend. The policy specifies the following information:

VPC endpoints (AWS PrivateLink) 434

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

Amazon Comprehend Developer Guide

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Amazon Comprehend actions

The following is an example of an endpoint policy for Amazon Comprehend. When attached to an
endpoint, this policy grants access to the Amazon Comprehend DetectEntities action for all
principals on all resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "comprehend:DetectEntities"
],
 "Resource":"*"
 }
]
}

Identity and Access Management for Amazon Comprehend

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon Comprehend resources. IAM is an AWS service
that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

Identity and Access Management 435

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Comprehend Developer Guide

• How Amazon Comprehend works with IAM

• Identity-based policy examples for Amazon Comprehend

• AWS managed policies for Amazon Comprehend

• Troubleshooting Amazon Comprehend identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon Comprehend.

Service user – If you use the Amazon Comprehend service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon
Comprehend features to do your work, you might need additional permissions. Understanding
how access is managed can help you request the right permissions from your administrator. If
you cannot access a feature in Amazon Comprehend, see Troubleshooting Amazon Comprehend
identity and access.

Service administrator – If you're in charge of Amazon Comprehend resources at your company,
you probably have full access to Amazon Comprehend. It's your job to determine which Amazon
Comprehend features and resources your service users should access. You must then submit
requests to your IAM administrator to change the permissions of your service users. Review the
information on this page to understand the basic concepts of IAM. To learn more about how your
company can use IAM with Amazon Comprehend, see How Amazon Comprehend works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Amazon Comprehend. To view example Amazon
Comprehend identity-based policies that you can use in IAM, see Identity-based policy examples
for Amazon Comprehend.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on

Audience 436

Amazon Comprehend Developer Guide

authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

Authenticating with identities 437

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Amazon Comprehend Developer Guide

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider

Authenticating with identities 438

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

Amazon Comprehend Developer Guide

in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role

Authenticating with identities 439

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Comprehend Developer Guide

to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone

Managing access using policies 440

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Comprehend Developer Guide

policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Managing access using policies 441

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Comprehend Developer Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Comprehend works with IAM

Before you use IAM to manage access to Amazon Comprehend, learn what IAM features are
available to use with Amazon Comprehend.

IAM features you can use with Amazon Comprehend

IAM feature Amazon Comprehend support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

How Amazon Comprehend works with IAM 442

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Comprehend Developer Guide

IAM feature Amazon Comprehend support

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Amazon Comprehend and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Amazon Comprehend

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon Comprehend

To view examples of Amazon Comprehend identity-based policies, see Identity-based policy
examples for Amazon Comprehend.

How Amazon Comprehend works with IAM 443

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Comprehend Developer Guide

Resource-based policies within Amazon Comprehend

Supports resource-based policies Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

The Amazon Comprehend service supports only one type of resource-based policy (a custom model
policy), which is attached to a custom model. This policy defines other accounts that can use the
custom model.

To learn how to attach a resource-based policy to a custom model, see Resource-based policies for
custom models.

Policy actions for Amazon Comprehend

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.

How Amazon Comprehend works with IAM 444

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Comprehend Developer Guide

There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon Comprehend actions, see Actions defined by Amazon Comprehend in the
Service Authorization Reference.

Policy actions in Amazon Comprehend use the following prefix before the action:

comprehend

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "comprehend:DetectSentiment",
 "comprehend:ClassifyDocument"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "comprehend:Describe*"

Don't use wildcards to specify all of the actions for a service. Use the best practice of granting least
privilege when you specify the permissions in a policy.

To view examples of Amazon Comprehend identity-based policies, see Identity-based policy
examples for Amazon Comprehend.

Policy resources for Amazon Comprehend

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon Comprehend works with IAM 445

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html#amazoncomprehend-actions-as-permissions

Amazon Comprehend Developer Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon Comprehend resource types and their ARNs, see Resources defined by
Amazon Comprehend in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Actions defined by Amazon Comprehend.

Policy condition keys for Amazon Comprehend

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

How Amazon Comprehend works with IAM 446

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html#amazoncomprehend-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html#amazoncomprehend-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html#amazoncomprehend-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Comprehend Developer Guide

To see a list of Amazon Comprehend condition keys, see Condition keys for Amazon Comprehend
in the Service Authorization Reference. To learn with which actions and resources you can use a
condition key, see Actions defined by Amazon Comprehend.

To view examples of Amazon Comprehend identity-based policies, see Identity-based policy
examples for Amazon Comprehend.

ACLs in Amazon Comprehend

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Amazon Comprehend

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

How Amazon Comprehend works with IAM 447

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html#amazoncomprehend-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html#amazoncomprehend-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Comprehend Developer Guide

For more information about tagging Amazon Comprehend resources, see Tagging your resources.

Using temporary credentials with Amazon Comprehend

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Amazon Comprehend

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

How Amazon Comprehend works with IAM 448

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Comprehend Developer Guide

Service roles for Amazon Comprehend

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amazon Comprehend
functionality. Edit service roles only when Amazon Comprehend provides guidance to do
so.

To use the Amazon Comprehend asynchronous operations, you must grant Amazon Comprehend
access to the Amazon S3 bucket that contains your document collection. You do this by creating
a data access role in your account with a trust policy to trust the Amazon Comprehend service
principal.

For a policy example, see Role-based permissions required for asynchronous operations

Service-linked roles for Amazon Comprehend

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How Amazon Comprehend works with IAM 449

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Comprehend Developer Guide

Identity-based policy examples for Amazon Comprehend

By default, users and roles don't have permission to create or modify Amazon Comprehend
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon Comprehend, including the format
of the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
Comprehend in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon Comprehend console

• Allow users to view their own permissions

• Permissions required to perform document analysis actions

• Permissions required to use KMS encryption

• AWS managed (predefined) policies for Amazon Comprehend

• Role-based permissions required for asynchronous operations

• Permissions to allow all Amazon Comprehend actions

• Permissions to allow topic modeling actions

• Permissions required for a custom asynchronous analysis job

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon
Comprehend resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We

Identity-based policy examples 450

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html

Amazon Comprehend Developer Guide

recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon Comprehend console

To access the Amazon Comprehend console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon Comprehend resources in
your AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

Identity-based policy examples 451

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Comprehend Developer Guide

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

For minimum Amazon Comprehend console permissions, you can attach the
ComprehendReadOnly AWS managed policy to the entities. For more information, see Adding
permissions to a user in the IAM User Guide.

To use the Amazon Comprehend console, you also need permissions for the actions shown in the
following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:ListRoles",
 "iam:GetRole",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }

The Amazon Comprehend console needs these additional permissions for the following reasons:

• iam permissions to list the available IAM roles for your account.

• s3 permissions to access the Amazon S3 buckets and objects that contain the data for topic
modeling.

When you create an asynchronous batch job or a topic modeling job using the console, you have
the option to have the console create an IAM role for your job. To create an IAM role, users must be
granted the following additional permissions to create IAM roles and policies, and to attach policies
to roles:

{

Identity-based policy examples 452

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Comprehend Developer Guide

 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Action":
 [
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action":
 [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/*Comprehend*"
 }
]
 }

The Amazon Comprehend console needs these additional permissions for the following reasons:

• iam permissions to create roles and policies and to attach roles and policies. The iam:PassRole
action enables the console to pass the role to Amazon Comprehend.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [

Identity-based policy examples 453

Amazon Comprehend Developer Guide

 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Permissions required to perform document analysis actions

The following example policy grants permissions to use the Amazon Comprehend document
analysis actions:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowDetectActions",
 "Effect": "Allow",
 "Action": [
 "comprehend:DetectEntities",
 "comprehend:DetectKeyPhrases",
 "comprehend:DetectDominantLanguage",
 "comprehend:DetectSentiment",
 "comprehend:DetectTargetedSentiment",
 "comprehend:DetectSyntax",

Identity-based policy examples 454

Amazon Comprehend Developer Guide

 "textract:DetectDocumentText",
 "textract:AnalyzeDocument"
],
 "Resource": "*"
 }
]
}

The policy has one statement that grants permission to use the DetectEntities,
DetectKeyPhrases, DetectDominantLanguage, DetectTargetedSentiment,
DetectSentiment, and DetectSyntax actions. The policy statement also grants permissions to
use two Amazon Textract API methods. Amazon Comprehend calls these methods to extract text
from image files and scanned PDF documents. You can remove these permissions for users that
never run custom inference for these types of input files.

A user with this policy would not be able to perform batch actions or asynchronous actions in your
account.

The policy doesn't specify the Principal element because you don't specify the principal who
gets the permission in an identity-based policy. When you attach a policy to a user, the user is the
implicit principal. When you attach a permissions policy to an IAM role, the principal identified in
the role's trust policy gets the permissions.

For a table showing all the Amazon Comprehend API actions and the resources that they apply to,
see Actions, resources, and condition keys for Amazon Comprehend in the Service Authorization
Reference.

Permissions required to use KMS encryption

To fully use Amazon Key Management Service (KMS) for data and job encryption in an
asynchronous job, you need to grant permissions for the actions shown in the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kms:CreateGrant"
],

Identity-based policy examples 455

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncomprehend.html

Amazon Comprehend Developer Guide

 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDatakey"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "s3.region.amazonaws.com"
]
 }
 }
 }
]
}

When you create an asychronous job with Amazon Comprehend you use input data stored on
Amazon S3. With S3, you have the option to encrypt your stored data, which is encrypted by S3,
not by Amazon Comprehend. We can decrypt and read that encrypted input data if you provide
kms:Decrypt permission for the key with which the original input data was encrypted to the data
access role used by the Amazon Comprehend job.

You also have the option of using KMS customer-managed keys (CMK) to encrypt the output results
on S3, as well as the storage volume used during job processing. When you do this, you can use the
same KMS key for both types of encryption, but this is not necessary. Separate fields are available
when creating the job to specify the keys for output encryption and volume encryption and you
can even use a KMS key from a different account.

When using KMS encryption, kms:CreateGrant permission is required for volume encryption and
kms:GenerateDataKey permission is needed for output data encryption. For reading encrypted
input (as when the input data is already encrypted by Amazon S3), kms:Decrypt permission is
required. The IAM role needs to give these permissions as needed. However, if the key is from a
different account than is currently being used, the KMS key policy for that kms key must also give
these permissions to the data access role for the job.

Identity-based policy examples 456

Amazon Comprehend Developer Guide

AWS managed (predefined) policies for Amazon Comprehend

AWS addresses many common use cases by providing standalone IAM policies that are created
and administered by AWS. These AWS managed policies grant necessary permissions for common
use cases so that you can avoid having to investigate what permissions are needed. For more
information, see AWS managed policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Comprehend:

• ComprehendFullAccess – Grants full access to Amazon Comprehend resources including running
topic modeling jobs. Includes permission to list and get IAM roles.

• ComprehendReadOnly – Grants permission to run all Amazon Comprehend actions
except StartDominantLanguageDetectionJob, StartEntitiesDetectionJob,
StartKeyPhrasesDetectionJob, StartSentimentDetectionJob,
StartTargetedSentimentDetectionJob, and StartTopicsDetectionJob.

You need to apply the following additional policy to any user that will use Amazon Comprehend:

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Action":
 [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/*Comprehend*"
 }
]
 }

You can review the managed permissions policies by signing in to the IAM console and searching
for specific policies there.

These policies work when you are using AWS SDKs or the AWS CLI.

Identity-based policy examples 457

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Comprehend Developer Guide

You can also create your own custom IAM policies to allow permissions for Amazon Comprehend
actions and resources. You can attach these custom policies to the users, groups or roles that
require those permissions.

Role-based permissions required for asynchronous operations

To use the Amazon Comprehend asynchronous operations, you must grant Amazon Comprehend
access to the Amazon S3 bucket that contains your document collection. You do this by creating
a data access role in your account with a trust policy to trust the Amazon Comprehend service
principal. For more information about creating a role, see Creating a role to delegate permissions
to an AWS service in the AWS Identity and Access Management User Guide.

The following shows an example trust policy for the role that you create. To help with confused
deputy prevention, you restrict the scope of the permission by using one or more global condition
context keys. Set the aws:SourceAccount value to your account ID. If you use the ArnEquals
condition, set the aws:SourceArn value to the ARN of the job. Use a wildcard for the job number
in the ARN, because Amazon Comprehend generates this number as part of job creation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-
detection-job/*"
 }
 }
 }
]
 }

Identity-based policy examples 458

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Comprehend Developer Guide

After you create the role, create an access policy for that role. This should grant the Amazon S3
GetObject and ListBucket permissions to the Amazon S3 bucket that contains your input data,
and the Amazon S3 PutObject permission to your Amazon S3 output data bucket.

Permissions to allow all Amazon Comprehend actions

After you sign up for AWS, you create an administrator user to manage your account, including
creating users and managing their permissions.

You might choose to create a user who has permissions for all Amazon Comprehend actions (think
of this user as a service-specific administrator) for working with Amazon Comprehend. You can
attach the following permissions policy to this user.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Sid": "AllowAllComprehendActions",
 "Effect": "Allow",
 "Action":
 [
 "comprehend:*",
 "iam:ListRoles",
 "iam:GetRole",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy",
 "kms:CreateGrant",
 "kms:Decrypt",
 "kms:GenerateDatakey"
],
 "Resource": "*"
 },
 {
 "Action":
 [
 "iam:PassRole"
],
 "Effect": "Allow",

Identity-based policy examples 459

Amazon Comprehend Developer Guide

 "Resource": "arn:aws:iam::*:role/*Comprehend*"
 }
]
}

These permissions can be modified with regard to encryption in the following ways:

• To enable Amazon Comprehend to analyze documents stored in an encrypted S3 bucket, the IAM
role must have the kms:Decrypt permission.

• To enable Amazon Comprehend to encrypt documents stored on a storage volume attached
to the compute instance that processes the analysis job, the IAM role must have the
kms:CreateGrant permission.

• To enable Amazon Comprehend to encrypt the output results in their S3 bucket, the IAM role
must have the kms:GenerateDataKey permission.

Permissions to allow topic modeling actions

The following permissions policy grants user permissions to perform the Amazon Comprehend
topic modeling operations.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowTopicModelingActions",
 "Effect": "Allow",
 "Action": [
 "comprehend:DescribeTopicsDetectionJob",
 "comprehend:ListTopicsDetectionJobs",
 "comprehend:StartTopicsDetectionJob",
],
 "Resource": "*"
]
 }
]
 }

Identity-based policy examples 460

Amazon Comprehend Developer Guide

Permissions required for a custom asynchronous analysis job

Important

If you have an IAM policy which restricts model access, you won't be able to complete an
inference job with a custom model. Your IAM policy should be updated to having a wildcard
resource for a custom async analysis job.

If you are using the StartDocumentClassificationJob and StartEntitiesDetectionJob APIs, you need
to update your IAM policy unless you are currently using wildcards as resources. If you are using a
StartEntitiesDetectionJob using a pretrained model this does not impact you and you don't need to
make any changes.

The following example policy contains an outdated reference.

{
 "Action": [
 "comprehend:StartDocumentClassificationJob",
 "comprehend:StartEntitiesDetectionJob",
],
 "Resource": [
 "arn:aws:comprehend:us-east-1:123456789012:document-classifier/myClassifier",
 "arn:aws:comprehend:us-east-1:123456789012:entity-recognizer/myRecognizer"
],
 "Effect": "Allow"
}

This is the updated policy you need to use to sucessfully run StartDocumentClassificationJob and
StartEntitiesDetectionJob.

