aws

Developer Guide

AWS Database Encryption SDK

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Database Encryption SDK Developer Guide

AWS Database Encryption SDK: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Database Encryption SDK Developer Guide

Table of Contents

What is the AWS Database ENcryption SDK?ciiiiiiiiiiinneeenneesiiiiicceiinnsssssssssssssssssssssssssssssssssses 1
Developed in OPeNn-SOUIrCE rEPOSITOMIEScceceeeeeeeeieietertestecteee s e e e et et e st e saesaessessessesseesseaesaesessensenss 3
SUPPOrt aNd MAINTENANCEceeeeeeeeee ettt se e e et e et esaesae st e te s e e se s e e se e e etesesaassassassassasseansans 3
SENAING FEEADACK ...ttt e e et et b e s b e e e e e e e e e e saenaeseasenes 3
CONCEPLS ettt ettt s e et s b e s sae e s b e s s sa e s b e s s sa e s b e s st e s b e e e s e essbeessaa s ae e s e e et e e st e e ae e s e e e aa e s e eeteeeraennaeas 4

ENVELOPE ENCIYPLION ..ttt ettt et e st e e e st e e e s s e e et et e b e aasbassassesnnenaanes 5
DA KEY oottt et te s e e et e st st e st e st e st e ae e e e e s et et et e b e s e e s e e Raeat et et e tessaeseeseeneentententantanes 6
WIEAPPING KBY ettt ettt te et e e e e st et e st e st et e s b e e se e e e e e e et et entassasassasseesaeneessensanes 7
KEYFINGS ettt ettt e et e st e s ae e s b e s s st e s sae s aa e e saesssaessaesssaessba s seasssessaesssaesstesssesssaessseesnsesssennes 8
CryptographiC @CHIONS ...ttt a et et e st e s e s e s e sa e e e e et e tesaansanes 8
Material AESCIIPLION ..ottt ettt et e s te st e et e e e e e e ae st et esaessassesseeneesaansansan 9
ENCrYPLION CONTEXT ettt ettt st e e e s ae e st e s sae s e e s ae e s e e s saa s sa e s aeessaasssassaasssans 9
Cryptographic MaterialS MAaN@gEN ...ttt e sae e s e e e e e e s e saesaessenaans 10
Symmetric and asymmetric @NCrYPLiON ...ttt a e ae s 10
KEY COMMUEIMIENT ...ttt ettt s s e e st e s s ae s s e e s saa e st e s saeessaesssaessnasssasssaennns 11
DiIGItal SIGNALUIES ..ottt e et e st e st st e s e e e e e e s et et e st et e s tessessaesaensansensansanes 12
HOW Tt WOTKS ettt sttt sttt sttt st ettt et s e b et s aa st e e ssassesaenas 13
ENCIYPL QN SIGN oottt ettt e st e st e st e st e e e e s e e s et et e ste st e sasseesasssensansensansansans 13
DECIYPL @NA VO ettt sttt s b e st e s s e se e e a e b et e s tessaeseeneesnanes 15
Supported algorithm SUITES ...ttt st s e s e e e e e st aanean 15
Default algorithim SUILE ...ttt ettt s e s e e e a e e aan 16
AES-GCM without digital SIGNATUIESccueeieeieeeeeeeeteeeese et ae e e e e s aenens 17

Interacting With AWS KIMS ... iiiiiiiiertniiiicieciiiiiiessssssssssssssssscsss 18

Configuring the SDKciiiiiiiiiiieeeiiiiieeeiiiiteeessssssssssssssecsesses 20
Selecting a programming LANQUAGE ..ottt sre e e e saesaesae st e ssessessessaesnennens 20
SEleCting WIAPPING KEYS ..ottt ettt et estesse st s e s e e s et e st e aessessesseesaensensansansansansans 20
Creating @ diSCOVENY FILLON ...ttt e a et sae st e s eese e e e e saeaanes 22
Working with multitenant databases ... 23
Creating SIgNEA DEACONS ..ottt ettt te e s e e e e e et et e st e ste s b e saesesseenn et ansansansanes 24

USING KEYFINGS ceeeeeiiiiiiiiiiiiineeennniiiiisieeeessess 31
HOW KEYIINGS WOTK ...ttt te e ste e te e e e e e e et et e st e st e s s asseeseeseesaessa st ansassassassessassssnsansanes 31
CROOSING @ KEYIING vttt ettt cte s teste e e s e e e et et e stestesaessesseesae s et esaasassassassesseessensensensansansans 32

AWS KIMS KEYFINGS ..veveeeeeieeiiiteitestesteeeeeeeetestestessessessessessssssessessessessessessessasssessessessensessassassessssssessensans 33

AWS KMS Hierarchical KEYIINGS ..ottt ettt s ae st se s s n e a e sae s 44

AWS Database Encryption SDK Developer Guide

RAW AES KEYIINGS vttt ettt te e s teste s e e e s s e s et e steste st e ssessaesaesaessanaessansessassassaensansans 68
RAW RSA KEYFINGS ...uvitiieiecieeeeeeeeteitestestestestesseeee e ssessestassessessessssssesssssassensassassassessessassesssesensansansen 70
MULLISKEYTINGS ettt ettt st e e e et e st st e st et e s be e seeseesa e e et entesaenaesasassesssensanes 73
Searchable eNCrYPLIONcciiiiieercciiiiiciiiiiieeeeaeneiiiiisetittteaesssasssssnss 76
Are beacons right for MY dataSet? ...ttt an 77
Searchable eNcryption SCENAMO ..ottt ste e s e s e s e e e et esaesaasaasseesaennannens 80
BRACONS ...ttt ettt et et b e s sb e et b e et et a et et s b et e et e st et e e st e ebesaeentesneeaee 81
STANAAIA DEACONS ...ttt sttt ettt s bt et s e sae e e e s sesbe st e e ssessesaesessensanens 82
COMPOUNT DEACONSeeeeieeieteteteeteeeeee et ete e ste s e sse s e e e e e e s e e et e stesse st aesessaessessessassansansesseeseeseensensanes 84
PLlAaNNiNg DEACONS ..ttt ettt ettt e et et e st st e s ae st e e s e e e e e et e s et etasassesseesaessensensansansans 85
Considerations for multitenant databases ... 86
ChOOSING @ DEACON LYPE ..ttt et ettt st e st e st e s e e e e e e s et e s et e tessassassaesaenaannans 86
ChooSiNg @ BEACON LENGLN ...ttt e saesaesse s e seennans 93
ChoOSING @ DEACON NAME ...ttt ettt et este st e e e e e s e s et e sbesaessassessassassnensantans 99
CONFIGUIING DBACONS ...ttt et st e st et e s et e e e et e b et e s s et e saeseeseensanaansansanes 100
Configuring standard DEACONSce ettt st s ae e s re s s e s aeaeaan 100
Configuring cOMPOUNd DEACONSooieieieeeeeeceeeetete et e et et te e e e e e e e e e e aesaesaaeas 108
EXample CONTIQUIAtIONSovieeeeeceeeeeee ettt ve e e a e st et aestesbe s e e e e asnennan 116
USING DBACONS ...ttt e e et et e st e st e st e s b e s s e e e e e esa e st esaastessassassessaeseessensensansans 120
QUENYING DEACONS ...ttt s e e e st et e st e st e st e st e s seesa e e e e e s ensantenaanes 122
Searchable encryption for multitenant databases ... 124
Querying beacons in a multitenant database ... 126
AMaAzon DYNAMODBcciiiiiiiiniiimniiiimeciniseisissesiessesssssessssssessssssssssssssssssssssssssssssssssssssesssssssssssnes 128
Client-side and server-side @NCrYPLiONccccceeeeeeieeceeetere et sre e e e e s e e aesae s 129
Which fields are encrypted and SIgNed? ...ttt e e aens 131
ENcrypting attribUte VALUES ...ttt ettt ae s s nnan 132
SIGNING ThE FEIM ettt e s e e e e s e et e s tesae st e sse e e esaesnennan 133
Searchable encryption in DYNAmODB ...ttt a et saesae st e se s e e aens 133
Configuring secondary indexes With DEACONSc.coeeirieieieceeecec e 133
Testing DEACON OULPULS ..ottt a ettt ae s s e e e e e e e e aesaanaenean 135
Updating your data MOAEL ...ttt sttt ae st et e st s e e sasanennan 139
Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributesccccevmverreecrrireceecreeeeeeeenenns 141
REMOVE eXiStiNG QttriDULES ...cveeeeeee ettt s 141
Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .iiooteiccieicrieenreeecreeesneessrneesnneesneeesnsessnnaens 142

AWS Database Encryption SDK Developer Guide

Change an existing SIGN_ONLY or STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

attribute to ENCRYPT_AND_STIGN ..cccoeciririeieenieteeseneerteensesteessesseseeessessesessessesssessessesessesseseeses 143
Add @ NeW DO_NOTHING GtEFIDULE ..ccoeueeeeeeiieeeieteeeeeeecete ettt cesreeesaeeesaseessssessssneesssseesssnessnns 143
Change an existing SIGN_ONLY attribute to
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ..oovirrrirererirenreneeesreteeseeneeeeesseneenessesseneenes 144
Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
STGN_ONLY etitetertentereree st ste st e stesseste st st et st e st e saessessasaeesesste st essessassassassesssenssssensessansessassassesnsensenes 145
Programming LANGQUAGEScoceeirirerieieereteeeeete ettt st se st et se st se st et st e st s et e se s 145
JAVA ettt st et st a e st e s n e e e e Rt e e e e e st e e ae s Rt et e e eneeennenanes 146
AN ET ettt ettt s e st st ettt et e a e s R e e R e e R e Rt et et et et e s e s sesae e st ent et et e santans 180
=T« =TT 196
AWS Database Encryption SDK for DynamoDB version SUPPOrtcccccevevereecerenieresesveneenenns 197
HOW T WOTKS ettt ettt st sttt s b e s s e st st et et e b e s e saasaesanenaesnns 198
@] o [«(= 01 £SO SRS ORRURP 201
Cryptographic MaterialS PrOVIAEN ...ttt sttt et saessessessassasaees 206
Programming LANGQUAGEScc.ccrieeeirieereieeeeste ettt ettt se st et sae st st sae e e e nes 236
Changing your data MOAeLl ...ttt ettt sae e 263
TrOUDLESNOOTING ...ttt sttt et et ne 267
DynamoDB Encryption ClIeNt reNameccccciiiiiinmnnneeeeecissscccccennnss 271
REFEIEINCE ...uruneenniiiiiiiiiinnnntiiecississnnnssticcsssssssssssnesssnssssssssssssssssssssssssss 273
Material description fOrMAt ...ttt b et s s s n s 273
AWS KMS Hierarchical keyring technical detailscoccoeereneninneneneeeeeereee e 276
(Do Tel 1Ty 1 T=T o £ T o] o N 278

AWS Database Encryption SDK Developer Guide

What is the AWS Database Encryption SDK?

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK is a set of software libraries that enable you to include client-
side encryption in your database design. The AWS Database Encryption SDK provides record-level
encryption solutions. You specify which fields are encrypted and which fields are included in the
signatures that ensure the authenticity of your data. Encrypting your sensitive data in transit and at
rest helps ensure that your plaintext data isn't available to any third party, including AWS. The AWS
Database Encryption SDK is provided free of charge under the Apache 2.0 license.

This developer guide provides a conceptual overview of the AWS Database Encryption SDK,
including an introduction to its architecture, details about how it protects your data, how it differs
from server-side encryption, and guidance on selecting critical components for your application to
help you get started.

The AWS Database Encryption SDK supports Amazon DynamoDB with attribute-level encryption.
Version 3.x of the Java client-side encryption library for DynamoDB is a major rewrite of the
DynamoDB Encryption Client for Java. It includes many updates, such as a new structured data
format, improved multitenancy support, searchable encryption, and support for seamless schema
changes.

The AWS Database Encryption SDK has the following benefits:

Designed especially for database applications

You don't need to be a cryptography expert to use the AWS Database Encryption SDK.
The implementations include helper methods that are designed to work with your existing
applications.

After you create and configure the required components, the encryption client transparently
encrypts and signs your records when you add them to a database, and verifies and decrypts
them when you retrieve them.

AWS Database Encryption SDK Developer Guide

Includes secure encryption and signing

The AWS Database Encryption SDK includes secure implementations that encrypt the field
values in each record using a unique data encryption key, and then sign the record to protect it
against unauthorized changes, such as adding or deleting fields, or swapping encrypted values.

Uses cryptographic materials from any source

The AWS Database Encryption SDK uses keyrings to generate, encrypt, and decrypt the unique

data encryption key that protects your record. Keyrings determine the wrapping keys that
encrypt that data key.

You can use wrapping keys from any source, including cryptography services, such as AWS Key
Management Service (AWS KMS) or AWS CloudHSM. The AWS Database Encryption SDK doesn't
require an AWS account or any AWS service.

Support for cryptographic materials caching

The AWS KMS Hierarchical keyring is a cryptographic materials caching solution that reduces
the number of AWS KMS calls by using AWS KMS protected branch keys persisted in an Amazon
DynamoDB table, and then locally caching branch key materials used in encrypt and decrypt
operations. It allows you to protect your cryptographic materials under a symmetric encryption
KMS key without calling AWS KMS every time you encrypt or decrypt a record. The AWS KMS
Hierarchical keyring is a good choice for applications that need to minimize calls to AWS KMS.

Searchable encryption

You can design databases that can search encrypted records without decrypting the entire
database. Depending on your threat model and query requirements, you can use searchable

encryption to perform exact match searches or more customized complex queries on your
encrypted database.

Support for multitenant database schemas

The AWS Database Encryption SDK enables you to protect data stored in databases with a
shared schema by isolating each tenant with distinct encryption materials. If you have multiple
users performing encrypt operations within your database, use one of the AWS KMS keyrings
to provide each user with a distinct key to use in their cryptographic operations. For more
information, see Working with multitenant databases.

Support for seamless schema updates

When you configure the AWS Database Encryption SDK, you provide cryptographic actions that
tell the client which fields to encrypt and sign, which fields to sign (but not encrypt), and which

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS Database Encryption SDK Developer Guide

to ignore. After you have used the AWS Database Encryption SDK to protect your records, you
can still make changes to your data model. You can update your cryptographic actions, such as
adding or removing encrypted fields, in a single deployment.

Developed in open-source repositories

The AWS Database Encryption SDK is developed in open-source repositories on GitHub. You can
use these repositories to view the code, read and submit issues, and find information that is specific
to your implementation.

The AWS Database Encryption SDK for DynamoDB

» The aws-database-encryption-sdk-dynamodb repository on GitHub supports version 3.x and
later of the AWS Database Encryption SDK for DynamoDB in Java and .NET.

Version 3.x of the AWS Database Encryption SDK for DynamoDB is a product of Dafny, a
verification-aware language in which you write specifications, the code to implement them, and
the proofs to test them. The result is a library that implements the features of the AWS Database
Encryption SDK for DynamoDB in a framework that assures functional correctness.

Support and maintenance

The AWS Database Encryption SDK uses the same maintenance policy that the AWS SDK and
Tools use, including its versioning and lifecycle phases. As a best practice, we recommend that

you use the latest available version of the AWS Database Encryption SDK for your database
implementation, and upgrade as new versions are released.

For more information, see the AWS SDKs and Tools maintenance policy in the AWS SDKs and Tools
Reference Guide.

Sending feedback

We welcome your feedback! If you have a question or comment, or an issue to report, please use
the following resources.

If you discover a potential security vulnerability in the AWS Database Encryption SDK, please notify
AWS security. Do not create a public GitHub issue.

Developed in open-source repositories 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/

AWS Database Encryption SDK Developer Guide

To provide feedback on this documentation, use the feedback link on any page.

AWS Database Encryption SDK concepts

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

This topic explains the concepts and terminology used in the AWS Database Encryption SDK.

To learn how the components of the AWS Database Encryption SDK interact, see How the AWS
Database Encryption SDK works.

To learn more about the AWS Database Encryption SDK, see the following topics.

« Learn how the AWS Database Encryption SDK uses envelope encryption to protect your data.

 Learn about the elements of envelope encryption: the data keys that protect your records and
the wrapping keys that protect your data keys.

 Learn about the keyrings that determine which wrapping keys you use.

» Learn about the encryption context that adds integrity to your encryption process.

» Learn about the material description that the encryption methods add to your record.

» Learn about the cryptographic actions that tell the AWS Database Encryption SDK what fields to
encrypt and sign.

Topics
« Envelope encryption

« Data key
« Wrapping key

 Keyrings
» Cryptographic actions

» Material description

« Encryption context

» Cryptographic materials manager

o Symmetric and asymmetric encryption

Concepts 4

AWS Database Encryption SDK Developer Guide

» Key commitment

 Digital signatures

Envelope encryption

The security of your encrypted data depends in part on protecting the data key that can decrypt it.
One accepted best practice for protecting the data key is to encrypt it. To do this, you need another
encryption key, known as a key-encryption key or wrapping key. The practice of using a wrapping
key to encrypt data keys is known as envelope encryption.

Protecting data keys

The AWS Database Encryption SDK encrypts each field with a unique data key. Then it encrypts

each data key under the wrapping key you specify. It stores the encrypted data keys in the
material description.

To specify your wrapping key, you use a keyring.

Stored
g together in
your database

e o i
Encrypts :
Plaintext data key Plaintext field Encrypted field
@ .0 O
Encrypts
Wrapping key Plaintext data key Encrypted data key

Encrypting the same data under multiple wrapping keys

You can encrypt the data key with multiple wrapping keys. You might want to provide different
wrapping keys for different users, or wrapping keys of different types, or in different locations.
Each of the wrapping keys encrypts the same data key. The AWS Database Encryption SDK
stores all of the encrypted data keys alongside the encrypted fields in the material description.

To decrypt the data, you need to provide at least one wrapping key that can decrypt the
encrypted data keys.

Envelope encryption 5

AWS Database Encryption SDK Developer Guide

Combining the strengths of multiple algorithms

To encrypt your data, by default, the AWS Database Encryption SDK uses an algorithm suite
with AES-GCM symmetric encryption, an HMAC-based key derivation function (HKDF), and
ECDSA signing. To encrypt the data key, you can specify a symmetric or asymmetric encryption
algorithm appropriate to your wrapping key.

In general, symmetric key encryption algorithms are faster and produce smaller ciphertexts
than asymmetric or public key encryption. But public key algorithms provide inherent separation
of roles. To combine the strengths of each, you can encrypt the data key with public key
encryption.

We recommend using one of the AWS KMS keyrings whenever possible. When you use the AWS
KMS keyring, you can choose to combine the strengths of multiple algorithms by specifying an
asymmetric RSA AWS KMS key as your wrapping key. You can also use a symmetric encryption
KMS key.

Data key

A data key is an encryption key that the AWS Database Encryption SDK uses to encrypt the fields in
a record that are marked ENCRYPT_AND_SIGN in the cryptographic actions. Each data key is a byte
array that conforms to the requirements for cryptographic keys. The AWS Database Encryption SDK
uses a unique data key to encrypt each attribute.

You don't need to specify, generate, implement, extend, protect, or use data keys. The AWS
Database Encryption SDK does that work for you when you call the encrypt and decrypt
operations.

To protect your data keys, the AWS Database Encryption SDK encrypts them under one or more
key-encryption keys known as wrapping keys. After the AWS Database Encryption SDK uses your
plaintext data keys to encrypt your data, it removes them from memory as soon as possible. Then
stores the encrypted data key in the material description. For details, see How the AWS Database
Encryption SDK works.

® Tip
In the AWS Database Encryption SDK, we distinguish data keys from data encryption keys.
As a best practice, all of the supported algorithm suites use a key derivation function. The

Data key 6

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Database Encryption SDK Developer Guide

key derivation function takes a data key as input and returns the data encryption keys
that are actually used to encrypt your records. For this reason, we often say that data is
encrypted "under" a data key rather than "by" the data key.

Each encrypted data key includes metadata, including the identifier of the wrapping key that
encrypted it. This metadata makes it possible for the AWS Database Encryption SDK to identify
valid wrapping keys when decrypting.

Wrapping key

A wrapping key is a key-encryption key that the AWS Database Encryption SDK uses to encrypt the
data key that encrypts your records. Each data key can be encrypted under one or more wrapping
keys. You determine which wrapping keys are used to protect your data when you configure a

keyring.

e

Encrypts

Wrapping key Plaintext data key Encrypted data key

The AWS Database Encryption SDK supports several commonly used wrapping keys, such as AWS
Key Management Service (AWS KMS) symmetric encryption KMS keys (including multi-Region AWS
KMS keys) and asymmetric RSA KMS keys, raw AES-GCM (Advanced Encryption Standard/Galois
Counter Mode) keys, and raw RSA keys. We recommend using KMS keys whenever possible. To

decide which wrapping key you should use, see Selecting wrapping keys.

When you use envelope encryption, you need to protect your wrapping keys from unauthorized
access. You can do this in any of the following ways:

» Use a service designed for this purpose, such as AWS Key Management Service (AWS KMS).
» Use a hardware security module (HSM) such as those offered by AWS CloudHSM.

» Use other key management tools and services.

If you don't have a key management system, we recommend AWS KMS. The AWS Database
Encryption SDK integrates with AWS KMS to help you protect and use your wrapping keys.

Wrapping key 7

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Database Encryption SDK Developer Guide

Keyrings

To specify the wrapping keys you use for encryption and decryption, you use a keyring. You can use
the keyrings that the AWS Database Encryption SDK provides or design your own implementations.