{
 "Action": [
 "comprehend:StartDocumentClassificationJob",
 "comprehend:StartEntitiesDetectionJob",
],
 "Resource": [
 "arn:aws:comprehend:us-east-1:123456789012:document-classifier/myClassifier",
 "arn:aws:comprehend:us-east-1:123456789012:document-classification-job/*",
 "arn:aws:comprehend:us-east-1:123456789012:entity-recognizer/myRecognizer",
 "arn:aws:comprehend:us-east-1:123456789012:entities-detection-job/*"

Identity-based policy examples 461

https://docs.aws.amazon.com/comprehend/latest/dg/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/dg/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/dg/API_StartEntitiesDetectionJob.html

Amazon Comprehend Developer Guide

],
 "Effect": "Allow"
}

AWS managed policies for Amazon Comprehend

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: ComprehendFullAccess

This policy grants full access to Amazon Comprehend resources including running topic modeling
jobs. This policy also grants list and get permissions for Amazon S3 buckets and IAM roles.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

AWS managed policies 462

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Comprehend Developer Guide

 "comprehend:*",
 "iam:GetRole",
 "iam:ListRoles",
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
],
 "Resource": "*"
 }
]
}

AWS managed policy: ComprehendReadOnly

This policy grants read-only permissions to run all Amazon Comprehend actions except the
following:

• StartDominantLanguageDetectionJob

• StartEntitiesDetectionJob

• StartKeyPhrasesDetectionJob

• StartSentimentDetectionJob

• StartTargetedSentimentDetectionJob

• StartTopicsDetectionJob

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "comprehend:BatchDetectDominantLanguage",
 "comprehend:BatchDetectEntities",
 "comprehend:BatchDetectKeyPhrases",
 "comprehend:BatchDetectSentiment",
 "comprehend:BatchDetectSyntax",
 "comprehend:ClassifyDocument",
 "comprehend:ContainsPiiEntities",
 "comprehend:DescribeDocumentClassificationJob",
 "comprehend:DescribeDocumentClassifier",
 "comprehend:DescribeDominantLanguageDetectionJob",
 "comprehend:DescribeEndpoint",

AWS managed policies 463

Amazon Comprehend Developer Guide

 "comprehend:DescribeEntitiesDetectionJob",
 "comprehend:DescribeEntityRecognizer",
 "comprehend:DescribeKeyPhrasesDetectionJob",
 "comprehend:DescribePiiEntitiesDetectionJob",
 "comprehend:DescribeResourcePolicy",
 "comprehend:DescribeSentimentDetectionJob",
 "comprehend:DescribeTargetedSentimentDetectionJob",
 "comprehend:DescribeTopicsDetectionJob",
 "comprehend:DetectDominantLanguage",
 "comprehend:DetectEntities",
 "comprehend:DetectKeyPhrases",
 "comprehend:DetectPiiEntities",
 "comprehend:DetectSentiment",
 "comprehend:DetectSyntax",
 "comprehend:ListDocumentClassificationJobs",
 "comprehend:ListDocumentClassifiers",
 "comprehend:ListDocumentClassifierSummaries",
 "comprehend:ListDominantLanguageDetectionJobs",
 "comprehend:ListEndpoints",
 "comprehend:ListEntitiesDetectionJobs",
 "comprehend:ListEntityRecognizers",
 "comprehend:ListEntityRecognizerSummaries",
 "comprehend:ListKeyPhrasesDetectionJobs",
 "comprehend:ListPiiEntitiesDetectionJobs",
 "comprehend:ListSentimentDetectionJobs",
 "comprehend:ListTargetedSentimentDetectionJobs",
 "comprehend:ListTagsForResource",
 "comprehend:ListTopicsDetectionJobs"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Amazon Comprehend updates to AWS managed policies

View details about updates to AWS managed policies for Amazon Comprehend since this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the Amazon Comprehend Document history page.

AWS managed policies 464

https://docs.aws.amazon.com/comprehend/latest/dg/doc-history.html

Amazon Comprehend Developer Guide

Change Description Date

ComprehendReadOnly –
Update to an existing policy

Amazon Comprehend now
allows the comprehen
d:DescribeTargeted
SentimentDetection
Job and comprehen
d:ListTargetedSent
imentDetectionJobs

 actions in the Comprehen
dReadOnly policy

Mar 30, 2022

ComprehendReadOnly –
Update to an existing policy

Amazon Comprehend now
allows the comprehen
d:DescribeResource
Policy action in the
ComprehendReadOnly policy

Feb 2, 2022

ComprehendReadOnly –
Update to an existing policy

Amazon Comprehend now
allows the ListDocum
entClassifierSumma
ries and ListEntit
yRecognizerSummari
es actions in the Comprehen
dReadOnly policy

September 21, 2021

ComprehendReadOnly –
Update to an existing policy

Amazon Comprehend now
allows the ContainsP
IIEntities action in the
ComprehendReadOnly policy

March 26, 2021

Amazon Comprehend started
tracking changes

Amazon Comprehend started
tracking changes for its AWS
managed policies.

March 1, 2021

AWS managed policies 465

Amazon Comprehend Developer Guide

Troubleshooting Amazon Comprehend identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon Comprehend and IAM.

Topics

• I am not authorized to perform an action in Amazon Comprehend

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon Comprehend resources

I am not authorized to perform an action in Amazon Comprehend

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but does not have the fictional
comprehend:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 comprehend:GetWidget on resource: my-example-widget

In this case, Mateo's policy must be updated to allow him to access the my-example-widget
resource using the comprehend:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon Comprehend.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon Comprehend. However, the action requires the service to have

Troubleshooting 466

Amazon Comprehend Developer Guide

permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon
Comprehend resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon Comprehend supports these features, see How Amazon Comprehend
works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging Amazon Comprehend API calls with AWS CloudTrail

Amazon Comprehend is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon Comprehend. CloudTrail captures API calls for
Amazon Comprehend as events. The calls captured include calls from the Amazon Comprehend

Logging Amazon Comprehend API calls with AWS CloudTrail 467

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Comprehend Developer Guide

console and code calls to the Amazon Comprehend API operations. If you create a trail, you can
enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
Amazon Comprehend. If you don't configure a trail, you can still view the most recent events in
the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon Comprehend, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon Comprehend information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Amazon Comprehend, that activity is recorded in a CloudTrail event along with
other AWS service events in Event history. You can view, search, and download recent events in
your AWS account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for Amazon Comprehend,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

Amazon Comprehend supports logging the following actions as events in CloudTrail log files:

• BatchDetectDominantLanguage

• BatchDetectEntities

• BatchDetectKeyPhrases

• BatchDetectSentiment

• BatchDetectSyntax

Amazon Comprehend information in CloudTrail 468

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectDominantLanguage.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectKeyPhrases.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_BatchDetectSyntax.html

Amazon Comprehend Developer Guide

• ClassifyDocument

• CreateDocumentClassifier

• CreateEndpoint

• CreateEntityRecognizer

• DeleteDocumentClassifier

• DeleteEndpoint

• DeleteEntityRecognizer

• DescribeDocumentClassificationJob

• DescribeDocumentClassifier

• DescribeDominantLanguageDetectionJob

• DescribeEndpoint

• DescribeEntitiesDetectionJob

• DescribeEntityRecognizer

• DescribeKeyPhrasesDetectionJob

• DescribePiiEntitiesDetectionJob

• DescribeSentimentDetectionJob

• DescribeTargetedSentimentDetectionJob

• DescribeTopicsDetectionJob

• DetectDominantLanguage

• DetectEntities

• DetectKeyPhrases

• DetectPiiEntities

• DetectSentiment

• DetectSyntax

• ListDocumentClassificationJobs

• ListDocumentClassifiers

• ListDominantLanguageDetectionJobs

• ListEndpoints

• ListEntitiesDetectionJobs

Amazon Comprehend information in CloudTrail 469

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DeleteDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DeleteEndpoint.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DeleteEntityRecognizer.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeEntityRecognizer.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribePiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DescribeTopicsDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectDominantLanguage.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectKeyPhrases.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectPiiEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectSentiment.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectSyntax.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListDocumentClassificationJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListDocumentClassifiers.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListDominantLanguageDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListEndpoints.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListEntitiesDetectionJobs.html

Amazon Comprehend Developer Guide

• ListEntityRecognizers

• ListKeyPhrasesDetectionJobs

• ListPiiEntitiesDetectionJobs

• ListSentimentDetectionJobs

• ListTargetedSentimentDetectionJobs

• ListTagsForResource

• ListTopicsDetectionJobs

• StartDocumentClassificationJob

• StartDominantLanguageDetectionJob

• StartEntitiesDetectionJob

• StartKeyPhrasesDetectionJob

• StartPiiEntitiesDetectionJob

• StartSentimentDetectionJob

• StartTargetedSentimentDetectionJob

• StartTopicsDetectionJob

• StopDominantLanguageDetectionJob

• StopEntitiesDetectionJob

• StopKeyPhrasesDetectionJob

• StopPiiEntitiesDetectionJob

• StopSentimentDetectionJob

• StopTargetedSentimentDetectionJob

• StopTrainingDocumentClassifier

• StopTrainingEntityRecognizer

• TagResource

• UntagResource

• UpdateEndpoint

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with the root user credentials.

Amazon Comprehend information in CloudTrail 470

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListEntityRecognizers.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListKeyPhrasesDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListPiiEntitiesDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListSentimentDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListTargetedSentimentDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ListTopicsDetectionJobs.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartPiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTopicsDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopDominantLanguageDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopKeyPhrasesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopPiiEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopTrainingDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StopTrainingEntityRecognizer.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_UpdateEndpoint.html

Amazon Comprehend Developer Guide

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Example: Amazon Comprehend log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the ClassifyDocument
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AROAICFHPEXAMPLE",
 "arn": "arn:aws:iam::12345678910:user/myadmin2",
 "accountId": "12345678910",
 "accessKeyId": "ASIA3VZEXAMPLE",
 "sessionContext": {
 "sessionIssuer": {},
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-10-19T14:22:09Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-10-19T17:31:20Z",
 "eventSource": "comprehend.amazonaws.com",
 "eventName": "ClassifyDocument",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "3.21.185.237",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:109.0)
 Gecko/20100101 Firefox/115.0",
 "requestParameters": null,

Example: Amazon Comprehend log file entries 471

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Comprehend Developer Guide

 "responseElements": null,
 "requestID": "fd916e66-caac-46c9-a1fc-81a0ef33e61b",
 "eventID": "535ca22b-b3a3-4c13-b2c5-bf51ab082794",
 "readOnly": false,
 "resources": [
 {
 "accountId": "12345678910",
 "type": "AWS::Comprehend::DocumentClassifierEndpoint",
 "ARN": "arn:aws:comprehend:us-east-2:12345678910:document-classifier-
endpoint/endpointExample"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "12345678910"
}

Compliance validation for Amazon Comprehend

Third-party auditors assess the security and compliance of Amazon Comprehend as part of
multiple AWS compliance programs. These include PCI, FedRAMP, HIPAA, and others. You can
download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using Amazon Comprehend is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. AWS
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Compliance validation 472

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Comprehend Developer Guide

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

Resilience in Amazon Comprehend

The AWS global infrastructure is built around AWS Region s and Availability Zones. AWS Region
s provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Region s and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon Comprehend

As a managed service, Amazon Comprehend is protected by the AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon Comprehend through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Resilience 473

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Comprehend Developer Guide

Guidelines and quotas

Unless otherwise specified, the Amazon Comprehend quotas are per region. You can request an
increase to adjustable quotas if needed for your applications. For information about quotas and to
request a quota increase, see AWS Service Quotas.

Topics

• Supported Regions

• Quotas for built-in models

• Quotas for custom models

• Quotas for flywheels

Supported Regions

Amazon Comprehend is available in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• AWS GovCloud (US-West)

By default, Amazon Comprehend provides all API operations in each of the supported regions. For
exceptions, see Document processing.

Supported Regions 474

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Comprehend Developer Guide

For information about API endpoints, see Amazon Comprehend Regions and Endpoints in the
Amazon Web Services General Reference.

To review current quotas in a region, or to request quota increases for adjustable quotas, open the
Service Quotas console.

Quotas for built-in models

Amazon Comprehend provides built-in models for you to analyze UTF-8 text documents. Amazon
Comprehend provides synchronous and asynchronous operations that use the built-in models.

Topics

• Real-time (synchronous) analysis

• Asynchronous analysis

Real-time (synchronous) analysis

This section describes quotas related to real-time analysis using the built-in models.

Topics

• Single document operations

• Multiple document operations

• Request throttling for real-time (synchronous) requests

Single document operations

The Amazon Comprehend API provides operations that take a single document as input. The
following quotas apply to these operations.

General quotas for single document operations

The following quotas apply to real-time analysis for detecting entities, key-phrases, or dominant
language. For entity detection, these quotas apply to detection with the built-in models. For
custom entity detection, see the quotas in Custom entity recognition .

Quotas for built-in models 475

https://docs.aws.amazon.com/general/latest/gr/comprehend.html
https://console.aws.amazon.com/servicequotas/

Amazon Comprehend Developer Guide

Description Quota/Guideline

Maximum document size 100 KB

Operation-specific quotas for single document operations

The following quotas apply to real-time analysis for detecting sentiment, targeted sentiment, and
syntax.

Description Quota/Guideline

Maximum document size 5 KB

Multiple document operations

The Amazon Comprehend API provides batch operations that process multiple documents with a
single API request. The following quotas apply to the batch operations.

Description Quota/Guideline

Maximum document size 5 KB

Maximum documents per request 25

For more information about using the batch document operations, see Multiple document
synchronous processing.

Request throttling for real-time (synchronous) requests

Amazon Comprehend applies dynamic throttling to synchronous requests. If system processing
bandwidth is available, Amazon Comprehend gradually increases the number of your requests that
it processes. To control your application's usage of the synchronous API operations, we recommend
that you turn on billing alerts or implement rate-limiting in your application.

Asynchronous analysis

This section describes quotas related to asynchronous analysis using the built-in models.

Asynchronous analysis 476

Amazon Comprehend Developer Guide

Asynchronous API operations each support a maximum of 10 active jobs. To view the quotas for
each API operation, see the Service Quotas table in Amazon Comprehend endpoints and quotas in
the Amazon Web Services General Reference.

For adjustable quotas, you can request a quota increase using the Service Quotas console.

Topics

• General quotas for asynchronous operations

• Operation-specific quotas for asynchronous jobs

• Request throttling for asynchronous requests

General quotas for asynchronous operations

You can run asynchronous analysis jobs using the console or any of the API Start* operations.
For information about when to use asynchronous operations, see Asynchronous batch processing.
The following quotas apply to most of the API Start* operations for built-in models. For the
exceptions, see Operation-specific quotas for asynchronous jobs.

Description Quota/Guideline

Maximum size of each document in jobs that detect entities,
key phrases, PII, and languages

1 MB

Maximum total size of all files in a request 5 GB

Minimum total size of all files in a request 500 bytes

Maximum number of files, one document per file 1,000,000

Maximum total number of lines, one document per line 1,000,000

Operation-specific quotas for asynchronous jobs

This section describes quotas for specific asynchronous operations. If a quota isn't specified in the
following tables, the general quota value applies.

Topics

Asynchronous analysis 477

https://docs.aws.amazon.com/general/latest/gr/comprehend.html
https://console.aws.amazon.com/servicequotas/

Amazon Comprehend Developer Guide

• Sentiment

• Targeted sentiment

• Events

• Topic modeling

Sentiment

Asynchronous sentiment jobs, which you create with the StartSentimentDetectionJob operation,
have the following quotas.

Description Quota/Guideline

Maximum size of each input document 5 KB

Targeted sentiment

Asynchronous targeted sentiment jobs, which you create with the
StartTargetedSentimentDetectionJob operation, have the following quotas.

Description Quota/Guideline

Supported document formats UTF-8

Maximum size of each document in a job 10 KB

Maximum size of all documents in a job 300 MB

Maximum number of files, one document per file 30,000

Maximum total number of lines, one document per line (for all
files in a request)

30,000

Events

Asynchronous events detection jobs, which you create with the StartEventsDetectionJob operation,
have the following quotas.

Asynchronous analysis 478

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTargetedSentimentDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEventsDetectionJob.html

Amazon Comprehend Developer Guide

Description Quotas

Character encoding UTF-8

Total size of all files in a job 50 MB

Maximum size of each document in a job 10 KB

Maximum number of files, one document per file 5,000

Maximum total number of lines, one document per line (for all
files in request)

5,000

Topic modeling

Asynchronous topic modeling jobs, which you create with the StartTopicsDetectionJob operation,
have the following quotas.

Description Quota/Guideline

Character encoding UTF-8

Maximum number of topics to return 100

Maximum file size for one file, one document per file 100 MB

For more information, see Topic modeling

Request throttling for asynchronous requests

Each asynchronous API operation supports a maximum number of requests per second (per region,
per account), and also a maximum of 10 active jobs. To view the quotas for each API operation,
see the Service Quotas table in Amazon Comprehend endpoints and quotas in the Amazon Web
Services General Reference.

For adjustable quotas, you can request a quota increase using the Service Quotas console.

Asynchronous analysis 479

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartTopicsDetectionJob.html
https://docs.aws.amazon.com/general/latest/gr/comprehend.html
https://console.aws.amazon.com/servicequotas/

Amazon Comprehend Developer Guide

Quotas for custom models

You can use Amazon Comprehend to build your own custom models for custom classification
and custom entity recognition. This section provides the guidelines and quotas related to training
and using custom models. For more information about custom models, see Amazon Comprehend
Custom.