A keyring generates, encrypts, and decrypts data keys. It also generates the MAC keys used to
calculate the Hash-Based Message Authentication Codes (HMACs) in the signature. When you
define a keyring, you can specify the wrapping keys that encrypt your data keys. Most keyrings

specify at least one wrapping key or a service that provides and protects wrapping keys. When
encrypting, the AWS Database Encryption SDK uses all of the wrapping keys specified in the
keyring to encrypt the data key. For help with choosing and using the keyrings that the AWS
Database Encryption SDK defines, see Using keyrings.

Cryptographic actions

Cryptographic actions tell the encryptor which actions to perform on each field in a record.

The cryptographic action values can be one of the following:

« Encrypt and sign - Encrypt the field. Include the encrypted field in the signature.
« Sign only - Include the field in the signature.

« Sign and include in encryption context — Include the field in the signature and encryption
context.

By default, the partition and sort keys are the only attribute included in

the encryption context. You might consider defining additional fields as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT so that the branch key ID supplier for your
AWS KMS Hierarchical keyring can identify which branch key is required for decryption from the

encryption context. For more information, see branch key ID supplier.

(@ Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

« Do nothing - Do not encrypt or include the field in the signature.

Keyrings 8

AWS Database Encryption SDK Developer Guide

For any field that can store sensitive data, use Encrypt and sign. For primary key values (for
example, a partition key and sort key in a DynamoDB table), use Sign only or Sign and include in
encryption context. If you specify any Sign and include in encryption context attributes, then
the partition and sort attributes must also be Sign and include in encryption context. You do not
need to specify cryptographic actions for the material description. The AWS Database Encryption
SDK automatically signs the field that the material description is stored in.

Choose your cryptographic actions carefully. When in doubt, use Encrypt and sign. After you have
used the AWS Database Encryption SDK to protect your records, you cannot change an existing
ENCRYPT_AND_SIGN, STIGN_ONLY, or STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field

to DO_NOTHING, or change the cryptographic action assigned to an existing DO_NOTHING field.
However, you can still make other changes to your data model. For example, you can add or

remove encrypted fields, in a single deployment.

Material description

The material description serves as the header for an encrypted record. When you encrypt and
sign fields with the AWS Database Encryption SDK, the encryptor records the material description
as it assembles the cryptographic materials and stores the material description in a new field
(aws_dbe_head) that the encryptor adds to your record.

The material description is a portable formatted data structure that contains encrypted copies

of the data keys and other information, such as encryption algorithms, encryption context,

and encryption and signing instructions. The encryptor records the material description as

it assembles the cryptographic materials for encryption and signing. Later, when it needs to
assemble cryptographic materials to verify and decrypt a field, it uses the material description as
its guide.

Storing the encrypted data keys alongside the encrypted field streamlines the decryption
operation and frees you from having to store and manage encrypted data keys independently of
the data that they encrypt.

For technical information about the material description, see Material description format.

Encryption context

To improve the security of your cryptographic operations, the AWS Database Encryption SDK
includes an encryption context in all requests to encrypt and sign a record.

Material description 9

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-encryption-context

AWS Database Encryption SDK Developer Guide

An encryption context is a set of name-value pairs that contain arbitrary, non-secret additional
authenticated data. The AWS Database Encryption SDK includes the logical name for your database
and primary key values (for example, a partition key and sort key in a DynamoDB table) in the
encryption context. When you encrypt and sign a field, the encryption context is cryptographically
bound to the encrypted record so that the same encryption context is required to decrypt the field.

If you use an AWS KMS keyring, the AWS Database Encryption SDK also uses the encryption
context to provide additional authenticated data (AAD) in the calls the keyring makes to AWS KMS.

Whenever you use the default algorithm suite, the cryptographic materials manager (CMM) adds
a name-value pair to the encryption context that consists of a reserved name, aws-crypto-

public-key, and a value that represents the public verification key. The public verification key is
stored in the material description.

Cryptographic materials manager

The cryptographic materials manager (CMM) assembles the cryptographic materials that are
used to encrypt, decrypt, and sign your data. Whenever you use the default algorithm suite, the

cryptographic materials include plaintext and encrypted data keys, symmetric signing keys, and an
asymmetric signing key. You never interact with the CMM directly. The encryption and decryption
methods handle it for you.

Because the CMM acts as a liaison between the AWS Database Encryption SDK and a keyring, it

is an ideal point for customization and extension, such as support for policy enforcement. You

can explicitly specify a CMM, but it's not required. When you specify a keyring, the AWS Database
Encryption SDK creates a default CMM for you. The default CMM gets the encryption or decryption
materials from the keyring that you specify. This might involve a call to a cryptographic service,
such as AWS Key Management Service (AWS KMS).

Symmetric and asymmetric encryption

Symmetric encryption uses the same key to encrypt and decrypt data.

Asymmetric encryption uses a mathematically related data key pair. One key in the pair encrypts
the data; only the other key in the pair can decrypt the data. For details, see Cryptographic

algorithms in the AWS Cryptographic Services and Tools Guide.

The AWS Database Encryption SDK uses envelope encryption. It encrypts your data with a

symmetric data key. It encrypts the symmetric data key with one or more symmetric or asymmetric

Cryptographic materials manager 10

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/crypto/latest/userguide/concepts-algorithms.html
https://docs.aws.amazon.com/crypto/latest/userguide/concepts-algorithms.html

AWS Database Encryption SDK Developer Guide

wrapping keys. It adds a material description to the record that includes at least one encrypted
copy of the data key.

Encrypting your data (symmetric encryption)

To encrypt your data, the AWS Database Encryption SDK uses a symmetric data key and an
algorithm suite that includes a symmetric encryption algorithm. To decrypt the data, the AWS
Database Encryption SDK uses the same data key and the same algorithm suite.

Encrypting your data key (symmetric or asymmetric encryption)

The keyring that you supply to an encrypt and decrypt operation determines how the
symmetric data key is encrypted and decrypted. You can choose a keyring that uses symmetric
encryption, such as an AWS KMS keyring with a symmetric encryption KMS key, or one that uses
asymmetric encryption, such as an AWS KMS keyring with an asymmetric RSA KMS key.

Key commitment

The AWS Database Encryption SDK supports key commitment (sometimes known as robustness),

a security property that ensures that each ciphertext can be decrypted only to a single plaintext.
To do this, key commitment ensures that only the data key that encrypted your record will be used
to decrypt it. The AWS Database Encryption SDK includes key commitment for all encryption and
decryption operations.

Most modern symmetric ciphers (including AES) encrypt plaintext under a single secret key, like
the unique data key that the AWS Database Encryption SDK uses to encrypt each plaintext field
marked ENCRYPT_AND_SIGN in a record. Decrypting this record with the same data key returns a
plaintext that is identical to the original. Decrypting with a different key will usually fail. Although
difficult, it's technically possible to decrypt a ciphertext under two different keys. In rare cases, it
is feasible to find a key that can partially decrypt ciphertext into a different, but still intelligible,
plaintext.

The AWS Database Encryption SDK always encrypts each attribute under one unique data key. It
might encrypt that data key under multiple wrapping keys, but the wrapping keys always encrypt
the same data key. Nonetheless, a sophisticated, manually crafted encrypted record might actually
contain different data keys, each encrypted by a different wrapping key. For example, if one

user decrypts the encrypted record it returns 0x0 (false) while another user decrypting the same
encrypted record gets 0x1 (true).

Key commitment 11

AWS Database Encryption SDK Developer Guide

To prevent this scenario, the AWS Database Encryption SDK includes key commitment when
encrypting and decrypting. The encrypt method cryptographically binds the unique data key that
produced the ciphertext to the key commitment, a Hash-Based Message Authentication Code
(HMAC) calculated over the material description using a derivation of the data key. Then it stores
the key commitment in the material description. When it decrypts a record with key commitment,
the AWS Database Encryption SDK verifies that the data key is the only key for that encrypted
record. If data key verification fails, the decrypt operation fails.

Digital signatures

To ensure the authenticity of data as it goes between systems, you can apply a digital signature
to the record. Digital signatures are always asymmetric. You use your private key to create the
signature, and append it to the original record. Your recipient uses a public key to verify that the
record has not been modified since you signed it. You should use digital signatures if the users
encrypting data and the users decrypting data are not equally trusted.

The AWS Database Encryption SDK encrypts your data using an authenticated encryption
algorithm, AES-GCM, but because AES-GCM uses symmetric keys, anyone who can decrypt the data
key used to decrypt the ciphertext could also manually create a new encrypted ciphertext, causing
a potential security concern.

To avoid this issue, the default algorithm suite adds an Elliptic Curve Digital Signature Algorithm

(ECDSA) signature to encrypted records. The default algorithm suite encrypts the fields in your
record marked ENCRYPT_AND_SIGN using an authenticated encryption algorithm, AES-GCM.
Then, it calculates both Hash-Based Message Authentication Codes (HMACs) and asymmetric
ECDSA signatures over the fields in your record marked ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. The decryption process uses the signatures to
verify that an authorized user encrypted the record.

When the default algorithm suite is used, the AWS Database Encryption SDK generates a
temporary private key and public key pair for each encrypted record. The AWS Database Encryption
SDK stores the public key in the material description and discards the private key, and no one can

create another signature that verifies with the public key. Because the algorithm binds the public
key to the encrypted data key as additional authenticated data in the material description, a user
who can only decrypt records cannot alter the public key.

The AWS Database Encryption SDK always includes HMAC verification. ECDSA digital signatures
are enabled by default, but not required. If the users encrypting data and the users decrypting
data are equally trusted, you might consider using an algorithm suite that does not include digital

Digital signatures 12

AWS Database Encryption SDK Developer Guide

signatures to improve your performance. For more information on selecting alternative algorithm
suites, see Choosing an algorithm suite.

How the AWS Database Encryption SDK works

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK provides client-side encryption libraries that are designed
specifically to protect the data that you store in databases. The libraries include secure
implementations that you can extend or use unchanged. For more information about defining and
using custom components, see the GitHub repository for your database implementation.

The workflows in this section explain how the AWS Database Encryption SDK encrypts and signs
and decrypts and verifies the data in your database. These workflows describe the basic process
using abstract elements and the default features. For details about how the AWS Database
Encryption SDK works with your database implementation, see the What is encrypted topic for your
database.

The AWS Database Encryption SDK uses envelope encryption to protect your data. Each record is

encrypted under a unique data key. The data key is used to derive a unique data encryption key for
each field marked ENCRYPT_AND_SIGN in your cryptographic actions. Then, a copy of data key is
encrypted by the wrapping keys you specify. To decrypt the encrypted record, the AWS Database
Encryption SDK uses the wrapping keys you specify to decrypt at least one encrypted data key.
Then it can decrypt the ciphertext and return a plaintext entry.

For more information about the terms used in the AWS Database Encryption SDK, see AWS
Database Encryption SDK concepts.

Encrypt and sign

At its core, the AWS Database Encryption SDK is a record encryptor that encrypts, signs,
verifies, and decrypts the records in your database. It takes in information about your records
and instructions about which fields to encrypt and sign. It gets the encryption materials, and
instructions on how to use them, from a cryptographic materials manager configured from the

wrapping key you specify.

How it works 13

AWS Database Encryption SDK Developer Guide

The following walkthrough describes how the AWS Database Encryption SDK encrypts and signs
your data entries.

1. The cryptographic materials manager provides the AWS Database Encryption SDK with unique
data encryption keys: one plaintext data key, a copy of the data key encrypted by the specified
wrapping key, and a MAC key.

® Note

You can encrypt the data key under multiple wrapping keys. Each of the wrapping

keys encrypt a separate copy of the data key. The AWS Database Encryption SDK
stores all of the encrypted data keys in the material description. The AWS Database
Encryption SDK adds a new field (aws_dbe_head) to the record that stores the
material description.

A MAC key is derived for each encrypted copy of the data key. The MAC keys are not
stored in the material description. Instead, the decrypt method uses the wrapping keys
to derive the MAC keys again.

2. The encryption method encrypts each field marked as ENCRYPT_AND_SIGN in the
cryptographic actions you specified.

3. The encryption method derives a commitKey from the data key and uses it to generate a key
commitment value, and then discards the data key.

4. The encryption method adds a material description to the record. The material description
contains the encrypted data keys and the other information about the encrypted record. For a
complete list of the information included in the material description, see Material description
format.

5. The encryption method uses the MAC keys returned in Step 1 to calculate Hash-Based
Message Authentication Code (HMAC) values over the canonicalization of the material
description, encryption context, and each field marked ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in the cryptographic actions. The HMAC
values are stored in a new field (aws_dbe_foot) that the encryption method adds to the

record.

6. The encryption method calculates an ECDSA signature over the canonicalization of the

material description, encryption context, and each field marked ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT and stores the ECDSA
signatures in the aws_dbe_foot field.

Encrypt and sign 14

AWS Database Encryption SDK Developer Guide

® Note
ECDSA signatures are enabled by default, but are not required.

7. The encryption method stores the encrypted and signed record in your database

Decrypt and verify

1. The cryptographic materials manager (CMM) provides the decryption method with the
decryption materials stored in the material description, including the plaintext data key and
the associated MAC key.

« The CMM decrypts the encrypted data key with the wrapping keys in the specified keyring
and returns the plaintext data key.

2. The decryption method compares and verifies the key commitment value in the material
description.

3. The decryption method verifies the signatures in the signature field.

It identifies which fields are marked ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT from the list of allowed unauthenticated
fields that you defined. The decryption method uses the MAC key returned in Step 1

to recalculate and compare HMAC values for the fields marked ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Then, it verifies the ECDSA
signatures using the public key stored in the encryption context.

4. The decryption method uses the plaintext data key to decrypt each value marked
ENCRYPT_AND_SIGN. The AWS Database Encryption SDK then discards the plaintext data key.

5. The decryption method returns the plaintext record.

Supported algorithm suites in the AWS Database Encryption
SDK

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Decrypt and verify 15

AWS Database Encryption SDK Developer Guide

An algorithm suite is a collection of cryptographic algorithms and related values. Cryptographic
systems use the algorithm implementation to generate the ciphertext message.

The AWS Database Encryption SDK uses an algorithm suite to encrypt and sign the fields in your
database. The AWS Database Encryption SDK supports two algorithm suites. All of the supported
suites use Advanced Encryption Standard (AES) as the primary algorithm, and combine it with
other algorithms and values.

Default algorithm suite

The AWS Database Encryption SDK algorithm suite uses the Advanced Encryption Standard (AES)
algorithm in Galois/Counter Mode (GCM), known as AES-GCM, to encrypt raw data. The AWS
Database Encryption SDK supports 256-bit encryption keys. The length of the authentication tag is
always 16 bytes.

By default, the AWS Database Encryption SDK uses an algorithm suite with AES-GCM with an
HMAC-based extract-and-expand key derivation function (HKDF), key commitment, symmetric and

asymmetric signing, and a 256-bit encryption key.

The AWS Database Encryption SDK uses an algorithm suite that derives an AES-GCM data key by
supplying a 256-bit data encryption key to the HMAC-based extract-and-expand key derivation
function (HKDF). It also derives a MAC key for the data key. The AWS Database Encryption SDK uses
this data key to derive a unique data encryption key to encrypt each field. Then, the AWS Database
Encryption SDK uses the MAC key to calculate a Hash-Based Message Authentication Code (HMAC)
for each encrypted copy of the data key and adds an Elliptic Curve Digital Signature Algorithm

(ECDSA) signature to the record. This algorithm suite also derives a key commitment — an HMAC
that ties the data key to the record. The key commitment value is an HMAC calculated from the
material description and commitment key, which is derived through HKDF using a procedure similar

to deriving the data encryption key. The key commitment value is then stored in the material
description.

Encryption Data encryptio Symmetric Asymmetri Key commitmen
algorithm n key length (in signature ¢ signature t
bits) algorithm algorithm
AES-GCM 256 HMAC-SHA-384 ECDSA over HKDF with
P384 SHA-512

Default algorithm suite 16

https://en.wikipedia.org/wiki/HKDF

AWS Database Encryption SDK Developer Guide

This algorithm suite serializes the material description and all fields marked ENCRYPT_AND_SIGN,
SIGN_ONLY, and SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in the cryptographic actions,
and then uses HMAC with a cryptographic hash function algorithm (SHA-512) to sign the
canonicalization. Then it calculates an ECDSA digital signature. The HMACs and ECDSA signatures
are stored in a new field (aws_dbe_foot) that the AWS Database Encryption SDK adds to the
record. Digital signatures are particularly useful when the authorization policy allows one set of
users to encrypt data and a different set of users to decrypt data.

Key commitment ensures that each ciphertext decrypts to only one plaintext. They do this

by validating the data key used as input to the encryption algorithm. When encrypting, these
algorithm suites derive a key commitment HMAC. Before decrypting, they validate that the data
key produces the same key commitment HMAC. If it does not, the decrypt call fails.

AES-GCM without digital signatures

Although the default algorithm suite is likely to be suitable for most applications, you can choose
an alternate algorithm suite. For example, some trust models would be satisfied by an algorithm
suite without digital signatures. Use this suite only when the users who encrypt data and those
who decrypt data are equally trusted.

All AWS Database Encryption SDK algorithm suites support HMAC-SHA-384 symmetric signing.
The only difference, is that the AES-GCM algorithm suite without digital signatures lacks the ECDSA
signature that provides an additional layer of authenticity and non-repudiation.

For example, if you have multiple wrapping keys in your keyring, wrappingKeyA, wrappingKeyB,
and wrappingKey(, and you decrypt a record using wrappingKeyA, the HMAC-SHA-384
symmetric signature verifies that the record was encrypted by a user with access to
wrappingKeyA. If you used the default algorithms, the HMACs provide the same verification of
wrappingKeyA, and additionally use the ECDSA signature to ensure the record was encrypted by a
user with encrypt permissions for wrappingKeyA.

To select the AES-GCM algorithm suite without digital signatures, specify it in your encryption

configuration.

AES-GCM without digital signatures 17

AWS Database Encryption SDK Developer Guide

Using the AWS Database Encryption SDK with AWS KMS

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

To use the AWS Database Encryption SDK, you need to configure a keyring and specify one or more
wrapping keys. If you don't have a key infrastructure, we recommend using AWS Key Management
Service (AWS KMS).

The AWS Database Encryption SDK supports two types of AWS KMS keyrings. The traditional
AWS KMS keyring uses AWS KMS keys to generate, encrypt, and decrypt data keys. You can use
either symmetric encryption (SYMMETRIC_DEFAULT) or asymmetric RSA KMS keys. Since the AWS
Database Encryption SDK encrypts and signs every record with a unique data key, the AWS KMS
keyring must call AWS KMS for every encrypt and decrypt operation. For applications that need
to minimize the number of calls to AWS KMS, the AWS Database Encryption SDK also supports
the AWS KMS Hierarchical keyring. The Hierarchical keyring is a cryptographic materials caching
solution that reduces the number of AWS KMS calls by using AWS KMS protected branch keys
persisted in an Amazon DynamoDB table, and then locally caching branch key materials used in
encrypt and decrypt operations. We recommend using the AWS KMS keyrings whenever possible.

To interact with AWS KMS, the AWS Database Encryption SDK requires the AWS KMS module of the
AWS SDK for Java.

To prepare to use the AWS Database Encryption SDK with AWS KMS

1. Create an AWS account. To learn how, see How do | create and activate a new Amazon Web
Services account? in the AWS Knowledge Center.

2. Create a symmetric encryption AWS KMS key. For help, see Creating Keys in the AWS Key
Management Service Developer Guide.

® Tip
To use the AWS KMS key programmatically, you will need the Amazon Resource Name
(ARN) of the AWS KMS key. For help finding the ARN of an AWS KMS key, see Finding
the Key ID and ARN in the AWS Key Management Service Developer Guide.

18

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Database Encryption SDK Developer Guide

3.

Generate an access key ID and security access key. You can use either the access key ID and
secret access key for an IAM user or you can use the AWS Security Token Service to create a
new session with temporary security credentials that include an access key ID, secret access
key, and session token. As a security best practice, we recommend that you use temporary
credentials instead of the long-term credentials associated with your IAM user or AWS (root)
user accounts.

To create an IAM user with an access key, see Creating IAM Users in the IAM User Guide.

To generate temporary security credentials, see Requesting temporary security credentials in
the IAM User Guide.

Set your AWS credentials using the instructions in the AWS SDK for Java and the access key
ID and secret access key that you generated in step 3. If you generated temporary credentials,
you will also need to specify the session token.

This procedure allows AWS SDKs to sign requests to AWS for you. Code samples in the AWS
Database Encryption SDK that interact with AWS KMS assume that you have completed this
step.

19

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS Database Encryption SDK Developer Guide

Configuring the AWS Database Encryption SDK

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK is designed to be easy to use. Although the AWS Database
Encryption SDK has several configuration options, the default values are carefully chosen to be
practical and secure for most applications. However, you might need to adjust your configuration
to improve performance or include a custom feature in your design.

Topics

» Selecting a programming language

Selecting wrapping keys

Creating a discovery filter

Working with multitenant databases

Creating signed beacons

Selecting a programming language

The AWS Database Encryption SDK for DynamoDB is available in multiple programming languages.

The language implementations are designed to be fully interoperable and to offer the same
features, although they might be implemented in different ways. Typically, you use the library that
is compatible with your application.

Selecting wrapping keys

The AWS Database Encryption SDK generates a unique symmetric data key to encrypt each field.
You don't need to configure, manage, or use the data keys. The AWS Database Encryption SDK
does it for you.