Topics

• General quotas

• Quotas for endpoints

• Document classification

• Custom entity recognition

General quotas

Amazon Comprehend sets general size quotas for each type of input document that you can
analyze with custom models. For real-time analysis quotas, see Maximum document sizes for real-
time analysis. For asynchronous analysis quotas, see Inputs for asynchronous custom analysis.

Each asynchronous API operation supports a maximum number of requests per second (per region,
per account), and also a maximum of 10 active jobs. To view the quotas for each API operation,
see the Service Quotas table in Amazon Comprehend endpoints and quotas in the Amazon Web
Services General Reference.

For adjustable quotas, you can request a quota increase using the Service Quotas console.

Quotas for endpoints

You create an endpoint to run real-time analysis with a custom model. For information about
endpoints, see Managing Amazon Comprehend endpoints.

The following quotas apply to the endpoints. For information about how to request a quota
increase, see AWS Service Quotas.

Description Quota/Guideline

Maximum number of active endpoints per Region for each
account

20

Quotas for custom models 480

https://docs.aws.amazon.com/general/latest/gr/comprehend.html
https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Comprehend Developer Guide

Description Quota/Guideline

Maximum number of inference units per Region for each
account

200

Maximum number of inference units per endpoint per region 50

Maximum throughput per inference unit (characters) 100/second

Maximum throughput per inference unit (documents) 2/second

Document classification

This section describes the guidelines and quotas for the following document classification
operations:

• Classifier training jobs that you start with the CreateDocumentClassifier operation.

• Asynchronous document classification jobs that you start with the
StartDocumentClassificationJob operation.

• Synchronous document classification requests that use the ClassifyDocument operation.

General quotas for document classification

The following table describes general quotas related to training custom classifiers.

Description Quota/Guideline

Maximum length of class name 5,000 characters

Number of classes (multi-class mode) 2–1,000

Number of classes (multi-label mode) 2–100

Annotations format

Minimum number of annotations per class (multi-class mode) 10

Minimum number of annotations per class (multi-label mode) 10

Document classification 481

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateDocumentClassifier.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartDocumentClassificationJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ClassifyDocument.html

Amazon Comprehend Developer Guide

Description Quota/Guideline

Minimum number of annotations (multi-label mode) 50

CSV file format

Minimum number of training documents per class (multi-class
mode)

50

Minimum number of training documents per class (multi-label
mode)

10

Minimum number of training documents (multi-label mode) 50

Classification for plain text documents

You create and train a plain-text model using plain-text input documents. Amazon Comprehend
provides real-time and asynchronous operations to classify plain text documents using a plain-text
model.

Training

The following table describes quotas related to training a custom classifier with plain text
documents.

Description Quota/Guideline

Total size of all files in training job 5 GB

Maximum number of augmented manifest files for training a
custom classifier

5

Maximum number of attribute names for each augmented
manifest file

5

Maximum length of attribute name 63 characters

Document classification 482

Amazon Comprehend Developer Guide

Real-time (synchronous) analysis

The following table describes quotas related to real-time classification of plain text documents.

Description Quota/Guideline

Maximum number of documents per synchronous request 1

Maximum text document size (UTF-8 encoded) 10 KB

Asynchronous analysis

The following table describes quotas related to asynchronous classification of plain text
documents.

Description Quota/Guideline

Total size of all files in asynchronous job 5 GB

Maximum file size for one file, one document per file 10 MB

Maximum number of files, one document per file 1,000,000

Maximum total number of lines, one document per line (for all
files in request)

1,000,000

Classification for semi-structured documents

This section describes the guidelines and quotas for document classification of semi-structured
documents. To classify semi-structured documents, use a native document model that you trained
with native input documents.

Training a native document model with semi-structured docs

The following table describes quotas related to training a custom classifier with semi-structured
documents, such as PDF documents, Word documents, and image files.

Document classification 483

Amazon Comprehend Developer Guide

Description Quota/Guideline

Maximum number of pages across all documents 10,000

Maximum annotations file size (all CSV file sizes combined) 5 MB

Document corpus size (training and test documents) 10 GB

File sizes for training and testing files

Image file size (JPG, PNG, TIFF). 1 byte–10 MB.

TIFF files: one page
maximum.

Page size for PDF documents 1 byte–10 MB

Page size for Word documents 1 byte–10 MB

Amazon Textract API output JSON size 1 byte–1 MB

Real-time (synchronous) analysis

This section describes quotas related to real-time classification of semi-structured documents.

The following table shows the maximum file sizes for input documents. For all input document
types, the input file maximum is one page, with no more than 10,000 characters.

File type Maximum size (API) Maximum size
(console)

UTF-8 text documents 10 KB 10 KB

PDF documents 10 MB 5 MB

Word documents 10 MB 5 MB

Image files 10 MB 5 MB

Amazon Textract API output size 1 MB n/a

Document classification 484

Amazon Comprehend Developer Guide

Asynchronous analysis

The following table describes quotas related to asynchronous classification of semi-structured
documents.

Description Quota/Guideline

Maximum number of pages across all input documents for a
job

25,000

Document corpus size 25 GB

Image file size (JPG, PNG, or TIFF) 1 byte–10 MB.

TIFF files: one page
maximum.

Page size for PDF documents 1 byte–10 MB

Page size for Word documents 1 byte–10 MB

Textract API output JSON size 1 byte–1 MB.

Custom entity recognition

This section describes the guidelines and quotas for the following operations for custom entity
recognition:

• Entity recognizer training jobs started with the CreateEntityRecognizer operation.

• Asynchronous entity recognition jobs started with the StartEntitiesDetectionJob operation.

• Synchronous entity recognition requests using the DetectEntities operation.

Custom entity recognition for plain text documents

Amazon Comprehend provides async and sync operations to analyze plain text documents with a
custom entity recognizer.

Custom entity recognition 485

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_CreateEntityRecognizer.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_StartEntitiesDetectionJob.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectEntities.html

Amazon Comprehend Developer Guide

Training

This section describes quotas related to training a custom entity recognizer to analyze plain text
documents. To train the model, you can provide an entity list or a set of annotated text documents.

The following table describes quotas related to training the model with an entity list.

Description Quota/Guideline

Number of entities per model 1–25

Document size (UTF-8) 1–5,000 byte

Number of items in entity list 1–1 million

Length of individual entry (post-strip) in entry list 1–5,000

Entity list corpus size (all docs in plaintext combined) 5 KB –200 MB

The following table describes quotas related to training the model with annotated text documents.

Description Quota/Guideline

Number of entities per model/custom entity recognizer 1–25

Document size (UTF-8) 1–5,000 byte

Number of documents (see Plain-text annotations) 3–200,000

Document corpus size (all docs in plaintext combined) 5 KB - 200 MB

Minimum number of annotations per entity 25

Real-time (synchronous) analysis

The following table describes quotas related to real-time analysis of plain text documents.

Custom entity recognition 486

Amazon Comprehend Developer Guide

Description Quota/Guideline

Maximum number of documents per synchronous request 1

Maximum text document size (UTF-8 encoded) 5 KB

Asynchronous analysis

The following table describes quotas related to asynchronous entity recognition of plain text
documents.

Description Quota/Guideline

Document size (UTF-8) 1 byte–1 MB

Maximum number of files, one document per file 1,000,000

Maximum total number of lines, one document per line (for all
files in request)

1,000,000

Document corpus size (all docs in plaintext combined) 1 byte–5 GB

Custom entity recognition for semi-structured documents

Amazon Comprehend provides async and sync operations to analyze semi-structured documents
with a custom entity recognizer. You must train the model using annotated PDF documents.

Training

The following table describes quotas related to training a custom entity recognizer
(CreateEntityRecognizer) to analyze semi-structured documents.

Description Quota/Guideline

Number of entities per model/custom entity recognizer 1–25

Maximum annotation file size (UTF-8 JSON) 5 MB

Custom entity recognition 487

Amazon Comprehend Developer Guide

Description Quota/Guideline

Number of documents 250–10,000

Document corpus size (all docs in plaintext combined) 5 KB–1 GB

Minimum number of annotations per entity 100

Maximum number of augmented manifest files for training a
custom entity recognizer

5

Maximum number of attribute names for each augmented
manifest file

5

Maximum length of attribute name 63 characters

Real-time (synchronous) analysis

This section describes quotas related to real-time analysis of semi-structured documents.

The following table shows the maximum file sizes for input documents. For all input document
types, the input file maximum is one page, with no more than 10,000 characters.

File type Maximum size (API) Maximum size
(console)

UTF-8 text documents 10 KB 10 KB

PDF documents 10 MB 5 MB

Word documents 10 MB 5 MB

Image files 10 MB 5 MB

Textract output files 1 MB n/a

Asynchronous analysis

This section describes quotas for asynchronous analysis of semi-structured documents.

Custom entity recognition 488

Amazon Comprehend Developer Guide

Description Quota/Guideline

Image size (JPG or PNG) 1 byte–10 MB

Image size (TIFF) 1 byte–10 MB. Maximum one
page.

Document size (PDF) 1 byte–50 MB

Document size (Docx) 1 byte–5 MB

Document size (UTF-8) 1 byte–1 MB

Maximum number of files, one document per file (one
document per line not allowed for image files or PDF/Word
documents)

500

Maximum number of pages for a PDF or Docx file 100

Document corpus size after text extraction (plaintext, all files
combined)

1 byte–5 GB

For more information about limits for images, see Hard Limits in Amazon Textract

Quotas for flywheels

Use flywheels to manage training and tracking of custom model versions for custom classification
and custom entity recognition. For more information about Flywheels, see Flywheels.

General quotas for flywheels

The follow quotas apply to flywheels and flywheel iterations.

Description Quota/Guideline

Maximum number of flywheels 50

Maximum number of flywheels in CREATING state 10

Quotas for flywheels 489

https://docs.aws.amazon.com/textract/latest/dg/limits.html

Amazon Comprehend Developer Guide

Description Quota/Guideline

Maximum number of training datasets per flywheel 50

Maximum number of test datasets per flywheel 50

Maximum number of datasets with INGESTING status 10

Maximum number of in-progress flywheel iterations per
account

10

Dataset quotas for custom classification models

When you ingest a dataset for a flywheel associated with a custom classification model, the
following quotas apply.

Description Quota/Guideline

Minimum number of training documents per class (multi-label
mode)

50

Maximum number of training documents 1,000,000

Minimum dataset size 500 bytes

Maximum dataset size 5 GB

Maximum file size for one file, one document per file 10 MB

Dataset quotas for custom entity recognition models

When you ingest a dataset for a flywheel associated with a custom entity recognition model, the
following quotas apply.

Description Quota/Guideline

Maximum document size 5 KB

Dataset quotas for custom classification models 490

Amazon Comprehend Developer Guide

Description Quota/Guideline

Minimum number of training documents 3

Maximum number of training documents 200,000

Minimum number of annotations per entity 25

Maximum dataset size 200 MB

Dataset quotas for custom entity recognition models 491

Amazon Comprehend Developer Guide

Tutorials and other resources

Tutorials and other resources for Amazon Comprehend.

Topics

• Tutorial: Analyzing insights from customer reviews with Amazon Comprehend

• Using Amazon S3 object Lambda access points for personally identifiable information (PII)

• Solution: Analyzing text with Amazon Comprehend and OpenSearch

Tutorial: Analyzing insights from customer reviews with
Amazon Comprehend

This tutorial explains how to use Amazon Comprehend with Amazon Simple Storage Service, AWS
Glue, Amazon Athena, and Amazon QuickSight to gain valuable insights into your documents.
Amazon Comprehend can extract sentiment (the mood of a document) and entities (names of
people, organizations, events, dates, products, places, quantities, and titles) from unstructured text.

For example, you can get actionable insights from customer reviews. In this tutorial, you analyze
a sample dataset of customer reviews about a novel. You use Amazon Comprehend sentiment
analysis to determine whether customers feel positive or negative about the novel. You also use
Amazon Comprehend entities analysis to discover mentions of important entities, such as related
novels or authors. After following this tutorial, you might discover that over 50% of the reviews are
positive. You might also discover that customers are comparing authors and expressing interest in
other classic novels.

In this tutorial, you accomplish the following:

• Store a sample dataset of reviews in Amazon Simple Storage Service (Amazon S3). Amazon
Simple Storage Service is an object storage service.

• Use Amazon Comprehend to analyze the sentiment and entities in the review documents.

• Use an AWS Glue crawler to store the results of the analysis in a database. AWS Glue is an
extract, transform, and load (ETL) service that lets you catalog and clean your data for analytics.

• Run Amazon Athena queries to clean your data. Amazon Athena is a serverless interactive query
service.

Analyzing insights from reviews 492

https://aws.amazon.com/s3/
https://aws.amazon.com/glue/
https://aws.amazon.com/glue/
https://aws.amazon.com/athena/
https://aws.amazon.com/quicksight/
https://aws.amazon.com/s3/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/glue/
https://aws.amazon.com/athena/

Amazon Comprehend Developer Guide

• Create visualizations with your data in Amazon QuickSight. Amazon QuickSight is a serverless
business intelligence tool for extracting insights from your data.

The following diagram shows the workflow.

Estimated time to complete this tutorial: 1 hour

Estimated cost: Some of the actions in this tutorial incur charges on your AWS account. For
information about the charges for each of these services, see the following pricing pages.

• Amazon S3 pricing

• Amazon Comprehend pricing

• AWS Glue pricing

• Amazon Athena pricing

• Amazon QuickSight pricing

Topics

• Prerequisites

• Step 1: Adding documents to Amazon S3

• Step 2: (CLI only) creating an IAM role for Amazon Comprehend

• Step 3: Running analysis jobs on documents in Amazon S3

• Step 4: Preparing the Amazon Comprehend output for data visualization

• Step 5: Visualizing Amazon Comprehend output in Amazon QuickSight

Analyzing insights from reviews 493

https://aws.amazon.com/quicksight/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/athena/pricing/
https://aws.amazon.com/quicksight/pricing/

Amazon Comprehend Developer Guide

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. For information about setting up an AWS account, see Setting up.

• An IAM entity (user, group or role). To learn how to set up users and groups for your account, see
the Getting started tutorial in the IAM User Guide.

• The following permissions policy attached to your user, group or role. The policy grants some of
the permissions required to complete this tutorial. The next prerequisite describes the additional
permissions you need.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action":
 [
 "comprehend:*",
 "ds:AuthorizeApplication",
 "ds:CheckAlias",
 "ds:CreateAlias",
 "ds:CreateIdentityPoolDirectory",
 "ds:DeleteDirectory",
 "ds:DescribeDirectories",
 "ds:DescribeTrusts",
 "ds:UnauthorizeApplication",
 "iam:AttachRolePolicy",
 "iam:CreatePolicy",
 "iam:CreatePolicyVersion",
 "iam:CreateRole",
 "iam:DeletePolicyVersion",
 "iam:DeleteRole",
 "iam:DetachRolePolicy",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAccountAliases",
 "iam:ListAttachedRolePolicies",
 "iam:ListEntitiesForPolicy",

Prerequisites 494

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html

Amazon Comprehend Developer Guide

 "iam:ListPolicies",
 "iam:ListPolicyVersions",
 "iam:ListRoles",
 "quicksight:*",
 "s3:*",
 "tag:GetResources"
],
 "Resource": "*"
 },
 {
 "Action":
 [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource":
 [
 "arn:aws:iam::*:role/*Comprehend*"
]
 }
]
}

Use the previous policy to create an IAM policy and attach it to your group or user. For
information about creating an IAM policy, see Creating IAM policies in the IAM User Guide. For
information about attaching an IAM policy, see Adding and removing IAM identity permissions in
the IAM User Guide.

• Managed policies attached to your IAM group or user. In addition to the previous policy, you
must also attach the following AWS managed policies to your group or user:

• AWSGlueConsoleFullAccess

• AWSQuicksightAthenaAccess

These managed policies give you permission to use AWS Glue, Amazon Athena, and Amazon
QuickSight. For information about attaching an IAM policy, see Adding and removing IAM
identity permissions in the IAM User Guide.

Step 1: Adding documents to Amazon S3

Before starting the Amazon Comprehend analysis jobs, you need to store a sample dataset of
customer reviews in Amazon Simple Storage Service (Amazon S3). Amazon S3 hosts your data in

Step 1: Adding documents to Amazon S3 495

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Comprehend Developer Guide

containers called buckets. Amazon Comprehend can analyze documents stored in a bucket and
it sends results of the analysis to a bucket. In this step, you create an S3 bucket, create input and
output folders in the bucket, and upload a sample dataset to the bucket.

Topics

• Prerequisites

• Download sample data

• Create an Amazon S3 bucket

• (Console only) create folders

• Upload the input data

Prerequisites

Before you begin, review Tutorial: Analyzing insights from customer reviews with Amazon
Comprehend and complete the prerequisites.