However, you must select one or more wrapping keys to encrypt each data key. The AWS Database
Encryption SDK supports AWS Key Management Service (AWS KMS) symmetric encryption KMS
keys and asymmetric RSA KMS keys. It also supports AES symmetric keys and RSA asymmetric

Selecting a programming language 20

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

keys that you provide in different sizes. You are responsible for the safety and durability of your
wrapping keys, so we recommend that you use an encryption key in a hardware security module or
a key infrastructure service, such as AWS KMS.

To specify your wrapping keys for encryption and decryption, you use a keyring. Depending on the
type of keyring you use, you can specify one wrapping key or multiple wrapping keys of the same

or different types. If you use multiple wrapping keys to wrap a data key, each wrapping key will
encrypt a copy of the same data key. The encrypted data keys (one per wrapping key) are stored
in the material description stored alongside the encrypted field. To decrypt the data, the AWS

Database Encryption SDK must first use one of your wrapping keys to decrypt an encrypted data
key.

We recommend using one of the AWS KMS keyrings whenever possible. The AWS Database
Encryption SDK provides the AWS KMS keyring and the AWS KMS Hierarchical keyring, which
reduces the number of calls made to AWS KMS. To specify an AWS KMS key in a keyring, use a

supported AWS KMS key identifier. If you use the AWS KMS Hierarchical keyring, you must specify
the key ARN. For details about the key identifiers for an AWS KMS key, see Key Identifiers in the
AWS Key Management Service Developer Guide.

« When you encrypt with an AWS KMS keyring, you can specify any valid key identifier (key ARN,
alias name, alias ARN, or key ID) for a symmetric encryption KMS key. If you use an asymmetric
RSA KMS key, you must specify the key ARN.

If you specify an alias name or alias ARN for a KMS key when encrypting, the AWS Database
Encryption SDK saves the key ARN currently associated with that alias; it does not save the alias.
Changes to the alias don't affect the KMS key used to decrypt your data keys.

» By default, the AWS KMS keyring decrypts records in strict mode (where you specify particular
KMS keys). You must use a key ARN to identify AWS KMS keys for decryption.

When you encrypt with an AWS KMS keyring, the AWS Database Encryption SDK stores the

key ARN of the AWS KMS key in the material description with the encrypted data key. When
decrypting in strict mode, the AWS Database Encryption SDK verifies that the same key ARN
appears in the keyring before it attempts to use the wrapping key to decrypt the encrypted data
key. If you use a different key identifier, the AWS Database Encryption SDK will not recognize or
use the AWS KMS key, even if the identifiers refer to the same key.

« When decrypting in discovery mode, you don't specify any wrapping keys. First, the AWS

Database Encryption SDK attempts to decrypt the record with the key ARN stored in the material
description. If that doesn't work, the AWS Database Encryption SDK asks AWS KMS to decrypt

Selecting wrapping keys 21

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Database Encryption SDK Developer Guide

the record using the KMS key that encrypted it, regardless of who owns or has access to that
KMS key.

To specify a raw AES key or a raw RSA key pair as a wrapping key in a keyring, you must specify a
namespace and a name. When decrypting, you must use the exact same namespace and name for

each raw wrapping key as you used when encrypting. If you use a different namespace or name, the
AWS Database Encryption SDK will not recognize or use the wrapping key, even if the key material
is the same.

Creating a discovery filter

When decrypting data encrypted with KMS keys, it's a best practice to decrypt in strict mode, that
is, to limit the wrapping keys used to only those that you specify. However, if necessary, you can
also decrypt in discovery mode, where you don't specify any wrapping keys. In this mode, AWS KMS
can decrypt the encrypted data key using the KMS key that encrypted it, regardless of who owns or
has access to that KMS key.

If you must decrypt in discovery mode, we recommend that you always use a discovery filter,
which limits the KMS keys that can be used to those in a specified AWS account and partition. The
discovery filter is optional, but it's a best practice.

Use the following table to determine the partition value for your discovery filter.

Region Partition
AWS Regions aws

China Regions aws-cn
AWS GovCloud (US) Regions aws-us-gov

The following example shows how to create a discovery filter. Before using the code, replace the
example values with valid values for your AWS account and partition.

Java

// Create the discovery filter

Creating a discovery filter 22

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Database Encryption SDK Developer Guide

DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();

C# / .NET

var discoveryFilter = new DiscoveryFilter

{

Partition = "aws",
AccountIds = 111122223333
};

Working with multitenant databases

With the AWS Database Encryption SDK, you can configure client-side encryption for databases
with a shared schema by isolating each tenant with distinct encryption materials. When
considering a multitenant database, take some time to review your security requirements and how
multitenancy might impact them. For example, using a multitenant database might impact your
ability to combine the AWS Database Encryption SDK with another server-side encryption solution.

If you have multiple users performing encrypt operations within your database, you can use one
of the AWS KMS keyrings to provide each user with a distinct key to use in their cryptographic
operations. Managing the data keys for a multitenant client-side encryption solution can be
complicated. We recommend organizing your data by tenant whenever possible. If the tenant

is identified by the primary key values (for example, the partition key in an Amazon DynamoDB
table), then managing your keys is easier.

You can use the AWS KMS keyring to isolate each tenant with a distinct AWS KMS keyring and
AWS KMS keys. Based on the volume of AWS KMS calls made per tenant, you might want to use
the AWS KMS Hierarchical keyring to minimize your calls to AWS KMS. The AWS KMS Hierarchical
keyring is a cryptographic materials caching solution that reduces the number of AWS KMS calls by

using AWS KMS protected branch keys persisted in an Amazon DynamoDB table, and then locally
caching branch key materials used in encrypt and decrypt operations. You must use the AWS KMS
Hierarchical keyring to implement searchable encryption in your database.

Working with multitenant databases 23

AWS Database Encryption SDK Developer Guide

Creating signed beacons

The AWS Database Encryption SDK uses standard beacons and compound beacons to provide

searchable encryption solutions that enable you to search encrypted records without decrypting

the entire database queried. However, the AWS Database Encryption SDK also supports signed
beacons that can be configured entirely from plaintext signed fields. Signed beacons are

a type of compound beacon that index and perform complex queries on SIGN_ONLY and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT fields.

For example, if you have a multitenant database, you might want to create a signed beacon that
enables you to query your database for records encrypted by a specific tenant's key. For more
information, see Querying beacons in a multitenant database.

You must use the AWS KMS Hierarchical keyring to create signed beacons.
To configure a signed beacon, provide the following values.
Java

Compound beacon configuration

The following example defines the signed parts lists locally within the signed beacon
configuration.

List<CompoundBeacon> compoundBeaconlList = new ArraylList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.buildexr()
.name (" compoundBeaconName")
.split(".")
.signed(signedPartList)
.constructors(constructorList)
.build();
compoundBeaconList.add(exampleCompoundBeacon);

Beacon version definition

The following example defines the signed parts lists globally in the beacon version. For more
information on defining the beacon version, see Using beacons.

List<BeaconVersion> beaconVersions = new ArraylList<>();
beaconVersions.add(
BeaconVersion.buildex()

Creating signed beacons 24

AWS Database Encryption SDK Developer Guide

.standardBeacons(standardBeaconList)
.compoundBeacons(compoundBeaconList)
.signedParts(signedPartlList)
.version(1l) // MUST be 1
.keyStore(keyStore)
.keySource(BeaconKeySource.buildexr()
.single(SingleKeyStore.builder()

.keyId(branchKeyId)
.cacheTTL(6000)
.build())
.build())
.build()
);
C#/ .NET

See the complete code sample: BeaconConfig.cs

Signed beacon configuration

The following example defines the signed parts lists locally within the signed beacon
configuration.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon

{
Name = "compoundBeaconName",
Split = ".",
Signed = signedPartlList,
Constructors = constructorlList
};

compoundBeaconList.Add(exampleCompoundBeacon);

Beacon version definition

The following example defines the signed parts lists globally in the beacon version. For more
information on defining the beacon version, see Using beacons.

var beaconVersions = new List<BeaconVersion>

{

new BeaconVersion

{

Creating signed beacons 25

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS Database Encryption SDK

Developer Guide

StandardBeacons = standardBeaconList,
CompoundBeacons = compoundBeaconlList,
SignedParts = signedPartslList,

Version
KeyStore

=1, // MUST be 1
= keyStore,

KeySource = new BeaconKeySource

{

Single = new SingleKeyStore

{

KeyId = branchKeyId,
CacheTTL = 6000

You can define your signed parts in locally or globally defined lists. We recommend defining your
signed parts in a global list in the beacon version whenever possible. By defining signed parts
globally, you can define each part once and then reuse the parts in multiple compound beacon
configurations. If you only intend to use a signed part once, you can define it in a local list in the
signed beacon configuration. You can reference both local and global parts in your constructor list.

If you define your signed parts lists globally, you must provide a list of constructor parts that
identify all of the possible ways the signed beacon can assemble the fields in your beacon

configuration.

® Note

To define signed parts lists globally, you must use version 3.2 or later of the AWS Database
Encryption SDK. Deploy the new version to all readers before defining any new parts

globally.

You cannot update existing beacon configurations to define signed parts lists globally.

Beacon name

The name you use when querying the beacon.

A signed beacon name cannot be the same name as an unencrypted field. No two beacons can
have the same beacon name.

Creating signed beacons

26

AWS Database Encryption SDK Developer Guide

Split character
The character used to separate the parts that make up your signed beacon.

The split character cannot appear in the plaintext values of any of the fields that the signed
beacon is constructed from.

Signed parts list
Identifies the signed fields included in the signed beacon.

Each part must include a name, source, and prefix. The source is the SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field that the part identifies. The source
must be a field name or an index referring to the value of a nested field. If your part name
identifies the source, you can omit the source and the AWS Database Encryption SDK will
automatically use the name as its source. We recommend specifying the source as the part
name whenever possible. The prefix can be any string, but it must be unique. No two signed
parts in a signed beacon can have the same prefix. We recommend using a short value that
distinguishes the part from other parts served by the compound beacon.

We recommend defining your signed parts globally whenever possible. You might consider
defining a signed part locally if you only intend on using it in one compound beacon. A locally
defined part cannot have the same prefix or name as a globally defined part.

Java

List<SignedPart> signedPartlList = new ArraylList<>);
SignedPart signedPartExample = SignedPart.builder()
.name("signedFieldName")
.prefix("s-")
.build();
signedPartlList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>

{

new SignedPart { Name "signedFieldNamel", Prefix = "S-" },
new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }

%

Creating signed beacons 27

AWS Database Encryption SDK Developer Guide

Constructor list (Optional)

Identifies the constructors that define the different ways that the signed parts can be assembled
by the signed beacon.

If you do not specify a constructor list, the AWS Database Encryption SDK assembles the signed
beacon with the following default constructor.

« All signed parts in the order they were added to the signed parts list

« All parts are required

Constructors

Each constructor is an ordered list of constructor parts that defines one way that the signed
beacon can be assembled. The constructor parts are joined together in the order they are
added to the list, with each part separated by the specified split character.