Download sample data

The following sample dataset contains Amazon reviews taken from the larger dataset "Amazon
reviews - Full", which was published with the article "Character-level Convolutional Networks for
Text Classification" (Xiang Zhang et al., 2015). Download the dataset to your computer.

To get the sample data

1. Download the zip file tutorial-reviews-data.zip to your computer.

2. Extract the zip file on your computer. There are two files. The file
THIRD_PARTY_LICENSES.txt is the open source license for the dataset published by Xiang
Zhang et al. The file amazon-reviews.csv is the dataset you analyze in the tutorial.

Create an Amazon S3 bucket

After downloading the sample dataset, create an Amazon S3 bucket to store your input and
output data. You can create an S3 bucket using the Amazon S3 console or the AWS Command Line
Interface (AWS CLI).

Create an Amazon S3 bucket (console)

In the Amazon S3 console, you create a bucket with a name that is unique in all of AWS.

Step 1: Adding documents to Amazon S3 496

samples/tutorial-reviews-data.zip

Amazon Comprehend Developer Guide

To create an S3 bucket (console)

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In Buckets, choose Create bucket.

3. For Bucket name, enter a globally unique name that describes the bucket's purpose.

4. For Region, choose the AWS Region where you want to create the bucket. The Region you
choose must support Amazon Comprehend. To reduce latency, choose the AWS Region closest
to your geographic location that is supported by Amazon Comprehend. For a list of Regions
that support Amazon Comprehend, see the Region table in the Global Infrastructure Guide.

5. Leave the default settings for Object Ownership, Bucket settings for Block Public Access,
Bucket Versioning, and Tags.

6. For Default encryption, choose Disable.

Tip

While this tutorial does not use encryption, you might want to use encryption when
analyzing important data. For end-to-end encryption, you can encrypt your data at
rest in the bucket and also when you run analysis jobs. For more information about
encryption with AWS, see What is AWS Key Management Service? in the AWS Key
Management Service Developer Guide.

7. Review your bucket configurations and then choose Create bucket.

Create an Amazon S3 bucket (AWS CLI)

After opening the AWS CLI, you run the create-bucket command to create a bucket that will
store the input and output data.

To create an Amazon S3 bucket (AWS CLI)

1. To create your bucket, run the following command in the AWS CLI. Replace DOC-EXAMPLE-
BUCKET with a name for the bucket that is unique in all of AWS.

aws s3api create-bucket --bucket DOC-EXAMPLE-BUCKET

Step 1: Adding documents to Amazon S3 497

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Comprehend Developer Guide

By default, the create-bucket command creates a bucket in the us-east-1 AWS Region.
To create a bucket in an AWS Region other than us-east-1, add the LocationConstraint
parameter to specify your Region. For example, the following command creates a bucket in the
us-west-2 Region.

aws s3api create-bucket --bucket DOC-EXAMPLE-BUCKET
--region us-west-2 --create-bucket-configuration LocationConstraint=us-west-2

Note that only certain Regions support Amazon Comprehend. For a list of Regions that
support Amazon Comprehend, see the Region table in the Global Infrastructure Guide.

2. To ensure that your bucket was created successfully, run the following command. The
command lists all of the S3 buckets associated with your account.

aws s3 ls

(Console only) create folders

Next, create two folders in your S3 bucket. The first folder is for your input data. The second folder
is where Amazon Comprehend sends the analysis results. If you use the Amazon S3 console, you
have to manually create the folders. If you use the AWS CLI, you can create folders when you
upload the sample dataset or run an analysis job. For that reason, we provide a procedure for
creating folders only for console users. If you are using the AWS CLI, you will create folders in
Upload the input data and in Step 3: Running analysis jobs on documents in Amazon S3.

To create folders in your S3 bucket (console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In Buckets, choose your bucket from the list of buckets.

3. In the Overview tab, choose Create folder.

4. For the new folder name, enter input.

5. For the encryption settings, choose None (Use bucket settings).

6. Choose Save.

7. Repeat steps 3 through 6 to create another folder for the output of the analysis jobs, but in
step 4, enter the new folder name output.

Step 1: Adding documents to Amazon S3 498

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://console.aws.amazon.com/s3/

Amazon Comprehend Developer Guide

Upload the input data

Now that you have a bucket, upload the sample dataset amazon-reviews.csv. You can upload
data to S3 buckets with the Amazon S3 console or the AWS CLI.

Upload sample documents to a bucket (console)

In the Amazon S3 console, upload the sample dataset file to the input folder.

To upload the sample documents (console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In Buckets, choose your bucket from the list of buckets.

3. Choose the input folder and then choose Upload.

4. Choose Add files and then choose the amazon-reviews.csv file on your computer.

5. Leave the other settings at their default values.

6. Choose Upload.

Upload sample documents to a bucket (AWS CLI)

Create an input folder in your S3 bucket and upload the dataset file to the new folder with the cp
command.

To upload the sample documents (AWS CLI)

1. To upload the amazon-reviews.csv file to a new folder in your bucket, run the following
AWS CLI command. Replace DOC-EXAMPLE-BUCKET with the name of your bucket. By adding
the path /input/ at the end, Amazon S3 automatically creates a new folder called input in
your bucket and uploads the dataset file to that folder.

aws s3 cp amazon-reviews.csv s3://DOC-EXAMPLE-BUCKET/input/

2. To ensure that your file was uploaded successfully, run the following command. The command
lists the contents of your bucket's input folder.

aws s3 ls s3://DOC-EXAMPLE-BUCKET/input/

Step 1: Adding documents to Amazon S3 499

https://console.aws.amazon.com/s3/

Amazon Comprehend Developer Guide

Now, you have an S3 bucket with the amazon-reviews.csv file in a folder called input. If you
used the console, you also have an output folder in the bucket. If you used the AWS CLI, you will
create the output folder when running the Amazon Comprehend analysis jobs.

Step 2: (CLI only) creating an IAM role for Amazon Comprehend

This step is necessary only if you are using the AWS Command Line Interface (AWS CLI) to complete
this tutorial. If you are using the Amazon Comprehend console to run the analysis jobs, skip to Step
3: Running analysis jobs on documents in Amazon S3.

To run analysis jobs, Amazon Comprehend requires access to the Amazon S3 bucket that contains
the sample dataset and will contain the jobs' output. IAM roles allow you to control the permissions
of AWS services or users. In this step, you create an IAM role for Amazon Comprehend. Then, you
create and attach to this role a resource-based policy that grants Amazon Comprehend access to
your S3 bucket. By the end of this step, Amazon Comprehend will have the necessary permissions
to access your input data, store your output, and run sentiment and entities analysis jobs.

For more information about using IAM with Amazon Comprehend, see How Amazon Comprehend
works with IAM.

Topics

• Prerequisites

• Create an IAM role

• Attach an IAM policy to the IAM role

Prerequisites

Before you begin, do the following:

• Complete Step 1: Adding documents to Amazon S3.

• Have a code or text editor to save JSON policies and keep track of your Amazon Resource Names
(ARNs).

Create an IAM role

To access your Amazon Simple Storage Service (Amazon S3) bucket, Amazon Comprehend needs
to assume an AWS Identity and Access Management (IAM) role. The IAM role declares Amazon

Step 2: (CLI only) creating an IAM role 500

Amazon Comprehend Developer Guide

Comprehend as a trusted entity. After Amazon Comprehend assumes the role and becomes a
trusted entity, you can grant bucket access permissions to Amazon Comprehend. In this step, you
create a role that labels Amazon Comprehend as a trusted entity. You can create a role with the
AWS CLI or the Amazon Comprehend console. To use the console, skip to Step 3: Running analysis
jobs on documents in Amazon S3.

The Amazon Comprehend console lets you select roles where the role name contains 'Comprehend'
and the trust policy includes comprehend.amazonaws.com. Configure your CLI-created roles to
meet these criteria if you want the console to display them.

To create an IAM role for Amazon Comprehend (AWS CLI)

1. Save the following trust policy as a JSON document called comprehend-trust-
policy.json in a code or text editor on your computer. This trust policy declares Amazon
Comprehend as a trusted entity and allows it to assume an IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. To create the IAM role, run the following AWS CLI command. The command creates an IAM
role called AmazonComprehendServiceRole-access-role and attaches the trust policy to
the role. Replace path/ with your local computer's path to the JSON document.

aws iam create-role --role-name AmazonComprehendServiceRole-access-role
--assume-role-policy-document file://path/comprehend-trust-policy.json

Step 2: (CLI only) creating an IAM role 501

Amazon Comprehend Developer Guide

Tip

If you get an Error parsing parameter message, the path to your JSON trust policy
file is probably incorrect. Provide the relative path to the file based on your home
directory.

3. Copy the Amazon Resource Name (ARN) and save it in a text editor. The ARN has a format
similar to arn:aws:iam::123456789012:role/AmazonComprehendServiceRole-
access-role. You need this ARN to run Amazon Comprehend analysis jobs.

Attach an IAM policy to the IAM role

To access your Amazon S3 bucket, Amazon Comprehend needs permissions to list, read, and write.
To give Amazon Comprehend the required permissions, create and attach an IAM policy to your
IAM role. The IAM policy allows Amazon Comprehend to retrieve the input data from your bucket
and write analysis results to the bucket. After creating the policy, you attach it to your IAM role.

To create an IAM policy (AWS CLI)

1. Save the following policy locally as a JSON document called comprehend-access-
policy.json. It grants Amazon Comprehend access to the specified S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET"

Step 2: (CLI only) creating an IAM role 502

Amazon Comprehend Developer Guide

],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
],
 "Effect": "Allow"
 }
]
}

2. To create the S3 bucket access policy, run the following AWS CLI command. Replace path/
with your local computer's path to the JSON document.

aws iam create-policy --policy-name comprehend-access-policy
--policy-document file://path/comprehend-access-policy.json

3. Copy the access policy ARN and save it in a text editor. The ARN has a format similar to
arn:aws:iam::123456789012:policy/comprehend-access-policy. You need this
ARN to attach your access policy to your IAM role.

To attach the IAM policy to your IAM role (AWS CLI)

• Run the following command. Replace policy-arn with the access policy ARN that you copied
in the previous step.

aws iam attach-role-policy --policy-arn policy-arn
--role-name AmazonComprehendServiceRole-access-role

You now have an IAM role called AmazonComprehendServiceRole-access-role that has a
trust policy for Amazon Comprehend and an access policy that grants Amazon Comprehend access
to your S3 bucket. You also have the ARN for the IAM role copied to a text editor.

Step 2: (CLI only) creating an IAM role 503

Amazon Comprehend Developer Guide

Step 3: Running analysis jobs on documents in Amazon S3

After storing the data in Amazon S3, you can begin running Amazon Comprehend analysis jobs. A
sentiment analysis job determines the overall mood of a document (positive, negative, neutral, or
mixed). An entities analysis job extracts the names of real-world objects from a document. These
objects include people, places, titles, events, dates, quantities, products, and organizations. In this
step, you run two Amazon Comprehend analysis jobs to extract the sentiment and entities from the
sample dataset.

Topics

• Prerequisites

• Analyze sentiment and entities

Prerequisites

Before you begin, do the following:

• Complete Step 1: Adding documents to Amazon S3.

• (Optional) If you are using the AWS CLI, complete Step 2: (CLI only) creating an IAM role for
Amazon Comprehend and have your IAM role ARN ready.

Analyze sentiment and entities

The first job you run analyzes the sentiment of each customer review in the sample dataset. The
second job extracts the entities in each customer review. You can perform Amazon Comprehend
analysis jobs either using the Amazon Comprehend console or the AWS CLI.

Tip

Make sure that you are in an AWS Region that supports Amazon Comprehend. For more
information, see the Region table in the Global Infrastructure Guide.

Analyze sentiments and entities (console)

When using the Amazon Comprehend console, you create one job at a time. You need to repeat the
following steps in order to run both a sentiment and an entities analysis job. Note that for the first

Step 3: Running analysis jobs 504

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon Comprehend Developer Guide

job, you create an IAM role, but for the second job, you can reuse the first job's IAM role. You can
reuse the IAM role as long as you use the same S3 bucket and folders.

To run sentiment and entities analysis jobs (console)

1. Ensure that you're in the same Region in which you created your Amazon Simple Storage
Service (Amazon S3) bucket. If you're in another Region, in the navigation bar, choose the AWS
Region where you created your S3 bucket from the Region selector.

2. Open the Amazon Comprehend console at https://console.aws.amazon.com/comprehend/

3. Choose Launch Amazon Comprehend.

4. In the navigation pane, choose Analysis jobs.

5. Choose Create job.

6. In the Job settings section, do the following:

a. For Name, enter reviews-sentiment-analysis.

b. For Analysis type, choose Sentiment.

c. For Language, choose English.

d. Leave the Job encryption setting as disabled.

7. In the Input data section, do the following:

a. For Data source, choose My documents.

b. For S3 location, choose Browse S3 and then choose your bucket from the list of buckets.

c. In your S3 bucket, for Objects, choose your input folder.

d. In the input folder, choose the sample dataset amazon-reviews.csv and then choose
Choose.

e. For Input format, choose One document per line.

8. In the Output data section, do the following:

a. For S3 location, choose Browse S3 and then choose your bucket from the list of buckets.

b. In your S3 bucket, for Objects, choose the output folder and then choose Choose.

c. Leave Encryption turned off.

9. In the Access permissions section, do the following:

a. For IAM role, choose Create an IAM role.

b. For Permissions to access, choose Input and Output S3 buckets.

Step 3: Running analysis jobs 505

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

c. For Name suffix, enter comprehend-access-role. This role provides access to your
Amazon S3 bucket.

10. Choose Create job.

11. Repeat steps 1-10 to create an entities analysis job. Make the following changes:

a. In Job settings, for Name, enter reviews-entities-analysis.

b. In Job settings, for Analysis type, choose Entities.

c. In Access permissions, choose Use an existing IAM role. For Role name, choose
AmazonComprehendServiceRole-comprehend-access-role (this is the same role
you created for the sentiment job).

Analyze sentiments and entities (AWS CLI)

You use the start-sentiment-detection-job and the start-entities-detection-job
commands to run sentiment and entities analysis jobs. After you run each command, the AWS CLI
shows a JSON object with a JobId value that allows you to access details about the job, including
the output S3 location.

To run sentiment and entities analysis jobs (AWS CLI)

1. Start a sentiment analysis job by running the following command in the AWS CLI. Replace
arn:aws:iam::123456789012:role/comprehend-access-role with the IAM role ARN
that you previously copied to a text editor. If your default AWS CLI Region differs from the
Region in which you created your Amazon S3 bucket, include the --region parameter and
replace us-east-1 with the Region where your bucket resides.

aws comprehend start-sentiment-detection-job
--input-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/input/
--output-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/output/
--data-access-role-arn arn:aws:iam::123456789012:role/comprehend-access-role
--job-name reviews-sentiment-analysis
--language-code en
[--region us-east-1]

2. After you submit the job, copy the JobId and save it to a text editor. You will need the JobId
to find the output files from the analysis job.

3. Start an entities analysis job by running the following command.

Step 3: Running analysis jobs 506

Amazon Comprehend Developer Guide

aws comprehend start-entities-detection-job
--input-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/input/
--output-data-config S3Uri=s3://DOC-EXAMPLE-BUCKET/output/
--data-access-role-arn arn:aws:iam::123456789012:role/comprehend-access-role
--job-name reviews-entities-analysis
--language-code en
[--region us-east-1]

4. After you submit the job, copy the JobId and save it to a text editor.

5. Check the status of your jobs. You can view the progress of a job by tracking its JobId.

To track the progress of your sentiment analysis job, run the following command. Replace
sentiment-job-id with the JobId that you copied after running your sentiment analysis.

aws comprehend describe-sentiment-detection-job
--job-id sentiment-job-id

To track your entities analysis job, run the following command. Replace entities-job-id
with the JobId that you copied after running your entities analysis.

aws comprehend describe-entities-detection-job
--job-id entities-job-id

It takes several minutes for the JobStatus to show as COMPLETED.

You have completed sentiment and entities analysis jobs. Both of the jobs should be completed
before you move on to the next step. It can take several minutes for the jobs to finish.

Step 4: Preparing the Amazon Comprehend output for data
visualization

To prepare the results of the sentiment and entities analysis jobs for creating data visualizations,
you use AWS Glue and Amazon Athena. In this step, you extract the Amazon Comprehend results
files. Then, you create an AWS Glue crawler that explores your data and automatically catalogs it
in tables in the AWS Glue Data Catalog. After that, you access and transform these tables using
Amazon Athena, a serverless and interactive query service. When you have finished this step, your
Amazon Comprehend results are clean and ready for visualization.

Step 4: Preparing the output 507

Amazon Comprehend Developer Guide

For a PII entity detection job, the output file is plaintext, not a compressed archive. The output
file name is the same as the input file, with .out appended at the end. You don't need the step of
extracting the output file. Skip to Load the Data into an AWS Glue Data Catalog.

Topics

• Prerequisites

• Download the Output

• Extract the output files

• Upload the extracted files

• Load the data into an AWS Glue Data Catalog

• Prepare the data for analysis

Prerequisites

Before you begin, complete Step 3: Running analysis jobs on documents in Amazon S3.

Download the Output

The Amazon Comprehend uses Gzip compression to compress output files and save them as a tar
archive. The simplest way to extract the output files is to download the output.tar.gz archives
locally.

In this step, you download the sentiment and entities output archives.

Download the Output Files (Console)

To find the output files for each job, return to the analysis job in the Amazon Comprehend console.
The analysis job provides the S3 location for the output, where you can download the output file.

To download the output files (console)

1. In the Amazon Comprehend console, in the navigation pane, return to Analysis jobs.

2. Choose your sentiment analysis job reviews-sentiment-analysis.

3. Under Output, choose the link displayed next to Output data location. This redirects you to
the output.tar.gz archive in your S3 bucket.

Step 4: Preparing the output 508

https://console.aws.amazon.com/comprehend/

Amazon Comprehend Developer Guide

4. In the Overview tab, choose Download.

5. On your computer, rename the archive as sentiment-output.tar.gz. Since all of the
output files have the same name, this helps you keep track of the sentiment and entities files.

6. Repeat steps 1-4 to find and download the output from your reviews-entities-analysis
job. On your computer, rename the archive as entities-output.tar.gz.

Download the output files (AWS CLI)

To find the output files for each job, use the JobId from the analysis job to find the output's S3
location. Then, use the cp command to download the output file to your computer.

To download the output files (AWS CLI)

1. To list details about your sentiment analysis job, run the following command. Replace
sentiment-job-id with the sentiment JobId that you saved.

aws comprehend describe-sentiment-detection-job --job-id sentiment-job-id

If you lost track of your JobId, you can run the following command to list all of your
sentiment jobs and filter for your job by name.

aws comprehend list-sentiment-detection-jobs
--filter JobName="reviews-sentiment-analysis"

2. In the OutputDataConfig object, find the S3Uri value. The S3Uri value should be similar
to the following format: s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz. Copy
this value to a text editor.

3. To download the sentiment output archive to your local directory, run the following command.
Replace the S3 bucket path with the S3Uri you copied in the previous step. Replace path/
with the folder path to your local directory. The name sentiment-output.tar.gz replaces
the original archive name to help you keep track of the sentiment and entities files.

aws s3 cp s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz
path/sentiment-output.tar.gz

4. To list details about your entities analysis job, run the following command.

aws comprehend describe-entities-detection-job

Step 4: Preparing the output 509

Amazon Comprehend Developer Guide

--job-id entities-job-id

If you don't know your JobId, run the following command to list all of your entities jobs and
filter for your job by name.

aws comprehend list-entities-detection-jobs
--filter JobName="reviews-entities-analysis"

5. From the OutputDataConfig object in your entities job description, copy the S3Uri value.

6. To download the entities output archive to your local directory, run the following command.
Replace the S3 bucket path with the S3Uri you copied in the previous step. Replace path/
with the folder path to your local directory. The name entities-output.tar.gz replaces
the original archive name.

aws s3 cp s3://DOC-EXAMPLE-BUCKET/.../output/output.tar.gz
path/entities-output.tar.gz

Extract the output files

Before you can access the Amazon Comprehend results, unpack the sentiment and entities
archives. You can use either your local file system or a terminal to unpack the archives.

Extract the output files (GUI file system)

If you use macOS, double-click the archive in your GUI file system to extract the output file from
the archive.

If you use Windows, you can use a third-party tool such as 7-Zip to extract the output files in your
GUI file system. In Windows, you must perform two steps to access the output file in the archive.
First decompress the archive, and then extract the archive.

Rename the sentiment file as sentiment-output and the entities file as entities-output to
distinguish between the output files.

Extract the output files (terminal)

If you use Linux or macOS, you can use your standard terminal. If you use Windows, you must have
access to a Unix-style environment, such as Cygwin, to run tar commands.

Step 4: Preparing the output 510

Amazon Comprehend Developer Guide

To extract the sentiment output file from the sentiment archive, run the following command in
your local terminal.

tar -xvf sentiment-output.tar.gz --transform 's,^,sentiment-,'

Note that the --transform parameter adds the prefix sentiment- to the output file inside of
the archive, renaming the file as sentiment-output. This allows you to distinguish between the
sentiment and entities output files and prevent overwriting.

To extract the entities output file from the entities archive, run the following command in your
local terminal.

tar -xvf entities-output.tar.gz --transform 's,^,entities-,'

The --transform parameter adds the prefix entities- to the output file name.

Tip

To save storage costs in Amazon S3, you can compress the files again with Gzip before
uploading them. It's important to decompress and unpack the original archives because
AWS Glue can’t automatically read data from a tar archive. However, AWS Glue can read
from files in Gzip format.

Upload the extracted files

After extracting the files, upload them to your bucket. You must store the sentiment and entities
output files in separate folders in order for AWS Glue to read the data properly. In your bucket,
create a folder for the extracted sentiment results and a second folder for the extracted entities
results. You can create folders either with the Amazon S3 console or the AWS CLI.

Upload the extracted files to Amazon S3 (console)

In your S3 bucket, create one folder for the extracted sentiment results file and one folder for the
entities results file. Then, upload the extracted results files to their respective folders.

To upload the extracted files to Amazon S3 (console)

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

Step 4: Preparing the output 511

https://console.aws.amazon.com/s3/

Amazon Comprehend Developer Guide

2. In Buckets, choose your bucket and then choose Create folder.

3. For the new folder name, enter sentiment-results and choose Save. This folder will
contain the extracted sentiment output file.

4. In your bucket's Overview tab, from the list of bucket contents, choose the new folder
sentiment-results. Choose Upload.

5. Choose Add files, choose the sentiment-output file from your local computer, and then
choose Next.

6. Leave the options for Manage users, Access for other AWS account, and Manage public
permissions as the defaults. Choose Next.

7. For Storage class, choose Standard. Leave the options for Encryption, Metadata, and Tag as
the defaults. Choose Next.

8. Review the upload options and then choose Upload.

9. Repeat steps 1-8 to create a folder called entities-results, and upload the entities-
output file to it.

Upload the extracted files to Amazon S3 (AWS CLI)

You can create a folder in your S3 bucket while uploading a file with the cp command.

To upload the extracted files to Amazon S3 (AWS CLI)

1. Create a sentiment folder and upload your sentiment file to it by running the following
command. Replace path/ with the local path to your extracted sentiment output file.

aws s3 cp path/sentiment-output s3://DOC-EXAMPLE-BUCKET/sentiment-results/

2. Create an entities output folder and upload your entities file to it by running the following
command. Replace path/ with the local path to your extracted entities output file.

aws s3 cp path/entities-output s3://DOC-EXAMPLE-BUCKET/entities-results/

Load the data into an AWS Glue Data Catalog

To get the results into a database, you can use an AWS Glue crawler. An AWS Glue crawler scans
files and discovers the schema of the data. It then arranges the data in tables in an AWS Glue Data

Step 4: Preparing the output 512

Amazon Comprehend Developer Guide

Catalog (a serverless database). You can create a crawler with the AWS Glue console or the AWS
CLI.

Load the data into an AWS Glue Data Catalog (console)

Create an AWS Glue crawler that scans your sentiment-results and entities-results
folders separately. A new IAM role for AWS Glue gives the crawler permission to access your S3
bucket. You create this IAM role while setting up the crawler.

To load the data into an AWS Glue Data Catalog (console)

1. Ensure that you're in a Region which supports AWS Glue. If you're in another Region, in the
navigation bar, choose a supported Region from the Region selector. For a list of Regions that
support AWS Glue, see the Region Table in the Global Infrastructure Guide.

2. Open the AWS Glue console at https://console.aws.amazon.com/glue/.

3. In the navigation pane, choose Crawlers and then choose Add crawler.

4. For Crawler name, enter comprehend-analysis-crawler and then choose Next.

5. For Crawler source type, choose Data stores and then choose Next.

6. For Add a data store, do the following:

a. For Choose a data store, choose S3.

b. Leave Connection blank.

c. For Crawl data in, choose Specified path in my account.

d. For Include path, enter the full S3 path of the sentiment output folder: s3://DOC-
EXAMPLE-BUCKET/sentiment-results.

e. Choose Next.

7. For Add another data store, choose Yes and then choose Next. Repeat Step 6, but enter
the full S3 path of the entities output folder: s3://DOC-EXAMPLE-BUCKET/entities-
results.

8. For Add another data store, choose No and then choose Next.

9. For Choose an IAM role, do the following:

a. Choose Create an IAM role.

b. For IAM role, enter glue-access-role and then choose Next.

10. For Create a schedule for this crawler, choose Run on demand and choose Next.

11. For Configure the crawler's output, do the following:

Step 4: Preparing the output 513

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://console.aws.amazon.com/glue/

Amazon Comprehend Developer Guide

a. For Database, choose Add database.

b. For Database name, enter comprehend-results. This database will store your Amazon
Comprehend output tables.

c. Leave the other options on their default settings and choose Next.

12. Review the crawler information and then choose Finish.

13. In the Glue console, in Crawlers, choose comprehend-analysis-crawler and choose Run
crawler. It can take a few minutes for the crawler to finish.

Load the data into an AWS Glue Data Catalog (AWS CLI)

Create an IAM role for AWS Glue that provides permission to access your S3 bucket. Then, create a
database in the AWS Glue Data Catalog. Finally, create and run a crawler that loads your data into
tables in the database.

To load the data into an AWS Glue Data Catalog (AWS CLI)

1. To create an IAM role for AWS Glue, do the following:

a. Save the following trust policy as a JSON document called glue-trust-policy.json
on your computer.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "glue.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. To create an IAM role, run the following command. Replace path/ with your local
computer's path to the JSON document.

aws iam create-role --role-name glue-access-role

Step 4: Preparing the output 514

Amazon Comprehend Developer Guide

--assume-role-policy-document file://path/glue-trust-policy.json

c. When the AWS CLI lists the Amazon Resource Number (ARN) for the new role, copy and
save it to a text editor.

d. Save the following IAM policy as a JSON document called glue-access-policy.json
on your computer. The policy grants AWS Glue permission to crawl your results folders.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/sentiment-results*",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/entities-results*"
]
 }
]
}

e. To create the IAM policy, run the following command. Replace path/ with your local
computer's path to the JSON document.

aws iam create-policy --policy-name glue-access-policy
--policy-document file://path/glue-access-policy.json

f. When the AWS CLI lists the access policy's ARN, copy and save it to a text editor.

g. Attach the new policy to the IAM role by running the following command. Replace
policy-arn with the IAM policy ARN you copied in the previous step.

aws iam attach-role-policy --policy-arn policy-arn
--role-name glue-access-role

h. Attach the AWS managed policy AWSGlueServiceRole to your IAM role by running the
following command.

aws iam attach-role-policy --policy-arn

Step 4: Preparing the output 515

Amazon Comprehend Developer Guide

arn:aws:iam::aws:policy/service-role/AWSGlueServiceRole
--role-name glue-access-role

2. Create an AWS Glue database by running the following command.

aws glue create-database
--database-input Name="comprehend-results"

3. Create a new AWS Glue crawler by running the following command. Replace glue-iam-
role-arn with the ARN of your AWS Glue IAM role.

aws glue create-crawler
--name comprehend-analysis-crawler
--role glue-iam-role-arn
--targets S3Targets=[
{Path="s3://DOC-EXAMPLE-BUCKET/sentiment-results"},
{Path="s3://DOC-EXAMPLE-BUCKET/entities-results"}]
--database-name comprehend-results

4. Start the crawler by running the following command.

aws glue start-crawler --name comprehend-analysis-crawler

It can take a few minutes for the crawler to finish.

Prepare the data for analysis

Now you have a database populated with the Amazon Comprehend results. However, the results
are nested. To unnest them, you run a few SQL statements in Amazon Athena. Amazon Athena
is an interactive query service that makes it easy to analyze data in Amazon S3 using standard
SQL. Athena is serverless, so there is no infrastructure to manage and it has a pay-per-query
pricing model. In this step, you create new tables of cleaned data that you can use for analysis and
visualization. You use the Athena console to prepare the data.

To prepare the data

1. Open the Athena console at https://console.aws.amazon.com/athena/.

2. In the query editor, choose Settings, then choose Manage.

Step 4: Preparing the output 516

https://console.aws.amazon.com/athena/home

Amazon Comprehend Developer Guide

3. For Location of query results, enter s3://DOC-EXAMPLE-BUCKET/query-results/. This
creates a new folder called query-results in your bucket that stores the output of the
Amazon Athena queries you run. Choose Save.

4. In the query editor, choose Editor.

5. For Database, choose the AWS Glue database comprehend-results that you created.

6. In the Tables section, you should have two tables called sentiment_results and
entities_results. Preview the tables to make sure that the crawler loaded the data. In
each table’s options (the three dots next to the table name), choose Preview table. A short
query runs automatically. Check the Results pane to ensure that the tables contain data.

Tip

If the tables don’t have any data, try checking the folders in your S3 bucket. Make sure
that there is one folder for entities results and one folder for sentiment results. Then,
try running a new AWS Glue crawler.

7. To unnest the sentiment_results table, enter the following query in the Query editor and
choose Run.

CREATE TABLE sentiment_results_final AS
SELECT file, line, sentiment,
sentimentscore.mixed AS mixed,
sentimentscore.negative AS negative,
sentimentscore.neutral AS neutral,
sentimentscore.positive AS positive
FROM sentiment_results

8. To begin unnesting the entities table, enter the following query in the Query editor and
choose Run.

CREATE TABLE entities_results_1 AS
SELECT file, line, nested FROM entities_results
CROSS JOIN UNNEST(entities) as t(nested)

9. To finish unnesting the entities table, enter the following query in the Query editor and
choose Run query.

CREATE TABLE entities_results_final AS
SELECT file, line,

Step 4: Preparing the output 517

Amazon Comprehend Developer Guide

nested.beginoffset AS beginoffset,
nested.endoffset AS endoffset,
nested.score AS score,
nested.text AS entity,
nested.type AS category
FROM entities_results_1

Your sentiment_results_final table should look like the following, with columns named
file, line, sentiment, mixed, negative, neutral, and positive. The table should have one value per
cell. The sentiment column describes the most likely overall sentiment of a particular review. The
mixed, negative, neutral, and positive columns give scores for each type of sentiment.

Your entities_results_final table should look like the following, with columns named file,
line, beginoffset, endoffset, score, entity, and category. The table should have one value per
cell. The score column indicates Amazon Comprehend's confidence in the entity it detected. The
category indicates what kind of entity Comprehend detected.

Step 4: Preparing the output 518

Amazon Comprehend Developer Guide

Now that you have the Amazon Comprehend results loaded into tables, you can visualize and
extract meaningful insights from the data.

Step 5: Visualizing Amazon Comprehend output in Amazon QuickSight

After storing the Amazon Comprehend results in tables, you can connect to and visualize the data
with Amazon QuickSight. Amazon QuickSight is an AWS managed business intelligence (BI) tool
for visualizing data. Amazon QuickSight makes it easy to connect to your data source and create
powerful visuals. In this step, you connect Amazon QuickSight to your data, create visualizations
that extract insights from the data, and publish a dashboard of visualizations.

Topics

• Prerequisites

• Give Amazon QuickSight access

• Import the datasets

• Create a sentiment visualization

• Create an entities visualization

• Publish a dashboard

• Clean up

Step 5: Visualizing the output 519

Amazon Comprehend Developer Guide

Prerequisites

Before you begin, complete Step 4: Preparing the Amazon Comprehend output for data
visualization.

Give Amazon QuickSight access

To import the data, Amazon QuickSight requires access to your Amazon Simple Storage Service
(Amazon S3) bucket and Amazon Athena tables. To give Amazon QuickSight access to your
data, you must be signed in as a QuickSight administrator and have access to edit the resource
permissions. If you are unable to complete the following steps, review the IAM prerequisites from
the overview page Tutorial: Analyzing insights from customer reviews with Amazon Comprehend.

To give Amazon QuickSight access to your data

1. Open the Amazon QuickSight console.

2. If this is the first time you have used Amazon QuickSight, the console prompts you to create
a new administrator user by providing an email address. For Email address, enter the same
email address as your AWS account. Choose Continue.