Each constructor part names a signed part, and defines whether that part is required or
optional within the constructor. For example, if you want to query a signed beacon on
Fieldl, Fieldl.Field2,and Fieldl.Field2.Field3, mark Field2 and Field3 as
optional and create one constructor.

Each constructor must have at least one required part. We recommend making the first part
in each constructor required so that you can use the BEGINS_WITH operator in your queries.

A constructor succeeds if all its required parts are present in the record. When you write a
new record, the signed beacon uses the constructor list to determine if the beacon can be
assembled from the values provided. It attempts to assemble the beacon in the order that
the constructors were added to the constructor list, and it uses the first constructor that
succeeds. If no constructors succeed, the beacon is not written to the record.

All readers and writers should specify the same order of constructors to ensure that their
query results are correct.

Use the following procedures to specify your own constructor list.

1.

Create a constructor part for each signed part to define whether or not that part is
required.

The constructor part name must be the name of the signed field.

The following example demonstrates how to create constructor part for one signed field.

Creating signed beacons 28

AWS Database Encryption SDK Developer Guide

Java

ConstructorPart fieldlConstructorPart = ConstructorPart.builder()
.name("Fieldl")
.required(true)
.build();

C# / .NET

var fieldlConstructorPart = new ConstructorPart { Name = "Fieldl", Required
= true };

2. Create a constructor for each possible way that the signed beacon can be assembled using
the constructor parts you created in Step 1.

For example, if you want to query on Fieldl.Field2.Field3 and
Field4.Field2.Field3, then you must create two constructors. Fieldl and Field4
can both be required because they are defined in two separate constructors.

Java

// Create a list for Fieldl.Field2.Field3 queries
List<ConstructorPart> fieldl23ConstructorPartList = new ArraylList<>();
fieldl23ConstructorPartList.add(fieldlConstructorPart);
fieldl23ConstructorPartList.add(field2ConstructorPart);
fieldl23ConstructorPartList.add(field3ConstructorPart);
Constructor fieldl23Constructor = Constructor.builder()
.parts(fieldl23ConstructorPartlList)
.build();
// Create a list for Field4.Field2.Fieldl queries
List<ConstructorPart> field421ConstructorPartList = new ArraylList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(fieldlConstructorPart);
Constructor field421Constructor = Constructor.builder()
.parts(field421ConstructorPartlList)
.build();

C# / .NET

// Create a list for Fieldl.Field2.Field3 queries
var fieldl23ConstructorPartList = new Constructor

Creating signed beacons 29

AWS Database Encryption SDK Developer Guide

{

Parts = new List<ConstructorPart> { fieldlConstructorPart,
field2ConstructorPart, field3ConstructorPart }
I
// Create a list for Field4.Field2.Fieldl queries
var field421lConstructorPartlList = new Constructor

{

Parts = new List<ConstructorPart> { field4ConstructorPart,
field2ConstructorPart, fieldlConstructorPart }

};

3. Create a constructor list that includes all of the constructors that you created in Step 2.

Java

List<Constructor> constructorList = new ArraylList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>

{
fieldl23Constructor,

field421Constructor
i

4. Specify the constructorList when you create your signed beacon.

Creating signed beacons 30

AWS Database Encryption SDK Developer Guide

Using keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK uses keyrings to perform envelope encryption. Keyrings

generate, encrypt, and decrypt data keys. Keyrings determine the source of the unique data keys
that protect each encrypted record, and the wrapping keys that encrypt that data key. You specify

a keyring when encrypting and the same or a different keyring when decrypting.

You can use each keyring individually or combine keyrings into a multi-keyring. Although most

keyrings can generate, encrypt, and decrypt data keys, you might create a keyring that performs
only one particular operation, such as a keyring that only generates data keys, and use that keyring
in combination with others.

We recommend that you use a keyring that protects your wrapping keys and performs
cryptographic operations within a secure boundary, such as the AWS KMS keyring, which uses AWS
KMS keys that never leave AWS Key Management Service (AWS KMS) unencrypted. You can also
write a keyring that uses wrapping keys that are stored in your hardware security modules (HSMs)

or protected by other master key services.

This topic explains how to use the keyring feature of the AWS Database Encryption SDK and how to
choose a keyring.

Topics

» How keyrings work

» Choosing a keyring

How keyrings work

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

How keyrings work 31

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Database Encryption SDK Developer Guide

When you encrypt and sign a field in your database, the AWS Database Encryption SDK asks the
keyring for encryption materials. The keyring returns a plaintext data key, a copy of the data key
that's encrypted by each of the wrapping keys in the keyring, and a MAC key that is associated
with the data key. The AWS Database Encryption SDK uses the plaintext key to encrypt the
data, and then removes the plaintext data key from memory as soon as possible. Then, the AWS
Database Encryption SDK adds a material description that includes the encrypted data keys and
other information, such as encryption and signing instructions. The AWS Database Encryption
SDK uses the MAC key to calculate Hash-Based Message Authentication Codes (HMACs) over

the canonicalization of the material description and all fields marked ENCRYPT_AND_SIGN or
SIGN_ONLY.

When you decrypt data, you can use the same keyring that you used to encrypt the data, or a
different one. To decrypt the data, a decryption keyring must have access to at least one wrapping
key in the encryption keyring.

The AWS Database Encryption SDK passes the encrypted data keys from the material description
to the keyring, and asks the keyring to decrypt any one of them. The keyring uses its wrapping

keys to decrypt one of the encrypted data keys and returns a plaintext data key. The AWS Database
Encryption SDK uses the plaintext data key to decrypt the data. If none of the wrapping keys in the
keyring can decrypt any of the encrypted data keys, the decrypt operation fails.

You can use a single keyring or also combine keyrings of the same type or a different type into a
multi-keyring. When you encrypt data, the multi-keyring returns a copy of the data key encrypted
by all of the wrapping keys in all of the keyrings that comprise the multi-keyring and a MAC key
that is associated with the data key. You can decrypt the data using a keyring with any one of the
wrapping keys in the multi-keyring.

Choosing a keyring

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Your keyring determines the wrapping keys that protect your data keys, and ultimately, your

data. Use the most secure wrapping keys that are practical for your task. Whenever possible use
wrapping keys that are protected by a hardware security module (HSM) or a key management
infrastructure, such as KMS keys in AWS Key Management Service (AWS KMS) or encryption keys in
AWS CloudHSM.

Choosing a keyring 32

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS Database Encryption SDK Developer Guide

The AWS Database Encryption SDK provides several keyrings and keyring configurations, and you
can create your own custom keyrings. You can also create a multi-keyring that includes one or

more keyrings of the same or a different type.

Topics
o AWS KMS keyrings
AWS KMS Hierarchical keyrings

Raw AES keyrings

Raw RSA keyrings

Multi-keyrings

AWS KMS keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

An AWS KMS keyring uses symmetric encryption or asymmetric RSA AWS KMS keys to generate,
encrypt, and decrypt data keys. AWS Key Management Service (AWS KMS) protects your KMS keys
and performs cryptographic operations within the FIPS boundary. We recommend that you use a

AWS KMS keyring, or a keyring with similar security properties, whenever possible.

You can also use a symmetric multi-Region KMS key in an AWS KMS keyring. For more details
and examples using multi-Region AWS KMS keys, see Using multi-Region AWS KMS keys. For
information about multi-Region keys, see Using multi-Region keys in the AWS Key Management
Service Developer Guide.

AWS KMS keyrings can include two types of wrapping keys:

« Generator key: Generates a plaintext data key and encrypts it. A keyring that encrypts data must
have one generator key.

« Additional keys: Encrypts the plaintext data key that the generator key generated. AWS KMS
keyrings can have zero or more additional keys.

You must have a generator key to encrypt records. When an AWS KMS keyring has just one AWS
KMS key, that key is used to generate and encrypt the data key.

AWS KMS keyrings 33

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Database Encryption SDK Developer Guide

Like all keyrings, AWS KMS keyrings can be used independently or in a multi-keyring with other
keyrings of the same or a different type.

Topics

» Required permissions for AWS KMS keyrings

Identifying AWS KMS keys in an AWS KMS keyring

Creating an AWS KMS keyring

Using multi-Region AWS KMS keys

Using an AWS KMS discovery keyring

Using an AWS KMS regional discovery keyring

Required permissions for AWS KMS keyrings

The AWS Database Encryption SDK doesn't require an AWS account and it doesn't depend on any
AWS service. However, to use an AWS KMS keyring, you need an AWS account and the following
minimum permissions on the AWS KMS keys in your keyring.

« To encrypt with an AWS KMS keyring, you need kms:GenerateDataKey permission on the

generator key. You need kms:Encrypt permission on all additional keys in the AWS KMS keyring.

« To decrypt with an AWS KMS keyring, you need kms:Decrypt permission on at least one key in
the AWS KMS keyring.

« To encrypt with a multi-keyring comprised of AWS KMS keyrings, you need
kms:GenerateDataKey permission on the generator key in the generator keyring. You need

kms:Encrypt permission on all other keys in all other AWS KMS keyrings.

« To encrypt with an asymmetric RSA AWS KMS keyring, you do not need kms:GenerateDataKey

or kms:Encrypt because you must specify the public key material that you want to use for
encryption when you create the keyring. No AWS KMS calls are made when encrypting with
this keyring. To decrypt with an asymmetric RSA AWS KMS keyring, you need kms:Decrypt
permission.

For detailed information about permissions for AWS KMS keys, see Authentication and access

control in the AWS Key Management Service Developer Guide.

AWS KMS keyrings 34

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Database Encryption SDK Developer Guide

Identifying AWS KMS keys in an AWS KMS keyring

An AWS KMS keyring can include one or more AWS KMS keys. To specify an AWS KMS key in an
AWS KMS keyring, use a supported AWS KMS key identifier. The key identifiers you can use to
identify an AWS KMS key in a keyring vary with the operation and the language implementation.
For details about the key identifiers for an AWS KMS key, see Key Identifiers in the AWS Key
Management Service Developer Guide.

As a best practice, use the most specific key identifier that is practical for your task.

« To encrypt with an AWS KMS keyring, you can use a key ID, key ARN, alias name, or alias ARN to
encrypt data.

(® Note

If you specify an alias name or alias ARN for a KMS key in an encryption keyring, the
encrypt operation saves the key ARN currently associated with the alias in the metadata
of the encrypted data key. It does not save the alias. Changes to the alias don't affect the
KMS key used to decrypt your encrypted data keys.

« To decrypt with an AWS KMS keyring, you must use a key ARN to identify AWS KMS keys. For
details, see Selecting wrapping keys.

 In a keyring used for encryption and decryption, you must use a key ARN to identify AWS KMS
keys.

When decrypting, the AWS Database Encryption SDK searches the AWS KMS keyring for an
AWS KMS key that can decrypt one of the encrypted data keys. Specifically, the AWS Database
Encryption SDK uses the following pattern for each encrypted data key in the material description.