3. After signing in, choose your profile name in the navigation bar and choose Manage
QuickSight. You must be signed in as an administrator to view the Manage QuickSight option.

4. Choose Security and permissions.

5. For QuickSight access to AWS services, choose Add or remove.

6. Choose Amazon S3.

7. From Select Amazon S3 buckets, choose your S3 bucket for both S3 Bucket and Write
permissions for Athena Workgroup.

8. Choose Finish.

9. Choose Update.

Import the datasets

Before creating visualizations, you must add the sentiment and entities datasets to Amazon
QuickSight. You do this with the Amazon QuickSight console. You import your unnested sentiment
and unnested entities tables from Amazon Athena.

Step 5: Visualizing the output 520

https://quicksight.aws.amazon.com/sn/start

Amazon Comprehend Developer Guide

To import your datasets

1. Open the Amazon QuickSight console.

2. In the navigation bar, in Datasets, choose New dataset.

3. For Create a Data Set, choose Athena.

4. For Data source name, enter reviews-sentiment-analysis and choose Create data
source.

5. For Database, choose the database comprehend-results.

6. For Tables, choose the sentiment table sentiment_results_final and then choose Select.

7. Choose Import to SPICE for quicker analytics and choose Visualize. SPICE is QuickSight's in-
memory calculation engine that provides faster analyses than direct querying when creating
visualizations.

8. Return to the Amazon QuickSight console and choose Datasets. Repeat steps 1-7 to create an
entities dataset, but make the following changes:

a. For Data source name, enter reviews-entities-analysis.

b. For Tables, choose the entities table entities_results_final.

Create a sentiment visualization

Now that you can access your data in Amazon QuickSight, you can begin creating visualizations.
You create a pie chart with the Amazon Comprehend sentiment data. The pie chart shows what
proportion of the reviews are positive, neutral, mixed, and negative.

To visualize sentiment data

1. In the Amazon QuickSight console, choose Analyses and then choose New analysis.

2. From Your Data Sets, choose the sentiment dataset sentiment_results_final and then
choose Create analysis.

3. In the visual editor, in Fields list, choose sentiment.

Step 5: Visualizing the output 521

https://quicksight.aws.amazon.com/sn/start

Amazon Comprehend Developer Guide

Note

The values in the Fields list depend on the column names you used to create the tables
in Amazon Athena. If you changed the provided column names in the SQL queries, the
Fields list names will be different than the names used in these visualization examples.

4. For Visual types, choose Pie chart.

A pie chart similar to the following with positive, neutral, mixed, and negative sections is displayed.
To see the count and percentage of a section, hover over it.

Create an entities visualization

Now create a second visualization with the entities dataset. You create a tree map of the distinct
entities in the data. Each block in the tree map represents an entity, and the size of the block
correlates to the number of times that the entity appears in the dataset.

To visualize entities data

1. In the Visualize control pane, next to Data set, choose the Add, edit, replace, and remove
data sets icon.

2. Choose Add data set.

Step 5: Visualizing the output 522

Amazon Comprehend Developer Guide

3. For Choose data set to add, choose your entities dataset entities_results_final from
the list of datasets and choose Select.

4. In the Visualize control pane, choose the Data set drop down menu and choose the entities
dataset entities_results_final.

5. In Fields list, choose entity.

6. For Visual types, choose Tree map.

A tree map similar to the following is displayed next to your pie chart. To see the count of a specific
entity, hover over a block.

Publish a dashboard

After creating the visualizations, you can publish them as a dashboard. You can perform various
tasks with a dashboard, such as sharing it with users in your AWS account, saving it as a PDF, or
emailing it as a report (limited to the Enterprise edition of Amazon QuickSight). In this step, you
publish the visualizations as a dashboard in your account.

To publish your dashboard

1. In the navigation bar, choose Share.

2. Choose Publish dashboard.

3. Choose Publish new dashboard as and enter the name comprehend-analysis-reviews
for the dashboard.

Step 5: Visualizing the output 523

Amazon Comprehend Developer Guide

4. Choose Publish dashboard.

5. Close the Share dashboard with users pane by choosing the close button in the upper-right
corner.

6. In the Amazon QuickSight console, in the navigation pane, choose Dashboards. A thumbnail
of your new dashboard comprehend-analysis-reviews should appear under Dashboards.
Choose the dashboard to view it.

You now have a dashboard with sentiment and entities visualizations that looks similar to the
following example.

Tip

If you want to edit the visualizations in your dashboard, return to Analyses and edit the
visualization that you want to update. Then, publish the dashboard again either as a new
dashboard or as a replacement of the existing dashboard.

Clean up

After completing this tutorial, you might want to clean up any AWS resources you no longer want
to use. Active AWS resources can continue to incur charges in your account.

The following actions can help prevent incurring ongoing charges:

• Cancel your Amazon QuickSight subscription. Amazon QuickSight is a monthly subscription
service. To cancel your subscription, see Canceling your subscription in the Amazon QuickSight
User Guide.

Step 5: Visualizing the output 524

https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html

Amazon Comprehend Developer Guide

• Delete your Amazon S3 bucket. Amazon S3 charges you for storage. To clean up your Amazon S3
resources, delete your bucket. For information about deleting a bucket, see How do I delete an
S3 Bucket? in the Amazon Simple Storage Service User Guide. Make sure that you save all of your
important files before deleting your bucket.

• Clear your AWS Glue Data Catalog. The AWS Glue Data Catalog charges you monthly for storage.
You can delete your databases to prevent incurring ongoing charges. For information about
managing your AWS Glue Data Catalog databases, see Working with databases on the AWS Glue
console in the AWS Glue Developer Guide. Make sure that you export your data before clearing
any databases or tables.

Using Amazon S3 object Lambda access points for personally
identifiable information (PII)

Use Amazon S3 Object Lambda Access Points for personally identifiable information (PII) to
configure how documents are retrieved from your Amazon S3 bucket. You can control access to
documents that contain PII and redact PII from documents. For more information on how Amazon
Comprehend can detect PII in your documents, see Detecting PII entities. Amazon S3 Object
Lambda Access Points use AWS Lambda functions to automatically transform the output of a
standard Amazon S3 GET request. For more information see, Transforming objects with S3 object
Lambda in the Amazon Simple Storage Service User Guide.

When you create an Amazon S3 Object Lambda Access Point for PII, documents are processed
using Amazon Comprehend Lambda functions to control access of documents that contain PII and
redact PII from documents.

When you create an Amazon S3 Object Lambda Access Point for PII, documents are processed
using the following Amazon Comprehend Lambda functions:

• ComprehendPiiAccessControlS3ObjectLambda - Controls access to documents with PII
stored in your S3 bucket. For more information about this Lambda function, sign in to the AWS
Management Console to view the ComprehendPiiAccessControlS3ObjectLambda function in the
AWS Serverless Application Repository.

• ComprehendPiiRedactionS3ObjectLambda - Redacts PII from documents in your Amazon
S3 bucket. For more information about this Lambda function, sign in to the AWS Management
Console to view the ComprehendPiiRedactionS3ObjectLambda function in the AWS Serverless
Application Repository.

Using S3 object Lambda access points for PII 525

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/glue/latest/dg/console-databases.html
https://docs.aws.amazon.com/glue/latest/dg/console-databases.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/transforming-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/transforming-objects.html
https://console.aws.amazon.com/lambda/home#/create/app?applicationId=arn:aws:serverlessrepo:us-east-1:839782855223:applications/ComprehendPiiAccessControlS3ObjectLambda
https://console.aws.amazon.com/lambda/home#/create/app?applicationId=arn:aws:serverlessrepo:us-east-1:839782855223:applications/ComprehendPiiRedactionS3ObjectLambda

Amazon Comprehend Developer Guide

For information about how to deploy serverless applications from the AWS Serverless Application
Repository, see Deploying applications in the AWS Serverless Application Repository Developer
Guide.

Topics

• Controlling access to documents with personally identifiable information (PII)

• Redacting personally identifiable information (PII) from documents

Controlling access to documents with personally identifiable
information (PII)

You can use an Amazon S3 Object Lambda Access Point to control access to documents with
personally identifiable information (PII).

To ensure that only authorized users have access to documents that contain PII stored in your
Amazon S3 bucket, you use the ComprehendPiiAccessControlS3ObjectLambda function. This
Lambda function uses the ContainsPiiEntities operation when processing a standard Amazon S3
GET request on document objects.

For example, if you have documents in your S3 bucket that include PII such
as credit card numbers or bank account information, you can configure the
ComprehendPiiAccessControlS3ObjectLambda function to detect these PII entity types and
restrict access to unauthorized users. For more information about supported PII entity types, see PII
universal entity types.

For more information about this Lambda function, sign in to the AWS Management Console to
view the ComprehendPiiAccessControlS3ObjectLambda function in the AWS Serverless Application
Repository.

Creating an Amazon S3 object Lambda access point to control access to
documents

The following example creates an Amazon S3 Object Lambda Access Point to control access to
documents that contain social security numbers.

Creating an Amazon S3 object Lambda access point using the AWS Command Line Interface

Create an Amazon S3 Object Lambda Access Point configuration and save the configuration in a file
called config.json.

Controlling access to documents with PII 526

https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-consuming-applications.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ContainsPiiEntities.html
https://console.aws.amazon.com/lambda/home#/create/app?applicationId=arn:aws:serverlessrepo:us-east-1:839782855223:applications/ComprehendPiiAccessControlS3ObjectLambda

Amazon Comprehend Developer Guide

{
 "SupportingAccessPoint": "s3-default-access-point-name-arn",
 "TransformationConfigurations": [
 {
 "Actions": [
 "s3:GetObject"
],
 "ContentTransformation": {
 "AwsLambda": {
 "FunctionArn": "comprehend-pii-access-control-s3-object-lambda-
arn",
 "FunctionPayload": "{\"pii_entities_types\": \"SSN\"}"
 }
 }
 }
]
}

The following example creates an Amazon S3 Object Lambda Access Point based on the
configuration defined in the config.json file.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws s3control create-banner-access-point \
 --region region \
 --account-id account-id \
 --name s3-object-lambda-access-point \
 --configuration file://config.json

Invoking an Amazon S3 object Lambda access point to control access to
documents

The following example invokes an Amazon S3 Object Lambda Access Point to control access to
documents.

Invoking an Amazon S3 object Lambda access point using the AWS Command Line Interface

The following example invokes an Amazon S3 Object Lambda Access Point using the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

Controlling access to documents with PII 527

Amazon Comprehend Developer Guide

aws s3api get-object \
 --region region \
 --bucket s3-object-lambda-access-point-name-arn \
 --key object-prefix-key output-file-name

Redacting personally identifiable information (PII) from documents

You can use an Amazon S3 Object Lambda Access Point to redact personally identifiable
information (PII) from documents.

To redact PII entity types from documents stored in an S3 bucket, you use the
ComprehendPiiRedactionS3ObjectLambda function. This Lambda function uses the
ContainsPiiEntities and DetectPiiEntities operations when processing a standard Amazon S3 GET
request on document objects.

For example, if documents in your S3 bucket include PII such as credit card numbers or bank
account information, you can configure the ComprehendPiiRedactionS3ObjectLambda
function to detect PII and then return a copy of these documents in which PII entity types are
redacted. For more information about supported PII entity types, see PII universal entity types.

For more information about this Lambda function, sign in to the AWS Management Console to
view the ComprehendPiiRedactionS3ObjectLambda function in the AWS Serverless Application
Repository.

Creating an Amazon S3 object Lambda access point to redact PII from documents

The following example creates an Amazon S3 Object Lambda Access Point to redeact credit card
numbers from documents.

Creating an Amazon S3 object Lambda access point using the AWS Command Line Interface

Create an Amazon S3 Object Lambda Access Point configuration and save the configuration in a file
called config.json.

{
 "SupportingAccessPoint": "s3-default-access-point-name-arn",
 "TransformationConfigurations": [
 {
 "Actions": [

Redacting PII from documents 528

https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ContainsPiiEntities.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_DetectPiiEntities.html
https://console.aws.amazon.com/lambda/home#/create/app?applicationId=arn:aws:serverlessrepo:us-east-1:839782855223:applications/ComprehendPiiRedactionS3ObjectLambda

Amazon Comprehend Developer Guide

 "s3:GetObject"
],
 "ContentTransformation": {
 "AwsLambda": {
 "FunctionArn": "comprehend-pii-redaction-s3-object-lambda-arn",
 "FunctionPayload": "{\"pii_entities_types\": \"CREDIT_DEBIT_NUMBER
\"}"
 }
 }
 }
]
}

The following example demonstrates creating an Amazon S3 Object Lambda Access Point based on
the configuration defined in the config.json

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws s3control create-access-point-for-object-lambda \
 --region region \
 --account-id account-id \
 --name s3-object-lambda-access-point \
 --configuration file://config.json

Invoking an Amazon S3 object Lambda access point to redact PII from documents

The following examples invoke an Amazon S3 Object Lambda Access Point to redact PII from
documents.

Invoking an Amazon S3 object Lambda access point using the AWS Command Line Interface

The following example invokes an Amazon S3 Object Lambda Access Point using the AWS CLI.

The example is formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix
continuation character at the end of each line with a caret (^).

aws s3api get-object \
 --region region \
 --bucket s3-object-lambda-access-point-name-arn \
 --key object-prefix-key output-file-name

Redacting PII from documents 529

Amazon Comprehend Developer Guide

Solution: Analyzing text with Amazon Comprehend and
OpenSearch

AWS provides a reference implementation of text analysis using Amazon Comprehend and the
OpenSearch service. Amazon Comprehend provides text analysis and OpenSearch provides
document indexing, searching, and visualization.

For more information, see Analyzing text with OpenSearch and Amazon Comprehend.

Analyzing text with OpenSearch 530

https://aws.amazon.com/solutions/analyzing-text-with-amazon-elasticsearch-service-and-amazon-comprehend/

Amazon Comprehend Developer Guide

API reference

The API reference is now a separate document. For more information, see Amazon Comprehend
API Reference.

531

https://docs.aws.amazon.com/comprehend/latest/APIReference/welcome.html
https://docs.aws.amazon.com/comprehend/latest/APIReference/welcome.html

Amazon Comprehend Developer Guide

Document history for Amazon Comprehend

The following table describes the documentation for this release of Amazon Comprehend.

Change Description Date

Custom classifier training with
native documents

Amazon Comprehend
now supports custom
classifier training with
native documents. For more
information, see Training
classification models in
Amazon Comprehend.

April 19, 2023

Flywheels for managing
custom models

Amazon Comprehend now
supports flywheels to help
you manage the training and
tracking of model versions
for custom models. For more
information, see Flywheels in
Amazon Comprehend.

February 28, 2023

Updated IAM security topics Updated the IAM security
topics to include federated
identities. For more informati
on, see Identity and Access
Management for Amazon
Comprehend.

December 22, 2022

One-step processing for
inference with custom models

Amazon Comprehend now
automatically performs
the text extraction for
image, PDF, or Word input
documents prior to running
custom classification or
custom entity recognition.
For more information, see

December 1, 2022

532

https://docs.aws.amazon.com/comprehend/latest/dg/training-classifier-model.html
https://docs.aws.amazon.com/comprehend/latest/dg/training-classifier-model.html
https://docs.aws.amazon.com/comprehend/latest/dg/training-classifier-model.html
https://docs.aws.amazon.com/comprehend/latest/dg/training-classifier-model.html
https://docs.aws.amazon.com/comprehend/latest/dg/training-classifier-model.html
https://docs.aws.amazon.com/comprehend/latest/dg/flywheels.html
https://docs.aws.amazon.com/comprehend/latest/dg/flywheels.html
https://docs.aws.amazon.com/comprehend/latest/dg/flywheels.html
https://docs.aws.amazon.com/comprehend/latest/dg/flywheels.html
https://docs.aws.amazon.com/comprehend/latest/dg/security-iam..html
https://docs.aws.amazon.com/comprehend/latest/dg/security-iam..html
https://docs.aws.amazon.com/comprehend/latest/dg/security-iam..html
https://docs.aws.amazon.com/comprehend/latest/dg/security-iam..html
https://docs.aws.amazon.com/comprehend/latest/dg/idp.html
https://docs.aws.amazon.com/comprehend/latest/dg/idp.html

Amazon Comprehend Developer Guide

Document processing in
Amazon Comprehend.

Synchronous APIs for
targeted sentiment

Amazon Comprehend now
supports synchronous APIs
and console real-time analysis
for targeted sentiment
. Targeted sentiment
determines the sentiment
associated with specific
entities in a document.
For more information,
see Targeted sentiment in
Amazon Comprehend.