« The AWS Database Encryption SDK gets the key ARN of the AWS KMS key that encrypted the
data key from the metadata of the material description.

« The AWS Database Encryption SDK searches the decryption keyring for an AWS KMS key with a
matching key ARN.

o If it finds an AWS KMS key with a matching key ARN in the keyring, the AWS Database Encryption
SDK asks AWS KMS to use the KMS key to decrypt the encrypted data key.

» Otherwise, it skips to the next encrypted data key, if any.

AWS KMS keyrings 35

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Database Encryption SDK Developer Guide

Creating an AWS KMS keyring

You can configure each AWS KMS keyring with a single AWS KMS key or multiple AWS KMS

keys in the same or different AWS accounts and AWS Regions. The AWS KMS key must be a
symmetric encryption key (SYMMETRIC_DEFAULT) or an asymmetric RSA KMS key. You can also use
a symmetric encryption multi-Region KMS key. You can use one or more AWS KMS keyrings in a

multi-keyring.

You can create an AWS KMS keyring that encrypts and decrypts data, or you can create AWS

KMS keyrings specifically for encrypting or decrypting. When you create an AWS KMS keyring to
encrypt data, you must specify a generator key, which is an AWS KMS key that is used to generate a
plaintext data key and encrypt it. The data key is mathematically unrelated to the KMS key. Then,
if you choose, you can specify additional AWS KMS keys that encrypt the same plaintext data key.
To decrypt an encrypted field protected by this keyring, the decryption keyring that you use must
include at least one of the AWS KMS keys defined in the keyring, or no AWS KMS keys. (An AWS
KMS keyring with no AWS KMS keys is known as an AWS KMS discovery keyring.)

All wrapping keys in an encryption keyring or multi-keyring must be able to encrypt the data key.
If any wrapping key fails to encrypt, the encrypt method fails. As a result, the caller must have
the required permissions for all keys in the keyring. If you use a discovery keyring to encrypt data,

alone or in a multi-keyring, the encrypt operation fails.

The following examples use the CreateAwsKmsMrkMultiKeyring method to create an AWS KMS
keyring with a symmetric encryption KMS key. The CreateAwsKmsMrkMultiKeyring method
automatically creates the AWS KMS client and ensures that the keyring will correctly handle both
single-Region and multi-Region keys. These examples use a key ARNs to identify the KMS keys. For
details, see Identifying AWS KMS keys in an AWS KMS keyring

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsMrkMultiKeyringInput keyringInput =

CreateAwsKmsMrkMultiKeyringInput.builder()

.generator(kmsKeyArn)
.build();

final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

AWS KMS keyrings 36

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Database Encryption SDK Developer Guide

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput

{

Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

The following examples use the CreateAwsKmsRsaKeyring method to create an AWS KMS
keyring with an asymmetric RSA KMS key. To create an asymmetric RSA AWS KMS keyring, provide
the following values.

« kmsClient: create a new AWS KMS client
« kmsKeyID: the key ARN that identifies your asymmetric RSA KMS key

« publicKey: a ByteBuffer of a UTF-8 encoded PEM file that represents the public key of the key
you passed to kmsKeyID

e encryptionAlgorithm: the encryption algorithm must be RSAES_OAEP_SHA_256 or
RSAES_OAEP_SHA_1

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsakMSKeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C# / NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());

AWS KMS keyrings 37

AWS Database Encryption SDK Developer Guide

var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = rsakMSKeyArn,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Using multi-Region AWS KMS keys

You can use multi-Region AWS KMS keys as wrapping keys in the AWS Database Encryption SDK.
If you encrypt with a multi-Region key in one AWS Region, you can decrypt using a related multi-
Region key in a different AWS Region.

Multi-Region KMS keys are a set of AWS KMS keys in different AWS Regions that have the same key
material and key ID. You can use these related keys as though they were the same key in different
Regions. Multi-Region keys support common disaster recovery and backup scenarios that require
encrypting in one Region and decrypting in a different Region without making a cross-Region call
to AWS KMS. For information about multi-Region keys, see Using multi-Region keys in the AWS Key
Management Service Developer Guide.

To support multi-Region keys, the AWS Database Encryption SDK includes AWS KMS multi-Region-
aware keyrings. The CreateAwsKmsMrkMultiKeyring method supports both single-Region and
multi-Region keys.

« For single-Region keys, the multi-Region-aware symbol behaves just like the single-Region
AWS KMS keyring. It attempts to decrypt ciphertext only with the single-Region key that
encrypted the data. To simplify your AWS KMS keyring experience, we recommend using the
CreateAwsKmsMrkMultiKeyring method whenever you use a symmetric encryption KMS key.

« For multi-Region keys, the multi-Region-aware symbol attempts to decrypt ciphertext with
the same multi-Region key that encrypted the data or with the related multi-Region key in the
Region you specify.

In the multi-Region-aware keyrings that take more than one KMS key, you can specify multiple
single-Region and multi-Region keys. However, you can specify only one key from each set of

AWS KMS keyrings 38

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Database Encryption SDK Developer Guide

related multi-Region keys. If you specify more than one key identifier with the same key ID, the
constructor call fails.

The following examples create an AWS KMS keyring with a multi-Region KMS key. The examples
specify a multi-Region key as the generator key and a single-Region key as the child key.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.buildex()
.generator(multiRegionKeyArn)
.kmsKeyIds(Collections.singletonList(kmsKeyArn))
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput

{

Generator = multiRegionKeyArn,
KmsKeyIds = new List<String> { kmsKeyArn }

};
var awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

When you use multi-Region AWS KMS keyrings, you can decrypt ciphertext in strict mode or
discover mode. To decrypt the ciphertext in strict mode, instantiate the multi-Region-aware symbol
with the key ARN of the related multi-Region key in the region you are decrypting the ciphertext.

If you specify the key ARN of a related multi-Region key in a different Region (for example, the
region where the record was encrypted), the multi-Region-aware symbol will make a cross-Region
call for that AWS KMS key.

When decrypting in strict mode, the multi-Region-aware symbol requires a key ARN. It accepts only
one key ARN from each set of related multi-Region keys.

AWS KMS keyrings 39

AWS Database Encryption SDK Developer Guide

You can also decrypt in discovery mode with AWS KMS multi-Region keys. When decrypting in
discovery mode, you don't specify any AWS KMS keys. (For information about single-Region AWS
KMS discovery keyrings, see Using an AWS KMS discovery keyring.)

If you encrypted with a multi-Region key, the multi-Region-aware symbol in discovery mode will
try to decrypt by using a related multi-Region key in the local Region. If none exists; the call fails.
In discovery mode, the AWS Database Encryption SDK will not attempt a cross-Region call for the
multi-Region key used for encryption.

Using an AWS KMS discovery keyring

When decrypting, it's a best practice to specify the wrapping keys that the AWS Database
Encryption SDK can use. To follow this best practice, use an AWS KMS decryption keyring that
limits the AWS KMS wrapping keys to those that you specify. However, you can also create an AWS
KMS discovery keyring, that is, an AWS KMS keyring that doesn't specify any wrapping keys.

The AWS Database Encryption SDK provides a standard AWS KMS discovery keyring and a
discovery keyring for AWS KMS multi-Region keys. For information about using multi-Region keys
with the AWS Database Encryption SDK, see Using multi-Region AWS KMS keys.

Because it doesn't specify any wrapping keys, a discovery keyring can't encrypt data. If you use a
discovery keyring to encrypt data, alone or in a multi-keyring, the encrypt operation fails.

When decrypting, a discovery keyring allows the AWS Database Encryption SDK to ask AWS KMS
to decrypt any encrypted data key by using the AWS KMS key that encrypted it, regardless of who
owns or has access to that AWS KMS key. The call succeeds only when the caller has kms :Decrypt
permission on the AWS KMS key.

/A Important
If you include an AWS KMS discovery keyring in a decryption multi-keyring, the discovery

keyring overrides all KMS key restrictions specified by other keyrings in the multi-keyring.
The multi-keyring behaves like its least restrictive keyring. If you use a discovery keyring to
encrypt data, alone or in a multi-keyring, the encrypt operation fails

The AWS Database Encryption SDK provides an AWS KMS discovery keyring for convenience.
However, we recommend that you use a more limited keyring whenever possible for the following
reasons.

AWS KMS keyrings 40

AWS Database Encryption SDK Developer Guide

o Authenticity — An AWS KMS discovery keyring can use any AWS KMS key that was used to
encrypt a data key in the material description, so long as the caller has permission to use that
AWS KMS key to decrypt. This might not be the AWS KMS key that the caller intends to use. For
example, one of the encrypted data keys might have been encrypted under a less secure AWS
KMS key that anyone can use.

« Latency and performance — An AWS KMS discovery keyring might be perceptibly slower than
other keyrings because the AWS Database Encryption SDK tries to decrypt all of the encrypted
data keys, including those encrypted by AWS KMS keys in other AWS accounts and Regions, and
AWS KMS keys that the caller doesn't have permission to use for decryption.

If you use a discovery keyring, we recommend that you use a discovery filter to limit the KMS keys

that can be used to those in specified AWS accounts and partitions. For help finding your account
ID and partition, see Your AWS account identifiers and ARN format in the AWS General Reference.

The following code examples instantiate an AWS KMS discovery keyring with a discovery filter that
limits the KMS keys that the AWS Database Encryption SDK can use to those in the aws partition
and 111122223333 example account.

Before using this code, replace the example AWS account and partition values with valid values for
your AWS account and partition. If your KMS keys are in China Regions, use the aws-cn partition
value. If your KMS keys are in AWS GovCloud (US) Regions, use the aws-us-gov partition value.
For all other AWS Regions, use the aws partition value.

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.buildexr()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

AWS KMS keyrings 41

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Database Encryption SDK Developer Guide

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter

{

Partition = "aws",
AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
CreateAwsKmsMrkDiscoveryMultiKeyringInput

{

DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Using an AWS KMS regional discovery keyring

An AWS KMS regional discovery keyring is a keyring that doesn't specify the ARNs of KMS keys.
Instead, it allows the AWS Database Encryption SDK to decrypt using only the KMS keys in
particular AWS Regions.

When decrypting with an AWS KMS regional discovery keyring, the AWS Database Encryption SDK
decrypts any encrypted data key that was encrypted under an AWS KMS key in the specified AWS
Region. To succeed, the caller must have kms :Decrypt permission on at least one of the AWS KMS
keys in the specified AWS Region that encrypted a data key.

Like other discovery keyrings, the regional discovery keyring has no effect on encryption. It works
only when decrypting encrypted fields. If you use a regional discovery keyring in a multi-keyring
that is used for encrypting and decrypting, it is effective only when decrypting. If you use a multi-
Region discovery keyring to encrypt data, alone or in a multi-keyring, the encrypt operation fails.

/A Important

If you include an AWS KMS regional discovery keyring in a decryption multi-keyring, the
regional discovery keyring overrides all KMS key restrictions specified by other keyrings in
the multi-keyring. The multi-keyring behaves like its least restrictive keyring. An AWS KMS
discovery keyring has no effect on encryption when used by itself or in a multi-keyring.