September 21, 2022

Lower minimum annotations
for training recognizers

Amazon Comprehend has
reduced the minimum
requirements for training
a recognizer with plaintext
CSV annotation files. You
can now build a custom
entity recognition model with
as few as three annotated
documents and at least 25
annotations per entity type.
For more information, see
Preparing the training data.

August 3, 2022

Increased input document
size for real-time APIs

Amazon Comprehend now
supports up to a 100KB input
document for most real-time
APIs. For more information,
see Guidelines and quotas.

July 18, 2022

533

https://docs.aws.amazon.com/comprehend/latest/dg/idp.html
https://docs.aws.amazon.com/comprehend/latest/dg/idp.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-training-data-cer.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-training-data-cer.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-training-data-cer.html
https://docs.aws.amazon.com/comprehend/latest/dg/guidelines-and-limits.html
https://docs.aws.amazon.com/comprehend/latest/dg/guidelines-and-limits.html
https://docs.aws.amazon.com/comprehend/latest/dg/guidelines-and-limits.html

Amazon Comprehend Developer Guide

Additional PII entity types Additional PII entity types
now detected by Amazon
Comprehend. For more
information, see Detecting
PII entities in Amazon
Comprehend.

May 20, 2022

Table of Contents restructure Restructured the Amazon
Comprehend Developer
Guide table of contents for
easier navigation. For more
information, see What is
Amazon Comprehend.

April 7, 2022

Targeted sentiment Amazon Comprehend now
supports targeted sentiment
analysis, which determine
s the sentiment associate
d with specific entities in a
document. For more informati
on, see Targeted sentiment in
Amazon Comprehend.

March 9, 2022

New feature Amazon Comprehend now
allows you to analyze images
for custom entitiy recogniti
on. For more information, see
Detecting custom entities in
Amazon Comprehend.

February 28, 2022

New feature You can now copy trained
custom models between AWS
accounts. For more informati
on, see Copying custom
models between accounts in
Amazon Comprehend.

February 2, 2022

534

https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/what-is.html
https://docs.aws.amazon.com/comprehend/latest/dg/what-is.html
https://docs.aws.amazon.com/comprehend/latest/dg/what-is.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-targeted-sentiment.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-copy.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-copy.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-copy.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-copy.html

Amazon Comprehend Developer Guide

New feature You can now use AWS Trusted
Advisor to view recommend
ations that can help you
optimize the cost and security
of your Amazon Comprehend
endpoints. For more informati
on, see Using Trusted Advisor
with Amazon Comprehend.

September 29, 2021

New feature Amazon Comprehend has
launched a suite of features
for Comprehend Custom
which enable continuous
model improvements by
giving you the ability to
create new model versions,
continuously test on specific
test sets, and perform live
migration to new model
endpoints.

September 21, 2021

New feature Amazon Comprehend now
allows you to analyze PDF
and Word documents for
custom entitiy recognition.
With PDF and Word formats,
you can extract information
from documents containing
headers, lists and tables.

September 14, 2021

535

https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints-trusted-advisor.html
https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints-trusted-advisor.html
https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints-trusted-advisor.html
https://docs.aws.amazon.com/comprehend/latest/dg/model-versioning.html
https://docs.aws.amazon.com/comprehend/latest/dg/training-recognizers.html

Amazon Comprehend Developer Guide

New feature Amazon Comprehend has
launched a new endpoints
overview feature which
provides you a global view
of your endpoints. From the
endpoints overview page, you
can view all of your endpoints
in one place to understand
your endpoint usage versus
your actual resource usage.

August 24, 2021

New feature Amazon Comprehend Medical
now allows you to establish a
private connection with your
Virtual Private Cloud (VPC)
by creating an interface VPC
endpoint. For more informati
on, see VPC endpoints
(PrivateLink).

June 13, 2021

Language expansion Amazon Comprehend has
added four additional
languages for the dominant
language feature: Hausa
(ha), Lao (lo), Maltese (mt),
and Oromo (om). For more
information, see Supported
languages in Amazon
Comprehend.

May 10, 2021

New feature With Amazon Comprehen
d, you can now encrypt
custom models using a
customer managed key (CMK).
For more information, see
KMS encryption in Amazon
Comprehend.

March 31, 2021

536

https://docs.aws.amazon.com/comprehend/latest/dg/manage-endpoints-overview.html
https://docs.aws.amazon.com/comprehend/latest/dg/vpc-interface-endpoints-med.html
https://docs.aws.amazon.com/comprehend/latest/dg/vpc-interface-endpoints-med.html
https://docs.aws.amazon.com/comprehend/latest/dg/vpc-interface-endpoints-med.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/kms-in-comprehend.html
https://docs.aws.amazon.com/comprehend/latest/dg/kms-in-comprehend.html
https://docs.aws.amazon.com/comprehend/latest/dg/kms-in-comprehend.html

Amazon Comprehend Developer Guide

New feature You can now use Amazon S3
Object Lambda Access Points
to configure how documents
that contain personally
identifiable information
(PII) are retrieved from your
Amazon S3 bucket. You can
control access of documents
that contain PII and redact
PII from documents. For
more information, see Using
Amazon S3 object Lambda
access points for personally
identifiable information (PII).

March 18, 2021

New feature You can now label a
document with personall
y identifiable information
(PII). Amazon Comprehend
can analyze your document
for the presence of PII and
return the labels of identifie
d PII entity types such as
name, address, bank account
number, or phone number.
For more information, see
Label document with PII.

March 11, 2021

537

https://docs.aws.amazon.com/comprehend/latest/dg/using-access-points.html
https://docs.aws.amazon.com/comprehend/latest/dg/using-access-points.html
https://docs.aws.amazon.com/comprehend/latest/dg/using-access-points.html
https://docs.aws.amazon.com/comprehend/latest/dg/using-access-points.html
https://docs.aws.amazon.com/comprehend/latest/dg/using-access-points.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii-labels.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii-labels.html

Amazon Comprehend Developer Guide

New feature With Amazon Comprehend,
you can now detect events
in a set of documents. When
you create an asynchronous
events detection job, Amazon
Comprehend can detect
supported types of financial
events. For more information,
see Detect events.

November 24, 2020

New feature Amazon Comprehend now
allows you to use auto scaling
for custom entity recognizer
endpoints. With auto scaling,
you can automatically set
endpoint provisioning to fit
your capacity needs. For more
information, see Auto scaling
with endpoints.

September 28, 2020

New feature To train custom classifiers
or entity recognizers, you
can now provide augmented
manifest files, which are
labeled datasets that are
produced by Amazon
SageMaker Ground Truth. For
more information about these
files, and for examples, see
Multi-class mode, Multi-label
mode, and Annotations.

September 22, 2020

538

https://docs.aws.amazon.com/comprehend/latest/dg/how-events.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-events.html
https://docs.aws.amazon.com/comprehend/latest/dg/comprehend-autoscaling.html
https://docs.aws.amazon.com/comprehend/latest/dg/comprehend-autoscaling.html
https://docs.aws.amazon.com/comprehend/latest/dg/comprehend-autoscaling.html
https://docs.aws.amazon.com/comprehend/latest/dg/auto-ml.html.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data-multi-class.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data-multi-label.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data-multi-label.html
https://docs.aws.amazon.com/comprehend/latest/dg/cer-annotation.html

Amazon Comprehend Developer Guide

New tutorial Amazon Comprehend now
has a tutorial that walks
you through a multi-ser
vice workflow of analyzing
customer reviews and visualizi
ng the analysis results.
For more information, see
Tutorial: Analyzing insights
from reviews.

September 17, 2020

New feature With Amazon Comprehend,
you can now detect entities
in your text that contain
personally identifiable
information (PII), such as
addresses, bank account
numbers, or phone numbers.
Amazon Comprehend can
provide the location of each
PII entity in your text, or it can
provide a copy of your text
in which the PII is redacted.
For more information, see
Detect personally identifiable
information (PII).

September 17, 2020

New feature Previously, you could only
train a model on up to 12
custom entities. Now Amazon
Comprehend allows you to
train a model on up to 25
custom entities at a time.
For more information, see
Custom entity recognition.

August 12, 2020

539

https://docs.aws.amazon.com/comprehend/latest/dg/tutorial-reviews.html
https://docs.aws.amazon.com/comprehend/latest/dg/tutorial-reviews.html
https://docs.aws.amazon.com/comprehend/latest/dg/tutorial-reviews.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-entity-recognition.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-entity-recognition.html

Amazon Comprehend Developer Guide

Language expansion Amazon Comprehend
has added five additional
languages for the custom
entity recognition feature:
German (de), Spanish (es),
French (fr), Italian (it), and
Portuguese (pt). For more
information, see Supported
languages in Amazon
Comprehend.

August 12, 2020

New feature Amazon Comprehend now
allows you to establish a
private connection with your
Virtual Private Cloud (VPC)
by creating an interface VPC
endpoint. For more informati
on, see VPC endpoints (AWS
PrivateLink).

August 11, 2020

New feature With Amazon Comprehend,
you can now quickly detect
custom entities in individua
l text documents by running
real-time analysis. For more
information, see Detecting
custom entities in real time
with amazon comprehend.

July 9, 2020

540

https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/vpc-interface-endpoints.html
https://docs.aws.amazon.com/comprehend/latest/dg/vpc-interface-endpoints.html
https://docs.aws.amazon.com/comprehend/latest/dg/vpc-interface-endpoints.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer-real-time.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer-real-time.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer-real-time.html
https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer-real-time.html

Amazon Comprehend Developer Guide

New feature added Amazon Comprehend now
provides support for a second
mode in asynchronous
Custom Classification for
documents that provides
greater flexibility when
applying custom classes to
documents. While multi-class
mode associates only a single
class with each document,
the new multi-label mode
can associate more than one.
For example, a movie can
be classified as both science
fiction and action at the same
time. For more information,
see Multi-class and multi-lab
el modes in custom classific
ation.

December 19, 2019

New feature added Amazon Comprehend now
provides support for real-
time Custom Classification for
documents with unstructured
text. Customers can use real-
time custom classification to
understand, label and route
information based on their
own business rules, synchrono
usly. For more information,
see Real-time analysis with
custom classification.

November 25, 2019

541

https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data.html
https://docs.aws.amazon.com/comprehend/latest/dg/prep-classifier-data.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-sync.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-sync.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-sync.html

Amazon Comprehend Developer Guide

New languages added Amazon Comprehend
has added six additional
languages for several of its
features: Arabic (ar), Hindi
(hi), Japanese (ja), Korean
(ko), simplified Chinese (zh),
and traditional Chinese (zh-
TW). These new languages
are supported only for
Determine Sentiment, Detect
Key Phrases, and non-custo
m Detect Entities operation
s. For more information, see
Supported languages.

November 6, 2019

New feature Previously, you could only
train a model on a single
custom entity. As a result,
you could only search for
that one entity with an
entity recognition operation
. Amazon Comprehend has
changed this and you can
now train a model on up to
12 custom entities at a time.
For more information, see
Custom entity recognition

July 9, 2019

542

https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-entity-recognition.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-entity-recognition.html

Amazon Comprehend Developer Guide

New feature Amazon Comprehend
now provides a multi-class
confusion matrix for added
ability to analyze metrics
when training a Custom
Classifier. This is currently
supported using the APIs
only. For more informati
on, see Tagging resources in
Amazon Comprehend

April 5, 2019

New feature Amazon Comprehend
provides tags for Custom
Classifiers and Custom Entity
Recognizers, which can
be used as metadata that
enables you to organize,
filter, and control access to
your resources with a finer
level of control than ever.
For more information, see
Tagging resources in Amazon
Comprehend

April 3, 2019

543

https://docs.aws.amazon.com/comprehend/latest/dg/conf-matrix.html
https://docs.aws.amazon.com/comprehend/latest/dg/conf-matrix.html
https://docs.aws.amazon.com/comprehend/latest/dg/conf-matrix.html
https://docs.aws.amazon.com/comprehend/latest/dg/tagging.html
https://docs.aws.amazon.com/comprehend/latest/dg/tagging.html
https://docs.aws.amazon.com/comprehend/latest/dg/tagging.html

Amazon Comprehend Developer Guide

New feature Amazon S3 already enables
you to encrypt your input
documents, and Amazon
Comprehend extends this
even farther. By using your
own KMS key, you can not
only encrypt the output
results of your job, but also
the data on the storage
volume attached to the
compute instance that
processes the analysis job.
The result is end-to-end
security. For more informati
on, see KMS encryption in
Amazon Comprehend

March 28, 2019

New feature Custom entity recognition
extends the capability of
Amazon Comprehend by
enabling you to identify new
entity types not supported
as one of the preset generic
entity types. This means you
can analyze documents and
extract entities like product
codes or business-specific
entities that fit your particular
needs. For more information,
see Custom entity recognition

November 16, 2018

544

https://docs.aws.amazon.com/comprehend/latest/dg/kms-in-comprehend.html
https://docs.aws.amazon.com/comprehend/latest/dg/kms-in-comprehend.html
https://docs.aws.amazon.com/comprehend/latest/dg/kms-in-comprehend.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-entity-recognition.html
https://docs.aws.amazon.com/comprehend/latest/dg/custom-entity-recognition.html

Amazon Comprehend Developer Guide

New feature You can use Amazon
Comprehend to build your
own models for custom
classification, assigning a
document to a class or a
category. For more informati
on, see Document classific
ation.

November 15, 2018

Region expansion Amazon Comprehend is now
available in Europe (Frankfurt)
(eu-central-1).

October 10, 2018

Language expansion In addition to English
and Spanish Amazon
Comprehend can now also
examine documents in
French, German, Italian,
and Portuguese. For more
information, see Supported
languages in Amazon
Comprehend.

October 10, 2018

Region expansion Amazon Comprehend is
now available in Asia Pacific
(Sydney) (ap-southeast-2).

August 15, 2018

New feature Amazon Comprehend now
parses documents to discover
the syntax of a document and
the part of speech for each
word. For more information,
see Syntax.

July 17, 2018

545

https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#comprehend_region
https://docs.aws.amazon.com/comprehend/latest/dg/how-document-classification.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#comprehend_region
https://docs.aws.amazon.com/comprehend/latest/dg/how-syntax.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-syntax.html

Amazon Comprehend Developer Guide

New feature Amazon Comprehend now
supports asynchronous batch
processing for language, key
phrase, entity, and sentiment
 detection. For more informati
on, see Asynchronous batch
processing .

June 27, 2018

New guide This is the first release of
the Amazon Comprehend
Developer Guide.

November 29, 2017

546

https://docs.aws.amazon.com/comprehend/latest/dg/how-async.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-async.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-async.html

Amazon Comprehend Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

547

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Comprehend
	Table of Contents
	What is Amazon Comprehend?
	Amazon Comprehend insights
	Amazon Comprehend Custom
	Flywheels
	Document clustering (topic modeling)
	Examples
	Benefits
	Amazon Comprehend pricing
	Are you a first-time user of Amazon Comprehend?

	How it works
	Insights
	Entities
	Events
	
	Entities
	Events

	Detect events results format
	Supported types for entities, events, and arguments
	Entity types
	Event types
	Argument types

	Key phrases
	Dominant language
	Sentiment
	Targeted sentiment
	Entity types
	Co-reference group
	Output file organization
	Real time analysis using the console
	Console real-time analysis example

	Targeted sentiment output example

	Syntax analysis

	Amazon Comprehend Custom
	Topic modeling
	Document processing modes
	Single-document processing
	Multiple document synchronous processing
	Asynchronous batch processing

	Languages supported in Amazon Comprehend
	Supported languages
	Languages supported by Amazon Comprehend features

	Setting up
	Sign up for an AWS account
	Create an administrative user
	Set up the AWS Command Line Interface (AWS CLI)
	Grant programmatic access

	Getting started with Amazon Comprehend
	Analysis using the Amazon Comprehend console
	Real-time analysis using the built-in models
	Entities
	Key phrases
	Language
	Personally identifiable information (PII)
	Offsets
	Labels

	Sentiment
	Targeted sentiment
	Syntax

	Running analysis jobs using the console

	Using the Amazon Comprehend API
	Using Amazon Comprehend with an AWS SDK
	Real-time analysis using the API
	Detecting the dominant language
	Using the AWS Command Line Interface
	Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

	Detecting named entities
	Using the AWS Command Line Interface
	Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

	Detecting key phrases
	Using the AWS Command Line Interface
	Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

	Determining sentiment
	Using the AWS Command Line Interface
	Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

	Real-time analysis for targeted sentiment
	Using the AWS Command Line Interface

	Detecting syntax
	Using the AWS Command Line Interface.
	Using the AWS SDK for Java, SDK for Python, or AWS SDK for .NET

	Real-time batch APIs
	Batch processing with the AWS CLI
	Detect the dominant language using a batch (AWS CLI)
	Detect entities using a batch (AWS CLI)
	Detect key phrases using a batch (AWS CLI)
	Detect sentiment using a batch (AWS CLI)

	Batch processing with the AWS SDK for .NET

	Async analysis jobs using the API
	Async analysis for Amazon Comprehend insights
	Prerequisites
	Starting an analysis job
	Monitoring analysis jobs
	Getting analysis results
	Getting dominant language detection results
	Getting entity detection results
	Getting key phrase detection results
	Getting personally identifiable information (PII) detection results
	Getting sentiment detection results

	Async analysis for targeted sentiment
	Before you start
	Analyzing targeted sentiment using the AWS CLI

	Async analysis for event detection
	Before you start
	Detect events using the AWS CLI
	List events using the AWS CLI
	Describe events using the AWS CLI
	Get events detection results

	Async analysis for topic modeling
	Before you start
	Using the AWS Command Line Interface
	Using the SDK for Python or AWS SDK for .NET

	Trust and safety
	Toxicity detection
	Detecting toxic content using the API

	Prompt safety classification
	Prompt safety classification using the API

	PII detection and redaction

	Personally identifiable information (PII)
	Detecting PII entities
	Locate PII entities
	Redact PII entities
	PII universal entity types
	Country-specific PII entity types

	Labeling PII entities
	PII real-time analysis (Console)
	Offsets
	Labels

	PII asynchronous analysis jobs (Console)
	PII real-time analysis (API)
	Locating PII real-time entities (API)
	Locating PII using (CLI)

	Labeling PII real-time entities (API)
	Labeling PII entities (CLI)

	PII asynchronous analysis jobs (API)
	Locating PII entities with asynchronous jobs (API)
	Before you start
	Input parameters
	Async Job methods
	Output file format
	Async analysis using the AWS Command Line Interface

	Redacting PII entities with asynchronous jobs (API)
	Before you start
	Input parameters
	Output file format
	PII redaction using the AWS Command Line Interface

	Document processing
	Inputs for real-time custom analysis
	Plain text documents
	Semi-structured documents
	Image files and scanned PDF files
	Amazon Textract output
	Maximum document sizes for real-time analysis
	Errors in semi-structured documents
	Page-level errors
	Document-level errors

	Inputs for asynchronous custom analysis
	Plain text documents
	Semi-structured documents
	Image files and scanned PDF files
	Amazon Textract output JSON files

	Setting text extraction options
	Best practices for images

	Custom classification
	Preparing classifier training data
	Classifier training file formats
	CSV files
	Augmented manifest file

	Multi-class mode
	Plain-text models
	CSV file
	Augmented manifest file

	Native document models
	CSV file

	Multi-label mode
	Plain-text models
	CSV file
	Augmented manifest file

	Native document models
	CSV file

	Training classification models
	Train custom classifiers (console)
	Train custom classifiers (API)
	Training custom classification using the AWS Command Line Interface
	Using the AWS SDK for Java or SDK for Python

	Test the training data
	Classifier training output
	Confusion matrix
	Confusion matrix for multi-class mode
	Confusion matrix for multi-label mode

	Additional outputs for native document models
	Amazon Textract output
	Document annotation failures

	Custom classifier metrics
	Metrics
	Accuracy
	Precision (macro precision)
	Recall (macro recall)
	F1 score (macro F1 score)
	Hamming loss
	Micro precision
	Micro recall
	Micro F1 score

	Improving your custom classifier's performance

	Running real-time analysis
	Real-time analysis for custom classification (console)
	Creating an endpoint for custom classification
	Running real-time custom classification

	Real-time analysis for custom classification (API)
	Creating an endpoint for custom classification
	Running real-time custom classification
	Using the AWS Command Line Interface
	Classify text using the AWS CLI
	Classify a semi-structured document using the AWS CLI

	Outputs for real-time analysis
	Outputs for text inputs
	Outputs for semi-structured inputs

	Running asynchronous jobs
	File formats for async analysis
	Analysis jobs for custom classification (console)
	Analysis jobs for custom classification (API)
	Using the AWS Command Line Interface
	Using the AWS SDK for Java or SDK for Python

	Outputs for asynchronous analysis jobs
	Outputs for text inputs
	Outputs for semi-structured input documents

	Custom entity recognition
	Preparing entity recognizer training data
	When to use annotations vs entity lists
	Entity lists (plaintext only)
	Best practices

	Annotations
	Minimum number of annotations
	Annotation best practices
	Plain-text annotation files
	PDF annotation files
	Annotating PDF files
	Setting up your environment
	Uploading a PDF to an S3 bucket
	Creating an annotation job
	Annotating with SageMaker Ground Truth

	Training custom entity recognizer models
	Train custom recognizers (console)
	Creating a custom entity recognizer using the console - CSV format
	Creating a custom entity recognizer using the console - augmented manifest

	Train custom entity recognizers (API)
	Training custom entity recognizers using the AWS Command Line Interface
	Training custom entity recognizers using the AWS SDK for Java
	Training custom entity recognizers using Python (Boto3)

	Custom entity recognizer metrics
	Improving custom entity recognizer performance

	Running real-time custom recognizer analysis
	Real-time analysis for custom entity recognition (console)
	Creating an endpoint for custom entity detection
	Running real-time custom entity detection

	Real-time analysis for custom entity recognition (API)
	Creating an endpoint for custom entity detection
	Creating an Endpoint with the AWS CLI

	Running real-time custom entity detection
	Detecting entities in text using the AWS CLI
	Detecting entities in semi-structured documents using the AWS CLI

	Outputs for real-time analysis
	Outputs for text inputs
	Outputs for semi-structured inputs

	Running analysis jobs for custom entity recognition
	Starting a custom entity detection job (console)
	Starting a custom entity detection job (API)
	Detecting custom entities using the AWS Command Line Interface
	Detecting custom entities using the AWS SDK for Java
	Detecting custom entities using the AWS SDK for Python (Boto3)
	Overriding API actions for PDF files

	Outputs for asynchronous analysis jobs
	Outputs for text inputs
	Outputs for semi-structured inputs

	Creating and managing custom models
	Model versioning with Amazon Comprehend
	Copying custom models between AWS accounts
	Sharing a custom model with another AWS account
	Before you begin
	Required permissions
	IAM policy statement
	AWS KMS key policy statement

	Resource-based policies for custom models
	Step 1: Add a resource-based policy to a custom model
	AWS Management Console
	AWS CLI
	Amazon Comprehend API

	Step 2: Provide the details that others need to import

	Importing a custom model from another AWS account
	Before you begin
	Required permissions
	IAM policy statement
	IAM service role for AWS KMS encryption

	Importing a custom model
	AWS Management Console
	AWS CLI
	Amazon Comprehend API

	Flywheels
	Flywheel overview
	Flywheel datasets
	Flywheel creation
	Flywheel states
	Flywheel iterations

	Flywheel data lakes
	Data lake folder structure
	Data lake management

	IAM policies and permissions
	Configure IAM user permissions
	Configure permissions for AWS KMS keys
	Create a data access role

	Configuring flywheels using the console
	Create a flywheel
	Update a flywheel
	Delete a flywheel

	Configuring flywheels using the API
	Create a flywheel for an existing model
	Create a flywheel for a new model
	Describe a flywheel
	Update a flywheel
	Delete a flywheel
	List the flywheels

	Configuring datasets
	Creating a dataset (console)
	Creating a dataset (API)
	Describe a dataset

	Flywheel iterations
	Iteration workflow
	Managing iterations (console)
	Start a flywheel iteration (console)
	Analyze iteration results (Console)
	Promote new model version (Console)

	Managing iterations (API)
	Start flywheel iteration (API)
	Promote new model version (API)
	Describe flywheel iteration results (API)
	Get iteration history (API)

	Using flywheels for analysis
	Real-time analysis
	Asynchronous jobs
	

	Managing Amazon Comprehend endpoints
	Overview of Amazon Comprehend endpoints
	Using Amazon Comprehend endpoints
	Monitoring Amazon Comprehend endpoints
	Updating Amazon Comprehend endpoints
	Using Trusted Advisor with Amazon Comprehend
	Amazon Comprehend underutilized endpoints
	Amazon Comprehend endpoint access risk

	Deleting Amazon Comprehend endpoints
	Auto scaling with endpoints
	Target tracking
	Setting up target tracking
	Removing target tracking

	Scheduled scaling
	Setting up scheduled scaling
	Removing scheduled scaling

	Tagging your resources
	Tagging a new resource
	Viewing, editing, and deleting tags associated with a resource

	Code examples for Amazon Comprehend using AWS SDKs
	Actions for Amazon Comprehend using AWS SDKs
	Create an Amazon Comprehend document classifier using an AWS SDK
	Delete an Amazon Comprehend document classifier using an AWS SDK
	Describe an Amazon Comprehend document classification job using an AWS SDK
	Describe an Amazon Comprehend document classifier using an AWS SDK
	Describe an Amazon Comprehend topic modeling job using an AWS SDK
	Detect entities in a document with Amazon Comprehend using an AWS SDK
	Detect key phrases in a document with Amazon Comprehend using an AWS SDK
	Detect personally identifiable information in a document with Amazon Comprehend using an AWS SDK
	Detect syntactial elements of a document with Amazon Comprehend using an AWS SDK
	Detect the dominant language in a document with Amazon Comprehend using an AWS SDK
	Detect the sentiment of a document with Amazon Comprehend using an AWS SDK
	List Amazon Comprehend document classification jobs using an AWS SDK
	List Amazon Comprehend document classifiers using an AWS SDK
	List Amazon Comprehend topic modeling jobs using an AWS SDK
	Start an Amazon Comprehend document classification job using an AWS SDK
	Start an Amazon Comprehend topic modeling job using an AWS SDK

	Scenarios for Amazon Comprehend using AWS SDKs
	Detect document elements with Amazon Comprehend and an AWS SDK
	Run an Amazon Comprehend topic modeling job on sample data using an AWS SDK
	Train a custom Amazon Comprehend classifier and classify documents using an AWS SDK

	Cross-service examples for Amazon Comprehend using AWS SDKs
	Build an Amazon Transcribe streaming app
	Create an Amazon Lex chatbot to engage your website visitors
	Create a web application that sends and retrieves messages by using Amazon SQS
	Create an application that analyzes customer feedback and synthesizes audio
	Detect entities in text extracted from an image using an AWS SDK

	Security in Amazon Comprehend
	Data protection in Amazon Comprehend
	KMS encryption in Amazon Comprehend
	Cross-service confused deputy prevention
	Using source account
	Trust policy for endpoints of encrypted models
	Create custom model

	Protect jobs by using an Amazon Virtual Private Cloud
	Configure a job for Amazon VPC access
	Configure your VPC for Amazon Comprehend jobs

	Amazon Comprehend and interface VPC endpoints (AWS PrivateLink)
	Considerations for Amazon Comprehend VPC endpoints
	Creating an interface VPC endpoint for Amazon Comprehend
	Creating a VPC endpoint policy for Amazon Comprehend

	Identity and Access Management for Amazon Comprehend
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Comprehend works with IAM
	Identity-based policies for Amazon Comprehend
	Identity-based policy examples for Amazon Comprehend

	Resource-based policies within Amazon Comprehend
	Policy actions for Amazon Comprehend
	Policy resources for Amazon Comprehend
	Policy condition keys for Amazon Comprehend
	ACLs in Amazon Comprehend
	ABAC with Amazon Comprehend
	Using temporary credentials with Amazon Comprehend
	Forward access sessions for Amazon Comprehend
	Service roles for Amazon Comprehend
	Service-linked roles for Amazon Comprehend

	Identity-based policy examples for Amazon Comprehend
	Policy best practices
	Using the Amazon Comprehend console
	Allow users to view their own permissions
	Permissions required to perform document analysis actions
	Permissions required to use KMS encryption
	AWS managed (predefined) policies for Amazon Comprehend
	Role-based permissions required for asynchronous operations
	Permissions to allow all Amazon Comprehend actions
	Permissions to allow topic modeling actions
	Permissions required for a custom asynchronous analysis job

	AWS managed policies for Amazon Comprehend
	AWS managed policy: ComprehendFullAccess
	AWS managed policy: ComprehendReadOnly
	Amazon Comprehend updates to AWS managed policies

	Troubleshooting Amazon Comprehend identity and access
	I am not authorized to perform an action in Amazon Comprehend
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon Comprehend resources

	Logging Amazon Comprehend API calls with AWS CloudTrail
	Amazon Comprehend information in CloudTrail
	Example: Amazon Comprehend log file entries

	Compliance validation for Amazon Comprehend
	Resilience in Amazon Comprehend
	Infrastructure security in Amazon Comprehend

	Guidelines and quotas
	Supported Regions
	Quotas for built-in models
	Real-time (synchronous) analysis
	Single document operations
	General quotas for single document operations
	Operation-specific quotas for single document operations

	Multiple document operations
	Request throttling for real-time (synchronous) requests

	Asynchronous analysis
	General quotas for asynchronous operations
	Operation-specific quotas for asynchronous jobs
	Sentiment
	Targeted sentiment
	Events
	Topic modeling

	Request throttling for asynchronous requests

	Quotas for custom models
	General quotas
	Quotas for endpoints
	Document classification
	General quotas for document classification
	Classification for plain text documents
	Training
	Real-time (synchronous) analysis
	Asynchronous analysis

	Classification for semi-structured documents
	Training a native document model with semi-structured docs
	Real-time (synchronous) analysis
	Asynchronous analysis

	Custom entity recognition
	Custom entity recognition for plain text documents
	Training
	Real-time (synchronous) analysis
	Asynchronous analysis

	Custom entity recognition for semi-structured documents
	Training
	Real-time (synchronous) analysis
	Asynchronous analysis

	Quotas for flywheels
	General quotas for flywheels
	Dataset quotas for custom classification models
	Dataset quotas for custom entity recognition models

	Tutorials and other resources
	Tutorial: Analyzing insights from customer reviews with Amazon Comprehend
	Prerequisites
	Step 1: Adding documents to Amazon S3
	Prerequisites
	Download sample data
	Create an Amazon S3 bucket
	Create an Amazon S3 bucket (console)
	Create an Amazon S3 bucket (AWS CLI)

	(Console only) create folders
	Upload the input data
	Upload sample documents to a bucket (console)
	Upload sample documents to a bucket (AWS CLI)

	Step 2: (CLI only) creating an IAM role for Amazon Comprehend
	Prerequisites
	Create an IAM role
	Attach an IAM policy to the IAM role

	Step 3: Running analysis jobs on documents in Amazon S3
	Prerequisites
	Analyze sentiment and entities
	Analyze sentiments and entities (console)
	Analyze sentiments and entities (AWS CLI)

	Step 4: Preparing the Amazon Comprehend output for data visualization
	Prerequisites
	Download the Output
	Download the Output Files (Console)
	Download the output files (AWS CLI)

	Extract the output files
	Extract the output files (GUI file system)
	Extract the output files (terminal)

	Upload the extracted files
	Upload the extracted files to Amazon S3 (console)
	Upload the extracted files to Amazon S3 (AWS CLI)

	Load the data into an AWS Glue Data Catalog
	Load the data into an AWS Glue Data Catalog (console)
	Load the data into an AWS Glue Data Catalog (AWS CLI)

	Prepare the data for analysis

	Step 5: Visualizing Amazon Comprehend output in Amazon QuickSight
	Prerequisites
	Give Amazon QuickSight access
	Import the datasets
	Create a sentiment visualization
	Create an entities visualization
	Publish a dashboard
	Clean up

	Using Amazon S3 object Lambda access points for personally identifiable information (PII)
	Controlling access to documents with personally identifiable information (PII)
	Creating an Amazon S3 object Lambda access point to control access to documents
	Creating an Amazon S3 object Lambda access point using the AWS Command Line Interface

	Invoking an Amazon S3 object Lambda access point to control access to documents
	Invoking an Amazon S3 object Lambda access point using the AWS Command Line Interface

	Redacting personally identifiable information (PII) from documents
	Creating an Amazon S3 object Lambda access point to redact PII from documents
	Creating an Amazon S3 object Lambda access point using the AWS Command Line Interface

	Invoking an Amazon S3 object Lambda access point to redact PII from documents
	Invoking an Amazon S3 object Lambda access point using the AWS Command Line Interface

	Solution: Analyzing text with Amazon Comprehend and OpenSearch

	API reference
	Document history for Amazon Comprehend
	AWS Glossary