AWS KMS keyrings 42

AWS Database Encryption SDK Developer Guide

The regional discovery keyring in the AWS Database Encryption SDK attempts to decrypt only with
KMS keys in the specified Region. When you use a discovery keyring, you configure the Region on
the AWS KMS client. These AWS Database Encryption SDK implementations don't filter KMS keys
by Region, but AWS KMS will fail a decrypt request for KMS keys outside of the specified Region.

If you use a discovery keyring, we recommend that you use a discovery filter to limit the KMS keys
used in decryption to those in specified AWS accounts and partitions.

For example, the following code creates an AWS KMS regional discovery keyring with a discovery
filter. This keyring limits the AWS Database Encryption SDK to KMS keys in account 111122223333
in the US West (Oregon) Region (us-west-2).

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
Partition = "aws",
AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
DiscoveryFilter = discoveryFilter,
Regions = us-west-2

AWS KMS keyrings 43

AWS Database Encryption SDK Developer Guide

i

var decryptKeyring =

matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

AWS KMS Hierarchical keyrings

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

(@ Note

As of July 24, 2023, branch keys created during the developer preview are not supported.
Create new branch keys to continue using the branch key store that you created during the
developer preview.

With the AWS KMS Hierarchical keyring, you can protect your cryptographic materials under
a symmetric encryption KMS key without calling AWS KMS every time you encrypt or decrypt
a record. It is a good choice for applications that need to minimize calls to AWS KMS, and
applications that can reuse some cryptographic materials without violating their security
requirements.

The Hierarchical keyring is a cryptographic materials caching solution that reduces the number

of AWS KMS calls by using AWS KMS protected branch keys persisted in an Amazon DynamoDB
table, and then locally caching branch key materials used in encrypt and decrypt operations. The
DynamoDB table serves as the branch key store that manages and protects branch keys. It stores
the active branch key and all previous versions of the branch key. The active branch key is the most
recent branch key version. The Hierarchical keyring uses a unique data key to encrypt each field
and encrypts each data key with a unique wrapping key derived from the active branch key. The
Hierarchical keyring is dependent on the hierarchy established between active branch keys and
their derived wrapping keys.

The Hierarchical keyring typically uses each branch key version to satisfy multiple requests. But
you control the extent to which active branch keys are reused and determine how often the active
branch key is rotated. The active version of the branch key remains active until you rotate it.

AWS KMS Hierarchical keyrings 44

AWS Database Encryption SDK Developer Guide

Previous versions of the active branch key will not be used to perform encrypt operations, but they
can still be queried and used in decrypt operations.

When you instantiate the Hierarchical keyring, it creates a local cache. You specify a cache limit
that defines the maximum amount of time that the branch key materials are stored within the
local cache before they expire and are evicted from the cache. The Hierarchical keyring makes one
AWS KMS call to decrypt the branch key and assemble the branch key materials the first time a
branch-key-id is specified in an operation. Then, the branch key materials are stored in the local
cache and reused for all encrypt and decrypt operations that specify that branch-key-id until
the cache limit expires. Storing branch key materials in the local cache reduces AWS KMS calls. For
example, consider a cache limit of 15 minutes. If you perform 10,000 encrypt operations within
that cache limit, the traditional AWS KMS keyring would need to make 10,000 AWS KMS calls to
satisfy 10,000 encrypt operations. If you have one active branch-key-id, the Hierarchical keyring
only needs to make one AWS KMS call to satisfy 10,000 encrypt operations.

The local cache consists of two partitions, one for encrypt operations and a second for decrypt
operations. The encrypt partition stores the branch key materials assembled from the active
branch key and reuses them for all encrypt operations until the cache limit expires. The decrypt
partition stores the branch key materials assembled for other branch key versions identified

in decrypt operations. The decryption partition can store multiple active branch key materials
versions at a time. When it's configured to use a branch key ID supplier for a multitenant database,
the encrypt partition can also store multiple branch key materials versions at a time. For more
information, see Using the Hierarchical keyring with multitenant databases.

(® Note

All mentions of Hierarchical keyring in the AWS Database Encryption SDK refer to the AWS
KMS Hierarchical keyring.

Topics
o How it works

« Prerequisites
o Create a Hierarchical keyring

« Rotate your active branch key

« Using the Hierarchical keyring with multitenant databases

» Using the Hierarchical keyring for searchable encryption

AWS KMS Hierarchical keyrings 45

AWS Database Encryption SDK Developer Guide

How it works

The following walkthroughs describe how the Hierarchical keyring assembles encryption and
decryption materials, and the different calls that the keyring makes for encrypt and decrypt
operations. For technical details on the wrapping key derivation and plaintext data key encryption
processes, see AWS KMS Hierarchical keyring technical details.

Encrypt and sign

The following walkthrough describes how the Hierarchical keyring assembles encryption materials
and derives a unique wrapping key.

1. The encryption method asks the Hierarchical keyring for encryption materials. The keyring
generates a plaintext data key, then checks to see if there are valid branch materials in the
local cache to generate the wrapping key. If there are valid branch key materials, the keyring
proceeds to Step 5.

2. If there are no valid branch key materials, the Hierarchical keyring queries the branch key store
for the active branch key.

a. The branch key store calls AWS KMS to decrypt the active branch key and returns the
plaintext active branch key. Data identifying the active branch key is serialized to provide
additional authenticated data (AAD) in the decrypt call to AWS KMS.

b. The branch key store returns the plaintext branch key and data that identifies it, such as
the branch key version.

3. The Hierarchical keyring assembles branch key materials (the plaintext branch key and branch
key version) and stores a copy of them in the local cache.

4. The Hierarchical keyring derives a unique wrapping key from the plaintext branch key and a
16-byte random salt. It uses the derived wrapping key to encrypt a copy of the plaintext data
key.

The encryption method uses the encryption materials to encrypt and sign the record. For more
information on how records are encrypted and signed in the AWS Database Encryption SDK, see
Encrypt and sign.

Decrypt and verify

The following walkthrough describes how the Hierarchical keyring assembles decryption materials
and decrypts the encrypted data key.

AWS KMS Hierarchical keyrings 46

AWS Database Encryption SDK Developer Guide

1. The decryption method identifies the encrypted data key from the material description field of
the encrypted record, and passes it to the Hierarchical keyring.

2. The Hierarchical keyring deserializes data identifying the encrypted data key, including the
branch key version, the 16-byte salt, and other information describing how the data key was
encrypted.

For more information, see AWS KMS Hierarchical keyring technical details.

3. The Hierarchical keyring checks to see if there are valid branch key materials in the local cache
that match the branch key version identified in Step 2. If there are valid branch key materials,
the keyring proceeds to Step 6.

4. If there are no valid branch key materials, the Hierarchical keyring queries the branch key store
for the branch key that matches the branch key version identified in Step 2.

a. The branch key store calls AWS KMS to decrypt the branch key and returns the plaintext
active branch key. Data identifying the active branch key is serialized to provide additional
authenticated data (AAD) in the decrypt call to AWS KMS.

b. The branch key store returns the plaintext branch key and data that identifies it, such as
the branch key version.

5. The Hierarchical keyring assembles branch key materials (the plaintext branch key and branch
key version) and stores a copy of them in the local cache.

6. The Hierarchical keyring uses the assembled branch key materials and the 16-byte salt
identified in Step 2 to reproduce the unique wrapping key that encrypted the data key.

7. The Hierarchical keyring uses the reproduced wrapping key to decrypt the data key and returns
the plaintext data key.

The decryption method uses the decryption materials and plaintext data key to decrypt and verify
the record. For more information on how records are decrypted and verified in the AWS Database
Encryption SDK, see Decrypt and verify.

Prerequisites

The AWS Database Encryption SDK doesn't require an AWS account and it doesn't depend on any
AWS service. However, the Hierarchical keyring depends on AWS KMS and Amazon DynamoDB.

To use a Hierarchical keyring, you need a symmetric encryption AWS KMS key with kms:Decrypt
permissions. You can also use a symmetric encryption multi-Region key. For detailed information

AWS KMS Hierarchical keyrings 47

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Database Encryption SDK Developer Guide

about permissions for AWS KMS keys, see Authentication and access control in the AWS Key
Management Service Developer Guide.

Before you can create and use a Hierarchical keyring, you must create your branch key store and
populate it with your first active branch key.

Step 1: Configure a new key store service

The key store service provides several operations, such as CreateKeyStore and CreateKey,
to help you assemble the Hierarchical keyring prerequisites and manage your branch key store.

The following example creates a key store service. You must specify a DynamoDB table name
to serve as the name of your branch key store, a logical name for the branch key store, and the
KMS key ARN that identifies the KMS key that will protect your branch keys.

The logical key store name is cryptographically bound to all data stored in the table to simplify
DynamoDB restore operations. The logical key store name can be the same as your DynamoDB
table name, but it does not have to be. We strongly recommend specifying your DynamoDB
table name as the logical table name when you first configure your key store service. You must
always specify the same logical table name. In the event that your branch key store name
changes after restoring your DynamoDB table from a backup, the logical key store name maps
to the DynamoDB table name you specify to ensure that the Hierarchical keyring can still access
your branch key store.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.buildexr()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()
.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig

AWS KMS Hierarchical keyrings 48

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Database Encryption SDK Developer Guide

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName

};

var keystore = new KeyStore(keystoreConfig);

Step 2: Call CxreateKeyStore to create a branch key store

The following operation creates the branch key store that will persist and protect your branch
keys.

Java

keystore.CreateKeyStore(CreateKeyStoreInput.builder().build());
C# / NET

var createKeyStoreOutput = keystore.CreateKeyStore(new CreateKeyStoreInput());

The CreateKeyStore operation creates a DynamoDB table with the table name you specified
in Step 1 and the following required values.

Partition key Sort key

Base table branch-key-id type

(@ Note

You can manually create the DynamoDB table that serves as your branch key store
instead of using the CreateKeyStore operation. If you choose to manually create the
branch key store, you must specify the following string values for the partition and sort
keys:

 Partition key: branch-key-1id

« Sort key: type

AWS KMS Hierarchical keyrings 49

AWS Database Encryption SDK Developer Guide

Step 3: Call CxreateKey to create a new active branch key

The following operation creates a new active branch key using the KMS key you specified in
Step 1, and adds the active branch key to the DynamoDB table you created in Step 2.

When you call CreateKey, you can choose to specify the following optional values.

« branchKeyIdentifier: defines a custom branch-key-id.

To create a custom branch-key-id, you must also include an additional encryption context
with the encryptionContext parameter.

« encryptionContext: defines an optional set of non-secret key-value pairs that
provides additional authenticated data (AAD) in the encryption context included in the
kms:GenerateDataKeyWithoutPlaintext call.

This additional encryption context is displayed with the aws-crypto-ec: prefix.

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryptio