AWS DataSync: User Guide
Copyright © 2023 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is AWS DataSync?</td>
<td>1</td>
</tr>
<tr>
<td>Use cases</td>
<td>2</td>
</tr>
<tr>
<td>Benefits</td>
<td>2</td>
</tr>
<tr>
<td>Additional resources</td>
<td>2</td>
</tr>
<tr>
<td>How it works</td>
<td>4</td>
</tr>
<tr>
<td>Discovery</td>
<td>4</td>
</tr>
<tr>
<td>DataSync Discovery architecture</td>
<td>4</td>
</tr>
<tr>
<td>Concepts and terminology</td>
<td>4</td>
</tr>
<tr>
<td>Limitations</td>
<td>6</td>
</tr>
<tr>
<td>Data transfer</td>
<td>6</td>
</tr>
<tr>
<td>DataSync architecture</td>
<td>6</td>
</tr>
<tr>
<td>Concepts and terminology</td>
<td>8</td>
</tr>
<tr>
<td>How DataSync transfers files and objects</td>
<td>9</td>
</tr>
<tr>
<td>Requirements</td>
<td>10</td>
</tr>
<tr>
<td>Agent requirements</td>
<td>10</td>
</tr>
<tr>
<td>Getting an agent</td>
<td>10</td>
</tr>
<tr>
<td>Hypervisor requirements</td>
<td>10</td>
</tr>
<tr>
<td>Agent requirements for DataSync transfers</td>
<td>11</td>
</tr>
<tr>
<td>Agent requirements for DataSync Discovery</td>
<td>11</td>
</tr>
<tr>
<td>Agent management requirements</td>
<td>11</td>
</tr>
<tr>
<td>Network requirements</td>
<td>12</td>
</tr>
<tr>
<td>Network requirements for self-managed and other cloud storage</td>
<td>12</td>
</tr>
<tr>
<td>Network requirements for AWS storage services</td>
<td>13</td>
</tr>
<tr>
<td>Network requirements for VPC endpoints</td>
<td>13</td>
</tr>
<tr>
<td>Network requirements for public or FIPS endpoints</td>
<td>15</td>
</tr>
<tr>
<td>Network interface requirements</td>
<td>20</td>
</tr>
<tr>
<td>Required permissions</td>
<td>22</td>
</tr>
<tr>
<td>AWS managed policies</td>
<td>22</td>
</tr>
<tr>
<td>Customer managed policies</td>
<td>22</td>
</tr>
<tr>
<td>Getting started</td>
<td>23</td>
</tr>
<tr>
<td>Set up</td>
<td>23</td>
</tr>
<tr>
<td>Sign up for an AWS account</td>
<td>23</td>
</tr>
<tr>
<td>Create an administrative user</td>
<td>23</td>
</tr>
<tr>
<td>Where can I use DataSync?</td>
<td>24</td>
</tr>
<tr>
<td>How can I use DataSync?</td>
<td>24</td>
</tr>
<tr>
<td>How much does DataSync cost?</td>
<td>24</td>
</tr>
<tr>
<td>Sign in to the console</td>
<td>24</td>
</tr>
<tr>
<td>Create an agent</td>
<td>25</td>
</tr>
<tr>
<td>Deploy your agent</td>
<td>25</td>
</tr>
<tr>
<td>Choose a service endpoint</td>
<td>29</td>
</tr>
<tr>
<td>Activate your agent</td>
<td>31</td>
</tr>
<tr>
<td>Discover your storage</td>
<td>32</td>
</tr>
<tr>
<td>Add your on-premises storage system</td>
<td>32</td>
</tr>
<tr>
<td>Start your discovery job</td>
<td>32</td>
</tr>
<tr>
<td>Transfer your data</td>
<td>33</td>
</tr>
<tr>
<td>Create a source location</td>
<td>33</td>
</tr>
<tr>
<td>Create a destination location</td>
<td>34</td>
</tr>
<tr>
<td>Create and start your task</td>
<td>35</td>
</tr>
<tr>
<td>Clean up resources</td>
<td>35</td>
</tr>
<tr>
<td>Working with agents</td>
<td>36</td>
</tr>
<tr>
<td>Creating your agent</td>
<td>36</td>
</tr>
<tr>
<td>Using agents with VPC endpoints</td>
<td>36</td>
</tr>
<tr>
<td>How DataSync agents work with VPC endpoints</td>
<td>36</td>
</tr>
</tbody>
</table>
Viewing storage resource information .. 37
Configuring your DataSync agent to use a VPC endpoint 37
Deploying your agent in an AWS Region ... 39
 Transferring data from a cloud file system to another cloud file system or Amazon S3 39
 Transferring data from Amazon S3 to AWS file systems 40
Using multiple agents for transfers .. 41
Configuring your agent for multiple NICs .. 42
Managing your agent ... 42
 Agent software updates .. 42
 Agent statuses ... 42
 Troubleshooting your agent .. 43
Working with your agent's local console ... 43
 Accessing the agent's local console ... 43
 Getting an agent activation key .. 44
 Configuring your agent network settings 45
 Testing your agent's connection to AWS 46
 Testing your agent's connection to your storage 47
 Checking your agent's system resources 47
 Synchronizing the time on your VMware agent 48
 Configuring other agent settings .. 49
 Getting help with your agent from AWS Support 50
Replacing your agent .. 51
 Creating a new agent ... 51
 Updating your location with the new agent 51
 Next steps ... 54
Deleting your agent .. 55
 Deleting a DataSync agent .. 55
 Reusing a DataSync agent .. 55
Discovering your storage .. 56
Adding your on-premises storage system .. 56
 Accessing your on-premises storage system 56
 Adding your on-premises storage system 57
 Removing your on-premises storage system 59
Logging DataSync Discovery activity to Amazon CloudWatch 59
Working with discovery jobs ... 60
 Starting a discovery job .. 60
 Stopping a discovery job ... 61
Viewing storage resource information ... 61
 Viewing information collected about your storage system 61
Getting recommendations ... 64
 What's included in the recommendations? 64
 What's not included in the recommendations? 64
 Getting recommendations .. 64
DataSync Discovery statuses .. 66
 Discovery job statuses .. 66
 Recommendation statuses ... 67
Transferring your data .. 69
 Where can I transfer my data? .. 69
 Supported transfers in the same AWS account 69
 Supported transfers across AWS accounts 71
 Supported transfers in the same AWS Region 71
 Supported transfers across AWS Regions 72
 Transferring to or from on-premises storage 72
 Configuring transfers with an NFS file server 72
 Configuring transfers with an SMB file server 74
 Configuring transfers with HDFS ... 76
 Configuring transfers with an object storage system 78
Transferring to or from AWS storage ... 80
Configuring transfers with Amazon S3 ... 80
Configuring transfers with Amazon EFS ... 90
Configuring transfers with FSx for Windows File Server ... 93
Configuring transfers with FSx for Lustre .. 95
Configuring transfers with FSx for OpenZFS .. 96
Configuring transfers with FSx for ONTAP .. 98
Transferring to or from other cloud storage ... 101
Configuring transfers with Google Cloud Storage .. 102
Configuring transfers with Microsoft Azure Blob Storage 107
Configuring transfers with Microsoft Azure Files .. 119
Configuring transfers with other cloud object storage .. 121
Transferring to or from edge storage .. 125
Configuring transfers with S3 compatible storage on Snowball Edge 125
Configuring transfers with Snowcone .. 129
How DataSync handles metadata and special files ... 130
Metadata copied by DataSync ... 130
Links and directories copied by DataSync ... 136
Deleting a transfer location .. 137
Working with transfer tasks ... 137
Verifying data integrity ... 138
Configuring what DataSync transfers .. 138
Setting bandwidth limits.. 144
Scheduling your task ... 145
Tagging your tasks .. 147
Starting your task .. 149
Canceling your task .. 150
Deleting your task .. 150
Task statuses ... 151
Task examples ... 152
Monitoring .. 158
Monitoring with task reports .. 158
Summary only task reports ... 158
Standard task reports ... 159
Example task report ... 160
Prerequisites .. 161
Creating a summary only task report .. 162
Creating a standard task report .. 164
Viewing your task report ... 167
Limitations ... 167
Monitoring with CloudWatch .. 168
CloudWatch metrics for DataSync ... 168
Allowing DataSync to upload logs to CloudWatch log groups 169
Configuring logging for your DataSync transfer task .. 171
Logging with CloudTrail .. 172
Working with DataSync information in CloudTrail ... 172
Understanding DataSync log file entries ... 173
Monitoring with EventBridge .. 174
DataSync transfer events ... 174
DataSync Discovery events ... 175
Monitoring with manual tools .. 175
Monitoring your transfer by using the DataSync console 175
Monitoring your transfer by using the AWS CLI .. 176
Monitoring your transfer by using the watch utility ... 177
Security ... 178
Data protection ... 178
Encryption in transit ... 178
Encryption at rest ... 180
Internetwork traffic privacy ... 181
Identity and access management .. 181
Access management .. 182
AWS managed policies ... 185
Customer managed policies ... 187
Using service-linked roles .. 189
Tagging resources during creation ... 191
Cross-service confused deputy prevention 192
API permissions reference ... 193
Compliance validation .. 200
Resilience .. 200
Infrastructure security ... 201
Quotas .. 202
Storage system, file, and object limits 202
DataSync task quotas .. 202
DataSync Discovery quotas ... 204
Request a quota increase ... 204
Troubleshooting .. 205
Agents .. 205
How do I connect to an Amazon EC2 agent's local console? 205
What does the Failed to retrieve agent activation key error mean? 205
I still can't activate an agent by using a VPC service endpoint 206
What do I do if my agent is offline? ... 206
I don't know what's going on with my agent. Can someone help me? 206
Data transfers .. 206
How do I configure DataSync to use a specific NFS or SMB version to mount my file share? ... 207
Error: Invalid SyncOption value. Option: TransferMode,PreserveDeletedFiles, Value: ALL,REMOVE. ... 207
My task keeps failing with an EniNotFound error 207
My task failed with a DataSync currently does not support server-side NFSv4 ID mapping error . 208
My task status is unavailable and indicates a mount error 208
My task failed with a Cannot allocate memory error 208
My task failed with an input/output error 209
My task execution has a launching status but nothing seems to be happening 209
My task execution has had the preparing status for a long time ... 210
My NFS transfer has a permissions denied error 210
How long does it take DataSync to verify a task I've run? 210
My task fails when transferring to an S3 bucket in another AWS account 210
My task fails when transferring from a Google Cloud Storage bucket ... 211
My task fails with an Unable to list Azure Blobs on the volume root error 211
My task's start and end times don't match up with what's in the logs ... 211
Error: SyncTaskDeletedByUser .. 212
Error: NoMem ... 212
Error: FsS3UnableToConnectToEndpoint 212
Error: FsS3HeadBucketFailed .. 212
Task report errors .. 212
Costs ... 213
Tutorials ... 214
Transferring from on-premises to S3 across accounts 214
Overview .. 214
Required permissions .. 214
Step 1: In your source account, create a DataSync agent 216
Step 2: In your source account, create a DataSync source location for your on-premises storage . 216
Step 3: In your source account, create an IAM role for DataSync ... 216
Step 4: In your destination account, disable ACLs for your S3 bucket .. 217
Step 5: In your destination account, update your S3 bucket policy ... 218
Step 6: In your source account, create a DataSync destination location for your S3 bucket ... 219
Step 6: In your source account, create and start your DataSync transfer task 220
Related resources ... 220
Transferring from S3 to S3 across accounts ... 221
Overview .. 221
Required permissions ... 222
Step 1: In your source account, create a DataSync source location 224
Step 2: In your source account, create an IAM role for DataSync 224
Step 3: In your destination account, disable ACLs for your S3 bucket 225
Step 4: In your destination account, update your S3 bucket policy 226
Step 5: In your source account, create a DataSync destination location 227
Step 6: In your source account, create and start your DataSync transfer task 228
Related resources ... 228
Additional resources .. 230
Other use cases ... 230
Transferring data in opposite directions ... 230
Using multiple DataSync tasks to transfer to the same S3 bucket 230
Allowing DataSync to access a restricted S3 bucket .. 231
Open-source components ... 232
Using the AWS CLI ... 233
Creating an agent .. 233
Creating locations .. 236
Creating an NFS location .. 236
Creating an SMB location .. 237
Creating an HDFS location .. 238
Creating an object storage location .. 238
Creating an Amazon EFS location ... 239
Creating an Amazon FSx for Windows File Server location 241
Creating an Amazon FSx for Lustre location ... 242
Creating an Amazon FSx for OpenZFS location ... 242
Creating an Amazon FSx for NetApp ONTAP location 243
Creating an Amazon S3 location ... 244
Creating a task .. 247
Starting a task ... 249
Filtering resources ... 249
Parameters for filtering ... 249
 Filtering by location .. 250
 Filtering by task ... 251
DataSync API ... 252
Actions .. 252
AddStorageSystem ... 254
CancelTaskExecution ... 258
CreateAgent ... 260
CreateLocationAzureBlob .. 264
CreateLocationEfs ... 268
CreateLocationFsxLustre ... 272
CreateLocationFsxOntap .. 275
CreateLocationFsxOpenZfs ... 278
CreateLocationFsxWindows .. 281
CreateLocationHdfs .. 285
CreateLocationNfs ... 290
CreateLocationObjectStorage ... 294
CreateLocationS3 .. 298
CreateLocationSmb ... 303
CreateTask .. 307
DeleteAgent ... 313
DeleteLocation .. 315
<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeleteTask</td>
<td>317</td>
</tr>
<tr>
<td>DescribeAgent</td>
<td>319</td>
</tr>
<tr>
<td>DescribeDiscoveryJob</td>
<td>323</td>
</tr>
<tr>
<td>DescribeLocationAzureBlob</td>
<td>326</td>
</tr>
<tr>
<td>DescribeLocationFsxCifs</td>
<td>329</td>
</tr>
<tr>
<td>DescribeLocationFsxLustre</td>
<td>333</td>
</tr>
<tr>
<td>DescribeLocationFsxOntap</td>
<td>336</td>
</tr>
<tr>
<td>DescribeLocationFsxOpenZfs</td>
<td>339</td>
</tr>
<tr>
<td>DescribeLocationFsxWindows</td>
<td>342</td>
</tr>
<tr>
<td>DescribeLocationHdfs</td>
<td>345</td>
</tr>
<tr>
<td>DescribeLocationNfs</td>
<td>349</td>
</tr>
<tr>
<td>DescribeLocationObjectStorage</td>
<td>352</td>
</tr>
<tr>
<td>DescribeLocationS3</td>
<td>355</td>
</tr>
<tr>
<td>DescribeLocationSmb</td>
<td>358</td>
</tr>
<tr>
<td>DescribeStorageSystem</td>
<td>361</td>
</tr>
<tr>
<td>DescribeStorageSystemResourceMetrics</td>
<td>365</td>
</tr>
<tr>
<td>DescribeStorageSystemResources</td>
<td>369</td>
</tr>
<tr>
<td>DescribeTask</td>
<td>376</td>
</tr>
<tr>
<td>DescribeTaskExecution</td>
<td>382</td>
</tr>
<tr>
<td>GenerateRecommendations</td>
<td>389</td>
</tr>
<tr>
<td>ListAgents</td>
<td>391</td>
</tr>
<tr>
<td>ListDiscoveryJobs</td>
<td>394</td>
</tr>
<tr>
<td>ListLocations</td>
<td>397</td>
</tr>
<tr>
<td>ListStorageSystems</td>
<td>400</td>
</tr>
<tr>
<td>ListTagsForResource</td>
<td>402</td>
</tr>
<tr>
<td>ListTaskExecutions</td>
<td>405</td>
</tr>
<tr>
<td>ListTasks</td>
<td>408</td>
</tr>
<tr>
<td>RemoveStorageSystem</td>
<td>411</td>
</tr>
<tr>
<td>StartDiscoveryJob</td>
<td>413</td>
</tr>
<tr>
<td>StartTaskExecution</td>
<td>416</td>
</tr>
<tr>
<td>StopDiscoveryJob</td>
<td>420</td>
</tr>
<tr>
<td>TagResource</td>
<td>422</td>
</tr>
<tr>
<td>UntagResource</td>
<td>424</td>
</tr>
<tr>
<td>UpdateAgent</td>
<td>426</td>
</tr>
<tr>
<td>UpdateDiscoveryJob</td>
<td>428</td>
</tr>
<tr>
<td>UpdateLocationAzureBlob</td>
<td>430</td>
</tr>
<tr>
<td>UpdateLocationCifs</td>
<td>433</td>
</tr>
<tr>
<td>UpdateLocationNfs</td>
<td>437</td>
</tr>
<tr>
<td>UpdateLocationObjectStorage</td>
<td>439</td>
</tr>
<tr>
<td>UpdateLocationSmb</td>
<td>442</td>
</tr>
<tr>
<td>UpdateStorageSystem</td>
<td>445</td>
</tr>
<tr>
<td>UpdateTask</td>
<td>448</td>
</tr>
<tr>
<td>UpdateTaskExecution</td>
<td>452</td>
</tr>
</tbody>
</table>

Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgentListEntry</td>
<td>453</td>
</tr>
<tr>
<td>AzureBlobSasConfiguration</td>
<td>455</td>
</tr>
<tr>
<td>Capacity</td>
<td>457</td>
</tr>
<tr>
<td>Credentials</td>
<td>458</td>
</tr>
<tr>
<td>DiscoveryJobListEntry</td>
<td>459</td>
</tr>
<tr>
<td>DiscoveryServerConfiguration</td>
<td>460</td>
</tr>
<tr>
<td>Ec2Config</td>
<td>461</td>
</tr>
<tr>
<td>FilterRule</td>
<td>462</td>
</tr>
<tr>
<td>FsxFsProtocol</td>
<td>463</td>
</tr>
<tr>
<td>FsxFsProtocolNfs</td>
<td>464</td>
</tr>
<tr>
<td>FsxFsProtocolSmb</td>
<td>465</td>
</tr>
<tr>
<td>HdfsNameNode</td>
<td>466</td>
</tr>
<tr>
<td>IOPS</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>469</td>
</tr>
</tbody>
</table>
Beginning December 7, 2023, we will discontinue version 1 DataSync agents. Check the Agents page on the DataSync console to see if you have affected agents. If you do, replace those agents before then to avoid data transfer or storage discovery disruptions. If you need more help, contact AWS Support.
What is AWS DataSync?

AWS DataSync is an online data movement and discovery service that simplifies data migration and helps you quickly, easily, and securely transfer your file or object data to, from, and between AWS storage services.

On-premises storage transfers

DataSync works with the following on-premises storage systems:

- Network File System (NFS) (p. 72)
- Server Message Block (SMB) (p. 74)
- Hadoop Distributed File Systems (HDFS) (p. 76)
- Object storage (p. 78)

AWS storage transfers

DataSync works with the following AWS storage services:

- Amazon S3 (p. 80)
- Amazon EFS (p. 90)
- Amazon FSx for Windows File Server (p. 93)
- Amazon FSx for Lustre (p. 95)
- Amazon FSx for OpenZFS (p. 96)
- Amazon FSx for NetApp ONTAP (p. 98)

Other cloud storage transfers

DataSync works with the following other cloud storage services:

- Google Cloud Storage (p. 102)
- Microsoft Azure Blob Storage (p. 107)
- Microsoft Azure Files (p. 119)
- Wasabi Cloud Storage (p. 121)
- DigitalOcean Spaces (p. 121)
- Oracle Cloud Infrastructure Object Storage (p. 121)
- Cloudflare R2 Storage (p. 121)
- Backblaze B2 Cloud Storage (p. 121)
- NAVER Cloud Object Storage (p. 121)
- Alibaba Cloud Object Storage Service (p. 121)
- IBM Cloud Object Storage (p. 121)
- Seagate Lyve Cloud (p. 121)

Edge storage transfers

DataSync works with the following edge storage services and devices:

- Amazon S3 compatible storage on AWS Snowball Edge (p. 125)
Use cases

These are some of the main use cases for DataSync:

- **Discover data** – Get visibility into your on-premises storage performance and utilization. AWS DataSync Discovery can also provide recommendations for migrating your data to AWS storage services.
- **Migrate data** – Move active datasets rapidly over the network into AWS storage services. DataSync includes automatic encryption and data integrity validation to help make sure that your data arrives securely, intact, and ready to use.
- **Archive cold data** – Move cold data stored in on-premises storage directly to durable and secure long-term storage classes such as S3 Glacier Flexible Retrieval or S3 Glacier Deep Archive. Doing so can free up on-premises storage capacity and shut down legacy systems.
- **Replicate data** – Copy data into any Amazon S3 storage class, choosing the most cost-effective storage class for your needs. You can also send data to Amazon EFS, FSx for Windows File Server, FSx for Lustre, or FSx for OpenZFS for a standby file system.
- **Move data for timely in-cloud processing** – Move data in or out of AWS for processing. This approach can speed up critical hybrid cloud workflows across many industries. These include machine learning in the life-sciences industry, video production in media and entertainment, big-data analytics in financial services, and seismic research in the oil and gas industry.

Benefits

By using DataSync, you can get the following benefits:

- **Simplify migration planning** – With automated data collection and recommendations, DataSync Discovery can minimize the time, effort, and costs associated with planning your data migrations to AWS. You can use recommendations to inform your budget planning and re-run discovery jobs to validate your assumptions as you approach your migration.
- **Automate data movement** – DataSync makes it easier to move data over the network between storage systems and services. DataSync automates both the management of data-transfer processes and the infrastructure required for high performance and secure data transfer.
- **Transfer data securely** – DataSync provides end-to-end security, including encryption and integrity validation, to help ensure that your data arrives securely, intact, and ready to use. DataSync accesses your AWS storage through built-in AWS security mechanisms, such as AWS Identity and Access Management (IAM) roles. It also supports virtual private cloud (VPC) endpoints, giving you the option to transfer data without traversing the public internet and further increasing the security of data copied online.
- **Move data faster** – DataSync uses a purpose-built network protocol and a parallel, multi-threaded architecture to accelerate your transfers. This approach speeds up migrations, recurring data-processing workflows for analytics and machine learning, and data-protection processes.
- **Reduce operational costs** – Move data cost-effectively with the flat, per-gigabyte pricing of DataSync. Avoid having to write and maintain custom scripts or use costly commercial transfer tools.

Additional resources

We recommend that you read the following:
• **DataSync resources** – Includes blogs, videos, and other training materials
• **AWS re:Post** – See the latest discussion around DataSync
• **AWS DataSync pricing**
How AWS DataSync works

Get a visual overview of how AWS DataSync works and learn key concepts to help you identify and move your data quickly.

Topics
- How AWS DataSync Discovery works (p. 4)
- How AWS DataSync transfers work (p. 6)

How AWS DataSync Discovery works

Learn the key concepts and terminology related to AWS DataSync Discovery.

DataSync Discovery architecture

The following diagram illustrates how DataSync Discovery collects information and provides recommendations for migrating data from an on-premises storage system to AWS.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A DataSync agent connects to your on-premises storage system's management interface (using port 443, for example). You then run a discovery job to collect information about your system.</td>
</tr>
<tr>
<td>2</td>
<td>The agent sends the information that it collects to DataSync Discovery through a public service endpoint (p. 29).</td>
</tr>
<tr>
<td>3</td>
<td>Using the information that it collects, DataSync Discovery recommends AWS storage services that you can migrate your data to.</td>
</tr>
</tbody>
</table>

Concepts and terminology

Familiarize yourself with DataSync Discovery features.
Topics

- Agent (p. 5)
- Discovery job (p. 5)
- Storage system resource information (p. 5)
- AWS storage recommendations (p. 5)

Agent

An agent is a virtual machine (VM) appliance that DataSync Discovery uses to access the management interface of your on-premises storage system. The agent collects (reads) information about how your storage resources are performing and being used.

You can deploy an agent in your storage environment on VMware ESXi, Linux Kernel-based Virtual Machine (KVM), or Microsoft Hyper-V hypervisors. For storage in a virtual private cloud (VPC) in AWS, you can deploy an agent as an Amazon EC2 instance.

A DataSync Discovery agent is no different than an agent that you can use for DataSync transfers, but we don't recommend using the same agent for these scenarios.

To get started, see Create an agent (p. 25).

Discovery job

You run a discovery job to collect information about your on-premises storage system through the storage system's management interface.

You can run a discovery job between 1 hour and 31 days. You'll get more accurate AWS storage recommendations the longer your discovery job runs.

For more information, see Working with DataSync discovery jobs (p. 60).

Storage system resource information

DataSync Discovery can give you performance and utilization information about your on-premises storage system's resources. For example, get an idea about how much storage capacity is being used in a specific storage volume compared to how much capacity you originally provisioned.

You can view this information as your discovery job collects it by using the following:

- The DataSync console
- The DescribeStorageSystemResources operation
- The DescribeStorageSystemResourceMetrics operation

For more information, see Viewing storage resource information collected by AWS DataSync Discovery (p. 61).

AWS storage recommendations

Using the information that it collects about your on-premises storage system's resources, DataSync Discovery recommends AWS storage services to help plan your migration to AWS.

You can view recommendations by using the following:

- The DataSync console
- The DescribeStorageSystemResources operation
For more information, see Getting recommendations from AWS DataSync Discovery (p. 64).

Limitations

- Currently, you can only activate DataSync Discovery agents with public service endpoints (p. 29).

How AWS DataSync transfers work

Learn the key concepts and terminology related to AWS DataSync transfers.

DataSync architecture

The following diagrams show how and where DataSync commonly transfers storage data. For a full list of DataSync supported storage systems and services, see Where can I transfer my data with AWS DataSync? (p. 69).

Topics

- Transferring between on-premises storage and AWS (p. 6)
- Transferring between AWS storage services (p. 7)
- Transferring between cloud storage systems and AWS storage services (p. 7)

Transferring between on-premises storage and AWS

The following diagram shows a high-level overview of DataSync transferring files between self-managed, on-premises storage systems and AWS services.

The diagram illustrates a common DataSync use case:

- A DataSync agent copying data from an on-premises storage system.
- Data moving into AWS via Transport Layer Security (TLS).
- DataSync copying data to a supported AWS storage service.
Transferring between AWS storage services

The following diagram shows a high-level overview of DataSync transferring files between AWS services in the same AWS account.

The diagram illustrates a common DataSync use case:

- DataSync copying data from a supported AWS storage service.
- Data moving across AWS Regions via TLS.
- DataSync copying data to a supported AWS storage service.

When transferring between AWS storage services (whether in the same AWS Region or across AWS Regions), your data remains in the AWS network and doesn't traverse the public internet.

Important
You pay for data transferred between AWS Regions. This is billed as data transfer OUT from your source Region to your destination Region. For more information, see [Data transfer pricing](#).

Transferring between cloud storage systems and AWS storage services

With DataSync, you can transfer data between other cloud storage systems and AWS services. In this context, cloud storage systems can include:

- Self-managed storage systems hosted by AWS (for example, an NFS share in your virtual private cloud within AWS). For more information, [Deploying your AWS DataSync agent in an AWS Region](#).
- Storage systems or services hosted by another cloud provider. For more information, see [Transferring to or from other cloud storage with AWS DataSync](#).

The following diagram shows a high-level overview of DataSync transferring data between AWS storage services and another cloud provider.
Concepts and terminology

Familiarize yourself with DataSync transfer features.

Topics

- Agent (p. 8)
- Location (p. 8)
- Task (p. 8)
- Task execution (p. 9)

Agent

An agent is a virtual machine (VM) appliance that DataSync uses to read from and write to storage during a transfer.

You can deploy an agent in your storage environment on VMware ESXi, Linux Kernel-based Virtual Machine (KVM), or Microsoft Hyper-V hypervisors. For storage in a virtual private cloud (VPC) in AWS, you can deploy an agent as an Amazon EC2 instance.

A DataSync transfer agent is no different than an agent that you can use for DataSync Discovery, but we don’t recommend using the same agent for these scenarios.

To get started, see Create an agent (p. 25).

Location

A location describes where you're copying data from or to. Each DataSync transfer (also known as a task) has a source and destination location. For more information, see Where can I transfer my data with AWS DataSync? (p. 69).

Task

A task describes a DataSync transfer. It identifies a source and destination location along with details about how to copy data between those locations. You also can specify how a task treats metadata, deleted files, and permissions.
Task execution

A task execution is an individual run of a DataSync transfer task. There are several phases involved in a task execution. For more information, see Task execution statuses (p. 152).

How DataSync transfers files and objects

When you start a transfer, DataSync examines your source and destination storage systems to determine what to sync. It does this by recursively scanning the contents and metadata of both systems to identify differences between the two. This can take just minutes or a few hours depending on the number of files or objects involved (including the performance of the storage systems).

DataSync then begins moving your data (including metadata) from the source to destination based on how you set up the transfer (p. 138). For example, DataSync always performs data-integrity checks during a transfer. When the transfer's complete, DataSync can also verify the entire dataset between locations or just the data you copied. (In most cases, we recommend verifying only what was transferred.) There are options for filtering what to transfer, too.

Topics

- How DataSync verifies data integrity (p. 9)
- How DataSync handles open and locked files (p. 9)

How DataSync verifies data integrity

DataSync locally calculates the checksum of every file or object in the source and destination storage systems and compares them. Additionally, DataSync compares the metadata of every file or object in the source and destination.

If there are differences in either one, verification fails with an error code that specifies precisely what failed. For example, you might see error codes such as Checksum failure, Metadata failure, Files were added, Files were removed, and so on.

For more information, see Configuring how AWS DataSync verifies data integrity (p. 138).

How DataSync handles open and locked files

Keep in mind the following when trying to transfer files that are in use or locked:

- In general, DataSync can transfer open files without any limitations.
- If a file is open and being written to during a transfer, DataSync can detect this kind of inconsistency during the transfer task's verification phase. To get the latest version of the file, you must run the task again.
- If a file is locked and the server prevents DataSync from opening it, DataSync skips the file during the transfer and logs an error.
- DataSync can't lock or unlock files.
Requirements for AWS DataSync

AWS DataSync agent and network requirements vary based on where and how you plan to transfer data.

Topics
- AWS DataSync agent requirements (p. 10)
- AWS DataSync network requirements (p. 12)
- Required IAM permissions for using AWS DataSync (p. 22)

AWS DataSync agent requirements

An agent is a virtual machine (VM) appliance that AWS DataSync uses for storage discovery and data transfers. For example, you need a DataSync agent to transfer files from an on-premises storage system to AWS.

Use this information to understand what you need to deploy an agent in your storage environment.

Getting an agent

You can download an agent from the DataSync console.

Hypervisor requirements

You can run a DataSync agent on the following hypervisors:

- **VMware ESXi (version 6.5, 6.7, or 7.0):** A free version of VMware is available on the VMware website. You also need a VMware vSphere client to connect to the host.

 When VMware ends general support for an ESXi hypervisor version, DataSync also ends support for that version. For information about VMware's supported hypervisor versions, see VMware lifecycle policy on the VMware website.

- **Microsoft Hyper-V (version 2012 R2, 2016, or 2019):** For this setup, you need a Microsoft Hyper-V Manager on a Microsoft Windows client computer to connect to the host.

 The DataSync agent virtual machine (VM) is a generation 1 virtual machine. For more information about the differences between generation 1 and generation 2 VMs, see Should I create a generation 1 or 2 virtual machine in Hyper-V?

- **Linux Kernel-based Virtual Machine (KVM):** A free, open-source virtualization technology. KVM is included in Linux versions 2.6.20 and newer. DataSync is tested and supported for the CentOS/RHEL 7 and 8, Ubuntu 16.04 LTS, and Ubuntu 18.04 LTS distributions. Other modern Linux distribution might work, but function or performance is not guaranteed. We recommend this option if you already have a KVM environment up and running and you're already familiar with how KVM works.

 Running KVM on Amazon EC2 isn't supported, and cannot be used for DataSync agents. To run the agent on Amazon EC2, deploy an agent Amazon Machine Image (AMI). For more information about deploying an agent AMI on Amazon EC2, see Deploy your agent on Amazon EC2 (p. 27).
Agent requirements for DataSync transfers

For DataSync transfers, your agent must meet the following resource requirements.

Important
Keep in mind that the agent requirements for working with up to 20 million files, objects, or directories are general guidelines. Your agent may need more resources because of other factors, such as how many directories you have and object metadata size. For example, the m5.2xlarge instance for an Amazon EC2 agent still might not be enough for a transfer of less than 20 million files.

Topics
- Virtual machine requirements (p. 11)
- Amazon EC2 instance requirements (p. 11)

Virtual machine requirements

When deploying a DataSync agent that isn't on an Amazon EC2 instance, the agent VM requires the following resources:

- **Virtual processors**: Four virtual processors assigned to the VM.
- **Disk space**: 80 GB of disk space for installing the VM image and system data.
- **RAM**: Depending on your transfer scenario, you need the following amount of memory:
 - 32 GB of RAM assigned to the VM for task executions working with up to 20 million files, objects, or directories.
 - 64 GB of RAM assigned to the VM for task executions working with more than 20 million files, objects, or directories.

Amazon EC2 instance requirements

When deploying a DataSync agent on an Amazon EC2 instance, the instance size must be at least 2xlarge.

We recommend using one of the following instance sizes:

- **m5.2xlarge**: For task executions working with up to 20 million files, objects, or directories.
- **m5.4xlarge**: For task executions working with more than 20 million files, objects, or directories.
- **snc1.medium**: For agents running on an AWS Snowcone device. This instance provides two CPU cores and 4 GiB of memory.

Agent requirements for DataSync Discovery

Whether it's a VM or Amazon EC2 instance, the agent that you use with DataSync Discovery must have 80 GB of disk space and 16 GB of RAM.

Agent management requirements

Once you activate (p. 31) your DataSync agent, AWS manages the agent for you. For more information, see Managing your AWS DataSync agent (p. 42).
AWS DataSync network requirements

Configuring your network is an important step in setting up AWS DataSync. Your network configuration depends on several factors, such as whether you want information about your storage or are ready to transfer data. It’s also based on what kind of service endpoint you plan to use for sending data to AWS.

Network requirements for self-managed and other cloud storage

The following network requirements can apply to on-premises or cloud-based storage systems that you manage or storage services from other cloud providers.

Note
Depending on your network, you might need to allow traffic on ports other than what’s listed here for DataSync to connect with your storage.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol</th>
<th>Port</th>
<th>How it’s used by DataSync</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSync agent</td>
<td>NFS file server</td>
<td>TCP/UDP</td>
<td>2049</td>
<td>Mounts the NFS file server. DataSync supports NFS versions 3.x, 4.0, and 4.1.</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>SMB file server</td>
<td>TCP/UDP</td>
<td>139 or 445</td>
<td>Mounts the SMB file server. DataSync supports SMB versions 1.0 and later.</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>Object storage</td>
<td>TCP</td>
<td>443 (HTTPS) or 80 (HTTP)</td>
<td>Accesses your object storage.</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>Hadoop cluster</td>
<td>TCP</td>
<td>NameNode port (default is 8020) In most clusters, you can find this port number in the core-site.xml file under the fs.default or fs.default.name property (depending on the Hadoop distribution).</td>
<td>Accesses the NameNodes in your Hadoop cluster. Specify the port used when creating an HDFS location.</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>Hadoop cluster</td>
<td>TCP</td>
<td>DataNode port (default is 50010)</td>
<td>Accesses the DataNodes in your Hadoop cluster. The DataSync agent</td>
</tr>
</tbody>
</table>
Network requirements for AWS storage services

The network ports required for DataSync to connect to an AWS storage service during a transfer vary.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol</th>
<th>Port</th>
<th>How it's used by DataSync</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSync service</td>
<td>Amazon EFS</td>
<td>TCP</td>
<td>2049</td>
<td>In most clusters, you can find this port number in the hdfs-site.xml file under the dfs.datanode.address property.</td>
</tr>
<tr>
<td>DataSync service</td>
<td>FSx for Windows File Server</td>
<td>TCP</td>
<td>See file system access control for FSx for Windows File Server.</td>
<td></td>
</tr>
<tr>
<td>DataSync service</td>
<td>FSx for Lustre</td>
<td>TCP</td>
<td>See file system access control for FSx for Lustre.</td>
<td></td>
</tr>
<tr>
<td>DataSync service</td>
<td>FSx for OpenZFS</td>
<td>TCP/UDP</td>
<td>Depends on your network. DataSync Discovery uses this connection to collect information about your system.</td>
<td></td>
</tr>
<tr>
<td>DataSync service</td>
<td>FSx for ONTAP</td>
<td>TCP</td>
<td>111, 635, and 2049 (NFS) 445 (SMB)</td>
<td></td>
</tr>
<tr>
<td>DataSync service</td>
<td>Amazon S3</td>
<td>TCP</td>
<td>443 (HTTPS)</td>
<td></td>
</tr>
</tbody>
</table>

Network requirements for VPC endpoints

A virtual private cloud (VPC) endpoint provides a private connection between your agent and AWS that doesn't cross the internet or use public IP addresses. This also helps prevent packets from
Network requirements for VPC endpoints

DataSync requires the following ports for your agent to use a VPC endpoint.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol</th>
<th>Port</th>
<th>How it's used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your web browser</td>
<td>Your DataSync agent</td>
<td>TCP</td>
<td>80 (HTTP)</td>
<td>By your computer to obtain the agent activation key. After successful activation, DataSync closes the agent's port 80. The DataSync agent doesn't require port 80 to be publicly accessible. The required level of access to port 80 depends on your network configuration.</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>Your DataSync VPC endpoint</td>
<td>TCP</td>
<td>1024–1064</td>
<td>For control traffic between the DataSync agent and the AWS service.</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>To find the correct IP address, open the Amazon VPC console, and choose Endpoints from the left navigation pane. Choose the DataSync endpoint, and check the Subnets list to find the private IP address that corresponds to the subnet that you chose for your VPC endpoint setup.</td>
<td>TCP</td>
<td>1024–1064</td>
<td>For control traffic between the DataSync agent and the AWS service.</td>
</tr>
</tbody>
</table>

Note
Alternatively, you can obtain the activation key from the agent's local console. This method does not require connectivity between the browser and your agent. For more information about using the local console to get the activation key, see Getting an agent activation key (p. 44).
Network requirements for public or FIPS endpoints

Your DataSync agent requires the following network access when using public or FIPS service endpoints. If you use a firewall or router to filter or limit network traffic, configure your firewall or router to allow these endpoints.
Network requirements for public or FIPS endpoints

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol</th>
<th>Port</th>
<th>How it's used</th>
<th>Endpoints accessed by the agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your web browser</td>
<td>DataSync agent</td>
<td>TCP</td>
<td>80 (HTTP)</td>
<td>Allows your computer to obtain the DataSync agent's activation key. After successful activation, DataSync closes the agent's port 80. The agent doesn't require port 80 to be publicly accessible. The required level of access to port 80 depends on your network configuration.</td>
<td>N/A</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>Amazon CloudFront</td>
<td>TCP</td>
<td>443 (HTTPS)</td>
<td>Helps bootstrap your DataSync agent prior to activation.</td>
<td>AWS Regions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• d3dvialiwoko8h.cloudfront.net</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Protocol</td>
<td>Port</td>
<td>How it's used</td>
<td>Endpoints accessed by the agent</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| DataSync agent | AWS Region | TCP | 443 | Activates your DataSync agent and associates it with your AWS account. You | **AWS GovCloud (US) Regions:**
| | | | (HTTPS)| can block the public endpoints after activation. | |
| | | | | |
| | | | | | **The activation-region is the AWS Region where you activate your DataSync agent.** |
| | | | | | **Public endpoint activation:** |
| | | | | |
| | | | | | **FIPS endpoint activation:** |
| | | | | |
| | | | | |
| | | | | | **activation.datasync.activation-region.amazonaws.com** |
| | | | | | **activation.datasync-fips.activation-region.amazonaws.com** |
Network requirements for public or FIPS endpoints

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol</th>
<th>Port</th>
<th>How it's used</th>
<th>Endpoints accessed by the agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSync agent</td>
<td>AWS</td>
<td>TCP</td>
<td>443</td>
<td>Allows communication between the DataSync agent and AWS service endpoint.</td>
<td>The activation-region is the AWS Region where you activated your DataSync agent. Depending on what you're using DataSync for, you might not need to allow access to every endpoint listed here.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(HTTPS)</td>
<td></td>
<td>DataSync API endpoint:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• datasync.activation-region.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DataSync Discovery endpoint (for discovery jobs only):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• discovery-datasync.activation-region.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DataSync control plane endpoints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Public endpoint:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• cp.datalsync.activation-region.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• FIPS endpoint:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• cp.datalsync-fips.activation-region.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DataSync data plane endpoint (for transfer tasks only):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• your-task-id.datalsync-dp.activation-region.amazonaws.com</td>
</tr>
</tbody>
</table>

For more information, see [Choose a service endpoint for your AWS DataSync agent](#) (p. 29).

DataSync agent to *AWS* TCP 443 (HTTPS) Allows the DataSync agent to get updates from AWS. For more information, see [Managing your AWS DataSync agent](#) (p. 42).

The *activation-region* is the AWS Region where you activated your DataSync agent.

amazonlinux.default.amazonaws.com
cdn.amazonlinux.com
*amazonlinux-2-repos-*activation-region*.s3.dualstack.*activation-region*.amazonaws.com*
*amazonlinux-2-repos-*activation-region*.s3.*activation-region*.amazonaws.com*
*.*s3.*activation-region*.amazonaws.com*
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol</th>
<th>Port</th>
<th>How it’s used</th>
<th>Endpoints accessed by the agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSync agent</td>
<td>Domain Name Service (DNS) server</td>
<td>TCP/UDP</td>
<td>53 (DNS)</td>
<td>Allows communication between the DataSync agent and DNS server.</td>
<td>N/A</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>AWS</td>
<td>TCP</td>
<td>22</td>
<td>(Support channel) Allows AWS Support to access your DataSync agent to help you troubleshoot issues. You don't need this port open for normal operation.</td>
<td>AWS Support channel:
• 54.201.223.107</td>
</tr>
<tr>
<td>DataSync agent</td>
<td>Network Time Protocol (NTP) server</td>
<td>UDP</td>
<td>123</td>
<td>(NTP) Allows local systems to synchronize the VM time to the host time.</td>
<td>NTP:
• 0.amazon.pool.ntp.org
• 1.amazon.pool.ntp.org
• 2.amazon.pool.ntp.org
• 3.amazon.pool.ntp.org</td>
</tr>
</tbody>
</table>

Note
To change the default NTP configuration of your VM agent to use a different NTP server using the local console, see [Synchronizing the time on your VMware agent](p. 48).

The following diagram shows the ports required by DataSync when using public or FIPS endpoints.
Network interface requirements

For every task you create, DataSync automatically generates and manages network interfaces for data transfer traffic. How many network interfaces DataSync creates and where they’re created depends on the following details about your task:

- Whether your task requires a DataSync agent.
- Your source and destination locations (where you’re copying data from and to).
- The type of service endpoint that your agent uses.

Each network interface uses a single IP address in your subnet (the more network interfaces there are, the more IP addresses you need). Use the following tables to make sure your subnet has enough IP addresses for your task.

Topics

- Network interfaces for transfers with agents (p. 20)
- Network interfaces for transfers without agents (p. 21)
- Viewing your network interfaces (p. 22)

Network interfaces for transfers with agents

In general, you need a DataSync agent when copying data between an AWS storage service and storage system that isn’t AWS.
Network interface requirements

<table>
<thead>
<tr>
<th>Location</th>
<th>Network interfaces created by default</th>
<th>Where network interfaces are created when using a public or FIPS endpoint</th>
<th>Where network interfaces are created when using a private (VPC) endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon S3</td>
<td>4</td>
<td>N/A<sup>1</sup></td>
<td>The subnet you specify when activating your DataSync agent.</td>
</tr>
<tr>
<td>Amazon EFS</td>
<td>4</td>
<td>The subnet you specify when creating the Amazon EFS location.</td>
<td></td>
</tr>
<tr>
<td>Amazon FSx for Windows File Server</td>
<td>4</td>
<td>The same subnet as the file system's preferred file server.</td>
<td></td>
</tr>
<tr>
<td>Amazon FSx for Lustre</td>
<td>4</td>
<td>The same subnet as the file system.</td>
<td></td>
</tr>
<tr>
<td>Amazon FSx for OpenZFS</td>
<td>4</td>
<td>The same subnet as the file system.</td>
<td></td>
</tr>
<tr>
<td>Amazon FSx for NetApp ONTAP</td>
<td>4</td>
<td>The same subnet as the file system.</td>
<td></td>
</tr>
</tbody>
</table>

¹ Network interfaces aren't needed because the DataSync service communicates directly with the S3 bucket.

Network interfaces for transfers without agents

You don’t need a DataSync agent when copying data between AWS services.

The total number of network interfaces depends on the DataSync locations in your transfer. For example, transferring between Amazon EFS and FSx for Lustre file systems requires four network interfaces. Meanwhile, transferring between FSx for Windows File Server and an S3 bucket requires two network interfaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>Network interfaces created by default</th>
<th>Where network interfaces are created</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon S3</td>
<td>N/A<sup>1</sup></td>
<td>N/A<sup>1</sup></td>
</tr>
<tr>
<td>Amazon EFS</td>
<td>2</td>
<td>The subnet you specify when creating the Amazon EFS location.</td>
</tr>
<tr>
<td>FSx for Windows File Server</td>
<td>2</td>
<td>The same subnet as the preferred file server for the file system.</td>
</tr>
<tr>
<td>FSx for Lustre</td>
<td>2</td>
<td>The same subnet as the file system.</td>
</tr>
<tr>
<td>FSx for OpenZFS</td>
<td>2</td>
<td>The same subnet as the file system.</td>
</tr>
<tr>
<td>FSx for ONTAP</td>
<td>2</td>
<td>The same subnet as the file system.</td>
</tr>
</tbody>
</table>
Network interfaces aren't needed because the DataSync service communicates directly with the S3 bucket.

Viewing your network interfaces

To see the network interfaces allocated to your DataSync transfer task, do one of the following:

- Use the `DescribeTask` operation. The operation returns `SourceNetworkInterfaceArns` and `DestinationNetworkInterfaceArns` with responses that look like this:

  ```
  ```

 In this example, the network interface ID is `eni-f012345678abcdef0`.

- In the Amazon EC2 console, search for your task ID (such as `task-f012345678abcdef0`) to find its network interfaces.

Required IAM permissions for using AWS DataSync

AWS DataSync can move your data to an Amazon S3 bucket, Amazon EFS file system, or a number of other AWS storage services (p. 69). To get your data where you want it to go, you need the right AWS Identity and Access Management (IAM) permissions granted to your identity. For example, the IAM role that you use with DataSync needs permission to use the Amazon S3 operations required to transfer data to an S3 bucket.

You can grant these permissions with IAM policies provided by AWS or by creating your own policies.

AWS managed policies

AWS provides the following managed policies for common DataSync use cases:

- `AWSDataSyncReadOnlyAccess` – Provides read-only access to DataSync.
- `AWSDataSyncFullAccess` – Provides full access to DataSync and minimal access to its dependencies.

For more information, see [AWS managed policies for AWS DataSync (p. 185)](aws-managed-policies-for-aws-datasync)

Customer managed policies

You can create custom IAM policies to use with DataSync. For more information, see [IAM customer managed policies for AWS DataSync (p. 187)](iam-customer-managed-policies-for-aws-datasync).
Getting started with AWS DataSync

This section focuses primarily on how you can get started with AWS DataSync by using the AWS Management Console.

Before you begin, we recommend reading How AWS DataSync works (p. 4).

Topics
• Set up with AWS DataSync (p. 23)
• Sign in to the AWS DataSync console (p. 24)
• Create an AWS DataSync agent (p. 25)
• Discover your storage with AWS DataSync Discovery (p. 32)
• Transfer your data with AWS DataSync (p. 33)
• Clean up your AWS resources (p. 35)

Set up with AWS DataSync

Before you get started with AWS DataSync, you need to sign up for an AWS account if you don't have one. We also recommend learning where DataSync can be used and how much it might cost to move your data.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account
2. Follow the online instructions.
 Part of the sign-up procedure involves receiving a phone call and entering a verification code on the phone keypad.
 When you sign up for an AWS account, an AWS account root user is created. The root user has access to all AWS services and resources in the account. As a security best practice, assign administrative access to an administrative user, and use only the root user to perform tasks that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can view your current account activity and manage your account by going to https://aws.amazon.com/ and choosing My Account.

Create an administrative user

After you sign up for an AWS account, create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user
1. Sign in to the AWS Management Console as the account owner by choosing Root user and entering your AWS account email address. On the next page, enter your password.
For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in the IAM User Guide.

Create an administrative user

- For your daily administrative tasks, grant administrative access to an administrative user in AWS IAM Identity Center.

For instructions, see Getting started in the AWS IAM Identity Center User Guide.

Sign in as the administrative user

- To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in the AWS Sign-In User Guide.

Where can I use DataSync?

For a list of AWS Regions and endpoints that DataSync supports, see AWS DataSync endpoints and quotas in the AWS General Reference.

How can I use DataSync?

There are several ways to use DataSync:

- DataSync console, which is part of the AWS Management Console.
- DataSync API (p. 252) or the AWS CLI to programatically configure and manage DataSync.
- AWS CloudFormation or Terraform to provision your DataSync resources.
- AWS SDKs to build applications that use DataSync.

How much does DataSync cost?

On the DataSync pricing page, create a custom estimate using the amount of data that you plan to copy.

Sign in to the AWS DataSync console

Get started with AWS DataSync right away through the console.

To get started with AWS DataSync by using the console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the upper-right corner, choose the AWS Region where you want to use DataSync.

We recommend choosing the same AWS Region used by the AWS storage resource that's part of your transfer.
3. On the DataSync home page, choose one of the following:
 - **Discover storage** if you want DataSync to help you understand your on-premises storage.
 - **Transfer data** to start moving your data to, from, or between AWS storage services.

Next step: Create an AWS DataSync agent (p. 25)

Create an AWS DataSync agent

Whether you're planning a data migration or ready to move data, you may need an AWS DataSync agent for the following reasons:

- **Understanding your storage** – DataSync Discovery uses an agent to collect information about how an on-premises storage system is used and configured.
- **Transferring your data** – DataSync uses an agent to read from and write to storage systems that are located on-premises or in other clouds.

 Tip
 You don't need an agent when transferring between AWS storage services in the same AWS account. If this is what you're trying to do, skip ahead to Create a source location for AWS DataSync (p. 33).

We recommend using separate agents for DataSync Discovery and DataSync transfers. For DataSync transfers, you can reuse an agent if it can access your storage system and has been activated in the same AWS Region.

Topics
- Deploy your AWS DataSync agent (p. 25)
- Choose a service endpoint for your AWS DataSync agent (p. 29)
- Activate your AWS DataSync agent (p. 31)

Deploy your AWS DataSync agent

AWS DataSync provides agents for various storage environments. You can deploy your agent on a VMware ESXi, Linux Kernel-based Virtual Machine (KVM), or Microsoft Hyper-V hypervisor. For storage in a virtual private cloud (VPC) in AWS, you can deploy an agent as an Amazon EC2 instance.

Topics
- Deploy your agent on VMware (p. 25)
- Deploy your agent on KVM (p. 26)
- Deploy your agent on Microsoft Hyper-V (p. 27)
- Deploy your agent on Amazon EC2 (p. 27)
- Deploy your agent on AWS Snowcone (p. 29)
- Deploy your agent on AWS Outposts (p. 29)

Deploy your agent on VMware

You can download an agent from the DataSync console and deploy it in your VMware environment.

Before you begin: Make sure that your storage environment can support a DataSync agent. For more information, see Virtual machine requirements (p. 11).
To deploy an agent on VMware

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose **Agents**, and then choose **Create agent**.
3. For **Hypervisor**, choose **VMware ESXi**, and then choose **Download the image**.

 The agent downloads in a .zip file that contains an .ova image file.
4. To minimize network latency, deploy the agent as close as possible to the storage system that DataSync needs to access (the same local network if possible). For more information, see [AWS DataSync network requirements](p. 12).

 If needed, see your hypervisor's documentation on how to deploy an .ova file in a VMware host.
5. Power on your hypervisor, log in to the agent VM, and get the agent's IP address. You need this IP address to activate the agent.

 The agent VM's default credentials are login **admin** and password **password**. If needed, change the password through the VM's local console (p. 43).

Deploy your agent on KVM

You can download an agent from the DataSync console and deploy it in your KVM environment.

Before you begin: Make sure that your storage environment can support a DataSync agent. For more information, see [Virtual machine requirements](p. 11).

To deploy an agent on KVM

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose **Agents**, and then choose **Create agent**.
3. For **Hypervisor**, choose **Kernel-based Virtual Machine (KVM)**, and then choose **Download the image**.

 The agent downloads in a .zip file that contains a .qcow2 image file.
4. To minimize network latency, deploy the agent as close as possible to the storage system that DataSync needs to access (the same local network if possible). For more information, see [AWS DataSync network requirements](p. 12).
5. Run the following command to install your .qcow2 image.

   ```bash
   virt-install \
   --name "datasync" \
   --description "DataSync agent" \
   --os-type=generic \
   --ram=32768 \
   --vcpus=4 \
   --disk path=datasync-yyyymmdd-x86_64.qcow2,bus=virtio,size=80 \
   --network default,model=virtio \
   --graphics none \
   --import
   ```

 For information about how to manage this VM and your KVM host, see your hypervisor's documentation.
6. Power on your hypervisor, log in to your VM, and get the IP address of the agent. You need this IP address to activate the agent.

 The agent VM's default credentials are login **admin** and password **password**. If needed, change the password through the VM's local console (p. 43).
Deploy your agent on Microsoft Hyper-V

You can download an agent from the DataSync console and deploy it in your Microsoft Hyper-V environment.

Before you begin: Make sure that your storage environment can support a DataSync agent. For more information, see [Virtual machine requirements](#).

To deploy an agent on Hyper-V

2. In the left navigation pane, choose **Agents**, and then choose **Create agent**.
3. For **Hypervisor**, choose **Microsoft Hyper-V**, and then choose **Download the image**.

 The agent downloads in a .zip file that contains a .vhdx image file.
4. To minimize network latency, deploy the agent as close as possible to the storage system that DataSync needs to access (the same local network if possible). For more information, see [AWS DataSync network requirements](#).

 If needed, see your hypervisor's documentation on how to deploy a .vhdx file in a Hyper-V host.

 Warning
 You may notice poor network performance if you enable virtual machine queue (VMQ) on a Hyper-V host that's using a Broadcom network adapter. For information about a workaround, see the [Microsoft documentation](#).
5. Power on your hypervisor, log in to your VM, and get the IP address of the agent. You need this IP address to activate the agent.

 The agent VM's default credentials are login **admin** and password **password**. If needed, change the password through the [VM's local console](#).

Deploy your agent on Amazon EC2

You can deploy a DataSync agent as an Amazon EC2 instance when copying data between:

- A self-managed cloud storage system and an AWS storage service.

 For more information about these use cases, including high-level architecture diagrams, see [Deploying your AWS DataSync agent in an AWS Region](#).

- A cloud storage provider (such as Microsoft Azure Blob Storage or Google Cloud Storage) and an AWS storage service.

- [Amazon S3 on AWS Outposts](#) and an AWS storage service.

 Warning
 We don't recommend using an Amazon EC2 agent with on-premises storage because of increased network latency. Instead, deploy the agent as a VMware, KVM, or Hyper-V virtual machine in your data center as close to your on-premises storage as possible.

To choose the agent AMI for your AWS Region

- Use the following AWS CLI command to get the latest DataSync Amazon Machine Image (AMI) ID for your AWS Region.

```bash
aws ssm get-parameter --name /aws/service/datasync/ami --region region
```
Example Example command and output

```
aws ssm get-parameter --name /aws/service/datasync/ami --region us-east-1

{
    "Parameter": {
        "Name": "/aws/service/datasync/ami",
        "Type": "String",
        "Value": ":ami-id",
        "Version": 6,
        "LastModifiedDate": 1569946277.996,
        "ARN": "arn:aws:ssm:us-east-1::parameter/aws/service/datasync/ami"
    }
}
```

To deploy your DataSync agent as an Amazon EC2 instance

Important

To avoid charges, deploy your agent in a way that it doesn't require network traffic between Availability Zones. For example, deploy your agent in the Availability Zone where your self-managed file system resides.

To learn more about data transfer prices for all AWS Regions, see [Amazon EC2 On-Demand pricing](#).

1. From the AWS account where the source file system resides, launch the agent by using your AMI from the Amazon EC2 launch wizard. Use the following URL to launch the AMI.

   ```
   ```

 In the URL, replace the `source-file-system-region` and `ami-id` with your own source AWS Region and AMI ID.

2. For **Instance type**, choose one of the [recommended Amazon EC2 instances (p. 11)](#) for DataSync.

3. For **Network settings**, choose **Edit** and then do the following:

 a. For **VPC**, choose the virtual private cloud (VPC) where the storage system you're transferring data to or from is located.

 b. For **Auto-assign public IP**, choose whether you want your agent to be accessible from the public internet.

 You use the instance's public or private IP address later to activate your agent.

 c. For **Firewall (security groups)**, create or select a security group that does the following:

 - Allows inbound traffic from your web browser to the instance on port 80 (HTTP).
 - Allows inbound and outbound traffic between the instance and your storage system. For more information, see [Network requirements for self-managed and other cloud storage (p. 12)](#).

 Note

 You will need to configure additional ports depending on the type [service endpoint (p. 29)](#) that you use to connect the agent with AWS.

4. (Recommended) To increase performance when transferring from a cloud-based file system, expand **Advanced details** choose a **Placement group** value where your storage resides.

5. Choose **Launch** to launch your instance.
6. Once your instance status is **Running**, choose the instance.

7. If you configured your instance to be accessible from the public internet, make note of the instance's public IP address. If you didn't, make note of the private IP address.

 You need this IP address when activating your agent (p. 31).

Deploy your agent on AWS Snowcone

The DataSync agent AMI is pre-installed on your Snowcone device. Launch the agent with one of the following tools:

- [AWS OpsHub](#)
- [Snowball Edge client](#)

Deploy your agent on AWS Outposts

You can launch a DataSync Amazon EC2 instance on your Outpost. To learn more about launching an AMI on AWS Outposts, see [Launch an instance on your Outpost](#) in the [AWS Outposts User Guide](#).

When using DataSync to access Amazon S3 on Outposts, you must launch the agent in a VPC that's allowed to access your Amazon S3 access point, and activate the agent in the parent Region of the Outpost. The agent must also be able to route to the Amazon S3 on Outposts endpoint for the bucket. To learn more about working with Amazon S3 on Outposts endpoints, see [Working with Amazon S3 on Outposts](#) in the [Amazon S3 User Guide](#).

Choose a service endpoint for your AWS DataSync agent

Your AWS DataSync agent uses a service endpoint to communicate with AWS. An agent can connect to the following types of endpoints:

- **Virtual private cloud (VPC) endpoint** – Data is sent through your VPC instead of over the public internet, increasing the security of the transferred data.
- **Public endpoint** – Data is sent over the public internet.
- **Federal Information Processing Standard (FIPS) endpoint** – Data is sent over the public internet by using processes that comply with FIPS.

Remember the following when choosing a service endpoint:

- An agent can only use one type of endpoint. If you need to transfer data with different endpoint types, create an agent for each type.
- For DataSync Discovery, currently you can only use a public endpoint.

For more information, see [AWS service endpoints](#) in the [AWS General Reference](#).

Topics

- [Use a VPC endpoint](#)
- [Use a public endpoint](#)
- [Use a FIPS endpoint](#)
Use a VPC endpoint

Your DataSync agent can communicate with AWS using a VPC endpoint provided by AWS PrivateLink. This approach provides a private connection between your storage system, VPC, and AWS services.

For more information, see Using AWS DataSync agents with VPC endpoints (p. 36).

To specify a VPC endpoint by using the DataSync console

1. **Create a VPC endpoint** and take note of the endpoint ID.
 - You also can use an existing VPC endpoint in your current AWS Region.
2. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
3. Go to the **Agents** page and choose **Create agent**.
4. In the **Service endpoint** section, choose **VPC endpoints using AWS PrivateLink**.
 - This is the VPC endpoint that the agent has access to.
5. For **VPC Endpoint**, choose the VPC endpoint that you want your agent to connect to.
 - You noted the endpoint ID when you created the VPC endpoint.
 - **Important**
 - You must choose a VPC endpoint that includes the DataSync service name (for example, com.amazonaws.us-east-2.datasync).
6. For **Subnet**, choose the subnet where you want to run your DataSync task.
 - This is the subnet where DataSync creates and manages network interfaces (p. 20) for your transfer.
7. For **Security Group**, choose a security group for your DataSync task.
 - This is the security group that protects your transfer's network interfaces.

For more information about using DataSync in a VPC, see Using AWS DataSync agents with VPC endpoints (p. 36).

Next step: the section called “Activate your agent” (p. 31)

Use a public endpoint

If you use a public endpoint, all communication between your DataSync agent and AWS occurs over the public internet.

To specify a public endpoint by using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. Go to the **Agents** page and choose **Create agent**.
3. In the **Service endpoint** section, choose **Public service endpoints in AWS Region name**. For a list of supported AWS Regions, see **AWS DataSync** in the **AWS General Reference**.

Next step: the section called “Activate your agent” (p. 31)

Use a FIPS endpoint

See a list of FIPS endpoints used by DataSync.
To specify a FIPS endpoint by using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. Go to the Agents page and choose Create agent.
3. In the Service endpoint section, choose the FIPS endpoint that you want.

Next step: the section called “Activate your agent” (p. 31)

Activate your AWS DataSync agent

After you deploy your AWS DataSync agent and specify its service endpoint, you then activate the agent to associate it with your AWS account.

Note
You can't activate an agent in more than one AWS account and AWS Region at a time.

To activate your agent by using the DataSync console

1. On the same Create agent page, go to the Activation key section.
2. Choose one of the following options to activate your agent:
 - **Automatically get the activation key from your agent** – This option requires that your browser access the agent by using port 80. Once activated, the agent closes the port.
 - For Agent address, enter the agent's IP address or domain name and choose Get key.
 Your browser connects to the IP address and gets a unique activation key from your agent. If the activation fails, check your network configuration (p. 12).
 - **Manually enter your agent's activation key** – Use this option if you don't want a connection between your browser and agent.
 - Get the key from the agent's local console (p. 44).
 - Back in the DataSync console, enter the key in the Activation key field.

 Note
 Agent activation keys expire in 30 minutes if unused.
3. (Optional) For Agent name, enter a name for your agent.
4. (Optional) For Tags, enter values for the Key and Value fields to tag your agent.
 Tags help you manage, filter, and search for your AWS resources.
5. Choose Create agent.
6. On the Agents page, verify that your service endpoint is correct.

 Note
 At this point, you might notice your agent is offline. This happens briefly after agent activation.

You're done creating your agent, which AWS fully manages for you (p. 42).

Next step: Create a source location for AWS DataSync (p. 33)
Discover your storage with AWS DataSync Discovery

To understand how your on-premises storage system is used and configured, you can quickly create and run a discovery job.

Topics
- Add your on-premises storage system to AWS DataSync Discovery (p. 32)
- Start your AWS DataSync discovery job (p. 32)

Add your on-premises storage system to AWS DataSync Discovery

In the console, configure AWS DataSync Discovery to work with your on-premises storage system.

To add an on-premises storage system by using the DataSync console
1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Discovery, and then choose Add storage system.
3. For Storage type, choose the type of storage system that you’re adding.

 Note
 DataSync Discovery currently supports NetApp Fabric-Attached Storage (FAS) and All Flash FAS (AFF) systems that are running ONTAP 9.7 or later.
4. For Storage name, enter a familiar name for your storage system.
5. For Management interface, enter the domain name or IP address of your storage system's management interface.
6. For Server port, enter the network port that's needed to access the storage system's management interface.
7. For Credentials, enter the user name and password needed to access your storage system's management interface.

 These credentials should provide read access to the management interface. For more information, see Accessing your on-premises storage system (p. 56).
8. For Agent, choose the DataSync agent that you just created.

 The agent connects to your storage system's management interface.
9. Choose Add storage system.

Next step: Start your AWS DataSync discovery job (p. 32)

Start your AWS DataSync discovery job

Once you add an on-premises storage system, you can run a DataSync discovery job that collects information about it.

To start a discovery job by using the DataSync console
1. In the console's left navigation pane, choose Discovery.
2. Choose the storage system that you want to run the discovery job on.
3. Choose Actions, then Start.
4. For Duration, choose how long you want the discovery job to run.

 Tip
 For more accurate recommendations, we recommend a duration of at least 14 days. Longer durations allow time to collect a sufficient number of data points and provide a realistic representation of storage performance and utilization.

5. Choose Start discovery job.

 As the discovery job collects data, you start to see information in the console about your storage system's resources.

6. Once your discovery job completes, do the following to get AWS storage recommendations for your data:
 a. Choose the storage resource (for example, a volume) which you want recommendations on.
 b. If the storage resource has a Ready to generate recommendations status, choose the storage resource name.
 c. On the storage resource page, go to the Recommendations tab, and then choose Get recommendations.

 Once available, recommendations display on the same tab.

 For more information, see Viewing storage resource information collected by AWS DataSync Discovery (p. 61) and Getting recommendations from AWS DataSync Discovery (p. 64).

Transfer your data with AWS DataSync

To quickly start your AWS DataSync transfer, you can create a task with default settings.

Topics
- Create a source location for AWS DataSync (p. 33)
- Create a destination location for AWS DataSync (p. 34)
- Create and start your AWS DataSync task (p. 35)

Create a source location for AWS DataSync

A *source location* defines the storage system or service where you want AWS DataSync to transfer data from.

The following instructions describe how to create a source location for your Network File System (NFS) share.

If you want to create a different type of source location, see these topics:
- Configuring AWS DataSync transfers with an SMB file server (p. 74)
- Configuring AWS DataSync transfers with HDFS (p. 76)
- Configuring AWS DataSync transfers with an object storage system (p. 78)
- Configuring AWS DataSync transfers with Amazon S3 (p. 80)
- Configuring AWS DataSync transfers with Amazon EFS (p. 90)
- Configuring AWS DataSync transfers with Amazon FSx for Windows File Server (p. 93)
- Configuring AWS DataSync transfers with Amazon FSx for Lustre (p. 95)
Create a source NFS location by using the console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks and Create task.
3. On the Configure source location page, select Create a new location.
 Alternatively, select Choose existing location if you've already created a location in your AWS Region.
4. For Location type, choose Network File System (NFS).
5. For Agents, choose the agent that will read your NFS server.
6. For NFS server, enter the IP address or domain name of your NFS server.
 An agent that’s deployed on-premises uses this to mount the NFS server, which should allow full access to all files.
7. For Mount path, enter a path that’s exported by the NFS server or a subdirectory that can be mounted by other NFS clients in your network.
 DataSync uses this path to read data from your NFS server.
8. Choose Next to create your destination location.

Create a destination location for AWS DataSync

A destination location defines the storage system or service where you want AWS DataSync to transfer data to.

The following instructions describe how to create a destination location for an Amazon S3 bucket.

Note
If you're transferring to an S3 bucket on an AWS Outposts resource, see Configuring AWS DataSync transfers with Amazon S3 (p. 80).

If you want to create a different type of destination location, see these topics:

- Configuring AWS DataSync transfers with an NFS file server (p. 72)
- Configuring AWS DataSync transfers with an SMB file server (p. 74)
- Configuring AWS DataSync transfers with HDFS (p. 76)
- Configuring AWS DataSync transfers with an object storage system (p. 78)
- Configuring AWS DataSync transfers with Amazon EFS (p. 90)
- Configuring AWS DataSync transfers with Amazon FSx for Windows File Server (p. 93)
- Configuring AWS DataSync transfers with Amazon FSx for Lustre (p. 95)
- Configuring AWS DataSync transfers with Amazon FSx for OpenZFS (p. 96)
- Configuring AWS DataSync transfers with Amazon FSx for NetApp ONTAP (p. 98)

To create an Amazon S3 destination location by using the console

1. On the Configure destination location page, select Create a new location.
 Alternatively, select Choose an existing location if you've already created a location in your AWS Region.
2. For **Location type**, choose **Amazon S3**.

3. For **S3 bucket**, choose a bucket that you want to use as your destination location.

 If your S3 bucket is located on an AWS Outposts resource, you must specify an Amazon S3 access point. For more information, see [Managing data access with Amazon S3 access points](https://docs.aws.amazon.com/AmazonS3/latest/userguide/ManagingDataAccess.html) in the Amazon S3 User Guide.

4. For **S3 storage class**, choose a storage class that you want your objects to use.

 For more information, review the [S3 storage class considerations](https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-storage-class.html) and [request costs](https://aws.amazon.com/s3/pricing/).

5. For **Folder**, enter a prefix in the S3 bucket that DataSync reads from or writes to (depending on whether the bucket is a source or destination location).

 Note
 The prefix can't begin with a slash (for example, `/photos`) or include consecutive slashes, such as `photos//2006/January`.

6. For **IAM role**, choose **Autogenerate**.

 DataSync automatically creates an AWS Identity and Access Management (IAM) role with the permissions required to access the S3 bucket.

7. Choose **Create location**.

Create and start your AWS DataSync task

After you create your source and destination locations, you can finish setting up your AWS DataSync task and start moving your data.

Important
If you're planning to transfer data to or from an Amazon S3 location, review [how DataSync can affect your S3 request charges](https://aws.amazon.com/s3/pricing/) and the [DataSync pricing page](https://aws.amazon.com/s3/pricing/) before you begin.

Create your task

1. On the **Review** page, review and change your task's settings if needed.
2. Choose **Create task**.

Start your task

1. When the task's status shows **Available**, choose **Start**.
2. Choose **Start with defaults**.

Clean up your AWS resources

If you used AWS DataSync for a test or don't need the AWS resources that you created, delete them so that you aren't charged for resources you don't plan to use.

1. Delete the DataSync tasks that you don't need. For instructions, see [Deleting your AWS DataSync task](https://docs.aws.amazon.com/awssolutions/latest/datasyncguide/deleting-task.html).
2. Delete the DataSync locations that you don't need. For instructions, see [Deleting an AWS DataSync transfer location](https://docs.aws.amazon.com/awssolutions/latest/datasyncguide/deleting-location.html).
3. Delete the DataSync agents that you don't need. For instructions, see [Deleting your AWS DataSync agent](https://docs.aws.amazon.com/awssolutions/latest/datasyncguide/deleting-agent.html).
Working with AWS DataSync agents

An agent is a virtual machine (VM) appliance that AWS DataSync uses for storage discovery and some data transfers (particularly on-premises storage transfers).

Topics
- Creating your AWS DataSync agent (p. 36)
- Using AWS DataSync agents with VPC endpoints (p. 36)
- Deploying your AWS DataSync agent in an AWS Region (p. 39)
- Using multiple AWS DataSync agents for transfers (p. 41)
- Configuring your AWS DataSync agent for multiple NICs (p. 42)
- Managing your AWS DataSync agent (p. 42)
- Working with your AWS DataSync agent's local console (p. 43)
- Replacing your AWS DataSync agent (p. 51)
- Deleting your AWS DataSync agent (p. 55)

Creating your AWS DataSync agent

AWS DataSync provides several types of agents for different storage environments. For example, you can use a VMware ESXi agent to work with an on-premises file system.

Creating an agent involves the following steps:

1. **Configure your network (p. 12)** so that your agent can communicate with your storage system and AWS.
2. **Deploy your agent (p. 25)** as close to your storage system as possible.
3. **Choose a service endpoint (p. 29)** that your agent uses to communicate with AWS.
4. **Activate your agent (p. 31).**

Using AWS DataSync agents with VPC endpoints

With a virtual private cloud (VPC) endpoint, you don't have to move your data across the public internet. AWS DataSync can transfer data to AWS through a VPC that's based on the Amazon VPC service.

How DataSync agents work with VPC endpoints

VPC endpoints are provided by AWS PrivateLink. These types of endpoints let you privately connect supported AWS services to your VPC. When you use a VPC endpoint with DataSync, all communication between your DataSync agent and AWS remains in your VPC.

If you're transferring from an on-premises storage system, you must extend your VPC to the local network where your storage is located. You can do this with AWS Direct Connect or a virtual private network (VPN), such as AWS Site-to-Site VPN. This involves setting up a route table from your local network to access the VPC endpoint. For more information, see [gateway endpoint routing](#) in the AWS PrivateLink Guide.

Once your agent's deployed and activated, you can create your transfer task. When you run the task, DataSync creates network interfaces to manage data traffic for your transfer (p. 20). These interfaces are private IP addresses that are accessible only from inside your VPC.
DataSync limitations with VPCs

- VPCs that you use with DataSync must have default tenancy. VPCs with dedicated tenancy are not supported. For more information, see Work with VPCs.
- DataSync doesn’t support shared VPCs.
- DataSync VPC endpoints only support IPv4. IPv6 and dualstack options aren’t supported.

Configuring your DataSync agent to use a VPC endpoint

In the following procedure, learn how to configure a DataSync agent to use a VPC endpoint.

The diagram following illustrates the setup process.

To configure a DataSync agent to communicate with AWS by using a VPC endpoint

1. Choose the VPC and subnet where you want to set up the DataSync private IP addresses.

 The VPC should extend to your local environment (where your self-managed object storage is located) by using routing rules over AWS Direct Connect or VPN.

2. Deploy a DataSync agent close to your storage.
The agent must be able to access your source storage location by using NFS, SMB, or the Amazon S3 API. You can download the .ova file for the DataSync agent from the DataSync console. The agent doesn't need a public IP address. For more information about downloading and deploying an .ova image, see Creating an AWS DataSync agent with the AWS CLI (p. 233).

Note
You can use an agent for only one type of endpoint—private, public, or Federal Information Processing Standards (FIPS). If you already have an agent configured for transferring data over the public internet, deploy a new agent to transfer data to private DataSync endpoints. For detailed instructions, see Deploy your AWS DataSync agent (p. 25).

3. In the VPC that you chose in step 1, create a security group to ensure access to the private IP addresses that DataSync uses.

These addresses include one VPC endpoint for control traffic and four network interfaces (p. 20) for data transfer traffic. You use this security group to manage access to these private IP addresses and ensure that your agent can route to them.

The agent must be able to establish connections to these IP addresses. In the security group attached to the endpoints, configure inbound rules to allow the agent's private IP address to connect to these endpoints.

4. Create a VPC endpoint for the DataSync service.

To do this, open the Amazon VPC console at https://console.aws.amazon.com/vpc/, and choose Endpoints from the navigation pane at left. Choose Create endpoint.

For Service category, choose AWS services. For Service Name, choose DataSync in your AWS Region (for example, com.amazonaws.us-east-1.datasync). Then choose the VPC and security group that you chose in steps 1 and 3. Make sure that you clear the Enable Private DNS Name check box.

Important
If you have deployed a DataSync agent on an Amazon EC2 instance, choose the Availability Zone where your agent resides to avoid charges for network traffic between Availability Zones. To learn more about data transfer prices for all AWS Regions, see Amazon EC2 On-Demand pricing.

For additional details on creating VPC endpoints, see Creating an interface endpoint in Amazon VPC User Guide.

5. When your new VPC endpoint is available, make sure that the network configuration for your storage environment allows agent activation.

Activation is a one-time operation that securely associates the agent with your AWS account. To activate the agent, use a computer that can reach the agent by using port 80. After activation, you can revoke this access. The agent must be able to reach the private IP address of the VPC endpoint that you created in step 4.

To find this IP address, open the Amazon VPC console at https://console.aws.amazon.com/vpc/, and choose Endpoints from the navigation pane at left. Choose the DataSync endpoint, and check the Subnets list for the private IP address for the subnet that you chose. This is the IP address of your VPC endpoint.

Note
Make sure to allow outbound traffic from the agent to the VPC endpoint by using ports 443, 1024–1064, and port 22. Port 22 is optional and is used for the AWS Support channel.

6. Activate the agent. If you have a computer that can route to the agent by using port 80 and that can access the DataSync console, open the console, choose Agents in the left navigation pane, and
then choose **Create agent**. In the **Service endpoint** section, choose **VPC endpoints using AWS PrivateLink**.

Choose the VPC endpoint from step 4, the subnet from step 1, and the security group from step 3. Enter the agent's IP address.

If you can't access the agent and the DataSync console by using the same computer, activate the agent by using the command line from a computer that can reach the agent's port 80. For more information, see [Creating an AWS DataSync agent with the AWS CLI](p. 233).

7. Choose **Get key**, optionally enter an agent name and tags, and choose **Create agent**.

Your new agent appears on the **Agents** tab of the DataSync console. The green **VPC endpoint** status indicates that all tasks performed with this agent use private endpoints without crossing the public internet.

8. Create your task by configuring a source and destination location for your transfer.

For more information, see [Where can I transfer my data with AWS DataSync?](p. 69).

To make transfers easier by using private IP addresses, your task creates four network interfaces in the VPC and subnet that you chose.

9. Make sure that your agent can reach the four network interfaces and related IP addresses that your task creates.

To find these IP addresses, open the Amazon EC2 console at https://console.aws.amazon.com/ec2/, and choose **Network Interfaces** on the dashboard. Enter the task ID into the search filter to see the task's four network interfaces. These are the network interfaces used by your VPC endpoint. Make sure that you allow outbound traffic from the agent to these interfaces by using port 443.

You can now start your task. For each additional task that uses this agent, repeat step 9 to allow the task's traffic through port 443.

Deploying your AWS DataSync agent in an AWS Region

The following guidance can help with common scenarios if you deploy an AWS DataSync agent in an AWS Region. If you don't have an agent yet, see [Deploy your agent on Amazon EC2](p. 27).

Transferring data from a cloud file system to another cloud file system or Amazon S3

To transfer data between AWS accounts, or from a cloud file system, the DataSync agent must be located in the same AWS Region and AWS account where the source file system resides. This type of transfer includes the following:

- Transfers between Amazon EFS or FSx for Windows File Server file systems to AWS storage in a different AWS account.
- Transfers from self-managed file systems to AWS storage services.

Important

Deploy your agent such that it doesn't require network traffic between Availability Zones (to avoid charges for such traffic).
To access your Amazon EFS or FSx for Windows File Server file system, deploy the agent in an Availability Zone that has a mount target to your file system.

For self-managed file systems, deploy the agent in the Availability Zone where your file system resides.

To learn more about data transfer prices for all AWS Regions, see Amazon EC2 On-Demand pricing.

For example, the following diagram shows a high-level view of the DataSync architecture for transferring data from in-cloud Network File System (NFS) to in-cloud NFS or Amazon S3.

Note
Deploy the agent in the AWS Region and AWS account where the source file system resides.

- When you're copying between two Amazon EFS file systems in different AWS accounts, we recommend that you use the NFS (source) to EFS (destination) transfer.
- When you're copying between two Amazon FSx file systems in different AWS accounts, we recommend that you use the Server Message Block (SMB) (source) to Amazon FSx (destination) transfer.

Transferring data from Amazon S3 to AWS file systems

The following diagram provides a high-level view of the DataSync architecture for transferring data from Amazon S3 to an AWS file system, such as Amazon EFS or Amazon FSx. You can use this architecture to transfer data from one AWS account to another, or to transfer data from Amazon S3 to a self-managed in-cloud file system.
You can use more than one AWS DataSync agent with your data transfers. While most transfers only need one agent, using multiple agents can speed up transfers of large datasets with millions of files.

In these situations, we recommend running transfer tasks in parallel. This approach spreads out the transfer workload across multiple tasks (each of which uses its own agent). It also helps reduce the time it takes DataSync to prepare and transfer your data.

Another option—especially if you have millions of small files—is using multiple agents with a transfer location. For example, you can connect up to four agents to your on-premises Network File System (NFS) file service. This option can speed up your transfer, though the time it takes DataSync to prepare the transfer doesn’t change.

With either approach, be mindful that these can increase the I/O operations on your storage system and affect your network bandwidth. For more information on using multiple agents for your DataSync transfers, see the AWS Storage Blog.

If you're thinking of using multiple agents, remember the following:

- Using multiple agents with a location doesn't provide high availability. All the agents associated with a location must be online before you can start your transfer task. If one of the agents is offline (p. 42), you can't run your task.
- If you're using a virtual private cloud (VPC) endpoint (p. 30) to communicate with AWS, all the agents must use the same endpoint and subnet.
- With DataSync Discovery, you can only use one agent per storage system.
Configuring your AWS DataSync agent for multiple NICs

If you configure your agent to use multiple network adapters (NICs), the agent can be accessed by more than one IP address. You might want to do this in the following situations:

- **Maximizing throughput** – You might want to maximize throughput to an agent when network adapters are a bottleneck.
- **Network isolation** – Your Network File System (NFS), Server Message Block (SMB), Hadoop Distributed File System (HDFS), or object storage server might reside on a virtual LAN (VLAN) that lacks internet connectivity for security reasons.

In a typical multiple-adapter use case, one adapter is configured as the route by which the agent communicates with AWS (as the default agent). Except for this one adapter, NFS, SMB, HDFS, or self-managed object storage locations must be in the same subnet as the adapter that connects to them. Otherwise, communication with the intended NFS, SMB, HDFS, or object storage locations might not be possible. In some cases, you might configure an NFS, SMB, HDFS, or object storage location on the same adapter that's used for communication with AWS. In these cases, NFS, SMB, HDFS, or object storage traffic for that server and AWS traffic flows through the same adapter.

In some cases, you might configure one adapter to connect to the AWS DataSync console and then add a second adapter. In such a case, DataSync automatically configures the route table to use the second adapter as the preferred route.

Managing your AWS DataSync agent

Once you deploy and activate an AWS DataSync agent in your storage environment, AWS manages the virtual machine (VM) appliance for you.

Agent software updates

AWS automatically updates your agent's software, including the underlying operating system and related DataSync software packages.

DataSync updates your agent only when it's idle. For example, your agent won't be updated until your transfer is complete.

The agent might go offline briefly following updates. This can happen, for instance, shortly after [agent activation](p. 31) when AWS updates the agent.

Warning

DataSync doesn't support updating an Amazon EC2 agent manually with cloud-init directives. If you update an agent this way, you may encounter interoperability problems with DataSync where you can't activate or use the agent.

Agent statuses

The following table describes the status of DataSync agents.
<table>
<thead>
<tr>
<th>Agent status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
<td>The agent is configured properly and ready to use. This is the normal running status for an agent.</td>
</tr>
<tr>
<td>Offline</td>
<td>The agent has been out of contact with DataSync for five minutes or longer. This can happen for a few reasons. For more information, see What do I do if my agent is offline? (p. 206)</td>
</tr>
</tbody>
</table>

Troubleshooting your agent

While AWS manages the DataSync agent for you, there are situations when you might need to again work directly with it. For example, if your agent goes offline or loses its connection to your on-premises storage system, you can try to resolve these issues in the agent's local console (p. 43).

For more information, see troubleshooting DataSync agents (p. 205).

Working with your AWS DataSync agent's local console

While AWS fully manages your AWS DataSync agent once it's deployed, there might be cases where you need to change your agent's settings or troubleshoot an issue. Here are some examples of why you'd work with your agent through its local console:

- Manually assign an IP address to the agent.
- Test your agent's connection to AWS or a storage system.
- Provide AWS Support access to your agent to help with an issue (such as a firewall misconfiguration).

Important

You don't need to use the agent's local console for standard DataSync functionality.

Accessing the agent's local console

How you access the local console depends on the type of agent you're using.

Accessing the local console (VMware ESXi, Linux KVM, or Microsoft Hyper-V)

For security reasons, you can't remotely connect to the local console of the DataSync agent virtual machine (VM).

- If this is your first time using the local console, log in with the default credentials. The default user name is admin and the password is password.

 Note
 We recommend changing the default password. To do this, on the console main menu enter 5 (or 6 for VMware VMs), then run the passwd command to change the password.
Accessing the local console (Amazon EC2)

Accessing the local console of a DataSync agent based on Amazon EC2 is similar to connecting to any EC2 instance.

To connect to the agent instance, you must use SSH with the following cryptographic algorithms:

- **SSH cipher**: aes256-ctr
- **Key exchange**: diffie-hellman-group14-sha1

Before you begin, make sure that your EC2 instance's security group allows access with SSH (TCP port 22). You also must complete any other prerequisites for connecting to an EC2 instance.

To access the agent's local console (Amazon EC2)

1. Open a terminal and copy the following `ssh` command:

   ```
   ssh -i /path/key-pair-name.pem -o KexAlgorithms=diffie-hellman-group14-sha1 instance-user-name@instance-public-ip-address
   ```

 - For `/path/key-pair-name`, specify the path and file name (.pem) of the private key required to connect to your instance.
 - For `instance-user-name`, specify `admin`.
 - For `instance-public-ip-address`, specify the public IP address of your instance.

 The command also includes the key exchange you need (diffie-hellman-group14-sha1).

2. Run the `ssh` command to connect to your agent instance.

 If you connect successfully, the main menu of the agent's local console displays.

Getting an agent activation key

If your agent isn't activated yet, you can obtain its activation key from the local console. This option is displayed only until the agent has been activated.

To get an activation key for your agent from the local console

1. Log in to your agent's local console.
2. On the **AWS DataSync Activation - Configuration** main menu, enter `0` to get an activation key.
3. Enter the AWS Region that your agent will be activated in.
4. Enter the service endpoint type that your agent will be using. Options include public, Federal Information Processing Standard (FIPS), and virtual private cloud (VPC) with AWS PrivateLink.
5. The activation key is automatically generated and displayed on screen. Select and copy this value.
6. Using the activation key copied from the last step, use the following `create-agent` CLI command to create and activate the agent:

   ```
   $ aws datasync create-agent --agent-name your-new-agent-name --activation-key generated-activation-key
   ```

 On successful activation, this command returns something similar to the following.

   ```
   {}  
   ```
You can also insert the activation key in the DataSync console by using the agent creation wizard.

After the agent is activated, the console menu displays the Agent ID and AWS Region. The option for getting an activation key is no longer visible in the console menu.

Configuring your agent's network settings

The default network configuration for the agent is Dynamic Host Configuration Protocol (DHCP). With DHCP, your agent is automatically assigned an IP address. In some cases, you might need to manually assign your agent's IP as a static IP address, as described following.

To configure your agent to use static IP addresses

1. Log in to your agent's local console.
2. On the **AWS DataSync Activation - Configuration** main menu, enter 1 to begin configuring your network.
3. On the **Network Configuration** menu, choose one of the following options.

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
</table>
| Get information about your network adapter | Enter 1.
A list of adapter names appears, and you are prompted to enter an adapter name—for example, `eth0`. If the adapter you specify is in use, the following information about the adapter is displayed:
* Media access control (MAC) address
* IP address
* Netmask
* Agent IP address
* DHCP enabled status
You use the same adapter name when you configure a static IP address (option 3) as when you set your agent's default route adapter (option 5). |
| Configure DHCP | Enter 2.
You are prompted to configure the network interface to use DHCP. |
| Configure a static IP address for your agent | Enter 3.
You are prompted to enter the Network adapter name.
Important
If your agent has already been activated, you must shut it down and restart it from
|
Testing your agent’s connection to AWS

You can use your agent’s local console to test your internet connection. This test can be useful when you are troubleshooting network issues with your agent.

To test your agent’s connection to AWS DataSync endpoints

1. Log in to your agent’s local console.
2. On the **AWS DataSync Activation - Configuration** main menu, enter 2 to begin testing network connectivity.
3. Enter the service endpoint type that your agent is connecting to. Valid endpoint types include public, FIPS, and VPC endpoints that are using AWS PrivateLink.

 When the agent is activated, the **Test Network Connectivity** option can be initiated without any additional user input, because the Region and endpoint type are taken from the activated agent information.

To Do this

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>the DataSync console for the settings to take effect.</td>
<td>Reset all your agent's network configuration to DHCP Enter 4. All network interfaces are set to use DHCP. Important If your agent has already been activated, you must shut down and restart your agent from the DataSync console for the settings to take effect.</td>
</tr>
<tr>
<td>Enter 5. The available adapters for your agent are shown, and you are prompted to choose one of the adapters—for example, eth0.</td>
<td>Set your agent's default route adapter</td>
</tr>
<tr>
<td>Enter 6. The available adapters of the primary and secondary DNS servers are displayed. You are prompted to provide the new IP address.</td>
<td>Edit your agent's Domain Name System (DNS) configuration</td>
</tr>
<tr>
<td>Enter 7. The available adapters of the primary and secondary DNS servers are displayed. Note For some versions of the VMware hypervisor, you can edit the adapter configuration in this menu.</td>
<td>View your agent's DNS configuration</td>
</tr>
<tr>
<td>Enter 8. The default route of your agent is displayed.</td>
<td>View routing tables</td>
</tr>
</tbody>
</table>
a. To test public endpoint connectivity, enter 1, followed by the AWS Region in which your agent is activated. Connectivity test results against the correct endpoints for your agent's Region are displayed. For information about AWS Regions and endpoints, see Where can I use DataSync? (p. 24).

Each endpoint in the selected AWS Region displays either a PASSED or FAILED message.

b. To test FIPS endpoint connectivity, enter 2, followed by the AWS Region in which your agent is activated. Connectivity test results against the correct endpoints for your agent's Region are displayed. For information about AWS Regions and endpoints, see Where can I use DataSync? (p. 24).

Each endpoint in the selected AWS Region displays either a PASSED or FAILED message.

c. To test VPC connectivity, enter 3. Network connectivity test results for your agent's VPC endpoints are displayed.

Each VPC endpoint displays either a PASSED or FAILED message.

For information about network and firewall requirements, see AWS DataSync network requirements (p. 12).

Testing your agent's connection to your storage

You can test whether your DataSync agent can connect to the storage involved in your transfer. This test can help verify that you configured your transfer location correctly.

To test your agent's connection to your storage

1. Log in to your agent's local console.
2. On the AWS DataSync Activation - Configuration main menu, enter 3.
3. Enter one of the following options:
 a. Enter 1 to test an NFS server connection.
 b. Enter 2 to test an SMB server connection.
 c. Enter 3 to test an object storage server connection.
 d. Enter 4 to test an HDFS connection.
 e. Enter 5 to test a Microsoft Azure Blob Storage connection.
4. Enter the IP address or server domain name of the storage server.

 For HDFS, enter the IP address or hostname of the NameNode or DataNode in the Hadoop cluster, followed by the TCP port number.

The connectivity test displays either PASSED or FAILED.

Checking your agent's system resources

When you log in to your agent console, virtual CPU cores, root volume size, and RAM are automatically checked. If there are any errors or warnings, they're flagged on the console menu display with a banner that provides details about those errors or warnings.

If there are no errors or warnings when the console starts, the menu displays white text. The View System Resource Check option will display (0 Errors).

If there are errors or warnings, the console menu displays the number of errors and warnings, in red and yellow respectively, in a banner across the top of the menu. For example, (1 ERROR, 1 WARNING).
To check your agent's system resources

1. Log in to your agent's local console.
2. On the AWS DataSync Activation - Configuration main menu, enter 4 to view the results of the system resource check.

The console displays an [OK], [WARNING], or [FAIL] message for each resource as described in the table following.

For Amazon EC2 instances, the system resource check verifies that the instance type is one of the instances recommended for use with DataSync. If the instance type matches that list, a single result is displayed in green text, as follows.

[OK] Instance Type Check

If the Amazon EC2 instance is not on the recommended list, the system resource check verifies the following resources.

- CPU cores check: At least four cores are required.
- Disk size check: A minimum of 80 GB of available disk space is required.
- RAM check:
 - 32 GB of RAM assigned to the instance for task executions working with up to 20 million files, objects, or directories.
 - 64 GB of RAM assigned to the instance for task executions working with more than 20 million files, objects, or directories.
- CPU flags check: The agent VM CPU must have either SSSE3 or SSE4 instruction set flags.

If the Amazon EC2 instance is not on the list of recommended instances for DataSync, but it has sufficient resources, the result of the system resource check displays four results, all in green text.

The same resources are verified for agents deployed in Hyper-V, Linux Kernel-based Virtual Machine (KVM), and VMware VMs.

VMware agents are also checked for supported version; unsupported versions cause a red banner error. Supported versions include VMware versions 6.5 and 6.7.

Synchronizing the time on your VMware agent

If you are using a VMware VM, you can view Network Time Protocol (NTP) server configurations and synchronize the VM time on your agent with your VMware hypervisor host.

To manage system time

1. Log in to your agent's local console.
2. On the AWS DataSync Activation - Configuration main menu, enter 5 to manage your system's time.
3. On the System Time Management menu, enter 1 to view and synchronize the VM system time.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>View and synchronize your VM time with NTP server time</td>
<td>Enter 1. The current time of your agent is displayed. Your agent determines the time difference between</td>
</tr>
</tbody>
</table>
To | Do this
---|---
 | your agent VM and your NTP server time, and prompts you to synchronize the agent time with NTP time.
 | After your agent is deployed and running, in some scenarios the agent's time can drift. For example, suppose that there is a prolonged network outage and your hypervisor host and agent don't get time updates. In this case, the agent's time is different from the true time. When there is a time drift, a discrepancy occurs between the stated times when operations such as snapshots occur and the actual times that the operations occur.

Editor your NTP server configuration | Enter 2.
 | You are prompted to provide a preferred and a secondary NTP server.

View your NTP server configuration | Enter 3.
 | Your NTP server configuration is displayed.

Configuring other agent settings

In a DataSync agent's local console, you can perform some maintenance tasks and diagnose issues with your agent.

To run a configuration or diagnostic command in your agent's local console

1. Log in to your agent's local console.
2. On the **AWS DataSync Activation - Configuration** main menu, enter 5 (or for 6 a VMware VM) for the **Command Prompt**.
3. Use the following commands to perform the following tasks with your agent.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dig</td>
<td>Look up DNS information about the host.</td>
</tr>
<tr>
<td>diskclean</td>
<td>Perform disk cleanup.</td>
</tr>
<tr>
<td>exit</td>
<td>Return to the console configuration menu.</td>
</tr>
<tr>
<td>h</td>
<td>Display a list of available commands.</td>
</tr>
<tr>
<td>ifconfig</td>
<td>Display or configure network interfaces.</td>
</tr>
<tr>
<td>ip</td>
<td>Display or configure routing, devices, and tunnels.</td>
</tr>
<tr>
<td>iptables</td>
<td>Set up and maintain IPv4 packet filtering and network address translation (NAT).</td>
</tr>
<tr>
<td>ncport</td>
<td>Test connectivity to a specific network TCP port.</td>
</tr>
<tr>
<td>nping</td>
<td>Get information to troubleshoot network issues.</td>
</tr>
</tbody>
</table>
Getting help with your agent from AWS Support

You can allow AWS Support to access your AWS DataSync agent and assist you with troubleshooting agent issues. By default, AWS Support access to DataSync is disabled. You enable this access through the host's local console. To give AWS Support access to DataSync, you first log in to the local console for the host and then connect to the support server.

To log in to an agent running on Amazon EC2, create a rule for the instance's security group that opens TCP port 22 for Secure Shell (SSH) access.

Note
If you add a new rule to an existing security group, the new rule applies to all instances that use that security group. For more information about security groups and how to add a security group rule, see Amazon EC2 security groups for Linux instances in the Amazon EC2 User Guide for Linux Instances.

To enable AWS Support access to AWS DataSync

1. Log in to your host's local console.

 If this is your first time logging in to the local console, see Accessing the agent's local console (p. 43).

2. At the prompt, enter 5 to open the command prompt (for VMware VMs, use 6).

3. Enter h to open the AVAILABLE COMMANDS window.

4. In the AVAILABLE COMMANDS window, enter the following to connect to AWS Support:

 open-support-channel

 If you are using the agent with VPC endpoints, you must provide a VPC endpoint IP address for your support channel, as follows:

 open-support-channel vpc-ip-address

 Your firewall must allow the outbound TCP port 22 to initiate a support channel to AWS. When you connect to AWS Support, DataSync assigns you a support number. Make a note of your support number.

 Note
 The channel number is not a Transmission Control Protocol/User Datagram Protocol (TCP/UDP) port number. Instead, it makes a Secure Shell (SSH) (TCP 22) connection to servers and provides the support channel for the connection.

5. When the support channel is established, provide your support service number to AWS Support so that they can provide troubleshooting assistance.

Command	**Description**
open-support-channel | Connect the agent to AWS Support.
save-iptables | Save IP table firewall rules permanently.
save-routing-table | Save a newly added routing table entry.
sslcheck | Verify whether an SSL certificate is valid.
tcptraceroute | Collect traceroute output on TCP traffic to a destination.
Replacing your AWS DataSync agent

To replace an AWS DataSync agent, you must create a new agent and update any transfer locations that are using the old agent.

Creating a new agent

To create your new DataSync agent, follow the same process when you created your old agent:

1. **Deploy an agent** (p. 25) in your storage environment.
2. **Choose a service endpoint** (p. 29) that the agent uses to communicate with AWS.
3. **Configure your network** (p. 12) so that the agent can communicate with your storage and AWS.
4. **Activate your agent** (p. 31).
5. Once activated, make note of the agent’s Amazon Resource Name (ARN).

You need this ARN when updating your DataSync location to use the new agent.

Updating your location with the new agent

Once you create a new agent, you can update an existing DataSync location to use this agent. In most cases, you also have to re-enter access credentials to update the location. This is because DataSync stores location credentials in a way that only your agent can use them.

Using the DataSync console

The following instructions describe how to update locations with a new agent by using the DataSync console.

NFS

2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose the location that you want to update, then choose Edit.
4. For Agents, choose your new agent.

 You can choose more than one agent if you’re replacing **multiple agents** (p. 41) for a location.
5. Choose Save changes.

SMB

2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose the location that you want to update, then choose Edit.
4. For Agents, choose your new agent.
You can choose more than one agent if you're replacing multiple agents (p. 41) for a location.

5. For Password, enter the password of the user that can mount your SMB file server and has permission to access the files and folders involved in your transfer.

6. Choose Save changes.

HDFS

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose the location that you want to update, then choose Edit.
4. For Agents, choose your new agent.

You can choose more than one agent if you're replacing multiple agents (p. 41) for a location.

5. If you're using Kerberos authentication, upload your Keytab file and Kerberos configuration file.

6. Choose Save changes.

Object storage

Note
If your bucket doesn't require access credentials (an access and secret key), you must create a new object storage location (p. 78) that uses your new agent.

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose the location that you want to update, then choose Edit.
4. For Agents, choose your new agent.

You can choose more than one agent if you're replacing multiple agents (p. 41) for a location.

5. Select Requires credentials and enter the Secret key that allows DataSync to access your object storage bucket.

6. Choose Save changes.

Azure Blob Storage

Do the following to update your Microsoft Azure Blob Storage location:

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose the location that you want to update, then choose Edit.
4. For Agents, choose your new agent.

You can choose more than one agent if you're replacing multiple agents (p. 41) for a location.

5. For SAS token, enter the shared access signature (SAS) token (p. 108) that allows DataSync to access your blob storage.

6. Choose Save changes.

Using the AWS CLI

The following instructions describe how to update locations with a new agent by using the AWS CLI. (You can also do this by using the DataSync API.)
AWS DataSync User Guide

Updating your location with the new agent

NFS

1. Copy the following `update-location-nfs` command:

   ```
   aws datasync update-location-nfs \
   --location-arn datasync-nfs-location-arn \
   --on-prem-config AgentArns=new-datasync-agent-arn
   ```

2. For the `--location-arn` parameter, specify the ARN of the NFS location that you're updating.
3. For the `--on-prem-config` parameter's `AgentArns` option, specify the ARN of your new agent.

 You can specify more than one ARN if you're replacing multiple agents (p. 41) for a location.
4. Run the `update-location-nfs` command to update the location.

SMB

1. Copy the following `update-location-smb` command:

   ```
   aws datasync update-location-smb \
   --location-arn datasync-smb-location-arn \
   --agent-arns new-datasync-agent-arn \
   --password smb-file-server-password
   ```

2. For the `--location-arn` parameter, specify the ARN of the SMB location that you're updating.
3. For the `--agent-arns` parameter, specify the ARN of your new agent.

 You can specify more than one ARN if you're replacing multiple agents (p. 41) for a location.
4. For the `--password` parameter, specify the password of the user that can mount your SMB file server and has permission to access the files and folders involved in your transfer.
5. Run the `update-location-smb` command to update the location.

HDFS

1. Copy the following `update-location-hdfs` command:

   ```
   aws datasync update-location-hdfs \
   --location-arn datasync-hdfs-location-arn \
   --agent-arns new-datasync-agent-arn \
   --kerberos-keytab keytab-file \
   --kerberos-krb5-conf krb5-conf-file
   ```

2. For the `--location-arn` parameter, specify the ARN of the HDFS location that you're updating.
3. For the `--agent-arns` parameter, specify the ARN of your new agent.

 You can specify more than one ARN if you're replacing multiple agents (p. 41) for a location.
4. If you're using Kerberos authentication, include the `--kerberos-keytab` and `--kerberos-krb5-conf` parameters:

 • For the `--kerberos-keytab` parameter, specify the Kerberos key table (keytab) that contains mappings between the defined Kerberos principal and encrypted keys.

 You can specify the keytab file by providing the file's address.

 • For the `--kerberos-krb5-conf` parameter, specify the file that contains the configuration for your Kerberos realm.
You can specify the `krb5.conf` file by providing the file's address.

If you're using simple authentication, you don't need to include these Kerberos-related parameters in your command.

5. Run the `update-location-hdfs` command to update the location.

Object storage

Note

If your bucket doesn't require access credentials (an access and secret key), you must create a new object storage location (p. 78) that uses your new agent.

1. Copy the following `update-location-object-storage` command:

   ```bash
   aws datasync update-location-object-storage 
   --location-arn datasync-object-storage-location-arn 
   --agent-arns new-datasync-agent-arn 
   --secret-key bucket-secret-key
   ``

2. For the `--location-arn` parameter, specify the ARN of the object storage location that you're updating.
3. For the `--agent-arns` parameter, specify the ARN of your new agent.

   You can specify more than one ARN if you're replacing multiple agents (p. 41) for a location.
4. For the `--secret-key` parameter, specify the secret key that allows DataSync to access your object storage bucket.
5. Run the `update-location-object-storage` command to update the location.

**Azure Blob Storage**

1. Copy the following `update-location-azure-blob` command:

   ```bash
 aws datasync update-location-azure-blob
 --location-arn datasync-azure-blob-storage-location-arn
 --agent-arns new-datasync-agent-arn
 --sas-configuration '{
 "Token": "sas-token-for-azure-blob-storage"
 }'
 ``

2. For the `--location-arn` parameter, specify the ARN of the Azure Blob Storage location that you're updating.
3. For the `--agent-arns` parameter, specify the ARN of your new agent.

 You can specify more than one ARN if you're replacing multiple agents (p. 41) for a location.
4. For the `--sas-configuration` parameter's `Token` option, specify the SAS token (p. 108) that allows DataSync to access your blob storage.
5. Run the `update-location-azure-blob` command to update the location.

Next steps

1. **Delete your old agent** (p. 55). If you have any running DataSync tasks using this agent, wait until those tasks finish before deleting it.
2. If you need to replace agents for multiple locations, repeat the previous steps.
3. When you're done, you can resume running your tasks.

Deleting your AWS DataSync agent

When you delete an agent from AWS DataSync, the agent resource is no longer associated with your AWS account and can't be undone.

Keep in mind that deleting an agent from DataSync doesn't remove its virtual machine (VM) or Amazon EC2 instance from your storage environment. You can delete the VM or instance or reuse it to activate a new agent.

Deleting a DataSync agent

Before you begin

Don't delete an agent until you update or remove the DataSync resources that depend on it. If you're replacing an agent, update your transfer locations (p. 51) with the new agent. If you aren't replacing an agent, delete transfer tasks (p. 150) and locations (p. 137) using that agent first.

To delete an agent

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Agents.
3. Choose the agent that you want to delete.
4. Choose Delete, enter delete in the text box that appears, and then choose Delete.
5. If you aren't planning to reuse the agent, delete the agent's VM or Amazon EC2 instance to remove it from your storage environment.

Reusing a DataSync agent

You can delete an agent resource from DataSync and still use the agent's VM or Amazon EC2 instance to activate a new agent.

To reuse an agent

1. Delete the agent (p. 55) from DataSync but do not delete the agent's VM or Amazon EC2 instance.
2. Once you delete the agent from DataSync, wait about three minutes before trying to activate a new one with the existing VM or Amazon EC2 instance.
 Tip
 Check if port 80 is open on the agent VM or Amazon EC2 instance. If it is, go to the next step.
3. Activate a new agent (p. 31) with the existing VM or Amazon EC2 instance.
 You can activate the new agent in a different AWS Region, AWS account, and with another type of service endpoint. In these cases, you might have to adjust your network configuration (p. 12).
Discovering your storage with AWS DataSync Discovery

AWS DataSync Discovery helps you accelerate your migration to AWS. With DataSync Discovery, you can do the following:

- **Understand how your on-premises storage is used** – DataSync Discovery provides detailed reporting about your storage system resources, including utilization, capacity, and configuration information.
- **Get recommendations about migrating your data to AWS** – DataSync Discovery can suggest AWS storage services (such as Amazon FSx for NetApp ONTAP, Amazon EFS, and Amazon FSx for Windows File Server) for your data. Recommendations include a cost estimate and help you understand how to configure a suggested storage service. When you’re ready, you can then use DataSync to migrate your data to AWS.

Topics
- Adding your on-premises storage system to DataSync Discovery (p. 56)
- Working with DataSync discovery jobs (p. 60)
- Viewing storage resource information collected by AWS DataSync Discovery (p. 61)
- Getting recommendations from AWS DataSync Discovery (p. 64)
- AWS DataSync Discovery statuses (p. 66)

Adding your on-premises storage system to DataSync Discovery

Specify an on-premises storage system that you want AWS DataSync Discovery to collect information about and provide AWS storage migration recommendations for.

Note

DataSync Discovery currently supports NetApp Fabric-Attached Storage (FAS) and All Flash FAS (AFF) systems that are running ONTAP 9.7 or later.

Accessing your on-premises storage system

To collect information about your on-premises storage system, DataSync Discovery needs credentials that provide read access to your storage system’s management interface. For security, DataSync Discovery stores these credentials in AWS Secrets Manager.

Important

If you update these credentials on your storage system, make sure to also update them in DataSync Discovery. You can do this by using the DataSync console or the [UpdateStorageSystem](#) operation.

How DataSync Discovery uses AWS Secrets Manager

AWS Secrets Manager is a secret storage service that protects database credentials, API keys, and other secret information. DataSync Discovery uses Secrets Manager to protect the credentials that you provide for accessing your on-premises storage system.
Adding your on-premises storage system

You must provide some information about your storage system before DataSync Discovery can collect information about it.

Using the DataSync console

In the console, configure DataSync Discovery to work with your on-premises storage system.

To add an on-premises storage system by using the console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Discovery, and then choose Add storage system.
3. For Storage type, choose the type of storage system that you're adding.
4. For Storage name, enter a familiar name for your storage system.
5. For Management interface, enter the domain name or IP address of your storage system's management interface.
6. For Server port, enter the network port that's needed to access the storage system's management interface.
7. For Credentials, enter the user name and password needed to access your storage system's management interface.

 For more information, see Accessing your on-premises storage system (p. 56).

8. For Agent, do one of the following:

 • Choose the DataSync agent that you want to connect to your storage system's management interface.

 • If you haven't created an agent, choose Deploy a new DataSync agent. For instructions, see Create an AWS DataSync agent (p. 25).

 After deploying and activating your agent, you can finish adding your storage system to DataSync Discovery.

9. (Optional) Choose Enable logging. Choose an existing Amazon CloudWatch log group or create a new one.

 We recommend that you enable logging in case you need to troubleshoot the discovery job that's collecting information about your storage system. For more information, see Logging DataSync Discovery activity to Amazon CloudWatch (p. 59).

10. (Optional) Choose Add tag to tag the DataSync resource that represents your storage system.

 Tags are key-value pairs that help you manage, filter, and search for your DataSync resources.

11. Choose Add storage system.
Using the AWS CLI

Using the AWS Command Line Interface (AWS CLI), configure DataSync Discovery to work with your on-premises storage system.

Before you begin: We recommend that you [enable logging with CloudWatch](#) (p. 59).

To add an on-premises storage system by using the AWS CLI

1. **Copy the following add-storage-system command:**

   ```bash
   aws datasync add-storage-system \
   --server-configuration ServerHostname="domain-or-ip",ServerPort=network-port \
   --system-type storage-system-type \
   --credentials Username="your-management-interface-username",Password="your-management-interface-password" \
   --agent-arns "agent-arn"
   ``

2. **Specify the following required parameters in the command:**

   - **--server-configuration ServerHostname** – Specify the domain name or IP address of your storage system's management interface.
   - **--server-configuration ServerPort** – Specify the network port that's needed to connect with the system's management interface.
   - **--system-type** – Specify the type of storage system that you're adding.
   - **--credentials** – Include the following options:
     - **Username** – Specify the user name needed to access your storage system's management interface.
     - **Password** – Specify the password needed to access your storage system's management interface.
     
     For more information, see [Accessing your on-premises storage system](#) (p. 56).
   - **--agent-arns** – Specify the DataSync agent that you want to connect to your storage system's management interface.

     If you don't haven't an agent, see [Create an agent](#) (p. 25).

3. (Optional) **Add any of the following parameters to the command:**

   - **--cloud-watch-log-group-arn** – Specify the Amazon Resource Name (ARN) of the CloudWatch log group that you want to use to log DataSync Discovery activity.
   - **--tags** – Specify a Key and Value to tag the DataSync resource that's representing your storage system.
     
     A tag is a key-value pair that helps you manage, filter, and search for your DataSync resources.
   - **--name** – Specify a name for your storage system.

4. **Run the add-storage-system command.**

   You get a response that shows you the storage system ARN that you just added.

   ```json
 {
 "StorageSystemArn": "arn:aws:datasync:us-east-1:123456789012:system/storage-system-abcdef01234567890"
 }
   ```

After you add the storage system, you can run a discovery job to collect information about the storage system.
Removing your on-premises storage system

When you remove an on-premises storage system from DataSync Discovery, you permanently delete any associated discovery jobs, collected data, and recommendations.

Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasets/.
2. In the left navigation pane, choose Discovery, and then choose the storage system that you want to remove.
3. Choose Actions, then Remove.
4. Enter remove, then choose Remove.

Using the AWS CLI

1. Copy the following remove-storage-system command:

   ```bash
 aws datasync remove-storage-system --storage-system-arn "your-storage-system-arn"
   ```
2. For --storage-system-arn, specify the ARN of your storage system.
3. Run the remove-storage-system command.
   
   If successful, you get an HTTP 200 response with an empty HTTP body.

Logging DataSync Discovery activity to Amazon CloudWatch

When you enable logging with Amazon CloudWatch, you can more easily troubleshoot issues with DataSync Discovery. For example, if your discovery job is interrupted, you can check the logs to locate the issue. If you resolve the problem within 12 hours of when it occurred, your discovery job picks up where it left off.

If you add your on-premises storage system using the console, DataSync can automatically enable logging for you.

If you configure your system by using the AWS CLI, you must create a log group with a resource policy that allows DataSync to log events to the log group. You can use a log group resource policy similar to one for DataSync tasks, with some differences:

- For the service principal, use discovery-datasync.amazonaws.com.
- If you're using the ArnLike condition, specify a storage system ARN like this:

```json
"ArnLike": {
 "aws:SourceArn": [
 "arn:aws:datasync:region:account-id:system/*"
],
},
```
Working with DataSync discovery jobs

After you deploy your AWS DataSync agent and add your on-premises storage system to DataSync Discovery, you can run discovery jobs to collect information about the system and get AWS migration recommendations.

Starting a discovery job

You can run a discovery job for up to 31 days. A storage system can have only one active discovery job at a time. The information that a discovery job collects is available for up to 60 days following the end of the job (unless you remove the related storage system from DataSync Discovery before that).

Tip
DataSync Discovery can provide more accurate recommendations the longer your discovery job runs. We recommend running a discovery job for at least 14 days.

Using the DataSync console

With the console, you can run a discovery job for as short as one day. To run a discovery job for less than one day, use the AWS CLI.

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Discovery, and then choose the storage system that you want to run the discovery job on.
3. Choose Actions, then Start.
4. For Duration, choose how long you want the discovery job to run.
5. Choose Start discovery job.

Using the AWS CLI

With the AWS Command Line Interface (AWS CLI), you can run a discovery job for as short as 1 hour.

1. Copy the following start-discovery-job command:

   ```bash
 aws datasync start-discovery-job
 --storage-system-arn "your-storage-system-arn"
 --collection-duration-minutes discovery-job-duration
   ```

2. Specify the following parameters in the command:

   - --storage-system-arn – Specify the Amazon Resource Name (ARN) of the on-premises storage system that you added (p. 57) to DataSync Discovery.
   - --collection-duration-minutes – Specify how long you want the discovery job to run in minutes. Enter a value between 60 (1 hour) and 44640 (31 days).

3. Run the start-discovery-job command.

   You get a response that shows the discovery job that you just started.

   ```json
 {
 "DiscoveryJobArn": "arn:aws:datasync:us-east-1:123456789012:system/storage-system-abcd01234567890/job/discovery-job-12345678-90ab-cdef-0abc-021345abcdef6"
 }
   ```
Stopping a discovery job

Stop a discovery job at any time. You can still get recommendations (p. 64) for a stopped job.

**Using the DataSync console**

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Discovery, and then choose the storage system that you're running a discovery job on.
3. Choose Actions, then Stop (keep data).

**Using the AWS CLI**

1. Copy the following stop-discovery-job command:

   ```bash
 aws datasync stop-discovery-job --discovery-job-arn "your-discovery-job-arn"
   ```

2. For --discovery-job-arn, specify the ARN of the discovery job that's currently running.
3. Run the stop-discovery-job command.

   If successful, you get an HTTP 200 response with an empty HTTP body.

**Viewing storage resource information collected by AWS DataSync Discovery**

AWS DataSync Discovery collects information about your on-premises storage system that can help you understand how its storage resources are configured, performing, and utilized. DataSync Discovery uses this information to generate recommendations for migrating your data to AWS.

A discovery job can give you the following information about your storage system's resources (such as its volumes):

- Total, available, and in use storage capacity
- Number of Common Internet File System (CIFS) shares in a resource and whether a resource is available via Network File System (NFS)
- Data transfer protocols
- Performance (such as IOPS, throughput, and latency)

**Viewing information collected about your storage system**

You can begin to see what kind of information DataSync Discovery is collecting about your on-premises storage system shortly after you start a discovery job.

You can view this information by using the following options:
• The DataSync console – Get visualized data about all of the storage system resources that DataSync Discovery can collect information about, including utilization, capacity, and configuration data. You can see an overview of your storage system's resources or focus on individual resources.
• The DescribeStorageSystemResources operation – Get data about all of the storage system resources that DataSync Discovery can collect information about, including utilization, capacity, and configuration data.
• The DescribeStorageSystemResourceMetrics operation – Get performance and capacity information that DataSync Discovery can collect about a specific resource in your storage system.

Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Discovery, and then choose the storage system that DataSync Discovery is collecting information about.

   In the Volumes panel, you can see basic metrics about your storage system's resources.
3. Choose a resource to see more detailed information about it on the Capacity and performance data tab.

   You can see graphs that tell you about resource capacity, IOPS peaks, and more.

Using the AWS CLI

The following steps show how to use the DescribeStorageSystemResources operation with the AWS CLI.

1. Copy the following describe-storage-system-resources command:

   ```bash
 aws datasync describe-storage-system-resources \
 --discovery-job-arn "your-discovery-job-arn" \
 --resource-type "storage-system-resource-type"
   ```

2. Specify the following parameters in the command:

   • `--discovery-job-arn` – Specify the Amazon Resource Name (ARN) of the discovery job (p. 60) that you ran.
   • `--resource-type` – Specify one of the following values, depending on what kind of storage system resources you want information about:
     • CLUSTER
     • SVM
     • VOLUME
3. (Optional) Specify the `--resource-ids` parameter with the IDs of the storage system resources that you want information about.
4. Run the describe-storage-system-resources command.

   The following example response returns information that a discovery job collected about two volumes in a storage system.

   ```json
 {
 "ResourceDetails": {
   ```

   Note that the RecommendationStatus is NONE for each volume. To get AWS storage recommendations, you must run the generate-recommendations command before the describe-storage-system-resources command. For more information, see Getting recommendations (p. 64).
"NetAppONTAPVolumes": [  
  {  
    "VolumeName": "vol1",  
    "ResourceId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",  
    "CifsShareCount": 0,  
    "SecurityStyle": "unix",  
    "SvmUuid": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",  
    "SvmName": "my-svm",  
    "CapacityUsed": 409600,  
    "CapacityProvisioned": 1099511627776,  
    "LogicalCapacityUsed": 409600,  
    "NfsExported": true,  
    "SnapshotCapacityUsed": 573440,  
    "MaxP95Performance": {  
      "IopsRead": 251.0,  
      "IopsWrite": 44.0,  
      "IopsOther": 17.0,  
      "IopsTotal": 345.0,  
      "ThroughputRead": 2.06,  
      "ThroughputWrite": 0.88,  
      "ThroughputOther": 0.11,  
      "ThroughputTotal": 2.17,  
      "LatencyRead": 0.06,  
      "LatencyWrite": 0.07,  
      "LatencyOther": 0.13  
    },  
    "Recommendations": [],  
    "RecommendationStatus": "NONE"  
  },  
  {  
    "VolumeName": "root_vol",  
    "ResourceId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",  
    "CifsShareCount": 0,  
    "SecurityStyle": "unix",  
    "SvmUuid": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",  
    "SvmName": "my-svm",  
    "CapacityUsed": 462848,  
    "CapacityProvisioned": 1073741824,  
    "LogicalCapacityUsed": 462848,  
    "NfsExported": true,  
    "SnapshotCapacityUsed": 421888,  
    "MaxP95Performance": {  
      "IopsRead": 261.0,  
      "IopsWrite": 53.0,  
      "IopsOther": 23.0,  
      "IopsTotal": 360.0,  
      "ThroughputRead": 10.0,  
      "ThroughputWrite": 2.0,  
      "ThroughputOther": 4.0,  
      "ThroughputTotal": 12.0,  
      "LatencyRead": 0.25,  
      "LatencyWrite": 0.3,  
      "LatencyOther": 0.55  
    },  
    "Recommendations": [],  
    "RecommendationStatus": "NONE"  
  }  
]
Getting recommendations from AWS DataSync Discovery

After AWS DataSync Discovery collects information about your on-premises storage system, it can recommend moving your data on a per-resource basis to one or more of the following AWS storage services:

- Amazon FSx for NetApp ONTAP
- Amazon Elastic File System (Amazon EFS)
- Amazon FSx for Windows File Server

What's included in the recommendations?

DataSync Discovery recommendations include storage configurations and cost estimates to help you choose the AWS storage service that works for your data.

AWS storage configuration

DataSync Discovery provides information about how you might want to configure a recommended AWS storage service. The storage configuration is designed to optimize costs while helping meet storage performance and capacity needs based on information that's collected during a discovery job.

The storage configuration is only an approximation and might not account for all capabilities provided by an AWS storage service. For more information, see What’s not included in the recommendations? (p. 64)

Estimated cost

DataSync Discovery provides an estimated monthly cost for each AWS storage service that it recommends. The cost is based on standard AWS pricing and provides only an estimate of your AWS fees. It does not include any taxes that might apply. Your actual fees depend on a variety of factors, including your usage of AWS services.

The estimated cost also doesn't include the one-time or periodic fees for migrating your data to AWS.

What's not included in the recommendations?

DataSync Discovery won't recommend an AWS storage service that doesn't meet your storage configuration needs.

Additionally, the following AWS storage capabilities currently aren't accounted for when recommendations are determined:

- Amazon FSx for NetApp ONTAP – Single-AZ deployments and backup storage
- Amazon EFS – EFS One Zone storage classes and backup storage
- Amazon FSx for Windows File Server – Single-AZ deployments and backup storage

Getting recommendations

You can generate AWS storage recommendations after your discovery job completes, when you stop the job, and even sometimes if the job completes but had some issues collecting information from your storage system.
There might be situations when you can't get recommendations (for example, if your discovery job fails). For more information, see Recommendation statuses (p. 67).

**Tip**
Before starting your migration to AWS, review the DataSync Discovery recommendations with your AWS account team.

**Using the DataSync console**

2. In the left navigation pane, choose **Discovery**, and then choose the storage system that you ran your discovery job on.
3. Choose the storage resource (such as the cluster, an SVM, or a volume) which you want recommendations on.
4. If the storage resource has a **Ready to generate** recommendations status, choose the storage resource name.
5. On the storage resource page, go to the **Recommendations** tab, and then choose **Get recommendations**.
   Once available, recommendations display on the same tab.

**Using the AWS CLI**

1. Copy the following describe-discovery-job command:

   ```bash
 aws datasync describe-discovery-job --discovery-job-arn "your-discovery-job-arn"
   ```

2. For the **--discovery-job-arn** parameter, specify the Amazon Resource Name (ARN) of the discovery job (p. 60) that you ran on the storage system.
3. Run the describe-discovery-job command.

   If your response includes a **Status** that isn't **FAILED**, you can continue. If you see **FAILED**, you must run another discovery job on your storage system to try to generate recommendations.

4. If your discovery job completed successfully, skip this step. Otherwise, do the following to manually generate recommendations:
   a. Copy the following generate-recommendations command:

   ```bash
 aws datasync generate-recommendations \
 --discovery-job-arn "your-discovery-job-arn" \
 --resource-type cluster-svm-volume \
 --resource-ids storage-resource-UUIDs
   ```

   b. For the **--discovery-job-arn** parameter, specify the ARN of the same discovery job that you specified in Step 2.
   c. For the **--resource-type** parameter, specify CLUSTER, SVM, or RESOURCE depending on the kind of resource you want recommendations on.
   d. For the **--resource-ids** parameter, specify universally unique identifiers (UUIDs) of the resources that you want recommendations on.
   e. Run the generate-recommendations command.
   f. Wait until the **RecommendationStatus** element in the response has a **COMPLETED** status, then move to the next step.

5. Copy the following describe-storage-system-resources command:

   ```bash
 aws datasync describe-storage-system-resources \
   ```
6. Specify the following parameters in the command:
   - `--discovery-job-arn` – Specify the ARN of the same discovery job that you specified in Step 2.
   - `--resource-type` – Specify the resource type you generated recommendations on (for example, `VOLUME`).

7. Run the `describe-storage-system-resources` command.
   
   **Note**
   In the response, if you don’t see `COMPLETED` for `RecommendationStatus`, check the recommendation statuses for more information. You may need to retry generating recommendations.

   In this example response, the `Recommendations` element suggests a couple AWS storage services where you can migrate a specific volume, how you might configure the service, and estimated monthly AWS storage costs.

   ```json
 {
 "Recommendations": [{
 "StorageType": "fsxOntap",
 "StorageConfiguration": {
 "StorageCapacityGB": "1024",
 "ProvisionedIopsMode": "AUTOMATIC",
 "CapacityPoolGB": "0",
 "TotalIops": "0",
 "DeploymentType": "Multi-AZ",
 "ThroughputCapacity": "128"
 },
 "EstimatedMonthlyStorageCost": "410.0"
 },
 {
 "StorageType": "efs",
 "StorageConfiguration": {
 "InfrequentAccessStorageGB": "1",
 "StandardStorageGB": "1",
 "InfrequentAccessRequests": "0",
 "ProvisionedThroughputMBps": "0",
 "PerformanceMode": "General Purpose",
 "ThroughputMode": "Bursting"
 },
 "EstimatedMonthlyStorageCost": "1.0"
 }
],
 "RecommendationStatus": "COMPLETED"
 }
   ```

**AWS DataSync Discovery statuses**

You can check the status of your discovery jobs and whether AWS DataSync Discovery can provide storage recommendations for your AWS migrations.

**Discovery job statuses**

Use the following table to understand what’s going on with your discovery job.
### Recommendation statuses

Use the following table to understand whether DataSync Discovery recommendations for a specific on-premises storage resource are ready to view.

<table>
<thead>
<tr>
<th>Console status</th>
<th>API status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not yet available</td>
<td>NONE</td>
<td>You can't generate recommendations yet. Try generating recommendations when your discovery job completes.</td>
</tr>
<tr>
<td>Ready to generate</td>
<td>NONE</td>
<td>Your discovery job collected enough data for DataSync</td>
</tr>
</tbody>
</table>

### Console status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In progress</td>
<td>Your discovery job is running. The job collects data about your on-premises storage system for the duration that you specified.</td>
</tr>
<tr>
<td>In error</td>
<td>Your discovery job has encountered errors and currently can't collect data. Review the Amazon CloudWatch logs and address these issues within 12 hours, or the job will be terminated.</td>
</tr>
<tr>
<td>Stopped</td>
<td>You stopped your discovery job before the job was expected to finish.</td>
</tr>
<tr>
<td>Completed</td>
<td>Your discovery job successfully collected all data from your on-premises storage system.</td>
</tr>
<tr>
<td>Completed with issues</td>
<td>There were times during the discovery job when DataSync Discovery couldn't collect data. For details, see your CloudWatch logs.</td>
</tr>
<tr>
<td>Terminated</td>
<td>Your discovery job was canceled because of unresolved issues and some data wasn't collected. For details, see your CloudWatch logs.</td>
</tr>
<tr>
<td>Failed</td>
<td>Your discovery job encountered issues and couldn't collect data from your on-premises storage system. For details, see your CloudWatch logs.</td>
</tr>
</tbody>
</table>
# Recommendation statuses

<table>
<thead>
<tr>
<th>Console status</th>
<th>API status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating</td>
<td>IN_PROGRESS</td>
<td>DataSync Discovery is working on your recommendations. How long this takes depends on how many resources you're generating recommendations for. If you're using the console, it may take a few minutes to generate recommendations for a storage resource.</td>
</tr>
<tr>
<td>Available</td>
<td>COMPLETED</td>
<td>You can view your recommendations.</td>
</tr>
<tr>
<td>Failed</td>
<td>FAILED</td>
<td>DataSync Discovery couldn't generate recommendations. You can review your CloudWatch logs to identify the issue and try generating the recommendations again.</td>
</tr>
<tr>
<td>Unavailable</td>
<td>NONE</td>
<td>Recommendations aren't available. You may see this status for a failed discovery job or issue with the storage resource.</td>
</tr>
<tr>
<td>No match</td>
<td>COMPLETED</td>
<td>DataSync Discovery currently doesn't support an AWS storage service that meets the needs of the storage resource.</td>
</tr>
</tbody>
</table>
Transferring your data with AWS DataSync

With AWS DataSync, you can move data from storage that’s on-premises, in AWS, in other clouds, and on the edge.

Topics
- Where can I transfer my data with AWS DataSync? (p. 69)
- Transferring to or from on-premises storage with AWS DataSync (p. 72)
- Transferring to or from AWS storage with AWS DataSync (p. 80)
- Transferring to or from other cloud storage with AWS DataSync (p. 101)
- Transferring to or from edge storage with AWS DataSync (p. 125)
- How AWS DataSync handles metadata and special files (p. 130)
- Deleting an AWS DataSync transfer location (p. 137)
- Working with AWS DataSync transfer tasks (p. 137)

Where can I transfer my data with AWS DataSync?

Where you can transfer your data with AWS DataSync depends on the following factors:
- Your transfer’s source and destination locations (p. 8)
- If your locations are in different AWS accounts
- If your locations are in different AWS Regions

Supported transfers in the same AWS account

DataSync supports transfers between the following storage systems that are associated with the same AWS account.

<table>
<thead>
<tr>
<th>Source (from)</th>
<th>Destination (to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NFS</td>
<td>• Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>• SMB</td>
<td>• Amazon EFS</td>
</tr>
<tr>
<td>• HDFS</td>
<td>• Amazon FSx for Windows File Server</td>
</tr>
<tr>
<td>• Object storage</td>
<td>• FSx for Lustre</td>
</tr>
<tr>
<td></td>
<td>• FSx for OpenZFS</td>
</tr>
<tr>
<td></td>
<td>• FSx for ONTAP</td>
</tr>
<tr>
<td>• Amazon S3 (in AWS Regions)</td>
<td>• NFS</td>
</tr>
<tr>
<td>• Amazon EFS</td>
<td>• SMB</td>
</tr>
<tr>
<td>• FSx for Windows File Server</td>
<td>• HDFS</td>
</tr>
<tr>
<td>• FSx for Lustre</td>
<td>• Object storage</td>
</tr>
<tr>
<td>• FSx for OpenZFS</td>
<td></td>
</tr>
<tr>
<td>• FSx for ONTAP</td>
<td></td>
</tr>
</tbody>
</table>
Supported transfers in the same AWS account

<table>
<thead>
<tr>
<th>Source (from)</th>
<th>Destination (to)</th>
</tr>
</thead>
</table>
| • Google Cloud Storage  
• Microsoft Azure Blob Storage  
• Microsoft Azure Files  
• Wasabi Cloud Storage  
• DigitalOcean Spaces  
• Oracle Cloud Infrastructure Object Storage  
• Cloudflare R2 Storage  
• Backblaze B2 Cloud Storage  
• NAVER Cloud Object Storage  
• Alibaba Cloud Object Storage Service  
• IBM Cloud Object Storage  
• Seagate Lyve Cloud | • Amazon S3 (in AWS Regions)  
• Amazon EFS  
• Amazon FSx for Windows File Server  
• FSx for Lustre  
• FSx for OpenZFS  
• FSx for ONTAP  
• Amazon S3 compatible storage on AWS Snowball Edge  
• AWS Snowcone |
| • Amazon S3 (in AWS Regions)  
• Amazon EFS  
• Amazon FSx for Windows File Server  
• FSx for Lustre  
• FSx for OpenZFS  
• FSx for ONTAP | • Google Cloud Storage  
• Microsoft Azure Blob Storage  
• Microsoft Azure Files  
• Wasabi Cloud Storage  
• DigitalOcean Spaces  
• Oracle Cloud Infrastructure Object Storage  
• Cloudflare R2 Storage  
• Backblaze B2 Cloud Storage  
• NAVER Cloud Object Storage  
• Alibaba Cloud Object Storage Service  
• IBM Cloud Object Storage  
• Seagate Lyve Cloud  
• Amazon S3 compatible storage on AWS Snowball Edge  
• AWS Snowcone |
| • Amazon S3 (in AWS Regions)  
• Amazon EFS  
• FSx for Windows File Server  
• FSx for Lustre  
• FSx for OpenZFS  
• FSx for ONTAP | • Amazon S3 (in AWS Regions)  
• Amazon EFS  
• Amazon FSx for Windows File Server  
• FSx for Lustre  
• FSx for OpenZFS  
• FSx for ONTAP  
• Amazon S3 compatible storage on Snowball Edge  
• AWS Snowcone |
| • Amazon S3 (in AWS Regions)  
• Amazon EFS  
• FSx for Windows File Server  
• FSx for Lustre  
• FSx for OpenZFS  
• FSx for ONTAP | • Amazon S3 (in AWS Regions)  
• Amazon EFS  
• Amazon FSx for Windows File Server  
• FSx for Lustre  
• FSx for OpenZFS  
• FSx for ONTAP  
• Amazon S3 compatible storage on Snowball Edge  
• AWS Snowcone |
### Supported transfers across AWS accounts

DataSync supports some transfers between storage systems in different AWS accounts. While typically you don't need a DataSync agent for transfer between AWS services, an agent's required when these kinds of transfers only involve Amazon EFS or Amazon FSx file systems.

<table>
<thead>
<tr>
<th>Source (from)</th>
<th>Destination (to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon EFS¹</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>FSx for Windows File Server²</td>
<td>Amazon EFS</td>
</tr>
<tr>
<td></td>
<td>FSx for Windows File Server</td>
</tr>
<tr>
<td></td>
<td>FSx for Lustre</td>
</tr>
<tr>
<td></td>
<td>FSx for OpenZFS</td>
</tr>
<tr>
<td></td>
<td>FSx for ONTAP</td>
</tr>
<tr>
<td>Amazon S3 (in AWS Regions)</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td></td>
<td>Amazon EFS</td>
</tr>
<tr>
<td></td>
<td>FSx for Windows File Server</td>
</tr>
<tr>
<td></td>
<td>FSx for Lustre</td>
</tr>
<tr>
<td></td>
<td>FSx for OpenZFS</td>
</tr>
<tr>
<td></td>
<td>FSx for ONTAP</td>
</tr>
<tr>
<td>Amazon S3 on AWS Outposts</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td></td>
<td>Amazon EFS</td>
</tr>
<tr>
<td></td>
<td>FSx for Windows File Server</td>
</tr>
<tr>
<td></td>
<td>FSx for Lustre</td>
</tr>
<tr>
<td></td>
<td>FSx for OpenZFS</td>
</tr>
<tr>
<td></td>
<td>FSx for ONTAP</td>
</tr>
<tr>
<td>Amazon S3 on AWS Outposts</td>
<td>Amazon S3 on AWS Outposts</td>
</tr>
<tr>
<td></td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td></td>
<td>Amazon EFS</td>
</tr>
<tr>
<td></td>
<td>FSx for Windows File Server</td>
</tr>
<tr>
<td></td>
<td>FSx for Lustre</td>
</tr>
<tr>
<td></td>
<td>FSx for OpenZFS</td>
</tr>
<tr>
<td></td>
<td>FSx for ONTAP</td>
</tr>
<tr>
<td>FSx for Windows File Server</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>FSx for Lustre</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>FSx for OpenZFS</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>FSx for ONTAP</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>NFS</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>SMB</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>HDFS</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
<tr>
<td>Object storage</td>
<td>Amazon S3 (in AWS Regions)</td>
</tr>
</tbody>
</table>

¹ Configured as an [NFS location](p. 72).

² Configured as an [SMB location](p. 74).

### Supported transfers in the same AWS Region

There are no restrictions when transferring data within the same AWS Region (including a Region disabled by default). For more information, see [AWS Regions supported by DataSync](#).
Supported transfers across AWS Regions

You can transfer data between AWS Regions supported by DataSync except in the following situations:

- With AWS GovCloud (US) Regions, you can only transfer between AWS GovCloud (US-East) and AWS GovCloud (US-West).
- You can’t transfer between Regions if one or both of the Regions is an opt-in Region. This limitation still applies even if you enable the opt-in Regions involved in the transfer.

When you transfer data between AWS services in different AWS Regions, one of the two locations must be in the Region where you’re using DataSync.

**Important**

You pay for data transferred between AWS Regions. This transfer is billed as data transfer OUT from the source to destination Region. For more information, see [Data transfer pricing](#).

Transferring to or from on-premises storage with AWS DataSync

With AWS DataSync, you can transfer files and objects to or from a number of on-premises and self-managed storage systems.

**Topics**
- Configuring AWS DataSync transfers with an NFS file server (p. 72)
- Configuring AWS DataSync transfers with an SMB file server (p. 74)
- Configuring AWS DataSync transfers with HDFS (p. 76)
- Configuring AWS DataSync transfers with an object storage system (p. 78)

Configuring AWS DataSync transfers with an NFS file server

To transfer data to or from your Network File System (NFS) file server, you must create an AWS DataSync transfer location (p. 8). DataSync can use this location as a source or destination for transferring data.

**Accessing NFS file servers**

To access your NFS file server, you need a DataSync agent (p. 8). The agent mounts an export on your file server by using the NFS protocol.

**Topics**
- Configuring your NFS export (p. 72)
- Configuring your network (p. 73)
- Supported NFS versions (p. 73)

**Configuring your NFS export**

The export that DataSync needs for your transfer depends on if your NFS file server is a source or destination location and how your file server's permissions are configured.
If your file server is a source location, DataSync just has to read and traverse your files and folders. If it's a destination location, DataSync needs root access to write to the location and set ownership, permissions, and other metadata on the files and folders that you're copying. You can use the no_root_squash option to allow root access for your export.

The following examples describe how to configure an NFS export that provides access to DataSync.

**When your NFS file server is a source location (root access)**

Configure your export by using the following command, which provides DataSync read-only permissions (`ro`) and root access (`no_root_squash`):

```
export-path datasync-agent-ip-address (ro,no_root_squash)
```

**When your NFS file server is a destination location**

Configure your export by using the following command, which provides DataSync write permissions (`rw`) and root access (`no_root_squash`):

```
export-path datasync-agent-ip-address (rw,no_root_squash)
```

**When your NFS file server is a source location (no root access)**

Configure your export by using the following command, which specifies the POSIX user ID (UID) and group ID (GID) that you know would provide DataSync read-only permissions on the export:

```
export-path datasync-agent-ip-address (ro,all_squash,anonuid=uid,anongid=gid)
```

**Configuring your network**

Your must allow network traffic on port 2049 from your DataSync agent to your NFS file server.

Other NFS clients in your network should be able to mount the NFS export that you're using to transfer data. The export must also be accessible without Kerberos authentication.

**Supported NFS versions**

By default, DataSync uses NFS version 4.1. DataSync also supports NFS 3.x and 4.0.

**Creating your NFS transfer location**

Before you begin, note the following:

- You need an NFS file server that you want to transfer data from.
- You need a DataSync agent that can access your file server (p. 72).
- DataSync doesn't support copying NFS version 4 access control lists (ACLs).

**To create an NFS location by using the console**

2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Network File System (NFS).
4. For Agents, choose the DataSync agent that you want to connect to your NFS file server.

You can choose more than one agent. For more information, see Using multiple AWS DataSync agents for transfers (p. 41).
5. For **NFS server**, enter the Domain Name System (DNS) name or IP address of the NFS file server that your DataSync agent connects to.

6. For **Mount path**, enter the NFS export path that you want DataSync to mount.
   
   This path (or a subdirectory of the path) is where DataSync transfers data to or from. For more information, see Configuring your NFS export (p. 72).

7. (Optional) Expand **Additional settings** and choose a specific **NFS version** for DataSync to use when accessing your file server.
   
   For more information, see Supported NFS versions (p. 73).

8. (Optional) Choose **Add tag** to tag your NFS location.
   
   Tags are key-value pairs that help you manage, filter, and search for your locations. We recommend creating at least a name tag for your location.

9. Choose **Create location**.

### Configuring AWS DataSync transfers with an SMB file server

To transfer data to or from your Server Message Block (SMB) file server, you must create an AWS DataSync transfer location (p. 8). DataSync can use this location as a source or destination for transferring data.

### Accessing SMB file servers

DataSync connects to your file server using the SMB protocol and authenticates with credentials that you provide it.

**Topics**

- Supported SMB protocol versions (p. 74)
- Required authentication protocols (p. 75)
- Required permissions (p. 75)
- Object ownership and NTFS ACL permissions (p. 75)

### Supported SMB protocol versions

By default, DataSync automatically chooses a version of the SMB protocol based on negotiation with your SMB file server.

You also can configure DataSync to use a specific SMB version, but we recommend doing this only if DataSync has trouble negotiating with the SMB file server automatically. (DataSync supports SMB versions 1.0 and later.)

See the following table for a list of options in the DataSync console and API:

<table>
<thead>
<tr>
<th>Console option</th>
<th>API option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>AUTOMATIC</td>
<td>DataSync and the SMB file server negotiate the highest version of SMB that they mutually support between 2.1 and 3.1.1. This is the default and recommended option. If you instead choose a specific version that your file server doesn’t</td>
</tr>
</tbody>
</table>

---

74
Configuring transfers with an SMB file server

### Console option	API option	Description
	support, you may get an Operation Not Supported error.	
SMB 3.0.2 | SMB3 | Restricts the protocol negotiation to only SMB version 3.0.2.
SMB 2.1 | SMB2 | Restricts the protocol negotiation to only SMB version 2.1.
SMB 2.0 | SMB2_0 | Restricts the protocol negotiation to only SMB version 2.0.
SMB 1.0 | SMB1 | Restricts the protocol negotiation to only SMB version 1.0.

### Required authentication protocols

Your SMB file server must use NTLM authentication for DataSync to access it. DataSync can't access an SMB file server that uses Kerberos authentication.

### Required permissions

DataSync needs a user account with permissions to mount and access your SMB file server's files, folders, and file metadata. This can be a local user on your file server or a domain user that's defined in your Microsoft Active Directory.

### Object ownership and NTFS ACL permissions

To set object ownership, DataSync needs a user with the `SE_RESTORE_NAME` privilege, which is usually granted to members of the built-in Active Directory groups *Backup Operators* and *Domain Admins*. Providing DataSync a user with this privilege also helps ensure sufficient permissions to files, folders, and file metadata except for NTFS system access control lists (SACLs).

Additional privileges are required for DataSync to copy SACLs, specifically the Windows `SE_SECURITY_NAME` privilege that's granted to members of the *Domain Admins* group. To configure how DataSync copies ACLs, see [Managing how AWS DataSync transfers files, objects, and metadata](p. 139)

### Creating your SMB transfer location

Before you begin, you need an SMB file server that you want to transfer data from.

**To create an SMB location by using the console**

2. In the left navigation pane, expand *Data transfer*, then choose *Locations* and *Create location*.
3. For *Location type*, choose *Server Message Block (SMB)*.
   
   You configure this location as a source or destination later.
4. For *Agents*, choose one or more DataSync agents that you want to connect to your SMB file server.
   
   If you choose more than one agent, make sure you understand using [multiple agents for a location](p. 41).
5. For *SMB Server*, enter the Domain Name System (DNS) name or IP address of the SMB file server that your DataSync agent will mount.

   **Note**
   
   You can't specify an IP version 6 (IPv6) address.
6. For **Share name**, enter the name of the share exported by your SMB file server where DataSync will read or write data.

   You can include a subdirectory in the share path (for example, `/path/to/subdirectory`). Make sure that other SMB clients in your network can also mount this path.

   To copy all the data in the subdirectory, DataSync must be able to mount the SMB share and access all of its data. For more information, see **Required permissions (p. 75)**.

7. (Optional) Expand **Additional settings** and choose an **SMB Version** for DataSync to use when accessing your file server.

   By default, DataSync automatically chooses a version based on negotiation with the SMB file server. For information, see **Supported SMB protocol versions (p. 74)**.

8. For **User**, enter a user name that can mount your SMB file server and has permission to access the files and folders involved in your transfer.

   For more information, see **Required permissions (p. 75)**.

9. For **Password**, enter the password of the user who can mount your SMB file server and has permission to access the files and folders involved in your transfer.

10. (Optional) For **Domain**, enter the Windows domain name that your SMB file server belongs to.

    If you have multiple domains in your environment, configuring this setting makes sure that DataSync connects to the right SMB file server.

11. (Optional) Choose **Add tag** to tag your SMB location.

    **Tags** are key-value pairs that help you manage, filter, and search for your locations. We recommend creating at least a name tag for your location.

12. Choose **Create location**.

### Configuring AWS DataSync transfers with HDFS

To transfer data to or from your Hadoop Distributed File System (HDFS), you must create an AWS DataSync transfer location (p. 8). DataSync can use this location as a source or destination for transferring data.

### Accessing HDFS clusters

To connect to your HDFS cluster, DataSync uses an agent that you deploy near your HDFS cluster. To learn more about DataSync agents, see **Working with AWS DataSync agents (p. 36)**. The DataSync agent acts as an HDFS client and communicates with the NameNodes and DataNodes in your clusters.

When you start a task, DataSync queries the NameNode for locations of files and folders on the cluster. If the HDFS location is configured as a source, then DataSync reads files and folder data from the DataNodes in the cluster and copies the data to the destination. If the HDFS location is configured as a destination, then DataSync writes files and folders from the destination to the DataNodes in the cluster. Before running your DataSync task, verify agent connectivity to the HDFS cluster. For more information, see **Testing your agent’s connection to your storage (p. 47)**.

### Authentication

When connecting to an HDFS cluster, DataSync supports simple authentication or Kerberos authentication. To use simple authentication, provide the user name of a user with rights to read and write to the HDFS cluster. To use Kerberos authentication, provide a Kerberos configuration file, a Kerberos key table (keytab) file, and a Kerberos principal name. The credentials of the Kerberos principal must be in the provided keytab file.
Encryption

When using Kerberos authentication, DataSync supports encryption of data as it's transmitted between the DataSync agent and your HDFS cluster. Encrypt your data by using the Quality of Protection (QOP) configuration settings on your HDFS cluster and by specifying the QOP settings when creating your HDFS location. The QOP configuration includes settings for data transfer protection and Remote Procedure Call (RPC) protection.

**DataSync supports the following Kerberos encryption types:**

- des-cbc-crc
- des-cbc-md4
- des-cbc-md5
- des3-cbc-sha1
- arcfour-hmac
- arcfour-hmac-exp
- aes128-cts-hmac-sha1-96
- aes256-cts-hmac-sha1-96
- aes128-cts-hmac-sha256-128
- aes256-cts-hmac-sha384-192
- camellia128-cts-cmac
- camellia256-cts-cmac

You can also configure HDFS clusters for encryption at rest using Transparent Data Encryption (TDE). When using simple authentication, DataSync reads and writes to TDE-enabled clusters. If you're using DataSync to copy data to a TDE-enabled cluster, first configure the encryption zones on the HDFS cluster. DataSync doesn't create encryption zones.

Creating your HDFS transfer location

Configure a location that you can use as a source for your DataSync transfer.

**Before you begin:** Verify network connectivity between your agent and Hadoop cluster by doing the following:

- Test access to the TCP ports listed in [Network requirements for self-managed and other cloud storage](p. 12).
- Test access between your local agent and your Hadoop cluster. For instructions, see [Testing your agent's connection to your storage](p. 47).

**To create an HDFS location by using the DataSync console**

2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Hadoop Distributed File System (HDFS). You can configure this location as a source or destination later.
4. For Agents, choose one or more agents that you want to use from the list of available agents. The agent connects to your HDFS cluster to securely transfer data between the HDFS cluster and DataSync.
5. For NameNode, provide the domain name or IP address of the HDFS cluster's primary NameNode.
6. For Folder, enter a folder on your HDFS cluster that DataSync will use for the data transfer. When the location is used as a source for a task, DataSync copies files in the provided folder. When your location is used as a destination for a task, DataSync writes all files to the provided folder.

7. To set the Block size or Replication factor, choose Additional settings. The default block size is 128 MiB, and any provided block sizes must be a multiple of 512 bytes. The default replication factor is three DataNodes when transferring data to the HDFS cluster.

8. In the Security section, choose the Authentication type used on your HDFS cluster.
   - Simple – For User, specify the user name with the following permissions on the HDFS cluster (depending on your use case):
     - If you plan to use this location as a source location, specify a user that only has read permissions.
     - If you plan to use this location as a destination location, specify a user that has read and write permissions.
   
   Optionally, specify the URI of the Key Management Server (KMS) of the HDFS cluster.
   - Kerberos – Specify the Kerberos Principal with access to your HDFS cluster. Next, provide the KeyTab file that contains the provided Kerberos principal. Then, provide the Kerberos configuration file. Finally, specify the type of encryption in transit protection in the RPC protection and Data transfer protection dropdown lists.

9. (Optional) Choose Add tag to tag your HDFS location.

   Tags are key-value pairs that help you manage, filter, and search for your locations. We recommend creating at least a name tag for your location.

10. Choose Create location.

Unsupported HDFS features

The following capabilities of HDFS aren't currently supported by DataSync:

- Transparent Data Encryption (TDE) when using Kerberos authentication
- Configuring multiple NameNodes
- Hadoop HDFS over HTTP (HttpFS)
- POSIX access control lists (ACLs)
- HDFS extended attributes (xattrs)

Configuring AWS DataSync transfers with an object storage system

To transfer data to or from your object storage system, you must create an AWS DataSync transfer location (p. 8). DataSync can use this location as a source or destination for transferring data.

Prerequisites

Your object storage system must be compatible with the following Amazon S3 API operations for DataSync to connect to it:

- AbortMultipartUpload
- CompleteMultipartUpload
- CopyObject
- CreateMultipartUpload
Creating your object storage transfer location

Before you begin, you need an object storage system that you plan to transfer data from.

**To create an object storage location by using the console**

2. In the left navigation pane, expand **Data transfer**, then choose **Locations** and **Create location**.
3. For **Location type**, choose **Object storage**.
   You configure this location as a source or destination later.
4. For **Agents**, choose one or more DataSync agents.
   During the transfer, the agents securely connect to your object storage server.
5. For **Server**, provide the domain name or IP address of the object storage server.
6. For **Bucket name**, enter the name of the object storage bucket involved in the transfer.
7. For **Folder**, enter an object prefix.
   DataSync only copies objects with this prefix.
8. To configure the connection to the object storage server, expand **Additional settings** and do the following:
   a. For **Server protocol**, choose **HTTP** or **HTTPS**.
   b. For **Server port**, use a default port (80 for HTTP or 443 for HTTPS) or specify a custom port if needed.
   c. For **Certificate**, select **Choose file** to specify the certificates that are used to sign the object storage server’s certificate.
      The file can be up to 32768 bytes (before base64 encoding) and also include the following:
      • The certificate of the signing certificate authority (CA)
      • Any intermediate certificates
      • A .pem extension
9. If credentials are required to access the object storage server, select **Requires credentials** and enter the **Access key** and **Secret key** for accessing the bucket.
   The access key and secret key can be a user name and password, respectively.
10. (Optional) Choose **Add tag** to tag your object storage location.
Tags are key-value pairs that help you manage, filter, and search for your locations. We recommend creating at least a name tag for your location.

11. Choose Create location.

Transferring to or from AWS storage with AWS DataSync

With AWS DataSync, you can transfer data to or from a number of AWS storage services. For more information, see [Where can I transfer my data with DataSync?](p. 69).

Topics
- Configuring AWS DataSync transfers with Amazon S3 (p. 80)
- Configuring AWS DataSync transfers with Amazon EFS (p. 90)
- Configuring AWS DataSync transfers with Amazon FSx for Windows File Server (p. 93)
- Configuring AWS DataSync transfers with Amazon FSx for Lustre (p. 95)
- Configuring AWS DataSync transfers with Amazon FSx for OpenZFS (p. 96)
- Configuring AWS DataSync transfers with Amazon FSx for NetApp ONTAP (p. 98)

Configuring AWS DataSync transfers with Amazon S3

To transfer data to or from your Amazon S3 bucket, you create an AWS DataSync transfer location. DataSync can use this location as a source or destination for transferring data.

**Important**
Before you create your location, make sure that you read the following sections:

- Storage class considerations with Amazon S3 transfers (p. 84)
- Evaluating S3 request costs when using DataSync (p. 87)

Accessing S3 buckets

DataSync requires access to your S3 bucket. To do this, DataSync assumes an AWS Identity and Access Management (IAM) role with an IAM policy that determines which actions that the role can perform.

Topics
- Creating an IAM role for DataSync to access your S3 bucket (p. 80)
- Accessing S3 buckets using server-side encryption (p. 82)

Creating an IAM role for DataSync to access your S3 bucket

In the console, DataSync can automatically create and assume an IAM role that normally has the right permissions to access your S3 bucket. For buckets with extra layers of security, though, you might need to create this role manually.

**Manually creating an IAM role for DataSync**

2. In the left navigation pane, under Access management, choose Roles, and then choose Create role.
3. On the Select trusted entity page, for Trusted entity type, choose AWS service.
4. For Use case, choose DataSync in the dropdown list and select DataSync. Choose Next.
5. On the Add permissions page, choose Next. Give your role a name and choose Create role.
6. On the Roles page, search for the role that you just created and choose its name.
7. On the role's details page, choose the Permissions tab. Choose Add permissions then Create inline policy.
8. Choose the JSON tab and paste one of the following sample policies into the policy editor:

Amazon S3 in AWS Regions

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::bucket-name"
 },
 {
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",
 "s3:GetObjectTagging",
 "s3:PutObjectTagging",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::bucket-name/*"
 }
]
}
```

Amazon S3 on Outposts

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "s3-outposts:ListBucket",
 "s3-outposts:ListBucketMultipartUploads"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3-outposts:region:account-id:outpost/outpost-id/accesspoint/bucket-access-point-name"
]
 },
 {
 "Action": [
 "s3-outposts:AbortMultipartUpload",
 "s3-outposts:DeleteObject",
 "s3-outposts:GetObject",
 "s3-outposts:GetObjectTagging",
 "s3-outposts:DeleteObjectTagging",
 "s3-outposts:CopyObject",
 "s3-outposts:CopyObjectTagging"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3-outposts:region:account-id:outpost/outpost-id/bucket/bucket-name"
 }]
}
```
9. Choose Next. Give your policy a name and choose Create policy.

10. (Recommended) To prevent the cross-service confused deputy problem (p. 192), do the following:

a. On the role’s details page, choose the Trust relationships tab. Choose Edit trust policy.

b. Update the trust policy by using the following example, which includes the aws:SourceArn and aws:SourceAccount global condition context keys:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "datasync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "StringLike": {
 "aws:SourceArn": "arn:aws:datasync:region:account-id:*"
 }
 }
 }
]
}
```

c. Choose Update policy.

You can specify this role when creating your Amazon S3 location.

**Accessing S3 buckets using server-side encryption**

DataSync can copy data to or from S3 buckets that use server-side encryption. The type of encryption key a bucket uses can determine if you need a custom policy allowing DataSync to access the bucket.

When using DataSync with S3 buckets that use server-side encryption, remember the following:

- **If your S3 bucket is encrypted with an AWS managed key** – DataSync can access the bucket’s objects by default if all your resources are in the same AWS account.

- **If your S3 bucket is encrypted with a customer-managed AWS Key Management Service (AWS KMS) key (SSE-KMS)** – The key’s policy must include the IAM role that DataSync uses to access the bucket.
If your S3 bucket is encrypted with a customer-managed SSE-KMS key and in a different AWS account – DataSync needs permission to access the bucket in the other AWS account. You can set this up by doing the following:

- In the IAM role used by DataSync, specify the SSE-KMS key associated with the destination bucket.
- In the SSE-KMS key policy, specify the IAM role used by DataSync.

If your S3 bucket is encrypted with a customer-provided encryption key (SSE-C) – DataSync can't access this bucket.

Example: SSE-KMS key policy for DataSync

The following example is a key policy for a customer-managed SSE-KMS key. The policy is associated with an S3 bucket that uses server-side encryption. The following values are specific to your setup:

- **account-id** – Your AWS account.
- **your-admin-role** – The IAM role that can administer the key.
- **your-datasync-role** – The IAM role that allows DataSync to use the key when accessing the bucket.

```json
{
 "Id": "key-consolepolicy-3",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable IAM Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::account-id:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::account-id:role/your-admin-role"
 },
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::account-id:role/your-datasync-role"
 },
 "Action": [
 "execute-api:*",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetObjectAcl",
 "s3:GetObjectReplication",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionReplication",
 "s3:GetObjectVersionTagging",
 "s3:GetObjectTagging",
 "s3:GetObjectWebsiteConfiguration",
 "s3:GetObjectWebsite`
```
Storage class considerations with Amazon S3 transfers

When Amazon S3 is your transfer destination, DataSync can transfer data directly into a specific Amazon S3 storage class. Some storage classes have behaviors that can affect your Amazon S3 storage costs. For more information, see Amazon S3 pricing.

**Important**
New objects copied to an S3 bucket are stored using the storage class that you specify when creating your Amazon S3 transfer location. DataSync won't change the storage class of existing objects in the bucket (even if that object was modified in the source location).

<table>
<thead>
<tr>
<th>Amazon S3 storage class</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3 Standard</td>
<td>Choose S3 Standard to store your frequently accessed files redundantly in multiple Availability Zones that are geographically separated. This is the default if you don't specify a storage class.</td>
</tr>
<tr>
<td>S3 Intelligent-Tiering</td>
<td>Choose S3 Intelligent-Tiering to optimize storage costs by automatically moving data to the most cost-effective storage access tier. You pay a monthly charge per object stored in the S3 Intelligent-Tiering storage class. This Amazon S3 charge includes monitoring data access patterns and moving objects between tiers.</td>
</tr>
<tr>
<td>S3 Standard-IA</td>
<td>Choose S3 Standard-IA to store your infrequently accessed objects redundantly in multiple Availability Zones that are geographically separated. Objects stored in the S3 Standard-IA storage class can incur additional charges for overwriting, deleting, or retrieving. Consider how often these objects change, how long you plan to keep these objects, and how...</td>
</tr>
</tbody>
</table>
### Amazon S3 storage class

<table>
<thead>
<tr>
<th>Considerations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Amazon S3 storage class</strong></td>
<td><strong>Considerations</strong></td>
</tr>
<tr>
<td></td>
<td>often you need to access them. Changes to object data or metadata are equivalent to deleting an object and creating a new one to replace it. This results in additional charges for objects stored in the S3 Standard-IA storage class.</td>
</tr>
<tr>
<td></td>
<td>Objects less than 128 KB are smaller than the minimum capacity charge per object in the S3 Standard-IA storage class. These objects are stored in the S3 Standard storage class.</td>
</tr>
<tr>
<td><strong>S3 One Zone-IA</strong></td>
<td>Choose S3 One Zone-IA to store your infrequently accessed objects in a single Availability Zone.</td>
</tr>
<tr>
<td></td>
<td>Objects stored in the S3 One Zone-IA storage class can incur additional charges for overwriting, deleting, or retrieving. Consider how often these objects change, how long you plan to keep these objects, and how often you need to access them. Changes to object data or metadata are equivalent to deleting an object and creating a new one to replace it. This results in additional charges for objects stored in the S3 One Zone-IA storage class.</td>
</tr>
<tr>
<td></td>
<td>Objects less than 128 KB are smaller than the minimum capacity charge per object in the S3 One Zone-IA storage class. These objects are stored in the S3 Standard storage class.</td>
</tr>
<tr>
<td><strong>S3 Glacier Instant Retrieval</strong></td>
<td>Choose S3 Glacier Instant Retrieval to archive objects that are rarely accessed but require retrieval in milliseconds.</td>
</tr>
<tr>
<td></td>
<td>Data stored in the S3 Glacier Instant Retrieval storage class offers cost savings compared to the S3 Standard-IA storage class with the same latency and throughput performance. S3 Glacier Instant Retrieval has higher data access costs than S3 Standard-IA, though.</td>
</tr>
<tr>
<td></td>
<td>Objects stored in S3 Glacier Instant Retrieval can incur additional charges for overwriting, deleting, or retrieving. Consider how often these objects change, how long you plan to keep these objects, and how often you need to access them. Changes to object data or metadata are equivalent to deleting an object and creating a new one to replace it. This results in additional charges for objects stored in the S3 Glacier Instant Retrieval storage class.</td>
</tr>
<tr>
<td></td>
<td>Objects less than 128 KB are smaller than the minimum capacity charge per object in the S3 Glacier Instant Retrieval storage class. These objects are stored in the S3 Standard storage class.</td>
</tr>
<tr>
<td>Amazon S3 storage class</td>
<td>Considerations</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| S3 Glacier Flexible Retrieval | Choose S3 Glacier Flexible Retrieval for more active archives.  
Objects stored in S3 Glacier Flexible Retrieval can incur additional charges for overwriting, deleting, or retrieving. Consider how often these objects change, how long you plan to keep these objects, and how often you need to access them. Changes to object data or metadata are equivalent to deleting an object and creating a new one to replace it. This results in additional charges for objects stored in the S3 Glacier Flexible Retrieval storage class.  
Objects less than 40 KB are smaller than the minimum capacity charge per object in the S3 Glacier Flexible Retrieval storage class. These objects are stored in the S3 Standard storage class.  
You must restore objects archived in this storage class before DataSync can read them. For information, see [Working with archived objects](#) in the Amazon S3 User Guide.  
When using S3 Glacier Flexible Retrieval, choose the **Verify only the data transferred** task option to compare data and metadata checksums at the end of the transfer. You can't use the **Verify all data in the destination** option for this storage class because it requires retrieving all existing objects from the destination. |
| S3 Glacier Deep Archive | Choose S3 Glacier Deep Archive to archive your objects for long-term data retention and digital preservation where data is accessed once or twice a year.  
Objects stored in S3 Glacier Deep Archive can incur additional charges for overwriting, deleting, or retrieving. Consider how often these objects change, how long you plan to keep these objects, and how often you need to access them. Changes to object data or metadata are equivalent to deleting an object and creating a new one to replace it. This results in additional charges for objects stored in the S3 Glacier Deep Archive storage class.  
Objects less than 40 KB are smaller than the minimum capacity charge per object in the S3 Glacier Deep Archive storage class. These objects are stored in the S3 Standard storage class.  
You must restore objects archived in this storage class before DataSync can read them. For information, see [Working with archived objects](#) in the Amazon S3 User Guide.  
When using S3 Glacier Deep Archive, choose the **Verify only the data transferred** task option to compare data and metadata checksums at the end of the transfer. You can't use the **Verify all data in the destination** option for this storage class because it requires retrieving all existing objects from the destination. |
| S3 Outposts | The storage class for Amazon S3 on Outposts. |
Evaluating S3 request costs when using DataSync

With Amazon S3 locations, you incur costs related to S3 API requests made by DataSync. This section can help you understand how DataSync uses these requests and how they might affect your Amazon S3 costs.

Topics

- S3 requests made by DataSync (p. 87)
- Cost considerations (p. 88)

S3 requests made by DataSync

The following table describes the S3 requests that DataSync can make when you’re copying data to or from an Amazon S3 location.

<table>
<thead>
<tr>
<th>S3 request</th>
<th>How DataSync uses it</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListObjectV2</td>
<td>DataSync makes at least one LIST request for every object ending in a forward slash (/) to list the objects that start with that prefix. This request is called during a task's preparing (p. 152) phase.</td>
</tr>
<tr>
<td>HeadObject</td>
<td>DataSync makes HEAD requests to retrieve object metadata during a task's preparing (p. 152) and verifying (p. 152) phases. There can be multiple HEAD requests per object depending on how you want DataSync to verify the integrity of the data it transfers (p. 138).</td>
</tr>
<tr>
<td>GetObject</td>
<td>DataSync makes GET requests to read data from an object during a task's transferring (p. 152) phase. There can be multiple GET requests for large objects.</td>
</tr>
<tr>
<td>GetObjectTagging</td>
<td>If you configure your task to copy object tags (p. 139), DataSync makes these GET requests to check for object tags during the task's preparing (p. 152) and transferring (p. 152) phases.</td>
</tr>
<tr>
<td>PutObject</td>
<td>DataSync makes PUT requests to create objects and prefixes in a destination S3 bucket during a task's transferring (p. 152) phase. Since DataSync uses the Amazon S3 multipart upload feature, there can be multiple PUT requests for large objects.</td>
</tr>
<tr>
<td>PutObjectTagging</td>
<td>If your source objects have tags and you configure your task to copy object tags (p. 139), DataSync makes these PUT requests when transferring (p. 152) those tags.</td>
</tr>
<tr>
<td>CopyObject</td>
<td>DataSync makes a COPY request to create a copy of an object only if that object's metadata changes. This can happen if you originally copied</td>
</tr>
</tbody>
</table>
### S3 request

<table>
<thead>
<tr>
<th>S3 request</th>
<th>How DataSync uses it</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>data to the S3 bucket using another service or tool that didn't carry over its metadata.</td>
</tr>
</tbody>
</table>

### Cost considerations

DataSync makes S3 requests on S3 buckets every time you run your task. This can lead to charges adding up in certain situations. For example:

- You’re frequently transferring objects to or from an S3 bucket.
- You may not be transferring much data, but your S3 bucket has lots of objects in it. You can still see high charges in this scenario because DataSync makes S3 requests on each of the bucket’s objects.
- You're transferring between S3 buckets, so DataSync is making S3 requests on the source and destination.

To help minimize S3 request costs related to DataSync, consider the following:

**Topics**

- What S3 storage classes am I using? (p. 88)
- How often do I need to transfer my data? (p. 88)

### What S3 storage classes am I using?

S3 request charges can vary based on the Amazon S3 storage class your objects are using, particularly for classes that archive objects (such as S3 Glacier Instant Retrieval, S3 Glacier Flexible Retrieval, and S3 Glacier Deep Archive).

Here are some scenarios in which storage classes can affect your S3 request charges when using DataSync:

- Each time you run a task, DataSync makes HEAD requests to retrieve object metadata. These requests result in charges even if you aren’t moving any objects. How much these requests affect your bill depends on the storage class your objects are using along with the number of objects that DataSync scans.
- If you moved objects into the S3 Glacier Instant Retrieval storage class (either directly or through a bucket lifecycle configuration), requests on objects in this class are more expensive than objects in other storage classes.
- If you configure your DataSync task to verify that your source and destination locations are fully synchronized (p. 138), requests on objects in this class are more expensive than objects in other storage classes.
- If you configure your DataSync task to verify that your source and destination locations are fully synchronized (p. 138), requests on objects in this class are more expensive than objects in other storage classes.
- In addition to GET requests, you incur data retrieval costs for objects in the S3 Standard-IA, S3 One Zone-IA, or S3 Glacier Instant Retrieval storage class.

For more information, see Amazon S3 pricing.

### How often do I need to transfer my data?

If you need to move data on a recurring basis, think about a schedule (p. 145) that doesn’t run more tasks than you need.

You may also consider limiting the scope of your transfers. For example, you can configure DataSync to focus on objects in certain prefixes or filter what data gets transferred (p. 141). These options can help reduce the number of S3 requests made each time you run your DataSync task.
Other considerations with Amazon S3 transfers

When using Amazon S3 with DataSync, remember the following:

- Changes to object data or metadata are equivalent to deleting and replacing an object. These changes result in additional charges in the following scenarios:
  - **When using object versioning** – Changes to object data or metadata create a new version of the object.
  - **When using storage classes that can incur additional charges for overwriting, deleting, or retrieving objects** – Changes to object data or metadata result in such charges. For more information, see Storage class considerations with Amazon S3 transfers (p. 84).
- When using object versioning in Amazon S3, running a DataSync transfer task once might create more than one version of an Amazon S3 object.
- DataSync might not transfer an object if it has nonstandard characters in its name. For more information, see the object key naming guidelines in the Amazon S3 User Guide.
- To help minimize your Amazon S3 storage costs, we recommend using a lifecycle configuration to stop incomplete multipart uploads.
- DataSync doesn't support transferring to buckets with S3 Object Lock enabled.
- After initially transferring data from an S3 bucket to a file system (for example, NFS or Amazon FSx), subsequent runs of the same DataSync task won't include objects that have been modified but are the same size they were during the first transfer.
- If you're transferring from an S3 bucket, use Amazon S3 Storage Lens to figure out how many objects you're moving.

Tip
When transferring between S3 buckets, DataSync can't work with more than 25 million objects per task execution. If there are more than 25 million objects involved, we recommend a couple options:

- Organizing your objects using prefixes that don't include more than 25 million objects. You can then create separate DataSync tasks for each prefix.
- Filtering the data (p. 141) transferred by DataSync.

Creating your Amazon S3 transfer location

To create the location, you need an existing S3 bucket. If you don't have one, see Getting started with Amazon S3 in the Amazon S3 User Guide.

Tip
If your S3 bucket has objects with different storage classes, learn how DataSync works with these storage classes (p. 84) and how it can affect your AWS bill (p. 88).

To create an Amazon S3 location

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Amazon S3.
4. For S3 bucket, choose the bucket that you want to use as a location. (When creating your DataSync task later, you specify whether this location is a source or destination location.)

   If your S3 bucket is located on an AWS Outposts resource, you must specify an Amazon S3 access point. For more information, see Managing data access with Amazon S3 access points in the Amazon S3 User Guide.

5. For S3 storage class, choose a storage class that you want your objects to use when Amazon S3 is a transfer destination.
For more information, see Storage class considerations with Amazon S3 transfers (p. 84). DataSync by default uses the S3 Outposts storage class for Amazon S3 on Outposts.

6. (Amazon S3 on Outposts only) For Agents, specify the Amazon Resource Name (ARN) of the DataSync agent on your Outpost.

For more information, see Deploy your agent on AWS Outposts (p. 29).

7. For Folder, enter a prefix in the S3 bucket that DataSync reads from or writes to (depending on whether the bucket is a source or destination location).

   **Note**
   The prefix can't begin with a slash (for example, /photos) or include consecutive slashes, such as photos//2006/January.

8. For IAM role, do one of the following:

   - Choose **Autogenerate** for DataSync to automatically create an IAM role with the permissions required to access the S3 bucket.

     If DataSync previously created an IAM role for this S3 bucket, that role is chosen by default.

   - Choose a custom IAM role that you created. For more information, see Creating an IAM role for DataSync to access your S3 bucket (p. 80).

9. (Optional) Choose **Add tag** to tag your Amazon S3 location.

    A tag is a key-value pair that helps you manage, filter, and search for your locations.

10. Choose **Create location**.

Once created, you can use this location as a source or destination for your transfer.

### Transferring to or from S3 buckets across AWS accounts

With DataSync, you can move data to or from S3 buckets in different AWS accounts (p. 71). For more information, see the following tutorials:

- Transferring data from on-premises storage to Amazon S3 across AWS accounts (p. 214)
- Transferring data from Amazon S3 to Amazon S3 across AWS accounts (p. 221)

### Configuring AWS DataSync transfers with Amazon EFS

To transfer data to or from your Amazon EFS file system, you must create an AWS DataSync transfer location. DataSync can use this location as a source or destination for transferring data.

#### Accessing Amazon EFS file systems

DataSync mounts your Amazon EFS file system as the root user from your virtual private cloud (VPC) using network interfaces (p. 20).

When creating your location, you specify the subnet and security groups that DataSync uses to connect to one of your Amazon EFS file system's mount targets or access points using Network File System (NFS) port 2049.

DataSync can also mount Amazon EFS file systems configured for restricted access. For example, you can specify an AWS Identity and Access Management (IAM) role that gives DataSync the necessary level of
permission to connect to your file system. For more information, see Using IAM policies to access your Amazon EFS file system (p. 92).

Considerations with Amazon EFS transfers

Think about the following when creating a DataSync transfer location for an Amazon EFS file system:

- VPCs that you use with DataSync must have default tenancy. VPCs with dedicated tenancy are not supported. For more information, see Work with VPCs.
- When you create an Amazon EFS file system in Bursting Throughput mode, you get an allocation of 2.1-TB worth of burst credits. All Amazon EFS file systems can burst up to 100 MB per second of throughput with Bursting Throughput mode. File systems with more than 1 TiB of Amazon S3 Standard class storage can drive 100 MiB per second per TB when burst credits are available.

DataSync consumes file system burst credits. This can have an impact on the performance of your applications. When using DataSync with a file system that has an active workload, consider using the Amazon EFS Elastic Throughput or Provisioned Throughput mode.

- Amazon EFS file systems that are in General Purpose performance mode have a limit of 35,000 file system operations per second. This limit can impact the maximum throughput DataSync can achieve when copying files.

Operations that read data or metadata consume one file operation. Operations that write data or update metadata consume five file operations. This means a file system can support 35,000 read operations per second, 7,000 write operations, or some combination of the two. File operations are counted from all connecting clients.

For more information, see Amazon EFS performance in the Amazon Elastic File System User Guide.

Creating your Amazon EFS transfer location

To create the transfer location, you need an existing Amazon EFS file system. If you don’t have one, see Getting started with Amazon Elastic File System in the Amazon Elastic File System User Guide.

To create an Amazon EFS location

1. Open the AWS DataSync console at https://console.aws.amazon.com/datsync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Amazon EFS file system.

   You configure this location as a source or destination later.

4. For File system, choose the Amazon EFS file system that you want to use as a location.

   You configure this location as a source or destination later.

5. For Mount path, enter a mount path for your Amazon EFS file system.

   This specifies where DataSync reads or writes data (depending on if this is a source or destination location).

   By default, DataSync uses the root directory (or access point if you configure one). You can also specify subdirectories using forward slashes (for example, /path/to/directory).

6. For Subnet choose a subnet where DataSync creates the network interfaces for managing traffic during your transfer.

   The subnet must be located:
   - In the same VPC as the Amazon EFS file system.
• In the same Availability Zone as at least one file system mount target.

  **Note**  
  You don’t need to specify a subnet that includes a file system mount target.

7. For **Security groups**, choose the security groups associated with an Amazon EFS file system's mount target.

   **Note**  
   The security groups that you specify must allow inbound traffic on NFS port 2049. For more information, see [Using VPC security groups for Amazon EC2 instances and mount targets](https://docs.aws.amazon.com/efs/latest/ug/vpc-security-groups.html) in the Amazon Elastic File System User Guide.

8. For **In-transit encryption**, choose whether you want DataSync to use Transport Layer Security (TLS) encryption when it copies data to or from your file system.

   **Note**  
   You must enable this setting if you want to configure an access point, IAM role, or both with your location.

9. (Optional) For **EFS access point**, choose an access point that DataSync can use to mount your Amazon EFS file system.

10. (Optional) For **IAM role**, specify a role that allows DataSync to access your file system.

    For information on creating this role, see [Using IAM policies to access your Amazon EFS file system](https://docs.aws.amazon.com/efs/latest/ug/access-iam.html) (p. 92)

11. (Optional) Select **Add tag** to tag your file system.

    A **tag** is a key-value pair that helps you manage, filter, and search for your locations.

12. Choose **Create location**.

### Using IAM policies to access your Amazon EFS file system

You can configure your Amazon EFS file system with a higher level of security by using IAM policies. In your **file system policy** (p. 93), you can specify an IAM role that still allows DataSync to connect with the file system.

  **Note**  
  To use an IAM role, you must enable TLS for in-transit encryption when creating a DataSync location for your file system.

For more information, see [Using IAM to control file system data access](https://docs.aws.amazon.com/efs/latest/ug/access-iam.html) in the Amazon Elastic File System User Guide.

### Creating an IAM role for DataSync

Create a role with DataSync as the trusted entity.

**To create the IAM role**

2. In the left navigation pane, under **Access management**, choose **Roles**, and then choose **Create role**.
3. On the **Select trusted entity** page, for **Trusted entity type**, choose **Custom trust policy**.
4. Paste the following JSON into the policy editor:

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
```
Configuring transfers with FSx for Windows File Server

5. Choose **Next**. On the **Add permissions** page, choose **Next**.
6. Give your role a name and choose **Create role**.

Specify this role when creating the location for your Amazon EFS file system.

**Example Amazon EFS file system policy**

The following sample IAM policy includes elements that help restrict access to an Amazon EFS file system (identified in the policy as `fs-1234567890abcdef0`):

- **Principal**: Specifies an IAM role that gives DataSync permission to connect to the file system.
- **Action**: Gives DataSync root access and allows it to read from and write to the file system.
- **aws:SecureTransport**: Requires NFS clients to use TLS when connecting to the file system.
- **elasticfilesystem:AccessPointArn**: Allows access to the file system only through a specific access point.

```json
{
 "Version": "2012-10-17",
 "Id": "ExampleEFSFileSystemPolicy",
 "Statement": [{
 "Sid": "AccessEFSFileSystem",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iams::111122223333:role/MyDataSyncRole"
 },
 "Action": [
 "elasticfilesystem:ClientMount",
 "elasticfilesystem:ClientWrite",
 "elasticfilesystem:ClientRootAccess"
],
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 },
 "StringEquals": {
 }
 }
 }]
}
```

**Configuring AWS DataSync transfers with Amazon FSx for Windows File Server**

To transfer data to or from your Amazon FSx for Windows File Server file system, you must create an AWS DataSync transfer **location**. DataSync can use this location as a source or destination for transferring data.
Accessing FSx for Windows File Server file systems

DataSync connects to your FSx for Windows File Server with the Server Message Block (SMB) protocol and mounts your file system from your virtual private cloud (VPC) using network interfaces (p. 20).

**Note**

VPCs that you use with DataSync must have default tenancy. VPCs with dedicated tenancy are not supported. For more information, see Work with VPCs.

**Topics**

- Required authentication protocols (p. 94)
- Required permissions (p. 94)
- Object ownership and NTFS ACL permissions (p. 94)

**Required authentication protocols**

Your FSx for Windows File Server must use NTLM authentication for DataSync to access it. DataSync can't access a file server that uses Kerberos authentication.

**Required permissions**

DataSync needs a user account with permissions to mount and access your FSx for Windows File Server files, folders, and file metadata.

We recommend that you make this user a member of the file system administrators group. If you're using AWS Directory Service for Microsoft Active Directory with FSx for Windows File Server, the user must be a member of the **AWS Delegated FSx Administrators** group. If you're using a self-managed Active Directory with your FSx for Windows File Server, the user must be a member of one of two groups:

- The **Domain Admins** group.
- The custom group that you specified for file system administration when you created your file system.

When transferring between an SMB file server and FSx for Windows File Server file system, or between FSx for Windows File Server file systems, the transfer source and destination must:

- Belong to the same Active Directory domain.
- Have an Active Directory trust relationship between their domains.

**Object ownership and NTFS ACL permissions**

To set object ownership, DataSync needs a user with the SE_RESTORE_NAME privilege, which is usually granted to members of the built-in Active Directory groups **Backup Operators** and **Domain Admins**. Providing DataSync a user with this privilege also helps ensure sufficient permissions to files, folders, and file metadata except for NTFS system access control lists (SACLs).

Additional privileges are required for DataSync to copy SACLs, specifically the Windows SE_SECURITY_NAME privilege that's granted to members of the **Domain Admins** group. To configure how DataSync copies ACLs, see Managing how AWS DataSync transfers files, objects, and metadata (p. 139).

**Warning**

When copying NTFS ACLs, make sure that the SYSTEM user has Full Control permissions on all folders in your source and destination locations. If you don't, DataSync can change
your destination's permissions in a way that makes your FSx for Windows File Server share inaccessible. For more information, see the Amazon FSx for Windows File Server User Guide.

Creating your FSx for Windows File Server transfer location

Before you begin, make sure that you have an existing FSx for Windows File Server in your AWS Region. For more information, see Getting started with Amazon FSx in the Amazon FSx for Windows File Server User Guide.

To create an FSx for Windows File Server location by using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Amazon FSx.
4. For FSx file system, choose the FSx for Windows File Server file system that you want to use as a location.
5. For Share name, enter a mount path for your FSx for Windows File Server using forward slashes.

   This specifies the path where DataSync reads or writes data (depending on if this is a source or destination location).

   You can also include subdirectories (for example, /path/to/directory).
6. For Security groups, choose up to five security groups that provide access to your file system's preferred subnet.

   Note
   If you choose a security group that doesn't allow connections from within itself, do one of the following:
   • Configure the security group to allow it to communicate within itself.
   • Choose a different security group that can communicate with the mount target's security group.
7. For User, enter the name of a user that can access your FSx for Windows File Server.

   For more information, see Accessing FSx for Windows File Server file systems (p. 94).
8. For Password, enter password of the user name.
9. (Optional) For Domain, enter the name of the Windows domain that your FSx for Windows File Server belongs to.

   If you have multiple domains in your environment, configuring this setting makes sure that DataSync connects to the right file server.
10. (Optional) Enter values for the Key and Value fields to tag the FSx for Windows File Server.

   Tags help you manage, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.
11. Choose Create location.

Configuring AWS DataSync transfers with Amazon FSx for Lustre

To transfer data to or from your Amazon FSx for Lustre file system, you must create an AWS DataSync transfer location. DataSync can use this location as a source or destination for transferring data.
Accessing FSx for Lustre file systems

DataSync accesses your FSx for Lustre file system using the Lustre client. DataSync requires access to all data on your FSx for Lustre file system. To have this level of access, DataSync mounts your file system as the root user using a user ID (UID) and group ID (GID) of 0.

DataSync mounts your file system from your virtual private cloud (VPC) using network interfaces (p. 20). DataSync fully manages the creation, the use, and the deletion of these network interfaces on your behalf.

**Note**
VPCs that you use with DataSync must have default tenancy. VPCs with dedicated tenancy are not supported. For more information, see [Work with VPCs](#).

Creating your FSx for Lustre transfer location

If you don't have an FSx for Lustre in your AWS Region, create one. For more information, see [Getting started with Amazon FSx for Lustre](#) in the [Amazon FSx for Lustre User Guide](#).

**To create an FSx for Lustre location by using the DataSync console**

2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Amazon FSx. You configure this location as a source or destination later.
4. For FSx file system, choose the FSx for Lustre file system that you want to use as a location.
5. For Mount path, enter the mount path for your FSx for Lustre file system.
   The path can include a subdirectory. When the location is used as a source, DataSync reads data from the mount path. When the location is used as a destination, DataSync writes all data to the mount path. If a subdirectory isn't provided, DataSync uses the root directory (/).
6. For Security groups, choose up to five security groups that provide access to your FSx for Lustre file system.
   The security groups must be able to access the file system's ports. Also, the file system must allow access from the security groups.
   For more information about security groups, see [File System Access Control with Amazon VPC](#) in the [Amazon FSx for Lustre User Guide](#).
7. (Optional) Enter values for the Key and Value fields to tag the FSx for Lustre file system.
   Tags help you manage, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.
8. Choose Create location.

Configuring AWS DataSync transfers with Amazon FSx for OpenZFS

To transfer data to or from your Amazon FSx for OpenZFS file system, you must create an AWS DataSync transfer location. DataSync can use this location as a source or destination for transferring data.
Accessing FSx for OpenZFS file systems

DataSync mounts your FSx for OpenZFS file system from your virtual private cloud (VPC) using network interfaces (p. 20). DataSync fully manages the creation, the use, and the deletion of these network interfaces on your behalf.

**Note**

VPCs that you use with DataSync must have default tenancy. VPCs with dedicated tenancy are not supported. For more information, see [Work with VPCs](#).

Configuring FSx for OpenZFS file system authorization

DataSync accesses your FSx for OpenZFS file system as an NFS client, mounting the file system as a root user with a user ID (UID) and group ID (GID) of 0.

For DataSync to copy all of your file metadata, you must configure the NFS export settings on your file system volumes using `no_root_squash`. However, you can limit this level of access to only a specific DataSync task.

For more information, see [Volume properties](#) in the *Amazon FSx for OpenZFS User Guide*.

Configuring NFS exports specific to DataSync (recommended)

You can configure an NFS export specific to each volume that’s accessed only by your DataSync task. Do this for the most recent ancestor volume of the mount path that you specify when creating your FSx for OpenZFS location.

To configure an NFS export specific to DataSync

1. Create your [DataSync task](#) (p. 137).
   
   This creates the task’s elastic network interfaces that you’ll specify in your NFS export settings.
2. Locate the private IP addresses of the task’s network interfaces by using the Amazon EC2 console or AWS CLI.
3. For your FSx for OpenZFS file system volume, configure the following NFS export settings for each of the task’s network interfaces:
   
   • **Client address**: Enter the network interface’s private IP address (for example, `10.24.34.0`).
   
   • **NFS options**: Enter `rw,no_root_squash`.

Configuring NFS exports for all clients

You can specify an NFS export that allows root access to all clients.

To configure an NFS export for all clients

- For your FSx for OpenZFS file system volume, configure the following NFS export settings:
  
  • **Client address**: Enter `*`.
  
  • **NFS options**: Enter `rw,no_root_squash`.

Creating your FSx for OpenZFS transfer location

To create the location, you need an existing FSx for OpenZFS file system. If you don’t have one, see [Getting started with Amazon FSx for OpenZFS](#) in the *Amazon FSx for OpenZFS User Guide*.
To create an FSx for OpenZFS location by using the DataSync console

2. In the left navigation pane, choose **Locations**, and then choose **Create location**.
3. For **Location type**, choose **Amazon FSx**.

   You configure this location as a source or destination later.
4. For **FSx file system**, choose the FSx for OpenZFS file system that you want to use as a location.
5. For **Mount path**, enter the mount path for your FSx for OpenZFS file system.

   The path must begin with `/fsx` and can be any existing directory path in the file system. When the location is used as a source, DataSync reads data from the mount path. When the location is used as a destination, DataSync writes all data to the mount path. If a subdirectory isn't provided, DataSync uses the root volume directory (for example, `/fsx`).
6. For **Security groups**, choose up to five security groups that provide network access to your FSx for OpenZFS file system.

   The security groups must provide access to the network ports that are used by the FSx for OpenZFS file system. The file system must allow network access from the security groups.

   For more information about security groups, see [File system access control with Amazon VPC](https://docs.aws.amazon.com/AmazonFSx/latest/OpenZFSUserGuide/file-system-access-control-with-amazon-vpc.html) in the **Amazon FSx for OpenZFS User Guide**.
7. (Optional) Expand **Additional settings** and for **NFS version** choose the NFS version that DataSync uses to access your file system.

   By default, DataSync uses NFS version 4.1.
8. (Optional) Enter values for the **Key** and **Value** fields to tag the FSx for OpenZFS file system.

   Tags help you manage, filter, and search for your location. We recommend creating at least a name tag for your location.
9. Choose **Create location**.

Configuring AWS DataSync transfers with Amazon FSx for NetApp ONTAP

To transfer data to or from your Amazon FSx for NetApp ONTAP file system, you must create an AWS DataSync transfer **location**. DataSync can use this location as a source or destination for transferring data.

Accessing FSx for ONTAP file systems

To access an FSx for ONTAP file system, DataSync mounts a storage virtual machine (SVM) on your file system using **network interfaces** in your virtual private cloud (VPC). DataSync creates these network interfaces in your file system's preferred subnet only when you create a task that includes your FSx for ONTAP location.

**Note**

VPCs that you use with DataSync must have default tenancy. VPCs with dedicated tenancy are not supported. For more information, see [Work with VPCs](https://docs.aws.amazon.com/AmazonFSx/latest/OpenZFSUserGuide/work-with-vpcs.html).

**Topics**

- [Supported protocols](#)
- [Unsupported protocols](#)
- [Choosing the right protocol](#)
Supported protocols

DataSync can connect to an FSx for ONTAP file system's SVM and copy data using the following protocols:

- **Network File System (NFS)** – With the NFS protocol, DataSync uses the AUTH_SYS security mechanism with a user ID (UID) and group ID (GID) of 0 to authenticate with your SVM.

  **Note**
  DataSync currently only supports NFS version 3 with FSx for ONTAP locations.

- **Server Message Block (SMB)** – With the SMB protocol, DataSync uses credentials you provide to authenticate with your SVM. When creating your location, you can specify a local user in your SVM or domain user in your Microsoft Active Directory.

To copy between FSx for ONTAP file systems using SMB (or other types of file systems using SMB), your source and destination locations must belong to the same Active Directory domain or have an Active Directory trust relationship between their domains.

By default, DataSync automatically chooses a version of the SMB protocol based on negotiation with your SMB file server. You also can configure DataSync to use a specific version, but we recommend doing this only if DataSync has trouble negotiating with the SMB file server automatically.

See the following table for a list of options in the DataSync console and API for configuring an SMB version with your FSx for ONTAP location:

<table>
<thead>
<tr>
<th>Console option</th>
<th>API option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>AUTOMATIC</td>
<td>DataSync and the SMB file server negotiate the highest version of SMB that they mutually support between 2.1 and 3.1.1. This is the default and recommended option. If you instead choose a specific version that your file server doesn't support, you may get an Operation Not Supported error.</td>
</tr>
<tr>
<td>SMB 3.0.2</td>
<td>SMB3</td>
<td>Restricts the protocol negotiation to only SMB version 3.0.2.</td>
</tr>
<tr>
<td>SMB 2.1</td>
<td>SMB2</td>
<td>Restricts the protocol negotiation to only SMB version 2.1.</td>
</tr>
<tr>
<td>SMB 2.0</td>
<td>SMB2_0</td>
<td>Restricts the protocol negotiation to only SMB version 2.0.</td>
</tr>
</tbody>
</table>

For DataSync to access your SMB file server, your server must use NTLM authentication. DataSync can't access the server if it uses Kerberos authentication.

Unsupported protocols

DataSync can't access FSx for ONTAP file systems using the iSCSI (Internet Small Computer Systems Interface) protocol.

Choosing the right protocol

To preserve file metadata in FSx for ONTAP migrations, configure your DataSync source and destination locations to use the same protocol. Between the supported protocols, SMB preserves metadata with the highest fidelity (see [How AWS DataSync handles metadata and special files](p. 130) for details).
When migrating from a Unix (Linux) server or network-attached storage (NAS) share that serves users through NFS, do the following:

1. Create an NFS location (p. 72) for the Unix (Linux) server or NAS share. (This will be your source location.)
2. Configure the FSx for ONTAP volume you’re transferring data to with the Unix security style.
3. Create a location for your FSx for ONTAP file system that’s configured for NFS. (This will be your destination location.)

When migrating from a Windows server or NAS share that serves users through SMB, do the following:

1. Create an SMB location (p. 74) for the Windows server or NAS share. (This will be your source location.)
2. Configure the FSx for ONTAP volume you’re transferring data to with the NTFS security style.
3. Create a location for your FSx for ONTAP file system that’s configured for SMB. (This will be your destination location.)

If your FSx for ONTAP environment uses multiple protocols, we recommend working with an AWS storage specialist. To learn about best practices for multiprotocol access, see Enabling multiprotocol workloads with Amazon FSx for NetApp ONTAP.

Creating your FSx for ONTAP transfer location

To create the location, you need an existing FSx for ONTAP file system. If you don’t have one, see Getting started with Amazon FSx for NetApp ONTAP in the Amazon FSx for NetApp ONTAP User Guide.

To specify an FSx for ONTAP file system by using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Amazon FSx.
   
   You configure this location as a source or destination later.
4. For FSx file system, choose the FSx for ONTAP file system that you want to use as a location.
5. For Storage virtual machine, choose a storage virtual machine (SVM) in your file system where you want to copy data to or from.
6. For Mount path, specify a path to the file share in that SVM where you’ll copy your data.

   You can specify a junction path (also known as a mount point), qtree path (for NFS file shares), or share name (for SMB file shares). For example, your mount path might be /vol1, /vol1/tree1, or /share1.

   **Tip**
   
   Don’t specify a path in the SVM’s root volume. For more information, see Managing FSx for ONTAP storage virtual machines in the Amazon FSx for NetApp ONTAP User Guide.
7. For Security groups, choose up to five Amazon EC2 security groups that provide access to your file system’s preferred subnet.

   The security groups must allow outbound traffic on the following ports (depending on the protocol you use):
   
   - **NFS** – TCP ports 111, 635, and 2049
   - **SMB** – TCP port 445
AWS DataSync User Guide
Transferring to or from other cloud storage

Your file system’s security groups must also allow inbound traffic on the same ports.

8. For **Protocol**, choose the data transfer protocol that DataSync uses to access your file system’s SVM.

   For more information, see *Choosing the right protocol (p. 99)*.

   **NFS**

   DataSync uses NFS version 3.

   **SMB**

   Configure an SMB version, user name, password, and Active Directory domain name (if needed) to access the SVM.

   • (Optional) Expand **Additional settings** and choose an **SMB version** for DataSync to use when accessing your SVM.

   By default, DataSync automatically chooses a version based on negotiation with the SMB file server. For more information, see *Supported protocols (p. 99)*.

   • For **User**, enter a user name that can mount the location and access the files, folders, and metadata that you need in the SVM.

   If you provide a user in your Active Directory, note the following:

   • If you’re using AWS Directory Service for Microsoft Active Directory, the user must be a member of the **AWS Delegated FSx Administrators** group.

   • If you’re using a self-managed Active Directory, the user must be a member of either the **Domain Admins** group or a custom group that you specified for file system administration when you created your file system.

   Make sure that the user has the permissions it needs to copy the data you want:

   • **SE_TCB_NAME** – Required to set object ownership and file metadata. With this privilege, you also can copy NTFS discretionary access lists (DACLs).

   • **SE_SECURITY_NAME** – May be needed to copy NTFS system access control lists (SACLs). This operation specifically requires the Windows privilege, which is granted to members of the **Domain Admins** group. If you configure your task to copy SACLs, make sure that the user has the required privileges. For information about copying SACLs, see *Managing how AWS DataSync transfers files, objects, and metadata (p. 139)*.

   • For **Password**, enter the password of the user that you specified who can access the SVM.

   • (Optional) For **Active Directory domain name**, enter the fully qualified domain name (FQDN) of the Active Directory that your SVM belongs to.

9. (Optional) Enter values for the **Key** and **Value** fields to tag the FSx for ONTAP file system.

   Tags help you manage, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.

10. Choose **Create location**.

Transferring to or from other cloud storage with AWS DataSync

With AWS DataSync, you can transfer data between some other clouds and AWS storage services. For more information, see *Where can I transfer my data with DataSync? (p. 69)*.
Configuring AWS DataSync transfers with Google Cloud Storage

The following tutorial shows how you can use AWS DataSync to migrate objects from a Google Cloud Storage bucket to an Amazon S3 bucket.

Overview

Because DataSync integrates with the Google Cloud Storage XML API, you can copy objects into Amazon S3 without writing code. How this works depends on where you deploy the DataSync agent that facilitates the transfer.

Agent in Google Cloud

1. You deploy a DataSync agent in your Google Cloud environment.
2. The agent reads your Google Cloud Storage bucket by using a Hash-based Message Authentication Code (HMAC) key.
3. The objects from your Google Cloud Storage bucket move securely through TLS 1.3 into the AWS Cloud by using a public endpoint.
4. The DataSync service writes the data to your S3 bucket.

Agent in your VPC

1. You deploy a DataSync agent in a virtual private cloud (VPC) in your AWS environment.
2. The agent reads your Google Cloud Storage bucket by using a Hash-based Message Authentication Code (HMAC) key.
3. The objects from your Google Cloud Storage bucket move securely through TLS 1.3 into the AWS Cloud by using a private VPC endpoint.
4. The DataSync service writes the data to your S3 bucket.
The following diagram illustrates the transfer.

Costs

The fees associated with this migration include:

- Running a Google Compute Engine virtual machine (VM) instance (if you deploy your DataSync agent in Google Cloud)
- Running an Amazon EC2 instance (if you deploy your DataSync agent in a VPC within AWS)
- Transferring the data by using DataSync, including request charges related to Google Cloud Storage and Amazon S3 (p. 87) (if S3 is one of your transfer locations)
- Transferring data out of Google Cloud Storage
- Storing data in Amazon S3

Prerequisites

Before you begin, do the following if you haven’t already:

- Create a Google Cloud Storage bucket with the objects that you want to transfer to AWS.
- Sign up for an AWS account.
- Create an Amazon S3 bucket for storing your objects after they’re in AWS.

Creating an HMAC key for your Google Cloud Storage bucket

DataSync uses an HMAC key that’s associated with your Google service account to authenticate with and read the bucket that you’re transferring data from. (For detailed instructions on how to create HMAC keys, see the [Google Cloud Storage documentation](#).)

To create an HMAC key

1. Create an HMAC key for your Google service account.
2. Make sure that your Google service account has at least Storage Object Viewer permissions.
3. Save your HMAC key’s access ID and secret in a secure location.

You’ll need these items later to configure your DataSync source location.
Step 2: Configure your network

The network requirements for this migration depend on how you want to deploy your DataSync agent.

**For a DataSync agent in Google Cloud**

If you want to host your DataSync agent in Google Cloud, configure your network to allow DataSync transfers through a public endpoint (p. 15).

**For a DataSync agent in your VPC**

If you want to host your agent in AWS, you need a VPC with an interface endpoint. DataSync uses the VPC endpoint to facilitate the transfer.

To configure your network for a VPC endpoint

1. If you don't have one, create a VPC in the same AWS Region as your S3 bucket.
2. Create a private subnet for your VPC.
3. Create a VPC endpoint for DataSync by using AWS PrivateLink.
4. Configure your network to allow DataSync transfers through a VPC endpoint (p. 13).

To make the necessary configuration changes, you can modify the security group that's associated with your VPC endpoint. For more information, see Control traffic to resources using security groups in the Amazon VPC User Guide.

Step 3: Create a DataSync agent

You need a DataSync agent that can access and read your Google Cloud Storage bucket.

**For Google Cloud**

In this scenario, the DataSync agent runs in your Google Cloud environment.

**Before you begin:** Install the Google Cloud CLI.

To create the agent for Google Cloud

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Agents, then choose Create agent.
3. For Hypervisor, choose VMware ESXi, then choose Download the image to download a .zip file that contains the agent.
4. Open a terminal. Unzip the image by running the following command:

   ```bash
 unzip AWS-DataSync-Agent-VMWare.zip
   ```

5. Extract the contents of the agent's .ova file beginning with aws-datasync by running the following command:

   ```bash
 tar -xvf aws-datasync-2.0.1655755445.1-x86_64.xfs.gpt.ova
   ```

6. Import the agent's .vmdk file into Google Cloud by running the following Google Cloud CLI command:

   ```bash
 gcloud compute images import aws-datasync-2-test
 --source-file INCOMPLETE-aws-datasync-2.0.1655755445.1-x86_64.xfs.gpt-disk1.vmdk
   ```
Note
Importing the .vmdk file might take up to two hours.

7. Create and start a VM instance for the agent image that you just imported.

The instance needs the following configurations for your agent. (For detailed instructions on how to create an instance, see the Google Cloud Compute Engine documentation.)

• For the machine type, choose one of the following:
  • e2-standard-8 – For DataSync task executions working with up to 20 million objects.
  • e2-standard-16 – For DataSync task executions working with more than 20 million objects.

• For the boot disk settings, go to the custom images section. Then choose the DataSync agent image that you just imported.

• For the service account setting, choose your Google service account (the same account that you used in Step 1 (p. 103)).

• For the firewall setting, choose the option to allow HTTP (port 80) traffic.

  To activate your DataSync agent, port 80 must be open on the agent. The port doesn't need to be publicly accessible. Once activated, DataSync closes the port.

8. After the VM instance is running, take note of its public IP address.

   You'll need this IP address to activate the agent.

9. Go back to the DataSync console. On the Create agent screen where you downloaded the agent image, do the following to activate your agent:

   • For Endpoint type, choose the public service endpoints option (for example, Public service endpoints in US East Ohio).
   • For Activation key, choose Automatically get the activation key from your agent.
   • For Agent address, enter the public IP address of the agent VM instance that you just created.
   • Choose Get key.

10. Give your agent a name, and then choose Create agent.

Your agent is online and ready to move data.

For your VPC

In this scenario, the agent runs as an Amazon EC2 instance in a VPC that's associated with your AWS account.

Before you begin: Set up the AWS Command Line Interface (AWS CLI).

To create the agent for your VPC

1. Open a terminal. Make sure to configure your AWS CLI profile to use the account that's associated with your S3 bucket.

2. Copy the following command. Replace vpc-region with the AWS Region where your VPC resides (for example, us-east-1).

   aws ssm get-parameter --name /aws/service/datasync/ami --region vpc-region

3. Run the command. In the output, take note of the "Value" property.

   This value is the DataSync Amazon Machine Image (AMI) ID of the Region that you specified. For example, an AMI ID could look like ami-1234567890abcdef0.
4. Copy the following URL. Again, replace vpc-region with the AWS Region where your VPC resides. Then, replace ami-id with the AMI ID that you noted in the previous step.


5. Paste the URL into a browser.

   The Amazon EC2 instance launch page in the AWS Management Console displays.

6. For Instance type, choose one of the recommended Amazon EC2 instances for DataSync agents (p. 11).

7. For Key pair, choose an existing key pair, or create a new one.

8. For Network settings, choose the VPC and subnet where you want to deploy the agent.

9. Choose Launch instance.

10. After the Amazon EC2 instance is running, choose your VPC endpoint (p. 30).

11. Activate your agent (p. 31).

**Step 4: Create a DataSync source location for your Google Cloud Storage bucket**

To set up a DataSync location for your Google Cloud Storage bucket, you need the access ID and secret for the HMAC key that you created in Step 1 (p. 103).

**To create the DataSync source location**

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Object storage.
4. For Agents, choose the agent that you created in Step 3 (p. 104).
5. For Server, enter storage.googleapis.com.
6. For Bucket name, enter the name of your Google Cloud Storage bucket.
7. Expand Additional settings. For Server protocol, choose HTTPS. For Server port, choose 443.
8. Scroll down to the Authentication section. Make sure that the Requires credentials check box is selected, and then do the following:

   - For Access key, enter your HMAC key's access ID.
   - For Secret key, enter your HMAC key's secret.

9. Choose Create location.

**Step 5: Create a DataSync destination location for your S3 bucket**

You need a DataSync location for where you want your data to end up.

**To create the DataSync destination location**

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. Create a DataSync location for the S3 bucket (p. 80).
If you deployed the DataSync agent in your VPC, this tutorial assumes that the S3 bucket is in the same AWS Region as your VPC and DataSync agent.

### Step 6: Create and start a DataSync task

With your source and destinations locations configured, you can start moving your data into AWS.

**To create and start the DataSync task**

2. In the left navigation pane, expand **Data transfer**, then choose **Tasks**, and then choose **Create task**.
3. On the **Configure source location** page, do the following:
   a. Choose **Choose an existing location**.
   b. Choose the source location that you created in **Step 4** (p. 106), then choose **Next**.
4. On the **Configure destination location** page, do the following:
   a. Choose **Choose an existing location**.
   b. Choose the destination location that you created in **Step 5** (p. 106), then choose **Next**.
5. On the **Configure settings** page, do the following:
   a. Under **Data transfer configuration**, expand **Additional settings** and clear the **Copy object tags** check box.
      
       **Important**
       Because DataSync communicates with Google Cloud Storage by using the Amazon S3 API, there's a limitation that might cause your DataSync task to fail if you try to copy object tags.
      
   b. Configure any other task settings that you want, and then choose **Next**.
6. On the **Review** page, review your settings, and then choose **Create task**.
7. On the task’s details page, choose **Start**, and then choose one of the following:
   - To run the task without modification, choose **Start with defaults**.
   - To modify the task before running it, choose **Start with overriding options**.

When your task finishes, you’ll see the objects from your Google Cloud Storage bucket in your S3 bucket.

### Configuring AWS DataSync transfers with Microsoft Azure Blob Storage

With AWS DataSync, you can move data between Microsoft Azure Blob Storage (including Azure Data Lake Storage Gen2 blob storage) and the following AWS storage services:

- Amazon S3
- Amazon Elastic File System (Amazon EFS)
- Amazon FSx for Windows File Server
- Amazon FSx for Lustre
- Amazon FSx for OpenZFS
- Amazon FSx for NetApp ONTAP
To set up this kind of transfer, you must create a transfer location (p. 8) for your Azure Blob Storage. DataSync can use this location as a source or destination for your transfer.

**Accessing Azure Blob Storage**

How DataSync accesses your Azure Blob Storage depends on several factors, including whether you're transferring to or from blob storage and what kind of shared access signature (SAS token (p. 108)) you're using. Your objects also must be in an access tier (p. 109) that DataSync can work with.

**Topics**
- SAS tokens (p. 108)
- Access tiers (p. 109)

**SAS tokens**

A SAS token specifies the access permissions for your blob storage. (For more information about SAS, see the Azure Blob Storage documentation.)

You can generate SAS tokens to provide different levels of access. DataSync supports tokens with the following access levels:

- Account
- Container

The access permissions that DataSync needs depends on the scope of your token. Not having the correct permissions can cause your transfer to fail. For example, your transfer won't succeed if you're moving objects with tags to Azure Blob Storage but your SAS token doesn't have tag permissions.

**Topics**
- SAS token permissions for account-level access (p. 108)
- SAS token permissions for container-level access (p. 109)
- SAS expiration policies (p. 109)

**SAS token permissions for account-level access**

DataSync needs an account-level access token with the following permissions (depending on whether you're transferring to or from Azure Blob Storage).

**Transfers from blob storage**

- **Allowed services** – Blob
- **Allowed resource types** – Container, Object

  If you don't include these permissions, DataSync can't transfer your object metadata, including object tags (p. 110).

- **Allowed permissions** – Read, List
- **Allowed blob index permissions** – Read/Write (if you want DataSync to copy object tags (p. 110))

**Transfers to blob storage**

- **Allowed services** – Blob
- **Allowed resource types** – Container, Object
If you don't include these permissions, DataSync can't transfer your object metadata, including object tags (p. 110).

- **Allowed permissions** – Read, Write, List, Delete (if you want DataSync to remove files that aren't in your transfer source)
- **Allowed blob index permissions** – Read/Write (if you want DataSync to copy object tags (p. 110))

**SAS token permissions for container-level access**

DataSync needs a container-level access token with the following permissions (depending on whether you’re transferring to or from Azure Blob Storage).

**Transfers from blob storage**

- Read
- List
- Tag (if you want DataSync to copy object tags (p. 110))

**Note**

You can't add the tag permission when generating a SAS token in the Azure portal. To add the tag permission, instead generate the token by using the Azure Storage Explorer app or generate a SAS token that provides account-level access (p. 108).

**Transfers to blob storage**

- Read
- Write
- List
- Delete (if you want DataSync to remove files that aren't in your transfer source)
- Tag (if you want DataSync to copy object tags (p. 110))

**Note**

You can't add the tag permission when generating a SAS token in the Azure portal. To add the tag permission, instead generate the token by using the Azure Storage Explorer app or generate a SAS token that provides account-level access (p. 108).

**SAS expiration policies**

Make sure that your SAS doesn’t expire before you expect to finish your transfer. For information about configuring a SAS expiration policy, see the Azure Blob Storage documentation.

If the SAS expires during the transfer, DataSync can no longer access your Azure Blob Storage location. (You might see a Failed to open directory error.) If this happens, update your location (p. 118) with a new SAS token and restart your DataSync task.

**Access tiers**

When transferring from Azure Blob Storage, DataSync can copy objects in the hot and cool tiers. For objects in the archive access tier, you must rehydrate those objects to the hot or cool tier before you can copy them.

When transferring to Azure Blob Storage, DataSync can copy objects into the hot, cool, and archive access tiers. If you’re copying objects into the archive access tier, DataSync can’t verify the transfer if you’re trying to verify all data in the destination (p. 138).
DataSync doesn't support the cold access tier. For more information about access tiers, see the Azure Blob Storage documentation.

Considerations with Azure Blob Storage transfers

When planning to move data to or from Azure Blob Storage with DataSync, there are some things to keep in mind.

Topics

• Costs (p. 110)
• Blob types (p. 110)
• AWS Region availability (p. 110)
• Copying object tags (p. 110)
• Transferring to Amazon S3 (p. 111)
• Deleting directories in a transfer destination (p. 111)
• Limitations (p. 111)

Costs

The fees associated with moving data in or out of Azure Blob Storage can include:

• Running an Azure virtual machine (VM) (if you deploy your DataSync agent in Azure)
• Running an Amazon EC2 instance (if you deploy your DataSync agent in a VPC within AWS)
• Transferring the data by using DataSync, including request charges related to Azure Blob Storage and Amazon S3 (p. 87) (if S3 is one of your transfer locations)
• Transferring data in or out of Azure Blob Storage
• Storing data in an AWS storage service (p. 69) supported by DataSync

Blob types

How DataSync works with blob types depends on whether you're transferring to or from Azure Blob Storage. When you're moving data into blob storage, the objects or files that DataSync transfers can only be block blobs. When you're moving data out of blob storage, DataSync can transfer block, page, and append blobs.

For more information about blob types, see the Azure Blob Storage documentation.

AWS Region availability

You can create an Azure Blob Storage transfer location in any AWS Region that's supported by DataSync.

Copying object tags

The ability for DataSync to preserve object tags when transferring to or from Azure Blob Storage depends on the following factors:

• The size of an object's tags – DataSync can't transfer an object with tags that exceed 2 KB.
• Whether DataSync is configured to copy object tags – DataSync copies object tags by default. If you want to copy object tags, make sure that your transfer task is configured to do this (p. 139).
• The namespace that your Azure storage account uses – DataSync can copy object tags if your Azure storage account uses a flat namespace but not if your account uses a hierarchical namespace (a feature of Azure Data Lake Storage Gen2). Your DataSync task will fail if you try to copy object tags and your storage account uses a hierarchical namespace.
• **Whether your SAS token authorizes tagging** – The permissions that you need to copy object tags vary depending on the level of access that your token provides. Your task will fail if you try to copy object tags and your token doesn't have the right permissions for tagging. For more information, check the permission requirements for account-level access tokens (p. 108) or container-level access tokens (p. 109).

**Transferring to Amazon S3**

When transferring to Amazon S3, DataSync won't transfer Azure Blob Storage objects larger than 5 TB or objects with metadata larger than 2 KB.

**Deleting directories in a transfer destination**

When transferring to Azure Blob Storage, DataSync can remove objects in your blob storage that aren't present in your transfer source (p. 139). (You can configure this option by clearing the Keep deleted files setting in the DataSync console. Your SAS token (p. 108) must also have delete permissions.)

When you configure your transfer this way, DataSync won't delete directories in your blob storage if your Azure storage account is using a hierarchical namespace. In this case, you must manually delete the directories (for example, by using Azure Storage Explorer).

**Limitations**

Remember the following limitations when transferring data to or from Azure Blob Storage:

- DataSync creates some directories (p. 142) in a location to help facilitate your transfer. If Azure Blob Storage is a destination location, you might notice task-specific subdirectories (such as task-000011112222abcde) in the / .aws-datasync folder. DataSync typically deletes these subdirectories following a transfer. If that doesn't happen, you can delete these task-specific directories yourself as long as a task isn't running.
- DataSync doesn't support using a SAS token to access only a specific folder in your Azure Blob Storage container.

**Creating your DataSync agent**

To get started, you must create a DataSync agent that can connect to your Azure Blob Storage container. This process includes deploying and activating an agent.

**Tip**

Although you can deploy your agent on an Amazon EC2 instance, using a Microsoft Hyper-V agent might result in decreased network latency and more data compression.

**Microsoft Hyper-V agents**

You can deploy your DataSync agent directly in Azure with a Microsoft Hyper-V image.

**Tip**

Before you continue, consider using a shell script that might help you deploy your Hyper-V agent in Azure quicker. You can get more information and download the code on GitHub. If you use the script, you can skip ahead to the section about Getting your agent’s activation key (p. 114).

**Topics**

- Prerequisites (p. 112)
- Downloading and preparing your agent (p. 112)
- Deploying your agent in Azure (p. 112)
• **Getting your agent's activation key** (p. 114)
• **Activating your agent** (p. 115)

**Prerequisites**

To prepare your DataSync agent and deploy it in Azure, you must do the following:

• Enable Hyper-V on your local machine.
• Install PowerShell (including the Hyper-V Module).
• Install the Azure CLI.
• Install AzCopy.

**Downloading and preparing your agent**

Download an agent from the DataSync console. Before you can deploy the agent in Azure, you must convert it to a fixed-size virtual hard disk (VHD). For more information, see the Azure documentation.

**To download and prepare your agent**

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Agents, and then choose Create agent.
3. For Hypervisor, choose Microsoft Hyper-V, and then choose Download the image.

   The agent downloads in a .zip file that contains a .vhdx file.
4. Extract the .vhdx file on your local machine.
5. Open PowerShell and do the following:
   a. Copy the following Convert-VHD cmdlet:

```
Convert-VHD -Path .\local-path-to-vhdx-file\aws-datasync-2.0.1686143940.1-x86_64.xfs.gpt.vhdx -DestinationPath .\local-path-to-vhdx-file\aws-datasync-2016861439401-x86_64.vhd -VHDType Fixed
```
   b. Replace each instance of `local-path-to-vhdx-file` with the location of the .vhdx file on your local machine.
   c. Run the command.

Your agent is now a fixed-size VHD (with a .vhd file format) and ready to deploy in Azure.

**Deploying your agent in Azure**

Deploying your DataSync agent in Azure involves:

• Creating a managed disk in Azure
• Uploading your agent to that managed disk
• Attaching the managed disk to a Linux virtual machine

**To deploy your agent in Azure**

1. In PowerShell, go to the directory that contains your agent's .vhd file.
2. Run the `ls` command and save the Length value (for example, 85899346432).
This is the size of your agent image in bytes, which you need when creating a managed disk that can hold the image.

3. Do the following to create a managed disk:
   a. Copy the following Azure CLI command:

   ```bash
 az disk create -n your-managed-disk \\
 -g your-resource-group \\
 -l your-azure-region \\
 --upload-type Upload \\
 --upload-size-bytes agent-size-bytes \\
 --sku standard_lrs
   ```
   b. Replace `your-managed-disk` with a name for your managed disk.
   c. Replace `your-resource-group` with the name of the Azure resource group that your storage account belongs to.
   d. Replace `your-azure-region` with the Azure region where your resource group is located.
   e. Replace `agent-size-bytes` with the size of your agent image.
   f. Run the command.

   This command creates an empty managed disk with a standard SKU where you can upload your DataSync agent.

4. To generate a shared access signature (SAS) that allows write access to the managed disk, do the following:
   a. Copy the following Azure CLI command:

   ```bash
 az disk grant-access -n your-managed-disk \\
 -g your-resource-group \\
 --access-level Write \\
 --duration-in-seconds 86400
   ```
   b. Replace `your-managed-disk` with the name of the managed disk that you created.
   c. Replace `your-resource-group` with the name of the Azure resource group that your storage account belongs to.
   d. Run the command.

   In the output, take note of the SAS URI. You need this URI when uploading the agent to Azure.

   The SAS allows you to write to the disk for up to an hour. This means that you have an hour to upload your agent to the managed disk.

5. To upload your agent to your managed disk in Azure, do the following:
   a. Copy the following AzCopy command:

   ```bash
 .\azcopy copy local-path-to-vhd-file sas-uri --blob-type PageBlob
   ```
   b. Replace `local-path-to-vhd-file` with the location of the agent's .vhd file on your local machine.
   c. Replace `sas-uri` with the SAS URI that you got when you ran the `az disk grant-access` command.
   d. Run the command.
6. When the agent upload finishes, revoke access to your managed disk. To do this, copy the following Azure CLI command:

```
az disk revoke-access -n your-managed-disk -g your-resource-group
```

a. Replace `your-resource-group` with the name of the Azure resource group that your storage account belongs to.

b. Replace `your-managed-disk` with the name of the managed disk that you created.

c. Run the command.

7. Do the following to attach your managed disk to a new Linux VM:

a. Copy the following Azure CLI command:

```
az vm create --resource-group your-resource-group `--location eastus `--name your-agent-vm `--size Standard_E4as_v4 `--os-type linux `--attach-os-disk your-managed-disk
```

b. Replace `your-resource-group` with the name of the Azure resource group that your storage account belongs to.

c. Replace `your-agent-vm` with a name for the VM that you can remember.

d. Replace `your-managed-disk` with the name of the managed disk that you're attaching to the VM.

e. Run the command.

You've deployed your agent. Before you can start configuring your data transfer, you must activate the agent.

**Getting your agent's activation key**

To manually get your DataSync agent's activation key, follow these steps.

Alternatively, DataSync can automatically get the activation key for you (p. 31), but this approach requires some network configuration.

**To get your agent's activation key**

1. In the Azure portal, enable boot diagnostics for the VM for your agent by choosing the **Enable with custom storage account** setting and specifying your Azure storage account.

   After you've enabled the boot diagnostics for your agent's VM, you can access your agent's local console to get the activation key.

2. While still in the Azure portal, go to your VM and choose **Serial console**.

3. In the agent's local console, log in by using the following default credentials:

   - **Username** – admin
   - **Password** – password

   We recommend at some point changing at least the agent's password. In the agent's local console, enter 5 on the main menu, then use the `passwd` command to change the password.

4. Enter 0 to get the agent's activation key.

5. Enter the AWS Region where you're using DataSync (for example, **us-east-1**).
6. Choose the service endpoint (p. 29) that the agent will use to connect with AWS.
7. Save the value of the Activation key output.

Activating your agent

After you have the activation key, you can finish creating your DataSync agent.

To activate your agent

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, choose Agents, and then choose Create agent.
3. For Hypervisor, choose Microsoft Hyper-V.
4. For Endpoint type, choose the same type of service endpoint that you specified when you got your agent's activation key (for example, choose Public service endpoints in Region name).
5. Configure your network to work with the service endpoint type that your agent is using. For service endpoint network requirements, see the following topics:
   - VPC endpoints (p. 13)
   - Public endpoints (p. 15)
   - Federal Information Processing Standard (FIPS) endpoints (p. 15)
6. For Activation key, do the following:
   a. Choose Manually enter your agent's activation key.
   b. Enter the activation key that you got from the agent's local console.
7. Choose Create agent.

Your agent is ready to connect with your Azure Blob Storage. For more information, see Creating your Azure Blob Storage transfer location (p. 115).

Amazon EC2 agents

You can deploy your DataSync agent on an Amazon EC2 instance.

To create an Amazon EC2 agent

1. Deploy an Amazon EC2 agent (p. 27).
2. Choose a service endpoint (p. 29) that the agent uses to communicate with AWS.
   In this situation, we recommend using a virtual private cloud (VPC) service endpoint.
3. Configure your network to work with VPC service endpoints (p. 13).
4. Activate the agent.

Creating your Azure Blob Storage transfer location

You can configure DataSync to use your Azure Blob Storage as a transfer source or destination.

Before you begin

Make sure that you know how DataSync accesses Azure Blob Storage (p. 108) and works with access tiers (p. 109) and blob types (p. 110). You also need a DataSync agent (p. 111) that can connect to your Azure Blob Storage container.
Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Microsoft Azure Blob Storage.
4. For Agents, choose the DataSync agent that can connect with your Azure Blob Storage container.
   You can choose more than one agent. For more information, see Using multiple AWS DataSync agents for transfers (p. 41).
5. For Container URL, enter the URL of the container that's involved in your transfer.
6. (Optional) For Access tier when used as a destination, choose the access tier (p. 109) that you want your objects or files transferred into.
7. For Folder, enter path segments if you want to limit your transfer to a virtual directory in your container (for example, /my/images).
8. For SAS token, enter the SAS token that allows DataSync to access your blob storage.
   The token is part of the SAS URI string that comes after the storage resource URI and a question mark (?). A token looks something like this:
   
   sp=r&st=2023-12-20T14:54:52Z&se=2023-12-20T22:54:52Z&spr=https&sv=2021-06-08&sr=c&sig=aBBKDWQvyuVcTg%2FXTI9E%2F%2Fmq171%2BZU178wcwqU%3D

9. (Optional) Enter values for the Key and Value fields to tag the location.
   Tags help you manage, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.
10. Choose Create location.

Using the AWS CLI

1. Copy the following create-location-azure-blob command:

   
   ```shell
 aws datasync create-location-azure-blob
 --container-url "https://path/to/container"
 --authentication-type "SAS"
 --sas-configuration '{
 "Token": "your-sas-token"
 }'
 --agent-arns my-datasync-agent-arn
 --subdirectory "/path/to/my/data"
 --access-tier "access-tier-for-destination"
 --tags ["Key": "key1","Value": "value1"]
   ```

2. For the --container-url parameter, specify the URL of the Azure Blob Storage container that's involved in your transfer.
3. For the --authentication-type parameter, specify SAS.
4. For the --sas-configuration parameter's Token option, specify the SAS token that allows DataSync to access your blob storage.
   The token is part of the SAS URI string that comes after the storage resource URI and a question mark (?). A token looks something like this:
   
   sp=r&st=2023-12-20T14:54:52Z&se=2023-12-20T22:54:52Z&spr=https&sv=2021-06-08&sr=c&sig=aBBKDWQvyuVcTg%2FXTI9E%2F%2Fmq171%2BZU178wcwqU%3D
5. For the \(--agent-arns\) parameter, specify the Amazon Resource Name (ARN) of the DataSync agent that can connect to your container.

Here's an example agent ARN: \(\text{arn:aws:datasync:us-east-1:123456789012:agent/agent-01234567890aaabfb}\)

You can specify more than one agent. For more information, see Using multiple AWS DataSync agents for transfers (p. 41).

6. For the \(--subdirectory\) parameter, specify path segments if you want to limit your transfer to a virtual directory in your container (for example, /my/images).

7. (Optional) For the \(--access-tier\) parameter, specify the access tier (p. 109) (HOT, COOL, or ARCHIVE) that you want your objects or files transferred into.

This parameter applies only when you're using this location as a transfer destination.

8. (Optional) For the \(--tags\) parameter, specify key-value pairs that can help you manage, filter, and search for your location.

We recommend creating a name tag for your location.

9. Run the \(\text{create-location-azure-blob}\) command.

If the command is successful, you get a response that shows you the ARN of the location that you created. For example:

```
{
 "LocationArn": "arn:aws:datasync:us-east-1:123456789012:location/loc-12345678abcdefgh"
}
```

### Viewing your Azure Blob Storage transfer location

You can get details about the existing DataSync transfer location for your Azure Blob Storage.

**Using the DataSync console**

2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose your Azure Blob Storage location.

   You can see details about your location, including any DataSync transfer tasks that are using it.

**Using the AWS CLI**

1. Copy the following \(\text{describe-location-azure-blob}\) command:

   ```bash
 aws datasync describe-location-azure-blob \n --location-arn "your-azure-blob-location-arn"
   ```

2. For the \(--location-arn\) parameter, specify the ARN for the Azure Blob Storage location that you created (for example, \(\text{arn:aws:datasync:us-east-1:123456789012:location/loc-12345678abcdefg}\)).

3. Run the \(\text{describe-location-azure-blob}\) command.

   You get a response that shows you details about your location. For example:

   ```json
 {
 }
   ```
Configuring transfers with Microsoft Azure Blob Storage

"LocationArn": "arn:aws:datasync:us-east-1:123456789012:location/loc-12345678abcdefg",
"LocationUri": "azure-blob://my-user.blob.core.windows.net/container-1",
"AuthenticationType": "SAS",
"Subdirectory": "/my/images",
"AgentArns": ["arn:aws:datasync:us-east-1:123456789012:agent/agent-01234567890deadfb"],
}

Updating your Azure Blob Storage transfer location

If needed, you can modify your location’s configuration in the console or by using the AWS CLI.

Using the AWS CLI

1. Copy the following update-location-azure-blob command:

```bash
aws datasync update-location-azure-blob \
 --location-arn "your-azure-blob-location-arn" \
 --authentication-type "SAS" \
 --sas-configuration '{
 "Token": "your-sas-token"
 }' \
 --agent-arns my-datasync-agent-arn \
 --subdirectory "/path/to/my/data" \
 --access-tier "access-tier-for-destination"
```

2. For the --location-arn parameter, specify the ARN for the Azure Blob Storage location that you're updating (for example, arn:aws:datasync:us-east-1:123456789012:location/loc-12345678abcdefg).

3. For the --authentication-type parameter, specify SAS.

4. For the --sas-configuration parameter's Token option, specify the SAS token that allows DataSync to access your blob storage.

   The token is part of the SAS URI string that comes after the storage resource URI and a question mark (?). A token looks something like this:

   ```text
 sp=r&st=2022-12-20T14:54:52Z&se=2022-12-20T22:54:52Z&spr=https&sv=2021-06-08&sr=c&sig=qCBKDWQvyuVcT%2FXTI9E%2F%2Fmq171%2BZU178wccwqU%3D
   ```

5. For the --agent-arns parameter, specify the Amazon Resource Name (ARN) of the DataSync agent that you want to connect to your container.

   Here’s an example agent ARN: arn:aws:datasync:us-east-1:123456789012:agent/agent-01234567890aaabfb

   You can specify more than one agent. For more information, see [Using multiple AWS DataSync agents for transfers](#).

6. For the --subdirectory parameter, specify path segments if you want to limit your transfer to a virtual directory in your container (for example, /my/images).

7. (Optional) For the --access-tier parameter, specify the access tier (p. 109) (HOT, COOL, or ARCHIVE) that you want your objects to be transferred into.

   This parameter applies only when you’re using this location as a transfer destination.
Next steps

After you finish creating a DataSync location for your Azure Blob Storage, you can continue setting up your transfer. Here are some next steps to consider:

1. If you haven't already, create another location (p. 69) where you plan to transfer your data to or from your Azure Blob Storage.
2. Learn how DataSync handles metadata and special files (p. 130), particularly if your transfer locations don't have a similar metadata structure.
3. Configure how your data gets transferred. For example, you can move only a subset of your data (p. 141) or delete files in your blob storage that aren’t in your source location (as long as your SAS token (p. 108) has delete permissions).
4. Start your transfer (p. 149).

Configuring AWS DataSync transfers with Microsoft Azure Files SMB shares

You can configure AWS DataSync to transfer data to or from a Microsoft Azure Files Server Message Block (SMB) share.

Tip
For a full walkthrough on moving data from Azure Files SMB shares to AWS, see the AWS Storage Blog.

Accessing SMB shares

DataSync connects to your SMB share using the SMB protocol and authenticates with credentials that you provide it.

Topics
- Supported SMB protocol versions (p. 119)
- Required permissions (p. 120)

Supported SMB protocol versions

By default, DataSync automatically chooses a version of the SMB protocol based on negotiation with your SMB file server.

You also can configure DataSync to use a specific SMB version, but we recommend doing this only if DataSync has trouble negotiating with the SMB file server automatically. (DataSync supports SMB versions 1.0 and later.)

See the following table for a list of options in the DataSync console and API:

<table>
<thead>
<tr>
<th>Console option</th>
<th>API option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>AUTOMATIC</td>
<td>DataSync and the SMB file server negotiate the highest version of SMB that they mutually support between 2.1 and 3.1.1. This is the default and recommended option. If you instead choose a specific version that your file server doesn't support, you may get an Operation Not Supported error.</td>
</tr>
</tbody>
</table>


### Configuring transfers with Microsoft Azure Files

#### Console option	API option	Description
SMB 3.0.2 | SMB3 | Restricts the protocol negotiation to only SMB version 3.0.2.
SMB 2.1 | SMB2 | Restricts the protocol negotiation to only SMB version 2.1.
SMB 2.0 | SMB2_0 | Restricts the protocol negotiation to only SMB version 2.0.
SMB 1.0 | SMB1 | Restricts the protocol negotiation to only SMB version 1.0.

#### Required permissions

DataSync needs a user who has permission to mount and access your SMB location. This can be a local user on your Windows file server or a domain user that's defined in your Microsoft Active Directory.

To set object ownership, DataSync requires the `SE_RESTORE_NAME` privilege, which is usually granted to members of the built-in Active Directory groups **Backup Operators** and **Domain Admins**. Providing a user to DataSync with this privilege also helps ensure sufficient permissions to files, folders, and file metadata, except for NTFS system access control lists (SACLs).

Additional privileges are required to copy SACLs. Specifically, this requires the Windows `SE_SECURITY_NAME` privilege, which is granted to members of the **Domain Admins** group. If you configure your task to copy SACLs, make sure that the user has the required privileges. To learn more about configuring a task to copy SACLs, see [Managing how AWS DataSync transfers files, objects, and metadata](p. 139).

When you copy data between an SMB file server and Amazon FSx for Windows File Server file system, the source and destination locations must belong to the same Microsoft Active Directory domain or have an Active Directory trust relationship between their domains.

#### Creating your Azure Files transfer location by using the console

2. In the left navigation pane, expand **Data transfer**, then choose **Locations** and **Create location**.
3. For **Location type**, choose **Server Message Block (SMB)**.
   - You configure this location as a source or destination later.
4. For **Agents**, choose one or more DataSync agents that you want to connect to your SMB share.
   - If you choose more than one agent, make sure you understand using [multiple agents for a location](p. 41).
5. For **SMB Server**, enter the Domain Name System (DNS) name or IP address of the SMB share that your DataSync agent will mount.
   - **Note**
     - You can't specify an IP version 6 (IPv6) address.
6. For **Share name**, enter the name of the share exported by your SMB share where DataSync will read or write data.
   - You can include a subdirectory in the share path (for example, `/path/to/subdirectory`). Make sure that other SMB clients in your network can also mount this path.
   - To copy all the data in the subdirectory, DataSync must be able to mount the SMB share and access all of its data. For more information, see [Required permissions (p. 75)].
7. (Optional) Expand **Additional settings** and choose an **SMB Version** for DataSync to use when accessing your SMB share.
By default, DataSync automatically chooses a version based on negotiation with the SMB share. For information, see Supported SMB protocol versions (p. 74).

8. For **User**, enter a user name that can mount your SMB share and has permission to access the files and folders involved in your transfer.

For more information, see Required permissions (p. 75).

9. For **Password**, enter the password of the user who can mount your SMB share and has permission to access the files and folders involved in your transfer.

10. (Optional) For **Domain**, enter the Windows domain name that your SMB share belongs to.

    If you have multiple domains in your environment, configuring this setting makes sure that DataSync connects to the right share.

11. (Optional) Choose **Add tag** to tag your location.

    Tags are key-value pairs that help you manage, filter, and search for your locations. We recommend creating at least a name tag for your location.

12. Choose **Create location**.

### Configuring AWS DataSync transfers with other cloud object storage

With AWS DataSync, you can transfer data between AWS storage services (p. 80) and the following cloud object storage providers:

- Wasabi Cloud Storage
- DigitalOcean Spaces
- Oracle Cloud Infrastructure Object Storage
- Cloudflare R2 Storage
- Backblaze B2 Cloud Storage
- NAVER Cloud Object Storage
- Alibaba Cloud Object Storage Service
- IBM Cloud Object Storage
- Seagate Lyve Cloud

To set up this kind of transfer, you need to create a DataSync agent (p. 8) that can connect to your cloud object storage. You must also create a transfer location (p. 8) for your cloud object storage (specifically an Object storage location). DataSync can use this location as a source or destination for your transfer.

### Accessing other cloud object storage

How DataSync accesses your cloud object storage depends on several factors, including whether your storage is compatible with the Amazon S3 API and the permissions and credentials that DataSync needs to access your storage.

**Topics**

- Amazon S3 API compatibility (p. 122)
- Storage permissions and endpoints (p. 122)
- Storage credentials (p. 123)
Amazon S3 API compatibility

Your cloud object storage must be compatible with the following Amazon S3 API operations for DataSync to connect to it:

- AbortMultipartUpload
- CompleteMultipartUpload
- CopyObject
- CreateMultipartUpload
- DeleteObject
- DeleteObjects
- DeleteObjectTagging
- GetBucketLocation
- GetObject
- GetObjectTagging
- HeadBucket
- HeadObject
- ListObjectsV2
- PutObject
- PutObjectTagging
- UploadPart

Storage permissions and endpoints

You must configure the permissions that allow DataSync to access your cloud object storage. If your object storage is a source location, DataSync needs read and list permissions for the bucket that you’re transferring data from. If your object storage is a destination location, DataSync needs read, list, write, and delete permissions for the bucket.

DataSync also needs an endpoint (or server) to connect to your storage. The following table describes the endpoints that DataSync can use to access other cloud object storage:

<table>
<thead>
<tr>
<th>Other cloud provider</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasabi Cloud Storage</td>
<td>S3.region.wasabisys.com</td>
</tr>
<tr>
<td>DigitalOcean Spaces</td>
<td>region.digitaloceanspaces.com</td>
</tr>
<tr>
<td>Oracle Cloud Infrastructure Object Storage</td>
<td>namespace.compat.objectstorage.region.com</td>
</tr>
<tr>
<td>Cloudflare R2 Storage</td>
<td>account-id.r2.cloudflarestorage.com</td>
</tr>
<tr>
<td>Backblaze B2 Cloud Storage</td>
<td>S3.region.backblazeb2.com</td>
</tr>
<tr>
<td>NAVER Cloud Object Storage</td>
<td>region.object.ncloudstorage.com (most regions)</td>
</tr>
<tr>
<td>Alibaba Cloud Object Storage Service</td>
<td>region.aliyuncs.com</td>
</tr>
<tr>
<td>IBM Cloud Object Storage</td>
<td>s3.region.cloud-objectstorage.appdomain.cloud</td>
</tr>
</tbody>
</table>
Important
For details on how to configure bucket permissions and updated information on storage endpoints, see your cloud provider's documentation.

Storage credentials

DataSync also needs the credentials to access the object storage bucket involved in your transfer. This might be an access key and secret key or something similar depending on how your cloud storage provider refers to these credentials.

For more information, see your cloud provider's documentation.

Considerations when transferring from other cloud object storage

When planning to move objects to or from another cloud storage provider by using DataSync, there are some things to keep in mind.

Topics

- Costs (p. 123)
- Storage classes (p. 123)
- Object tags (p. 123)
- Transferring to Amazon S3 (p. 124)

Costs

The fees associated with moving data in and out of another cloud storage provider can include:

- Running an Amazon EC2 instance for your DataSync agent
- Transferring the data by using DataSync, including request charges related to your cloud object storage and Amazon S3 (p. 87) (if S3 is your transfer destination)
- Transferring data in or out of your cloud storage (check your cloud provider's pricing)
- Storing data in an AWS storage service (p. 80) supported by DataSync
- Storing data in another cloud provider (check your cloud provider's pricing)

Storage classes

Some cloud storage providers have storage classes (similar to Amazon S3 (p. 84)) which DataSync can't read without being restored first. For example, Oracle Cloud Infrastructure Object Storage has an archive storage class. You need to restore objects in that storage class before DataSync can transfer them. For more information, see your cloud provider's documentation.

Object tags

Not all cloud providers support object tags. The ones that do might not allow querying tags through the Amazon S3 API. In either situation, your DataSync transfer task might fail if you try to copy object tags.

You can avoid this by clearing the Copy object tags checkbox in the DataSync console when creating, starting, or updating your task.
Transferring to Amazon S3

When transferring to Amazon S3, DataSync can't transfer objects larger than 5 TB. DataSync also can only copy object metadata up to 2 KB.

Creating your DataSync agent

To get started, you need a DataSync agent that can connect to your cloud object storage. This process includes deploying and activating an agent on an Amazon EC2 instance in your virtual private cloud (VPC) in AWS.

To create an Amazon EC2 agent

1. Deploy an Amazon EC2 agent (p. 27).
2. Choose a service endpoint (p. 29) that the agent uses to communicate with AWS.
   
   In this situation, we recommend using a VPC service endpoint.
3. Configure your network to work with VPC service endpoints (p. 13).
4. Activate the agent (p. 31).

Creating a transfer location for your other cloud object storage

You can configure DataSync to use your cloud object storage as a source or destination location.

Before you begin

Make sure that you know how DataSync accesses your cloud object storage (p. 121). You also need a DataSync agent (p. 124) that can connect to your cloud object storage.

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations and Create location.
3. For Location type, choose Object storage.
4. For Agents, choose the DataSync agent that can connect with your cloud object storage.
   
   You can choose more than one agent. For more information, see Using multiple AWS DataSync agents for transfers (p. 41).
5. For Server, enter the endpoint (p. 122) that DataSync can use to access your cloud object storage:
   
   - Wasabi Cloud Storage – S3.region.wasabisys.com
   - DigitalOcean Spaces – region.digitaloceanspaces.com
   - Oracle Cloud Infrastructure Object Storage – namespace.compat.objectstorage.region.oraclecloud.com
   - Cloudflare R2 Storage – account-id.r2.cloudflarestorage.com
   - Backblaze B2 Cloud Storage – S3.region.backblazeb2.com
   - NAVER Cloud Object Storage – region.object.ncloudstorage.com (most regions)
   - Alibaba Cloud Object Storage Service – region.aliyuncs.com
   - IBM Cloud Object Storage – s3.region.cloud-object-storage.appdomain.cloud
   - Seagate Lyve Cloud – s3.region.lyvecloud.seagate.com
6. For Bucket name, enter the name of the object storage bucket that you're transferring data to or from.
7. Expand Additional settings. For Server protocol, choose HTTPS. For Server port, choose 443.
8. Scroll down to the Authentication section. Make sure that the Requires credentials check box is selected, and then provide DataSync your storage credentials (p. 123).
• For **Access key**, enter the ID to access your cloud object storage.
• For **Secret key**, enter the secret to access your cloud object storage.

9. (Optional) Enter values for the **Key** and **Value** fields to tag the location.

Tags help you manage, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.

10. Choose **Create location**.

### Next steps

After you finish creating a DataSync location for your cloud object storage, you can continue setting up your transfer. Here are some next steps to consider:

1. If you haven’t already, create another location (p. 80) where you plan to transfer your data to or from in AWS.
2. Learn how DataSync handles metadata and special files (p. 130) for object storage locations.
3. Configure how your data gets transferred. For example, maybe you only want to move a subset of your data (p. 141).

   **Important**
   Make sure that you configure how DataSync copies object tags correctly. For more information, see considerations with object tags (p. 123).

4. Start your transfer (p. 149).

### Transferring to or from edge storage with AWS DataSync

With AWS DataSync, you can transfer data to or from some AWS Snow Family devices. For more information, see Where can I transfer my data with DataSync? (p. 69).

### Topics

- Configuring transfers with S3 compatible storage on Snowball Edge (p. 125)
- Configuring AWS DataSync transfers with AWS Snowcone (p. 129)

### Configuring transfers with S3 compatible storage on Snowball Edge

With AWS DataSync, you can transfer objects between Amazon S3 compatible storage on an AWS Snowball Edge device or cluster and any of the following AWS storage services:

- Amazon S3
- Amazon Elastic File System (Amazon EFS)
- Amazon FSx for Windows File Server
- Amazon FSx for Lustre
- Amazon FSx for OpenZFS
- Amazon FSx for NetApp ONTAP
Prerequisites

Before you get started, make sure that you've done the following:

• Created an AWS storage resource in the AWS Region where you plan to transfer data to or from. For example, this could be an S3 bucket or Amazon EFS file system in US East (N. Virginia).
• Established a wide-area network (WAN) connection for traffic into and out of your on-premises storage environment. For example, you can establish this kind of connection with AWS Direct Connect.

When you create your DataSync agent (p. 127), you'll configure this WAN connection so that DataSync can transfer data between your Amazon S3 compatible storage that's on-premises and your storage resource in AWS.

• Downloaded and installed the Snowball Edge client.

Accessing your Amazon S3 compatible storage

To access your Amazon S3 compatible storage bucket, DataSync needs the following:

• User credentials on your Snowball Edge device or cluster that can access the bucket that you're transferring data to or from.
• An HTTPS certificate that allows DataSync to verify the authenticity of the connection between the DataSync agent and the s3api endpoint on your device or cluster.

Topics

• Getting the user credentials to access your S3 bucket (p. 126)
• Getting a certificate for the s3api endpoint connection (p. 127)

Getting the user credentials to access your S3 bucket

DataSync needs the access key and secret key for a user who can access the bucket that you're working with on your Snowball Edge device or cluster.

To get the user credentials to access your bucket

1. Open a terminal and run the Snowball Edge client.

   For more information about running the Snowball Edge client, see Using the Snowball Edge client in the AWS Snowball Edge Developer Guide.

2. To get the access keys associated with your device or cluster, run the following snowballEdge command:

   ```bash
 snowballEdge list-access-keys
   ```

3. In the output, locate the access key for the bucket that DataSync will work with (for example, AKIAIOSFODNN7EXAMPLE).

4. To get the secret access key, run the following snowballEdge command. Replace access-key-for-datasync with the access key that you located in the prior step.

   ```bash
 snowballEdge get-secret-access-key --access-key-id access-key-for-datasync
   ```

   The output includes the access key's corresponding secret key (for example, wJalrXUtjnFEMI/K7MDENG/bPxRF1EyEXAMEK1EY).

5. Save the access key and secret key somewhere that you can remember.
You will need these keys when you're configuring the DataSync source location (p. 128) for your transfer.

Getting a certificate for the s3api endpoint connection

You need an HTTPS certificate that can verify the authenticity of the connection between your DataSync agent and an s3api endpoint on your Snowball Edge device or cluster.

To get a certificate for the s3api endpoint connection

1. In the Snowball Edge client, run the following snowballEdge command:

```
snowballEdge get-certificate
```

2. Save the output to a base64-encoded .pem file.

   You will specify this file when you're configuring the DataSync source location (p. 128) for your transfer.

Creating a DataSync agent in your on-premises storage environment

During a transfer, DataSync uses an agent (p. 8) to read from or write to the Amazon S3 compatible storage on your Snowball Edge device or cluster.

This agent must be deployed in your on-premises storage environment where it can connect to your device or cluster through your network. For example, you can run the agent on a VMware ESXi hypervisor that has local network access to your cluster.

To create a DataSync agent in your on-premises storage environment

1. Make sure that the DataSync agent can run on your hypervisor (p. 10) and that you allocate the agent enough virtual machine (VM) resources (p. 11).
2. Deploy the agent in your on-premises environment.

   For instructions, see one of the following topics, depending on the type of hypervisor that you're deploying the agent on:

   - Deploy your agent on VMware (p. 25)
   - Deploy your agent on Linux Kernel-based Machine (KVM) (p. 26)
   - Deploy your agent on Microsoft Hyper-V (p. 27)
   - Deploy your agent on Amazon EC2 (p. 27)

   Warning
   We don't recommend deploying an agent on Amazon EC2 agent to access on-premises storage because of increased network latency.

3. Configure your network to allow the following traffic between the agent and your Amazon S3 compatible storage:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol and port</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSync agent</td>
<td>A virtual network interface (VNI) for an s3api endpoint</td>
<td>TCP 443 (HTTPS)</td>
</tr>
</tbody>
</table>
## Configuring transfers with S3 compatible storage on Snowball Edge

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Protocol and port</th>
</tr>
</thead>
<tbody>
<tr>
<td>on your device or cluster. If you have a cluster, it can be any s3api endpoint VNI.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you need to find a VNI on your device or cluster, see [describing your virtual network interfaces](https://docs.aws.amazon.com/snowball/latest/edge-user-guide/snowball-edge-governance-network-interfaces.html) on Snowball Edge.

4. Choose a service endpoint (p. 29) that the agent will use to communicate with AWS.
5. Activate your agent (p. 31).

### Configuring the source location for your transfer

After you create your agent, you can configure the source location for your DataSync transfer.

**Note**
The following instructions assume that you’re transferring from Amazon S3 compatible storage, but you can also use this location for a transfer destination.

**To configure the source location for your transfer by using the DataSync console**

2. In the left navigation pane, expand Data transfer. Choose Tasks, and then choose Create task.
3. On the Configure source location page, choose Create a new location.
4. For Location type, choose Object storage.
5. For Agents, choose the DataSync agent that you created in your on-premises storage environment.
6. For Server, enter the VNI for the s3api endpoint that’s used by your Amazon S3 compatible storage.
   If you have a Snowball Edge cluster instead of a single device, you can specify any of the cluster's s3api endpoint VNIs.
7. For Bucket name, enter the name of the Amazon S3 compatible storage bucket that you’re transferring objects from.
8. For Folder, enter an object prefix.
   DataSync only transfers objects with this prefix.
9. To configure the DataSync connection to the Snowball Edge device or cluster, expand Additional settings and do the following:
   a. For Server protocol, choose HTTPS.
   b. For Server port, enter 443.
   c. For Certificate, choose the certificate file for the s3api endpoint connection (p. 127).
10. Select Requires credentials, and enter the Access key and Secret key to access the Amazon S3 compatible storage bucket (p. 126) on your Snowball Edge device or cluster.
11. Choose Next.

### Configuring the destination location for your transfer

Your transfer’s destination location must be in the same AWS Region and AWS account where you created your agent.

**Before you begin:** Make sure you've [configured the source location](p. 128) for your transfer.
To configure the destination location for your transfer by using the DataSync console

1. On the **Configure destination location** page, choose **Create a new location** or **Choose an existing location** for the AWS storage resource where you're transferring objects to.

   If you're creating a new location, see one of the following topics:
   - Amazon S3 (p. 80)
   - Amazon EFS (p. 90)
   - FSx for Windows File Server (p. 93)
   - FSx for Lustre (p. 95)
   - FSx for OpenZFS (p. 96)
   - FSx for ONTAP (p. 98)

2. When you're done configuring the destination location, choose **Next**.

**Configuring your transfer settings**

With DataSync, you can specify a transfer schedule, customize how your data integrity is verified, and specify whether you want to transfer only a subset of objects, among other options.

**Before you begin**: Make sure you've configured the destination location (p. 128) for your transfer.

**To configure your transfer settings by using the DataSync console**

1. On the **Configure settings** page, change the transfer settings or use the defaults.

   For more information about these settings, see [Working with AWS DataSync transfer tasks](p. 137).

2. Choose **Next**.

3. Review your transfer details, and then choose **Create task**.

**Starting your transfer**

After you create your transfer task, you're ready to start moving data. For instructions on starting a task by using the DataSync console or AWS CLI, see Starting your task (p. 150).

**Configuring AWS DataSync transfers with AWS Snowcone**

To transfer data to or from an AWS Snowcone device, you must create an AWS DataSync transfer location. DataSync can use this location as a source or destination for transferring data.

**Creating your Snowcone transfer location**

Before you begin, you need to enable Network File System (NFS) on your Snowcone device. For more information, see the [AWS Snowcone User Guide](https://aws.amazon.com/snowcone/docs/).

**To create the location by using the console**

2. In the left navigation pane, expand **Data transfer**, then choose **Locations** and **Create location**.
3. For **Location type**, choose **Network File System (NFS)**.
4. For **Agents**, choose the Amazon EC2 agent that you launched on your Snowcone device.
AWS DataSync saves metadata and special files (links and directories) when copying data between storage systems and services.

**Topics**
- Metadata copied by AWS DataSync
- Links and directories copied by AWS DataSync

### Metadata copied by AWS DataSync

AWS DataSync can preserve your file or object metadata during a data transfer. How your metadata gets copied depends on your transfer locations and if those locations use similar types of metadata.

#### System-level metadata

In general, DataSync doesn't copy system-level metadata. For example, when transferring from an SMB file server, the permissions you configured at the file system level aren't copied to the destination storage system.

There are exceptions. When transferring between Amazon S3 and other object storage, DataSync does copy some system-defined object metadata.

### Metadata copied in Amazon S3 transfers

The following tables describe what metadata DataSync can copy when a transfer involves an Amazon S3 location.

**Topics**
- To Amazon S3
- Between Amazon S3 and other object storage

---

For more information about the agent, see [AWS Snowcone User Guide](#).

5. For **NFS server**, enter the virtual IP address that you attached to the NFS server on your Snowcone device.

6. For **Mount path**, enter the NFS export path for the S3 bucket that you want to transfer data to or from.

   The format of the export path for a bucket is `/buckets/bucket-name`. For more information, see [Using NFS file shares to manage file storage](#) in the [AWS Snowcone User Guide](#).

7. (Optional) Expand **Additional settings** and choose a specific **NFS version** for DataSync to use when accessing your file server.

   By default, DataSync uses NFS version 4.1. DataSync also supports NFS 3.x and 4.0.

8. (Optional) Choose **Add tag** to tag your location.

   *Tags* are key-value pairs that help you manage, filter, and search for your locations. We recommend creating at least a name tag for your location.

9. Choose **Create location**.
• Between Amazon S3 and HDFS (p. 132)

To Amazon S3

<table>
<thead>
<tr>
<th>When copying from one of these locations</th>
<th>To this location</th>
<th>DataSync can copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NFS</td>
<td>• Amazon S3</td>
<td>The following as Amazon S3 user metadata:</td>
</tr>
<tr>
<td>• Amazon EFS</td>
<td></td>
<td>• File and folder modification timestamps</td>
</tr>
<tr>
<td>• FSx for Lustre</td>
<td></td>
<td>• File and folder access timestamps (DataSync can only do this on a best-effort basis)</td>
</tr>
<tr>
<td>• FSx for OpenZFS</td>
<td></td>
<td>• User ID and group ID</td>
</tr>
<tr>
<td>• FSx for ONTAP (using NFS)</td>
<td></td>
<td>• POSIX permissions</td>
</tr>
</tbody>
</table>

The file metadata stored in Amazon S3 user metadata is interoperable with NFS shares on file gateways using AWS Storage Gateway. A file gateway enables low-latency access from on-premises networks to data that was copied to Amazon S3 by DataSync. This metadata is also interoperable with FSx for Lustre.

When DataSync copies objects that contain this metadata back to an NFS server, the file metadata is restored. Restoring metadata requires granting elevated permissions to the NFS server. For more information, see Configuring AWS DataSync transfers with an NFS file server (p. 72).

Between Amazon S3 and other object storage

<table>
<thead>
<tr>
<th>When copying between these locations</th>
<th>DataSync can copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Object storage</td>
<td>• User-defined object metadata</td>
</tr>
<tr>
<td>• Amazon S3</td>
<td>• Object tags</td>
</tr>
<tr>
<td>• Microsoft Azure Blob Storage</td>
<td>• The following system-defined object metadata:</td>
</tr>
<tr>
<td></td>
<td>• Content-Disposition</td>
</tr>
<tr>
<td>• Amazon S3</td>
<td>• Content-Encoding</td>
</tr>
<tr>
<td></td>
<td>• Content-Language</td>
</tr>
</tbody>
</table>
When copying between these locations | DataSync can copy
---|---
• Content-Type

**Note:** DataSync copies system-level metadata for all objects during an initial transfer. If you configure your task to transfer only data that has changed, DataSync won’t copy system metadata in subsequent transfers unless an object's content or user metadata has also been modified.

DataSync doesn't copy other object metadata, such as object access control lists (ACLs), prior object versions, or the Last-Modified key.

### Between Amazon S3 and HDFS

<table>
<thead>
<tr>
<th>When copying between these locations</th>
<th>DataSync can copy</th>
</tr>
</thead>
</table>
| • Hadoop Distributed File System (HDFS)  
• Amazon S3 | The following as Amazon S3 user metadata:  
• File and folder modification timestamps  
• File and folder access timestamps (DataSync can only do this on a best-effort basis)  
• User ID and group ID  
• POSIX permissions |

HDFS uses strings to store file and folder user and group ownership, rather than numeric identifiers, such as UIDs and GIDs.

### Metadata copied in NFS transfers

The following table describes what metadata DataSync can copy between locations that use Network File System (NFS).

<table>
<thead>
<tr>
<th>When copying between these locations</th>
<th>DataSync can copy</th>
</tr>
</thead>
</table>
| • NFS  
• Amazon EFS  
• Amazon FSx for Lustre  
• Amazon FSx for OpenZFS  
• Amazon FSx for NetApp ONTAP (using NFS) | • File and folder modification timestamps  
• File and folder access timestamps (DataSync can only do this on a best-effort basis)  
• User ID (UID) and group ID (GID)  
• POSIX permissions |

### Metadata copied in SMB transfers

The following table describes what metadata DataSync can copy between locations that use Server Message Block (SMB).
### Metadata copied by DataSync

When copying between these locations

<table>
<thead>
<tr>
<th>DataSync can copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• File timestamps: access time, modification time, and creation time</td>
</tr>
<tr>
<td>• File owner security identifier (SID)</td>
</tr>
<tr>
<td>• Standard file attributes: read-only (R), archive (A), system (S), hidden (H), compressed (C), not content indexed (I), encrypted (E), temporary (T), offline (O), and sparse (P)</td>
</tr>
</tbody>
</table>

DataSync attempts to copy the archive (A), compressed (C), not content indexed (I), and temporary (T) attributes on a best-effort basis. If these attributes aren't applied on the destination, they're ignored during task verification.

**Note:** When transferring to an FSx for ONTAP file system, DataSync ignores the not content indexed (I) and temporary (T) attributes.

- NTFS discretionary access lists (DACLs), which determine whether to grant access to an object.
- NTFS system access control lists (SACLs), which are used by administrators to log attempts to access a secured object.

**Note:** SACLs are not copied if you use SMB version 1.0.

Copying DACLs and SACLs requires granting specific permissions to the Windows user that DataSync uses to access your location using SMB. For more information, see creating a location for SMB (p. 74), FSx for Windows File Server (p. 93), or FSx for ONTAP (p. 98) (depending on the type of location in your transfer).

### Metadata copied in other transfer scenarios

DataSync handles metadata the following ways when copying between these storage systems (most of which have different metadata structures).

<table>
<thead>
<tr>
<th>When copying from one of these locations</th>
<th>To one of these locations</th>
<th>DataSync can copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SMB</td>
<td>• Amazon EFS</td>
<td>Default POSIX metadata (p. 135) for all files and folders on the destination file system or objects in the destination S3 bucket. This approach includes using the default POSIX user ID and group ID values.</td>
</tr>
<tr>
<td>• FSx for Windows File Server</td>
<td>• FSx for Lustre</td>
<td></td>
</tr>
<tr>
<td>• FSx for ONTAP (using SMB)</td>
<td>• FSx for OpenZFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FSx for ONTAP (using NFS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amazon S3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Object storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Azure Blob Storage</td>
<td></td>
</tr>
<tr>
<td>When copying from one of these locations</td>
<td>To one of these locations</td>
<td>DataSync can copy</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>• NFS</td>
<td></td>
<td>Windows-based metadata (such as ACLs) is not preserved.</td>
</tr>
<tr>
<td>• Object storage</td>
<td>• Amazon EFS</td>
<td>Default POSIX metadata (p. 135) on the destination files and folders. This approach includes using the default POSIX user ID and group ID values.</td>
</tr>
<tr>
<td>• Amazon S3</td>
<td>• FSx for Lustre</td>
<td></td>
</tr>
<tr>
<td>• Azure Blob Storage</td>
<td>• FSx for OpenZFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FSx for ONTAP (using NFS)</td>
<td></td>
</tr>
<tr>
<td>• Amazon EFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FSx for Lustre</td>
<td>• Amazon EFS</td>
<td></td>
</tr>
<tr>
<td>• FSx for OpenZFS</td>
<td>• FSx for OpenZFS</td>
<td></td>
</tr>
<tr>
<td>• FSx for ONTAP (using NFS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• HDFS</td>
<td>• Amazon EFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FSx for Lustre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FSx for OpenZFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FSx for ONTAP (using NFS)</td>
<td></td>
</tr>
<tr>
<td>• HDFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Amazon S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Amazon EFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FSx for Lustre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FSx for OpenZFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FSx for Windows File Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FSx for ONTAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• HDFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>File and folder timestamps from the source location. The file or folder owner is set based on the HDFS user or Kerberos principal you specified when creating the HDFS transfer location (p. 76). The Groups Mapping configuration on the Hadoop cluster determines the group.</td>
<td></td>
</tr>
</tbody>
</table>
When copying from one of these locations | To one of these locations | DataSync can copy
--- | --- | ---
• Amazon S3
• Amazon EFS
• FSx for Lustre
• FSx for OpenZFS
• FSx for ONTAP (using NFS)
• Object storage
• NFS
• HDFS | • SMB
• FSx for Windows File Server
• FSx for ONTAP (using SMB) | File and folder timestamps from the source location. Ownership is set based on the Windows user that was specified in DataSync to access the Amazon FSx or SMB share. Permissions are inherited from the parent directory.

• Azure Blob Storage | • FSx for Windows File Server
• FSx for ONTAP (using SMB) | 

### Understanding when and how DataSync applies default POSIX metadata

DataSync applies default POSIX metadata in the following situations:

- When your transfer's source and destination locations don't have similar metadata structures
- When metadata is missing from the source location

The following table describes how DataSync applies default POSIX metadata during these types of transfers:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>File permissions</th>
<th>Folder permissions</th>
<th>UID</th>
<th>GID</th>
</tr>
</thead>
</table>
| • Amazon S3
• Object storage
• Microsoft Azure Blob Storage | • Amazon EFS
• FSx for Lustre
• FSx for OpenZFS
• FSx for ONTAP (using NFS)
• NFS | 0755 | 0755 | 65534 | 65534 |
| • SMB | • Amazon S3
• Object storage
• Amazon EFS
• FSx for Lustre
• FSx for OpenZFS
• FSx for ONTAP (using NFS) | 0644 | 0755 | 0 | 0 |
Links and directories copied by AWS DataSync

AWS DataSync handles copied hard links, symbolic links, and directories differently depending on the storage locations involved in your transfer.

Hard links

Here's how DataSync handles hard links in some common transfer scenarios:

- **When copying between an NFS file server, FSx for Lustre, FSx for OpenZFS, FSx for ONTAP (using NFS), and Amazon EFS**, hard links are preserved.
- **When copying to Amazon S3**, each underlying file referenced by a hard link is transferred only once. During incremental copies, separate objects are created in your S3 bucket. If a hard link is unchanged in Amazon S3, it's correctly restored when transferred to an NFS file server, FSx for Lustre, FSx for OpenZFS, FSx for ONTAP (using NFS), or Amazon EFS file system.
- **When copying to Microsoft Azure Blob Storage**, each underlying file referenced by a hard link is transferred only once. During incremental copies, separate objects are created in your blob storage if there are new references in the source. When copying from Azure Blob Storage, DataSync transfers hard links as if they are individual files.
- **When copying between an SMB file server, FSx for Windows File Server, and FSx for ONTAP (using SMB)**, hard links aren't supported. If DataSync encounters hard links in these situations, the transfer task completes with an error. To learn more, check your CloudWatch logs.
- **When copying to HDFS**, hard links aren't supported. CloudWatch logs show these links as skipped.

Symbolic links

Here's how DataSync handles symbolic links in some common transfer scenarios:

- **When copying between an NFS file server, FSx for Lustre, FSx for OpenZFS, FSx for ONTAP (using NFS), and Amazon EFS**, symbolic links are preserved.
- **When copying to Amazon S3**, the link target path is stored in the Amazon S3 object. The link is correctly restored when transferred to an NFS file server, FSx for Lustre, FSx for OpenZFS, FSx for ONTAP, or Amazon EFS file system.
- **When copying to Azure Blob Storage**, symbolic links aren't supported. CloudWatch logs show these links as skipped.

---

1 In cases where the objects don't have metadata that was previously applied by DataSync.
• When copying between an SMB file server, FSx for Windows File Server, and FSx for ONTAP (using SMB), symbolic links aren't supported. If DataSync encounters symbolic links in these situations, the task completes with an error. To learn more, check your CloudWatch logs.

• When copying to HDFS, symbolic links aren't supported. CloudWatch logs show these links as skipped.

Directories

In general, DataSync preserves directories when transferring between storage systems. This isn't the case in the following situations:

• When copying to Amazon S3, directories are represented as empty objects that have prefixes and end with a forward slash (/).

• When copying to Azure Blob Storage without a hierarchical namespace, directories don't exist. What looks like a directory is just part of an object name.

Deleting an AWS DataSync transfer location

As a best practice, remove the AWS DataSync locations that you no longer need.

To remove a location by using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Locations.
3. Choose the location that you want to remove.
4. Choose Delete. Confirm the deletion by entering delete, and then choose Delete.

Working with AWS DataSync transfer tasks

A task describes where and how AWS DataSync transfers data. Tasks consist of the following:

• Source location (p. 69) – The storage system or service where DataSync transfers data from.

• Destination location (p. 69) – The storage system or service where DataSync transfers data to.

• Task settings (p. 138) – Options for configuring how your task behaves, such as how it verifies data, when it runs, and more. Some task settings are optional. For instance, you don't have to give your task a name.

• Task executions (p. 152) – When you run a task, it's called a task execution.

Topics

• Configuring how AWS DataSync verifies data integrity (p. 138)
• Configuring what AWS DataSync transfers (p. 138)
• Setting bandwidth limits for your AWS DataSync task (p. 144)
• Scheduling your AWS DataSync task (p. 145)
• Tagging your AWS DataSync tasks (p. 147)
• Starting your AWS DataSync task (p. 149)
• Canceling your AWS DataSync task (p. 150)
• Deleting your AWS DataSync task (p. 150)
• AWS DataSync task statuses (p. 151)
• Example AWS DataSync task scenarios (p. 152)
Configuring how AWS DataSync verifies data integrity

During a transfer, AWS DataSync always checks the integrity of your data, but you can specify how and when this verification happens with the following options:

- **Verify only the data transferred** (recommended) – DataSync calculates the checksum of transferred files and metadata at the source location. At the end of the transfer, DataSync then compares this checksum to the checksum calculated on those files at the destination.

  We recommend this option when transferring to S3 Glacier Flexible Retrieval or S3 Glacier Deep Archive storage classes. For more information, see [Storage class considerations with Amazon S3 transfers](p. 84).

- **Verify all data in the destination** – At the end of the transfer, DataSync scans the entire source and destination to verify that both locations are fully synchronized.

  You can’t use this option when transferring to S3 Glacier Flexible Retrieval or S3 Glacier Deep Archive storage classes. For more information, see [Storage class considerations with Amazon S3 transfers](p. 84).

- **Check integrity during transfer** – DataSync doesn’t run additional verification at the end of the transfer. Data integrity is still checked during the transfer with checksum verification.

Using the DataSync console

The following instructions describe how to configure data verification when creating a task. You also can configure this when editing a task or starting a task execution.

**To configure data verification by using the console**

2. In the left navigation pane, expand Data transfer, then choose Tasks, and then choose Create task.
3. Configure your task's source and destination locations.
   
   For more information, see [Where can I transfer my data with AWS DataSync?](p. 69).
4. For **Verify data**, choose one of the following:
   
   - **Verify only the data transferred** (recommended)
   - **Verify all data in the destination**
   - **Check integrity during transfer**

Using the DataSync API

You can configure how DataSync verifies data with the following operations:

- [CreateTask](#)
- [UpdateTask](#)
- [StartTaskExecution](#)

Configuring what AWS DataSync transfers

You can configure your AWS DataSync task to copy only the data that you want. For example, exclude certain folders or include only specific file types. If you’re planning on recurring transfers, you can set up your task to only transfer data that’s changed in your source location.
Managing how AWS DataSync transfers files, objects, and metadata

You can configure how AWS DataSync handles your files, objects, and their associated metadata when copying between locations.

For example, with recurring transfers, you might want to overwrite files in your destination with changes in the source to keep the locations in sync. You can copy properties such as POSIX permissions for files and folders, tags associated with objects, and access control lists (ACLs).

**Before you begin:** The metadata that DataSync can preserve in a transfer depends on the storage systems involved and whether those systems use a similar metadata structure. Before configuring your task, make sure you understand how DataSync handles metadata and special files (p. 130).

**Using the DataSync console**

The following instructions describe how to configure what DataSync transfers when creating a task. You also can configure this when editing or starting a task.

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand **Data transfer**, then choose **Tasks**, and then choose **Create task**.
3. Configure your task’s source and destination locations.

   For more information, see [Where can I transfer my data with AWS DataSync?](p. 69).

4. For **Transfer mode**, choose one of the following options:
   - **Transfer only data that has changed** – DataSync copies only the data and metadata that differs between the source and destination location.
   - **Transfer all data** – DataSync copies everything in the source to the destination without comparing differences between the locations.

5. Select **Keep deleted files** if you want DataSync to maintain files or objects in the destination location that don’t exist in the source.

   If you don’t choose this option and your task deletes objects from your Amazon S3 bucket, you might incur minimum storage duration charges for certain storage classes. For detailed information, see [Storage class considerations with Amazon S3 transfers](p. 84).

   **Warning**
   You can’t deselect this option and enable **Transfer all data**. When you transfer all data, DataSync doesn’t scan your destination location and doesn’t know what to delete.

6. Select **Overwrite files** if you want DataSync to modify data in the destination location when the source data or metadata has changed.

   If your task overwrites objects, you might incur additional charges for certain storage classes (for example, for retrieval or early deletion). For detailed information, see [Storage class considerations with Amazon S3 transfers](p. 84).

   If you don’t choose this option, the destination data isn’t overwritten even if the source data differs.

7. Under **Data transfer configuration**, select how you want DataSync to copy metadata.
Important

The settings you see in the console depend on your task's source and destination locations. In some cases, you may have to expand Additional settings to see these options. Before making your selections, make sure you understand how DataSync will handle metadata and special files (p. 130) for your scenario.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy ownership</td>
<td>DataSync copies POSIX file and folder ownership, such as the group ID of the file's owners and the user ID of the file's owner.</td>
</tr>
<tr>
<td>Copy permissions</td>
<td>DataSync copies POSIX permissions for files and folders from the source to the destination.</td>
</tr>
<tr>
<td>Copy timestamps</td>
<td>DataSync copies the timestamp metadata from the source to the destination.</td>
</tr>
<tr>
<td>Copy object tags</td>
<td>DataSync preserves the tags associated with your objects when transferring between object storage systems.</td>
</tr>
<tr>
<td>Copy ownership, DACLs, and SACLs</td>
<td>DataSync copies the following:</td>
</tr>
<tr>
<td></td>
<td>• The object owner.</td>
</tr>
<tr>
<td></td>
<td>• NTFS discretionary access lists (DACLs), which determine whether to grant access to an object.</td>
</tr>
<tr>
<td></td>
<td>• NTFS system access control lists (SACLs), which are used by administrators to log attempts to access a secured object.</td>
</tr>
<tr>
<td></td>
<td>Note: SACLs are not copied if you use SMB version 1.0.</td>
</tr>
<tr>
<td></td>
<td>Copying DACLs and SACLs requires granting specific permissions to the Windows user that DataSync uses to access your location using SMB. For more information, see creating a location for SMB (p. 74), FSx for Windows File Server (p. 93), or FSx for ONTAP (p. 98) (depending on the type of location in your transfer).</td>
</tr>
<tr>
<td>Copy ownership and DACLs</td>
<td>DataSync copies the following:</td>
</tr>
<tr>
<td></td>
<td>• The object owner.</td>
</tr>
<tr>
<td></td>
<td>• DACLs, which determine whether to grant access to an object.</td>
</tr>
<tr>
<td></td>
<td>DataSync won't copy SACLs when you choose this option.</td>
</tr>
</tbody>
</table>
Configuring what DataSync transfers

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not copy ownership or ACLs</td>
<td>DataSync doesn’t copy any ownership or permissions data. The objects that DataSync writes to your destination location are owned by the user whose credentials are provided for DataSync to access the destination. Destination object permissions are determined based on the permissions configured on the destination server.</td>
</tr>
</tbody>
</table>

**Using the DataSync API**

You can configure these task settings by using the `Options` parameter with any of the following operations:

- `CreateTask`
- `StartTaskExecution`
- `UpdateTask`

**Filtering data transferred by AWS DataSync**

AWS DataSync lets you apply filters if you only want to transfer a subset of data (such as specific files, folders, or objects). For example, if your source location includes temporary files that end with `.tmp`, you can create an exclude filter that keeps these files from making their way to the destination.

You can use a combination of exclude and include filters in the same transfer task. You can add filters when creating or starting your task by using the DataSync console or the `CreateTask` or `StartTaskExecution` operations.

**Filtering terms, definitions, and syntax**

Familiarize yourself with some filtering terms and definitions:

**Filter**

The whole string that makes up a particular filter (for example, `*.tmp|*.temp` or `/folderA|/folderB`).

Filters are made up of patterns delimited with a pipe (|). You don’t need a delimiter when you add patterns in the DataSync console because you add each pattern separately.

**Note**

Filters are case sensitive. For example, filter `/folderA` won’t match `/FolderA`.

**Pattern**

A pattern within a filter. For example, `*.tmp` is a pattern that’s part of the `*.tmp|*.temp` filter.

**Folders**

- All filters are relative to the source location path. For example, suppose that you specify `/my_source/` as the source path when you create your source location and task and specify the include filter `/transfer_this/`. In this case, DataSync transfers only the directory `/my_source/transfer_this/` and its contents.
- To specify a folder directly under the source location, include a forward slash (/) in front of the folder name. In the example preceding, the pattern uses `/transfer_this`, not `transfer_this`. 

• DataSync interprets the following patterns the same way and matches both the folder and its content.

/dir
/dir/

• When you are transferring data from or to an Amazon S3 bucket, DataSync treats the / character in the object key as the equivalent of a folder on a file system.

**Special characters**

Following are special characters for use with filtering.

<table>
<thead>
<tr>
<th>Special character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* (wildcard)</td>
<td>A character used to match zero or more characters. For example, /movies_folder* matches both /movies_folder and /movies_folder1.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AWS DataSync User Guide
Configuring what DataSync transfers

- `.snapshot`
  This directory is typically used for storing point-in-time snapshots of a storage system's files or directories.
- `/aws-datasync` and `/awssync`
  DataSync creates these directories in your location to help facilitate your transfer.
- `/zfs`
  You might see this directory for Amazon FSx for OpenZFS locations.

Adding exclude filters

To create a transfer task with an exclude filter in the DataSync console, specify a list of patterns in the Data transfer configuration section under Exclude patterns. For example, to exclude the temporary folders named `temp` or `tmp`, you can specify `*/temp` in the Exclude patterns text box, choose Add patterns and then specify `*/tmp` in the second text box. To add more patterns to the filter, choose Add pattern.

When you're using the AWS Command Line Interface (AWS CLI), single quotation marks (`'`) are required around the filter and a `|` (pipe) is used as a delimiter. For this example, you would specify `'*/temp|*/tmp'`:

```bash
aws datasync create-task
 --source-location-arn 'arn:aws:datasync:region:account-id:location/location-id'
 --destination-location-arn 'arn:aws:datasync:region:account-id:location/location-id'
 --excludes FilterType=SIMPLE_PATTERN,Value='*/temp|*/tmp'
```

After you create a task, you can still add or remove patterns from the exclude filter. Your changes are applied to future runs of the task.

When you start a task, you can also modify the exclude filter patterns.

Including data in a transfer

Include filters define files, folders, and objects that DataSync transfers when you run a task. You can configure include filters when you create, edit, or start a task.

To create a task with an include filter, choose the Specific files and folders option, and then specify a list of patterns to include under Include patterns.

DataSync scans and transfers only files and folders that match the include filters. For example, to include a subset of your source folders, you might specify `/important_folder_1|important_folder_2`.

After you have created a task, you can edit the task configuration to add or remove patterns from the include filter. Any changes that you make are applied to future executions of the task.

When you run a task, you can modify the include filter patterns by using the Start with overrides option. Any changes that you make are applied only to that execution of the task.

You can also use the AWS CLI to create or edit an include filter. The following example shows the CLI command. Take note of the quotation marks (`'`) around the filter and the `|` (pipe) that's used as a delimiter.

```bash
aws datasync start-task-execution
 --task-arn 'arn:aws:datasync:region:account-id:task/task-id'
 --includes FilterType=SIMPLE_PATTERN,Value='/important_folder1|important_folder2'
```
Note
Include filters support the wildcard (*) character only as the rightmost character in a pattern. For example, /documents*/code* is supported, but *.txt isn’t.

Example filters
The following examples show common filters you can use with DataSync.

Note
There are limits to how many characters you can use in a filter. For more information, see DataSync task quotas (p. 202).

Exclude some folders from your source location
In some cases, you might exclude folders in your source location to not copy them to your destination location. For example, if you have temporary work-in-progress folders, you can use something like the following filter:

*/.temp

To exclude folders with similar content (such as /reports2021 and /reports2022), you can use an exclude filter like the following:

/reports*

To exclude folders at any level in the file hierarchy, you can use an exclude filter like the following.

*/folder-to-exclude-1|*/folder-to-exclude-2

To exclude folders at the top level of the source location, you can use an exclude filter like the following.

/top-level-folder-to-exclude-1|/top-level-folder-to-exclude-2

Include a subset of the folders on your source location
In some cases, your source location might be a large share and you need to transfer a subset of the folders under the root. To include specific folders, start a task execution with an include filter like the following.

/folder-to-transfer/*

Exclude specific file types
To exclude certain file types from the transfer, you can create a task execution with an exclude filter such as *.temp.

Transfer individual files you specify
To transfer a list of individual files, start a task execution with an include filter like the following:

"/folder/subfolder/file1.txt|/folder/subfolder/file2.txt|/folder/subfolder/file2.txt"

Setting bandwidth limits for your AWS DataSync task
You can configure network bandwidth limits for your AWS DataSync task and each of its executions.

Limiting bandwidth for a task
Set a bandwidth limit when creating, editing, or starting a task.
Using the DataSync console

The following instructions describe how to configure a bandwidth limit for your task when you're creating it.

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks, and then choose Create task.
3. Configure your task's source and destination locations.

   For more information, see Where can I transfer my data with AWS DataSync? (p. 69).

4. For Set bandwidth limit, choose one of the following:
   - Select Use available to use all of the available network bandwidth for each task execution.
   - Select Set bandwidth limit (MiB/s) and enter the maximum bandwidth that you want DataSync to use for each task execution.

Using the DataSync API

You can configure a task's bandwidth limit by using the BytesPerSecond parameter with any of the following operations:

- CreateTask
- UpdateTask
- StartTaskExecution

Throttling bandwidth for a task execution

You can modify the bandwidth limit for a running or queued task execution.

Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the navigation pane, expand Data transfer, then choose Tasks.
3. Choose the task and then select History to view the task's executions.
4. Choose the task execution that you want to modify and then choose Edit.
5. In the dialog box, choose one of the following:
   - Select Use available to use all of the available network bandwidth for the task execution.
   - Select Set bandwidth limit (MiB/s) and enter the maximum bandwidth that you want DataSync to use for the task execution.
6. Choose Save changes.

   The new bandwidth limit takes effect within 60 seconds.

Using the DataSync API

You can modify the bandwidth limit for a running or queued task execution by using the BytesPerSecond parameter with the UpdateTaskExecution operation.

Scheduling your AWS DataSync task

You can set up your AWS DataSync task to periodically transfer data between locations.
A scheduled task automatically runs at a frequency that you configure with a minimum interval of 1 hour. For example, the following screenshot shows a configuration that runs a task every Sunday and Wednesday at 12:00 PM UTC.

![Schedule - optional](image)

You can also execute a task schedule using a cron expression specified in UTC time. For example, configure a task to run on every Sunday and Wednesday at 12:00 PM by using the following cron expression.

```
0 12 ? * SUN,WED *
```

![Schedule - optional](image)

**Important**

Even with a cron expression, you can't schedule a task to run at an interval faster than 1 hour.

For detailed information about schedule expressions syntax, see [Schedule expressions for rules](#) in the Amazon CloudWatch User Guide.

**Configuring a task schedule**

You can configure the frequency of the task execution by using the DataSync console or API. When you create or edit a task, the following options are available for **Frequency** in the console:

- Choose **Not Scheduled** if you don't want to schedule your task to run periodically.
Tagging your tasks

- Choose **Hourly** and choose the minute in the hour that the task should run. The task runs every hour on the specified minute.
- Choose **Daily** and enter the UTC time that you want the task to run, in the format HH:MM. This task runs every day at the specified time.
- Choose **Weekly** and the day of the week and enter the UTC time the task should run, in the format HH:MM. This task runs every week on the specified day at the specified time.
- Choose **Days of the week**, choose the specific day or days, and enter the UTC time that the task should run in the format HH:MM. This task runs on the days and the time that you specified.
- Choose **Custom** if you want to use a custom cron expression to run your task, with a minimum interval of 1 hour. Then enter your expression in the **Cron expression** box.

For detailed information about schedule expressions, see [Schedule expressions for rules](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Schedule-expression-reference.html) in the *Amazon CloudWatch User Guide*.

### Changing a task schedule

You can configure scheduling when you initially create a task (p. 138), or you can edit a task schedule after a task is created. Use the following procedure to configure a schedule after you have created a task.

**To change a task schedule**

2. On the navigation pane, expand **Data transfer**, then choose **Tasks**.
3. Choose the task that you want to change.
4. For **Actions**, choose **Edit** to open the **Edit tasks** page and expand **Schedule (optional)**.
5. In the **Schedule (optional)** section, configure your task to run on a new schedule.
6. For **Frequency**, configure how frequently you want the task to run, with a minimum interval of 1 hour.

For frequency configurations options, see [Configuring a task schedule (p. 146)](https://docs.aws.amazon.com/AmazonDataSync/latest/DeveloperGuide/Task-Schedule-Configure.html).

### Tagging your AWS DataSync tasks

**Tags** are key-value pairs that help you manage, filter, and search for your AWS DataSync resources. You can add up to 50 tags to each DataSync task and task execution.

For example, you might create a task for a large data migration and tag the task with the key **Project** and value **Large Migration**. To further organize the migration, you could tag one run of the task with the key **Transfer Date** and value **May 2021** (subsequent task executions might be tagged **June 2021**, **July 2021**, and so on).

**Tagging your task**

You can tag your DataSync task only when creating the task.

**Using the DataSync console**

2. In the left navigation pane, expand **Data transfer**, then choose **Tasks**, and then choose **Create task**.
3. Configure your task's source and destination locations.

   For more information, see [Where can I transfer my data with AWS DataSync? (p. 69)](https://docs.aws.amazon.com/AmazonDataSync/latest/DeveloperGuide/Source-and-Target-Location.html).
4. On the **Configure settings** page, choose **Add tag** to tag your task.
Using the AWS CLI

1. Copy the following create-task command:

   ```bash
 aws datasync create-task \
 --source-location-arn 'arn:aws:datasync:region:account-id:location/source-location-id' \
 --destination-location-arn 'arn:aws:datasync:region:account-id:location/destination-location-id' \
 --tags Key=tag-key,Value=tag-value
   ```

2. Specify the following parameters in the command:

   - `--source-location-arn` – Specify the Amazon Resource Name (ARN) of the source location in your transfer.
   - `--destination-location-arn` – Specify the ARN of the destination location in your transfer.
   - `--tags` – Specify the tags that you want to apply to the task.

   For more than one tag, separate each key-value pair with a space.

3. (Optional) Specify other parameters that make sense for your transfer scenario.

   For a list of `--options`, see the `create-task` command.

4. Run the `create-task` command.

   You get a response that shows the task that you just created.

   ```json
 {
 "TaskArn": "arn:aws:datasync:us-east-2:123456789012:task/task-abcdef01234567890"
 }
   ```

   To view the tags you added to this task, you can use the `list-tags-for-resource` command.

Tagging your task execution

You can tag each run of your DataSync task.

If your task already has tags, remember the following about using tags with task executions:

- If you start your task with the console, its user-created tags are applied automatically to the task execution. However, system-created tags that begin with `aws:` are not applied.
- If you start your task with the DataSync API or AWS CLI, its tags are not applied automatically to the task execution.

Using the DataSync console

To add, edit, or remove tags from a task execution, you must start the task with overriding options.

2. In the left navigation pane, expand `Data transfer`, then choose `Tasks`.
3. Choose the task.
4. Choose `Start`, then choose one of the following options:
   - `Start with defaults` – Applies any tags associated with your task.
   - `Start with overriding options` – Allows you to add, edit, or remove tags for this particular task execution.
Using the AWS CLI

1. Copy the following start-task-execution command:

   ```bash
 aws datasync start-task-execution \
 --task-arn 'arn:aws:datasync:region:account-id:task/task-id' \
 --tags Key=tag-key,Value=tag-value
   ```

2. Specify the following parameters in the command:

   • `--task-arn` – Specify the ARN of the task that you want to start.
   • `--tags` – Specify the tags that you want to apply to this specific run of the task.

   For more than one tag, separate each key-value pair with a space.

3. (Optional) Specify other parameters that make sense for your situation.

   For more information, see the `start-task-execution` command.

4. Run the `start-task-execution` command.

   You get a response that shows the task execution that you just started.

   ```json
 {
 "TaskExecutionArn": "arn:aws:datasync:us-east-2:123456789012:task/task-abcdef01234567890"
 }
   ```

   To view the tags you added to this task, you can use the `list-tags-for-resource` command.

### Starting your AWS DataSync task

Once you create your AWS DataSync transfer task, you can start moving data. Each run of a task is called a task execution.

When you start your task, DataSync performs a recursive directory listing to discover all the files, objects, and associated metadata in the transfer's source and destination locations. DataSync identifies differences between the locations and determines what to copy, a process that usually takes between a few minutes and a few hours.

**Important**

If you're planning to transfer data to or from an Amazon S3 location, review how DataSync can affect your S3 request charges (p. 87) and the DataSync pricing page before you begin.

### Running multiple tasks

There are scenarios where you may want to run multiple DataSync tasks. For example, you may be copying data on a recurring basis or migrating a lot of files incrementally (something you can do with task filtering (p. 141)).

Remember the following about running multiple tasks:

• Tasks run in a series (first in, first out). If you run the same task more than once, by default each execution goes into a queue. If you start a task twice, for instance, the second task execution won't start until the first one finishes.

• You can run separate tasks at the same time, but these tasks will be queued if they're using the same DataSync agent.
Starting your task

Once you've created your task, you can begin moving data right away.

Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks.
3. Choose the task that you want to run.
   Make sure that the task has an Available status. You also can select multiple tasks.
4. Choose Actions and then choose one of the following options:
   - **Start** – Runs the task (or tasks if you selected more than one).
   - **Start with overriding options** – Allows you to modify some of your task settings before you begin moving data. When you're ready, choose Start.
5. Choose See execution details to view details about the running task execution.

Using the DataSync API

You can start your task by using the StartTaskExecution operation. Use the DescribeTaskExecution operation to get details about the running task execution.

Once started, you can check the task execution's status (p. 152) as DataSync moves your data. You also can throttle the task execution's bandwidth (p. 145) if needed.

Canceling your AWS DataSync task

You can stop any running or queued AWS DataSync task.

To cancel a task by using the console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks.
3. Select the **Task ID** for the running task that you want to monitor.
   The task status should be Running.
4. Choose History to view the task's executions.
5. Select the task execution that you want to stop, and then choose **Stop**.
6. In the dialog box, choose **Stop**.

To cancel a running or queued task by using the DataSync API, see CancelTaskExecution.

Deleting your AWS DataSync task

If you no longer need an AWS DataSync task, you can delete it and its related AWS resources.

Prerequisites

When you run a task, DataSync automatically creates and manages network interfaces (p. 20) for data transfer traffic. When you delete a task, you also delete its related network interfaces as long as you have the following permissions:
AWS DataSync User Guide

Task statuses

- ec2:DeleteNetworkInterface
- ec2:DescribeNetworkInterfaces
- ec2:ModifyNetworkInterfaceAttribute

These permissions are available in the AWS managed policy AWSDataSyncFullAccess. For more information, see AWS managed policies for AWS DataSync (p. 185).

Deleting the task

Once you delete a task, you can't restore it.

Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks.
3. Select the task that you want to delete.
4. Choose Actions, then choose Delete.
5. In the dialog box, choose Delete.

Using the AWS CLI

1. Copy the following delete-task command:

   ```bash
 aws datasync delete-task \
 --task-arn "task-to-delete"
   ```

2. For the --task-arn parameter, specify the Amazon Resource Name (ARN) of the task you're deleting (for example, `arn:aws:datasync:us-east-2:123456789012:task/task-012345678abcd0123`).
3. Run the delete-task command.

AWS DataSync task statuses

There are statuses to help you understand if your AWS DataSync task is ready to run, in progress, or having an issue.

Task statuses

When you create an AWS DataSync task, you might see these statuses.

<table>
<thead>
<tr>
<th>Console status</th>
<th>API status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>AVAILABLE</td>
<td>The task is ready to start moving data.</td>
</tr>
<tr>
<td>Running</td>
<td>RUNNING</td>
<td>The data transfer is in progress.</td>
</tr>
<tr>
<td>Unavailable</td>
<td>UNAVAILABLE</td>
<td>A DataSync agent used by the task is offline.</td>
</tr>
<tr>
<td>Queued</td>
<td>QUEUED</td>
<td>Another task is running using the same agent. DataSync runs tasks in series (first in, first out). For more information, see Running multiple tasks (p. 149).</td>
</tr>
</tbody>
</table>
Task execution statuses

When you start a DataSync task, you might see these statuses.

<table>
<thead>
<tr>
<th>Console status</th>
<th>API status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queueing</td>
<td>QUEUED</td>
<td>This is the first phase of a task execution if there is another task running and it's using the same agent. For more information, see Running multiple tasks (p. 149).</td>
</tr>
<tr>
<td>Launching</td>
<td>LAUNCHING</td>
<td>This is the first phase of a task execution if there is no other task running and using the same agent or if queueing isn't enabled. At this point, DataSync is initializing the task execution. This status usually goes quickly, but can take up to a few minutes.</td>
</tr>
<tr>
<td>Preparing</td>
<td>PREPARING</td>
<td>At this point, DataSync is computing which files need to be transferred. The time that this phase takes is proportional to the number of files in the source location. It usually takes between a few minutes to a few hours, depending on both the source and destination file systems and the performance of these file systems. For more information, see Starting your AWS DataSync task (p. 149).</td>
</tr>
<tr>
<td>Transferring</td>
<td>TRANSFERRING</td>
<td>DataSync performs the actual data transfer. While the DataSync is transferring files, the number of bytes and files that are transferred is updated in real time.</td>
</tr>
<tr>
<td>Verifying</td>
<td>VERIFYING</td>
<td>You see this status if your DataSync task is configured to perform a data integrity check at the end of the transfer. Depending on how you've configured data verification (p. 138), this can take a significant amount of time on very large volumes.</td>
</tr>
<tr>
<td>Success</td>
<td>SUCCESS</td>
<td>You see this status if the data transfer is successful.</td>
</tr>
<tr>
<td>Error</td>
<td>ERROR</td>
<td>You see this status if the data transfer fails.</td>
</tr>
</tbody>
</table>

Example AWS DataSync task scenarios

The following sections walk you through how to create AWS DataSync tasks for different transfer scenarios.

Creating a task to transfer data between self-managed storage and AWS

If you have previously created a task and want to create additional tasks, use the following procedure.

To create a task

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks, and then choose Create task.
3. On the Configure source location page, choose Create new location and configure a new location if you want to use a new location for your source. Provide the configuration settings and choose
Next. For instructions on how to create a location, see Where can I transfer my data with AWS DataSync? (p. 69).

If you want to use a source location that you previously created, choose Choose existing location, choose your source location from the list, and then choose Next.

For step-by-step instruction, see Create a source location for AWS DataSync (p. 33).

Creating a task to transfer between in-cloud locations

Use the following instructions to set up the DataSync agent on an Amazon EC2 instance for data transfers. The examples in this section cover these use cases:

• Transferring data from a cloud file system to another cloud file system or Amazon S3 (p. 39) – Transfer data from Amazon EFS to Amazon EFS, from self-managed NFS to EFS, or to Amazon S3.
• Transferring data from Amazon S3 to AWS file systems (p. 40) – Transfer data from Amazon S3 to Amazon EFS, or from Amazon S3 to self-managed NFS.

Creating a task to transfer from in-cloud NFS to in-cloud NFS or Amazon S3

Use the following instructions to transfer data from an in-cloud NFS file system to AWS. To perform this transfer, the DataSync agent must be located in the same AWS Region and same AWS account where the file system is deployed. This type of transfer includes transfers from EFS to EFS, transfers from self-managed NFS to Amazon EFS, and transfers to Amazon S3. For information about how in-cloud NFS to in-cloud NFS or Amazon S3 works, see Transferring data from a cloud file system to another cloud file system or Amazon S3 (p. 39).

Note
Deploy the agent in the AWS Region and AWS account where the source EFS or self-managed NFS file system resides.

Deploying your DataSync agent as an Amazon EC2 instance to read files from in-cloud

To deploy the DataSync agent as an Amazon EC2 instance

1. From the AWS account where the source EFS resides, launch the agent by using your Amazon Machine Image (AMI) from the Amazon EC2 launch wizard. Use the following URL to launch the AMI.


   In the URL, replace the source-efs-or-nfs-region and ami-id with your own.

   After the AMI launches, the Choose an Instance Type appears on the Amazon EC2 console. For a list of AMI IDs by AWS Region, see Deploy your agent on Amazon EC2 (p. 27).

2. Choose one of the recommended instance types for your use case, and choose Next: Configure Instance Details. For the recommended instance types, see Amazon EC2 instance requirements (p. 11).

3. On the Configure Instance Details page, do the following:

   a. For Network, choose the VPC where your source EFS or NFS is located.
   b. Choose a value for Auto-assign Public IP. If you want your instance to be accessible from the public internet, set Auto-assign Public IP to Enable. Otherwise, set Auto-assign Public IP to Disable. If a public IP address isn't assigned, activate the agent in your VPC using its private IP address.
When you transfer files from an in-cloud NFS, to increase performance, we recommend that you choose the Placement Group where your NFS server resides.

4. Choose Next: Add Storage. The agent doesn't require additional storage, so you can skip this step and choose Next: Add tags.

5. (Optional) On the Add Tags page, you can add tags to your Amazon EC2 instance. When you're finished on the page, choose Next: Configure Security Group.

6. On the Configure Security Group page, do the following:
   a. Make sure that the selected security group allows inbound access to HTTP port 80 from the web browser that you plan to use to activate the agent.
   b. Make sure that the security group of source EFS or NFS allows inbound traffic from the agent. In addition, make sure that the agent allows outbound traffic to the source EFS or NFS. The traffic goes through the standard NFS port, 2049.

For the complete set of network requirements for DataSync, see AWS DataSync network requirements (p. 12).

7. Choose Review and Launch to review your configuration, then choose Launch to launch your instance. Remember to use a key pair that's accessible to you. A confirmation page appears and indicates that your instance is launching.

8. Choose View Instances to close the confirmation page and return to the Amazon EC2 instances screen. When you launch an instance, its initial state is pending. After the instance starts, its state changes to running. At this point, it's assigned a public Domain Name System (DNS) name and IP address, which can be found in the Descriptions tab.

9. If you set Auto-assign Public IP to Enable, choose your instance and note the public IP address in the Description tab. You use this IP address later to connect to your sync agent.

   If you set Auto-assign Public IP to Disable, launch or use an existing instance in your VPC to activate the agent. In this case, you use the private IP address of the sync agent to activate the agent from this instance in the VPC.

Creating a task to transfer data from Amazon EFS or self-managed storage

Next, you create a task to transfer data.

Note
Create the task in the AWS Region and AWS account where the destination EFS or Amazon S3 bucket resides.

To create a task

1. Open the DataSync console in the AWS Region where your destination is located.

   The destination Amazon EFS or Amazon S3 bucket must be in the same AWS account.

2. In the left navigation pane, choose Agents, then choose Create agent.

3. In the Create agent wizard's Activation section, enter the Amazon EC2 instance's IP address for Agent address, and then choose Get key. This IP address can be private or public. For more details, see step 9 of To deploy the DataSync agent as an Amazon EC2 instance (p. 153).

   Your browser connects to this IP address to get a unique activation key from your agent. This key securely associates your agent with your AWS account. This IP address doesn't need to be accessible from outside your network, but must be accessible from your browser.

4. Enter an agent name that you can easily identify later, and choose Create agent when done. You can optionally add tags to the agent.
5. In the left navigation pane, expand **Data transfer**, then choose **Tasks**.
6. Choose **On-premises to AWS**, and choose **Next** to open the **Source configuration** page.
7. On the **Configure source location** page, choose **Create a new location** and choose **Network File System (NFS)** or **Server Message Block (SMB)** for the location type. Fill in the following options:
   - For agent, choose your newly created agent from the list.
   - If you are copying from EFS, do the following:
     - For **NFS Server**, enter the **DNS name** of your source EFS.
     - For **Mount path**, enter / (forward slash) and choose **Next**.
   - If you are copying from self-managed NFS or SMB, do the following:
     - For **NFS Server**, enter the private DNS or IP address of your source NFS.
     - For **Mount path**, enter a path that's exported by your NFS server and choose **Next**.
8. Choose **Create new location**. This is the destination location for your data transfer. Fill in the following options:
   - If you are copying to EFS, do the following:
     - For **Location type**, choose **EFS**.
     - Choose your destination EFS.
     - For **Mount path**, enter / (forward slash).
     - For **Subnet** and **Security groups**, use the default settings and choose **Next**.
   - If you are copying to Amazon S3, do the following:
     - For **Location type**, choose Amazon S3 bucket.
     - For **Amazon S3 bucket**, choose your source Amazon S3 bucket.
     - For **Folder**, choose a folder prefix to use for the transfer, or you can keep it blank.
     - Choose your destination Amazon S3 bucket and an optional folder. DataSync can generate an AWS Identity and Access Management (IAM) role to access your bucket, or you can create on your own.
9. Choose **Next**, and optionally name the task and add tags.
10. Choose or create an Amazon CloudWatch Logs log group at the bottom of the page, and choose **Next**. For more information on working with CloudWatch Logs, see [Allowing DataSync to upload logs to CloudWatch log groups](p. 169).
11. Review the settings on the next page, and choose **Create task**.
12. Choose **Start** to run the task that you just created to start transferring data.

### Creating a task to transfer from Amazon S3 to in-cloud NFS

Use the following instructions to transfer data from Amazon S3 to an in-cloud NFS file system that's located in the same AWS account and AWS Region where the agent is deployed. This approach includes transfers from Amazon S3 to EFS, or from Amazon S3 to self-managed NFS. The following diagram illustrates this type of transfer. For information about how Amazon S3 to in-cloud NFS works, see [Transferring data from Amazon S3 to AWS file systems](p. 40).

#### Deploying the DataSync agent on an Amazon EC2 instance to write to your destination location

First, deploy the DataSync agent on an Amazon EC2 instance in the AWS Region and AWS account where the destination EFS file system or self-managed NFS server resides.

**To deploy the agent**
- Launch the agent from the selected AMI by using the Amazon EC2 launch wizard. To do so, use the following URL.
Creating a task to transfer data from Amazon S3

Next, you create a task to transfer data.

**Note**
Create the task in the AWS account and AWS Region where the source Amazon S3 bucket resides.

**To create a task that transfers data from Amazon S3 to EFS or a self-managed NFS or SMB**

1. Open the DataSync console in the AWS Region where your source Amazon S3 bucket is located.
2. Choose **Create agent**.
3. If you set **Auto-assign Public IP** to **Enable**, choose your instance and note the public IP address in the **Description** tab. You use this IP address later to connect to your sync agent.
   
   If you set **Auto-assign Public IP** to **Disable**, launch or use an existing instance in your VPC to activate the agent. In this case, you use the private IP address of the sync agent to activate the agent from this instance in the VPC.
4. In the **Create agent** wizard, for **Agent address** enter the Amazon EC2 instance's IP address (private or public, as explained in step 3), and then choose **Get key**.
   
   Your browser connects to this IP address to get a unique activation key from your agent. This key securely associates your agent with your AWS account. This IP address doesn't need to be accessible from outside your network, but must be accessible from your browser.
5. Choose an agent name that you can easily identify later. You can optionally add tags. When you're done, choose **Create agent**.
6. Choose **AWS to on-premises**, and choose **Next**.
7. Choose **Create new location**:
   
   - For **Location type**, choose Amazon S3 bucket.
   - For **Amazon S3 bucket**, choose your source Amazon S3 bucket.
   - For **Folder**, choose a folder prefix for the transfer, or you can keep it blank.

   DataSync can generate an IAM role to access your bucket, or you can create on your own.
8. Choose **Next**. Choose **Create new location**, choose **NFS or SMB** for **Location type**, and choose the agent that you just created from the list.
9. a. If you are copying to EFS, do the following:
   
   - For **NFS Server**, enter the **DNS name** of your source EFS.
   - For **Mount path**, enter / (forward slash) and choose **Next**.
   b. If you are copying to in-cloud NFS, do the following:
   
   - For **NFS Server**, enter the private DNS or IP address of your source NFS.
   - For **Mount path**, enter a path that is exported by your NFS server. For more information, see **Creating an NFS location (p. 236)**.
10. Choose **Next**, and optionally name the task and add tags.

In the URL, replace the AWS Region and AMI ID with your own. You are redirected to the **Choose an Instance Type** page on the Amazon EC2 console. For a list of AMI IDs by AWS Region, see **Deploy your agent on Amazon EC2 (p. 27)**.
11. Choose or create a CloudWatch Logs log group at the bottom of the page, and choose Next. For more information on working with CloudWatch Logs, see Allowing DataSync to upload logs to CloudWatch log groups (p. 169).

12. Review the settings on the next page, and choose Create task.

13. Choose Start to run the task that you just created to transfer data, and then choose Start again on the Start Task page.
Monitoring AWS DataSync activity

Monitoring is important for maintaining the reliability and performance of your AWS DataSync transfer and storage discovery activities. We recommend that you collect monitoring data so that you can more easily debug errors if one occurs. Before you start monitoring DataSync, however, create a monitoring plan that includes answers to the following questions:

- What are your monitoring goals?
- What resources will you monitor?
- How often will you monitor these resources?
- What monitoring tools will you use?
- Who will perform the monitoring tasks?
- Who should be notified when something goes wrong?

AWS provides various services and tools for monitoring DataSync. You can configure some of these to do the monitoring for you, but some require manual intervention. We recommend that you automate monitoring tasks as much as possible.

Topics
- Monitoring your AWS DataSync transfers with task reports (p. 158)
- Monitoring AWS DataSync with Amazon CloudWatch (p. 168)
- Logging AWS DataSync API calls with AWS CloudTrail (p. 172)
- Monitoring AWS DataSync events by using Amazon EventBridge (p. 174)
- Manual monitoring tools for AWS DataSync (p. 175)

Monitoring your AWS DataSync transfers with task reports

A task report can provide summary and detailed reports of everything that AWS DataSync attempts to transfer, skip, verify, and delete during a task execution (p. 9). Task reports can help you verify and audit your data transfers and assist with chain-of-custody processes for your files. Even if you're migrating millions of files, a task report can identify specific files that you might have trouble moving.

You can customize the level of detail in your task report. For example, you might want only a summary of your transfer. You also can get a complete list of everything that DataSync attempted to transfer, skip, verify, and delete.

Summary only task reports

A report that's only a summary of a task includes the following details:

- The AWS account that ran the task execution
- The source and destination locations
- The total number of files that were skipped, transferred, verified, and deleted
- The total bytes (logical and physical) that were transferred
- If the task execution was completed, was canceled, or encountered an error
- The start and end times (including the total time of the transfer)
- The task settings (such as bandwidth limits, data verification, and filters)
Standard task reports

A standard task report includes a summary (p. 158) of your transfer plus the following information.

Topics
- Transferred data (p. 159)
- Skipped data (p. 159)
- Verified data (p. 160)
- Deleted data (p. 160)
- Report level (p. 160)

Transferred data

A list of files, objects, and directories that DataSync attempted to transfer during your task. A report with transferred data includes the following details:

- The paths for the transferred data
- What was transferred (content, metadata, or both)
- The metadata, which includes the data type, content size (objects and files only), and more
- The time when an item was transferred
- The object version (if the destination is an Amazon S3 bucket that has versioning enabled)
- If something was overwritten in the destination
- Whether the transfer was successful

Note
When moving data between S3 buckets, the prefix that you specify in your source location (p. 80) can show up in your report (or in Amazon CloudWatch logs), even if that prefix doesn't exist as an object in your destination location. (In the DataSync console, you might also notice this prefix showing up as skipped or verified data.)

Skipped data

A list of files, objects, and directories that DataSync discovered in your source location but didn't attempt to transfer. The reasons DataSync skips data can depend on several factors, such as how you configure your task. Here are some examples:

- There's a file in your source location that already exists in your destination. The file in the source hasn't been modified since the last time you ran your task, and since you're only transferring data that has changed (p. 139), DataSync skips that file and doesn't transfer it.
- An object that exists in your source and destination locations changes in your source. When you run your task, DataSync skips this object in your destination because your task doesn't overwrite data in the destination (p. 139).
- DataSync skips a directory in your source location that it can't read.

If this happens and isn't expected, check your access permissions and make sure that DataSync can read what was skipped.

A report with skipped data includes the following details:

- The paths for skipped data
- The time when an item was skipped
• The reason it was skipped

**Verified data**

A list of files, objects, and directories that DataSync attempted to verify the integrity of during your transfer. A report with verified data includes the following details:

• The paths for verified data
• The time when an item was verified
• The reason for the verification failure (if any)
• The source and destination SHA256 checksums (files only)

**Note**

Sometimes certain data isn't reflected in a task report. When you configure your task to verify only the data that's transferred (p. 138), DataSync doesn't verify directories in some situations or files that fail to transfer. In either case, DataSync doesn't include any unverified data in the report.

**Deleted data**

A list of files, directories, and objects that were deleted if you configure your task (p. 139) to delete data in the destination location that isn't in the source. A report with deleted data includes the following details:

• The paths for deleted data
• Whether something was successfully deleted
• The time when something was deleted

**Report level**

With standard task reports, you can choose one of the following report levels:

• Errors only
• Successes and errors (which is essentially a list of everything that happened during your transfer)

For example, you might want to see which files DataSync skipped successfully during your transfer and which ones it didn't. Files that DataSync skipped successfully might be ones that you purposely want DataSync to exclude because they already exist in your destination location. However, a skipped error for instance might indicate that DataSync doesn't have the right permissions to read a file.

**Example task report**

The level of detail in your task report is up to you. Here's an example report for a transferred object named **object1.txt** that has the following configuration:

• **Report type** – Standard
• **Report level** – Successes and errors

**Note**

Reports use the ISO-8601 standard for the timestamp format. Times are in UTC and measured in nanoseconds. This behavior differs from how some other task report metrics are measured.
For example, task execution details, such as TransferDuration and VerifyDuration, are measured in milliseconds.

```
{
 "TaskExecutionId": "exec-abcddefgh12345678",
 "Transferred": [
 "RelativePath": "/object1.txt",
 "SrcMetadata": {
 "Type": "Regular",
 "ContentSize": 6,
 "Mtime": "2022-01-07T16:59:26.136114671Z",
 "Uid": 0,
 "Gid": 0,
 "Mode": "0644"
 },
 "Overwrite": "False",
 "DstS3VersionId": "jtqRtX3jN4J2G8k0sFSGYK1f35KqpAVP",
 "TransferTimestamp": "2022-01-07T16:59:45.747270957Z",
 "TransferType": "CONTENT_AND_METADATA",
 "TransferStatus": "SUCCESS"
]
}
```

## Prerequisites

Before you can create a task report, you must do the following.

### Topics

- [Create an S3 bucket for your task report](#)
- [Allow DataSync to upload a task report to your S3 bucket](#)

## Create an S3 bucket for your task report

If you don't already have one, [create an S3 bucket](#) where DataSync can upload your task report. Reports are stored in the S3 Standard storage class.

We recommend the following for this bucket:

- If you're planning to transfer data to an S3 bucket, don't use the same bucket for your task report if you [disable the Keep deleted files option](#). Otherwise, DataSync will delete any previous task reports each time you execute a task since those reports don't exist in your source location.
- To avoid a complex access permissions setup, make sure that your task report bucket is in the same AWS account and Region as your DataSync transfer task.

## Allow DataSync to upload a task report to your S3 bucket

You must configure an AWS Identity and Access Management (IAM) role that allows DataSync to upload a task report to your S3 bucket.

In the DataSync console, you can create an IAM role that in most cases automatically includes the permissions to upload a task report to your bucket. Keep in mind that this automatically generated role might not meet your needs from a least-privilege standpoint. This role also won't work if your bucket is encrypted with a customer managed AWS Key Management Service (AWS KMS) key (SSE-KMS). In these cases, you can create the role manually as long as the role does at least the following:

- [Prevents the cross-service confused deputy problem](#) in the role's trusted entity.
The following full example shows how you can use the `aws:SourceArn` and `aws:SourceAccount` global condition context keys to prevent the confused deputy problem with DataSync.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "datasync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "StringLike": {
 "aws:SourceArn": "arn:aws:datasync:us-east-2:123456789012:*"
 }
 }
 }
]
}
```

- Allows DataSync to upload a task report to your S3 bucket.

The following example does this by including the `s3:PutObject` action only for a specific prefix (`reports/`) in your bucket.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["s3:PutObject"],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::your-task-reports-bucket/reports/*"
 }
]
}
```

- If your S3 bucket is encrypted with a customer managed SSE-KMS key, the key's policy must include the IAM role that DataSync uses to access the bucket.

For more information, see Accessing S3 buckets using server-side encryption (p. 82).

## Creating a summary only task report

You can configure a task report that includes a summary only (p. 158) when creating your DataSync task, starting your task, or updating your task.

The following steps show how to configure a summary only task report when creating a task.

### Using the DataSync console

2. In the left navigation pane, expand Data transfer, then choose Tasks, and then choose Create task.
3. Configure your task's source and destination locations.

For more information, see Where can I transfer my data with AWS DataSync? (p. 69).
4. Scroll down to the **Task report** section. For **Report type**, choose **Summary only**.

5. For **S3 bucket for reports**, choose an S3 bucket where you want DataSync to upload your task report.

   **Tip**
   If you're planning to transfer data to an S3 bucket, don’t use the same bucket for your task report if you disable the **Keep deleted files** option (p. 139). Otherwise, DataSync will delete any previous task reports each time you execute a task since those reports don't exist in your source location.

6. For **Folder**, enter a prefix to use for your task report when DataSync uploads the report to your S3 bucket (for example, `reports/`).

   Make sure to include the appropriate delimiter character at the end of your prefix. This character is usually a forward slash (`/`). For more information, see [Organizing objects by using prefixes](https://docs.aws.amazon.com/AmazonS3/latest/userguide/organizing-objects-by-prefix.html) in the *Amazon S3 User Guide*.

7. For **IAM role**, do one of the following:

   - Choose **Autogenerate** to have DataSync automatically create an IAM role with the permissions that are required to access the S3 bucket.

     If DataSync previously created an IAM role for this S3 bucket, that role is chosen by default.

   - Choose a custom IAM role that you created.

     In some cases, you might need to create the role yourself. For more information, see [Allow DataSync to upload a task report to your S3 bucket](https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-upload-task-report.html) (p. 161).

   **Important**
   If your S3 bucket is encrypted with a customer managed SSE-KMS key, the key's policy must include the IAM role that DataSync uses to access the bucket.

   For more information, see [Accessing S3 buckets using server-side encryption](https://docs.aws.amazon.com/AmazonS3/latest/userguide/accessing-amazon-s3-buckets-using-ssm.html) (p. 82).

8. Finish creating your task, and then start the task (p. 149) to begin transferring your data.

When your transfer is complete, you can view your task report (p. 167).

### Using the AWS CLI

1. Copy the following `create-task` AWS Command Line Interface (AWS CLI) command:

   ```bash
 aws datasync create-task \
 --source-location-arn arn:aws:datasync:us-east-1:123456789012:location/loc-12345678abcdefgh \
 --destination-location-arn arn:aws:datasync:us-east-1:123456789012:location/loc-abcdefgh12345678 \
 --task-report-config '{
 "Destination":{
 "S3":{
 "Subdirectory":"reports/",
 "S3BucketArn":"arn:aws:s3:::your-task-reports-bucket",
 "BucketAccessRoleArn":"arn:aws:iam::123456789012:role/bucket-iam-role"
 }
 },
 "OutputType":"SUMMARY_ONLY"
 }'

 For the `--source-location-arn` parameter, specify the Amazon Resource Name (ARN) of the source location in your transfer. Replace `us-east-1` with the appropriate AWS Region, replace `123456789012` with the appropriate AWS account number, and replace `12345678abcdefgh` with the appropriate source location ID.
3. For the --destination-location-arn parameter, specify the ARN of the destination location in your transfer. Replace `us-east-1` with the appropriate AWS Region, replace `123456789012` with the appropriate AWS account number, and replace `abcdefgh12345678` with the appropriate destination location ID.

4. For the --task-report-config parameter, do the following:
 - **Subdirectory** – Replace `reports/` with the prefix in your S3 bucket where you want DataSync to upload your task reports.

 Make sure to include the appropriate delimiter character at the end of your prefix. This character is usually a forward slash (`/`). For more information, see Organizing objects by using prefixes in the Amazon S3 User Guide.
 - **S3BucketArn** – Specify the ARN of the S3 bucket where you want to upload your task report.

 Tip

 If you're planning to transfer data to an S3 bucket, don't use the same bucket for your task report if you disable the Keep deleted files option (p. 139). Otherwise, DataSync will delete any previous task reports each time you execute a task since those reports don't exist in your source location.
 - **BucketAccessRoleArn** – Specify the IAM role that allows DataSync to upload a task report to your S3 bucket.

 For more information, see Allow DataSync to upload a task report to your S3 bucket (p. 161).

 Important

 If your S3 bucket is encrypted with a customer managed SSE-KMS key, the key's policy must include the IAM role that DataSync uses to access the bucket.

 For more information, see Accessing S3 buckets using server-side encryption (p. 82).
 - **OutputType** – Specify `SUMMARY_ONLY`.

 For more information, see Summary only task reports (p. 158).

5. Run the `create-task` command to create your task.

 You get a response like the following that shows you the ARN of the task that you created. You will need this ARN to run the `start-task-execution` command.

   ```json
   {
   "TaskArn": "arn:aws:datasync:us-east-1:123456789012:task/task-12345678abcdefgh"
   }
   ```

6. Copy the following `start-task-execution` command.

   ```bash
   aws datasync-task-report start-task-execution \
   --task-arn arn:aws:datasync:us-east-1:123456789012:task/task-12345678abcdefgh
   ```

7. For the --task-arn parameter, specify the ARN of the task that you're starting. Use the ARN that you received from running the `create-task` command.

8. Run the `start-task-execution` command.

When your transfer is complete, you can view your task report (p. 167).

Creating a standard task report

You can configure a standard task report (p. 159) when creating your DataSync task, starting your task, or updating your task.

The following steps show how to configure a standard task report when creating a task.
Using the DataSync console

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks, and then choose Create task.
3. Configure your task's source and destination locations.

 For more information, see Where can I transfer my data with AWS DataSync? (p. 69).

5. For Report level, choose one of the following:
 - Errors only – Your task report includes only issues with what DataSync tried to transfer, skip, verify, and delete.
 - Successes and errors – Your task report includes what DataSync successfully transferred, skipped, verified, and deleted and what it didn't.
 - Custom – Allows you to choose whether you want to see errors only or successes and errors for specific aspects of your task report.

 For example, you can choose Successes and errors for the transferred files list but Errors only for the rest of the report.

6. If you're transferring to an S3 bucket that uses object versioning, keep Include Amazon S3 object versions selected if you want your report to include the new version for each transferred object.

7. For S3 bucket for reports, choose an S3 bucket where you want DataSync to upload your task report.

 Tip
 If you're planning to transfer data to an S3 bucket, don't use the same bucket for your task report if you disable the Keep deleted files option (p. 139). Otherwise, DataSync will delete any previous task reports each time you execute a task since those reports don't exist in your source location.

8. For Folder, enter a prefix to use for your task report when DataSync uploads the report to your S3 bucket (for example, reports/). Make sure to include the appropriate delimiter character at the end of your prefix. This character is usually a forward slash (/). For more information, see Organizing objects by using prefixes in the Amazon S3 User Guide.

9. For IAM role, do one of the following:
 - Choose Autogenerate to have DataSync automatically create an IAM role with the permissions that are required to access the S3 bucket.

 If DataSync previously created an IAM role for this S3 bucket, that role is chosen by default.
 - Choose a custom IAM role that you created.

 In some cases, you might need to create the role yourself. For more information, see Allow DataSync to upload a task report to your S3 bucket (p. 161).

 Important
 If your S3 bucket is encrypted with a customer managed SSE-KMS key, the key's policy must include the IAM role that DataSync uses to access the bucket. For more information, see Accessing S3 buckets using server-side encryption (p. 82).

10. Finish creating your task and start the task (p. 149) to begin transferring your data.

When your transfer is complete, you can view your task report (p. 167).

Using the AWS CLI

1. Copy the following create-task command:
aws datasync create-task
 --source-location-arn arn:aws:datasync:us-east-1:123456789012:location/loc-12345678abcdefgh
 --destination-location-arn arn:aws:datasync:us-east-1:123456789012:location/loc-abcddefgh12345678
 --task-report-config '{
 "Destination": {
 "S3": {
 "Subdirectory": "reports/",
 "S3BucketArn": "arn:aws:s3:::your-task-reports-bucket",
 "BucketAccessRoleArn": "arn:aws:iam::123456789012:role/bucket-iam-role"
 }
 },
 "OutputType": "STANDARD",
 "ReportLevel": "level-of-detail",
 "ObjectVersionIds": "include-or-not"
 }'

2. For the --source-location-arn parameter, specify the ARN of the source location in your transfer. Replace us-east-1 with the appropriate AWS Region, replace 123456789012 with the appropriate AWS account number, and replace 12345678abcdefgh with the appropriate source location ID.

3. For the --destination-location-arn parameter, specify the ARN of the destination location in your transfer. Replace us-east-1 with the appropriate AWS Region, replace 123456789012 with the appropriate AWS account number, and replace abcddefgh12345678 with the appropriate destination location ID.

4. For the --task-report-config parameter, do the following:

 • Subdirectory – Replace reports/ with the prefix in your S3 bucket where you want DataSync to upload your task reports. Make sure to include the appropriate delimiter character at the end of your prefix. This character is usually a forward slash (/). For more information, see Organizing objects by using prefixes in the Amazon S3 User Guide.

 • S3BucketArn – Specify the ARN of the S3 bucket where you want to upload your task report.

 Tip
 If you’re planning to transfer data to an S3 bucket, don’t use the same bucket for your task report if you disable the Keep deleted files option (p. 139). Otherwise, DataSync will delete any previous task reports each time you execute a task since those reports don’t exist in your source location.

 • BucketAccessRoleArn – Specify the IAM role that allows DataSync to upload a task report to your S3 bucket.

 For more information, see Allow DataSync to upload a task report to your S3 bucket (p. 161).

 Important
 If your S3 bucket is encrypted with a customer managed SSE-KMS key, the key’s policy must include the IAM role that DataSync uses to access the bucket.

 For more information, see Accessing S3 buckets using server-side encryption (p. 82).

 • OutputType – Specify STANDARD report.

 For more information, see Standard task reports (p. 159) Types of task reports.

 • (Optional) ReportLevel – Specify whether you want ERRORS_ONLY (the default) or SUCCESSES_AND_ERRORS in your report.

 • (Optional) ObjectVersionIds – If you’re transferring to an S3 bucket that uses object versioning, specify NONE if you don’t want to include the new version for each transferred object in the report.

 By default, this option is set to INCLUDE.
• (Optional) Overrides – Customize the ReportLevel of a particular aspect of your report.

For example, you might want to see SUCCESSES_AND_ERRORS for the list of what DataSync deletes in your destination location, but you want ERRORS_ONLY for everything else. In this example, you would add the following Overrides option to the --task-report-config parameter:

```
"Overrides":{
  "Deleted":{
      "ReportLevel":"SUCCESSES_AND_ERRORS"
  }
}
```

If you don't use Overrides, your entire report uses the ReportLevel that you specify.

5. Run the `create-task` command to create your task.

You get a response like the following that shows you the ARN of the task that you created. You will need this ARN to run the `start-task-execution` command.

```
{
  "TaskArn": "arn:aws:datasync:us-east-1:123456789012:task/task-12345678abcdefgh"
}
```

6. Copy the following `start-task-execution` command.

```
aws datasync-task-report start-task-execution
  --task-arn arn:aws:datasync:us-east-1:123456789012:task/task-12345678abcdefgh
```

7. For the --task-arn parameter, specify the ARN of the task you're running. Use the ARN that you received from running the `create-task` command.

8. Run the `start-task-execution` command.

When your transfer is complete, you can view your task report (p. 167).

Viewing your task report

DataSync creates a task report each time that you run your task. When your task is completed, you can find the related task report in your S3 bucket. Your task reports are organized under prefixes that include the IDs of your tasks and their executions.

To help locate task reports in your S3 bucket, use these examples:

- **Summary only task report** – `reports-prefix/Summary-Reports/task-id-folder/task-execution-id-folder`
- **Standard task report** – `reports-prefix/Detailed-Reports/task-id-folder/task-execution-id-folder`

Because task reports are in .json format, you can visualize your reports by using AWS services such as AWS Glue, Amazon Athena, and Amazon QuickSight. For more information about visualizing your task reports, see the AWS Storage Blog.

Limitations

- Individual task reports can't exceed 5 MB. If you're copying a large number of files, your task report might be split into multiple reports.
Monitoring AWS DataSync with Amazon CloudWatch

You can monitor AWS DataSync by using Amazon CloudWatch, which collects and processes raw data from DataSync into readable, near real-time metrics. These statistics are retained for a period of 15 months.

By default, DataSync metrics data is automatically sent to CloudWatch in 5-minute intervals. For more information, see What is Amazon CloudWatch? in the Amazon CloudWatch User Guide.

CloudWatch metrics for DataSync

Amazon CloudWatch provides metrics that you can use to get information about DataSync performance and to troubleshoot issues. To see CloudWatch metrics for DataSync, you can use the following tools:

- The CloudWatch console
- The CloudWatch CLI
- The CloudWatch API
- The DataSync console (on the task execution's details page)

For more information, see Using Amazon CloudWatch metrics in the Amazon CloudWatch User Guide.

DataSync metrics use the aws/datasync namespace and provide metrics for the following dimensions:

- **AgentId** – The unique ID of the agent.
- **TaskId** – The unique ID of the task. It takes the form of task-<01234567890abcdef>.

The aws/datasync namespace includes the following metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BytesCompressed</td>
<td>The physical number of bytes transferred over the network after compression was applied. In most cases, this number is less than BytesTransferred unless the data isn't compressible. Unit: Bytes</td>
</tr>
<tr>
<td>BytesPreparedDestination</td>
<td>The total number of bytes of data that are prepared at the destination location.</td>
</tr>
<tr>
<td>BytesPreparedSource</td>
<td>The total number of bytes of data that are prepared at the source location.</td>
</tr>
<tr>
<td>BytesTransferred</td>
<td>The total number of bytes that are involved in the transfer. For the number of bytes sent over the network, see BytesCompressed. Unit: Bytes</td>
</tr>
</tbody>
</table>
Allowing DataSync to upload logs to CloudWatch log groups

DataSync requires sufficient permissions to send logs to a CloudWatch log group. When you create a task by using the console, DataSync can many times create an AWS Identity and Access Management (IAM) resource policy with the correct permissions for you.
If you want to use an existing CloudWatch log group or if you want to create your tasks programmatically, you must create this IAM resource policy yourself.

The following example is a resource policy that grants these permissions.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "DataSyncLogsToCloudWatchLogs",
      "Effect": "Allow",
      "Action": [
        "logs:PutLogEvents",
        "logs:CreateLogStream"
      ],
      "Principal": {
        "Service": "datasync.amazonaws.com"
      },
      "Condition": {
        "ArnLike": {
          "aws:SourceArn": [
            "arn:aws:datasync:region:account-id:task/**"
          ],
        },
        "StringEquals": {
          "aws:SourceAccount": "account-id"
        }
      },
    }
  ]
}
```

The policy uses Condition statements to help ensure that only DataSync tasks from the specified account have access to the specified CloudWatch log group. We recommend using the `aws:SourceArn` and `aws:SourceAccount` global condition context keys in these Condition statements to protect against the confused deputy problem. For more information, see [Cross-service confused deputy prevention](p. 192).

To specify the DataSync task or tasks, replace `region` with the Region code for the AWS Region where the tasks are located (for example, `us-west-2`), and replace `account-id` with the AWS account ID of the account that contains the tasks. To specify the CloudWatch log group, replace the same values. You can also modify the Resource statement to target specific log groups. For more information about using SourceArn and SourceAccount, see [Global condition keys](p. 170) in the IAM User Guide.

To apply the policy, save this policy statement to a file on your local computer. Then run the following AWS CLI command to apply the resource policy. To use this example command, replace `full-path-to-policy-file` with the path to the file that contains your policy statement.

```
aws logs put-resource-policy --policy-name trust-datasync --policy-document file://full-path-to-policy-file
```

Note

Run this command by using the same AWS account and AWS Region where you activated your DataSync agent.

For more information, see [Working with log groups and log streams](p. 117) in the Amazon CloudWatch Logs User Guide.
Configuring logging for your DataSync transfer task

You can publish details about your DataSync transfer task to a CloudWatch log group.

Before you begin

DataSync needs permission to upload logs to a CloudWatch log group. You can set up this permission through an IAM resource policy in a couple different ways:

• When you create your task by using the console, DataSync can create a log group and the associated resource policy for you. DataSync can also apply this resource policy for you.
• If you want to use an existing log group, see an example of how to create a resource policy yourself (p. 169).

Using the DataSync console

The following instructions describe how to configure CloudWatch logging when creating a task. You also can configure CloudWatch logging when editing a task.

1. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
2. In the left navigation pane, expand Data transfer, then choose Tasks, and then choose Create task.
3. Configure your task's source and destination locations. For more information, see Where can I transfer my data with AWS DataSync? (p. 69).
4. On the Configure settings page, give your task a name, configure your task execution, configure your data transfer, set a schedule, and optionally add tags, and configure a task report.
5. Scroll down to the Logging section. For Log level, choose one of the following options:
 • Log basic information such as transfer errors – Publish only basic information (such as transfer errors) to CloudWatch.
 • Log all transferred objects and files – Publish log records to CloudWatch Logs for all files or objects that the task copies and performs integrity checks for.
 • Do not send logs to CloudWatch
6. For CloudWatch log group, specify a log group that DataSync has permission to upload logs to by doing one of the following:
 • Choose Autogenerate to automatically create a log group that allows DataSync to upload logs to it.
 • Choose an existing log group in your current AWS Region.

 If you choose an existing log group, make sure that you have a resource policy (p. 169) that allows DataSync to upload logs to the log group.

Using the DataSync API

You can configure CloudWatch logging for your task by using the CloudWatchLogGroupArn parameter with any of the following operations:

• CreateTask
• UpdateTask
Logging AWS DataSync API calls with AWS CloudTrail

AWS DataSync is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in DataSync. CloudTrail captures all API calls for DataSync as events. The calls that are captured include calls from the DataSync console and code calls to DataSync API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for AWS DataSync. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can determine the request that was made to AWS DataSync, the IP address from which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Working with DataSync information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in AWS DataSync, that activity is recorded in a CloudTrail event along with other AWS service events in Event history. You can view, search, and download recent events in your AWS account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for AWS DataSync, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all AWS Regions in the same AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more information, see the following:

- Overview for creating a trail
- CloudTrail supported services and integrations
- Configuring Amazon SNS notifications for CloudTrail
- Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from multiple accounts

All DataSync actions are logged by CloudTrail. (For more information, see the DataSync API reference.)

For example, calls to the CreateAgent, CreateTask, and ListLocations operations generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity information helps you determine the following:

- Whether the request was made with root or AWS Identity and Access Management (IAM) credentials.
- Whether the request was made with temporary security credentials for a role or federated user.
- Whether the request was made by another AWS service.

For more information, see CloudTrail userIdentity element in the AWS CloudTrail User Guide.
Understanding DataSync log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you specify. CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, the request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateTask operation.

```
{
  "eventVersion": "1.05",
  "userIdentity": {
    "type": "IAMUser",
    "principalId": "1234567890abcdef0",
    "arn": "arn:aws:iam::123456789012:user/user1",
    "accountId": "123456789012",
    "accessKeyId": "access key",
    "userName": "user1",
    "sessionContext": {
      "attributes": {
        "mfaAuthenticated": "false",
        "creationDate": "2018-12-13T14:56:46Z"
      }
    },
    "invokedBy": "signin.amazonaws.com"
  },
  "eventTime": "2018-12-13T14:57:02Z",
  "eventSource": "datasync.amazonaws.com",
  "eventName": "CreateTask",
  "awsRegion": "ap-southeast-1",
  "sourceIPAddress": "192.0.2.1",
  "userAgent": "signin.amazonaws.com",
  "requestParameters": {
    "name": "MyTask-NTIzMzY1",
    "tags": [],
    "destinationLocationArn": "arn:aws:datasync:ap-southeast-1:123456789012:location/loc-abcd01234567890",
    "options": {
      "bytesPerSecond": -1,
      "verifyMode": "POINT_IN_TIME_CONSISTENT",
      "uid": "INT_VALUE",
      "posixPermissions": "PRESERVE",
      "mtime": "PRESERVE",
      "gid": "INT_VALUE",
      "preserveDevices": "NONE",
      "preserveDeletedFiles": "REMOVE",
      "atime": "BEST_EFFORT"
    },
    "sourceLocationArn": "arn:aws:datasync:ap-southeast-1:123456789012:location/loc-021345abcdef6789"
  },
  "responseElements": {
    "taskArn": "arn:aws:datasync:ap-southeast-1:123456789012:task/task-1234567890abdec0"
  },
  "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE111111",
  "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE222222",
  "eventType": "AwsApiCall",
  "recipientAccountId": "123456789012"
}
```
Monitoring AWS DataSync events by using Amazon EventBridge

Amazon EventBridge events describe changes in DataSync resources. You can set up rules to match these events and route them to one or more target functions or streams. Events are emitted on a best-effort basis.

DataSync transfer events

The following EventBridge events are available for DataSync transfers.

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent state changes</td>
<td></td>
</tr>
<tr>
<td>Online</td>
<td>The agent is configured properly and is available to use. This status is the normal running status for an agent.</td>
</tr>
<tr>
<td>Offline</td>
<td>The agent's virtual machine (VM) is turned off, or the agent is in an unhealthy state and has been out of contact with the service for 5 minutes or longer. When the issue that caused the unhealthy state is resolved, the agent returns to ONLINE status.</td>
</tr>
<tr>
<td>Location state changes</td>
<td></td>
</tr>
<tr>
<td>Adding</td>
<td>DataSync is adding a location.</td>
</tr>
<tr>
<td>Available</td>
<td>The location is created and is available to use.</td>
</tr>
<tr>
<td>Task state changes</td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>The task was created and is ready to start.</td>
</tr>
<tr>
<td>Running</td>
<td>The task is in progress and functioning properly.</td>
</tr>
<tr>
<td>Unavailable</td>
<td>The task isn't configured properly and can't be used. You might see this event when an agent associated with the task goes offline.</td>
</tr>
<tr>
<td>Queued</td>
<td>Another task is running and using the same agent. DataSync runs tasks in series (first in, first out).</td>
</tr>
<tr>
<td>Task execution state changes</td>
<td></td>
</tr>
<tr>
<td>Queueing</td>
<td>DataSync is waiting for another task that's using the same agent to finish.</td>
</tr>
<tr>
<td>Launching</td>
<td>DataSync is initializing the task execution.</td>
</tr>
</tbody>
</table>
Agent state changes

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparing</td>
<td>DataSync is determining which files need to be transferred.</td>
</tr>
<tr>
<td>Transferring</td>
<td>DataSync is performing the actual transfer of your data.</td>
</tr>
<tr>
<td>Verifying</td>
<td>DataSync performs a full data and metadata integrity verification to ensure that the data in your destination is an exact copy of your source.</td>
</tr>
<tr>
<td>Success</td>
<td>The transfer is successful.</td>
</tr>
<tr>
<td>Error</td>
<td>The transfer failed.</td>
</tr>
</tbody>
</table>

DataSync Discovery events

The following EventBridge events are available for DataSync Discovery.

Storage system state changes

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage System Connectivity Status Change</td>
<td>The connection between your DataSync agent and your on-premises storage system changed. For details, see your CloudWatch logs.</td>
</tr>
</tbody>
</table>

Discovery job state changes

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery Job State Change</td>
<td>The status of your discovery job changed. For more information, see discovery job statuses (p. 66).</td>
</tr>
<tr>
<td>Discovery Job Expiration Soon</td>
<td>Your discovery job expires soon. This includes any information the discovery job collected about your on-premises storage system. Before the job expires, you can export collected data by using the DescribeStorageSystemResources and DescribeStorageSystemResourceMetrics operations.</td>
</tr>
</tbody>
</table>

Manual monitoring tools for AWS DataSync

You can track your AWS DataSync transfers from the console or the command line.

Monitoring your transfer by using the DataSync console

You can monitor your DataSync transfer by using the console, which provides real-time metrics such as data transferred, data and file throughput, and data compression.
To monitor your transfer by using the DataSync console

1. After you [start your DataSync task](p. 150), choose See execution details.
2. View metrics about your transfer.

Monitoring your transfer by using the AWS CLI

You can monitor your DataSync transfer by using the AWS Command Line Interface (AWS CLI).

Copy the following describe-task-execution command. To use this example command, replace the user input placeholders with your own information.

```bash
aws datasync describe-task-execution \
--task-execution-arn 'arn:aws:datasync:region:account-id:task/task-id/execution/task-execution-id'
```

This command returns information about a task execution similar to that shown following.

```json
{
  "BytesCompressed": 3500,
  "BytesTransferred": 5000,
  "BytesWritten": 5000,
  "EstimatedBytesToTransfer": 5000,
  "EstimatedFilesToDelete": 10,
  "EstimatedFilesToTransfer": 100,
  "FilesDeleted": 10,
  "FilesSkipped": 0,
  "FilesTransferred": 100,
  "FilesVerified": 100,
  "Result": {
    "ErrorCode": "??????",
    "ErrorDetail": "??????",
    "PrepareDuration": 100,
    "PrepareStatus": "SUCCESS",
    "TransferDuration": 60,
    "TransferStatus": "AVAILABLE",
    "VerifyDuration": 30,
    "VerifyStatus": "SUCCESS"
  },
  "StartTime": 1532660733.39,
  "Status": "SUCCESS",
  "OverrideOptions": {
    "Atime": "BEST_EFFORT",
    "BytesPerSecond": "1000",
    "Gid": "NONE",
    "Mtime": "PRESERVE",
    "PosixPermissions": "PRESERVE",
    "PreserveDevices": "NONE",
    "PreserveDeletedFiles": "PRESERVE",
    "Uid": "NONE",
    "VerifyMode": "POINT_IN_TIME_CONSISTENT"
  },
  "TaskExecutionArn": "arn:aws:datasync:us-east-1:111222333444:task/task-aaabbbccccdddf/execution/exec-1234abcd1234abcd1",
  "TaskReportConfig": {
    "Destination": {
      "S3": {
        "BucketAccessRoleArn": "arn:aws:iam::111222333444:role/my-datasync-role",
        "S3BucketArn": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/**",
        "Subdirectory": "reports"
      }
    }
  }
}
```
• If the task execution succeeds, the value of **Status** changes to **SUCCESS**. For information about what the response elements mean, see [DescribeTaskExecution](p. 382).

• If the task execution fails, the result sends error codes that can help you troubleshoot issues. For information about the error codes, see [TaskExecutionResultDetail](p. 512).

Monitoring your transfer by using the **watch** utility

To monitor the progress of your task in real time from the command line, you can use the standard Unix **watch** utility. Task execution duration values are measured in milliseconds.

The **watch** utility doesn't recognize the DataSync alias. The following example shows how to invoke the CLI directly. To use this example command, replace the **user input placeholders** with your own information.

```bash
# pass '-n 1' to update every second and '-d' to highlight differences
$ watch -n 1 -d \ "aws datasync describe-task-execution --task-execution-arn
 'arn:aws:datasync:region:account-id:task/task-id/execution/task execution-id'"
```

Monitor your transfer by using the watch utility

To monitor the progress of your task in real time from the command line, you can use the standard Unix **watch** utility. Task execution duration values are measured in milliseconds.

The **watch** utility doesn't recognize the DataSync alias. The following example shows how to invoke the CLI directly. To use this example command, replace the **user input placeholders** with your own information.

```bash
# pass '-n 1' to update every second and '-d' to highlight differences
$ watch -n 1 -d \ "aws datasync describe-task-execution --task-execution-arn
 'arn:aws:datasync:region:account-id:task/task-id/execution/task execution-id'"
```
Security in AWS DataSync

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this as security of the cloud and security in the cloud:

- **Security of the cloud** – AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors regularly test and verify the effectiveness of our security as part of the AWS compliance programs. To learn about the compliance programs that apply to AWS DataSync, see AWS services in scope by compliance program.
- **Security in the cloud** – Your responsibility is determined by the AWS service that you use. You are also responsible for other factors including the sensitivity of your data, your company's requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using DataSync. The following topics show you how to configure DataSync to meet your security and compliance objectives. You also learn how to use other AWS services that help you to monitor and secure your DataSync resources.

Topics
- Data protection in AWS DataSync (p. 178)
- Identity and access management in AWS DataSync (p. 181)
- Compliance validation for AWS DataSync (p. 200)
- Resilience in AWS DataSync (p. 200)
- Infrastructure security in AWS DataSync (p. 201)

Data protection in AWS DataSync

AWS DataSync securely transfers data between self-managed storage systems and AWS storage services and also between AWS storage services. How your storage data is encrypted in transit depends in part on the locations involved in the transfer.

After the transfer completes, data is encrypted at rest by the system or service that's storing the data (not DataSync).

Topics
- AWS DataSync encryption in transit (p. 178)
- AWS DataSync encryption at rest (p. 180)
- Internetwork traffic privacy (p. 181)

AWS DataSync encryption in transit

Your storage data (including metadata) is encrypted in transit, but how it's encrypted throughout the transfer depends on your source and destination locations.
When connecting with a location, DataSync uses the most secure options provided by that location's data access protocol. For example, when connecting with a file system using Server Message Block (SMB), DataSync uses the security features provided by SMB.

Network connections in a transfer

DataSync requires three network connections to copy data: a connection to read data from a source location, another to transfer data between locations, and one more to write data to a destination location.

The following diagram is an example of the network connections that DataSync uses to transfer data from an on-premises storage system to an AWS storage service. To understand where the connections happen and how data is protected as it moves through each connection, use the accompanying table.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Network connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reading data from the source location</td>
<td>DataSync connects by using the storage system's protocol for accessing data (for example, SMB or the Amazon S3 API). For this connection, data is protected by using the security features of the storage system.</td>
</tr>
<tr>
<td>2</td>
<td>Transferring data between locations</td>
<td>For this connection, DataSync encrypts all network traffic with Transport Layer Security (TLS) 1.3.</td>
</tr>
<tr>
<td>3</td>
<td>Writing data to the destination location</td>
<td>Like it did with the source location, DataSync connects by using the storage system's protocol for accessing data. Data is again protected by using the security features of the storage system.</td>
</tr>
</tbody>
</table>

Learn how your data is encrypted in transit when DataSync connects to the following AWS storage services:
TLS ciphers

When transferring data between locations, DataSync uses different TLS ciphers. The TLS cipher that DataSync uses depends on the type of endpoint that's used to activate your DataSync agent.

Public or VPC endpoints

For these endpoints, DataSync uses one of the following TLS ciphers:

- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519)
- TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519)
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519)

FIPS endpoints

For FIPS endpoints, DataSync uses the following TLS cipher:

- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519)

AWS DataSync encryption at rest

Because AWS DataSync is a transfer service, it generally doesn't manage your storage data at rest. The storage services and systems that DataSync supports are responsible for protecting data in that state. However, there is some service-related data that DataSync manages at rest.

What's encrypted?

The only data that DataSync handles at rest relates to the information that it discovers about your on-premises storage system and the details needed to complete your transfer. DataSync stores the following data with full at-rest encryption in Amazon DynamoDB:

- Information collected about your on-premises storage system (if you use DataSync Discovery). This information is also stored with full at-rest encryption in Amazon S3.
- Task configurations (for example, details about the locations in your transfer).
- User credentials that allow your DataSync agent to authenticate with a location. These credentials are encrypted by using your agent's public keys. The agent can decrypt these keys as needed with its private keys.

For more information, see DynamoDB encryption at rest in the Amazon DynamoDB Developer Guide.

Information collected by DataSync Discovery

DataSync Discovery stores and manages the data that it collects about your on-premises storage system for up to 60 days. You can use Amazon EventBridge to notify you when that expiration date is approaching. For more information, see DataSync Discovery events (p. 175).
When you remove an on-premises storage system resource from DataSync Discovery, you permanently delete any associated discovery jobs, collected data, and recommendations.

Key management

You can't manage the encryption keys that DataSync uses to store information in DynamoDB related to running your task. This information includes your task configurations and the credentials that agents use to authenticate with a storage location.

What's not encrypted?

Though DataSync doesn't control how your storage data is encrypted at rest, we still recommend configuring your locations with the highest level of security that they support. For example, you can encrypt objects with Amazon S3 managed encryption keys (SSE-S3) or AWS Key Management Service (AWS KMS) keys (SSE-KMS).

Learn more about how AWS storage services encrypt data at rest:

- Amazon EFS
- Amazon FSx for Windows File Server
- Amazon FSx for Lustre
- Amazon FSx for OpenZFS
- Amazon FSx for NetApp ONTAP
- Amazon S3

Internetwork traffic privacy

We recommend configuring your source and destination locations with the highest level of security that each one supports. When connecting to a location, AWS DataSync works with the most secure version of the data access protocol that the storage system uses. Additionally, consider limiting subnet traffic to known protocols and services.

DataSync secures the connection between locations—including between AWS accounts, AWS Regions, and Availability Zones—by using Transport Layer Security (TLS) 1.3.

Identity and access management in AWS DataSync

AWS uses security credentials to identify you and to grant you access to your AWS resources. You can use features of AWS Identity and Access Management (IAM) to allow other users, services, and applications to use your AWS resources fully or in a limited way, without sharing your security credentials.

By default, IAM identities (users, groups, and roles) don't have permission to create, view, or modify AWS resources. To allow users, groups, and roles to access AWS DataSync resources and interact with the DataSync console and API, we recommend that you use an IAM policy that grants them permission to use the specific resources and API actions that they will need. You then attach the policy to the IAM identity that requires access. For an overview of the basic elements for a policy, see [Access management for AWS DataSync](#)

Topics

- [Access management for AWS DataSync](#)
- [AWS managed policies for AWS DataSync](#)
- [IAM customer managed policies for AWS DataSync](#)
- [Using service-linked roles for AWS DataSync](#)
Access management for AWS DataSync

Every AWS resource is owned by an AWS account. Permissions to create or access a resource are governed by permissions policies. An account administrator can attach permissions policies to AWS Identity and Access Management (IAM) identities. Some services (such as AWS Lambda) also support attaching permissions policies to resources.

Note
An account administrator is a user with administrator privileges in an AWS account. For more information, see IAM best practices in the IAM User Guide.

Topics
- DataSync resources and operations (p. 182)
- Understanding resource ownership (p. 182)
- Managing access to resources (p. 183)
- Specifying policy elements: Actions, effects, resources, and principals (p. 184)
- Specifying conditions in a policy (p. 185)

DataSync resources and operations

In DataSync, the primary resources are agent, location, task, and task execution. These resources have unique Amazon Resource Names (ARNs) associated with them, as shown in the following table.

<table>
<thead>
<tr>
<th>Resource type</th>
<th>ARN format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent ARN</td>
<td>arn:aws:datsync:region:account-id:agent/agent-id</td>
</tr>
<tr>
<td>Location ARN</td>
<td>arn:aws:datsync:region:account-id:location/location-id</td>
</tr>
<tr>
<td>Task ARN</td>
<td>arn:aws:datsync:region:account-id:task/task-id</td>
</tr>
<tr>
<td>Task execution ARN</td>
<td>arn:aws:datsync:region:account-id:task/task-id/execution/exec-id</td>
</tr>
</tbody>
</table>

To grant permissions for specific API operations, such as creating a task, DataSync defines a set of actions that you can specify in a permissions policy. An API operation can require permissions for more than one action. For a list of all the DataSync API actions and the resources that they apply to, see DataSync API permissions: Actions and resources (p. 193).

Understanding resource ownership

A resource owner is the AWS account that created the resource. That is, the resource owner is the AWS account of the principal entity (for example, an IAM role) which authenticates the request that creates the resource. The following examples illustrate how this behavior works:
• If you use the root account credentials of your AWS account to create a task, your AWS account is the
owner of the resource (in DataSync, the resource is the task).

• If you create an IAM roles in your AWS account and grant permissions to the CreateTask action to
that user, the user can create a task. However, your AWS account, to which the user belongs, owns the
task resource.

• If you create an IAM role in your AWS account with permissions to create a task, anyone who can
assume the role can create a task. Your AWS account, to which the role belongs, owns the task
resource.

Managing access to resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note
This section discusses using IAM in the context of DataSync. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What is IAM? in the
IAM User Guide. For information about IAM policy syntax and descriptions, see AWS Identity and
Access Management policy reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies) and policies
attached to a resource are referred to as resource-based policies. DataSync supports only identity-based
policies (IAM policies).

Topics
• Identity-based policies (p. 183)
• Resource-based policies (p. 184)

Identity-based policies

You can manage DataSync resource access with IAM policies. These policies can help an AWS account
administrator do the following with DataSync:

• Grant permissions to create and manage DataSync resources – Create an IAM policy that allows an
IAM role in your AWS account to create and manage DataSync resources, such as agents, locations, and
tasks.

• Grant permissions to a role in another AWS account or an AWS service – Create an IAM policy that
grants permissions to an IAM role in a different AWS account or an AWS service. For example:
1. The Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in Account A.
2. The Account A administrator attaches a trust policy to the role that identifies Account B as the
principal who can assume the role.

 To grant an AWS service permissions to assume the role, the Account A administrator can specify an
 AWS service as the principal in the trust policy.
3. The Account B administrator can then delegate permissions to assume the role to any users in
 Account B. This allows anyone using the role in Account B to create or access resources in Account A.

 For more information about using IAM to delegate permissions, see Access management in the IAM
 User Guide.

The following example policy grants permissions to all List:* actions on all resources. This action is a
read-only action and doesn't allow resource modification.
Access management

Within a DataSync account, you can specify permissions for users who can access a DataSync resource by using identity-based policies (IAM policies) or by specifying resource-based permissions policies.

Identity-based policies

Identity-based policies are defined in the AWS Identity and Access Management (IAM) console or with the AWS CLI. For more information about using identity-based policies with DataSync, see AWS managed policies (p. 185) and customer managed policies (p. 187). For more information about IAM identities, see the IAM User Guide.

Resource-based policies

Other services, such as Amazon S3, support resource-based permissions policies. For example, you can attach a policy to an Amazon S3 bucket to manage access permissions to that bucket. However, DataSync doesn't support resource-based policies.

Specifying policy elements: Actions, effects, resources, and principals

For each DataSync resource (see DataSync API permissions: Actions and resources (p. 193)), the service defines a set of API operations (see Actions). To grant permissions for these API operations, DataSync defines a set of actions that you can specify in a policy. For example, for the DataSync resource, the following actions are defined: CreateTask, DeleteTask, and DescribeTask. Performing an API operation can require permissions for more than one action.

The following are the most basic policy elements:

- **Resource** – In a policy, you use an Amazon Resource Name (ARN) to identify the resource to which the policy applies. For DataSync resources, you can use the wildcard character (*) in IAM policies. For more information, see DataSync resources and operations (p. 182).

- **Action** – You use action keywords to identify resource operations that you want to allow or deny. For example, depending on the specified Effect element, the datasync:CreateTask permission allows or denies the user permissions to perform the DataSync CreateTask operation.

- **Effect** – You specify the effect when the user requests the specific action—this effect can be either Allow or Deny. If you don't explicitly grant access to (Allow) a resource, access is implicitly denied. You can also explicitly deny access to a resource, which might do to make sure that a user cannot access it, even if a different policy grants that user access. For more information, see Authorization in the IAM User Guide.

- **Principal** – In identity-based policies (IAM policies), the user that the policy is attached to is the implicit principal. For resource-based policies, you specify the user, account, service, or other entity that you want to receive permissions (applies to resource-based policies only). DataSync doesn't support resource-based policies.

To learn more about IAM policy syntax and descriptions, see AWS Identity and Access Management policy reference in the IAM User Guide.

For a table showing all of the DataSync API actions, see DataSync API permissions: Actions and resources (p. 193).

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "AllowAllListActionsOnAllResources",
            "Effect": "Allow",
            "Action": [
                "datasync:List*"
            ],
            "Resource": "*"
        }
    ]
}
```
Specifying conditions in a policy

When you grant permissions, you can use the IAM policy language to specify the conditions when a policy should take effect when granting permissions. For example, you might want a policy to be applied only after a specific date. For more information about specifying conditions in policy language, see Condition in the IAM User Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific to DataSync. However, there are AWS wide condition keys that you can use as appropriate. For a complete list of AWS wide keys, see Available keys in the IAM User Guide.

AWS managed policies for AWS DataSync

To add permissions to users, groups, and roles, it's easier to use AWS managed policies than to write policies yourself. It takes time and expertise to create IAM customer managed policies that provide your team with only the permissions they need. To get started quickly, you can use our AWS managed policies. These policies cover common use cases and are available in your AWS account. For more information about AWS managed policies, see AWS managed policies in the IAM User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in AWS managed policies. Services occasionally add additional permissions to an AWS managed policy to support new features. This type of update affects all identities (users, groups, and roles) where the policy is attached. Services are most likely to update an AWS managed policy when a new feature is launched or when new operations become available. Services do not remove permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services and resources. When a service launches a new feature, AWS adds read-only permissions for new operations and resources. For a list and descriptions of job function policies, see AWS managed policies for job functions in the IAM User Guide.

AWS managed policy: AWSDataSyncReadOnlyAccess

You can attach the AWSDataSyncReadOnlyAccess policy to your IAM identities.

This policy grants read-only permissions for DataSync.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "datasync:Describe*",
        "datasync:List*",
        "ec2:DescribeSecurityGroups",
        "ec2:DescribeSubnets",
        "elasticfilesystem:DescribeFileSystems",
        "elasticfilesystem:DescribeMountTargets",
        "fsx:DescribeFileSystems",
        "iam:GetRole",
        "iam:ListRoles",
```
AWS managed policy: AWSDataSyncFullAccess

You can attach the AWSDataSyncFullAccess policy to your IAM identities.

This policy grants administrative permissions for DataSync and is required for AWS Management Console access to the service. AWSDataSyncFullAccess provides full access to DataSync API operations and the operations that describe related resources (such as Amazon S3 buckets and Amazon EFS file systems). The policy also grants permissions for Amazon CloudWatch, including creating log groups and creating or updating a resource policy.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "datasync:*",
        "ec2:CreateNetworkInterface",
        "ec2:CreateNetworkInterfacePermission",
        "ec2:DeleteNetworkInterface",
        "ec2:DescribeNetworkInterfaces",
        "ec2:DescribeSecurityGroups",
        "ec2:DescribeSubnets",
        "ec2:DescribeVpcEndpoints",
        "ec2:ModifyNetworkInterfaceAttribute",
        "fsx:DescribeFileSystems",
        "fsx:DescribeStorageVirtualMachines",
        "elasticfilesystem:DescribeAccessPoints",
        "elasticfilesystem:DescribeFileSystems",
        "elasticfilesystem:DescribeMountTargets",
        "iam:GetRole",
        "iam:ListRoles",
        "logs:CreateLogGroup",
        "logs:DescribeLogGroups",
        "logs:DescribeResourcePolicies",
        "outposts:ListOutposts",
        "s3:GetBucketLocation",
        "s3:ListAllMyBuckets",
        "s3:ListBucket",
        "s3-outposts:ListAccessPoints",
        "s3-outposts:ListRegionalBuckets"
      ],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": [
        "iam:PassRole"
      ],
      "Resource": "*",
      "Condition": {
        "StringEquals": {
          "iam:PassedToService": [186
```
Customer managed policies

In addition to AWS managed policies, you also can create your own identity-based policies for AWS DataSync and attach them to the AWS Identity and Access Management (IAM) identities that require those permissions. These are known as customer managed policies, which are standalone policies that you administer in your own AWS account.

Important
Before you begin, we recommend that you learn about the basic concepts and options for managing access to your DataSync resources. For more information, see Access management for AWS DataSync (p. 182).

When creating a customer managed policy, you include statements about DataSync operations that can be used on certain AWS resources. The following example policy has two statements (note the Action and Resource elements in each statement):

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "AllowsSpecifiedActionsOnAllTasks",
            "Effect": "Allow",
            "Action": [
                "datasync:DescribeTask",
                "datasync:ListTasks",
                "datasync:ListTasksByLocation",
                "datasync:ListTasksByTaskId",
                "datasync:ListTasksByTaskType",
                "datasync:ListTasksByTaskTypeWithDetails",
                "datasync:ListTasksByVpcEndpoint",
                "datasync:ListTasksByVpcEndpoints",
                "datasync:ListTasksByVpcEndpointsWithDetails",
                "datasync:ListTasksByVpcInterfaces",
                "datasync:ListTasksByVpcInterfacesWithDetails",
                "datasync:ListTasksByVpcInterface",
                "datasync:ListTasksByVpcInterfaceWithDetails",
                "datasync:ListTasksByVpcInterfaceWithDetails`
```
The policy's statements do the following:

- The first statement grants permissions to perform the `datasync:DescribeTask` action on certain transfer task resources by specifying an Amazon Resource Name (ARN) with a wildcard character (*).
- The second statement grants permissions to perform the `datasync:ListTasks` action on all tasks by specifying just a wildcard character (*).

Examples of customer managed policies

The following example customer managed policies grant permissions for various DataSync operations. The policies work if you're using the AWS Command Line Interface (AWS CLI) or an AWS SDK. To use these policies in the console, you must also use the managed policy `AWSDataSyncFullAccess`.

Topics

- Example 1: Create a trust relationship that allows DataSync to access your Amazon S3 bucket (p. 188)
- Example 2: Allow DataSync to read and write to your Amazon S3 bucket (p. 189)
- Example 3: Allow DataSync to upload logs to CloudWatch log groups (p. 189)

Example 1: Create a trust relationship that allows DataSync to access your Amazon S3 bucket

The following is an example of a trust policy that allows DataSync to assume an IAM role. This role allows DataSync to access an Amazon S3 bucket. To prevent the cross-service confused deputy problem (p. 192), we recommend using the `aws:SourceArn` and `aws:SourceAccount` global condition context keys in the policy.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": {
            "Service": "datasync.amazonaws.com"
         },
         "Action": "sts:AssumeRole",
         "Condition": {
            "StringEquals": {
               "aws:SourceAccount": "123456789012"
            },
            "StringLike": {
               "aws:SourceArn": "arn:aws:datasync:us-east-2:123456789012:*"
            }
         }
      }
   ]
}
```
Example 2: Allow DataSync to read and write to your Amazon S3 bucket

The following example policy grants DataSync the minimum permissions to read and write data to your S3 bucket.

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": [
        "s3:GetBucketLocation",
        "s3:ListBucket",
        "s3:ListBucketMultipartUploads"
      ],
      "Effect": "Allow",
      "Resource": "arn:aws:s3:::bucket-name"
    },
    {
      "Action": [
        "s3:AbortMultipartUpload",
        "s3:DeleteObject",
        "s3:GetObject",
        "s3:ListMultipartUploadParts",
        "s3:GetObjectTagging",
        "s3:PutObjectTagging",
        "s3:PutObject"
      ],
      "Effect": "Allow",
      "Resource": "arn:aws:s3:::bucket-name/*"
    }
  ]
}
```

Example 3: Allow DataSync to upload logs to CloudWatch log groups

DataSync requires permissions to be able to upload logs to your Amazon CloudWatch log groups. You can use CloudWatch log groups to monitor and debug your tasks.

For an example of an IAM policy that grants such permissions, see [Allowing DataSync to upload logs to CloudWatch log groups](p. 169).

Using service-linked roles for AWS DataSync

AWS DataSync uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to DataSync. Service-linked roles are predefined by DataSync and include all the permissions that the service requires to call other AWS services on your behalf.

A service-linked role makes setting up DataSync easier because you don’t have to manually add the necessary permissions. DataSync defines the permissions of its service-linked roles, and unless defined otherwise, only DataSync can assume its roles. The defined permissions include the trust policy and the permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects your DataSync resources because you can’t inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see [AWS Services That Work with IAM](p. 189) and look for the services that have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked role documentation for that service.
Service-linked role permissions for DataSync

DataSync uses the service-linked role named **AWSServiceRoleForDataSyncDiscovery** – Service-linked role used by DataSync Discovery to enable integration with other AWS services.

The AWSServiceRoleForDataSyncDiscovery service-linked role trusts the following services to assume the role:

- discovery-datasync.amazonaws.com

The role permissions policy named **AWSDatasyncDiscoveryServiceRolePolicy** allows DataSync to complete the following actions on the specified resources:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "secretsmanager:GetSecretValue"
      ],
      "Resource": [
        "arn:*:secretsmanager:*:*:secret:datasync!*"
      ],
      "Condition": {
        "StringEquals": {
          "secretsmanager:ResourceTag/aws/secretsmanager:owningService": "datasync",
          "aws:ResourceAccount": "${aws:PrincipalAccount}"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": [
        "logs:CreateLogGroup",
        "logs:CreateLogStream"
      ],
      "Resource": [
        "arn:*:logs:*:*:log-group:/aws/datasync*"
      ]
    },
    {
      "Effect": "Allow",
      "Action": [
        "logs:PutLogEvents"
      ],
      "Resource": [
        "arn:*:logs:*:*:log-group:/aws/datasync:log-stream:*"
      ]
    }
  ]
}
```

You must configure permissions to allow an IAM entity (such as a role) to create, edit, or delete a service-linked role. For more information, see [Service-linked role permissions](#) in the **IAM User Guide**.

Creating a service-linked role for DataSync

You don't need to manually create a service-linked role. When you add a storage system in the AWS Management Console, the AWS CLI, or the AWS API, DataSync creates the service-linked role for you.
If you delete this service-linked role, and then need to create it again, you can use the same process to recreate the role in your account. When you add a storage system, DataSync creates the service-linked role for you again.

You can also use the IAM console to create a service-linked role with the DataSync Discovery use case. In the AWS CLI or the AWS API, create a service-linked role with the discovery-datasync.amazonaws.com service name. For more information, see Creating a service-linked role in the IAM User Guide. If you delete this service-linked role, you can use this same process to create the role again.

Editing a service-linked role for DataSync

DataSync does not allow you to edit the AWSServiceRoleForDataSyncDiscovery service-linked role. This includes the name of the role because various entities might reference it. However, you can edit the description of the role using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for DataSync

If you no longer need to use a feature or service that requires a service-linked role, we recommend that you delete that role. That way you don’t have an unused entity that is not actively monitored or maintained. However, you must clean up the resources for your service-linked role before you can manually delete it.

Note
If the DataSync service is using the role when you try to delete the resources, then the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete DataSync resources used by the AWSServiceRoleForDataSyncDiscovery role

1. Remove the on-premises storage systems that you're using with DataSync Discovery.
2. Delete the service-linked role using IAM.

 Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForDataSyncDiscovery service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported regions for DataSync service-linked roles

DataSync supports using service-linked roles in all of the regions where the service is available. For more information, see DataSync regions and endpoints.

Granting permission to tag AWS DataSync resources during creation

Some resource-creating AWS DataSync API actions enable you to specify tags when you create the resource. You can use resource tags to implement attribute-based access control (ABAC). For more information, see What is ABAC for AWS? in the IAM User Guide.

To enable users to tag resources on creation, they must have permissions to use the action that creates the resource (such as datasync:CreateAgent or datasync:CreateTask). If tags are specified in the resource-creating action, users must also have explicit permissions to use the datasync:TagResource action.

The datasync:TagResource action is only evaluated if tags are applied during the resource-creating action. Therefore, a user that has permissions to create a resource (assuming there are no tagging
conditions) doesn't require permissions to use the datasync:TagResource action if no tags are specified in the request.

However, if the user attempts to create a resource with tags, the request fails if the user doesn't have permissions to use the datasync:TagResource action.

Example IAM policy statements

Use the following example IAM policy statements to grant TagResource permissions to users creating DataSync resources.

The following statement allows users to tag a DataSync agent when they create the agent.

```
{
  "Version": "2012-10-17",
  "Statement": [ 
    {
      "Effect": "Allow",
      "Action": "datasync:TagResource",
    }
  ]
}
```

The following statement allows users to tag a DataSync location when they create the location.

```
{
  "Version": "2012-10-17",
  "Statement": [ 
    {
      "Effect": "Allow",
      "Action": "datasync:TagResource",
      "Resource": "arn:aws:datasync:region:account-id:location/*"
    }
  ]
}
```

The following statement allows users to tag a DataSync task when they create the task.

```
{
  "Version": "2012-10-17",
  "Statement": [ 
    {
      "Effect": "Allow",
      "Action": "datasync:TagResource",
      "Resource": "arn:aws:datasync:region:account-id:task/*"
    }
  ]
}
```

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service impersonation can result in the confused deputy problem. Cross-service impersonation can occur when one service (the *calling service*) calls another service (the *called service*). The calling service can be manipulated to use its permissions to act on another customer's resources in a way it should not otherwise have permission to access. To prevent this, AWS provides tools that help you protect your data for all services with service principals that have been given access to resources in your account.
We recommend using the `aws:SourceArn` and `aws:SourceAccount` global condition context keys in resource policies to limit the permissions that AWS DataSync gives another service to the resource. If you use both global condition context keys and the `aws:SourceAccount` value contains the account ID, the `aws:SourceAccount` value and the account in the `aws:SourceArn` value must use the same account ID when used in the same policy statement. Use `aws:SourceArn` if you want only one resource to be associated with the cross-service access. Use `aws:SourceAccount` if you want any resource in that account to be associated with the cross-service use.

The value of `aws:SourceArn` must include the DataSync location ARN with which DataSync is allowed to assume the IAM role.

The most effective way to protect against the confused deputy problem is to use the `aws:SourceArn` key with the full ARN of the resource. If you don't know the full ARN or if you're specifying multiple resources, use wildcard characters (*) for the unknown portions. Here are some examples of how to do this for DataSync:

- To limit the trust policy to an existing DataSync location, include the full location ARN in the policy. DataSync will assume the IAM role only when dealing with that particular location.
- When creating an Amazon S3 location for DataSync, you don’t know the location's ARN. In these scenarios, use the following format for the `aws:SourceArn` key: `arn:aws:datasync:us-east-2:123456789012:*`. This format validates the partition (aws), account ID, and Region.

The following full example shows how you can use the `aws:SourceArn` and `aws:SourceAccount` global condition context keys in a trust policy to prevent the confused deputy problem with DataSync.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "datasync.amazonaws.com"
            },
            "Action": "sts:AssumeRole",
            "Condition": {
                "StringEquals": {
                    "aws:SourceAccount": "123456789012"
                },
                "StringLike": {
                    "aws:SourceArn": "arn:aws:datasync:us-east-2:123456789012:*
                }
            }
        }
    ]
}
```

For more example policies that show how you can use the `aws:SourceArn` and `aws:SourceAccount` global condition context keys with DataSync, see the following topics:

- [Create a trust relationship that allows DataSync to access your Amazon S3 bucket](p. 188)
- [Configure an IAM role to access your Amazon S3 bucket](p. 80)

DataSync API permissions: Actions and resources

When creating AWS Identity and Access Management (IAM) policies, this page can help you understand the relationship between AWS DataSync API operations, the corresponding actions that you can grant permissions to perform, and the AWS resources for which you can grant the permissions.
In general, here's how you add DataSync permissions to your policy:

- Specify an action in the Action element. The value includes a datasync: prefix and the API operation name. For example, datasync:CreateTask.
- Specify an AWS resource related to the action in the Resource element.

You can also use AWS condition keys in your DataSync policies. For a complete list of AWS keys, see Available keys in the IAM User Guide.

For a list of DataSync resources and their Amazon Resource Name (ARN) formats, see DataSync resources and operations (p. 182).

DataSync API operations and corresponding actions

AddStorageSystem

- **Action:** datasync:AddStorageSystem
- **Resource:** None
- **Actions:**
 - kms:Decrypt
 - iam:CreateServiceLinkedRole
- **Resource:** *

CancelTaskExecution

- **Action:** datasync:CancelTaskExecution
- **Resource:** arn:aws:datasync:region:account-id:task/task-id/execution/exec-id

CreateAgent

- **Action:** datasync:CreateAgent
- **Resource:** None

CreateLocationAzureBlob

- **Action:** datasync:CreateLocationAzureBlob
- **Resource:** arn:aws:datasync:region:account-id:agent/agent-id

CreateLocationEfs

- **Action:** datasync:CreateLocationEfs
- **Resource:** None

CreateLocationFsxLustre

- **Action:** datasync:CreateLocationFsxLustre
- **Resource:** None

CreateLocationFsxOntap

- **Action:** datasync:CreateLocationFsxOntap
- **Resource:** None
Resource: None
CreateLocationFsxOpenZfs
Action: datasync:CreateLocationFsxOpenZfs
Resource: None
CreateLocationFsxWindows
Action: datasync:CreateLocationFsxWindows
Resource: None
CreateLocationHdfs
Action: dataSync:CreateLocationHdfs
CreateLocationNfs
Action: datasync:CreateLocationNfs
CreateLocationObjectStorage
Action: dataSync:CreateLocationObjectStorage
CreateLocationS3
Action: datasync:CreateLocationS3
Resource: arn:aws:datasync:region:account-id:agent/agent-id (only for Amazon S3 on Outposts)
CreateLocationSmb
Action: datasync:CreateLocationSmb
CreateTask
Action: datasync:CreateTask
Resources:
• arn:aws:datasync:region:account-id:location/source-location-id
• arn:aws:datasync:region:account-id:location/destination-location-id
DeleteAgent
Action: datasync:DeleteAgent
DeleteLocation
Action: datasync:DeleteLocation
DeleteTask
Action: datasync:DeleteTask

DescribeAgent

Action: datasync:DescribeAgent

DescribeDiscoveryJob

Action: datasync:DescribeDiscoveryJob

DescribeLocationAzureBlob

Action: datasync:DescribeLocationAzureBlob

DescribeLocationEfs

Action: datasync:DescribeLocationEfs

DescribeLocationFsxLustre

Action: datasync:DescribeLocationFsxLustre

DescribeLocationFsxOntap

Action: datasync:DescribeLocationFsxOntap

DescribeLocationFsxOpenZfs

Action: datasync:DescribeLocationFsxOpenZfs

DescribeLocationFsxWindows

Action: datasync:DescribeLocationFsxWindows

DescribeLocationHdfs

Action: datasync:DescribeLocationHdfs

DescribeLocationNfs

Action: datasync:DescribeLocationNfs

DescribeLocationObjectStorage

Action: datasync:DescribeLocationObjectStorage

DescribeLocationS3

Action: datasync:DescribeLocationS3

Resource: arn:aws:datasync:region:account-id:location/location-id

DescribeLocationSmb

Action: datasync:DescribeLocationSmb

Resource: arn:aws:datasync:region:account-id:location/location-id

DescribeStorageSystem

Action: datasync:DescribeStorageSystem

Resource: arn:aws:datasync:region:account-id:system/storage-system-id

DescribeStorageSystemResourceMetrics

Action: datasync:DescribeStorageSystemResourceMetrics

Resource: arn:aws:datasync:region:account-id:system/storage-system-id/job/discovery-job-id

DescribeStorageSystemResources

Action: datasync:DescribeStorageSystemResources

Resource: arn:aws:datasync:region:account-id:system/storage-system-id/job/discovery-job-id

DescribeTask

Action: datasync:DescribeTask

Resource: arn:aws:datasync:region:account-id:task/task-id

DescribeTaskExecution

Action: datasync:DescribeTaskExecution

Resource: arn:aws:datasync:region:account-id:task/task-id/execution/exec-id

GenerateRecommendations

Action: datasync:GenerateRecommendations

Resource: arn:aws:datasync:region:account-id:system/storage-system-id/job/discovery-job-id

ListAgents

Action: datasync:ListAgents

Resource: None

ListDiscoveryJobs

Action: datasync:ListDiscoveryJobs

Resource: arn:aws:datasync:region:account-id:system/storage-system-id
ListLocations

Action: datasync:ListLocations
Resource: None

ListTagsForResource

Action: datasync:ListTagsForResource
Resources:
- arn:aws:datasync:region:account-id:task/task-id
- arn:aws:datasync:region:account-id:location/location-id

ListTaskExecutions

Action: datasync:ListTaskExecutions
Resource: arn:aws:datasync:region:account-id:task/task-id

ListTasks

Action: datasync:ListTasks
Resource: None

RemoveStorageSystem

Action: datasync:RemoveStorageSystem
Resource: arn:aws:datasync:region:account-id:system/storage-system-id
Action: secretsmanager:DeleteSecret
Resource: arn:aws:secretsmanager:region:account-id:secret:datasync!*

StartDiscoveryJob

Action: datasync:StartDiscoveryJob
Resource: arn:aws:datasync:region:account-id:system/storage-system-id

StopDiscoveryJob

Action: datasync:StopDiscoveryJob
Resource: arn:aws:datasync:region:account-id:system/storage-system-id/job/discovery-job-id

StartTaskExecution

Action: datasync:StartTaskExecution
Resource: arn:aws:datasync:region:account-id:task/task-id

TagResource

Action: datasync:TagResource
Resources:
- arn:aws:datasync:region:account-id:task/task-id
- arn:aws:datasync:region:account-id:location/location-id
UntagResource

Action: datasync:UntagResource

Resources:
• arn:aws:datasync:region:account-id:agent/agent-id
• arn:aws:datasync:region:account-id:task/task-id
• arn:aws:datasync:region:account-id:location/location-id

UpdateAgent

Action: datasync:UpdateAgent

UpdateDiscoveryJob

Action: datasync:UpdateDiscoveryJob

UpdateLocationAzureBlob

Action: datasync:UpdateLocationAzureBlob

Resources:
• arn:aws:datasync:region:account-id:agent/agent-id
• arn:aws:datasync:region:account-id:location/location-id

UpdateLocationHdfs

Action: datasync:UpdateLocationHdfs

Resources:
• arn:aws:datasync:region:account-id:agent/agent-id
• arn:aws:datasync:region:account-id:location/location-id

UpdateLocationNfs

Action: datasync:UpdateLocationNfs

UpdateLocationObjectStorage

Action: datasync:UpdateLocationObjectStorage

Resources:
• arn:aws:datasync:region:account-id:agent/agent-id
• arn:aws:datasync:region:account-id:location/location-id

UpdateLocationSmb

Action: datasync:UpdateLocationSmb

Resources:
• arn:aws:datasync:region:account-id:agent/agent-id
• arn:aws:datasync:region:account-id:location/location-id

UpdateStorageSystem

Action: datasync:UpdateStorageSystem
Compliance validation for AWS DataSync

To learn whether an AWS service is within the scope of specific compliance programs, see [AWS services in Scope by Compliance Program](#) and choose the compliance program that you are interested in. For general information, see [AWS Compliance Programs](#).

You can download third-party audit reports using AWS Artifact. For more information, see [Downloading Reports in AWS Artifact](#).

Your compliance responsibility when using AWS services is determined by the sensitivity of your data, your company's compliance objectives, and applicable laws and regulations. AWS provides the following resources to help with compliance:

- **Security and Compliance Quick Start Guides** – These deployment guides discuss architectural considerations and provide steps for deploying baseline environments on AWS that are security and compliance focused.
- **Architecting for HIPAA Security and Compliance on Amazon Web Services** – This whitepaper describes how companies can use AWS to create HIPAA-eligible applications.

 Note

 Not all AWS services are HIPAA eligible. For more information, see the [HIPAA Eligible Services Reference](#).

- **AWS Compliance Resources** – This collection of workbooks and guides might apply to your industry and location.
- **Evaluating Resources with Rules** in the [AWS Config Developer Guide](#) – The AWS Config service assesses how well your resource configurations comply with internal practices, industry guidelines, and regulations.
- **AWS Security Hub** – This AWS service provides a comprehensive view of your security state within AWS. Security Hub uses security controls to evaluate your AWS resources and to check your compliance against security industry standards and best practices. For a list of supported services and controls, see [Security Hub controls reference](#).
- **AWS Audit Manager** – This AWS service helps you continuously audit your AWS usage to simplify how you manage risk and compliance with regulations and industry standards.

Resilience in AWS DataSync

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide multiple physically separated and isolated Availability Zones, which are connected with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between Availability Zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

Note
If an Availability Zone you're migrating data to or from does fail while you're running a DataSync task, the task also will fail.

For more information about AWS Regions and Availability Zones, see [AWS global infrastructure](#).

Infrastructure security in AWS DataSync

As a managed service, AWS DataSync is protected by AWS global network security. For information about AWS security services and how AWS protects infrastructure, see [AWS Cloud Security](#). To design your AWS environment using the best practices for infrastructure security, see [Infrastructure Protection](#) in [Security Pillar AWS Well-Architected Framework](#).

You use AWS published API calls to access DataSync through the network. Clients must support the following:

- Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.
- Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated with an IAM principal. Or you can use the [AWS Security Token Service](#) (AWS STS) to generate temporary security credentials to sign requests.
AWS DataSync quotas

Find out about quotas and limits when working with AWS DataSync.

Storage system, file, and object limits

The following table describes the limits that DataSync has when working with storage systems, files, and objects.

<table>
<thead>
<tr>
<th>Description</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum total file path length</td>
<td>4,096 bytes</td>
</tr>
<tr>
<td>Maximum file path component (file name, directory, or subdirectory) length</td>
<td>255 bytes</td>
</tr>
<tr>
<td>Maximum length of Windows domain</td>
<td>253 characters</td>
</tr>
<tr>
<td>Maximum length of server hostname</td>
<td>255 characters</td>
</tr>
<tr>
<td>Maximum Amazon S3 object name length</td>
<td>1,024 UTF-8 characters</td>
</tr>
</tbody>
</table>

DataSync task quotas

The following table describes the quotas for DataSync tasks in a specific AWS account and AWS Region.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Quota</th>
<th>Can you increase the quota?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of tasks you can create</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of files, objects, or directories that DataSync can work with per task execution between self-managed storage or another cloud and AWS storage services</td>
<td>50 million</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Important
Remember the following about this quota:

- If you transfer Amazon S3 objects with prefixes, the prefixes are treated as directories and count towards the quota. For example, DataSync would consider `s3://bucket/foo/bar.txt` as two directories (`./` and `./`).

Tip
Instead of requesting an increase, you can create tasks that focus on specific directories using include.
DataSync task quotas

<table>
<thead>
<tr>
<th>Resource</th>
<th>Quota</th>
<th>Can you increase the quota?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of files, objects, or directories that DataSync can work with per task execution between AWS storage services</td>
<td>25 million</td>
<td>Yes</td>
</tr>
<tr>
<td>Important If you transfer Amazon S3 objects with prefixes, the prefixes are treated as directories and count towards the quota. For example, DataSync would consider <code>s3://bucket/foo/bar.txt</code> as two directories (./ and ./foo/) and one object (bar.txt).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of files, objects, or directories per task when running DataSync on an AWS Snowcone device</td>
<td>200,000</td>
<td>No</td>
</tr>
<tr>
<td>Maximum throughput per task</td>
<td>10 Gbps (for transfers that use a DataSync agent)</td>
<td>No</td>
</tr>
</tbody>
</table>

- `foo/` and one object (`bar.txt`).
- If your task is working with more than 20 million files, objects, or directories, make sure that you allocate a minimum of 64 GB of RAM to your DataSync agent. For more information, see [agent requirements for DataSync transfers](p. 11).

- Tip
 - Instead of requesting an increase, you can create tasks that focus on specific directories using include and exclude filters. For more information, see [filtering the data transferred by DataSync](p. 11).
DataSync Discovery quotas

The following table describes the quotas for DataSync Discovery in a specific AWS account and AWS Region.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Quota</th>
<th>Can you increase the quota?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of storage systems you can use with DataSync Discovery</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Maximum number of storage systems a DataSync agent can access at a time</td>
<td>4</td>
<td>No</td>
</tr>
</tbody>
</table>

Request a quota increase

You can request an increase for some DataSync quotas. Increases aren't granted right away and might take a couple of days to take effect.

To request a quota increase

1. Open the [AWS Support Center](https://support.aws.amazon.com) page, sign in if necessary, and then choose **Create case**.
2. For **Create case**, choose **Service limit increase**.
3. For **Limit type**, choose **DataSync**.
4. For **Region**, select your AWS Region, and for **Limit**, select the quota that you want to increase.
5. Fill in the case description, and then choose your preferred method of contact.

If you need to increase a different quota, fill out a separate request.
Troubleshooting AWS DataSync issues

Use the following information to troubleshoot AWS DataSync issues and errors.

Topics
- Troubleshooting issues with AWS DataSync agents (p. 205)
- Troubleshooting issues with AWS DataSync transfers (p. 206)
- My Amazon S3 storage costs are higher than expected with AWS DataSync (p. 213)

Troubleshooting issues with AWS DataSync agents

The following topics describe issues common to AWS DataSync agents and how you can resolve them.

How do I connect to an Amazon EC2 agent's local console?

To connect to an Amazon EC2 agent's local console, you must use SSH with the following cryptographic algorithms:

- **SSH cipher**: aes256-ctr
- **Key exchange**: diffie-hellman-group14-sha1

Also make sure that your EC2 instance's security group allows access with SSH (TCP port 22)

In a terminal, run the following ssh command to connect to the instance:

```
ssh -i /path/key-pair-name.pem -o KexAlgorithms=diffie-hellman-group14-sha1 instance-user-name@instance-public-ip-address
```

- For `/path/key-pair-name`, specify the path and file name (.pem) of the private key required to connect to your instance. For more information, see [retrieve the public key from the private key](https://docs.aws.amazon.com/AmazonEC2/latest/UserGuide) in the Amazon EC2 User Guide for Linux Instances.
- For `instance-user-name`, specify admin.
- For `instance-public-ip-address`, specify the public IP address of your instance.
- The command also includes the key exchange you need (diffie-hellman-group14-sha1).

What does the Failed to retrieve agent activation key error mean?

When activating your DataSync agent, the agent connects to the service endpoint that you specify to request an activation key. This error likely means that your network security settings are blocking the connection.

Action to take
I still can't activate an agent by using a VPC service endpoint

If you're using a virtual private cloud (VPC) service endpoint, verify that your security group settings allow your agent to connect to the VPC endpoint. For information about required ports, see Network requirements for VPC endpoints (p. 13).

If you're using a public Federal Information Processing Standard (FIPS) endpoint, check that your firewall and router settings allow your agent to connect to the endpoint. For information, see Network requirements for public or FIPS endpoints (p. 15).

What do I do if my agent is offline?

Your DataSync agent can be offline for a few reasons, but you might be able to get it back online. Before you delete the agent and create a new one, go through the following checklist to help you understand what might have happened.

- **Contact your backup team** – If your agent is offline because its virtual machine (VM) was restored from a snapshot or backup, you might need to replace the agent (p. 51).
- **Check if the agent’s VM or Amazon EC2 instance is off** – Depending on the type of agent that you're using, try turning the VM or EC2 instance back on if it's off. Once it's on again, test your agent’s network connectivity (p. 46) to AWS.
- **Verify your agent meets the minimum hardware requirements** – Your agent might be offline because its VM or EC2 instance configuration was accidentally changed since the agent was activated. For example, if your VM no longer has the minimum required memory or space, the agent might appear as offline. For more information, see AWS DataSync agent requirements (p. 10).
- **Wait for agent-related software updates to finish** – Your agent might go offline briefly following software updates provided by AWS (p. 42). If you believe this is why the agent is offline, wait a short period then check if the agent is back online.
- **Check your VPC service endpoint settings** – If your offline agent is using a public service endpoint and also in the same VPC where you created a VPC service endpoint for DataSync, you might need to disable private DNS support for that VPC endpoint.

If none of these seem to be the reason that the agent is offline, you likely need to replace the agent (p. 51).

I don't know what's going on with my agent. Can someone help me?

If you're having issues with your DataSync agent that you can't solve, see Getting help with your agent from AWS Support (p. 50).

Troubleshooting issues with AWS DataSync transfers

The following topics describe issues common to AWS DataSync locations and tasks and how you can resolve them.
How do I configure DataSync to use a specific NFS or SMB version to mount my file share?

For locations that support Network File System (NFS) or Server Message Block (SMB), DataSync by default chooses the protocol version for you. You can also specify the version yourself by using the DataSync console or API.

Action to take (DataSync console)

When creating your NFS or SMB location, configure the protocol version that you want DataSync to use. For more information, see Configuring AWS DataSync transfers with an NFS file server (p. 72) or Configuring AWS DataSync transfers with an SMB file server (p. 74).

Action to take (DataSync API)

When creating or updating your NFS or SMB location, specify the `Version` parameter. For example, see `CreateLocationNsfs` (p. 290) or `CreateLocationSmb` (p. 303).

The following example AWS CLI command creates an NFS location that DataSync mounts by using NFS version 4.0.

```
$ aws datasync create-location-nfs --server-hostname your-server-address \
   --on-prem-config AgentArns=your-agent-arns \
   --subdirectory nfs-export-path \
   --mount-options Version="NFS_4.0"
```

The following example AWS CLI command creates an SMB location that DataSync mounts by using SMB version 3.

```
$ aws datasync create-location-smb --server-hostname your-server-address \
   --on-prem-config AgentArns=your-agent-arns \
   --subdirectory smb-export-path \
   --mount-options Version="SMB_3"
```

Error: Invalid SyncOption value. Option: TransferMode,PreserveDeletedFiles, Value: ALL,REMOVE.

This error occurs when you're creating or editing your DataSync task and you select the Transfer all data option and deselect the Keep deleted files option. When you transfer all data, DataSync doesn't scan your destination location and doesn't know what to delete.

My task keeps failing with an EniNotFound error

This error occurs if you delete one of your task's network interfaces in your virtual private cloud (VPC). If your task is scheduled or queued, the task will fail if it's missing a network interface required to transfer your data (p. 20).

Actions to take

You have the following options to work around this issue:

- Manually restart the task. When you do this, DataSync will create any missing network interfaces it needs to run the task.
If you need to clean up resources in your VPC, make sure that you don't delete network interfaces related to a DataSync task that you're still using.

To see the network interfaces allocated to your task, do one of the following:
- Use the `DescribeTask` operation. You can view the network interfaces in the `SourceNetworkInterfaceArns` and `DestinationNetworkInterfaceArns` response elements.
- In the Amazon EC2 console, search for your task ID (such as `task-f012345678abcdef0`) to find its network interfaces.
- Consider not running your tasks automatically. This could include disabling task queueing or scheduling (through DataSync or custom automation).

My task failed with a DataSync currently does not support server-side NFSv4 ID mapping error

This error can occur if a file system involved in your transfer uses NFS version 4 ID mapping, a feature that DataSync doesn't support.

Action to take

You have a couple options to work around this issue:
- Create a new DataSync location for the file system that uses NFS version 3.
- Disable NFS version 4 ID mapping on the file system.

Retry the transfer. Either option should resolve the issue.

My task status is unavailable and indicates a mount error

DataSync will indicate that your task is unavailable if your agent can't mount an NFS location.

Action to take

First, make sure that the NFS server and export that you specified are both valid. If they aren't, delete the task, create a new one that uses the correct NFS server, and then export. For more information, see Configuring AWS DataSync transfers with an NFS file server (p. 72).

If the NFS server and export are both valid, it generally indicates one of two things. Either a firewall is preventing the agent from mounting the NFS server, or the NFS server isn't configured to allow the agent to mount it.

Make sure that there's no firewall between the agent and the NFS server. Then make sure that the NFS server is configured to allow the agent to mount the export end specified in the task. For information about network and firewall requirements, see AWS DataSync network requirements (p. 12).

If you perform these actions and the agent still can't mount the NFS server and export, open a support channel with AWS Support. For information about how to open a support channel, see Getting help with your agent from AWS Support (p. 50).

My task failed with a Cannot allocate memory error

When your DataSync task fails with a Cannot allocate memory error, it can mean a few different things.

Action to take
Try the following until you no longer see the issue:

- If your transfer involves an agent, make sure that the agent meets the virtual machine (VM) requirements (p. 11).
- Split your transfer into multiple tasks by using filters (p. 141). It's possible that you're trying to transfer more files or objects than what one DataSync task can handle (p. 202).
- If you still see the issue, contact AWS Support.

My task failed with an input/output error

You can get an input/output error message if your storage system fails I/O requests from the DataSync agent. Common reasons for this include a server disk failure, changes to your firewall configuration, or a network router failure.

If the error involves an NFS server or Hadoop Distributed File System (HDFS) cluster, use the following steps to resolve the error.

Action to take (NFS)

First, check your NFS server's logs and metrics to determine if the problem started on the NFS server. If yes, resolve that issue.

Next, check that your network configuration hasn't changed. To check if the NFS server is configured correctly and that DataSync can access it, do the following:

1. Set up another NFS client on the same network subnet as the agent.
2. Mount your share on that client.
3. Validate that the client can read and write to the share successfully.

Action to take (HDFS)

Make sure that your HDFS cluster allows the agent to communicate with the cluster's NameNode and DataNode ports. In most clusters, you can find the port numbers that the cluster uses in the following configuration files.

1. To find the NameNode port, look in the core-site.xml file under the fs.default or fs.default.name property (depending on the Hadoop distribution).
2. To find the DataNode port, look in the hdfs-site.xml file under the dfs.datanode.address property.

My task execution has a launching status but nothing seems to be happening

Your DataSync task can get stuck with a Launching status typically because the agent is powered off or has lost network connectivity.

Action to take

Make sure that your agent's status is ONLINE. If the agent is OFFLINE, make sure it's powered on.

If the agent is powered on and the task is still Launching, then there's likely a network connection problem between your agent and AWS. For information about how to test network connectivity, see Testing your agent's connection to AWS (p. 46).

If you're still having this issue, see Getting help with your agent from AWS Support (p. 50).
My task execution has had the preparing status for a long time

The time your DataSync transfer task has the **Preparing** status depends on the amount of data in your transfer source and destination and the performance of those storage systems.

When a task starts, DataSync performs a recursive directory listing to discover all files, objects, directories, and metadata in your source and destination. DataSync uses these listings to identify differences between storage systems and determine what to copy. This process can take a few minutes or even a few hours.

Action to take

You shouldn’t have to do anything. Continue to wait for the task status to change to **Transferring**. If the status still doesn’t change, contact [AWS Support Center](https://aws.amazon.com/support/).

My NFS transfer has a permissions denied error

You can get a "permissions denied" error message if you configure your NFS file server with `root_squash` or `all_squash` and your files don’t all have read access.

Action to take

To fix this issue, configure your NFS export with `no_root_squash` or make sure that the permissions for all of the files that you want to transfer allow read access for all users.

For DataSync to access directories, you must also enable all-execute access. To make sure that the directory can be mounted, first connect to any computer that has the same network configuration as your agent. Then run the following CLI command:

```
mount -t nfs -o nfsvers=<your-nfs-server-version> <your-nfs-server-name>:<nfs-export-path-you-specified> <new-test-folder-on-your-computer>
```

If the issue still isn’t resolved, contact [AWS Support Center](https://aws.amazon.com/support/).

How long does it take DataSync to verify a task I've run?

By default, DataSync verifies data integrity at the end of a transfer. How long verification takes depends on a number of factors. The number of files or objects, the total amount of data in the source and destination storage systems, and the performance of these systems affect how long verification takes. Verification includes an SHA256 checksum on all file content and an exact comparison of all file metadata.

Action to take

You shouldn’t have to do anything. If task status still doesn’t change to **Success** or **Error**, contact [AWS Support Center](https://aws.amazon.com/support/).

My task fails when transferring to an S3 bucket in another AWS account

Unlike DataSync transfers between resources in the same AWS account, copying data to an S3 bucket in a different AWS account requires some extra steps.
• If your DataSync task fails with an error related to S3 bucket permissions – When creating the task, make sure that you're logged in to the AWS Management Console with the same IAM role that you specified in your destination S3 bucket's policy. (This role isn't the IAM role that gives DataSync permission to write to the S3 bucket.)

• If you’re also copying data to a bucket in another AWS Region and get an S3 endpoint connection error – Create the DataSync task in the same Region as the destination S3 bucket.

For complete instructions on cross-account transfers with Amazon S3, see the following tutorials:

• Transferring data from on-premises storage to Amazon S3 in a different AWS account (p. 214)
• Transferring data from Amazon S3 to Amazon S3 in a different AWS account (p. 221)

My task fails when transferring from a Google Cloud Storage bucket

Because DataSync communicates with Google Cloud Storage by using the Amazon S3 API, there's a limitation that might cause your DataSync transfer to fail if you try to copy object tags. The following message related to the issue appears in your CloudWatch logs:

[WARN] Failed to read metadata for file /your-bucket/your-object: S3 Get Object Tagging Failed: proceeding without tagging

To prevent this, deselect the Copy object tags option when configuring your transfer task settings.

My task fails with an Unable to list Azure Blobs on the volume root error

If your DataSync transfer task fails with an Unable to list Azure Blobs on the volume root error, there might be an issue with your shared access signature (SAS) token or your Azure storage account's network.

Actions to take

Try the following and run your task again until you fix the issue:

• Make sure that your SAS token (p. 108) has the right permissions to access your Microsoft Azure Blob Storage.
• If you’re running your DataSync agent in Azure, configure your storage account to allow access from the virtual network where your agent resides.
• If you’re running your agent on Amazon EC2, configure your Azure storage firewall to allow access from the agent's public IP address.

For information on how to configure your Azure storage account's network, see the Azure Blob Storage documentation.

My task's start and end times don't match up with what's in the logs

Your task execution's start and end times that you see in the DataSync console may differ between timestamps you see elsewhere related to your transfer. This is because the console doesn't take into account the time a task execution spends in the launching or queueing states.
For example, your Amazon CloudWatch logs can indicate that your task execution ended later than what's displayed in the DataSync console. You may notice a similar discrepancy in the following areas:

- Logs for the file system or object storage system involved in your transfer
- The last modified date on an Amazon S3 object that DataSync wrote to
- Network traffic coming from the DataSync agent
- Amazon EventBridge events

Error: SyncTaskDeletedByUser

You may see this error unexpectedly when automating some DataSync workflows. For example, maybe you have a script that's deleting your task before a task execution has finished or is in queue (p. 149).

To fix this issue, reconfigure your automation so that these types of actions don't overlap.

Error: NoMem

The set of data you're trying to transfer may be too large for DataSync. If you see this error, contact AWS Support Center.

Error: FsS3UnableToConnectToEndpoint

DataSync can't connect to your Amazon S3 location (p. 80). This could mean the location's S3 bucket isn't reachable or the location isn't configured correctly.

Do the following until you resolve the issue:

- Check if DataSync can access your S3 bucket (p. 80).
- Make sure your location is configured correctly by using the DataSync console or DescribeLocationS3 operation.

Error: FsS3HeadBucketFailed

DataSync can't access the S3 bucket that you're transferring to or from. Check if DataSync has permission to access the bucket by using the Amazon S3 HeadBucket operation.

Task report errors

You might run into one of the following errors while trying to monitor your DataSync transfer with a task report.

<table>
<thead>
<tr>
<th>Error message</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>File path exceeds the maximum length of 4,096 characters. Cannot write to Task Report</td>
<td>N/A (DataSync can't transfer a file with a path that exceeds 4,096 bytes) For more information, see Storage system, file, and object limits (p. 202).</td>
</tr>
<tr>
<td>Failed to upload Task Report(s) to S3 due to an invalid bucket or IAM role</td>
<td>Check that the DataSync IAM role (p. 161) has the right permissions to upload a task report to your S3 bucket.</td>
</tr>
</tbody>
</table>
Costs

<table>
<thead>
<tr>
<th>Error message</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution error occurred prior to generating any Task Reports</td>
<td>Check your CloudWatch logs (p. 168) to identify why your task execution failed.</td>
</tr>
</tbody>
</table>

My Amazon S3 storage costs are higher than expected with AWS DataSync

If your Amazon S3 storage costs are higher than you thought they would be following an AWS DataSync transfer, it might be due to one or more of the following reasons:

- When transferring to or from S3 buckets, you incur costs related to S3 API requests made by DataSync.
- DataSync uses the Amazon S3 multipart upload feature to upload objects to S3 buckets. This approach can result in unexpected storage charges for uploads that don't complete successfully.
- Object versioning might be enabled on your S3 bucket. Object versioning results in Amazon S3 storing multiple copies of objects that have the same name.

Actions to take

In these cases, you can take the following steps:

- Make sure you understand how DataSync uses S3 requests and how they might be affecting your storage costs. For more information, see [Evaluating S3 request costs when using DataSync](p. 87).
- If the issue's related to multipart uploads, configure a policy for multipart uploads for your S3 bucket to clean up incomplete multipart uploads to reduce storage cost. For more information, see the AWS blog post [S3 Lifecycle Management Update - Support for Multipart Uploads and Delete Markers](p. 87).
- If the issue's related to object versioning, disable object versioning on your S3 bucket.
- If you need more help, contact [AWS Support Center](p. 213).
AWS DataSync tutorials

These tutorials walk you through some real-world scenarios with AWS DataSync.

Topics
- Tutorial: Transferring data from on-premises storage to Amazon S3 across AWS accounts (p. 214)
- Tutorial: Transferring data from Amazon S3 to Amazon S3 across AWS accounts (p. 221)

Tutorial: Transferring data from on-premises storage to Amazon S3 across AWS accounts

When using AWS DataSync with on-premises storage, you typically copy data to an AWS storage service that belongs to the same AWS account as your DataSync agent. There are situations, however, where you might need to transfer data to an Amazon S3 bucket that's associated with a different account.

Important
Copying data across AWS accounts by using the methods in this tutorial works only when Amazon S3 is one of the DataSync transfer locations.

Overview

It's not uncommon to need to transfer data between different AWS accounts, especially if you have separate teams managing your organization's resources. Here's what a cross-account transfer using DataSync can look like:

- **Source account**: The AWS account for managing network resources. This is the account that you'll activate your DataSync agent with.
- **Destination account**: The AWS account for managing the S3 bucket that you need to transfer data to.

The following diagram illustrates this kind of scenario.

Required permissions

Before you begin, make sure that your source and destination AWS accounts have the right permissions to complete a cross-account transfer to an S3 bucket.

Topics
- Required permissions for your source account (p. 215)
Required permissions for your destination account

For your destination AWS account, you need permission to disable your S3 bucket's access control lists (ACLs) and update the bucket's policy. For more information on these specific permissions, see the Amazon S3 User Guide.
Step 1: In your source account, create a DataSync agent

To get started, you must create a DataSync agent that can read from your on-premises storage system and communicate with AWS. This process includes deploying an agent in your on-premises storage environment and activating the agent in your source AWS account.

Note
The steps in this tutorial apply to any type of agent and service endpoint that you use.

To create a DataSync agent

1. [Deploy a DataSync agent (p. 25)](#) in your on-premises storage environment.
2. [Choose a service endpoint (p. 29)](#) that the agent will use to communicate with AWS.
3. [Activate your agent (p. 31)](#) in your source account.

Step 2: In your source account, create a DataSync source location for your on-premises storage

In your source account, create a [DataSync source location (p. 69)](#) for the on-premises storage system that you’re transferring data from. This location should use the agent that you just activated in your source account.

Step 3: In your source account, create an IAM role for DataSync

In your source account, you need an IAM role that gives DataSync permission to write to the S3 bucket in your destination account on your behalf.

Normally, when you create a transfer location for an S3 bucket in the DataSync console, DataSync can automatically create and assume a role that has the right permissions to write to that bucket. Since you’re transferring across accounts, however, you must create the role manually.

Create the IAM role

Create an IAM role with DataSync as the trusted entity.

To create the IAM role

1. Log in to the AWS Management Console with your source account.
3. In the left navigation pane, under Access management, choose Roles, and then choose Create role.
4. On the Select trusted entity page, for Trusted entity type, choose AWS service.
5. For Use case, choose DataSync in the dropdown list and select DataSync. Choose Next.
6. On the Add permissions page, choose Next.
7. Give your role a name and choose Create role.

For more information, see [Creating a role for an AWS service (console)](#) in the IAM User Guide.
Attach a custom policy to the IAM role

The IAM role that you just created needs a policy that allows DataSync to write to the S3 bucket in your destination account.

To attach a custom policy to the IAM role

1. On the Roles page of the IAM console, search for the role that you just created and choose its name.
2. On the role's details page, choose the Permissions tab. Choose Add permissions then Create inline policy.
3. Choose the JSON tab and do the following:
 a. Paste the following JSON into the policy editor:

   ```json
   {
     "Version": "2012-10-17",
     "Statement": [
       {
         "Action": [
           "s3:GetBucketLocation",
           "s3:ListBucket",
           "s3:ListBucketMultipartUploads"
         ],
         "Effect": "Allow",
         "Resource": "arn:aws:s3:::destination-bucket"
       },
       {
         "Action": [
           "s3:AbortMultipartUpload",
           "s3:DeleteObject",
           "s3:GetObject",
           "s3:ListMultipartUploadParts",
           "s3:PutObject",
           "s3:GetObjectTagging",
           "s3:PutObjectTagging"
         ],
         "Effect": "Allow",
         "Resource": "arn:aws:s3:::destination-bucket/*"
       }
     ]
   }
   
   b. Replace each instance of destination-bucket with the name of the S3 bucket in your destination account.
4. Choose Next. Give your policy a name and choose Create policy.

**Step 4: In your destination account, disable ACLs for your S3 bucket**

It's important that all the data that you copy to the S3 bucket belongs to your destination account. To ensure that this account owns the data, disable the bucket’s access control lists (ACLs).

**To disable ACLs for an S3 bucket**

1. In the AWS Management Console, switch over to your destination account.
2. Open the Amazon S3 console at [https://console.aws.amazon.com/s3/](https://console.aws.amazon.com/s3/).
3. In the left navigation pane, choose Buckets.
4. In the **Buckets** list, choose the S3 bucket that you're transferring data to.
5. On the bucket's detail page, choose the **Permissions** tab.
6. Under **Object Ownership**, choose **Edit**.
7. If it isn't already selected, choose the **ACLs disabled (recommended)** option.
8. Choose **Save changes**.

For more information, see [Controlling ownership of objects and disabling ACLs for your bucket](https://docs.aws.amazon.com/AmazonS3/latest/userguide/controlling-ownership.html) in the *Amazon S3 User Guide*.

### Step 5: In your destination account, update your S3 bucket policy

In your destination account, modify the destination S3 bucket policy to include the DataSync IAM role that you created in your source account.

The updated bucket policy (provided to you in the following instructions) includes two principals:

- The first principal specifies the [DataSync IAM role that you created in your source account](https://docs.aws.amazon.com/AmazonS3/latest/userguide/controlling-ownership.html) (p. 216). This role allows DataSync to write to the S3 bucket in your destination account.
- The second principal specifies the IAM role with the [required user permissions](https://docs.aws.amazon.com/AmazonS3/latest/userguide/controlling-ownership.html) (p. 215) for working with DataSync in your source account. You need this principal to [create the DataSync destination location](https://docs.aws.amazon.com/AmazonS3/latest/userguide/controlling-ownership.html) (p. 219).

#### To update the destination S3 bucket policy

1. While still logged in to the S3 console with your destination account, choose the S3 bucket that you're copying data to.
2. On the bucket's detail page, choose the **Permissions** tab.
3. Under **Bucket policy**, choose **Edit** and do the following to modify your S3 bucket policy:

   a. Update what's in the editor to include the following policy statements:

```json
{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "DataSyncCreateS3LocationAndTaskAccess",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::source-account:role/source-datasync-role"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",
 "s3:PutObject",
 "s3:GetObjectTagging",
 "s3:PutObjectTagging"
],
 "Resource": [
 "arn:aws:s3:::destination-bucket"
]
 }
}
```

[218]
Step 6: In your source account, create a DataSync destination location for your S3 bucket

In your source account, you need to create a DataSync location for the S3 bucket in your destination account.

The DataSync console won't let you create locations for storage resources in another AWS account. However, you can do this by using AWS CloudShell, a browser-based, pre-authenticated shell that you launch directly from the console. CloudShell allows you to run the AWS CLI commands for completing this tutorial without downloading or installing command line tools.

**Note**
If you want to complete the following steps by using a command line tool other than CloudShell, make sure your AWS CLI profile uses the same source-user-role that you specified in the destination S3 bucket policy (p. 218). For more information, see the AWS Command Line Interface User Guide.

**To create a DataSync destination location by using CloudShell**

1. In the AWS Management Console, switch back to your source account.
2. Open the AWS DataSync console at [https://console.aws.amazon.com/datasync/](https://console.aws.amazon.com/datasync/).
3. Do one of the following to launch CloudShell:
   - Choose the CloudShell icon on the console navigation bar. It's located to the right of the search box.
   - Use the search box on the console navigation bar to search for CloudShell and then choose the CloudShell option.
4. Copy the following command:

   ```bash
 aws datasync create-location-s3
 --s3-bucket-arn arn:aws:s3:::destination-bucket
   ```
Step 6: In your source account, create and start your DataSync transfer task

5. Replace `destination-bucket` with the name of the S3 bucket in your destination account.

6. Replace `source-user-account` with the AWS account ID for your source account.

7. Replace `source-datasync-role` with the DataSync IAM role that you created in your source account (p. 216).

8. Run the command in CloudShell.

   If the command returns a DataSync location ARN similar to this, you successfully created the location:

   ```json
 {
 "LocationArn": "arn:aws:dynamodb:us-east-2:123456789012:location/loc-abcdef01234567890"
 }
 ``

9. In the left navigation pane, expand Data transfer, then choose Locations.

From your source account, you can see the location of the S3 bucket in the destination account that you just created.

Step 6: In your source account, create and start your DataSync transfer task

Before you move your data, let's recap what you've done so far:

- In your source account, you deployed and activated your DataSync agent. The agent can read from your on-premises storage system and communicate with AWS.
- In your source account, you created an IAM role that allows DataSync to write data to the S3 bucket in your destination account.
- In your destination account, you configured your S3 bucket so that DataSync can access the bucket and write data to it.
- In your source account, you created the DataSync source and destination locations for your transfer.

To create and start the DataSync transfer task

1. While still using the DataSync console in your source account, expand Data transfer in the left navigation pane, then choose Tasks and Create task.

2. On the Configure source location page, choose Choose an existing location. Choose the source location that you're copying data from (your on-premises storage) then Next.

3. On the Configure destination location page, choose Choose an existing location. Choose the destination location that you're copying data to (the S3 bucket in your destination account) then Next.

4. On the Configure settings page, give the task a name. As needed, configure additional settings, such as specifying an Amazon CloudWatch log group. Choose Next.

5. On the Review page, review your settings and choose Create task.

6. On the task's details page, choose Start, and then choose one of the following:
 - To run the task without modification, choose Start with defaults.
 - To modify the task before running it, choose Start with overriding options.
When your task finishes, check the S3 bucket in your destination account. You should see the data that moved from your source account bucket.

Related resources

For more information about what you did in this tutorial, see the following topics:

- Creating a role for an AWS service (console)
- Modifying a role trust policy (console)
- Adding a bucket policy by using the Amazon S3 console
- Create an S3 location with the AWS CLI

Tutorial: Transferring data from Amazon S3 to Amazon S3 across AWS accounts

With AWS DataSync, you can move data between Amazon S3 buckets that belong to different AWS accounts.

Important

Copying data across AWS accounts using the methods in this tutorial works only with Amazon S3. Additionally, this tutorial can help you transfer data between S3 buckets that are also in different AWS Regions (unless you're working with one or more opt-in Regions (p. 72)).

Overview

It's not uncommon to need to transfer data between different AWS accounts, especially if you have separate teams managing your organization's resources. Here's what a cross-account transfer using DataSync can look like:

- **Source account**: The AWS account for managing the S3 bucket that you need to transfer data from.
- **Destination account**: The AWS account for managing the S3 bucket that you need to transfer data to.

Transfers across accounts

The following diagram illustrates a scenario where you transfer data from an S3 bucket to another S3 bucket that's in a different AWS account.
Required permissions

Before you begin, make sure that your source and destination AWS accounts have the right permissions to complete a cross-account transfer between S3 buckets.

Topics

- Required permissions for your source account (p. 223)
- Required permissions for your destination account (p. 223)
Required permissions for your source account

For your source AWS account, there are two sets of permissions to consider for this kind of cross-account transfer. One set of permissions is for the user who works with DataSync to create and start the transfer task (for example, your storage administrator). The other set of permissions allows the DataSync service to transfer objects to the S3 bucket in your destination account on your behalf.

User permissions

At minimum, you need the following permissions in your source account to use DataSync while going through this tutorial:

- datasync:CancelTaskExecution
- datasync:CreateLocationS3
- datasync:CreateTask
- datasync:DescribeLocation*
- datasync:DescribeTask
- datasync:DescribeTaskExecution
- datasync:ListLocations
- datasync:ListTasks
- datasync:ListTaskExecutions
- datasync:StartTaskExecution
- iam:AttachRolePolicy
- iam:CreateRole
- iam:CreatePolicy
- iam:ListRoles
- iam:PassRole
- s3:GetBucketLocation
- s3:ListAllMyBuckets
- s3:ListBucket

Tip

For user permissions, consider using AWSDataSyncFullAccess (p. 186), an AWS managed policy that provides full access to DataSync and minimal access to its dependencies. This managed policy also provides transfer task logging by default.

DataSync permissions

DataSync needs permission to write data to the S3 bucket in your destination account on your behalf. In your source account, you’ll create an AWS Identity and Access Management (IAM) role (p. 224) that can do this. You’ll then specify this role when creating your DataSync destination location (p. 227).

Required permissions for your destination account

For your destination AWS account, you need permission to disable your S3 bucket's access control lists (ACLs) and update the bucket's policy. For more information on these specific permissions, see the Amazon S3 User Guide.
Step 1: In your source account, create a DataSync source location

In your source account, create a DataSync location for the S3 bucket that you're transferring data from.

If you're creating the location by using the DataSync console, you can let DataSync automatically create and assume the IAM role needed to access your source S3 bucket.

Step 2: In your source account, create an IAM role for DataSync

In your source account, you need an IAM role that gives DataSync permission to write to the S3 bucket in your destination account on your behalf.

Normally, when you create a transfer location for an S3 bucket in the DataSync console, DataSync can automatically create and assume a role that has the right permissions to write to that bucket. Since you're transferring across accounts, however, you must create the role manually.

Topics

- Create the IAM role (p. 224)
- Attach a custom policy to the IAM role (p. 224)

Create the IAM role

Create an IAM role with DataSync as the trusted entity.

To create the IAM role

1. Log in to the AWS Management Console with your source account.
2. Open the IAM console at https://console.aws.amazon.com/iam/.
3. In the left navigation pane, under Access management, choose Roles, and then choose Create role.
4. On the Select trusted entity page, for Trusted entity type, choose AWS service.
5. For Use case, choose DataSync in the dropdown list and select DataSync. Choose Next.
6. On the Add permissions page, choose Next.
7. Give your role a name and choose Create role.

For more information, see Creating a role for an AWS service (console) in the IAM User Guide.

Attach a custom policy to the IAM role

The IAM role that you just created needs a policy that allows DataSync to write to the S3 bucket in your destination account.

To attach a custom policy to your IAM role

1. On the Roles page of the IAM console, search for the role that you just created and choose its name.
2. On the role's details page, choose the Permissions tab. Choose Add permissions then Create inline policy.
3. Choose the **JSON** tab and do the following:
 a. Paste the following JSON into the policy editor:

   ```json
   {
     "Version": "2012-10-17",
     "Statement": [
       {
         "Action": ["s3:GetBucketLocation", "s3:ListBucket", "s3:ListBucketMultipartUploads"],
         "Effect": "Allow",
         "Resource": "arn:aws:s3:::destination-bucket"
       },
       {
         "Effect": "Allow",
         "Resource": "arn:aws:s3:::destination-bucket/*"
       }
     ]
   }
   
   b. Replace each instance of `destination-bucket` with the name of the S3 bucket in your destination account.

4. Choose **Next**. Give your policy a name and choose **Create policy**.

---

**Step 3: In your destination account, disable ACLs for your S3 bucket**

It's important that all the data that you transfer to the S3 bucket belongs to your destination account. To ensure that this account owns the data, disable the bucket's access control lists (ACLs).

**To disable ACLs for an S3 bucket**

1. In the AWS Management Console, switch over to your destination account.
2. Open the Amazon S3 console at [https://console.aws.amazon.com/s3/](https://console.aws.amazon.com/s3/).
3. In the left navigation pane, choose **Buckets**.
4. In the **Buckets** list, choose the S3 bucket that you're transferring data to.
5. On the bucket's detail page, choose the **Permissions** tab.
6. Under **Object Ownership**, choose **Edit**.
7. If it isn't already selected, choose the **ACLs disabled (recommended)** option.
8. Choose **Save changes**.

For more information, see [Controlling ownership of objects and disabling ACLs for your bucket](https://docs.aws.amazon.com/AmazonS3/latest/userguide/controlling-ownership-object.html) in the *Amazon S3 User Guide*. 

---

225
Step 4: In your destination account, update your S3 bucket policy

In your destination account, modify the destination S3 bucket policy to include the DataSync IAM role that you created in your source account.

The updated bucket policy (provided to you in the following instructions) includes two principals:

- The first principal specifies the DataSync IAM role that you created in your source account (p. 224). This role allows DataSync to write to the S3 bucket in your destination account.
- The second principal specifies the IAM role with the required user permissions (p. 223) for working with DataSync in your source account. You need this principal to create the DataSync destination location (p. 227).

To update the destination S3 bucket policy

1. While still logged in to the S3 console with your destination account, choose the S3 bucket that you're transferring data to.
2. On the bucket's detail page, choose the Permissions tab.
3. Under Bucket policy, choose Edit and do the following to modify your S3 bucket policy:
   a. Update what's in the editor to include the following policy statements:

   ```json
 { "Version": "2008-10-17",
 "Statement": [
 { "Sid": "DataSyncCreateS3LocationAndTaskAccess",
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::<source-account>:role/<source-datasync-role>" },
 "Action": ["s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",
 "s3:PutObject",
 "s3:GetObjectTagging",
 "s3:PutObjectTagging"
],
 "Resource": ["arn:aws:s3::<destination-bucket>",
 "arn:aws:s3::<destination-bucket>/*"]
 },
 { "Sid": "DataSyncCreateS3Location",
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::<source-account>:role/<source-user-role>" },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3::<destination-bucket>"
 }
]
   ```
Step 5: In your source account, create a DataSync destination location

In your source account, you need to create a DataSync location for the S3 bucket in your destination account.

The DataSync console won't let you create locations for storage resources in another AWS account. However, you can do this by using AWS CloudShell, a browser-based, pre-authenticated shell that you launch directly from the console. CloudShell allows you to run the AWS CLI commands for completing this tutorial without downloading or installing command line tools.

Note
If you want to complete the following steps by using a command line tool other than CloudShell, make sure your AWS CLI profile uses the same source-user-role that you specified in the destination S3 bucket policy (p. 226). For more information, see the AWS Command Line Interface User Guide.

To create a DataSync destination location by using CloudShell

1. In the AWS Management Console, switch back to your source account.
2. Open the AWS DataSync console at https://console.aws.amazon.com/datasync/.
3. Do one of the following to launch CloudShell:
   - Choose the CloudShell icon on the console navigation bar. It's located to the right of the search box.
   - Use the search box on the console navigation bar to search for CloudShell and then choose the CloudShell option.
4. Copy the following command:

   ```bash
 aws datasync create-location-s3 \
 --s3-bucket-arn arn:aws:s3:::destination-bucket \
 --s3-config '{
 "BucketAccessRoleArn":"arn:aws:iam::source-user-account:role/source-datasync-role"
 }'
   ```
5. Replace destination-bucket with the name of the S3 bucket in your destination account.
6. Replace source-user-account with the AWS account ID for your source account.
7. Replace source-datasync-role with the DataSync IAM role that you created in your source account (p. 224).
8. If your destination bucket is in a different Region than your source bucket, add the --region option to the command to specify the Region where the destination bucket resides. For example, --region us-east-2.
9. Run the command in CloudShell.

If the command returns a DataSync location ARN similar to this, you successfully created the location:

```
{
 "LocationArn": "arn:aws:datasync:us-east-2:123456789012:location/loc-abcdef01234567890"
}
```

10. In the left navigation pane, expand **Data transfer**, then choose **Locations**.
11. If you created the location in a different Region, choose that Region in the navigation pane.

From your source account, you can see the location of the S3 bucket in the destination account that you just created.

**Step 6: In your source account, create and start your DataSync transfer task**

Before you move your data, let's recap what you've done so far:

- In your source account, you created an IAM role that allows DataSync to write data to the S3 bucket in your destination account.
- In your destination account, you configured your S3 bucket so that DataSync can access the bucket and write data to it.
- In your source account, you created the DataSync source and destination locations for your transfer.

**To create and start the DataSync transfer task**

1. While still using the DataSync console in your source account, expand **Data transfer** in the left navigation pane, then choose **Tasks** and **Create task**.
2. If the bucket in your destination account is in a different Region than the bucket in your source account, choose the destination bucket's Region in the top navigation pane.

   **Important**
   To avoid a network connection error, you must start your DataSync task from the Region of the destination location.

3. On the **Configure source location** page, do the following:
   a. Select **Choose an existing location**.
   b. (For transfers across Regions) In the **Region** dropdown, choose the Region where the source bucket resides.
   c. For **Existing locations**, choose the source location for the S3 bucket that you're transferring data from, then choose **Next**.
4. On the **Configure destination location** page, do the following:
   a. Select **Choose an existing location**.
   b. For **Existing locations**, choose the destination location for the S3 bucket that you're transferring data to, then choose **Next**.
5. On the **Configure settings** page, give the task a name. As needed, configure additional settings, such as specifying an Amazon CloudWatch log group. Choose **Next**.
6. On the **Review** page, review your settings and choose **Create task**.
7. On the task's details page, choose **Start**, and then choose one of the following:
• To run the task without modification, choose **Start with defaults**.
• To modify the task before running it, choose **Start with overriding options**.

When your task finishes, check the S3 bucket in your destination account. You should see the data that moved from your source account bucket.

**Related resources**

For more information about what you did in this tutorial, see the following topics:

• [Creating a role for an AWS service (console)](#)
• [Modifying a role trust policy (console)](#)
• [Adding a bucket policy by using the Amazon S3 console](#)
• [Create an S3 location with the AWS CLI](#)
Additional resources for AWS DataSync

In this section, you can find additional information about and resources for AWS DataSync.

**Topics**
- Other use cases for AWS DataSync (p. 230)
- Open-source components for AWS DataSync (p. 232)

### Other use cases for AWS DataSync

Learn about about some less-common use cases with AWS DataSync that are not common to most users.

#### Transferring data in opposite directions

Transferring data in opposite directions allows for workflows where the active application moves between locations. AWS DataSync doesn't support workflows where multiple active applications write to both locations at the same time. Use the steps in the following procedure to configure DataSync to transfer data in opposite directions.

**To configure DataSync to data transfers in opposite directions**

1. Create a location and name it **Location A**.
2. Create a second location and name it **Location B**.
3. Create a task, name it **Task A-B**, and then configure **Location A** as the source location and **Location B** as the destination location.
4. Create a second task, name it **Task B-A**, and then configure **Location B** as the source location and **Location A** as the destination location.
5. To update **Location B** with data from **Location A**, run **Task A-B**. To update **Location A** with data from **Location B**, run **Task B-A**.

Don't run these two tasks concurrently. DataSync can transfer files in opposite directions periodically. However, it doesn't support workflows where multiple active applications write to both **Location A** and **Location B** simultaneously.

#### Using multiple DataSync tasks to transfer to the same S3 bucket

In certain use cases, you might want different tasks to write to the same Amazon S3 bucket. In this case, you create different folders in the S3 bucket for each of the task. This approach prevents file name conflicts between the tasks, and also means that you can set different permissions for each of folders.

For example, you might have three tasks: `task1`, `task2`, and `task3` write to an S3 bucket named `MyBucket`. 
You create three folders in the bucket:

s3://MyBucket/task1
s3://MyBucket/task2
s3://MyBucket/task3

For each task, you choose the folder in MyBucket that corresponds to the task as the destination, and set different permissions for each of the three folders.

Allowing DataSync to access a restricted S3 bucket

In some cases, you might want to limit access to your Amazon S3 bucket. You can edit the S3 bucket policy so that DataSync can still access the bucket when you run a task.

To allow DataSync to access a restricted S3 bucket

1. Copy the following sample policy.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
],
 "Condition": {
 "StringNotLike": {
 "aws:userid": [
 "datasync-role-id:*",
 "your-role-id"
]
 }
 }
 }
]
}
```

2. In the sample policy, replace these values:
   - **bucket-name**: The name of the S3 bucket that you're restricting access to.
   - **datasync-role-id**: The ID of the IAM role that DataSync accesses the S3 bucket with. Run the following AWS CLI command to get the IAM role ID:

     ```bash
 aws iam get-role --role-name datasync-iam-role-name
     ```

     In the output, look for the RoleId value:

     "RoleId": "ANPAJ2UCR6DPCEXAMPLE"

   - **your-role-id**: The ID of the IAM role that you create the DataSync location for the S3 bucket with. Run the following command to get the IAM role ID:

     ```bash
 aws iam get-role --role-name your-iam-role-name
     ```

     In the output, look for the UserId value:
"RoleId" : "AIDACKCEVSQ6C2EXAMPLE"

3. Add this policy to your S3 bucket policy. For more information, see how to edit a bucket policy in the Amazon S3 User Guide.

Once you've updated the S3 bucket policy, you must add additional IAM roles or users to the policy for those who need to access the S3 bucket.

Open-source components for AWS DataSync

To view the open-source components used by AWS DataSync, download the following link:

- datasync-open-source-components.zip
Using the AWS Command Line Interface with AWS DataSync

In this section, you can find examples of using the AWS Command Line Interface (AWS CLI) commands for AWS DataSync. You can use these commands to create an agent, create source and destination locations, and run a task.

Before you begin, we recommend reading How AWS DataSync works (p. 4) to understand the components and terms used in DataSync and how the service works. We also recommend reading IAM customer managed policies for AWS DataSync (p. 187) to understand the AWS Identity and Access Management (IAM) permissions that DataSync requires.

Before you use AWS CLI commands, install the AWS CLI. For information about how to install the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide. After you install the AWS CLI, you can use the help command to see the DataSync operations and the parameters associated with them.

To see the available operations, enter the following command.

aws datasync help

To see the parameters associated with a specific operation, enter the following command.

aws datasync operation help

For more information about the AWS CLI, see What is the AWS Command Line Interface?

Topics

- Creating an AWS DataSync agent with the AWS CLI (p. 233)
- Creating AWS DataSync locations with the AWS CLI (p. 236)
- Creating an AWS DataSync task with the AWS CLI (p. 247)
- Starting an AWS DataSync task with the AWS CLI (p. 249)
- Filtering AWS DataSync resources (p. 249)

For information about supported AWS Regions and endpoints, see AWS DataSync endpoints and quotas.

For information about DataSync Amazon Resource Name (ARN) values, see Amazon Resource Names.

Creating an AWS DataSync agent with the AWS CLI

To access your self-managed storage, you first deploy and activate an AWS DataSync agent. The activation process associates your agent with your AWS account. An agent isn't required when transferring between AWS storage services within the same AWS account. To set up a data transfer between two AWS services, see Creating AWS DataSync locations with the AWS CLI (p. 236).

A DataSync agent can transfer data through public service endpoints, Federal Information Processing Standard (FIPS) endpoints, and Amazon VPC endpoints. For more information, see Creating your AWS DataSync agent (p. 36).
To create an agent to read from a Network File System (NFS), Server Message Block (SMB), Hadoop Distributed File System (HDFS), or self-managed object storage source location

1. Download the current DataSync .ova image or launch the current DataSync Amazon Machine Image (AMI) based on Amazon EC2 from the AWS DataSync console. For information about how to get the .ova image or Amazon EC2 AMI, see Create an AWS DataSync agent (p. 25). For information about hardware requirements and recommended Amazon EC2 instance types, see Virtual machine requirements (p. 11).

   Important
   If you are deploying your agent on Amazon EC2, deploy the agent so that it doesn't require network traffic between Availability Zones (to avoid charges for such traffic).
   
   • To access your Amazon EFS or Amazon FSx for Windows File Server file system, deploy the agent in an Availability Zone that has a mount target to your file system.
   
   • For self-managed file systems, deploy the agent in the Availability Zone where your file system resides.

   To learn more about data-transfer prices for all AWS Regions, see Amazon EC2 On-Demand pricing.

2. Make sure that you satisfy the network-connectivity requirements for the agent. For information about network requirements, see AWS DataSync network requirements (p. 12).

3. Deploy the .ova image in your hypervisor, power on the hypervisor, and note the agent's IP address. Make sure that you can reach the agent on port 80. You can use the following command to check.

   nc -vz agent-ip-address 80

   Note
   The .ova default credentials are login admin, password password. You can change the password on the virtual machine (VM) local console. You don't need to log in to the VM for basic DataSync functionality. Logging in is required mainly for troubleshooting, network-specific settings, and so on.
   You log in to the agent VM local console by using your VM's hypervisor client. For information about how to use the VM local console, see Working with your AWS DataSync agent's local console (p. 43).

4. Send an HTTP/1.1 GET request to the agent to get the activation key. You can do this by using standard Unix tools:

   • To activate an agent by using a public service endpoint, use the following command:

   curl "http://agent-ip-address/?gatewayType=SYNC&activationRegion=aws-region&no_redirect"

   • To activate an agent by using a virtual private cloud (VPC) endpoint, use the IP address of the VPC endpoint. Use the following command.

   curl "http://agent-ip-address/?gatewayType=SYNC&activationRegion=aws-region&privateLinkEndpoint=IP address of VPC endpoint&endpointType=PRIVATE_LINK&no_redirect"
To find the correct IP address, open the Amazon VPC console at https://console.aws.amazon.com/vpc/ and choose **Endpoints** from the navigation pane at left. Choose the DataSync endpoint, and check **Subnets list** to find the private IP address that corresponds to the subnet that you chose for your VPC endpoint setup.

For more information about VPC endpoint configuration, see step 5 in [Configuring your DataSync agent to use a VPC endpoint (p. 37)](#).

- To activate an agent using a Federal Information Processing Standard (FIPS) endpoint, specify `endpointType=FIPS`. Also, the `activationRegion` value must be set to an AWS Region within the United States. To activate a FIPS endpoint, use the following command.

  ```bash
 curl "http://agent-IP-address/?gatewayType=SYNC&activationRegion=US-based-aws-region&endpointType=FIPS&no_redirect"
  ```

  This command returns an activation key similar to the one following.

  F0EFT-7FPPR-GG7MC-3I9R3-27DOH

5. After you have the activation key, do one of the following:

   - To activate your agent using a public endpoint or FIPS endpoint, use the following command.

     ```bash
 aws datasync create-agent \
 --agent-name agent-name-you-specify \
 --activation-key obtained-activation-key
     ```

   - To activate your agent using a VPC endpoint, use the following command.

     ```bash
 aws datasync create-agent \
 --agent-name agent-name-you-specify \
 --vpc-endpoint-id vpc-endpoint-id \
 --subnet-arns subnet-arns \
 --security-group-arns security-group-arns \
 --activation-key obtained-activation-key
     ```

In this command, use the following arguments:

- **vpc-endpoint-id** – The AWS endpoint that the agent connects to. To find the endpoint ID, open the Amazon VPC console at https://console.aws.amazon.com/vpc/, and choose **Endpoints** from the navigation pane on the left. Copy the **Endpoint ID** value of the DataSync endpoint. For more information about VPC endpoint configuration, see step 5 in [Configuring your DataSync agent to use a VPC endpoint (p. 37)](#).

- **security-group-arn** – The Amazon Resource Names (ARNs) of the security groups to use for the task’s endpoint.

  This is the security group that you created in step 3 of [Configuring your DataSync agent to use a VPC endpoint (p. 37)](#).

- **subnet-arns** – The ARNs of the subnets where the task endpoints for the agent are created.

  This is the subnet that you chose in step 1 of [Configuring your DataSync agent to use a VPC endpoint (p. 37)](#).

These commands return the ARN of the agent that you just activated. The ARN is similar to the one following.

```json
{}
```
Creating AWS DataSync locations with the AWS CLI

Each AWS DataSync task is made up of a pair of locations in a transfer. The source location defines the storage system or service that you want to read data from. The destination location defines the storage system or service that you want to write data to.

With the AWS Command Line Interface (AWS CLI), you can create locations for the following storage systems and services:

- Network File System (NFS)
- Server Message Block (SMB)
- Hadoop Distributed File System (HDFS)
- Self-managed object storage source locations
- Amazon Elastic File System (Amazon EFS)
- Amazon FSx for Windows File Server
- Amazon FSx for Lustre
- Amazon FSx for OpenZFS
- Amazon FSx for NetApp ONTAP
- Amazon Simple Storage Service (Amazon S3)

For more information, see Where can I transfer my data with AWS DataSync? (p. 69).

Creating an NFS location

An NFS location defines a file system on an NFS server that can be read from or written to. You can also create an NFS location by using the AWS Management Console. For more information, see Configuring AWS DataSync transfers with an NFS file server (p. 72).

Note
If you are using an NFS location on an AWS Snowcone device, see Configuring AWS DataSync transfers with AWS Snowcone (p. 129) for more information about transferring data to or from that device.
To create an NFS location by using the CLI

- Use the following command to create an NFS source location.

```
$ aws datasync create-location-nfs \
 --server-hostname nfs-server-address \
 --on-prem-config AgentArns=datasync-agent-arns \
 --subdirectory nfs-export-path
```

For more information on creating the location, see Accessing NFS file servers (p. 72).

DataSync automatically chooses the NFS version that it uses to read from an NFS location. To specify an NFS version, use the optional Version parameter in the NfsMountOptions (p. 485) API operation.

This command returns the Amazon Resource Name (ARN) of the NFS location, similar to the ARN shown following.

```
{ "LocationArn": "arn:aws:datasync:us-east-1:11122333444:location/loc-0f01451b140b2af49" }
```

To make sure that the directory can be mounted, you can connect to any computer that has the same network configuration as your agent and run the following command.

```
mount -t nfs -o nfsvers=<nfs-server-version> <nfs-server-address>:<nfs-export-path> <test-folder>
```

The following is an example of the command.

```
mount -t nfs -o nfsvers=3 198.51.100.123:/path_for_sync_to_read_from /temp_folder_to_test_mount_on_local_machine
```

Creating an SMB location

An SMB location defines a file system on an SMB server that can be read from or written to. You can also create an SMB location by using the console. For more information, see Configuring AWS DataSync transfers with an SMB file server (p. 74).

To create an SMB location by using the CLI

- Use the following command to create an SMB source location.

```
aws datasync create-location-smb \
 --server-hostname smb-server-address \
 --user user-who-can-mount-share \
 --domain windows-domain-of-smb-server \
 --password user-password \
 --agent-arns datasync-agent-arns \
 --subdirectory smb-export-path
```

The `smb-export-path` that you provide for the `--subdirectory` parameter should be a path that's exported by the SMB server. Specify the path by using forward slashes; for example, `/path/to/folder`. Other SMB clients in your network should be able to access this path.

DataSync automatically chooses the SMB version that it uses to read from an SMB location. To specify an SMB version, use the optional Version parameter in the SmbMountOptions (p. 508) API operation.
Creating an HDFS location

An HDFS location defines a file system on a Hadoop cluster that can be read from or written to. You can also create an HDFS location by using the AWS Management Console. For more information, see Configuring AWS DataSync transfers with HDFS (p. 76).

To create an HDFS location by using the AWS CLI

- Use the following command to create an HDFS location. In the following example, replace each user input placeholder with your own information.

```bash
aws datasync create-location-hdfs --name-nodes ["Hostname":"host1", "Port": 8020] \ --authentication-type "SIMPLE|KERBEROS" \ --agent-arns [arn:aws:datasync:us-east-1:123456789012:agent/agent-01234567890example] \ --subdirectory "/path/to/my/data"
```

The following parameters are required in the `create-location-hdfs` command:

- **name-nodes** – Specifies the hostname or IP address of the NameNode in the Hadoop cluster and the TCP port that the NameNode is listening on.
- **authentication-type** – The type of authentication to use when connecting to the Hadoop cluster. Specify SIMPLE or KERBEROS.

  If you use SIMPLE authentication, use the `--simple-user` parameter to specify the user name of the user. If you use KERBEROS authentication, use the `--kerberos-principal`, `--kerberos-keytab`, and `--kerberos-krb5-conf` parameters. For more information, see `create-location-hdfs`.

- **agent-arns** – The ARNs of the DataSync agents to use for the HDFS location.

The preceding the command returns the location ARN, similar to the following:

```json
{
 "arn:aws:datasync:us-east-1:123456789012:location/loc-01234567890example"
}
```

Creating an object storage location

A **location** is a DataSync endpoint that represents an object storage system hosted on-premises or by another cloud provider (for example, a Google Cloud Storage bucket).

For more information about object storage locations, including compatibility requirements, see Configuring AWS DataSync transfers with an object storage system (p. 78).

To create an object storage location by using the AWS CLI

1. Copy the following `create-location-object-storage` command:
aws data sync create-location-object-storage \
  -- server-hostname object-storage-server.example.com \
  -- bucket-name your-bucket \

2. Specify the following required parameters in the command:
   • --server-hostname – Specify the domain name or IP address of your object storage server.
   • --bucket-name – Specify the name of the bucket on your object storage server that you’re transferring to or from.
   • --agent-arns – Specify the DataSync agents that you want to connect to your object storage server.

3. (Optional) Add any of the following parameters to the command:
   • --server-port – Specifies the port that your object storage server accepts inbound network traffic on (for example, port 443).
   • --server-protocol – Specifies the protocol (HTTP or HTTPS) which your object storage server uses to communicate.
   • --access-key – Specifies the access key (for example, a user name) if credentials are required to authenticate with the object storage server.
   • --secret-key – Specifies the secret key (for example, a password) if credentials are required to authenticate with the object storage server.
   • --server-certificate – Specifies a private or self-signed certificate that the DataSync agent will trust when connecting to your object storage server.

   The custom certificate file must have a .pem extension (for example, file:///home/user/mycert.pem).
   • --subdirectory – Specifies the object prefix for your object storage server.

   DataSync only copies objects with this prefix.
   • --tags – Specifies the key-value pair that represents a tag that you want to add to the location resource.

   Tags can help you manage, filter, and search for your resources. We recommend creating a name tag for your location.

4. Run the create-location-object-storage command.

   You get a response that shows you the location ARN that you just created.

   ```json
 {
 "LocationArn": "arn:aws:datasync:us-east-1:123456789012:location/loc-01234567890abcdef"
 }
   ```

Creating an Amazon EFS location

A location is the endpoint for an Amazon EFS file system that can be read from or written to. You can also create this kind of location by using the console. For more information, see Configuring AWS DataSync transfers with Amazon EFS (p. 90).
To create an Amazon EFS location by using the AWS CLI

1. If you don't have an Amazon EFS file system, create one. For information about how to create an EFS file system, see Getting started with Amazon Elastic File System in the Amazon Elastic File System User Guide.

2. Identify a subnet that has at least one mount target for that file system. You can see all the mount targets and the subnets associated with an EFS file system by using the `describe-mount-targets` command.

   ```bash
 aws efs describe-mount-targets \
 --region aws-region \
 --file-system-id file-system-id
   ```

   **Note**
   The AWS Region that you specify is the one where your target S3 bucket or EFS file system is located.

   This command returns information about the target similar to the information shown following.

   ```json
 {
 "MountTargets": [
 {
 "OwnerId": "111222333444",
 "MountTargetId": "fsmt-22334a10",
 "FileSystemId": "fs-123456ab",
 "SubnetId": "subnet-f12a0e34",
 "LifeCycleState": "available",
 "IpAddress": "11.222.0.123",
 "NetworkInterfaceId": "eni-1234a044"
 }
]
 }
   ```

3. Specify an Amazon EC2 security group that can access the mount target. You can run the following command to find out the security group of the mount target.

   ```bash
 aws efs describe-mount-target-security-groups \
 --region aws-region \
 --mount-target-id mount-target-id
   ```

   The security group that you provide must be able to communicate with the security group on the mount target in the subnet specified.

   The relationship between security group M on the mount target and security group S, which you provide for DataSync to use at this stage, is as follows:

   - Security group M, which you associate with the mount target, must allow inbound access for the TCP protocol on the NFS port (2049) from security group S.

     You can enable an inbound connection either by its IP address (CIDR range) or its security group.

   - Security group S, which you provide to DataSync to access Amazon EFS, should have a rule that enables outbound connections to the NFS port. It enables outbound connections on one of the file system's mount targets.

     You can enable outbound connections either by IP address (CIDR range) or security group.

   For information about security groups and mount targets, see Security groups for Amazon EC2 instances and mount targets in the Amazon Elastic File System User Guide.

240
4. Create the location. To create the EFS location, you need the ARNs for your Amazon EC2 subnet, Amazon EC2 security group, and a file system. Because the DataSync API accepts fully qualified ARNs, you can construct these ARNs. For information about how to construct ARNs for different services, see Amazon Resource Names (ARNs) in the AWS General Reference.

Use the following command to create an EFS location.

```
aws datasync create-location-efs \
 --subdirectory /path/to/your/subdirectory \
 --efs-filesystem-arn 'arn:aws:elasticfilesystem:region:account-id:filesystem/file-system-id' \
```

**Note**
The AWS Region that you specify is the one where your target S3 bucket or EFS file system is located.

The command returns a location ARN similar to the one shown following.

```
{
 "LocationArn": "arn:aws:datasync:us-west-2:111222333444:location/loc-07db7abfc326c50fb"
}
```

---

**Creating an Amazon FSx for Windows File Server location**

A location is an endpoint for an FSx for Windows File Server that you can read from or write to.

You can also create an FSx for Windows File Server location by using the console. For more information, see Configuring AWS DataSync transfers with Amazon FSx for Windows File Server (p. 93).

**To create an FSx for Windows File Server location by using the AWS CLI**

- Use the following command to create an Amazon FSx location.

```
aws datasync create-location-fsx-windows \
 --fsx-filesystem-arn arn:aws:fsx:region:account-id:file-system/file-system-id \
 --security-group-arns arn:aws:ec2:region:account-id:security-group/group-id \
 --user smb-user --password password
```

In the create-location-fsx-windows command, specify the following:

- **fsx-filesystem-arn** – The fully qualified Amazon Resource Name (ARN) of the file system that you want to read from or write to.

  The DataSync API accepts fully qualified ARNs, and you can construct these ARNs. For information about how to construct ARNs for different services, see Amazon Resource Names (ARNs) in the AWS General Reference.

- **security-group-arns** – The ARN of an Amazon EC2 security group that can be applied to the network interfaces (p. 20) of the file system's preferred subnet.

- **The AWS Region** – The Region that you specify is the one where your target Amazon FSx file system is located.
The preceding command returns a location ARN similar to the one shown following.

```
{
 "LocationArn": "arn:aws:datasync:us-west-2:11122233444:location/loc-07db7abfc326c50fb"
}
```

## Creating an Amazon FSx for Lustre location

A location is an endpoint for an FSx for Lustre file system that you can read or write to.

You can also create an FSx for Lustre location by using the console. For more information, see Configuring AWS DataSync transfers with Amazon FSx for Lustre (p. 95).

**To create an FSx for Lustre location by using the AWS CLI**

1. Use the following command to create an FSx for Lustre location.

   ```bash
 aws datasync create-location-fsx-lustre \
 --security-group-arns arn:aws:ec2:region:account-id:security-group/group-id
   ```

   The following parameters are required in the `create-location-fsx-lustre` command.

   - `fsx-filesystem-arn` – The fully qualified Amazon Resource Name (ARN) of the file system that you want to read from or write to.
   - `security-group-arns` – The ARN of an Amazon EC2 security group to apply to the network interfaces (p. 20) of the file system's preferred subnet.

   The preceding command returns a location ARN similar to the following.

   ```json
 {
 "LocationArn": "arn:aws:datasync:us-west-2:11122233444:location/loc-07db7abfc326c50fb"
 }
   ```

## Creating an Amazon FSx for OpenZFS location

A location is an endpoint for an FSx for OpenZFS file system that DataSync can access for a transfer. You also can create an FSx for OpenZFS location in the console (p. 96).

**To create an FSx for OpenZFS location by using the AWS CLI**

1. Copy the following command:

   ```bash
 $ aws datasync create-location-fsx-openzfs \
 --security-group-arns arn:aws:ec2:region:account-id:security-group/group-id \
 --protocol NFS={}
   ```

   2. Specify the following required options in the command:

      - For `fsx-filesystem-arn`, specify the location file system's fully qualified Amazon Resource Name (ARN). This includes the AWS Region where your file system resides, your AWS account, and the file system ID.
• For security-group-arns, specify the ARN of the Amazon EC2 security group that provides access to the network interfaces (p. 20) of your FSx for OpenZFS file system's preferred subnet. This includes the AWS Region where your Amazon EC2 instance resides, your AWS account, and the security group ID.

For more information about security groups, see File System Access Control with Amazon VPC in the Amazon FSx for OpenZFS User Guide.

• For protocol, specify the protocol that DataSync uses to access your file system. (DataSync currently supports only NFS.)

3. Run the command. You get a response showing the location that you just created.

```
{
 "LocationArn": "arn:aws:datasync:us-west-2:123456789012:location/loc-abcdef01234567890"
}
```

Creating an Amazon FSx for NetApp ONTAP location

A location is an endpoint for an FSx for ONTAP file system that DataSync can access for a transfer. You also can create an FSx for ONTAP location in the console (p. 98).

**To create an FSx for ONTAP location by using the AWS CLI**

1. Copy the following command:

```
$ aws datasync create-location-fsx-ontap \\
--security-group-arns arn:aws:ec2:region:account-id:security-group/group-id \\
--protocol data-transfer-protocol={}
```

2. Specify the following required options in the command:

• For storage-virtual-machine-arn, specify the fully qualified Amazon Resource Name (ARN) of a storage virtual machine (SVM) in your file system where you want to copy data to or from.

This ARN includes the AWS Region where your file system resides, your AWS account, and the file system and SVM IDs.

• For security-group-arns, specify the ARNs of the Amazon EC2 security groups that provide access to the network interfaces (p. 20) of your file system's preferred subnet.

This includes the AWS Region where your Amazon EC2 instance resides, your AWS account, and your security group IDs. You can specify up to five security group ARNs.

For more information about security groups, see File System Access Control with Amazon VPC in the Amazon FSx for NetApp ONTAP User Guide.

• For protocol, configure the protocol that DataSync uses to access your file system's SVM.

• For NFS, you can use the default configuration:

```
--protocol NFS={}
```

• For SMB, you must specify a user name and password that can access the SVM:

```
--protocol SMB={User=smb-user,Password=smb-password}
```

3. Run the command.
Creating an Amazon S3 location

An Amazon S3 location requires an S3 bucket that can be read from or written to. To create an S3 bucket, see Creating a bucket in the Amazon S3 User Guide.

For DataSync to access an S3 bucket, DataSync needs an AWS Identity and Access Management (IAM) role that has the required permissions. With the following procedure, you create the IAM role, the required IAM policies, and the S3 location by using the AWS CLI.

For DataSync to assume the IAM role, AWS Security Token Service (AWS STS) must be activated in your account and Region. For more information about temporary security credentials, see Temporary security credentials in IAM in the IAM User Guide.

You can also create an S3 location by using the console. For more information, see Configuring AWS DataSync transfers with Amazon S3 (p. 80).

To create an S3 location by using the CLI

1. Create an IAM trust policy that allows DataSync to assume the IAM role required to access your S3 bucket.

   The following is an example of a trust policy.

   ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "datasync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 ``

2. Create a temporary file for the IAM policy, as shown in the following example.

   ```bash
   $ ROLE_FILE=$(mktemp -t sync.iam.role.filename.json)
   $ IAM_ROLE_NAME='YourBucketAccessRole'
   $ cat<<EOF> ${ROLE_FILE}
   {
      "Version": "2012-10-17",
      "Statement": [
         {
            "Effect": "Allow",
            "Principal": {
               "Service": "datasync.amazonaws.com"
            },
            "Action": "sts:AssumeRole"
         }
      ]
   }
   EOF
   ```

You get a response that shows the location that you just created.

```json
{
   "LocationArn": "arn:aws:datasync:us-west-2:123456789012:location/abcdef01234567890"
}
```
3. Create an IAM role and attach the IAM policy to it.

The following command creates an IAM role and attaches the policy to it.

```
$ aws iam create-role --role-name ${IAM_ROLE_NAME} --assume-role-policy-document file://${ROLE_FILE}
{
  "Role": {
    "Path": "/",
    "RoleName": "YourBucketAccessRole",
    "RoleId": "role-id",
    "Arn": "arn:aws:iam::account-id:role/YourBucketAccessRole",
    "CreateDate": "2018-07-27T02:49:23.117Z",
    "AssumeRolePolicyDocument": {
      "Version": "2012-10-17",
      "Statement": [{
        "Effect": "Allow",
        "Principal": {
          "Service": "datasync.amazonaws.com"
        },
        "Action": "sts:AssumeRole"
      }]
    }
  }
}
```

4. Allow the IAM role that you created to write to your S3 bucket.

Attach to the IAM role an IAM policy that has sufficient permissions to access your S3 bucket. The following example shows the minimum permissions needed for DataSync to read and write to an S3 bucket in an AWS Region.

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "datasync.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Action": [
        "s3:GetBucketLocation",
        "s3:ListBucket",
        "s3:ListBucketMultipartUploads"
      ],
      "Effect": "Allow",
      "Resource": "YourS3BucketArn"
    },
    {
      "Action": [
        "s3:AbortMultipartUpload",
        "s3:DeleteObject",
        "s3:GetObject",
        "s3:ListMultipartUploadParts",
        "s3:GetObjectTagging",
        "s3:PutObjectTagging",
        "s3:PutObject"
      ],
      "Effect": "Allow",
      "Resource": "YourS3BucketArn/"
    }
  ]
}
```

To attach the policy to your IAM role, run the following command.
$ aws iam attach-role-policy \
 --role-name role-name \
 --policy-arn 'arn:aws:iam::aws:policy/YourPolicyName'

For Amazon S3 buckets on AWS Outposts, use the following policy.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": [
        "s3-outposts:ListBucket",
        "s3-outposts:ListBucketMultipartUploads"
      ],
      "Effect": "Allow",
      "Resource": [
        "s3OutpostsBucketArn",
        "s3OutpostsAccessPointArn"
      ],
      "Condition": {
        "StringLike": {
          "s3-outposts:DataAccessPointArn": "s3OutpostsAccessPointArn"
        }
      }
    },
    {
      "Action": [
        "s3-outposts:AbortMultipartUpload",
        "s3-outposts:DeleteObject",
        "s3-outposts:GetObject",
        "s3-outposts:ListMultipartUploadParts",
        "s3-outposts:PutObjectTagging",
        "s3-outposts:GetObjectTagging",
        "s3-outposts:PutObject"
      ],
      "Effect": "Allow",
      "Resource": [
        "s3OutpostsBucketArn/**",
        "s3OutpostsAccessPointArn"
      ],
      "Condition": {
        "StringLike": {
          "s3-outposts:DataAccessPointArn": "s3OutpostsAccessPointArn"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": [
        "s3-outposts:GetAccessPoint"
      ],
      "Resource": "s3OutpostsAccessPointArn"
    }
  ]
}
```

5. Create the S3 location.

Use the following command to create your Amazon S3 location.

```
$ aws datasync create-location-s3 \
  --s3-bucket-arn 'arn:aws:s3:::DOC-EXAMPLE-BUCKET' \
  --s3-storage-class 'your-S3-storage-class'
```
Creating a task

```
--s3-config 'BucketAccessRoleArn=arn:aws:iam::account-id:role/role-allowing-DS-operations'
--subdirectory /your-folder
```

The command returns a location ARN similar to the one shown following.

```
{
    "LocationArn": "arn:aws:datasync:us-east-1:111222333444:location/loc-0b3017fc4ba4a2d8d"
}
```

The location type information is encoded in the `LocationUri`. In this example, the `s3://` prefix in `LocationUri` shows the location's type.

If your Amazon S3 bucket is located on an AWS Outpost, you must deploy an Amazon EC2 agent on your Outpost. The agent must be in a virtual private cloud (VPC) that's allowed to access the access point specified in the command. The agent also must be activated in the parent Region for the Outpost, and be able to route to the Amazon S3 on AWS Outposts endpoints for the bucket. For more information about launching a DataSync agent on AWS Outposts, see Deploy your agent on AWS Outposts (p. 29).

Use the following command to create an Amazon S3 location on your Outpost.

```
aws datasync create-location-s3
--s3-bucket-arn access-point-arn
--s3-config BucketAccessRoleArn=arn:aws:iam::account-id:role/role-allowing-DS-operations
--agent-arns arn-of-datasync-agent-in-vpc-that-can-access-your-s3-access-point
```

Note

- Changes to object data or metadata are equivalent to deleting an object and creating a new one to replace it. This results in additional charges in the following scenarios:
 - **When using object versioning** – Changes to object data or metadata create a new version of the object.
 - **When using storage classes that can incur additional charges for overwriting, deleting, or retrieving, objects** – Changes to object data or metadata result in such charges. For more information, see Storage class considerations with Amazon S3 transfers (p. 84).
 - When you use object versioning, a single DataSync task execution might create more than one version of an Amazon S3 object.
 - In addition to the IAM policies that grant DataSync permissions, we recommend creating a multipart upload bucket policy for your S3 buckets. Doing this can help you control your storage costs. For more information, see the blog post S3 lifecycle management update - support for multipart uploads and delete markers.

Creating an AWS DataSync task with the AWS CLI

Once you create your source and destination locations, you can create your AWS DataSync task.

Important

If you're planning to transfer data to or from an Amazon S3 location, review how DataSync can affect your S3 request charges (p. 87) and the DataSync pricing page before you begin.
To create a task by using the AWS CLI

1. Create an Amazon CloudWatch Logs log group by using the following command.

```
aws logs create-log-group \
  --log-group-name your-log-group
```

2. Attach an IAM resource policy to your log group. For instructions on how to attach the policy, see Allowing DataSync to upload logs to CloudWatch log groups (p. 169).

3. Create a task by using the following command.

```
aws datasync create-task \
  --source-location-arn 'arn:aws:datasync:region:account-id:location/location-id' \
  --destination-location-arn 'arn:aws:datasync:region:account-id:location/location-id' \
  --name task-name
```

This command returns the Amazon Resource Name (ARN) for a task, similar to the one shown following.

```json
{
  "TaskArn": "arn:aws:datasync:us-east-1:111222333444:task/task-08de6e6697796f026"
}
```

When creating a task that transfers data between AWS services in different Regions, and the other location must be specified in a different Region (for example, to transfer data between us-east-1 and us-east-2), use DataSync in one of the Regions and create a task by using the following command.

```
aws datasync create-task \
  --source-location-arn 'arn:aws:datasync:us-east-1:account-id:location/location-id' \
  --destination-location-arn 'arn:aws:datasync:us-east-2:account-id:location/location-id' \
  --cloud-watch-log-group-arn 'arn:aws:logs:region:account-id' \
  --name task-name \
  --options VerifyMode=NONE,OverwriteMode=NEVER,Atime=BEST_EFFORT,Mtime=PRESERVE,Uid=INT_VALUE,Gid=INT_VALUE,PreserveDevices=PRESERVE,PosixPermissions=PRESERVE,PreserveDeletedFiles=PRESERVE,TaskQueueing=ENABLED,LogLevel=TRANSFER
```

Your task is created with the default configuration options. If you want to configure different options as part of your task creation, add the --options parameter to your create-task command. The following example shows how to specify different options. For a description of these options, see the section called “Options” (p. 487).

```
aws datasync create-task \
  --source-location-arn 'arn:aws:datasync:region:account-id:location/location-id' \
  --destination-location-arn 'arn:aws:datasync:region:account-id:location/location-id' \
  --name task-name \
  --options VerifyMode=NONE,OverwriteMode=NEVER,Atime=BEST_EFFORT,Mtime=PRESERVE,Uid=INT_VALUE,Gid=INT_VALUE,PreserveDevices=PRESERVE,PosixPermissions=PRESERVE,PreserveDeletedFiles=PRESERVE,TaskQueueing=ENABLED,LogLevel=TRANSFER
```

When you create a task, you can configure the task to include or exclude specific files, folders, and objects. For more information, see Filtering data transferred by AWS DataSync (p. 141). You can also schedule when you want your task to run. For more information, see Scheduling your AWS DataSync task (p. 145).
Starting an AWS DataSync task with the AWS CLI

You can begin transferring your data with AWS DataSync by using the AWS CLI.

To start your DataSync task, you just need to specify the Amazon Resource Name (ARN) of the task you want to run. Here's an example start-task-execution command:

```bash
aws datasync start-task-execution \
--task-arn 'arn:aws:datasync:region:account-id:task/task-id'
```

You can modify the task's settings for a specific task execution, as shown in the example following. For a description of these options, see the section called "Options" (p. 487). You also configure a specific task run to focus on specific files, folders, and objects to transfer. For more information, see Filtering data transferred by AWS DataSync (p. 141).

The following example starts a task with a few settings that are different than the task's default settings:

```bash
aws datasync start-task-execution \
--override-options VerifyMode=NONE,OverwriteMode=NEVER,PosixPermissions=NONE
```

The command returns an ARN for your task execution similar to the following example:

```json
{
    "TaskExecutionArn": "arn:aws:datasync:us-east-1:209870788375:task/task-08de6e6697796f026/execution/exec-04ce9d516d69bd52f"
}
```

Note
Each agent can run a single task at a time.

Filtering AWS DataSync resources

You can filter your AWS DataSync locations and tasks by using the ListLocations and ListTasks API operations in the AWS CLI. For example, retrieve a list of your most recent tasks.

Parameters for filtering

You can use API filters to narrow down the list of resources returned by ListTasks and ListLocations. For example, to retrieve all of your Amazon S3 locations, you can use ListLocations with the filter name LocationType S3 and Operator Equals.

To filter API results, you must specify a filter name, operator, and value.

- **Name** – The name of the filter that's being used. Each API call supports a list of filters that are available for it (for example, LocationType for ListLocations).
- **Values** – The values that you want to filter for. For example, you might want to display only Amazon S3 locations.
- **Operator** – The operator that's used to compare filter values (for example, Equals or Contains).

The following table lists the available operators.
Filtering by location

ListLocations supports the following filter names:

- **LocationType** – Filters on the location type:
 - SMB
 - NFS
 - HDFS
 - OBJECT_STORAGE
 - S3
 - OUTPOST_S3
 - FSX_WINDOWS
 - FSX_LUSTRE
 - FSX_OPENZFS_NFS
 - FSX_ONTAP_NFS
 - FSX_ONTAP_SMB

- **LocationUri** – Filters on the uniform resource identifier (URI) assigned to the location, as returned by the DescribeLocation* API call (for example, s3://bucket-name/your-prefix for Amazon S3 locations).

- **CreationTime** – Filters on the time that the location was created. The input format is yyyy-MM-dd:mm:ss in Coordinated Universal Time (UTC).

The following AWS CLI example lists all locations of type Amazon S3 that have a location URI starting with the string "s3://DOC-EXAMPLE-BUCKET" and that were created at or after 2019-12-15 17:15:20 UTC.

```bash
aws datasync list-locations \
    --filters [[Name=LocationType, Values=["S3"], Operator=Equals], \
              [Name=LocationUri, Values=["s3://DOC-EXAMPLE-BUCKET"], Operator=BeginsWith], \
              [Name=CreationTime, Values=["2019-12-15 17:15:20"], Operator=GreaterThanOrEqual]]
```
This command returns output similar to the following.

```json
{
    "Locations": [
    {
        "LocationArn": "arn:aws:datasync:us-east-1:111122223333:location/loc-333333333abcdef0",
        "LocationUri": "s3://DOC-EXAMPLE-BUCKET-examples/"
    },
    {
        "LocationArn": "arn:aws:datasync:us-east-1:123456789012:location/loc-987654321abcdef0",
        "LocationUri": "s3://DOC-EXAMPLE-BUCKET-examples-2/"
    }
]
}
```

Filtering by task

ListTasks supports the following filter names.

- **LocationId** – Filters on both source and destination locations on Amazon Resource Name (ARN) values.
- **CreationTime** – Filters on the time that the task was created. The input format is `yyyy-MM-dd:mm:ss` in UTC.

The following AWS CLI example shows the syntax when filtering on LocationId.

```bash
aws datasync list-tasks \
    --filters Name=LocationId,Values=arn:aws:datasync:us-east-1:your-account-id:location/your-location-id,Operator=Contains
```

The output of this command looks similar to the following.

```json
{
    "Tasks": [
    {
        "TaskArn": "arn:aws:datasync:us-east-1:your-account-id:task/your-task-id",
        "Status": "AVAILABLE",
        "Name": "DOC-EXAMPLE-BUCKET"
    }
]
}
```
AWS DataSync API

In addition to the AWS Management Console and AWS CLI, you can use the AWS DataSync API to configure and manage DataSync with the AWS SDKs.

Topics

- Actions (p. 252)
- Data Types (p. 453)
- Common Errors (p. 519)
- Common Parameters (p. 521)

Actions

The following actions are supported:

- AddStorageSystem (p. 254)
- CancelTaskExecution (p. 258)
- CreateAgent (p. 260)
- CreateLocationAzureBlob (p. 264)
- CreateLocationEfs (p. 268)
- CreateLocationFsxLustre (p. 272)
- CreateLocationFsxOntap (p. 275)
- CreateLocationFsxOpenZfs (p. 278)
- CreateLocationFsxWindows (p. 281)
- CreateLocationHdfs (p. 285)
- CreateLocationNfs (p. 290)
- CreateLocationObjectStorage (p. 294)
- CreateLocationS3 (p. 298)
- CreateLocationSmb (p. 303)
- CreateTask (p. 307)
- DeleteAgent (p. 313)
- DeleteLocation (p. 315)
- DeleteTask (p. 317)
- DescribeAgent (p. 319)
- DescribeDiscoveryJob (p. 323)
- DescribeLocationAzureBlob (p. 326)
- DescribeLocationEfs (p. 329)
- DescribeLocationFsxLustre (p. 333)
- DescribeLocationFsxOntap (p. 336)
- DescribeLocationFsxOpenZfs (p. 339)
- DescribeLocationFsxWindows (p. 342)
- DescribeLocationHdfs (p. 345)
- DescribeLocationNfs (p. 349)
- DescribeLocationObjectStorage (p. 352)
• DescribeLocationS3 (p. 355)
• DescribeLocationSmb (p. 358)
• DescribeStorageSystem (p. 361)
• DescribeStorageSystemResourceMetrics (p. 365)
• DescribeStorageSystemResources (p. 369)
• DescribeTask (p. 376)
• DescribeTaskExecution (p. 382)
• GenerateRecommendations (p. 389)
• ListAgents (p. 391)
• ListDiscoveryJobs (p. 394)
• ListLocations (p. 397)
• ListStorageSystems (p. 400)
• ListTagsForResource (p. 402)
• ListTaskExecutions (p. 405)
• ListTasks (p. 408)
• RemoveStorageSystem (p. 411)
• StartDiscoveryJob (p. 413)
• StartTaskExecution (p. 416)
• StopDiscoveryJob (p. 420)
• TagResource (p. 422)
• UntagResource (p. 424)
• UpdateAgent (p. 426)
• UpdateDiscoveryJob (p. 428)
• UpdateLocationAzureBlob (p. 430)
• UpdateLocationHdfs (p. 433)
• UpdateLocationNfs (p. 437)
• UpdateLocationObjectStorage (p. 439)
• UpdateLocationSmb (p. 442)
• UpdateStorageSystem (p. 445)
• UpdateTask (p. 448)
• UpdateTaskExecution (p. 452)
AddStorageSystem

Creates an AWS resource for an on-premises storage system that you want DataSync Discovery to collect information about.

Request Syntax

```
{
  "AgentArns": [ "string" ],
  "ClientToken": "string",
  "CloudWatchLogGroupArn": "string",
  "Credentials": {
    "Password": "string",
    "Username": "string"
  },
  "Name": "string",
  "ServerConfiguration": {
    "ServerHostname": "string",
    "ServerPort": number
  },
  "SystemType": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 254)

Specifies the Amazon Resource Name (ARN) of the DataSync agent that connects to and reads from your on-premises storage system's management interface. You can only specify one ARN.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$`

Required: Yes

ClientToken (p. 254)

Specifies a client token to make sure requests with this API operation are idempotent. If you don't specify a client token, DataSync generates one for you automatically.

Type: String

Pattern: `[a-f0-9]{8}-(a-f0-9){4}-(a-f0-9){4}-(a-f0-9){4}-(a-f0-9){12}`
CloudWatchLogGroupArn (p. 254)

Specifies the ARN of the Amazon CloudWatch log group for monitoring and logging discovery job events.

Type: String

Length Constraints: Maximum length of 562.

Required: No

Credentials (p. 254)

Specifies the user name and password for accessing your on-premises storage system's management interface.

Type: `Credentials (p. 459)` object

Required: Yes

Name (p. 254)

Specifies a familiar name for your on-premises storage system.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: `^[p{L}\p{M}\p{N}\s+=._:@/-]+$`

Required: No

ServerConfiguration (p. 254)

Specifies the server name and network port required to connect with the management interface of your on-premises storage system.

Type: `DiscoveryServerConfiguration (p. 461)` object

Required: Yes

SystemType (p. 254)

Specifies the type of on-premises storage system that you want DataSync Discovery to collect information about.

Note

DataSync Discovery currently supports NetApp Fabric-Attached Storage (FAS) and All Flash FAS (AFF) systems running ONTAP 9.7 or later.

Type: String

Valid Values: NetAppONTAP

Required: Yes

Tags (p. 254)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least a name tag for your on-premises storage system.
AddStorageSystem

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```
{
  "StorageSystemArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

StorageSystemArn (p. 256)

The ARN of the on-premises storage system that you can use with DataSync Discovery.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example adds an on-premises storage system to DataSync Discovery.

```
{
  "ServerConfiguration": {
    "ServerHostname": "172.16.0.0",
    "ServerPort": 443
  }
```

256
AWS DataSync User Guide
AddStorageSystem

Sample Response

A response returns the ARN of the on-premises storage system that you just added to DataSync Discovery.

```
{
  "StorageSystemArn": "arn:aws:datasync:us-east-1:111222333444:system/storage-system-abcdef01234567890"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CancelTaskExecution

Stops an AWS DataSync task execution that's in progress. The transfer of some files are abruptly interrupted. File contents that're transferred to the destination might be incomplete or inconsistent with the source files.

However, if you start a new task execution using the same task and allow it to finish, file content on the destination will be complete and consistent. This applies to other unexpected failures that interrupt a task execution. In all of these cases, DataSync successfully completes the transfer when you start the next task execution.

Request Syntax

```
{
    "TaskExecutionArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

TaskExecutionArn (p. 258)

The Amazon Resource Name (ARN) of the task execution to stop.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}/execution/exec-[0-9a-f]{17}$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateAgent

Activates an AWS DataSync agent that you've deployed in your storage environment. The activation process associates the agent with your AWS account.

If you haven't deployed an agent yet, see the following topics to learn more:

- Agent requirements
- Create an agent

Note
If you're transferring between AWS storage services, you don't need a DataSync agent.

Request Syntax

```
{
    "ActivationKey": "string",
    "AgentName": "string",
    "SecurityGroupArns": [ "string" ],
    "SubnetArns": [ "string" ],
    "Tags": [
        {
            "Key": "string",
            "Value": "string"
        }
    ],
    "VpcEndpointId": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

ActivationKey (p. 260)

Specifies your DataSync agent's activation key. If you don't have an activation key, see Activate your agent.

Type: String

Length Constraints: Maximum length of 29.

Pattern: [A-Z0-9]{5}(-[A-Z0-9]{5}){4}

Required: Yes

AgentName (p. 260)

Specifies a name for your agent. You can see this name in the DataSync console.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$
Required: No

SecurityGroupArns (p. 260)

Specifies the Amazon Resource Name (ARN) of the security group that protects your task's network interfaces when using a virtual private cloud (VPC) endpoint. You can only specify one ARN.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$`

Required: No

SubnetArns (p. 260)

Specifies the ARN of the subnet where you want to run your DataSync task when using a VPC endpoint. This is the subnet where DataSync creates and manages the network interfaces for your transfer. You can only specify one ARN.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:subnet/.*$`

Required: No

Tags (p. 260)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least one tag for your agent.

Type: Array of [TagListEntry (p. 510)] objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

VpcEndpointId (p. 260)

Specifies the ID of the VPC endpoint that you want your agent to connect to. For example, a VPC endpoint ID looks like `vpce-01234d5aff67890e1`.

Important

The VPC endpoint you use must include the DataSync service name (for example, `com.amazonaws.us-east-2.datasync`).

Type: String

Pattern: `^vpce-[0-9a-f]{17}$`

Required: No

Response Syntax

```json
{
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

AgentArn (p. 261)

The ARN of the agent that you just activated. Use the ListAgents operation to return a list of agents in your AWS account and AWS Region.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isob):datasync:[a-z\-0-9]+: [0-9]{12}:agent/agent-[0-9a-z]{17}$`

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example activates a DataSync agent and associates it with your AWS account.

```json
{
  "ActivationKey": "AAAAA-1AAAA-BB1CC-33333-EEEEE",
  "AgentName": "MyAgent",
  "Tags": [
    {
      "Key": "Job",
      "Value": "TransferJob-1"
    }
  ]
}
```

Sample Response

The response returns the ARN of the activated agent.

```json
{
  "AgentArn": "string"
}
```
"AgentArn": "arn:aws:datasync:us-east-2:11122233444:agent/agent-0b0addbeef44baca3"
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateLocationAzureBlob

Creates an endpoint for a Microsoft Azure Blob Storage container that AWS DataSync can use as a transfer source or destination.

Before you begin, make sure you know how DataSync accesses Azure Blob Storage and works with access tiers and blob types. You also need a DataSync agent that can connect to your container.

Request Syntax

```
{
  "AccessTier": "string",
  "AgentArns": [ "string" ],
  "AuthenticationType": "string",
  "BlobType": "string",
  "ContainerUrl": "string",
  "SasConfiguration": {
    "Token": "string"
  },
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AccessTier (p. 264)

Specifies the access tier that you want your objects or files transferred into. This only applies when using the location as a transfer destination. For more information, see Access tiers.

Type: String

Valid Values: HOT | COOL | ARCHIVE

Required: No

AgentArns (p. 264)

Specifies the Amazon Resource Name (ARN) of the DataSync agent that can connect with your Azure Blob Storage container.

You can specify more than one agent. For more information, see Using multiple agents for your transfer.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.
CreateLocationAzureBlob

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-is0|aws-is0-b):datasync:[a-z]\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: Yes

AuthenticationType (p. 264)

Specifies the authentication method DataSync uses to access your Azure Blob Storage. DataSync can access blob storage using a shared access signature (SAS).

Type: String

Valid Values: SAS

Required: Yes

BlobType (p. 264)

Specifies the type of blob that you want your objects or files to be when transferring them into Azure Blob Storage. Currently, DataSync only supports moving data into Azure Blob Storage as block blobs. For more information on blob types, see the Azure Blob Storage documentation.

Type: String

Valid Values: BLOCK

Required: No

ContainerUrl (p. 264)

Specifies the URL of the Azure Blob Storage container involved in your transfer.

Type: String

Length Constraints: Maximum length of 325.

Pattern: ^https:\/\/[A-Za-z0-9](\.|-+)?[A-Za-z0-9]{0,252}\/[a-z0-9]{2,62}$

Required: Yes

SasConfiguration (p. 264)

Specifies the SAS configuration that allows DataSync to access your Azure Blob Storage.

Type: AzureBlobSasConfiguration (p. 457) object

Required: No

Subdirectory (p. 264)

Specifies path segments if you want to limit your transfer to a virtual directory in your container (for example, /my/images).

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^\[\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}\p{C}]*$

Required: No

Tags (p. 264)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least a name tag for your transfer location.
Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
   "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 266)

The ARN of the Azure Blob Storage transfer location that you created.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
CreateLocationEfs

Creates an endpoint for an Amazon EFS file system that AWS DataSync can access for a transfer. For more information, see Creating a location for Amazon EFS.

Request Syntax

```
{
  "AccessPointArn": "string",
  "Ec2Config": {
    "SecurityGroupArns": [ "string" ],
    "SubnetArn": "string"
  },
  "EfsFilesystemArn": "string",
  "FileSystemAccessRoleArn": "string",
  "InTransitEncryption": "string",
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AccessPointArn (p. 268)

Specifies the Amazon Resource Name (ARN) of the access point that DataSync uses to access the Amazon EFS file system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws iso|aws iso-b):elasticfilesystem:[a-z \-0-9]+:[0-9]{12}:access-point/fsap-[0-9a-f]{8,40}$

Required: No

Ec2Config (p. 268)

Specifies the subnet and security groups DataSync uses to access your Amazon EFS file system.

Type: Ec2Config (p. 462) object

Required: Yes

EfsFilesystemArn (p. 268)

Specifies the ARN for the Amazon EFS file system.

Type: String
Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):elasticfilesystem:[a-z\-0-9]*:[0-9]{12}:file-system/fs-.*$

Required: Yes

FileSystemAccessRoleArn (p. 268)

Specifies an AWS Identity and Access Management (IAM) role that DataSync assumes when mounting the Amazon EFS file system.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):iam::[0-9]{12}:role/.*$

Required: No

InTransitEncryption (p. 268)

Specifies whether you want DataSync to use Transport Layer Security (TLS) 1.2 encryption when it copies data to or from the Amazon EFS file system.

If you specify an access point using AccessPointArn or an IAM role using FileSystemAccessRoleArn, you must set this parameter to TLS1_2.

Type: String

Valid Values: NONE | TLS1_2

Required: No

Subdirectory (p. 268)

Specifies a mount path for your Amazon EFS file system. This is where DataSync reads or writes data (depending on if this is a source or destination location). By default, DataSync uses the root directory, but you can also include subdirectories.

Note

You must specify a value with forward slashes (for example, /path/to/folder).

Type: String

Length Constraints: Maximum length of 4096.

Pattern: ^[a-zA-Z0-9-\-_/\]+\./\((\())p\{Zs]\]*$

Required: No

Tags (p. 268)

Specifies the key-value pair that represents a tag that you want to add to the resource. The value can be an empty string. This value helps you manage, filter, and search for your resources. We recommend that you create a name tag for your location.

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
Response Syntax

```
{
    "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 270)

The Amazon Resource Name (ARN) of the Amazon EFS file system location that you create.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)](common-errors).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example creates a location for an Amazon EFS file system.

```
{
    "Ec2Config": {
        "SecurityGroupArns": [
        ],
        "Subdirectory": "/mount/path",
        "Tags": [
            {"Key": "Name",
```
Sample Request: Creating a location for a restricted Amazon EFS file system

The following example creates a location for an Amazon EFS file system with restricted access. In this kind of scenario, you might have to specify values for `AccessPointArn`, `FileSystemAccessRoleArn`, and `InTransitEncryption` in your request.

```json
{
    "Ec2Config": {
        "SecurityGroupArns": [
        ],
    },
    "InTransitEncryption": "TLS1_2",
    "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-abcdef01234567890",
    "LocationUri": "efs://us-east-2.fs-021345abcdef6789/",
    "Subdirectory": "/mount/path",
    "Tags": [
        {
            "Key": "Name",
            "Value": "ElasticFileSystem-1"
        }
    ]
}
```

Sample Response

A response returns the location ARN of the Amazon EFS file system.

```json
{
    "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-12abcdef012345678"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateLocationFsxLustre

Creates an endpoint for an Amazon FSx for Lustre file system.

Request Syntax

```json
{
  "FsxFilesystemArn": "string",
  "SecurityGroupArns": [ "string" ],
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

FsxFilesystemArn (p. 272)

The Amazon Resource Name (ARN) for the FSx for Lustre file system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):fsx:\[a-z\-0-9\]*:[0-9]{12}:file-system/fs-.*$

Required: Yes

SecurityGroupArns (p. 272)

The Amazon Resource Names (ARNs) of the security groups that are used to configure the FSx for Lustre file system.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:\[a-z\-0-9\]*:[0-9]{12}:security-group/sg-[a-f0-9]+$

Required: Yes

Subdirectory (p. 272)

A subdirectory in the location's path. This subdirectory in the FSx for Lustre file system is used to read data from the FSx for Lustre source location or write data to the FSx for Lustre destination.

Type: String

Length Constraints: Maximum length of 4096.
Pattern: ^[a-zA-Z0-9-_.\+/\\\(\)\$\p{Zs}]+$
Required: No

Tags (p. 272)

The key-value pair that represents a tag that you want to add to the resource. The value can be an empty string. This value helps you manage, filter, and search for your resources. We recommend that you create a name tag for your location.

Type: Array of [TagListEntry (p. 510)] objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
   "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 273)

The Amazon Resource Name (ARN) of the FSx for Lustre file system location that's created.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+: [0-9]{12}:location/loc-[0-9a-z]{17}$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
CreateLocationFsxOntap

Creates an endpoint for an Amazon FSx for NetApp ONTAP file system that AWS DataSync can use for a data transfer.

Before you begin, make sure that you understand how DataSync accesses an FSx for ONTAP file system.

Request Syntax

```json
{
  "Protocol": {
    "NFS": {
      "MountOptions": {
        "Version": "string"
      }
    },
    "SMB": {
      "Domain": "string",
      "MountOptions": {
        "Version": "string"
      },
      "Password": "string",
      "User": "string"
    }
  },
  "SecurityGroupArns": [ "string" ],
  "StorageVirtualMachineArn": "string",
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

Protocol (p. 275)

Specifies the data transfer protocol that AWS DataSync uses to access your Amazon FSx file system.

Type: FsxProtocol (p. 464) object

Required: Yes

SecurityGroupArns (p. 275)

Specifies the Amazon EC2 security groups that provide access to your file system's preferred subnet.

The security groups must allow outbound traffic on the following ports (depending on the protocol you use):

- **Network File System (NFS)**: TCP ports 111, 635, and 2049
- **Server Message Block (SMB)**: TCP port 445
Your file system's security groups must also allow inbound traffic on the same ports.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$

Required: Yes

StorageVirtualMachineArn (p. 275)

Specifies the ARN of the storage virtual machine (SVM) in your file system where you want to copy data to or from.

Type: String

Length Constraints: Maximum length of 162.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):fsx:[a-z\-0-9]*:[0-9]{12}:storage-virtual-machine/fs-[0-9a-f]+/svm-[0-9a-f]{17,}+$

Required: Yes

Subdirectory (p. 275)

Specifies a path to the file share in the SVM where you’ll copy your data.

You can specify a junction path (also known as a mount point), qtree path (for NFS file shares), or share name (for SMB file shares). For example, your mount path might be /vol1, /vol1/tree1, or /share1.

Note
Don’t specify a junction path in the SVM’s root volume. For more information, see Managing FSx for ONTAP storage virtual machines in the Amazon FSx for NetApp ONTAP User Guide.

Type: String

Length Constraints: Maximum length of 255.

Pattern: ^[\^\u0000\u0085\u2028\u2029\r\n]{1,255}+$

Required: No

Tags (p. 275)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
   "LocationArn": "string"
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

LocationArn (p. 276)

Specifies the ARN of the FSx for ONTAP file system location that you create.

- **Type:** String
- **Length Constraints:** Maximum length of 128.
- **Pattern:** ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)](#).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

- **HTTP Status Code:** 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

- **HTTP Status Code:** 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateLocationFsxOpenZfs

Creates an endpoint for an Amazon FSx for OpenZFS file system that AWS DataSync can access for a transfer. For more information, see Creating a location for FSx for OpenZFS.

Note
Request parameters related to SMB aren't supported with the CreateLocationFsxOpenZfs operation.

Request Syntax

```json
{
  "FsxFilesystemArn": "string",
  "Protocol": {
    "NFS": {
      "MountOptions": {
        "Version": "string"
      }
    },
    "SMB": {
      "Domain": "string",
      "MountOptions": {
        "Version": "string"
      },
      "Password": "string",
      "User": "string"
    }
  },
  "SecurityGroupArns": [ "string" ],
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

FsxFilesystemArn (p. 278)

The Amazon Resource Name (ARN) of the FSx for OpenZFS file system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):fsx:[a-z\-0-9]*:[0-9]\{12\}:file-system/fs-.*$

Required: Yes

Protocol (p. 278)

The type of protocol that AWS DataSync uses to access your file system.
Type: `FsxProtocol (p. 464)` object
Required: Yes

SecurityGroupArns (p. 278)

The ARNs of the security groups that are used to configure the FSx for OpenZFS file system.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-\0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$`

Required: Yes

Subdirectory (p. 278)

A subdirectory in the location's path that must begin with `/fsx`. DataSync uses this subdirectory to read or write data (depending on whether the file system is a source or destination location).

Type: String

Length Constraints: Maximum length of 4096.

Pattern: `^[^\u0000\u0085\u2028\u2029\r\n]{1,4096}$`

Required: No

Tags (p. 278)

The key-value pair that represents a tag that you want to add to the resource. The value can be an empty string. This value helps you manage, filter, and search for your resources. We recommend that you create a name tag for your location.

Type: Array of `TagListEntry (p. 510)` objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
    "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 279)

The ARN of the FSx for OpenZFS file system location that you created.

Type: String
Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+: [0-9]{12}:location/loc-[0-9a-z]{17}$

Errors

For information about the errors that are common to all actions, see [Common Errors](#).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
CreateLocationFsxWindows

Creates an endpoint for an Amazon FSx for Windows File Server file system that AWS DataSync can use for a data transfer.

Before you begin, make sure that you understand how DataSync accesses an FSx for Windows File Server.

Request Syntax

```
{
  "Domain": "string",
  "FsxFilesystemArn": "string",
  "Password": "string",
  "SecurityGroupArns": [ "string" ],
  "Subdirectory": "string",
  "Tags": [  
    {  
      "Key": "string",
      "Value": "string"
    }  
  ],
  "User": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

Domain (p. 281)

Specifies the name of the Windows domain that the FSx for Windows File Server belongs to.

If you have multiple domains in your environment, configuring this parameter makes sure that DataSync connects to the right file server.

For more information, see required permissions for FSx for Windows File Server locations.

Type: String

Length Constraints: Maximum length of 253.

Pattern: ^[A-Za-z0-9](\.|-+)?[A-Za-z0-9]{0,252}$

Required: No

FsxFilesystemArn (p. 281)

Specifies the Amazon Resource Name (ARN) for the FSx for Windows File Server file system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):fsx:[a-z\-0-9]*:[0-9]\{12\}:file-system/fs-.*$

Required: Yes
Password (p. 281)

Specifies the password of the user who has the permissions to access files and folders in the file system.

For more information, see required permissions for FSx for Windows File Server locations.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^.{0,104}$

Required: Yes

SecurityGroupArns (p. 281)

Specifies the ARNs of the security groups that provide access to your file system’s preferred subnet.

Note
If you choose a security group that doesn't allow connections from within itself, do one of the following:

• Configure the security group to allow it to communicate within itself.
• Choose a different security group that can communicate with the mount target’s security group.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-isol|aws-iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$

Required: Yes

Subdirectory (p. 281)

Specifies a mount path for your file system using forward slashes. This is where DataSync reads or writes data (depending on if this is a source or destination location).

Type: String

Length Constraints: Maximum length of 4096.

Pattern: ^[a-zA-Z0-9\-_\+\./\(\)]$p\{Zs\}\]+$

Required: No

Tags (p. 281)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

User (p. 281)

Specifies the user who has the permissions to access files, folders, and metadata in your file system.
For information about choosing a user with the right level of access for your transfer, see required permissions for FSx for Windows File Server locations.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^[\^\x5B\x5D\/:;|=,*?]{1,104}$

Required: Yes

Response Syntax

```
{
   "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 283)

The ARN of the FSx for Windows File Server file system location you created.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Errors

For information about the errors that are common to all actions, see **Common Errors (p. 519).**

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateLocationHdfs

Creates an endpoint for a Hadoop Distributed File System (HDFS).

Request Syntax

```json
{
    "AgentArns": [ "string" ],
    "AuthenticationType": "string",
    "BlockSize": number,
    "KerberosKeytab": blob,
    "KerberosKrb5Conf": blob,
    "KerberosPrincipal": "string",
    "KmsKeyProviderUri": "string",
    "NameNodes": [
        {
            "Hostname": "string",
            "Port": number
        }
    ],
    "QopConfiguration": {
        "DataTransferProtection": "string",
        "RpcProtection": "string"
    },
    "ReplicationFactor": number,
    "SimpleUser": "string",
    "Subdirectory": "string",
    "Tags": [
        {
            "Key": "string",
            "Value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 285)

The Amazon Resource Names (ARNs) of the agents that are used to connect to the HDFS cluster.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isol|aws-iso-b):datasync:a-z\-0-9+:\[0-9]{12}:agent/agent-[0-9a-z]{17}$`

Required: Yes

AuthenticationType (p. 285)

The type of authentication used to determine the identity of the user.
CreateLocationHdfs

Type: String

Valid Values: SIMPLE | KERBEROS

Required: Yes

BlockSize (p. 285)

The size of data blocks to write into the HDFS cluster. The block size must be a multiple of 512 bytes. The default block size is 128 mebibytes (MiB).

Type: Integer

Valid Range: Minimum value of 1048576. Maximum value of 1073741824.

Required: No

KerberosKeytab (p. 285)

The Kerberos key table (keytab) that contains mappings between the defined Kerberos principal and the encrypted keys. You can load the keytab from a file by providing the file's address. If you're using the AWS CLI, it performs base64 encoding for you. Otherwise, provide the base64-encoded text.

Note

If KERBEROS is specified for AuthenticationType, this parameter is required.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 65536.

Required: No

KerberosKrb5Conf (p. 285)

The krb5.conf file that contains the Kerberos configuration information. You can load the krb5.conf file by providing the file's address. If you're using the AWS CLI, it performs the base64 encoding for you. Otherwise, provide the base64-encoded text.

Note

If KERBEROS is specified for AuthenticationType, this parameter is required.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 131072.

Required: No

KerberosPrincipal (p. 285)

The Kerberos principal with access to the files and folders on the HDFS cluster.

Note

If KERBEROS is specified for AuthenticationType, this parameter is required.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^\.+$

Required: No

KmsKeyProviderUri (p. 285)

The URI of the HDFS cluster's Key Management Server (KMS).

Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: ^kms://http[s]?@(([a-zA-Z0-9-]*[a-zA-Z0-9])\.)*([A-Za-z0-9-]*[A-Za-z0-9])((([a-zA-Z0-9-]*[a-zA-Z0-9])\.)*([A-Za-z0-9-]*[A-Za-z0-9]))*:\[0-9]{1,5}/kms$

Required: No

NameNodes (p. 285)

The NameNode that manages the HDFS namespace. The NameNode performs operations such as opening, closing, and renaming files and directories. The NameNode contains the information to map blocks of data to the DataNodes. You can use only one NameNode.

Type: Array of [HdfsNameNode](#) objects

Array Members: Minimum number of 1 item.

Required: Yes

QopConfiguration (p. 285)

The Quality of Protection (QOP) configuration specifies the Remote Procedure Call (RPC) and data transfer protection settings configured on the Hadoop Distributed File System (HDFS) cluster. If QopConfiguration isn't specified, RpcProtection and DataTransferProtection default to PRIVACY. If you set RpcProtection or DataTransferProtection, the other parameter assumes the same value.

Type: [QopConfiguration](#) object

Required: No

ReplicationFactor (p. 285)

The number of DataNodes to replicate the data to when writing to the HDFS cluster. By default, data is replicated to three DataNodes.

Type: Integer

Required: No

SimpleUser (p. 285)

The user name used to identify the client on the host operating system.

Note

If SIMPLE is specified for AuthenticationType, this parameter is required.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^\^[_.A-Za-z0-9][-_.A-Za-z0-9]*$

Required: No

Subdirectory (p. 285)

A subdirectory in the HDFS cluster. This subdirectory is used to read data from or write data to the HDFS cluster. If the subdirectory isn't specified, it will default to /.

Type: String

Length Constraints: Maximum length of 4096.
CreateLocationHdfs

Pattern: ^[a-zA-Z0-9-_\-\+/\(\)\$\p{Zs}]+$

Required: No

Tags (p. 285)

The key-value pair that represents the tag that you want to add to the location. The value can be an empty string. We recommend using tags to name your resources.

Type: Array of [TagListEntry (p. 510)] objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
    "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 288)

The ARN of the source HDFS cluster location that's created.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z-0-9]+:[0-9]{12}:location/loc-[0-9a-zA-Z]{17}$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
CreateLocationNfs

Creates an endpoint for a Network File System (NFS) file server that AWS DataSync can use for a data transfer.

For more information, see Configuring transfers to or from an NFS file server.

Note

If you’re copying data to or from an AWS Snowcone device, you can also use CreateLocationNfs to create your transfer location. For more information, see Configuring transfers with Snowcone.

Request Syntax

```json
{
  "MountOptions": {
    "Version": "string"
  },
  "OnPremConfig": {
    "AgentArns": [ "string" ]
  },
  "ServerHostname": "string",
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

MountOptions (p. 290)

Specifies the options that DataSync can use to mount your NFS file server.

Type: NfsMountOptions (p. 485) object

Required: No

OnPremConfig (p. 290)

Specifies the Amazon Resource Name (ARN) of the DataSync agent that want to connect to your NFS file server.

You can specify more than one agent. For more information, see Using multiple agents for transfers.

Type: OnPremConfig (p. 486) object

Required: Yes

ServerHostname (p. 290)

Specifies the Domain Name System (DNS) name or IP version 4 address of the NFS file server that your DataSync agent connects to.
CreateLocationNfs

Type: String
Length Constraints: Maximum length of 255.
Pattern: ^((\[a-zA-Z0-9-\]*\[a-zA-Z0-9\])\.)*([A-Za-z0-9-\]*[A-Za-z0-9-\])$
Required: Yes

Subdirectory (p. 290)

Specifies the export path in your NFS file server that you want DataSync to mount.
This path (or a subdirectory of the path) is where DataSync transfers data to or from. For information on configuring an export for DataSync, see Accessing NFS file servers.

Type: String
Length Constraints: Maximum length of 4096.
Pattern: ^[a-zA-Z0-9\-_\+/\(\)\p{Zs}]+$
Required: Yes

Tags (p. 290)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.

Type: Array of TagListEntry (p. 510) objects
Array Members: Minimum number of 0 items. Maximum number of 50 items.
Required: No

Response Syntax

```
{
  "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

LocationArn (p. 291)

The ARN of the transfer location that you created for your NFS file server.
Type: String
Length Constraints: Maximum length of 128.
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws|aws-iso|aws-iso-b):datasync:[a-z-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).
InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Example

The following example creates a DataSync transfer location for an NFS file server.

Sample Request

```
{
    "MountOptions": {
        "Version": "NFS4_0"
    },
    "OnPremConfig": {
        "AgentArn": [ "arn:aws:datasync:us-east-2:111222333444:agent/agent-0b0addbeef44b3nfs" ]
    },
    "ServerHostname": "MyServer@amazon.com",
    "Subdirectory":="/MyFolder",
    "Tags": [
        { "Key": "Name", "Value": "FileSystem-1" }
    ]
}
```

Example

The response returns the ARN of the NFS location.

Sample Response

```
{
    "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50aa"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateLocationObjectStorage

Creates an endpoint for an object storage system that AWS DataSync can access for a transfer. For more information, see Creating a location for object storage.

Request Syntax

```
{
    "AccessKey": "string",
    "AgentArns": [ "string" ],
    "BucketName": "string",
    "SecretKey": "string",
    "ServerCertificate": blob,
    "ServerHostname": "string",
    "ServerPort": number,
    "ServerProtocol": "string",
    "Subdirectory": "string",
    "Tags": [
        {
            "Key": "string",
            "Value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AccessKey (p. 294)

Specifies the access key (for example, a user name) if credentials are required to authenticate with the object storage server.

Type: String

Pattern: ^\.+$

Required: No

AgentArns (p. 294)

Specifies the Amazon Resource Names (ARNs) of the DataSync agents that can securely connect with your location.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: Yes
BucketName (p. 294)

Specifies the name of the object storage bucket involved in the transfer.

Type: String

Pattern: ^[a-zA-Z0-9-_\-\+\./\(\)\$\p{Zs}]+$

Required: Yes

SecretKey (p. 294)

Specifies the secret key (for example, a password) if credentials are required to authenticate with the object storage server.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Pattern: ^\.*$

Required: No

ServerCertificate (p. 294)

Specifies a file with the certificates that are used to sign the object storage server's certificate (for example, file:///home/user/.ssh/storage_sys_certificate.pem). The file you specify must include the following:

- The certificate of the signing certificate authority (CA)
- Any intermediate certificates
- base64 encoding
- A .pem extension

The file can be up to 32768 bytes (before base64 encoding).

To use this parameter, configure ServerProtocol to HTTPS.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 32768.

Required: No

ServerHostname (p. 294)

Specifies the domain name or IP address of the object storage server. A DataSync agent uses this hostname to mount the object storage server in a network.

Type: String

Length Constraints: Maximum length of 255.

Pattern: ^(([^a-zA-Z0-9\-]*[^a-zA-Z0-9])\.)*(^[A-Za-z0-9\-]*[A-Za-z0-9])$

Required: Yes

ServerPort (p. 294)

Specifies the port that your object storage server accepts inbound network traffic on (for example, port 443).
Type: Integer

- **Valid Range**: Minimum value of 1. Maximum value of 65536.
- **Required**: No

ServerProtocol (p. 294)

- Specifies the protocol that your object storage server uses to communicate.
- **Type**: String
- **Valid Values**: HTTPS | HTTP
- **Required**: No

Subdirectory (p. 294)

- Specifies the object prefix for your object storage server. If this is a source location, DataSync only copies objects with this prefix. If this is a destination location, DataSync writes all objects with this prefix.
- **Type**: String
- **Length Constraints**: Maximum length of 4096.
- **Pattern**: `^[a-zA-Z0-9\-_\+\./\(\)]+$`
- **Required**: No

Tags (p. 294)

- Specifies the key-value pair that represents a tag that you want to add to the resource. Tags can help you manage, filter, and search for your resources. We recommend creating a name tag for your location.
- **Type**: Array of [TagListEntry (p. 510)] objects
- **Array Members**: Minimum number of 0 items. Maximum number of 50 items.
- **Required**: No

Response Syntax

```json
{
    "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 296)

- Specifies the ARN of the object storage system location that you create.
- **Type**: String
- **Length Constraints**: Maximum length of 128.
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
CreateLocationS3

A location is an endpoint for an Amazon S3 bucket. AWS DataSync can use the location as a source or destination for copying data.

Important
Before you create your location, make sure that you read the following sections:

- Storage class considerations with Amazon S3 locations
- Evaluating S3 request costs when using DataSync

For more information, see Creating an Amazon S3 location.

Request Syntax

```json
{
  "AgentArns": [ "string" ],
  "S3BucketArn": "string",
  "S3Config": {
    "BucketAccessRoleArn": "string"
  },
  "S3StorageClass": "string",
  "Subdirectory": "string",
  "Tags": [
    { "Key": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 298)

If you're using DataSync on an AWS Outpost, specify the Amazon Resource Names (ARNs) of the DataSync agents deployed on your Outpost. For more information about launching a DataSync agent on an AWS Outpost, see Deploy your DataSync agent on AWS Outposts.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+: [0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: No

S3BucketArn (p. 298)

The ARN of the Amazon S3 bucket. If the bucket is on an AWS Outpost, this must be an access point ARN.
CreateLocationS3

Type: String
Length Constraints: Maximum length of 156.
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):(s3|s3-outposts):[a-z-0-9]*:[0-9]*:.*$
Required: Yes

S3Config (p. 298)

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role used to access an Amazon S3 bucket.

For detailed information about using such a role, see [Creating a Location for Amazon S3](https://aws.amazon.com/documentation/datasync/#Creating-a-Location-for-Amazon-S3) in the *AWS DataSync User Guide*.

Type: **S3Config (p. 507)** object
Required: Yes

S3StorageClass (p. 298)

The Amazon S3 storage class that you want to store your files in when this location is used as a task destination. For buckets in AWS Regions, the storage class defaults to Standard. For buckets on AWS Outposts, the storage class defaults to AWS S3 Outposts.

For more information about S3 storage classes, see [Amazon S3 Storage Classes](https://aws.amazon.com/s3/storagelclass/). Some storage classes have behaviors that can affect your S3 storage cost. For detailed information, see [Considerations when working with S3 storage classes in DataSync](https://aws.amazon.com/documentation/datasync/#Considerations-when-working-with-S3-storage-classes).

Type: String
Valid Values: STANDARD | STANDARD_IA | ONEZONE_IA | INTELLIGENT_TIERING | GLACIER | DEEP_ARCHIVE | OUTPOSTS | GLACIER_INSTANT_RETRIEVAL
Required: No

Subdirectory (p. 298)

A subdirectory in the Amazon S3 bucket. This subdirectory in Amazon S3 is used to read data from the S3 source location or write data to the S3 destination.

Type: String
Length Constraints: Maximum length of 4096.
Pattern: ^[a-zA-Z0-9-_\-\./\(\)\p{Zs}]*$
Required: No

Tags (p. 298)

The key-value pair that represents the tag that you want to add to the location. The value can be an empty string. We recommend using tags to name your resources.

Type: Array of **TagListEntry (p. 510)** objects
Array Members: Minimum number of 0 items. Maximum number of 50 items.
Required: No
Response Syntax

```json
{
  "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 300)

The Amazon Resource Name (ARN) of the source Amazon S3 bucket location that is created.

- Type: String
- Length Constraints: Maximum length of 128.
- Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Step 1. Allow to assume the IAM role required to write to the bucket

The following example shows the simplest policy that grants the required permissions for AWS DataSync to access a destination Amazon S3 bucket, followed by an IAM role to which the create-location-s3-iam-role policy has been attached.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "datasync.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```
Step 2. Allow the created IAM role to write to the bucket

Attach a policy that has sufficient permissions to access the bucket to the role. An example of such policy is the AWSDataSyncFullAccess managed policy.

For more information, see AWSDataSyncFullAccess in the IAM console.

You don't need to create this policy. It's managed by AWS, so all that you need to do is specify its ARN in the attach-role-policy command.

IAM_POLICY_ARN='arn:aws:iam::aws:policy/AWSDataSyncFullAccess'

Step 3. Create an endpoint for an Amazon S3 bucket

The following example creates an endpoint for an Amazon S3 bucket.

When the S3 endpoint is created, a response similar to the second example following returns the Amazon Resource Name (ARN) for the new Amazon S3 location.

Sample Request

```json
{
    "S3BucketArn": "arn:aws:s3:::MyBucket",
    "S3Config": {
        "BucketAccessRoleArn": "arn:aws:iam::11122233444:role/MyBucketAccessRole",
        "S3StorageClass": "STANDARD",
        "Subdirectory": "/MyFolder",
        "Tags": [
            {"Key": "Name",
            "Value": "s3Bucket-1"
            }
        ]
    }
}
```
Sample Response

```
{
  "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50s3"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
CreateLocationSmb

Creates an endpoint for a Server Message Block (SMB) file server that AWS DataSync can use for a data transfer.

Before you begin, make sure that you understand how DataSync accesses an SMB file server.

Request Syntax

```
{
  "AgentArns": [ "string" ],
  "Domain": "string",
  "MountOptions": {
    "Version": "string"
  },
  "Password": "string",
  "ServerHostname": "string",
  "Subdirectory": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ],
  "User": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 303)

Specifies the DataSync agent (or agents) which you want to connect to your SMB file server. You specify an agent by using its Amazon Resource Name (ARN).

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+: [0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: Yes

Domain (p. 303)

Specifies the Windows domain name that your SMB file server belongs to.

If you have multiple domains in your environment, configuring this parameter makes sure that DataSync connects to the right file server.

For more information, see required permissions for SMB locations.

Type: String
CreateLocationSmb

Length Constraints: Maximum length of 253.
Pattern: `^[A-Za-z0-9]((\.|\-+)?[A-Za-z0-9])\{0, 252}$`

Required: No

MountOptions (p. 303)

Specifies the version of the SMB protocol that DataSync uses to access your SMB file server.
Type: `SmbMountOptions (p. 508)` object

Required: No

Password (p. 303)

Specifies the password of the user who can mount your SMB file server and has permission to access the files and folders involved in your transfer.

For more information, see `required permissions` for SMB locations.
Type: String
Length Constraints: Maximum length of 104.
Pattern: `^.{0,104}$`

Required: Yes

ServerHostname (p. 303)

Specifies the Domain Name Service (DNS) name or IP address of the SMB file server that your DataSync agent will mount.

Note
You can't specify an IP version 6 (IPv6) address.

Type: String
Length Constraints: Maximum length of 255.
Pattern: `^(([a-zA-Z0-9-]*[a-zA-Z0-9])\.)*([A-Za-z0-9-]*[A-Za-z0-9])$`

Required: Yes

Subdirectory (p. 303)

Specifies the name of the share exported by your SMB file server where DataSync will read or write data. You can include a subdirectory in the share path (for example, `/path/to/subdirectory`). Make sure that other SMB clients in your network can also mount this path.

To copy all data in the specified subdirectory, DataSync must be able to mount the SMB share and access all of its data. For more information, see `required permissions` for SMB locations.
Type: String
Length Constraints: Maximum length of 4096.
Pattern: `^[a-zA-Z0-9_\-\./\(\)\$\p{Zs}]+$`

Required: Yes

Tags (p. 303)

Specifies labels that help you categorize, filter, and search for your AWS resources. We recommend creating at least a name tag for your location.
Type: Array of `TagListEntry (p. 510)` objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

User (p. 303)

Specifies the user name that can mount your SMB file server and has permission to access the files and folders involved in your transfer.

For information about choosing a user with the right level of access for your transfer, see required permissions for SMB locations.

Type: String

Length Constraints: Maximum length of 104.

Pattern: `^[^\x5B\x5D\/:;|=,+*\?]{1,104}$`

Required: Yes

Response Syntax

```
{
  "LocationArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

LocationArn (p. 305)

The ARN of the SMB location that you created.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.
HTTP Status Code: 400

Examples

Sample Request

The following example creates a location for an SMB file server.

```json
{
    "AgentArns": [
        "arn:aws:datasync:us-east-2:111222333444:agent/agent-0b0addbeef44b3nfs",
    ],
    "Domain": "AMAZON",
    "MountOptions": {
        "Version": "SMB3"
    },
    "Password": "string",
    "ServerHostname": "MyServer.amazon.com",
    "Subdirectory": "share",
    "Tags": [
        {
            "Key": "department",
            "Value": "finance"
        }
    ],
    "User": "user-1"
}
```

Sample Response

A response returns the location ARN of your SMB file server.

```json
{
    "LocationArn": "arn:aws:datasync:us-east-1:111222333444:location/loc-0f01451b140b2af49"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateTask

Configures a transfer task, which defines where and how AWS DataSync moves your data.

A task includes a source location, destination location, and the options for how and when you want to transfer your data (such as bandwidth limits, scheduling, among other options).

Important

If you're planning to transfer data to or from an Amazon S3 location, review [how DataSync can affect your S3 request charges](https://aws.amazon.com/aws-pricing/) and the [DataSync pricing page](https://aws.amazon.com/data-sync/pricing/) before you begin.

Request Syntax

```json
{
  "CloudWatchLogGroupArn": "string",
  "DestinationLocationArn": "string",
  "Excludes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "Includes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "Name": "string",
  "Options": {
    "Atime": "string",
    "BytesPerSecond": number,
    "Gid": "string",
    "LogLevel": "string",
    "Mtime": "string",
    "ObjectTags": "string",
    "OverwriteMode": "string",
    "PosixPermissions": "string",
    "PreserveDeletedFiles": "string",
    "PreserveDevices": "string",
    "SecurityDescriptorCopyFlags": "string",
    "TaskQueueing": "string",
    "TransferMode": "string",
    "Uid": "string",
    "VerifyMode": "string"
  },
  "Schedule": {
    "ScheduleExpression": "string"
  },
  "SourceLocationArn": "string",
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ],
  "TaskReportConfig": {
    "Destination": {
      "S3": {
        "BucketAccessRoleArn": "string",
        "S3BucketArn": "string",
        "Subdirectory": "string"
      }
    }
  }
}
```
CreateTask

```
{
  "ObjectVersionIds": "string",
  "OutputType": "string",
  "Overrides": {
    "Deleted": {
      "ReportLevel": "string"
    },
    "Skipped": {
      "ReportLevel": "string"
    },
    "Transferred": {
      "ReportLevel": "string"
    },
    "Verified": {
      "ReportLevel": "string"
    }
  },
  "ReportLevel": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 521).

The request accepts the following data in JSON format.

CloudWatchLogGroupArn (p. 307)

The Amazon Resource Name (ARN) of the Amazon CloudWatch log group that is used to monitor and log events in the task.

For more information about how to use CloudWatch Logs with DataSync, see [Monitoring Your Task](AWS DataSync User Guide).

For more information about these groups, see [Working with Log Groups and Log Streams](Amazon CloudWatch Logs User Guide).

Type: String

Length Constraints: Maximum length of 562.

Required: No

DestinationLocationArn (p. 307)

The Amazon Resource Name (ARN) of an AWS storage resource's location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isol|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Required: Yes

Excludes (p. 307)

Specifies a list of filter rules that exclude specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](AWS DataSync User Guide).
Type: Array of FilterRule objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Required: No

Includes (p. 307)

Specifies a list of filter rules that include specific data during your transfer. For more information and examples, see Filtering data transferred by DataSync.

Type: Array of FilterRule objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Required: No

Name (p. 307)

The name of a task. This value is a text reference that is used to identify the task in the console.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Required: No

Options (p. 307)

Specifies the configuration options for a task. Some options include preserving file or object metadata and verifying data integrity.

You can also override these options before starting an individual run of a task (also known as a task execution). For more information, see StartTaskExecution.

Type: Options object

Required: No

Schedule (p. 307)

Specifies a schedule used to periodically transfer files from a source to a destination location. The schedule should be specified in UTC time. For more information, see Scheduling your task.

Type: TaskSchedule object

Required: No

SourceLocationArn (p. 307)

The Amazon Resource Name (ARN) of the source location for the task.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9][12]:location/loc-[0-9a-z][17]+$

Required: Yes
Tags (p. 307)

Specifies the tags that you want to apply to the Amazon Resource Name (ARN) representing the task.

Tags are key-value pairs that help you manage, filter, and search for your DataSync resources.

Type: Array of [TagListEntry (p. 510)] objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

TaskReportConfig (p. 307)

Specifies how you want to configure a task report, which provides detailed information about your DataSync transfer.

Type: TaskReportConfig (p. 516) object

Required: No

Response Syntax

```
{
  "TaskArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TaskArn (p. 310)

The Amazon Resource Name (ARN) of the task.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.
Examples

Sample Request

The following example creates a task using a source and destination locations.

```
{
   "Options": {
      "Atime": "BEST_EFFORT",
      "Gid": "NONE",
      "Mtime": "PREERVE",
      "PosixPermissions": "PRESERVE",
      "PreserveDevices": "NONE",
      "PreserveDeletedFiles": "PREERVE",
      "Uid": "NONE",
      "VerifyMode": "POINT_IN_TIME_CONSISTENT"
   },
   "Schedule": {
      "ScheduleExpression": "0 12 * * SUN,WED *"
   },
   "DestinationLocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50fb",
   "Name": "MyTask",
   "SourceLocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-0f01451b140b2af49",
   "Tags": [{
      "Key": "Name",
      "Value": "Task-1"
   }]
}
```

Sample Response

The following response returns the Amazon Resource Name (ARN) of the task.

```
{
   "TaskArn": "arn:aws:datasync:us-east-2:111222333444:task/task-08de6e6697796f026"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteAgent

Removes an AWS DataSync agent resource from your AWS account.

Keep in mind that this operation (which can't be undone) doesn't remove the agent's virtual machine (VM) or Amazon EC2 instance from your storage environment. For next steps, you can delete the VM or instance from your storage environment or reuse it to [activate a new agent](https://aws.amazon.com/documentation/datasync/).

Request Syntax

```
{
  "AgentArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](https://aws.amazon.com/documentation/datasync/).

The request accepts the following data in JSON format.

AgentArn *(p. 313)*

The Amazon Resource Name (ARN) of the agent to delete. Use the ListAgents operation to return a list of agents for your account and AWS Region.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see [Common Errors](https://aws.amazon.com/documentation/datasync/).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
DeleteLocation

Deletes the configuration of a location used by AWS DataSync.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 315)

The Amazon Resource Name (ARN) of the location to delete.

- Type: String
- Length Constraints: Maximum length of 128.
- Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$
- Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

- HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

- HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteTask

Deletes an AWS DataSync transfer task.

Request Syntax

```json
{
    "TaskArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

TaskArn (p. 317)

- Specifies the Amazon Resource Name (ARN) of the task that you want to delete.
- Type: String
- Length Constraints: Maximum length of 128.
- Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9*]:[0-9*]:task/task-[0-9a-f]*{17}$`
- Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

- This exception is thrown when an error occurs in the AWS DataSync service.
- HTTP Status Code: 500

InvalidRequestException

- This exception is thrown when the client submits a malformed request.
- HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
DescribeAgent

Returns information about an AWS DataSync agent, such as its name, service endpoint type, and status.

Request Syntax

```json
{
    "AgentArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArn (p. 319)

Specifies the Amazon Resource Name (ARN) of the DataSync agent that you want information about.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: Yes

Response Syntax

```json
{
    "AgentArn": "string",
    "CreationTime": number,
    "EndpointType": "string",
    "LastConnectionTime": number,
    "Name": "string",
    "Platform": {
        "Version": "string"
    },
    "PrivateLinkConfig": {
        "PrivateLinkEndpoint": "string",
        "SecurityGroupArns": [ "string" ],
        "SubnetArns": [ "string" ],
        "VpcEndpointId": "string"
    },
    "Status": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
AgentArn (p. 319)

The ARN of the agent.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

CreationTime (p. 319)

The time that the agent was activated.

Type: Timestamp

EndPointType (p. 319)

The type of service endpoint that your agent is connected to.

Type: String

Valid Values: PUBLIC | PRIVATE_LINK | FIPS

LastConnectionTime (p. 319)

The last time that the agent was communicating with the DataSync service.

Type: Timestamp

Name (p. 319)

The name of the agent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Platform (p. 319)

The platform-related details about the agent, such as the version number.

Type: Platform (p. 494) object

PrivateLinkConfig (p. 319)

The network configuration that the agent uses when connecting to a VPC service endpoint.

Type: PrivateLinkConfig (p. 495) object

Status (p. 319)

The status of the agent.

- If the status is ONLINE, the agent is configured properly and ready to use.
- If the status is OFFLINE, the agent has been out of contact with DataSync for five minutes or longer. This can happen for a few reasons. For more information, see What do I do if my agent is offline?

Type: String

Valid Values: ONLINE | OFFLINE
Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example returns information about an agent specified in a request.

```
{
  "AgentArn": "arn:aws:datasync:us-east-2:111122223333:agent/agent-1234567890abcdef0"
}
```

Sample Response

The following example response describes an agent that uses a public service endpoint.

```
{
  "Name": "Data center migration agent",
  "Status": "ONLINE",
  "LastConnectionTime": "2022-10-17T17:21:35.540000+00:00",
  "CreationTime": "2022-10-05T20:52:29.499000+00:00",
  "EndpointType": "PUBLIC",
  "Platform": {
    "Version": "2"
  }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeDiscoveryJob

Returns information about a DataSync discovery job.

Request Syntax

```json
{
   "DiscoveryJobArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

DiscoveryJobArn (p. 323)

Specifies the Amazon Resource Name (ARN) of the discovery job that you want information about.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[:a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: Yes

Response Syntax

```json
{
   "CollectionDurationMinutes": number,
   "DiscoveryJobArn": "string",
   "JobEndTime": number,
   "JobStartTime": number,
   "Status": "string",
   "StorageSystemArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CollectionDurationMinutes (p. 323)

The number of minutes that the discovery job runs.

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 44640.
DiscoveryJobArn (p. 323)

The ARN of the discovery job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$`

JobEndTime (p. 323)

The time when the discovery job ended.

Type: Timestamp

JobStartTime (p. 323)

The time when the discovery job started.

Type: Timestamp

Status (p. 323)

Indicates the status of a discovery job. For more information, see [Discovery job statuses](#).

Type: String

Valid Values: RUNNING | WARNING | TERMINATED | FAILED | STOPPED | COMPLETED | COMPLETED_WITH_ISSUES

StorageSystemArn (p. 323)

The ARN of the on-premises storage system you're running the discovery job on.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$`

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)](#).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
DescribeLocationAzureBlob

Provides details about how an AWS DataSync transfer location for Microsoft Azure Blob Storage is configured.

Request Syntax

```json
{
    "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 326)

Specifies the Amazon Resource Name (ARN) of your Azure Blob Storage transfer location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-is|aws-is-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

Response Syntax

```json
{
    "AccessTier": "string",
    "AgentArns": [ "string" ],
    "AuthenticationType": "string",
    "BlobType": "string",
    "CreationTime": number,
    "LocationArn": "string",
    "LocationURI": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AccessTier (p. 326)

The access tier that you want your objects or files transferred into. This only applies when using the location as a transfer destination. For more information, see Access tiers.

Type: String
Valid Values: HOT | COOL | ARCHIVE

AgentArns (p. 326)

The ARNs of the DataSync agents that can connect with your Azure Blob Storage container.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

AuthenticationType (p. 326)

The authentication method DataSync uses to access your Azure Blob Storage. DataSync can access blob storage using a shared access signature (SAS).

Type: String

Valid Values: SAS

BlobType (p. 326)

The type of blob that you want your objects or files to be when transferring them into Azure Blob Storage. Currently, DataSync only supports moving data into Azure Blob Storage as block blobs. For more information on blob types, see the [Azure Blob Storage documentation](#).

Type: String

Valid Values: BLOCK

CreationTime (p. 326)

The time that your Azure Blob Storage transfer location was created.

Type: Timestamp

LocationArn (p. 326)

The ARN of your Azure Blob Storage transfer location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

LocationUri (p. 326)

The URL of the Azure Blob Storage container involved in your transfer.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:\/-]+$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)](#).
Internal Exception

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

Invalid Request Exception

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationEfs

Returns metadata about your AWS DataSync location for an Amazon EFS file system.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 329)

The Amazon Resource Name (ARN) of the Amazon EFS file system location that you want information about.

- **Type:** String
- **Length Constraints:** Maximum length of 128.
- **Pattern:** `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`
- **Required:** Yes

Response Syntax

```
{
   "AccessPointArn": "string",
   "CreationTime": number,
   "Ec2Config": {
      "SecurityGroupArns": [ "string" ],
      "SubnetArn": "string"
   },
   "FileSystemAccessRoleArn": "string",
   "InTransitEncryption": "string",
   "LocationArn": "string",
   "LocationUri": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AccessPointArn (p. 329)

The ARN of the access point that DataSync uses to access the Amazon EFS file system.
DescribeLocationEfs

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):elasticfilesystem:[a-z\-0-9]+:[0-9]{12}:access-point/fsap-[0-9a-f]{8,40}$`

CreationTime (p. 329)

The time that the location was created.

Type: Timestamp

Ec2Config (p. 329)

The subnet and security groups that AWS DataSync uses to access your Amazon EFS file system.

Type: `Ec2Config (p. 462)` object

FileSystemAccessRoleArn (p. 329)

The AWS Identity and Access Management (IAM) role that DataSync assumes when mounting the Amazon EFS file system.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):iam::[0-9]{12}:role/.*$`

InTransitEncryption (p. 329)

Describes whether DataSync uses Transport Layer Security (TLS) encryption when copying data to or from the Amazon EFS file system.

Type: String

Valid Values: NONE | TLS1_2

LocationArn (p. 329)

The ARN of the Amazon EFS file system location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

LocationUri (p. 329)

The URL of the Amazon EFS file system location.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: `^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9-]://\-]+$`

Errors

For information about the errors that are common to all actions, see `Common Errors (p. 519)`.

330
InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example shows how to get information about a specific Amazon EFS file system location.

```
{
  "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-12abcdef012345678"
}
```

Sample Response

The following example returns location details about an Amazon EFS file system.

```
{
  "CreationTime": 1653319021.353,
  "Ec2Config": {
    "SecurityGroupArns": [
    ],
  },
  "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-abcded01234567890",
  "LocationUri": "efs://us-east-2.fs-021345abcdef6789/"
}
```

Sample Response: Describing a location for a restricted Amazon EFS file system

The following example returns location details about an Amazon EFS file system with restricted access, including the AccessPointArn, FileSystemAccessRoleArn, and InTransitEncryption elements.

```
{
  "CreationTime": 1653319021.353,
  "Ec2Config": {
    "SecurityGroupArns": [
    ],
  },
  "InTransitEncryption": "TLS1_2",
  "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-abcded01234567890",
  "LocationUri": "efs://us-east-2.fs-021345abcdef6789/"
}
```
"Subdirectory": "/mount/path",
"Tags": [{
 "Key": "Name",
 "Value": "ElasticFileSystem-1"
}]

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationFsxLustre

Provides details about how an AWS DataSync location for an Amazon FSx for Lustre file system is configured.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 333)

The Amazon Resource Name (ARN) of the FSx for Lustre location to describe.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:\[0-9\]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

Response Syntax

```
{
   "CreationTime": number,
   "LocationArn": "string",
   "LocationUri": "string",
   "SecurityGroupArns": [ "string" ]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 333)

The time that the FSx for Lustre location was created.

Type: Timestamp

LocationArn (p. 333)

The Amazon Resource Name (ARN) of the FSx for Lustre location that was described.

Type: String
DescribeLocationFsxLustre

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

LocationUri (p. 333)

The URI of the FSx for Lustre location that was described.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/-]+$

SecurityGroupArns (p. 333)

The Amazon Resource Names (ARNs) of the security groups that are configured for the FSx for Lustre file system.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationFsxOntap

Provides details about how an AWS DataSync location for an Amazon FSx for NetApp ONTAP file system is configured.

Note
If your location uses SMB, the DescribeLocationFsxOntap operation doesn't actually return a Password.

Request Syntax

```
{
  "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 336)

Specifies the Amazon Resource Name (ARN) of the FSx for ONTAP file system location that you want information about.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

Response Syntax

```
{
  "CreationTime": number,
  "FsxFilesystemArn": "string",
  "LocationArn": "string",
  "LocationUri": "string",
  "Protocol": {
    "NFS": {
      "MountOptions": {
        "Version": "string"
      }
    },
    "SMB": {
      "Domain": "string",
      "MountOptions": {
        "Version": "string"
      },
      "Password": "string",
      "User": "string"
    }
  }
}
```
"SecurityGroupArns": ["string"],
"StorageVirtualMachineArn": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 336)

The time that the location was created.

Type: Timestamp

FsxFilesystemArn (p. 336)

The ARN of the FSx for ONTAP file system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):fsx:[a-z\-0-9]*:[0-9]\{12\}:file-system/fs-.*$

LocationArn (p. 336)

The ARN of the FSx for ONTAP file system location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]\{12\}:location/loc-[0-9a-z]\{17\}$

LocationUri (p. 336)

The uniform resource identifier (URI) of the FSx for ONTAP file system location.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:\-]+$

Protocol (p. 336)

Specifies the data transfer protocol that AWS DataSync uses to access your Amazon FSx file system.

Type: FsxProtocol (p. 464) object

SecurityGroupArns (p. 336)

The security groups that DataSync uses to access your FSx for ONTAP file system.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$

StorageVirtualMachineArn (p. 336)

The ARN of the storage virtual machine (SVM) on your FSx for ONTAP file system where you're copying data to or from.

Type: String

Length Constraints: Maximum length of 162.

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)](#).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
DescribeLocationFsxOpenZfs

Provides details about how an AWS DataSync location for an Amazon FSx for OpenZFS file system is configured.

Note
Response elements related to SMB aren't supported with the DescribeLocationFsxOpenZfs operation.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters (p. 521)](#).

The request accepts the following data in JSON format.

LocationArn (p. 339)

The Amazon Resource Name (ARN) of the FSx for OpenZFS location to describe.

- **Type:** String
- **Length Constraints:** Maximum length of 128.
- **Pattern:** `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`
- **Required:** Yes

Response Syntax

```
{
   "CreationTime": number,
   "LocationArn": "string",
   "LocationUri": "string",
   "Protocol": {
      "NFS": { 
         "MountOptions": { 
            "Version": "string"
         }
      },
      "SMB": { 
         "Domain": "string",
         "MountOptions": { 
            "Version": "string"
         },
         "Password": "string",
         "User": "string"
      }
   },
   "SecurityGroupArns": [ "string" ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 339)

The time that the FSx for OpenZFS location was created.

Type: Timestamp

LocationArn (p. 339)

The ARN of the FSx for OpenZFS location that was described.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

LocationUri (p. 339)

The uniform resource identifier (URI) of the FSx for OpenZFS location that was described.

Example: `fsxz://us-west-2.fs-1234567890abcdef02/fsx/folderA/folder`

Type: String

Length Constraints: Maximum length of 4360.

Pattern: `^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/-]+$`

Protocol (p. 339)

The type of protocol that AWS DataSync uses to access your file system.

Type: `FsxProtocol (p. 464)` object

SecurityGroupArns (p. 339)

The ARNs of the security groups that are configured for the FSx for OpenZFS file system.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]+:[0-9]{12}:security-group/sg-[a-f0-9]+$`

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500
InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationFsxWindows

Returns metadata about an Amazon FSx for Windows File Server location, such as information about its path.

Request Syntax

```json
{
  "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 342)

The Amazon Resource Name (ARN) of the FSx for Windows File Server location to describe.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

Response Syntax

```json
{
  "CreationTime": number,
  "Domain": "string",
  "LocationArn": "string",
  "LocationUri": "string",
  "SecurityGroupArns": [ "string" ],
  "User": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 342)

The time that the FSx for Windows File Server location was created.

Type: Timestamp

Domain (p. 342)

The name of the Windows domain that the FSx for Windows File Server belongs to.
DescribeLocationFsxWindows

Type: String

Length Constraints: Maximum length of 253.

Pattern: ^[A-Za-z0-9-\.(\-+)?[A-Za-z0-9-9]{0,252}$

LocationArn (p. 342)

The Amazon Resource Name (ARN) of the FSx for Windows File Server location that was described.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+: [0-9]{12}:location/loc-[0-9a-z]{17}$

LocationUri (p. 342)

The URL of the FSx for Windows File Server location that was described.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/\-]+$

SecurityGroupArns (p. 342)

The Amazon Resource Names (ARNs) of the security groups that are configured for the FSx for Windows File Server file system.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]+: [0-9]{12}:security-group/sg-[a-f0-9]+$

User (p. 342)

The user who has the permissions to access files and folders in the FSx for Windows File Server file system.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^[^\x5B\x5D\x7C\;\|=\+,\?\{1,104}$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.
HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationHdfs

Returns metadata, such as the authentication information about the Hadoop Distributed File System (HDFS) location.

Request Syntax

```
{
  "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 345)

The Amazon Resource Name (ARN) of the HDFS cluster location to describe.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isob):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Required: Yes

Response Syntax

```
[
  "AgentArns": [ "string" ],
  "AuthenticationType": "string",
  "BlockSize": number,
  "CreationTime": number,
  "KerberosPrincipal": "string",
  "KmsKeyProviderUrl": "string",
  "LocationArn": "string",
  "LocationUri": "string",
  "NameNodes": [
    {
      "Hostname": "string",
      "Port": number
    }
  ],
  "QopConfiguration": {
    "DataTransferProtection": "string",
    "RpcProtection": "string"
  },
  "ReplicationFactor": number,
  "SimpleUser": "string"
]
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

AgentArns (p. 345)

The ARNs of the agents that are used to connect to the HDFS cluster.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

AuthenticationType (p. 345)

The type of authentication used to determine the identity of the user.

Type: String

Valid Values: SIMPLE | KERBEROS

BlockSize (p. 345)

The size of the data blocks to write into the HDFS cluster.

Type: Integer

Valid Range: Minimum value of 1048576. Maximum value of 1073741824.

CreationTime (p. 345)

The time that the HDFS location was created.

Type: Timestamp

KerberosPrincipal (p. 345)

The Kerberos principal with access to the files and folders on the HDFS cluster. This parameter is used if the AuthenticationType is defined as KERBEROS.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^.+$

KmsKeyProviderUri (p. 345)

The URI of the HDFS cluster's Key Management Server (KMS).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: ^kms://http[s]?@(([a-zA-Z0-9\-]*[a-zA-Z0-9])\.)*([A-Za-z0-9-]*[A-Za-z0-9])@;(((A-Za-z0-9\-]*[a-zA-Z0-9])\.)*([A-Za-z0-9\-]*[A-Za-z0-9])@:\[[0-9]{1,5}\]/kms$

LocationArn (p. 345)

The ARN of the HDFS cluster location.

Type: String
DescribeLocationHdfs

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

LocationUri (p. 345)

The URI of the HDFS cluster location.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9./-]+$

NameNodes (p. 345)

The NameNode that manage the HDFS namespace.

Type: Array of HdfsNameNode (p. 468) objects

Array Members: Minimum number of 1 item.

QopConfiguration (p. 345)

The Quality of Protection (QOP) configuration specifies the Remote Procedure Call (RPC) and data transfer protection settings configured on the Hadoop Distributed File System (HDFS) cluster.

Type: QopConfiguration (p. 497) object

ReplicationFactor (p. 345)

The number of DataNodes to replicate the data to when writing to the HDFS cluster.

Type: Integer

SimpleUser (p. 345)

The user name used to identify the client on the host operating system. This parameter is used if the AuthenticationType is defined as SIMPLE.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[_A-Za-z0-9][-_A-Za-z0-9]*$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationNfs

Provides details about how an AWS DataSync transfer location for a Network File System (NFS) file server is configured.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 349)

- Specifies the Amazon Resource Name (ARN) of the NFS location that you want information about.
- Type: String
- Length Constraints: Maximum length of 128.
- Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$
- Required: Yes

Response Syntax

```
{
   "CreationTime": number,
   "LocationArn": "string",
   "LocationUri": "string",
   "MountOptions": {
      "Version": "string"
   },
   "OnPremConfig": {
      "AgentArns": [ "string" ]
   }
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CreationTime (p. 349)

- The time when the NFS location was created.
- Type: Timestamp
LocationArn (p. 349)

The ARN of the NFS location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

LocationUri (p. 349)

The URL of the NFS location.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: `^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/-]+$`

MountOptions (p. 349)

The mount options that DataSync uses to mount your NFS file server.

Type: `NfsMountOptions (p. 485)` object

OnPremConfig (p. 349)

The AWS DataSync agents that are connecting to a Network File System (NFS) location.

Type: `OnPremConfig (p. 486)` object

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Example

The following example returns information about the NFS location specified in the sample request.

Sample Request

```json
{
  "LocationArn": "arn:aws:datasync:us-east-2:11122233444:location/loc-07db7abfc326c50aa"
}
```
Example

This example illustrates one usage of DescribeLocationNfs.

Sample Response

```json
{
    "CreationTime": 1532660733.39,
    "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50aa",
    "LocationUri": "hostname.amazon.com",
    "OnPremConfig": {
        "AgentArns": [ "arn:aws:datasync:us-east-2:111222333444:agent/agent-0b0addbeef44b3nfs" ]
    }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationObjectStorage

Returns metadata about your AWS DataSync location for an object storage system.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 352)

The Amazon Resource Name (ARN) of the object storage system location that you want information about.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-zA-Z0-9-]:[0-9]{12}:location/loc-[0-9a-z]{17}$`

Required: Yes

Response Syntax

```
{
   "AccessKey": "string",
   "AgentArns": [ "string" ],
   "CreationTime": number,
   "LocationArn": "string",
   "LocationUri": "string",
   "ServerCertificate": blob,
   "ServerPort": number,
   "ServerProtocol": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AccessKey (p. 352)

The access key (for example, a user name) required to authenticate with the object storage system.

Type: String

Pattern: ^.+$

AgentArns (p. 352)

The ARNs of the DataSync agents that can securely connect with your location.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

CreationTime (p. 352)

The time that the location was created.

Type: Timestamp

LocationArn (p. 352)

The ARN of the object storage system location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

LocationUri (p. 352)

The URL of the object storage system location.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/\-]+$

ServerCertificate (p. 352)

The self-signed certificate that DataSync uses to securely authenticate with your object storage system.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 32768.

ServerPort (p. 352)

The port that your object storage server accepts inbound network traffic on (for example, port 443).

Type: Integer

ServerProtocol (p. 352)

The protocol that your object storage system uses to communicate.

Type: String

Valid Values: HTTPS | HTTP
Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationS3

Returns metadata, such as bucket name, about an Amazon S3 bucket location.

Request Syntax

```
{
   "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 355)

The Amazon Resource Name (ARN) of the Amazon S3 bucket location to describe.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

Response Syntax

```
{
   "AgentArns": [ "string" ],
   "CreationTime": number,
   "LocationArn": "string",
   "LocationUri": "string",
   "S3Config": {
      "BucketAccessRoleArn": "string"
   },
   "S3StorageClass": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

AgentArns (p. 355)

If you are using DataSync on an AWS Outpost, the Amazon Resource Name (ARNs) of the EC2 agents deployed on your Outpost. For more information about launching a DataSync agent on an AWS Outpost, see Deploy your DataSync agent on AWS Outposts.

Type: Array of strings
Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: `^arn:\[(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}\]$`

CreationTime (p. 355)

The time that the Amazon S3 bucket location was created.

Type: Timestamp

LocationArn (p. 355)

The Amazon Resource Name (ARN) of the Amazon S3 bucket or access point.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:\[(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}\]$`

LocationUri (p. 355)

The URL of the Amazon S3 location that was described.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: `^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/\-]+$/`

S3Config (p. 355)

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role used to access an Amazon S3 bucket.

For detailed information about using such a role, see Creating a Location for Amazon S3 in the AWS DataSync User Guide.

Type: `S3Config (p. 507)` object

S3StorageClass (p. 355)

The Amazon S3 storage class that you chose to store your files in when this location is used as a task destination. For more information about S3 storage classes, see Amazon S3 Storage Classes. Some storage classes have behaviors that can affect your S3 storage cost. For detailed information, see Considerations when working with S3 storage classes in DataSync.

Type: String

Valid Values: STANDARD | STANDARD_IA | ONEZONE_IA | INTELLIGENT_TIERING | GLACIER | DEEP_ARCHIVE | OUTPOSTS | GLACIER_INSTANT_RETRIEVAL

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.
HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Example

The following example returns information about the S3 location specified in the sample request.

Sample Request

```json
{
    "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50s3"
}
```

Example

This example illustrates one usage of DescribeLocationS3.

Sample Response

```json
{
    "CreationTime": 1532660733.39,
    "LocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50s3",
    "LocationUri": "MyBucket.",
    "S3Config": {
        "BucketAccessRoleArn": "arn:aws:iam::111222333444:role/MyBucketAccessRole",
    }
    "S3StorageClass": "STANDARD"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeLocationSmb

Returns metadata, such as the path and user information about an SMB location.

Request Syntax

```
{
    "LocationArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters (p. 521)](https://aws.amazon.com). The request accepts the following data in JSON format.

LocationArn (p. 358)

The Amazon Resource Name (ARN) of the SMB location to describe.

- Type: String
- Length Constraints: Maximum length of 128.
- Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isob|aws-isob):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`
- Required: Yes

Response Syntax

```
{
    "AgentArns": [ "string" ],
    "CreationTime": number,
    "Domain": "string",
    "LocationArn": "string",
    "LocationUri": "string",
    "MountOptions": {
        "Version": "string"
    },
    "User": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

AgentArns (p. 358)

The Amazon Resource Name (ARN) of the source SMB file system location that is created.

- Type: Array of strings
- Array Members: Minimum number of 1 item. Maximum number of 4 items.
Length Constraints: Maximum length of 128.
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

CreationTime (p. 358)

The time that the SMB location was created.

Type: Timestamp

Domain (p. 358)

The name of the Windows domain that the SMB server belongs to.

Type: String

Length Constraints: Maximum length of 253.

Pattern: ^[A-Za-z0-9](\.[\-+]?)?[A-Za-z0-9]{0,252}$

LocationArn (p. 358)

The Amazon Resource Name (ARN) of the SMB location that was described.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

LocationUri (p. 358)

The URL of the source SMB location that was described.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:\/-]+$

MountOptions (p. 358)

The mount options that are available for DataSync to use to access an SMB location.

Type: `SmbMountOptions (p. 508)` object

User (p. 358)

The user who can mount the share, has the permissions to access files and folders in the SMB share.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^[^\x5B\x5D\x7C;|=,+*?]{1,104}$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)](#).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.
HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Example

This example illustrates one usage of DescribeLocationSmb.

Sample Request

```
{
    "arn:aws:datasync:us-east-1:111222333444:location/loc-0f01451b140b2af49"
}
```

Example

This example illustrates one usage of DescribeLocationSmb.

Sample Response

```
{
    "AgentArns": [ 
        "arn:aws:datasync:us-east-2:111222333444:agent/agent-04b3fe3d261a18c8f"
    ],
    "CreationTime": "1532660733.39",
    "Domain": "AMAZON",
    "LocationArn": "arn:aws:datasync:us-east-1:111222333444:location/loc-0f01451b140b2af49",
    "LocationUri": "smb://hostname.amazon.com/share",
    "MountOptions": {
        "Version": "SMB3"
    },
    "User": "user-1"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeStorageSystem

Returns information about an on-premises storage system that you're using with DataSync Discovery.

Request Syntax

```json
{
    "StorageSystemArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

StorageSystemArn (p. 361)

Specifies the Amazon Resource Name (ARN) of an on-premises storage system that you're using with DataSync Discovery.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: Yes

Response Syntax

```json
{
    "AgentArns": [ "string" ],
    "CloudWatchLogGroupArn": "string",
    "ConnectivityStatus": "string",
    "CreationTime": number,
    "ErrorMessage": "string",
    "Name": "string",
    "SecretsManagerArn": "string",
    "ServerConfiguration": {
        "ServerHostname": "string",
        "ServerPort": number
    },
    "StorageSystemArn": "string",
    "SystemType": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
AgentArns (p. 361)

The ARN of the DataSync agent that connects to and reads from your on-premises storage system.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

CloudWatchLogGroupArn (p. 361)

The ARN of the Amazon CloudWatch log group that's used to monitor and log discovery job events.

Type: String

Length Constraints: Maximum length of 562.

ConnectivityStatus (p. 361)

Indicates whether your DataSync agent can connect to your on-premises storage system.

Type: String

Valid Values: PASS | FAIL | UNKNOWN

CreationTime (p. 361)

The time when you added the on-premises storage system to DataSync Discovery.

Type: Timestamp

ErrorMessage (p. 361)

Describes the connectivity error that the DataSync agent is encountering with your on-premises storage system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: .*

Name (p. 361)

The name that you gave your on-premises storage system when adding it to DataSync Discovery.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[^\p{L}\p{M}\p{N}\s+=._:@/-]+$
DescribeStorageSystem

Length Constraints: Maximum length of 2048.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isob):secretsmanager:[a-z \-0-9]+:[0-9]{12}:secret:`

ServerConfiguration (p. 361)

The server name and network port required to connect with your on-premises storage system's management interface.

Type: `DiscoveryServerConfiguration (p. 461)` object

StorageSystemArn (p. 361)

The ARN of the on-premises storage system that the discovery job looked at.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isob):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$`

SystemType (p. 361)

The type of on-premises storage system.

Note

DataSync Discovery currently only supports NetApp Fabric-Attached Storage (FAS) and All Flash FAS (AFF) systems running ONTAP 9.7 or later.

Type: String

Valid Values: NetAppONTAP

Errors

For information about the errors that are common to all actions, see `Common Errors (p. 519)`.

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
AWS SDK for Java V2
AWS SDK for JavaScript
AWS SDK for PHP V3
AWS SDK for Python
AWS SDK for Ruby V3
DescribeStorageSystemResourceMetrics

Returns information, including performance data and capacity usage, which DataSync Discovery collects about a specific resource in your-premises storage system.

Request Syntax

```
{
   "DiscoveryJobArn": "string",
   "EndTime": number,
   "MaxResults": number,
   "NextToken": "string",
   "ResourceId": "string",
   "ResourceType": "string",
   "StartTime": number
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters (p. 521)](https://docs.aws.amazon.com/AmazonS3/latest/userguide/)

The request accepts the following data in JSON format.

DiscoveryJobArn (p. 365)

Specifies the Amazon Resource Name (ARN) of the discovery job that collects information about your on-premises storage system.

Type: String

Length Constraints: Maximum length of 256.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}:/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$`

Required: Yes

EndTime (p. 365)

Specifies a time within the total duration that the discovery job ran. To see information gathered during a certain time frame, use this parameter with StartTime.

Type: Timestamp

Required: No

MaxResults (p. 365)

Specifies how many results that you want in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

NextToken (p. 365)

Specifies an opaque string that indicates the position to begin the next list of results in the response.
Type: String
Length Constraints: Maximum length of 65535.
Pattern: [a-zA-Z0-9=\-_]+
Required: No

ResourceId (p. 365)

Specifies the universally unique identifier (UUID) of the storage system resource that you want information about.

Type: String
Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}
Required: Yes

ResourceType (p. 365)

Specifies the kind of storage system resource that you want information about.

Type: String
Valid Values: SVM | VOLUME | CLUSTER

Required: Yes

StartTime (p. 365)

Specifies a time within the total duration that the discovery job ran. To see information gathered during a certain time frame, use this parameter with EndTime.

Type: Timestamp
Required: No

Response Syntax

```json
{
  "Metrics": [
  {
    "Capacity": {
      "ClusterCloudStorageUsed": number,
      "LogicalUsed": number,
      "Provisioned": number,
      "Used": number
    },
    "P95Metrics": {
      "IOPS": {
        "Other": number,
        "Read": number,
        "Total": number,
        "Write": number
      },
      "Latency": {
        "Other": number,
        "Read": number,
        "Write": number
      },
      "Throughput": {
        "Other": number,
        "Throughput": number
      }
    }
  }
}
```
"Read": number,
"Total": number,
"Write": number
}

"ResourceId": "string",
"ResourceType": "string",
"Timestamp": number
}

"NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Metrics (p. 366)

The details that your discovery job collected about your storage system resource.

Type: Array of ResourceMetrics (p. 505) objects

NextToken (p. 366)

The opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=_.-]+

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example requests information about a volume in an on-premises storage system.

```json
{
```
"ResourceType": "VOLUME",
"ResourceId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
}

Sample Response

The following example response includes performance and capacity information about the volume.

```
{
  "Metrics": [
    {
      "Timestamp": "2023-01-10T13:54:11-05:00",
      "P95Metrics": {
        "IOPS": {
          "Read": 251.0,
          "Write": 44.0,
          "Other": 17.0,
          "Total": 345.0
        },
        "Throughput": {
          "Read": 2.06,
          "Write": 0.88,
          "Other": 0.11,
          "Total": 2.17
        },
        "Latency": {
          "Read": 0.06,
          "Write": 0.07,
          "Other": 0.13
        }
      },
      "Capacity": {
        "Used": 409600,
        "Provisioned": 1099511627776
      }
    },
    "ResourceId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
    "ResourceType": "VOLUME"
  ]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
DescribeStorageSystemResources

Returns information that DataSync Discovery collects about resources in your on-premises storage system.

Request Syntax

```json
{
    "DiscoveryJobArn": "string",
    "Filter": {
        "string": [ "string" ]
    },
    "MaxResults": number,
    "NextToken": "string",
    "ResourceId": [ "string" ],
    "ResourceType": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

DiscoveryJobArn (p. 369)

Specifies the Amazon Resource Name (ARN) of the discovery job that's collecting data from your on-premises storage system.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: Yes

Filter (p. 369)

Filters the storage system resources that you want returned. For example, this might be volumes associated with a specific storage virtual machine (SVM).

Type: String to array of strings map

Valid Keys: SVM

Length Constraints: Maximum length of 1024.

Pattern: ^.{0,1024}$

Required: No

MaxResults (p. 369)

Specifies the maximum number of storage system resources that you want to list in a response.
DescribeStorageSystemResources

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

NextToken (p. 369)

Specifies an opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=_-]+

Required: No

ResourceIds (p. 369)

Specifies the universally unique identifiers (UUIDs) of the storage system resources that you want information about. You can't use this parameter in combination with the Filter parameter.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 100 items.

Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: No

ResourceType (p. 369)

Specifies what kind of storage system resources that you want information about.

Type: String

Valid Values: SVM | VOLUME | CLUSTER

Required: Yes

Response Syntax

```json
{
    "NextToken": "string",
    "ResourceDetails": {
        "NetAppONTAPClusters": [
            {
                "CifsShareCount": number,
                "ClusterBlockStorageLogicalUsed": number,
                "ClusterBlockStorageSize": number,
                "ClusterBlockStorageUsed": number,
                "ClusterCloudStorageUsed": number,
                "ClusterName": "string",
                "LunCount": number,
                "MaxP95Performance": {
                    "IopsOther": number,
                    "IopsRead": number,
                    "IopsTotal": number,
                    "IopsWrite": number,
                    "LatencyOther": number,
                    "LatencyRead": number,
                    "LatencyWrite": number,
                }
            }
        ]
    }
}
```
"ThroughputOther": number,
"ThroughputRead": number,
"ThroughputTotal": number,
"ThroughputWrite": number
},
"NfsExportedVolumes": number,
"Recommendations": [
 {
 "EstimatedMonthlyStorageCost": "string",
 "StorageConfiguration": {
 "string": "string"
 },
 "StorageType": "string"
 }
],
"RecommendationStatus": "string",
"ResourceId": "string"
],
"NetAppONTAPSVMs": [
 {
 "CifsShareCount": number,
 "EnabledProtocols": ["string"],
 "LunCount": number,
 "MaxP95Performance": {
 "IopsOther": number,
 "IopsRead": number,
 "IopsTotal": number,
 "IopsWrite": number,
 "LatencyOther": number,
 "LatencyRead": number,
 "LatencyWrite": number,
 "ThroughputOther": number,
 "ThroughputRead": number,
 "ThroughputTotal": number,
 "ThroughputWrite": number
 },
 "NfsExportedVolumes": number,
 "Recommendations": [
 {
 "EstimatedMonthlyStorageCost": "string",
 "StorageConfiguration": {
 "string": "string"
 },
 "StorageType": "string"
 }
],
 "RecommendationStatus": "string",
 "ResourceId": "string",
 "SvmName": "string",
 "TotalCapacityProvisioned": number,
 "TotalCapacityUsed": number,
 "TotalLogicalCapacityUsed": number,
 "TotalSnapshotCapacityUsed": number
 }
],
"NetAppONTAPVolumes": [
 {
 "CapacityProvisioned": number,
 "CapacityUsed": number,
 "CifsShareCount": number,
 "LogicalCapacityUsed": number,
 "LunCount": number,
 "MaxP95Performance": {
 "IopsOther": number,
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 370)

The opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=_-]+

ResourceDetails (p. 370)

The information collected about your storage system's resources. A response can also include AWS storage service recommendations.

For more information, see storage resource information collected by and recommendations provided by DataSync Discovery.

Type: ResourceDetails (p. 504) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).
InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example requests information about volumes in an on-premises storage system.

```json
{
   "ResourceType": "VOLUME"
}
```

Sample Response

The following example response includes information about volumes in the on-premises storage system, including recommendations about where to move the volume data to in AWS (such as Amazon FSx for NetApp ONTAP or Amazon EFS).

```json
{
   "ResourceDetails": {
      "NetAppONTAPVolumes": [{
         "VolumeName": "vol1",
         "ResourceId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
         "CifsShareCount": 0,
         "SecurityStyle": "unix",
         "SvmUuid": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
         "SvmName": "my-svm",
         "CapacityUsed": 409600,
         "CapacityProvisioned": 1099511627776,
         "LogicalCapacityUsed": 409600,
         "NfsExported": true,
         "SnapshotCapacityUsed": 573440,
         "MaxP95Performance": {
            "IopsRead": 251.0,
            "IopsWrite": 44.0,
            "IopsOther": 17.0,
            "IopsTotal": 345.0,
            "ThroughputRead": 2.06,
            "ThroughputWrite": 0.88,
            "ThroughputOther": 0.11,
            "ThroughputTotal": 2.17,
            "LatencyRead": 0.06,
            "LatencyWrite": 0.07,
            "LatencyOther": 0.13
         },
         "Recommendations": {
            "StorageType": "fsxOntap"
         }
      }]
   }
}
```
"StorageConfiguration": {
 "StorageCapacityGB": "1024",
 "ProvisionedIOpsMode": "AUTOMATIC",
 "CapacityPoolGB": "0",
 "TotalIops": "0",
 "DeploymentType": "Multi-AZ",
 "ThroughputCapacity": "128"
 },
 "EstimatedMonthlyStorageCost": "410.0"
},
 "StorageType": "efs",
 "StorageConfiguration": {
 "InfrequentAccessStorageGB": "1",
 "StandardStorageGB": "1",
 "InfrequentAccessRequests": "0",
 "ProvisionedThroughputMBps": "0",
 "PerformanceMode": "General Purpose",
 "ThroughputMode": "Bursting"
 },
 "EstimatedMonthlyStorageCost": "1.0"
],
"RecommendationStatus": "COMPLETED"
},
//
"VolumeName": "root_vol",
"ResourceId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
"CifsShareCount": 0,
"SecurityStyle": "unix",
"SvmUuid": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
"SvmName": "my-svm",
"CapacityUsed": 462848,
"CapacityProvisioned": 1073741824,
"LogicalCapacityUsed": 462848,
"NfsExported": true,
"SnapshotCapacityUsed": 421888,
"MaxP95Performance": {
 "IopsRead": 261.0,
 "IopsWrite": 53.0,
 "IopsOther": 23.0,
 "IopsTotal": 360.0,
 "ThroughputRead": 10.0,
 "ThroughputWrite": 2.0,
 "ThroughputOther": 4.0,
 "ThroughputTotal": 12.0,
 "LatencyRead": 0.25,
 "LatencyWrite": 0.3,
 "LatencyOther": 0.55
},
"Recommendations": [
 {
 "StorageType": "fsxOntap",
 "StorageConfiguration": {
 "StorageCapacityGB": "1024",
 "ProvisionedIOpsMode": "AUTOMATIC",
 "CapacityPoolGB": "0",
 "TotalIops": "0",
 "DeploymentType": "Multi-AZ",
 "ThroughputCapacity": "128"
 },
 "EstimatedMonthlyStorageCost": "410.0"
 },
 {
 "StorageType": "efs",
 "StorageConfiguration": {

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTask

Provides information about an AWS DataSync transfer task.

Request Syntax

```json
{
   "TaskArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

TaskArn (p. 376)

Specifies the Amazon Resource Name (ARN) of the transfer task.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-isol|aws-isob):datasync:[a-zA-Z0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}$`

Required: Yes

Response Syntax

```json
{
   "CloudWatchLogGroupArn": "string",
   "CreationTime": "number",
   "CurrentTaskExecutionArn": "string",
   "DestinationLocationArn": "string",
   "DestinationNetworkInterfaceArns": [ "string" ],
   "ErrorCode": "string",
   "ErrorDetail": "string",
   "Excludes": [ {
       "FilterType": "string",
       "Value": "string"
    } ],
   "Includes": [ {
       "FilterType": "string",
       "Value": "string"
    } ],
   "Name": "string",
   "Options": { "Atime": "string",
                "BytesPerSecond": "number",
                "Gid": "string",
                "LogLevel": "string",
                "Mtime": "string" } }  
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CloudWatchLogGroupArn (p. 376)

The Amazon Resource Name (ARN) of the Amazon CloudWatch log group that was used to monitor and log events in the task.

For more information on these groups, see Working with Log Groups and Log Streams in the Amazon CloudWatch User Guide.

Type: String

Length Constraints: Maximum length of 562.
CreationTime (p. 376)

The time that the task was created.

Type: Timestamp

CurrentTaskExecutionArn (p. 376)

The Amazon Resource Name (ARN) of the task execution that is transferring files.

Type: String

Length Constraints: Maximum length of 128.

DestinationLocationArn (p. 376)

The Amazon Resource Name (ARN) of the AWS storage resource's location.

Type: String

Length Constraints: Maximum length of 128.

DestinationNetworkInterfaceArns (p. 376)

The Amazon Resource Names (ARNs) of the network interfaces created for your destination location. For more information, see [Network interface requirements](#).

Type: Array of strings

Length Constraints: Maximum length of 128.

ErrorCode (p. 376)

Errors that AWS DataSync encountered during execution of the task. You can use this error code to help troubleshoot issues.

Type: String

ErrorDetail (p. 376)

Detailed description of an error that was encountered during the task execution. You can use this information to help troubleshoot issues.

Type: String

Excludes (p. 376)

A list of filter rules that exclude specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](#).

Type: Array of [FilterRule (p. 463)] objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Pattern: \^arn:\(\aws|\aws-cn|\aws-us-gov|\aws-is|\aws-is-b\):\logs:\[a-z\-0-9]*:[0-9]{12}:log-group:\([^:*]+\)(:*)?\$

CreationTime (p. 376)

The time that the task was created.

Type: Timestamp

CurrentTaskExecutionArn (p. 376)

The Amazon Resource Name (ARN) of the task execution that is transferring files.

Type: String

Length Constraints: Maximum length of 128.

Pattern: \^arn:\(\aws|\aws-cn|\aws-us-gov|\aws-is|\aws-is-b\):\datasync\[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}/execution/exec-[0-9a-f]{17}\$

DestinationLocationArn (p. 376)

The Amazon Resource Name (ARN) of the AWS storage resource's location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: \^arn:\(\aws|\aws-cn|\aws-us-gov|\aws-is|\aws-is-b\):\datasync\[a-z\-0-9]*:[0-9]{12}:location/loc-[0-9a-z]{17}\$

DestinationNetworkInterfaceArns (p. 376)

The Amazon Resource Names (ARNs) of the network interfaces created for your destination location. For more information, see [Network interface requirements](#).

Type: Array of strings

Length Constraints: Maximum length of 128.

Pattern: \^arn:aws\[\-a-z\{0,\}\]:ec2\[a-z\-0-9]*:[0-9]{12}:network-interface/eni-[0-9a-f]+\$

ErrorCode (p. 376)

Errors that AWS DataSync encountered during execution of the task. You can use this error code to help troubleshoot issues.

Type: String

ErrorDetail (p. 376)

Detailed description of an error that was encountered during the task execution. You can use this information to help troubleshoot issues.

Type: String

Excludes (p. 376)

A list of filter rules that exclude specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](#).

Type: Array of [FilterRule (p. 463)] objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.
Includes (p. 376)

A list of filter rules that include specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](#).

Type: Array of [FilterRule (p. 463)] objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Name (p. 376)

The name of the task that was described.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: `^[a-zA-Z0-9\s+=._:@/-]+$`

Options (p. 376)

The configuration options that control the behavior of the `StartTaskExecution` operation. Some options include preserving file or object metadata and verifying data integrity.

You can override these options for each task execution. For more information, see [StartTaskExecution](#).

Type: [Options (p. 487)] object

Schedule (p. 376)

The schedule used to periodically transfer files from a source to a destination location.

Type: [TaskSchedule (p. 518)] object

SourceLocationArn (p. 376)

The Amazon Resource Name (ARN) of the source file system's location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$`

SourceNetworkInterfaceArns (p. 376)

The Amazon Resource Names (ARNs) of the network interfaces created for your source location. For more information, see [Network interface requirements](#).

Type: Array of strings

Length Constraints: Maximum length of 128.

Pattern: `^arn:aws[-a-z]{0,}:ec2:[a-z-0-9]*:[0-9]{12}:network-interface/eni-[0-9a-f]+$`

Status (p. 376)

The status of the task that was described.

For detailed information about task execution statuses, see [Understanding Task Statuses](#) in the *AWS DataSync User Guide*.

Type: String
Valid Values: AVAILABLE | CREATING | QUEUED | RUNNING | UNAVAILABLE

TaskArn (p. 376)

The Amazon Resource Name (ARN) of the task that was described.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:a-z\-0-9*: [0-9]{12}:task/task-[0-9a-f]{17}$

TaskReportConfig (p. 376)

The configuration of your task report. For more information, see Creating a task report.

Type: TaskReportConfig (p. 516) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Example

The following example returns information about the task specified in the sample request.

Sample Request

```json
{
   "TaskArn": "arn:aws:datasync:us-east-2:111222333444:task/task-08de6e6697796f026"
}
```

Example

This example illustrates one usage of DescribeTask.

Sample Response

```json
{
   "CreationTime": 1532660733.39,
   "CurrentTaskExecutionArn": "arn:aws:datasync:us-east-2:111222333444:task/task-08de6e6697796f026/execution/exec-04ce9d516d69bd52f",
   "Options": {
```
"Atime": "BEST_EFFORT",
"BytesPerSecond": 1000,
"Gid": "NONE",
"Mtime": "PRESERVE",
"PosixPermissions": "PRESERVE",
"PreserveDevices": "NONE",
"PreserveDeletedFiles": "PRESERVE",
"Uid": "NONE",
"VerifyMode": "POINT_IN_TIME_CONSISTENT"
},
"DestinationLocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50fb",
"ErrorCode": "???????",
"ErrorDetail": "??????",
"Name": "MyTask",
"SourceLocationArn": "arn:aws:datasync:us-east-2:111222333444:location/loc-07db7abfc326c50aa",
"Status": "CREATING",
"TaskArn": "arn:aws:datasync:us-east-2:111222333444:task/task-08de6e6697796f026"
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTaskExecution

Provides information about an execution of your AWS DataSync task. You can use this operation to help monitor the progress of an ongoing transfer or check the results of the transfer.

Request Syntax

```
{
  "TaskExecutionArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

TaskExecutionArn (p. 382)

Specifies the Amazon Resource Name (ARN) of the task execution that you want information about.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}/execution/exec-[0-9a-f]{17}$`

Required: Yes

Response Syntax

```
{
  "BytesCompressed": number,
  "BytesTransferred": number,
  "BytesWritten": number,
  "EstimatedBytesToTransfer": number,
  "EstimatedFilesToDelete": number,
  "EstimatedFilesToTransfer": number,
  "Excludes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "FilesDeleted": number,
  "FilesSkipped": number,
  "FilesTransferred": number,
  "FilesVerified": number,
  "Includes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "Options": {
    "Atime": "string",
    "BytesPerSecond": number,
    "LocalPath": "string",
    "RemotePath": "string",
    "SourcePath": "string"
  }
}
```
"Gid": "string",
"LogLevel": "string",
"Mtime": "string",
"ObjectTags": "string",
"OverwriteMode": "string",
"PosixPermissions": "string",
"Preservedeletedfiles": "string",
"Preservedevice": "string",
"SecurityDescriptorCopyFlags": "string",
"TaskQueueing": "string",
"TransferMode": "string",
"Uid": "string",
"VerifyMode": "string"
},
"ReportResult": {
"ErrorCode": "string",
"ErrorDetail": "string",
"Status": "string"
},
"Result": {
"ErrorCode": "string",
"ErrorDetail": "string",
"PrepareDuration": number,
"PrepareStatus": "string",
"TotalDuration": number,
"TransferDuration": number,
"TransferStatus": "string",
"VerifyDuration": number,
"VerifyStatus": "string"
},
"StartTime": number,
"Status": "string",
"TaskExecutionArn": "string",
"TaskReportConfig": {
"Destination": {
 "S3": {
 "BucketAccessRoleArn": "string",
 "S3BucketArn": "string",
 "Subdirectory": "string"
 }
},
"ObjectVersionIds": "string",
"OutputType": "string",
"Overrides": {
 "Deleted": {
 "ReportLevel": "string"
 },
 "Skipped": {
 "ReportLevel": "string"
 },
 "Transferred": {
 "ReportLevel": "string"
 },
 "Verified": {
 "ReportLevel": "string"
 }
},
"ReportLevel": "string"
}
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

BytesCompressed (p. 382)

The physical number of bytes transferred over the network after compression was applied. In most cases, this number is less than BytesTransferred unless the data isn't compressible.

Type: Long

BytesTransferred (p. 382)

The total number of bytes that are involved in the transfer. For the number of bytes sent over the network, see BytesCompressed.

Type: Long

BytesWritten (p. 382)

The number of logical bytes written to the destination location.

Type: Long

EstimatedBytesToTransfer (p. 382)

The estimated physical number of bytes that will transfer over the network.

Type: Long

EstimatedFilesToDelete (p. 382)

The expected number of files, objects, and directories that DataSync will delete in your destination location. If you don't configure your task to delete data in the destination that isn't in the source, the value is always 0.

Type: Long

EstimatedFilesTo Transfer (p. 382)

The expected number of files, objects, and directories that DataSync will transfer over the network. This value is calculated during the task execution's PREPARING phase before the TRANSFERRING phase. The calculation is based on comparing the content of the source and destination locations and finding the difference that needs to be transferred.

Type: Long

Excludes (p. 382)

A list of filter rules that exclude specific data during your transfer. For more information and examples, see Filtering data transferred by DataSync.

Type: Array of FilterRule (p. 463) objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

FilesDeleted (p. 382)

The number of files, objects, and directories that DataSync deleted in your destination location. If you don't configure your task to delete data in the destination that isn't in the source, the value is always 0.

Type: Long

FilesSkipped (p. 382)

The number of files, objects, and directories that DataSync skipped during your transfer.
Type: Long

FilesTransferred (p. 382)

The actual number of files, objects, and directories that DataSync transferred over the network. This value is updated periodically during the task execution’s TRANSFERRING phase when something is read from the source and sent over the network.

If DataSync fails to transfer something, this value can be less than EstimatedFilesToTransfer. In some cases, this value can also be greater than EstimatedFilesToTransfer. This element is implementation-specific for some location types, so don’t use it as an exact indication of what transferred or to monitor your task execution.

Type: Long

FilesVerified (p. 382)

The number of files, objects, and directories that DataSync verified during your transfer.

Note

When you configure your task to verify only the data that’s transferred, DataSync doesn’t verify directories in some situations or files that fail to transfer.

Type: Long

Includes (p. 382)

A list of filter rules that include specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](#).

Type: Array of [FilterRule (p. 463)] objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Options (p. 382)

Indicates how your transfer task is configured. These options include how DataSync handles files, objects, and their associated metadata during your transfer. You also can specify how to verify data integrity, set bandwidth limits for your task, among other options.

Each option has a default value. Unless you need to, you don’t have to configure any of these options before starting your task.

Type: [Options (p. 487)] object

ReportResult (p. 382)

Indicates whether DataSync generated a complete task report for your transfer.

Type: [ReportResult (p. 503)] object

Result (p. 382)

The result of the task execution.

Type: [TaskExecutionResultDetail (p. 512)] object

StartTime (p. 382)

The time when the task execution started.

Type: Timestamp

Status (p. 382)

The status of the task execution.
For detailed information about task execution statuses, see Task execution statuses.

Type: String

Valid Values: QUEUED | LAUNCHING | PREPARING | TRANSFERRING | VERIFYING | SUCCESS | ERROR

TaskExecutionArn (p. 382)

The ARN of the task execution that you wanted information about. TaskExecutionArn is hierarchical and includes TaskArn for the task that was executed.

For example, a TaskExecution value with the ARN arn:aws:datasync:us-east-1:111222333444:task/task-0208075f79cedf4a2/execution/exec-08ef1e88ec491019b executed the task with the ARN arn:aws:datasync:us-east-1:111222333444:task/task-0208075f79cedf4a2.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}/execution/exec-[0-9a-f]{17}$

TaskReportConfig (p. 382)

The configuration of your task report, which provides detailed information about your DataSync transfer.

Type: [TaskReportConfig (p. 516)] object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

This example illustrates a DescribeTaskExecution request.

```json
{
    "TaskExecutionArn": "arn:aws:datasync:us-east-1:111222333444:task/task-aaaabbccccddddf/execution/exec-1234abcd1234abcd1"
}
```
Sample Response

This example illustrates a DescribeTaskExecution response.

```json
{
    "BytesCompressed": 3500,
    "BytesTransferred": 5000,
    "BytesWritten": 5000,
    "EstimatedBytesToTransfer": 5000,
    "EstimatedFilesToDelete": 10,
    "EstimatedFilesToTransfer": 100,
    "FilesDeleted": 10,
    "FilesSkipped": 0,
    "FilesTransferred": 100,
    "FilesVerified": 100,
    "Result": {
        "ErrorCode": "??????",
        "ErrorDetail": "??????",
        "PrepareDuration": 100,
        "PrepareStatus": "SUCCESS",
        "TransferDuration": 60,
        "TransferStatus": "AVAILABLE",
        "VerifyDuration": 30,
        "VerifyStatus": "SUCCESS"
    },
    "StartTime": 1532660733.39,
    "Status": "SUCCESS",
    "OverrideOptions": {
        "Atime": "BEST_EFFORT",
        "BytesPerSecond": "1000",
        "Gid": "NONE",
        "Mtime": "PRESERVE",
        "PosixPermissions": "PRESERVE",
        "PreserveDevices": "NONE",
        "PreserveDeletedFiles": "PRESERVE",
        "Uid": "NONE",
        "VerifyMode": "POINT_IN_TIME_CONSISTENT"
    },
    "TaskExecutionArn": "arn:aws:datasync:us-east-1:111222333444:task/task-aaabbbccccddddf/execution/exec-1234abcd1234abcd1",
    "TaskReportConfig": {
        "Destination": {
            "S3": {
                "BucketAccessRoleArn": "arn:aws:iam::111222333444:role/my-datasync-role",
                "S3BucketArn": "arn:aws:s3:::my-task-reports-bucket/**",
                "Subdirectory": "reports"
            }
        },
        "ObjectVersionIds": "INCLUDE",
        "OutputType": "STANDARD",
        "Overides": {
            "Deleted": {
                "ReportLevel": "ERRORS_ONLY"
            },
            "Skipped": {
                "ReportLevel": "SUCCESSES_AND_ERRORS"
            },
            "Transferred": {
                "ReportLevel": "ERRORS_ONLY"
            },
            "Verified": {
                "ReportLevel": "ERRORS_ONLY"
            }
        }
    },
    "ReportLevel": "ERRORS_ONLY"
}
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
GenerateRecommendations

Creates recommendations about where to migrate your data to in AWS. Recommendations are generated based on information that DataSync Discovery collects about your on-premises storage system's resources. For more information, see Recommendations provided by DataSync Discovery.

Once generated, you can view your recommendations by using the DescribeStorageSystemResources operation.

Request Syntax

```json
{
  "DiscoveryJobArn": "string",
  "ResourceIds": [ "string" ],
  "ResourceType": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

DiscoveryJobArn (p. 389)

Specifies the Amazon Resource Name (ARN) of the discovery job that collects information about your on-premises storage system.

Type: String

Length Constraints: Maximum length of 256.

Pattern: `arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: Yes

ResourceIds (p. 389)

Specifies the universally unique identifiers (UUIDs) of the resources in your storage system that you want recommendations on.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 100 items.

Pattern: `[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: Yes

ResourceType (p. 389)

Specifies the type of resource in your storage system that you want recommendations on.

Type: String

Valid Values: SVM | VOLUME | CLUSTER
Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

Examples

Sample Request

The following example generates AWS storage recommendations for a volume in an on-premises storage system.

```json
{
    "DiscoveryJobArn": "arn:aws:datasync:us-east-1:123456789012:system/storage-system-abdef01234567890/job/discovery-job-12345678-90ab-cdef-0abc-021345abcdef6",
    "ResourceIds": [ "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333" ],
    "ResourceType": "VOLUME"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
ListAgents

Returns a list of AWS DataSync agents that belong to an AWS account in the AWS Region specified in the request.

With pagination, you can reduce the number of agents returned in a response. If you get a truncated list of agents in a response, the response contains a marker that you can specify in your next request to fetch the next page of agents.

ListAgents is eventually consistent. This means the result of running the operation might not reflect that you just created or deleted an agent. For example, if you create an agent with CreateAgent and then immediately run ListAgents, that agent might not show up in the list right away. In situations like this, you can always confirm whether an agent has been created (or deleted) by using DescribeAgent.

Request Syntax

```json
{
    "MaxResults": number,
    "NextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

MaxResults (p. 391)

Specifies the maximum number of DataSync agents to list in a response. By default, a response shows a maximum of 100 agents.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

NextToken (p. 391)

Specifies an opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=\-_]+

Required: No

Response Syntax

```json
{
    "Agents": [
        {
            "AgentArn": "string",
        }
    ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Agents (p. 391)

A list of DataSync agents in your AWS account in the AWS Region specified in the request. The list is ordered by the agents' Amazon Resource Names (ARNs).

Type: Array of AgentListEntry (p. 455) objects

NextToken (p. 391)

The opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9-_]+

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
ListAgents

- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListDiscoveryJobs

Provides a list of the existing discovery jobs in the AWS Region and AWS account where you're using DataSync Discovery.

Request Syntax

```json
{
   "MaxResults": number,
   "NextToken": "string",
   "StorageSystemArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

MaxResults (p. 394)

Specifies how many results you want in the response.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

NextToken (p. 394)

Specifies an opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=\-_]+

Required: No

StorageSystemArn (p. 394)

Specifies the Amazon Resource Name (ARN) of an on-premises storage system. Use this parameter if you only want to list the discovery jobs that are associated with a specific storage system.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}\$

Required: No

Response Syntax

```json
{
}
```
"DiscoveryJobs": [
 {
 "DiscoveryJobArn": "string",
 "Status": "string"
 }
],
"NextToken": "string"

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

DiscoveryJobs (p. 394)

The discovery jobs that you've run.

Type: Array of [DiscoveryJobListEntry (p. 460)] objects

NextToken (p. 394)

The opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=_-]+

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListLocations

Returns a list of source and destination locations.

If you have more locations than are returned in a response (that is, the response returns only a truncated list of your agents), the response contains a token that you can specify in your next request to fetch the next page of locations.

Request Syntax

```json
{
  "Filters": [
    {
      "Name": "string",
      "Operator": "string",
      "Values": [ "string" ]
    }
  ],
  "MaxResults": number,
  "NextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

Filters (p. 397)

You can use API filters to narrow down the list of resources returned by ListLocations. For example, to retrieve all tasks on a specific source location, you can use ListLocations with filter name LocationType S3 and Operator Equals.

Type: Array of LocationFilter (p. 471) objects

Required: No

MaxResults (p. 397)

The maximum number of locations to return.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

NextToken (p. 397)

An opaque string that indicates the position at which to begin the next list of locations.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=_.-]+

Required: No
Response Syntax

```
{
  "Locations": [
    {
      "LocationArn": "string",
      "LocationUri": "string"
    }
  ],
  "NextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Locations (p. 398)

An array that contains a list of locations.

Type: Array of `LocationListEntry (p. 472)` objects

NextToken (p. 398)

An opaque string that indicates the position at which to begin returning the next list of locations.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: `[a-zA-Z0-9-_]+`

Errors

For information about the errors that are common to all actions, see `Common Errors (p. 519)`.

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListStorageSystems

Lists the on-premises storage systems that you're using with DataSync Discovery.

Request Syntax

```json
{
  "MaxResults": number,
  "NextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

MaxResults (p. 400)

- Specifies how many results you want in the response.
- Type: Integer
- Valid Range: Minimum value of 1. Maximum value of 100.
- Required: No

NextToken (p. 400)

- Specifies an opaque string that indicates the position to begin the next list of results in the response.
- Type: String
- Length Constraints: Maximum length of 65535.
- Pattern: [a-zA-Z0-9-_]+
- Required: No

Response Syntax

```json
{
  "NextToken": "string",
  "StorageSystems": [
    {
      "Name": "string",
      "StorageSystemArn": "string"
    }
  ]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
NextToken (p. 400)

The opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: \[a-zA-Z0-9=\-_]+

StorageSystems (p. 400)

The Amazon Resource Names ARNs) of the on-premises storage systems that you're using with DataSync Discovery.

Type: Array of StorageSystemListEntry (p. 509) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTagsForResource

Returns all the tags associated with an AWS resource.

Request Syntax

```
{
   "MaxResults": number,
   "NextToken": "string",
   "ResourceArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

MaxResults (p. 402)

Specifies how many results that you want in the response.

- Type: Integer
- Valid Range: Minimum value of 0. Maximum value of 100.
- Required: No

NextToken (p. 402)

Specifies an opaque string that indicates the position to begin the next list of results in the response.

- Type: String
- Length Constraints: Maximum length of 65535.
- Pattern: [a-zA-Z0-9=-_\-]+
- Required: No

ResourceArn (p. 402)

Specifies the Amazon Resource Name (ARN) of the resource that you want tag information on.

- Type: String
- Length Constraints: Maximum length of 128.

```
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws iso|aws iso b):datasync:[a-zA-Z0-9]+:[0-9]{12}:(agent|task|location|system)/((agent|task|loc)-[a-f0-9]*17|storage-system-[a-f0-9]*8-[a-f0-9]*4-[a-f0-9]*4-[a-f0-9]*4-[a-f0-9]*12) (/execution/exec-[a-f0-9]*17)?$
```

- Required: Yes

Response Syntax

```
{
}
```
"NextToken": "string",
"Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 402)

The opaque string that indicates the position to begin the next list of results in the response.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9-_]+

Tags (p. 402)

An array of tags applied to the specified resource.

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 55 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTaskExecutions

Returns a list of executed tasks.

Request Syntax

```json
{
  "MaxResults": number,
  "NextToken": "string",
  "TaskArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

MaxResults (p. 405)

The maximum number of executed tasks to list.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

NextToken (p. 405)

An opaque string that indicates the position at which to begin the next list of the executed tasks.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9=_-]+

Required: No

TaskArn (p. 405)

The Amazon Resource Name (ARN) of the task whose tasks you want to list.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}$

Required: No

Response Syntax

```json
{
  "NextToken": "string",
  "TaskExecutions": [
  ...
  ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

NextToken (p. 405)

An opaque string that indicates the position at which to begin returning the next list of executed tasks.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: `[a-zA-Z0-9=-_]`+

TaskExecutions (p. 405)

A list of executed tasks.

Type: Array of TaskExecutionListEntry (p. 511) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
ListTasks

Returns a list of the AWS DataSync tasks you created.

Request Syntax

```
{
  "Filters": [
    {
      "Name": "string",
      "Operator": "string",
      "Values": [ "string" ]
    }
  ],
  "MaxResults": number,
  "NextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](#).

The request accepts the following data in JSON format.

Filters (p. 408)

You can use API filters to narrow down the list of resources returned by ListTasks. For example, to retrieve all tasks on a specific source location, you can use ListTasks with filter name LocationId and Operator Equals with the ARN for the location.

Type: Array of [TaskFilter (p. 514)] objects

Required: No

MaxResults (p. 408)

The maximum number of tasks to return.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

NextToken (p. 408)

An opaque string that indicates the position at which to begin the next list of tasks.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9-9=._-]+

Required: No

Response Syntax

```
{
  
}
```
"NextToken": "string",
"Tasks": [
 {
 "Name": "string",
 "Status": "string",
 "TaskArn": "string"
 }
]

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken *(p. 408)*

An opaque string that indicates the position at which to begin returning the next list of tasks.

Type: String

Length Constraints: Maximum length of 65535.

Pattern: [a-zA-Z0-9-._=]+

Tasks *(p. 408)*

A list of all the tasks that are returned.

Type: Array of TaskListEntry *(p. 515)* objects

Errors

For information about the errors that are common to all actions, see Common Errors *(p. 519)*.

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RemoveStorageSystem

Permanently removes a storage system resource from DataSync Discovery, including the associated discovery jobs, collected data, and recommendations.

Request Syntax

```
{
  "StorageSystemArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

StorageSystemArn (p. 411)

Specifies the Amazon Resource Name (ARN) of the storage system that you want to permanently remove from DataSync Discovery.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9\+]:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}$`

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
StartDiscoveryJob

Runs a DataSync discovery job on your on-premises storage system. If you haven't added the storage system to DataSync Discovery yet, do this first by using the AddStorageSystem operation.

Request Syntax

```json
{
    "ClientToken": "string",
    "CollectionDurationMinutes": number,
    "StorageSystemArn": "string",
    "Tags": [
        {
            "Key": "string",
            "Value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

ClientToken (p. 413)

Specifies a client token to make sure requests with this API operation are idempotent. If you don't specify a client token, DataSync generates one for you automatically.

Type: String

Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: Yes

CollectionDurationMinutes (p. 413)

Specifies in minutes how long you want the discovery job to run.

Note

For more accurate recommendations, we recommend a duration of at least 14 days. Longer durations allow time to collect a sufficient number of data points and provide a realistic representation of storage performance and utilization.

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 44640.

Required: Yes

StorageSystemArn (p. 413)

Specifies the Amazon Resource Name (ARN) of the on-premises storage system that you want to run the discovery job on.

Type: String

Length Constraints: Maximum length of 128.
StartDiscoveryJob

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: Yes

Tags (p. 413)

Specifies labels that help you categorize, filter, and search for your AWS resources.

Type: Array of [TagListEntry (p. 510)] objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```
{
   "DiscoveryJobArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

DiscoveryJobArn (p. 414)

The ARN of the discovery job that you started.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
StartTaskExecution

Starts an AWS DataSync transfer task. For each task, you can only run one task execution at a time.

There are several phases to a task execution. For more information, see Task execution statuses.

Important
If you're planning to transfer data to or from an Amazon S3 location, review how DataSync can affect your S3 request charges and the DataSync pricing page before you begin.

Request Syntax

```json
{
  "Excludes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "Includes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "OverrideOptions": {
    "Atime": "string",
    "BytesPerSecond": number,
    "Gid": "string",
    "LogLevel": "string",
    "Mtime": "string",
    "ObjectTags": "string",
    "OverwriteMode": "string",
    "PosixPermissions": "string",
    "PreserveDeletedFiles": "string",
    "PreserveDevices": "string",
    "SecurityDescriptorCopyFlags": "string",
    "TaskQueueing": "string",
    "TransferMode": "string",
    "Uid": "string",
    "VerifyMode": "string"
  },
  "Tags": [
    {
      "Key": "string",
      "Value": "string"
    }
  ],
  "TaskArn": "string",
  "TaskReportConfig": {
    "Destination": {
      "S3": {
        "BucketAccessRoleArn": "string",
        "S3BucketArn": "string",
        "Subdirectory": "string"
      }
    },
    "ObjectVersionIds": "string",
    "OutputType": "string",
    "Overrides": {
      "Deleted": {
        "reportLevel": "string"
      }
    }
  }
}
```
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

Excludes (p. 416)

Specifies a list of filter rules that determines which files to exclude from a task. The list contains a single filter string that consists of the patterns to exclude. The patterns are delimited by "|" (that is, a pipe), for example, "/folder1|/folder2".

Type: Array of FilterRule (p. 463) objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Required: No

Includes (p. 416)

Specifies a list of filter rules that determines which files to include when running a task. The pattern should contain a single filter string that consists of the patterns to include. The patterns are delimited by "|" (that is, a pipe), for example, "/folder1|/folder2".

Type: Array of FilterRule (p. 463) objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Required: No

OverrideOptions (p. 416)

Indicates how your transfer task is configured. These options include how DataSync handles files, objects, and their associated metadata during your transfer. You also can specify how to verify data integrity, set bandwidth limits for your task, among other options.

Each option has a default value. Unless you need to, you don't have to configure any of these options before starting your task.

Type: Options (p. 487) object

Required: No

Tags (p. 416)

Specifies the tags that you want to apply to the Amazon Resource Name (ARN) representing the task execution.

Tags are key-value pairs that help you manage, filter, and search for your DataSync resources.
StartTaskExecution

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

TaskArn (p. 416)

Specifies the Amazon Resource Name (ARN) of the task that you want to start.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws.iso|aws.iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}\$

Required: Yes

TaskReportConfig (p. 416)

Specifies how you want to configure a task report, which provides detailed information about your DataSync transfer.

Type: TaskReportConfig (p. 516) object

Required: No

Response Syntax

```
{
   "TaskExecutionArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TaskExecutionArn (p. 418)

The ARN of the running task execution.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws.iso|aws.iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}/execution/exec-[0-9a-f]{17}\$

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.
HTTP Status Code: 500
InvalidRequestException
This exception is thrown when the client submits a malformed request.
HTTP Status Code: 400

Examples
Sample Request
The following example starts a task execution using the default options for the specified task.

```
{
  "OverrideOptions": {
    "Atime": "BEST_EFFORT",
    "BytesPerSecond": 1000,
    "Gid": "NONE",
    "Mtime": "PRESERVE",
    "PosixPermissions": "PRESERVE",
    "PreserveDeletedFiles": "PRESERVE",
    "Uid": "NONE",
    "VerifyMode": "POINT_IN_TIME_CONSISTENT"
  },
  "TaskArn": "arn:aws:datasync:us-east-2:111222333444:task/task-08de6e669779f026"
}
```

Sample Response
This example illustrates one usage of StartTaskExecution.

```
{
  "TaskExecutionArn": "arn:aws:datasync:us-east-2:111222333444:task/task-08de6e669779f026/execution/exec-04ce9d516d69bd52f"
}
```

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
StopDiscoveryJob

Stops a running DataSync discovery job.

You can stop a discovery job anytime. A job that's stopped before it's scheduled to end likely will provide you some information about your on-premises storage system resources. To get recommendations for a stopped job, you must use the GenerateRecommendations operation.

Request Syntax

```json
{
    "DiscoveryJobArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

DiscoveryJobArn (p. 420)

 Specifies the Amazon Resource Name (ARN) of the discovery job that you want to stop.

 Type: String

 Length Constraints: Maximum length of 256.

 Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

 Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

 This exception is thrown when an error occurs in the AWS DataSync service.

 HTTP Status Code: 500

InvalidRequestException

 This exception is thrown when the client submits a malformed request.

 HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
TagResource

Applies a tag to an AWS resource. Tags are key-value pairs that can help you manage, filter, and search for your resources. These include AWS DataSync resources, such as locations, tasks, and task executions.

Request Syntax

```
{
    "ResourceArn": "string",
    "Tags": [
        {
            "Key": "string",
            "Value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

ResourceArn (p. 422)

Specifies the Amazon Resource Name (ARN) of the resource to apply the tag to.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:(agent|task|location|system)/\((\agent|\task|\loc)-[a-f0-9]{17}\)storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}(\execution/exec-[a-f0-9]{17})?$`

Required: Yes

Tags (p. 422)

Specifies the tags that you want to apply to the resource.

Type: Array of TagListEntry (p. 510) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).
InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UntagResource

Removes tags from an AWS resource.

Request Syntax

```
{
  "Keys": [ "string" ],
  "ResourceArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

Keys (p. 424)

 Specifies the keys in the tags that you want to remove.

 Type: Array of strings

 Array Members: Minimum number of 1 item. Maximum number of 50 items.

 Length Constraints: Minimum length of 1. Maximum length of 256.

 Pattern: ^[a-zA-Z0-9\s+=._:/-]+$

 Required: Yes

ResourceArn (p. 424)

 Specifies the Amazon Resource Name (ARN) of the resource to remove the tags from.

 Type: String

 Length Constraints: Maximum length of 128.

 Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:([agent|task|location|system]/((agent|task|loc)-[a-f0-9]{17})|storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12})(/execution/exec-[a-f0-9]{17})?\$

 Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

 This exception is thrown when an error occurs in the AWS DataSync service.
HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateAgent

Updates the name of an AWS DataSync agent.

Request Syntax

```json
{
  "AgentArn": "string",
  "Name": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArn (p. 426)

The Amazon Resource Name (ARN) of the agent to update.

- Type: String
- Length Constraints: Maximum length of 128.
- Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$
- Required: Yes

Name (p. 426)

The name that you want to use to configure the agent.

- Type: String
- Pattern: ^[a-zA-Z0-9\-\s+=._:@/-\]+$
- Required: No

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500
InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateDiscoveryJob

Edits a DataSync discovery job configuration.

Request Syntax

```
{
  "CollectionDurationMinutes": number,
  "DiscoveryJobArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

CollectionDurationMinutes (p. 428)

Specifies in minutes how long that you want the discovery job to run. (You can't set this parameter to less than the number of minutes that the job has already run for.)

Type: Integer

Valid Range: Minimum value of 60. Maximum value of 44640.

Required: Yes

DiscoveryJobArn (p. 428)

Specifies the Amazon Resource Name (ARN) of the discovery job that you want to update.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}/job/discovery-job-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500
InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateLocationAzureBlob

Modifies some configurations of the Microsoft Azure Blob Storage transfer location that you're using with AWS DataSync.

Request Syntax

```json
{
    "AccessTier": "string",
    "AgentArns": [ "string" ],
    "AuthenticationType": "string",
    "BlobType": "string",
    "LocationArn": "string",
    "SasConfiguration": {
        "Token": "string"
    },
    "Subdirectory": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AccessTier (p. 430)

Specifies the access tier that you want your objects or files transferred into. This only applies when using the location as a transfer destination. For more information, see Access tiers.

Type: String

Valid Values: HOT | COOL | ARCHIVE

Required: No

AgentArns (p. 430)

Specifies the Amazon Resource Name (ARN) of the DataSync agent that can connect with your Azure Blob Storage container.

You can specify more than one agent. For more information, see Using multiple agents for your transfer.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: No

AuthenticationType (p. 430)

Specifies the authentication method DataSync uses to access your Azure Blob Storage. DataSync can access blob storage using a shared access signature (SAS).
Type: String
Valid Values: SAS
Required: No

BlobType (p. 430)

Specifies the type of blob that you want your objects or files to be when transferring them into Azure Blob Storage. Currently, DataSync only supports moving data into Azure Blob Storage as block blobs. For more information on blob types, see the [Azure Blob Storage documentation](https://docs.microsoft.com/en-us/azure/storage/blobs/data-transfer).

Type: String
Valid Values: BLOCK
Required: No

LocationArn (p. 430)

Specifies the ARN of the Azure Blob Storage transfer location that you're updating.

Type: String
Length Constraints: Maximum length of 128.
Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$
Required: Yes

SasConfiguration (p. 430)

Specifies the SAS configuration that allows DataSync to access your Azure Blob Storage.

Type: [AzureBlobSasConfiguration (p. 457)] object
Required: No

Subdirectory (p. 430)

Specifies path segments if you want to limit your transfer to a virtual directory in your container (for example, /my/images).

Type: String
Length Constraints: Maximum length of 1024.
Pattern: ^[^\p{L}\p{M}\p{Z}\p{S}\p{N}\p{P}\p{C}]*$
Required: No

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 519)].

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.
HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
UpdateLocationHdfs

Updates some parameters of a previously created location for a Hadoop Distributed File System cluster.

Request Syntax

```
{
  "AgentArns": [ "string" ],
  "AuthenticationType": "string",
  "BlockSize": number,
  "KerberosKeytab": blob,
  "KerberosKrb5Conf": blob,
  "KerberosPrincipal": "string",
  "KmsKeyProviderUri": "string",
  "LocationArn": "string",
  "NameNodes": [ 
    { "Hostname": "string",
      "Port": number }
  ],
  "QopConfiguration": { 
    "DataTransferProtection": "string",
    "RpcProtection": "string"
  },
  "ReplicationFactor": number,
  "SimpleUser": "string",
  "Subdirectory": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 433)

The ARNs of the agents that are used to connect to the HDFS cluster.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: No

AuthenticationType (p. 433)

The type of authentication used to determine the identity of the user.

Type: String

Valid Values: SIMPLE | KERBEROS

Required: No
BlockSize (p. 433)

The size of the data blocks to write into the HDFS cluster.

Type: Integer

Valid Range: Minimum value of 1048576. Maximum value of 1073741824.

Required: No

KerberosKeytab (p. 433)

The Kerberos key table (keytab) that contains mappings between the defined Kerberos principal and the encrypted keys. You can load the keytab from a file by providing the file's address. If you use the AWS CLI, it performs base64 encoding for you. Otherwise, provide the base64-encoded text.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 65536.

Required: No

KerberosKrb5Conf (p. 433)

The krb5.conf file that contains the Kerberos configuration information. You can load the krb5.conf file by providing the file's address. If you're using the AWS CLI, it performs the base64 encoding for you. Otherwise, provide the base64-encoded text.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 131072.

Required: No

KerberosPrincipal (p. 433)

The Kerberos principal with access to the files and folders on the HDFS cluster.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^.+$

Required: No

KmsKeyProviderUri (p. 433)

The URI of the HDFS cluster's Key Management Server (KMS).

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: ^kms:\/\/[a-zA-Z0-9\-]+*:[0-9]{1,5}/kms$

Required: No

LocationArn (p. 433)

The Amazon Resource Name (ARN) of the source HDFS cluster location.
UpdateLocationHdfs

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-,0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

NameNodes (p. 433)

The NameNode that manages the HDFS namespace. The NameNode performs operations such as opening, closing, and renaming files and directories. The NameNode contains the information to map blocks of data to the DataNodes. You can use only one NameNode.

Type: Array of **HdfsNameNode (p. 468)** objects

Array Members: Minimum number of 1 item.

Required: No

QopConfiguration (p. 433)

The Quality of Protection (QOP) configuration specifies the Remote Procedure Call (RPC) and data transfer privacy settings configured on the Hadoop Distributed File System (HDFS) cluster.

Type: **QopConfiguration (p. 497)** object

Required: No

ReplicationFactor (p. 433)

The number of DataNodes to replicate the data to when writing to the HDFS cluster.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 512.

Required: No

SimpleUser (p. 433)

The user name used to identify the client on the host operating system.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[_A-Za-z0-9][_A-Za-z0-9]*$

Required: No

Subdirectory (p. 433)

A subdirectory in the HDFS cluster. This subdirectory is used to read data from or write data to the HDFS cluster.

Type: String

Length Constraints: Maximum length of 4096.

Pattern: ^[a-zA-Z0-9_\-\./\(\)\$]+$
Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateLocationNfs

Modifies some configurations of the Network File System (NFS) transfer location that you're using with AWS DataSync.

For more information, see Configuring transfers to or from an NFS file server.

Request Syntax

```
{
    "LocationArn": "string",
    "MountOptions": {
        "Version": "string"
    },
    "OnPremConfig": {
        "AgentArns": [ "string" ]
    },
    "Subdirectory": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

LocationArn (p. 437)

Specifies the Amazon Resource Name (ARN) of the NFS transfer location that you want to update.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

MountOptions (p. 437)

Specifies how DataSync can access a location using the NFS protocol.

Type: NfsMountOptions (p. 485) object

Required: No

OnPremConfig (p. 437)

The AWS DataSync agents that are connecting to a Network File System (NFS) location.

Type: OnPremConfig (p. 486) object

Required: No

Subdirectory (p. 437)

Specifies the export path in your NFS file server that you want DataSync to mount.

This path (or a subdirectory of the path) is where DataSync transfers data to or from. For information on configuring an export for DataSync, see Accessing NFS file servers.
Type: String
Length Constraints: Maximum length of 4096.
Pattern: ^[a-zA-Z0-9_-\-\._+\./\(\)\p{Zs}]+$
Required: No

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateLocationObjectStorage

Updates some parameters of an existing object storage location that AWS DataSync accesses for a transfer. For information about creating a self-managed object storage location, see Creating a location for object storage.

Request Syntax

```
{
   "AccessKey": "string",
   "AgentArns": [ "string" ],
   "LocationArn": "string",
   "SecretKey": "string",
   "ServerCertificate": blob,
   "ServerPort": number,
   "ServerProtocol": "string",
   "Subdirectory": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AccessKey (p. 439)

Specifies the access key (for example, a user name) if credentials are required to authenticate with the object storage server.

Type: String

Pattern: ^\.$

Required: No

AgentArns (p. 439)

Specifies the Amazon Resource Names (ARNs) of the DataSync agents that can securely connect with your location.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: No

LocationArn (p. 439)

Specifies the ARN of the object storage system location that you're updating.

Type: String
Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

SecretKey (p. 439)

Specifies the secret key (for example, a password) if credentials are required to authenticate with the object storage server.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 200.

Pattern: ^.*$

Required: No

ServerCertificate (p. 439)

Specifies a certificate to authenticate with an object storage system that uses a private or self-signed certificate authority (CA). You must specify a Base64-encoded .pem file (for example, file:///home/user/.ssh/storage_sys_certificate.pem). The certificate can be up to 32768 bytes (before Base64 encoding).

To use this parameter, configure ServerProtocol to HTTPS.

Updating the certificate doesn't interfere with tasks that you have in progress.

Type: Base64-encoded binary data object

Length Constraints: Maximum length of 32768.

Required: No

ServerPort (p. 439)

Specifies the port that your object storage server accepts inbound network traffic on (for example, port 443).

Type: Integer

Required: No

ServerProtocol (p. 439)

Specifies the protocol that your object storage server uses to communicate.

Type: String

Valid Values: HTTPS | HTTP

Required: No

Subdirectory (p. 439)

Specifies the object prefix for your object storage server. If this is a source location, DataSync only copies objects with this prefix. If this is a destination location, DataSync writes all objects with this prefix.

Type: String
Length Constraints: Maximum length of 4096.
Pattern: ^[a-zA-Z0-9\-_\+\.\(\)\p{Zs}]*$
Required: No

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateLocationSmb

Updates some of the parameters of a Server Message Block (SMB) file server location that you can use for AWS DataSync transfers.

Request Syntax

```json
{
    "AgentArns": [ "string" ],
    "Domain": "string",
    "LocationArn": "string",
    "MountOptions": {
        "Version": "string"
    },
    "Password": "string",
    "Subdirectory": "string",
    "User": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 442)

Specifies the DataSync agent (or agents) which you want to connect to your SMB file server. You specify an agent by using its Amazon Resource Name (ARN).

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-is0|aws-is0-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$`

Required: No

Domain (p. 442)

Specifies the Windows domain name that your SMB file server belongs to.

If you have multiple domains in your environment, configuring this parameter makes sure that DataSync connects to the right file server.

For more information, see required permissions for SMB locations.

Type: String

Length Constraints: Maximum length of 253.

Pattern: `^[A-Za-z0-9](\.|\+)?[A-Za-z0-9]{0,252}$`

Required: No

LocationArn (p. 442)

Specifies the ARN of the SMB location that you want to update.
AWS DataSync User Guide

UpdateLocationSmb

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-zA-Z0-9-]*: [0-9]{12}:location/loc-[0-9a-z]{17}$

Required: Yes

MountOptions (p. 442)

Specifies the version of the Server Message Block (SMB) protocol that AWS DataSync uses to access an SMB file server.

Type: SmbMountOptions (p. 508) object

Required: No

Password (p. 442)

Specifies the password of the user who can mount your SMB file server and has permission to access the files and folders involved in your transfer.

For more information, see required permissions for SMB locations.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^\{0,104}\$

Required: No

Subdirectory (p. 442)

Specifies the name of the share exported by your SMB file server where DataSync will read or write data. You can include a subdirectory in the share path (for example, /path/to/subdirectory). Make sure that other SMB clients in your network can also mount this path.

To copy all data in the specified subdirectory, DataSync must be able to mount the SMB share and access all of its data. For more information, see required permissions for SMB locations.

Type: String

Length Constraints: Maximum length of 4096.

Pattern: ^[a-zA-Z0-9\-_\./\(\)\$\p{Zs}]+\$

Required: No

User (p. 442)

Specifies the user name that can mount your SMB file server and has permission to access the files and folders involved in your transfer.

For information about choosing a user with the right level of access for your transfer, see required permissions for SMB locations.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^[^\\x5B\x5D\/:;|=,*?\{1,104}\$

Required: No
Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateStorageSystem

Modifies some configurations of an on-premises storage system resource that you're using with DataSync Discovery.

Request Syntax

```
{
  "AgentArns": [ "string" ],
  "CloudWatchLogGroupArn": "string",
  "Credentials": {
    "Password": "string",
    "Username": "string"
  },
  "Name": "string",
  "ServerConfiguration": {
    "ServerHostname": "string",
    "ServerPort": number
  },
  "StorageSystemArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 521).

The request accepts the following data in JSON format.

AgentArns (p. 445)

Specifies the Amazon Resource Name (ARN) of the DataSync agent that connects to and reads your on-premises storage system. You can only specify one ARN.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]([\-0-9a-z]+)$

Required: No

CloudWatchLogGroupArn (p. 445)

Specifies the ARN of the Amazon CloudWatch log group for monitoring and logging discovery job events.

Type: String

Length Constraints: Maximum length of 562.

Required: No
Credentials (p. 445)

Specifies the user name and password for accessing your on-premises storage system's management interface.

Type: Credentials (p. 459) object

Required: No

Name (p. 445)

Specifies a familiar name for your on-premises storage system.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^\[p\{L\}\p\{M\}\p\{N\}\s+=._:@\/-]+$

Required: No

ServerConfiguration (p. 445)

Specifies the server name and network port required to connect with your on-premises storage system's management interface.

Type: DiscoveryServerConfiguration (p. 461) object

Required: No

StorageSystemArn (p. 445)

Specifies the ARN of the on-premises storage system that you want reconfigure.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:\[(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateTask

Updates the configuration of a AWS DataSync transfer task.

Request Syntax

```json
{
  "CloudWatchLogGroupArn": "string",
  "Excludes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "Includes": [
    {
      "FilterType": "string",
      "Value": "string"
    }
  ],
  "Name": "string",
  "Options": {
    "Atime": "string",
    "BytesPerSecond": number,
    "Gid": "string",
    "LogLevel": "string",
    "Mtime": "string",
    "ObjectTags": "string",
    "OverwriteMode": "string",
    "PosixPermissions": "string",
    "PreserveDeletedFiles": "string",
    "PreserveDevices": "string",
    "SecurityDescriptorCopyFlags": "string",
    "TaskQueueing": "string",
    "TransferMode": "string",
    "Uid": "string",
    "VerifyMode": "string"
  },
  "Schedule": {
    "ScheduleExpression": "string"
  },
  "TaskArn": "string",
  "TaskReportConfig": {
    "Destination": {
      "S3": {
        "BucketAccessRoleArn": "string",
        "S3BucketArn": "string",
        "Subdirectory": "string"
      }
    },
    "ObjectVersionIds": "string",
    "OutputType": "string",
    "Overrides": {
      "Deleted": {
        "ReportLevel": "string"
      },
      "Skipped": {
        "ReportLevel": "string"
      },
      "Transferred": {
        "ReportLevel": "string"
      },
      "Verified": {
```
Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 521).

The request accepts the following data in JSON format.

CloudWatchLogGroupArn (p. 448)

The Amazon Resource Name (ARN) of the resource name of the Amazon CloudWatch log group.

Type: String

Length Constraints: Maximum length of 562.

Required: No

Excludes (p. 448)

Specifies a list of filter rules that exclude specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](p. 547).

Type: Array of [FilterRule (p. 463)] objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Required: No

Includes (p. 448)

Specifies a list of filter rules that include specific data during your transfer. For more information and examples, see [Filtering data transferred by DataSync](p. 547).

Type: Array of [FilterRule (p. 463)] objects

Array Members: Minimum number of 0 items. Maximum number of 1 item.

Required: No

Name (p. 448)

The name of the task to update.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Required: No

Options (p. 448)

Indicates how your transfer task is configured. These options include how DataSync handles files, objects, and their associated metadata during your transfer. You also can specify how to verify data integrity, set bandwidth limits for your task, among other options.
Each option has a default value. Unless you need to, you don't have to configure any of these options before starting your task.

Type: Options (p. 487) object

Required: No

Schedule (p. 448)

Specifies a schedule used to periodically transfer files from a source to a destination location. You can configure your task to execute hourly, daily, weekly or on specific days of the week. You control when in the day or hour you want the task to execute. The time you specify is UTC time. For more information, see Scheduling your task.

Type: TaskSchedule (p. 518) object

Required: No

TaskArn (p. 448)

The Amazon Resource Name (ARN) of the resource name of the task to update.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*: [0-9]{12}:task/task-[0-9a-f]{17}$

Required: Yes

TaskReportConfig (p. 448)

Specifies how you want to configure a task report, which provides detailed information about for your DataSync transfer.

Type: TaskReportConfig (p. 516) object

Required: No

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateTaskExecution

Updates the configuration of a running AWS DataSync task execution.

Note
Currently, the only option that you can modify with UpdateTaskExecution is `BytesPerSecond`, which throttles bandwidth for a running or queued task execution.

Request Syntax

```
{
    "Options": {
        "Atime": "string",
        "BytesPerSecond": number,
        "Gid": "string",
        "LogLevel": "string",
        "Mtime": "string",
        "ObjectTags": "string",
        "OverwriteMode": "string",
        "PosixPermissions": "string",
        "PreserveDeletedFiles": "string",
        "PreserveDevices": "string",
        "SecurityDescriptorCopyFlags": "string",
        "TaskQueueing": "string",
        "TransferMode": "string",
        "Uid": "string",
        "VerifyMode": "string"
    },
    "TaskExecutionArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 521).

The request accepts the following data in JSON format.

Options (p. 452)

Indicates how your transfer task is configured. These options include how DataSync handles files, objects, and their associated metadata during your transfer. You also can specify how to verify data integrity, set bandwidth limits for your task, among other options.

Each option has a default value. Unless you need to, you don't have to configure any of these options before starting your task.

Type: Options (p. 487) object

TaskExecutionArn (p. 452)

Specifies the Amazon Resource Name (ARN) of the task execution that you're updating.

Type: String

Length Constraints: Maximum length of 128.

Pattern: `^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:\[0-9\][12]:task/task-[0-9a-f]\{17\}/execution/exec-[0-9a-f]\{17\}$`
Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 519).

InternalException

This exception is thrown when an error occurs in the AWS DataSync service.

HTTP Status Code: 500

InvalidRequestException

This exception is thrown when the client submits a malformed request.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3

Data Types

The following data types are supported:

- AgentListEntry (p. 455)
- AzureBlobSasConfiguration (p. 457)
- Capacity (p. 458)
- Credentials (p. 459)
- DiscoveryJobListEntry (p. 460)
- DiscoveryServerConfiguration (p. 461)
- Ec2Config (p. 462)
- FilterRule (p. 463)
- FsxProtocol (p. 464)
- FsxProtocolNfs (p. 465)
AWS DataSync User Guide
Data Types

- FsxProtocolSmb (p. 466)
- HdfsNameNode (p. 468)
- IOPS (p. 469)
- Latency (p. 470)
- LocationFilter (p. 471)
- LocationListEntry (p. 472)
- MaxP95Performance (p. 474)
- NetAppONTAPCluster (p. 476)
- NetAppONTAPSVM (p. 479)
- NetAppONTAPVolume (p. 482)
- NfsMountOptions (p. 485)
- OnPremConfig (p. 486)
- Options (p. 487)
- P95Metrics (p. 493)
- Platform (p. 494)
- PrivateLinkConfig (p. 495)
- QopConfiguration (p. 497)
- Recommendation (p. 498)
- ReportDestination (p. 499)
- ReportDestinationS3 (p. 500)
- ReportOverride (p. 501)
- ReportOverrides (p. 502)
- ReportResult (p. 503)
- ResourceDetails (p. 504)
- ResourceMetrics (p. 505)
- S3Config (p. 507)
- SmbMountOptions (p. 508)
- StorageSystemListEntry (p. 509)
- TagListEntry (p. 510)
- TaskExecutionListEntry (p. 511)
- TaskExecutionResultDetail (p. 512)
- TaskFilter (p. 514)
- TaskListEntry (p. 515)
- TaskReportConfig (p. 516)
- TaskSchedule (p. 518)
- Throughput (p. 519)
AgentListEntry

Represents a single entry in a list (or array) of AWS DataSync agents when you call the ListAgents operation.

Contents

AgentArn

The Amazon Resource Name (ARN) of a DataSync agent.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: No

Name

The name of an agent.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Required: No

Platform

The platform-related details about the agent, such as the version number.

Type: Platform (p. 494) object

Required: No

Status

The status of an agent.

- If the status is ONLINE, the agent is configured properly and ready to use.
- If the status is OFFLINE, the agent has been out of contact with DataSync for five minutes or longer. This can happen for a few reasons. For more information, see What do I do if my agent is offline?

Type: String

Valid Values: ONLINE | OFFLINE

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
AzureBlobSasConfiguration

The shared access signature (SAS) configuration that allows AWS DataSync to access your Microsoft Azure Blob Storage.

For more information, see [SAS tokens](#) for accessing your Azure Blob Storage.

Contents

Token

Specifies a SAS token that provides permissions to access your Azure Blob Storage.

The token is part of the SAS URI string that comes after the storage resource URI and a question mark. A token looks something like this:

```
sp=r&st=2023-12-20T14:54:52Z&se=2023-12-20T22:54:52Z&spr=https&sv=2021-06-08&sr=c&sig=aBBKDWQvyuVcTPH9EBp%2FXTI9E%2F%2Fmq171%2BZU178wcwqU%3D
```

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: ^.+$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
Capacity

The storage capacity of an on-premises storage system resource (for example, a volume).

Contents

ClusterCloudStorageUsed

The amount of space in the cluster that's in cloud storage (for example, if you're using data tiering).

Type: Long

Valid Range: Minimum value of 0.

Required: No

LogicalUsed

The amount of space that's being used in a storage system resource without accounting for compression or deduplication.

Type: Long

Valid Range: Minimum value of 0.

Required: No

Provisioned

The total amount of space available in a storage system resource.

Type: Long

Valid Range: Minimum value of 0.

Required: No

Used

The amount of space that's being used in a storage system resource.

Type: Long

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Credentials

The credentials that provide DataSync Discovery read access to your on-premises storage system's management interface.

DataSync Discovery stores these credentials in [AWS Secrets Manager](https://aws.c.om/secrets-manager). For more information, see [Accessing your on-premises storage system](https://aws.c.com/data-sync/user-guide/accessing-on-premises).

Contents

Password

Specifies the password for your storage system's management interface.

- **Type:** String
- **Length Constraints:** Maximum length of 1024.
- **Pattern:** `^(!.*[:"\][^:"\]]*\$)+$`
- **Required:** Yes

Username

Specifies the user name for your storage system's management interface.

- **Type:** String
- **Length Constraints:** Maximum length of 1024.
- **Pattern:** `^(!.*[:"\][^:"\]]*\$)+$`
- **Required:** Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://aws.c.com/data-sync/user-guide/aws-sdk-cpp)
- [AWS SDK for Go](https://aws.c.com/data-sync/user-guide/aws-sdk-go)
- [AWS SDK for Java V2](https://aws.c.com/data-sync/user-guide/aws-sdk-java-v2)
- [AWS SDK for Ruby V3](https://aws.c.com/data-sync/user-guide/aws-sdk-ruby-v3)
DiscoveryJobListEntry

The details about a specific DataSync discovery job.

Contents

DiscoveryJobArn

The Amazon Resource Name (ARN) of a discovery job.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}\$/

Required: No

Status

The status of a discovery job. For more information, see Discovery job statuses.

Type: String

Valid Values: RUNNING | WARNING | TERMINATED | FAILED | STOPPED | COMPLETED | COMPLETED_WITH_ISSUES

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DiscoveryServerConfiguration

The network settings that DataSync Discovery uses to connect with your on-premises storage system's management interface.

Contents

ServerHostname

The domain name or IP address of your storage system's management interface.

- **Type**: String
- **Length Constraints**: Maximum length of 255.
- **Pattern**: ^((\[[a-zA-Z0-9\-]*\][a-zA-Z0-9\-]*\)\.)*(A-Za-z0-9\-\[]*[A-Za-z0-9\-\[]*$
- **Required**: Yes

ServerPort

The network port for accessing the storage system's management interface.

- **Type**: Integer
- **Valid Range**: Minimum value of 1. Maximum value of 65535.
- **Required**: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://aws.amazon.com/csharp-sdk/)
- [AWS SDK for Go](https://aws.amazon.com/go-sdk/)
- [AWS SDK for Java V2](https://aws.amazon.com/java-sdk/)
- [AWS SDK for Ruby V3](https://aws.amazon.com/ruby-sdk/)
Ec2Config

The subnet and security groups that AWS DataSync uses to access your Amazon EFS file system.

Contents

SecurityGroupArns

Specifies the Amazon Resource Names (ARNs) of the security groups associated with an Amazon EFS file system's mount target.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 5 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws iso|aws iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:security-group/sg-[a-f0-9]+$

Required: Yes

SubnetArn

Specifies the ARN of a subnet where DataSync creates the network interfaces for managing traffic during your transfer.

The subnet must be located:

• In the same virtual private cloud (VPC) as the Amazon EFS file system.
• In the same Availability Zone as at least one mount target for the Amazon EFS file system.

Note

You don't need to specify a subnet that includes a file system mount target.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws iso|aws iso-b):ec2:[a-z\-0-9]*:[0-9]{12}:subnet/.*$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
FilterRule

Specifies which files, folders, and objects to include or exclude when transferring files from source to destination.

Contents

FilterType

The type of filter rule to apply. AWS DataSync only supports the SIMPLE_PATTERN rule type.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^[A-Z0-9_]+$

Valid Values: SIMPLE_PATTERN

Required: No

Value

A single filter string that consists of the patterns to include or exclude. The patterns are delimited by "|" (that is, a pipe), for example: /folder1|/folder2

Type: String

Length Constraints: Maximum length of 102400.

Pattern: ^[^\x00]+$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FsxProtocol

Specifies the data transfer protocol that AWS DataSync uses to access your Amazon FSx file system.

Contents

NFS

Specifies the Network File System (NFS) protocol configuration that DataSync uses to access your FSx for OpenZFS file system or FSx for ONTAP file system's storage virtual machine (SVM).

Type: FsxProtocolNfs (p. 465) object

Required: No

SMB

Specifies the Server Message Block (SMB) protocol configuration that DataSync uses to access your FSx for ONTAP file system's SVM.

Type: FsxProtocolSmb (p. 466) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FsxProtocolNfs

Specifies the Network File System (NFS) protocol configuration that AWS DataSync uses to access your Amazon FSx for OpenZFS or Amazon FSx for NetApp ONTAP file system.

Contents

MountOptions

Specifies how DataSync can access a location using the NFS protocol.

Type: NfsMountOptions (p. 485) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FsxProtocolSmb

Specifies the Server Message Block (SMB) protocol configuration that AWS DataSync uses to access your Amazon FSx for NetApp ONTAP file system. For more information, see Accessing FSx for ONTAP file systems.

Contents

Password

Specifies the password of a user who has permission to access your SVM.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^.{0,104}$

Required: Yes

User

Specifies a user name that can mount the location and access the files, folders, and metadata that you need in the SVM.

If you provide a user in your Active Directory, note the following:

- If you're using AWS Directory Service for Microsoft Active Directory, the user must be a member of the AWS Delegated FSx Administrators group.
- If you're using a self-managed Active Directory, the user must be a member of either the Domain Admins group or a custom group that you specified for file system administration when you created your file system.

Make sure that the user has the permissions it needs to copy the data you want:

- SE_TCB_NAME: Required to set object ownership and file metadata. With this privilege, you also can copy NTFS discretionary access lists (DACLs).
- SE_SECURITY_NAME: May be needed to copy NTFS system access control lists (SACLs). This operation specifically requires the Windows privilege, which is granted to members of the Domain Admins group. If you configure your task to copy SACLs, make sure that the user has the required privileges. For information about copying SACLs, see Ownership and permissions-related options.

Type: String

Length Constraints: Maximum length of 104.

Pattern: ^[^\x5B\x5D\x7B\x7D\x3A\x3D\x3B\x2C\x2F\x5C\x37\x2A\x26\x23\x21\x7F]{1,104}$

Required: Yes

Domain

Specifies the fully qualified domain name (FQDN) of the Microsoft Active Directory that your storage virtual machine (SVM) belongs to.

Type: String

Length Constraints: Maximum length of 253.

Pattern: ^[A-Za-z0-9]{0,252}$

Required: No
MountOptions

Specifies the version of the Server Message Block (SMB) protocol that AWS DataSync uses to access an SMB file server.

Type: SmbMountOptions (p. 508) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
HdfsNameNode

The NameNode of the Hadoop Distributed File System (HDFS). The NameNode manages the file system's namespace. The NameNode performs operations such as opening, closing, and renaming files and directories. The NameNode contains the information to map blocks of data to the DataNodes.

Contents

Hostname

The hostname of the NameNode in the HDFS cluster. This value is the IP address or Domain Name Service (DNS) name of the NameNode. An agent that's installed on-premises uses this hostname to communicate with the NameNode in the network.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: ^((\[a-zA-Z0-9\-]*\[a-zA-Z0-9\])\.)*([A-Za-z0-9\-]*[A-Za-z0-9])$

Required: Yes

Port

The port that the NameNode uses to listen to client requests.

Type: Integer

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
IOPS

The IOPS peaks for an on-premises storage system resource. Each data point represents the 95th percentile peak value during a 1-hour interval.

Contents

Other

Peak IOPS unrelated to read and write operations.
Type: Double
Valid Range: Minimum value of 0.
Required: No

Read

Peak IOPS related to read operations.
Type: Double
Valid Range: Minimum value of 0.
Required: No

Total

Peak total IOPS on your on-premises storage system resource.
Type: Double
Valid Range: Minimum value of 0.
Required: No

Write

Peak IOPS related to write operations.
Type: Double
Valid Range: Minimum value of 0.
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
Latency

The latency peaks for an on-premises storage system resource. Each data point represents the 95th percentile peak value during a 1-hour interval.

Contents

Other

Peak latency for operations unrelated to read and write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

Read

Peak latency for read operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

Write

Peak latency for write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LocationFilter

Narrow down the list of resources returned by ListLocations. For example, to see all your Amazon S3 locations, create a filter using "Name": "LocationType", "Operator": "Equals", and "Values": "S3".

For more information, see filtering resources.

Contents

Name
The name of the filter being used. Each API call supports a list of filters that are available for it (for example, LocationType for ListLocations).

Type: String
Valid Values: LocationUri | LocationType | CreationTime
Required: Yes

Operator
The operator that is used to compare filter values (for example, Equals or Contains).

Type: String
Valid Values: Equals | NotEquals | In | LessThanOrEqual | LessThan | GreaterThanOrEqual | GreaterThan | Contains | NotContains | BeginsWith
Required: Yes

Values
The values that you want to filter for. For example, you might want to display only Amazon S3 locations.

Type: Array of strings
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: ^[0-9a-zA-Z_\-\:*\.\/\?\-*]$*$
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LocationListEntry

Represents a single entry in a list of locations. LocationListEntry returns an array that contains a list of locations when the ListLocations operation is called.

Contents

LocationArn

The Amazon Resource Name (ARN) of the location. For Network File System (NFS) or Amazon EFS, the location is the export path. For Amazon S3, the location is the prefix path that you want to mount and use as the root of the location.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+:[0-9]{12}:location/loc-[0-9a-z]{17}$

Required: No

LocationUri

Represents a list of URIs of a location. LocationUri returns an array that contains a list of locations when the ListLocations operation is called.

Format: TYPE://GLOBAL_ID/SUBDIR.

TYPE designates the type of location (for example, nfs or s3).

GLOBAL_ID is the globally unique identifier of the resource that backs the location. An example for EFS is us-east-2.fs-abcd1234. An example for Amazon S3 is the bucket name, such as myBucket. An example for NFS is a valid IPv4 address or a hostname that is compliant with Domain Name Service (DNS).

SUBDIR is a valid file system path, delimited by forward slashes as is the *nix convention. For NFS and Amazon EFS, it's the export path to mount the location. For Amazon S3, it's the prefix path that you mount to and treat as the root of the location.

Type: String

Length Constraints: Maximum length of 4360.

Pattern: ^(efs|nfs|s3|smb|hdfs|fsx[a-z0-9-]+)://[a-zA-Z0-9.:/-]+$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
MaxP95Performance

The performance data that DataSync Discovery collects about an on-premises storage system resource.

Contents

lOpsOther

Peak IOPS unrelated to read and write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

lOpsRead

Peak IOPS related to read operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

lOpsTotal

Peak total IOPS on your on-premises storage system resource.

Type: Double

Valid Range: Minimum value of 0.

Required: No

lOpsWrite

Peak IOPS related to write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

LatencyOther

Peak latency for operations unrelated to read and write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

LatencyRead

Peak latency for read operations.

Type: Double

Valid Range: Minimum value of 0.
Required: No

LatencyWrite

Peak latency for write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

ThroughputOther

Peak throughput unrelated to read and write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

ThroughputRead

Peak throughput related to read operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

ThroughputTotal

Peak total throughput on your on-premises storage system resource.

Type: Double

Valid Range: Minimum value of 0.

Required: No

ThroughputWrite

Peak throughput related to write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://aws.amazon.com/sdk-for-cpp)
- [AWS SDK for Go](https://aws.amazon.com/sdk-for-go)
- [AWS SDK for Java V2](https://aws.amazon.com/sdk-for-java/2)
- [AWS SDK for Ruby V3](https://aws.amazon.com/sdk-for-ruby/3)
NetAppONTAPCluster

The information that DataSync Discovery collects about an on-premises storage system cluster.

Contents

CifsShareCount

The number of CIFS shares in the cluster.

Type: Long

Valid Range: Minimum value of 0.

Required: No

ClusterBlockStorageLogicalUsed

The storage space that's being used in the cluster without accounting for compression or deduplication.

Type: Long

Valid Range: Minimum value of 0.

Required: No

ClusterBlockStorageSize

The total storage space that's available in the cluster.

Type: Long

Valid Range: Minimum value of 0.

Required: No

ClusterBlockStorageUsed

The storage space that's being used in a cluster.

Type: Long

Valid Range: Minimum value of 0.

Required: No

ClusterCloudStorageUsed

The amount of space in the cluster that's in cloud storage (for example, if you're using data tiering).

Type: Long

Valid Range: Minimum value of 0.

Required: No

ClusterName

The name of the cluster.

Type: String
Length Constraints: Maximum length of 1024.

Pattern: ^.{0,1024}$

Required: No

LunCount

The number of LUNs (logical unit numbers) in the cluster.

Type: Long

Valid Range: Minimum value of 0.

Required: No

MaxP95Performance

The performance data that DataSync Discovery collects about the cluster.

Type: MaxP95Performance (p. 474) object

Required: No

NfsExportedVolumes

The number of NFS volumes in the cluster.

Type: Long

Valid Range: Minimum value of 0.

Required: No

Recommendations

The AWS storage services that DataSync Discovery recommends for the cluster. For more information, see Recommendations provided by DataSync Discovery.

Type: Array of Recommendation (p. 498) objects

Required: No

RecommendationStatus

Indicates whether DataSync Discovery recommendations for the cluster are ready to view, incomplete, or can't be determined.

For more information, see Recommendation statuses.

Type: String

Valid Values: NONE | IN_PROGRESS | COMPLETED | FAILED

Required: No

ResourceId

The universally unique identifier (UUID) of the cluster.

Type: String

Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NetAppONTAPSVVM

The information that DataSync Discovery collects about a storage virtual machine (SVM) in your on-premises storage system.

Contents

CifsShareCount

The number of CIFS shares in the SVM.

Type: Long

Valid Range: Minimum value of 0.

Required: No

ClusterUuid

The universally unique identifier (UUID) of the cluster associated with the SVM.

Type: String

Pattern: `[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}`

Required: No

EnabledProtocols

The data transfer protocols (such as NFS) configured for the SVM.

Type: Array of strings

Length Constraints: Maximum length of 1024.

Pattern: `^.{0,1024}$`

Required: No

LunCount

The number of LUNs (logical unit numbers) in the SVM.

Type: Long

Valid Range: Minimum value of 0.

Required: No

MaxP95Performance

The performance data that DataSync Discovery collects about the SVM.

Type: **MaxP95Performance** ([p. 474](#)) object

Required: No

NfsExportedVolumes

The number of NFS volumes in the SVM.

Type: Long

Valid Range: Minimum value of 0.
Required: No

Recommendations

The AWS storage services that DataSync Discovery recommends for the SVM. For more information, see [Recommendations provided by DataSync Discovery](https://docs.aws.amazon.com/data-sync/latest/user-guide/).

Type: Array of Recommendation (p. 498) objects

Required: No

RecommendationStatus

Indicates whether DataSync Discovery recommendations for the SVM are ready to view, incomplete, or can't be determined.

For more information, see [Recommendation statuses](https://docs.aws.amazon.com/data-sync/latest/user-guide/).

Type: String

Valid Values: NONE | IN_PROGRESS | COMPLETED | FAILED

Required: No

ResourceId

The UUID of the SVM.

Type: String

Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: No

SvmName

The name of the SVM

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^.{0,1024}$

Required: No

TotalCapacityProvisioned

The total storage space that's available in the SVM.

Type: Long

Valid Range: Minimum value of 0.

Required: No

TotalCapacityUsed

The storage space that's being used in the SVM.

Type: Long

Valid Range: Minimum value of 0.

Required: No
TotalLogicalCapacityUsed

The storage space that's being used in the SVM without accounting for compression or deduplication.

Type: Long

Valid Range: Minimum value of 0.

Required: No

TotalSnapshotCapacityUsed

The amount of storage in the SVM that's being used for snapshots.

Type: Long

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
NetAppONTAPVolume

The information that DataSync Discovery collects about a volume in your on-premises storage system.

Contents

CapacityProvisioned

The total storage space that's available in the volume.
Type: Long
Valid Range: Minimum value of 0.
Required: No

CapacityUsed

The storage space that's being used in the volume.
Type: Long
Valid Range: Minimum value of 0.
Required: No

CifsShareCount

The number of CIFS shares in the volume.
Type: Long
Valid Range: Minimum value of 0.
Required: No

LogicalCapacityUsed

The storage space that's being used in the volume without accounting for compression or deduplication.
Type: Long
Valid Range: Minimum value of 0.
Required: No

LunCount

The number of LUNs (logical unit numbers) in the volume.
Type: Long
Valid Range: Minimum value of 0.
Required: No

MaxP95Performance

The performance data that DataSync Discovery collects about the volume.
Type: MaxP95Performance (p. 474) object
Required: No
NfsExported

The number of NFS volumes in the volume.

Type: Boolean

Required: No

Recommendations

The AWS storage services that DataSync Discovery recommends for the volume. For more information, see [Recommendations provided by DataSync Discovery](#).

Type: Array of [Recommendation](#) objects

Required: No

RecommendationStatus

Indicates whether DataSync Discovery recommendations for the volume are ready to view, incomplete, or can't be determined.

For more information, see [Recommendation statuses](#).

Type: String

Valid Values: NONE | IN_PROGRESS | COMPLETED | FAILED

Required: No

ResourceId

The universally unique identifier (UUID) of the volume.

Type: String

Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: No

SecurityStyle

The volume's security style (such as Unix or NTFS).

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^.{0,1024}$

Required: No

SnapshotCapacityUsed

The amount of storage in the volume that's being used for snapshots.

Type: Long

Valid Range: Minimum value of 0.

Required: No

SvmName

The name of the SVM associated with the volume.

Type: String
Length Constraints: Maximum length of 1024.
Pattern: ^.{0,1024}$
Required: No

SvmUuid

The UUID of the storage virtual machine (SVM) associated with the volume.
Type: String
Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}
Required: No

VolumeName

The name of the volume.
Type: String
Length Constraints: Maximum length of 1024.
Pattern: ^.{0,1024}$
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NfsMountOptions

Specifies how DataSync can access a location using the NFS protocol.

Contents

Version

Specifies the NFS version that you want DataSync to use when mounting your NFS share. If the server refuses to use the version specified, the task fails.

You can specify the following options:

- **AUTOMATIC** (default): DataSync chooses NFS version 4.1.
- **NFS3**: Stateless protocol version that allows for asynchronous writes on the server.
- **NFSv4_0**: Stateful, firewall-friendly protocol version that supports delegations and pseudo file systems.
- **NFSv4_1**: Stateful protocol version that supports sessions, directory delegations, and parallel data processing. NFS version 4.1 also includes all features available in version 4.0.

Note
DataSync currently only supports NFS version 3 with Amazon FSx for NetApp ONTAP locations.

Type: String

Valid Values: AUTOMATIC | NFS3 | NFSv4_0 | NFSv4_1

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
OnPremConfig

The AWS DataSync agents that are connecting to a Network File System (NFS) location.

Contents

AgentArns

The Amazon Resource Names (ARNs) of the agents connecting to a transfer location.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4 items.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync: [a-z\-0-9]+: [0-9]{12}:agent/agent-[0-9a-z]{17}$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Options

Indicates how your transfer task is configured. These options include how DataSync handles files, objects, and their associated metadata during your transfer. You also can specify how to verify data integrity, set bandwidth limits for your task, among other options.

Each option has a default value. Unless you need to, you don't have to configure any of these options before starting your task.

Contents

Atime

Specifies whether to preserve metadata indicating the last time a file was read or written to. If you set Atime to BEST_EFFORT, DataSync attempts to preserve the original Atime attribute on all source files (that is, the version before the PREPARING phase of the task execution).

Note

The behavior of Atime isn't fully standard across platforms, so DataSync can only do this on a best-effort basis.

Default value: BEST_EFFORT

BEST_EFFORT: Attempt to preserve the per-file Atime value (recommended).

NONE: Ignore Atime.

Note

If Atime is set to BEST_EFFORT, Mtime must be set to PRESERVE.
If Atime is set to NONE, Mtime must also be NONE.

Type: String

Valid Values: NONE | BEST_EFFORT

Required: No

BytesPerSecond

Limits the bandwidth used by a DataSync task. For example, if you want DataSync to use a maximum of 1 MB, set this value to 1048576 (=1024*1024).

Type: Long

Valid Range: Minimum value of -1.

Required: No

Gid

Specifies the POSIX group ID (GID) of the file's owners.

For more information, see Metadata copied by DataSync.

Default value: INT_VALUE. This preserves the integer value of the ID.

INT_VALUE: Preserve the integer value of user ID (UID) and GID (recommended).

NONE: Ignore UID and GID.

Type: String
Options

Valid Values: NONE | INT_VALUE | NAME | BOTH

Required: No

LogLevel

Specifies the type of logs that DataSync publishes to a Amazon CloudWatch Logs log group. To specify the log group, see [CloudWatchLogGroupArn](#).

If you set LogLevel to OFF, no logs are published. BASIC publishes logs on errors for individual files transferred. TRANSFER publishes logs for every file or object that is transferred and integrity checked.

Type: String

Valid Values: OFF | BASIC | TRANSFER

Required: No

Mtime

Specifies whether to preserve metadata indicating the last time that a file was written to before the PREPARING phase of your task execution. This option is required when you need to run the a task more than once.

Default Value: PRESERVE

PRESERVE: Preserve original Mtime (recommended)

NONE: Ignore Mtime.

Note

If Mtime is set to PRESERVE, Atime must be set to BEST_EFFORT.
If Mtime is set to NONE, Atime must also be set to NONE.

Type: String

Valid Values: NONE | PRESERVE

Required: No

ObjectTags

Specifies whether object tags are preserved when transferring between object storage systems. If you want your DataSync task to ignore object tags, specify the NONE value.

Default Value: PRESERVE

Type: String

Valid Values: PRESERVE | NONE

Required: No

OverwriteMode

Specifies whether data at the destination location should be overwritten or preserved. If set to NEVER, a destination file for example will not be replaced by a source file (even if the destination file differs from the source file). If you modify files in the destination and you sync the files, you can use this value to protect against overwriting those changes.

Some storage classes have specific behaviors that can affect your Amazon S3 storage cost. For detailed information, see [Considerations when working with Amazon S3 storage classes in DataSync](#).
Type: String
Valid Values: ALWAYS | NEVER
Required: No

PosixPermissions

Specifies which users or groups can access a file for a specific purpose such as reading, writing, or execution of the file.

For more information, see [Metadata copied by DataSync](#).

Default value: PRESERVE

PRESERVE: Preserve POSIX-style permissions (recommended).

NONE: Ignore permissions.

Note

AWS DataSync can preserve extant permissions of a source location.

Type: String
Valid Values: NONE | PRESERVE
Required: No

PreserveDeletedFiles

Specifies whether files in the destination location that don't exist in the source should be preserved. This option can affect your Amazon S3 storage cost. If your task deletes objects, you might incur minimum storage duration charges for certain storage classes. For detailed information, see [Considerations when working with Amazon S3 storage classes in DataSync](#).

Default value: PRESERVE

PRESERVE: Ignore such destination files (recommended).

REMOVE: Delete destination files that aren't present in the source.

Note

If you set this parameter to REMOVE, you can't set TransferMode to ALL. When you transfer all data, DataSync doesn't scan your destination location and doesn't know what to delete.

Type: String
Valid Values: PRESERVE | REMOVE
Required: No

PreserveDevices

Specifies whether DataSync should preserve the metadata of block and character devices in the source location and recreate the files with that device name and metadata on the destination. DataSync copies only the name and metadata of such devices.

Note

DataSync can't copy the actual contents of these devices because they're nonterminal and don't return an end-of-file (EOF) marker.

Default value: NONE
NONE: Ignore special devices (recommended).

PRESERVE: Preserve character and block device metadata. This option currently isn't supported for Amazon EFS.

Type: String

Valid Values: NONE | PRESERVE

Required: No

SecurityDescriptorCopyFlags

Specifies which components of the SMB security descriptor are copied from source to destination objects.

This value is only used for transfers between SMB and Amazon FSx for Windows File Server locations or between two FSx for Windows File Server locations. For more information, see how DataSync handles metadata.

Default value: OWNER_DACL

OWNER_DACL: For each copied object, DataSync copies the following metadata:
- The object owner.
- NTFS discretionary access control lists (DACLs), which determine whether to grant access to an object.

DataSync won’t copy NTFS system access control lists (SACLs) with this option.

OWNER_DACL_SACL: For each copied object, DataSync copies the following metadata:
- The object owner.
- NTFS discretionary access control lists (DACLs), which determine whether to grant access to an object.
- SACLs, which are used by administrators to log attempts to access a secured object.

Copying SACLs requires granting additional permissions to the Windows user that DataSync uses to access your SMB location. For information about choosing a user that ensures sufficient permissions to files, folders, and metadata, see [user](#).

NONE: None of the SMB security descriptor components are copied. Destination objects are owned by the user that was provided for accessing the destination location. DACLs and SACLs are set based on the destination server’s configuration.

Type: String

Valid Values: NONE | OWNER_DACL | OWNER_DACL_SACL

Required: No

TaskQueueing

Specifies whether your transfer tasks should be put into a queue during certain scenarios when running multiple tasks. This is ENABLED by default.

Type: String

Valid Values: ENABLED | DISABLED

Required: No
TransferMode

Determines whether DataSync transfers only the data and metadata that differ between the source and the destination location or transfers all the content from the source (without comparing what's in the destination).

CHANGED: DataSync copies only data or metadata that is new or different content from the source location to the destination location.

ALL: DataSync copies all source location content to the destination (without comparing what's in the destination).

Type: String

Valid Values: CHANGED | ALL

Required: No

Uid

Specifies the POSIX user ID (UID) of the file's owner.

For more information, see Metadata copied by DataSync.

Default value: INT_VALUE. This preserves the integer value of the ID.

INT_VALUE: Preserve the integer value of UID and group ID (GID) (recommended).

NONE: Ignore UID and GID.

Type: String

Valid Values: NONE | INT_VALUE | NAME | BOTH

Required: No

VerifyMode

Specifies how and when DataSync checks the integrity of your data during a transfer.

Default value: POINT_IN_TIME_CONSISTENT

ONLY_FILES_TRANSFERRED (recommended): DataSync calculates the checksum of transferred files and metadata at the source location. At the end of the transfer, DataSync then compares this checksum to the checksum calculated on those files at the destination.

We recommend this option when transferring to S3 Glacier Flexible Retrieval or S3 Glacier Deep Archive storage classes. For more information, see Storage class considerations with Amazon S3 locations.

POINT_IN_TIME_CONSISTENT: At the end of the transfer, DataSync scans the entire source and destination to verify that both locations are fully synchronized.

You can't use this option when transferring to S3 Glacier Flexible Retrieval or S3 Glacier Deep Archive storage classes. For more information, see Storage class considerations with Amazon S3 locations.

NONE: DataSync doesn't run additional verification at the end of the transfer. All data transmissions are still integrity-checked with checksum verification during the transfer.

Type: String

Valid Values: POINT_IN_TIME_CONSISTENT | ONLY_FILES_TRANSFERRED | NONE
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
P95Metrics

The types of performance data that DataSync Discovery collects about an on-premises storage system resource.

Contents

IOPS

The IOPS peaks for an on-premises storage system resource. Each data point represents the 95th percentile peak value during a 1-hour interval.

Type: IOPS (p. 469) object

Required: No

Latency

The latency peaks for an on-premises storage system resource. Each data point represents the 95th percentile peak value during a 1-hour interval.

Type: Latency (p. 470) object

Required: No

Throughput

The throughput peaks for an on-premises storage system resource. Each data point represents the 95th percentile peak value during a 1-hour interval.

Type: Throughput (p. 519) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Platform

The platform-related details about the AWS DataSync agent, such as the version number.

Contents

Version

The version of the DataSync agent.

Important

Beginning December 7, 2023, we will discontinue version 1 DataSync agents. Check the DataSync console to see if you have affected agents. If you do, replace those agents before then to avoid data transfer or storage discovery disruptions. If you need more help, contact AWS Support.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PrivateLinkConfig

Specifies how your AWS DataSync agent connects to AWS using a virtual private cloud (VPC) service endpoint. An agent that uses a VPC endpoint isn't accessible over the public internet.

Contents

PrivateLinkEndpoint

Specifies the VPC endpoint provided by AWS PrivateLink that your agent connects to.

Type: String

Pattern: ^\A(25[0-5]|2[0-4]\d|1\d?\d|0\d|0)\.(25[0-5]|2[0-4]\d|1\d?\d|0\d|0)\.(25[0-5]|2[0-4]\d|1\d?\d|0\d|0)\.(25[0-5]|2[0-4]\d|1\d?\d|0\d|0)$

Required: No

SecurityGroupArns

Specifies the Amazon Resource Names (ARN) of the security group that provides DataSync access to your VPC endpoint. You can only specify one ARN.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:0-9]{12}:security-group/sg-[a-f0-9]+$

Required: No

SubnetArns

Specifies the ARN of the subnet where your VPC endpoint is located. You can only specify one ARN.

Type: Array of strings

Array Members: Fixed number of 1 item.

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):ec2:[a-z\-0-9]*:0-9]{12}:subnet/.*$

Required: No

VpcEndpointId

Specifies the ID of the VPC endpoint that your agent connects to.

Type: String

Pattern: ^vpce-[0-9a-f]{17}$

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
QopConfiguration

The Quality of Protection (QOP) configuration specifies the Remote Procedure Call (RPC) and data transfer privacy settings configured on the Hadoop Distributed File System (HDFS) cluster.

Contents

DataTransferProtection

The data transfer protection setting configured on the HDFS cluster. This setting corresponds to your dfs.data.transfer.protection setting in the hdfs-site.xml file on your Hadoop cluster.

Type: String

Valid Values: DISABLED | AUTHENTICATION | INTEGRITY | PRIVACY

Required: No

RpcProtection

The RPC protection setting configured on the HDFS cluster. This setting corresponds to your hadoop.rpc.protection setting in your core-site.xml file on your Hadoop cluster.

Type: String

Valid Values: DISABLED | AUTHENTICATION | INTEGRITY | PRIVACY

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Recommendation

The details about an AWS storage service that DataSync Discovery recommends for a resource in your on-premises storage system.

For more information, see Recommendations provided by DataSync Discovery.

Contents

EstimatedMonthlyStorageCost

The estimated monthly cost of the recommended AWS storage service.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^.{0,1024}$

Required: No

StorageConfiguration

Information about how you can set up a recommended AWS storage service.

Type: String to string map

Key Length Constraints: Maximum length of 1024.

Key Pattern: ^.{0,1024}$

Value Length Constraints: Maximum length of 1024.

Value Pattern: ^.{0,1024}$

Required: No

StorageType

A recommended AWS storage service that you can migrate data to based on information that DataSync Discovery collects about your on-premises storage system.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: ^.{0,1024}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ReportDestination

Specifies where DataSync uploads your task report.

Contents

S3

- Specifies the Amazon S3 bucket where DataSync uploads your task report.

 Type: ReportDestinationS3 (p. 500) object

 Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ReportDestinationS3

Specifies the Amazon S3 bucket where DataSync uploads your task report.

Contents

BucketAccessRoleArn

Specifies the Amazon Resource Name (ARN) of the IAM policy that allows DataSync to upload a task report to your S3 bucket. For more information, see [Allowing DataSync to upload a task report to an Amazon S3 bucket](#).

Type: String

Length Constraints: Maximum length of 2048.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws.iso|aws.iso-b):iam::[0-9]{12}:role/.*$

Required: Yes

S3BucketArn

Specifies the ARN of the S3 bucket where DataSync uploads your report.

Type: String

Length Constraints: Maximum length of 156.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws.iso|aws.iso-b):(s3|s3-outposts):[a-z\-0-9]*:[0-9]*:.*$

Required: Yes

Subdirectory

Specifies a bucket prefix for your report.

Type: String

Length Constraints: Maximum length of 4096.

Pattern: ^[a-zA-Z0-9-_\-\+\./\(\)\p{Zs}]*$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
ReportOverride

Specifies the level of detail for a particular aspect of your DataSync task report.

Contents

ReportLevel

Specifies whether your task report includes errors only or successes and errors.

For example, your report might mostly include only what didn't go well in your transfer (ERRORS_ONLY). At the same time, you want to verify that your task filter is working correctly. In this situation, you can get a list of what files DataSync successfully skipped and if something transferred that you didn't to transfer (SUCCESSES_AND_ERRORS).

Type: String

Valid Values: ERRORS_ONLY | SUCCESSES_AND_ERRORS

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ReportOverrides

The level of detail included in each aspect of your DataSync task report.

Contents

Deleted

Specifies the level of reporting for the files, objects, and directories that DataSync attempted to delete in your destination location. This only applies if you configure your task to delete data in the destination that isn't in the source.

Type: ReportOverride (p. 501) object

Required: No

Skipped

Specifies the level of reporting for the files, objects, and directories that DataSync attempted to skip during your transfer.

Type: ReportOverride (p. 501) object

Required: No

Transferred

Specifies the level of reporting for the files, objects, and directories that DataSync attempted to transfer.

Type: ReportOverride (p. 501) object

Required: No

Verified

Specifies the level of reporting for the files, objects, and directories that DataSync attempted to verify at the end of your transfer.

Type: ReportOverride (p. 501) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ReportResult

Indicates whether DataSync created a complete task report for your transfer.

Contents

ErrorCode

Indicates the code associated with the error if DataSync can't create a complete report.

Type: String
Required: No

ErrorDetail

Provides details about issues creating a report.

Type: String
Required: No

Status

Indicates whether DataSync is still working on your report, created a report, or can't create a complete report.

Type: String
Valid Values: PENDING | SUCCESS | ERROR
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
ResourceDetails

Information provided by DataSync Discovery about the resources in your on-premises storage system.

Contents

NetAppONTAPClusters

The information that DataSync Discovery collects about the cluster in your on-premises storage system.

Type: Array of NetAppONTAPCluster (p. 476) objects

Required: No

NetAppONTAPSVMs

The information that DataSync Discovery collects about storage virtual machines (SVMs) in your on-premises storage system.

Type: Array of NetAppONTAPSVM (p. 479) objects

Required: No

NetAppONTAPVolumes

The information that DataSync Discovery collects about volumes in your on-premises storage system.

Type: Array of NetAppONTAPVolume (p. 482) objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ResourceMetrics

Information, including performance data and capacity usage, provided by DataSync Discovery about a resource in your on-premises storage system.

Contents

Capacity

The storage capacity of the on-premises storage system resource.

Type: Capacity (p. 458) object

Required: No

P95Metrics

The types of performance data that DataSync Discovery collects about the on-premises storage system resource.

Type: P95Metrics (p. 493) object

Required: No

ResourceId

The universally unique identifier (UUID) of the on-premises storage system resource.

Type: String

Pattern: [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Required: No

ResourceType

The type of on-premises storage system resource.

Type: String

Valid Values: SVM | VOLUME | CLUSTER

Required: No

Timestamp

The time when DataSync Discovery collected this information from the resource.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
S3Config

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role used to access an Amazon S3 bucket.

For detailed information about using such a role, see Creating a Location for Amazon S3 in the AWS DataSync User Guide.

Contents

BucketAccessRoleArn

The ARN of the IAM role for accessing the S3 bucket.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):iam::[0-9]{12}:role/.*$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
SmbMountOptions

Specifies the version of the Server Message Block (SMB) protocol that AWS DataSync uses to access an SMB file server.

Contents

Version

By default, DataSync automatically chooses an SMB protocol version based on negotiation with your SMB file server. You also can configure DataSync to use a specific SMB version, but we recommend doing this only if DataSync has trouble negotiating with the SMB file server automatically.

These are the following options for configuring the SMB version:

• AUTOMATIC (default): DataSync and the SMB file server negotiate the highest version of SMB that they mutually support between 2.1 and 3.1.1.

 This is the recommended option. If you instead choose a specific version that your file server doesn't support, you may get an Operation Not Supported error.

• SMB3: Restricts the protocol negotiation to only SMB version 3.0.2.

• SMB2: Restricts the protocol negotiation to only SMB version 2.1.

• SMB2_0: Restricts the protocol negotiation to only SMB version 2.0.

• SMB1: Restricts the protocol negotiation to only SMB version 1.0.

 Note

 The SMB1 option isn't available when creating an Amazon FSx for NetApp ONTAP location.

Type: String

Valid Values: AUTOMATIC | SMB2 | SMB3 | SMB1 | SMB2_0

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
StorageSystemListEntry

Information that identifies an on-premises storage system that you're using with DataSync Discovery.

Contents

Name

The name of an on-premises storage system that you added to DataSync Discovery.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^\[\p{L}\p{M}\p{N}\s+=._:@/\-]+$

Required: No

StorageSystemArn

The Amazon Resource Names (ARN) of an on-premises storage system that you added to DataSync Discovery.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]+: [0-9]{12}:system/storage-system-[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TagListEntry

A key-value pair representing a single tag that's been applied to an AWS resource.

Contents

Key

The key for an AWS resource tag.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:/-]+$

Required: Yes

Value

The value for an AWS resource tag.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskExecutionListEntry

Represents a single entry in a list of task executions. TaskExecutionListEntry returns an array that contains a list of specific invocations of a task when the ListTaskExecutions operation is called.

Contents

Status

The status of a task execution.

Type: String

Valid Values: QUEUED | LAUNCHING | PREPARING | TRANSFERRING | VERIFYING | SUCCESS | ERROR

Required: No

TaskExecutionArn

The Amazon Resource Name (ARN) of the task that was executed.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z\-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}/execution/exec-[0-9a-f]{17}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskExecutionResultDetail

Describes the detailed result of a TaskExecution operation. This result includes the time in milliseconds spent in each phase, the status of the task execution, and the errors encountered.

Contents

ErrorCode

Errors that AWS DataSync encountered during execution of the task. You can use this error code to help troubleshoot issues.

Type: String

Required: No

ErrorDetail

Detailed description of an error that was encountered during the task execution. You can use this information to help troubleshoot issues.

Type: String

Required: No

PrepareDuration

The total time in milliseconds that AWS DataSync spent in the PREPARING phase.

Type: Long

Valid Range: Minimum value of 0.

Required: No

PrepareStatus

The status of the PREPARING phase.

Type: String

Valid Values: PENDING | SUCCESS | ERROR

Required: No

TotalDuration

The total time in milliseconds that AWS DataSync took to transfer the file from the source to the destination location.

Type: Long

Valid Range: Minimum value of 0.

Required: No

TransferDuration

The total time in milliseconds that AWS DataSync spent in the TRANSFERRING phase.

Type: Long

Valid Range: Minimum value of 0.
TransferStatus

The status of the TRANSFERRING phase.

Type: String

Valid Values: PENDING | SUCCESS | ERROR

Required: No

VerifyDuration

The total time in milliseconds that AWS DataSync spent in the VERIFYING phase.

Type: Long

Valid Range: Minimum value of 0.

Required: No

VerifyStatus

The status of the VERIFYING phase.

Type: String

Valid Values: PENDING | SUCCESS | ERROR

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
TaskFilter

You can use API filters to narrow down the list of resources returned by ListTasks. For example, to retrieve all tasks on a source location, you can use ListTasks with filter name LocationId and Operator Equals with the ARN for the location.

For more information, see filtering DataSync resources.

Contents

Name

The name of the filter being used. Each API call supports a list of filters that are available for it. For example, LocationId for ListTasks.

Type: String

Valid Values: LocationId | CreationTime

Required: Yes

Operator

The operator that is used to compare filter values (for example, Equals or Contains).

Type: String

Valid Values: Equals | NotEquals | In | LessThanOrEqual | LessThan | GreaterThanOrEqual | GreaterThan | Contains | NotContains | BeginsWith

Required: Yes

Values

The values that you want to filter for. For example, you might want to display only tasks for a specific destination location.

Type: Array of strings

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: ^[0-9a-zA-Z_\-\:*\./\\\?-]*$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskListEntry

Represents a single entry in a list of tasks. TaskListEntry returns an array that contains a list of tasks when the ListTasks operation is called. A task includes the source and destination file systems to sync and the options to use for the tasks.

Contents

Name

The name of the task.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: ^[a-zA-Z0-9\s+=._:@/-]+$

Required: No

Status

The status of the task.

Type: String

Valid Values: AVAILABLE | CREATING | QUEUED | RUNNING | UNAVAILABLE

Required: No

TaskArn

The Amazon Resource Name (ARN) of the task.

Type: String

Length Constraints: Maximum length of 128.

Pattern: ^arn:(aws|aws-cn|aws-us-gov|aws-iso|aws-iso-b):datasync:[a-z-0-9]*:[0-9]{12}:task/task-[0-9a-f]{17}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskReportConfig

Specifies how you want to configure a task report, which provides detailed information about for your AWS DataSync transfer.

For more information, see Task reports.

Contents

Destination

Specifies the Amazon S3 bucket where DataSync uploads your task report. For more information, see Task reports.

Type: ReportDestination (p. 499) object

Required: No

ObjectVersionIds

Specifies whether your task report includes the new version of each object transferred into an S3 bucket. This only applies if you enable versioning on your bucket. Keep in mind that setting this to INCLUDE can increase the duration of your task execution.

Type: String

Valid Values: INCLUDE | NONE

Required: No

OutputType

Specifies the type of task report that you want:

• SUMMARY_ONLY: Provides necessary details about your task, including the number of files, objects, and directories transferred and transfer duration.

• STANDARD: Provides complete details about your task, including a full list of files, objects, and directories that were transferred, skipped, verified, and more.

Type: String

Valid Values: SUMMARY_ONLY | STANDARD

Required: No

Overrides

Customizes the reporting level for aspects of your task report. For example, your report might generally only include errors, but you could specify that you want a list of successes and errors just for the files that DataSync attempted to delete in your destination location.

Type: ReportOverrides (p. 502) object

Required: No

ReportLevel

Specifies whether you want your task report to include only what went wrong with your transfer or a list of what succeeded and didn't.

• ERRORS_ONLY: A report shows what DataSync was unable to transfer, skip, verify, and delete.

• SUCCESSES_AND_ERRORS: A report shows what DataSync was able and unable to transfer, skip, verify, and delete.
Type: String

Valid Values: ERRORS_ONLY | SUCCESSES_AND_ERRORS

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://aws.amazon.com/csharp-sdk/)
- [AWS SDK for Go](https://aws.amazon.com/go-sdk/)
- [AWS SDK for Java V2](https://aws.amazon.com/java-sdk/)
- [AWS SDK for Ruby V3](https://aws.amazon.com/ruby-sdk/)
TaskSchedule

Specifies the schedule you want your task to use for repeated executions. For more information, see Schedule Expressions for Rules.

Contents

ScheduleExpression

A cron expression that specifies when AWS DataSync initiates a scheduled transfer from a source to a destination location.

Type: String

Length Constraints: Maximum length of 256.

Pattern: ^[a-zA-Z0-9\-_*\?\,,\|\-\/#\s\(\)\+]*$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Throughput

The throughput peaks for an on-premises storage system volume. Each data point represents the 95th percentile peak value during a 1-hour interval.

Contents

Other

Peak throughput unrelated to read and write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

Read

Peak throughput related to read operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

Total

Peak total throughput on your on-premises storage system resource.

Type: Double

Valid Range: Minimum value of 0.

Required: No

Write

Peak throughput related to write operations.

Type: Double

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3

Common Errors

This section lists the errors common to the API actions of all AWS services. For errors specific to an API action for this service, see the topic for that API action.
AccessDeniedException
You do not have sufficient access to perform this action.
HTTP Status Code: 400

IncompleteSignature
The request signature does not conform to AWS standards.
HTTP Status Code: 400

InternalFailure
The request processing has failed because of an unknown error, exception or failure.
HTTP Status Code: 500

InvalidAction
The action or operation requested is invalid. Verify that the action is typed correctly.
HTTP Status Code: 400

InvalidClientTokenId
The X.509 certificate or AWS access key ID provided does not exist in our records.
HTTP Status Code: 403

Unauthorized
You do not have permission to perform this action.
HTTP Status Code: 400

OptInRequired
The AWS access key ID needs a subscription for the service.
HTTP Status Code: 403

RequestExpired
The request reached the service more than 15 minutes after the date stamp on the request or more than 15 minutes after the request expiration date (such as for pre-signed URLs), or the date stamp on the request is more than 15 minutes in the future.
HTTP Status Code: 400

ServiceUnavailable
The request has failed due to a temporary failure of the server.
HTTP Status Code: 503

ThrottlingException
The request was denied due to request throttling.
HTTP Status Code: 400

ValidationError
The input fails to satisfy the constraints specified by an AWS service.
HTTP Status Code: 400
Common Parameters

The following list contains the parameters that all actions use for signing Signature Version 4 requests with a query string. Any action-specific parameters are listed in the topic for that action. For more information about Signature Version 4, see Signing AWS API requests in the IAM User Guide.

Action

- The action to be performed.
 - Type: string
 - Required: Yes

Version

- The API version that the request is written for, expressed in the format YYYY-MM-DD.
 - Type: string
 - Required: Yes

X-Amz-Algorithm

- The hash algorithm that you used to create the request signature.
 - Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.
 - Type: string
 - Valid Values: AWS4-HMAC-SHA256
 - Required: Conditional

X-Amz-Credential

- The credential scope value, which is a string that includes your access key, the date, the region you are targeting, the service you are requesting, and a termination string ("aws4_request"). The value is expressed in the following format: access_key/YYYYMMDD/region/service/aws4_request.
 - Condition: X-Amz-Date is optional for all requests; it can be used to override the date used for signing requests. If the Date header is specified in the ISO 8601 basic format, X-Amz-Date is not required. When X-Amz-Date is used, it always overrides the value of the Date header. For more information, see Elements of an AWS API request signature in the IAM User Guide.
 - Type: string
 - Required: Conditional

X-Amz-Date

- The date that is used to create the signature. The format must be ISO 8601 basic format (YYYYMMDD'T'HHMMSS'Z'). For example, the following date time is a valid X-Amz-Date value: 20120325T120000Z.
 - Condition: X-Amz-Date is optional for all requests; it can be used to override the date used for signing requests. If the Date header is specified in the ISO 8601 basic format, X-Amz-Date is not required. When X-Amz-Date is used, it always overrides the value of the Date header. For more information, see Elements of an AWS API request signature in the IAM User Guide.
 - Type: string
 - Required: Conditional
Required: Conditional

X-Amz-Security-Token

The temporary security token that was obtained through a call to AWS Security Token Service (AWS STS). For a list of services that support temporary security credentials from AWS STS, see AWS services that work with IAM in the IAM User Guide.

Condition: If you’re using temporary security credentials from AWS STS, you must include the security token.

Type: string

Required: Conditional

X-Amz-Signature

Specifies the hex-encoded signature that was calculated from the string to sign and the derived signing key.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

Type: string

Required: Conditional

X-Amz-SignedHeaders

Specifies all the HTTP headers that were included as part of the canonical request. For more information about specifying signed headers, see Create a signed AWS API request in the IAM User Guide.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

Type: string

Required: Conditional
Document history

The following table describes important additions to the AWS DataSync documentation. We also update the documentation frequently to address feedback that you send us.

To get notified about updates to this documentation, subscribe to the RSS feed.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for transfers with additional cloud providers</td>
<td>AWS DataSync can now transfer data between AWS storage services and IBM Cloud Object Storage or Seagate Lyve Cloud.</td>
<td>November 7, 2023</td>
</tr>
<tr>
<td>Support for transfers with Alibaba Cloud Object Storage Service</td>
<td>AWS DataSync can now transfer data between AWS storage services and Alibaba Cloud Object Storage Service.</td>
<td>September 25, 2023</td>
</tr>
<tr>
<td>Support for task reports</td>
<td>Monitor your AWS DataSync transfers with task reports.</td>
<td>August 30, 2023</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available for data transfers in the Israel (Tel Aviv) Region.</td>
<td>August 23, 2023</td>
</tr>
<tr>
<td>Support for transfers with additional cloud providers</td>
<td>AWS DataSync can now transfer data between AWS storage services and several other cloud providers (such as Wasabi Cloud Storage, DigitalOcean Spaces, and Oracle Cloud Infrastructure Object Storage).</td>
<td>August 8, 2023</td>
</tr>
<tr>
<td>General availability of Microsoft Azure Blob Storage support</td>
<td>AWS DataSync can now transfer objects to and from Microsoft Azure Blob Storage.</td>
<td>July 25, 2023</td>
</tr>
<tr>
<td>TLS 1.3 support</td>
<td>When transferring between storage locations, AWS DataSync now encrypts all network traffic with Transport Layer Security (TLS) 1.3.</td>
<td>June 28, 2023</td>
</tr>
<tr>
<td>New DataSync Discovery metrics</td>
<td>AWS DataSync Discovery can now tell you how many LUNs (logical unit numbers) are in a storage resource cluster, storage virtual machine (SVM), or volume.</td>
<td>June 28, 2023</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available for data transfers in the Asia Pacific (Melbourne) Region.</td>
<td>May 24, 2023</td>
</tr>
<tr>
<td>Support for with S3 compatible storage on Snowball Edge</td>
<td>You can use AWS DataSync to transfer data between Amazon</td>
<td>May 18, 2023</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>AWS managed policy updates</td>
<td>Update to an existing policy: The <code>AWSDataSyncFullAccess</code> policy has new permissions for services that work with DataSync.</td>
<td>May 2, 2023</td>
</tr>
<tr>
<td>General availability of AWS DataSync Discovery</td>
<td>Use DataSync Discovery to help accelerate your migration to AWS.</td>
<td>April 25, 2023</td>
</tr>
<tr>
<td>Public preview release of Microsoft Azure Blob Storage support</td>
<td>AWS DataSync can now transfer objects from Microsoft Azure Blob Storage.</td>
<td>March 29, 2023</td>
</tr>
<tr>
<td>New IAM policy</td>
<td>To support the DataSync Discovery feature, DataSync uses the service-linked role named <code>AWSServiceRoleForDataSyncDiscovery</code>.</td>
<td>March 21, 2023</td>
</tr>
<tr>
<td>New AWS Regions</td>
<td>AWS DataSync is now available in the following AWS Regions: Asia Pacific (Hyderabad), Europe (Spain), and Europe (Zurich).</td>
<td>February 6, 2023</td>
</tr>
<tr>
<td>Using tags in task executions</td>
<td>You can now tag your AWS DataSync task executions.</td>
<td>December 16, 2022</td>
</tr>
<tr>
<td>Support for S3 Glacier Instant Retrieval</td>
<td>You can now transfer objects directly into the S3 Glacier Instant Retrieval storage class.</td>
<td>December 16, 2022</td>
</tr>
<tr>
<td>Copying object system metadata</td>
<td>AWS DataSync can now copy system metadata when transferring between an object storage system and Amazon S3.</td>
<td>December 16, 2022</td>
</tr>
<tr>
<td>New AWS Regions</td>
<td>AWS DataSync is now available in the China (Beijing) and China (Ningxia) Regions.</td>
<td>December 14, 2022</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Middle East (UAE) Region.</td>
<td>November 16, 2022</td>
</tr>
<tr>
<td>Support for self-signed certificates with object storage locations</td>
<td>AWS DataSync can connect to object storage locations that use self-signed or private certificates.</td>
<td>October 25, 2022</td>
</tr>
<tr>
<td>Get data compression information</td>
<td>AWS DataSync can provide the physical number of bytes transferred over the network after compression was applied.</td>
<td>October 25, 2022</td>
</tr>
<tr>
<td>Public preview release of AWS DataSync Discovery</td>
<td>Use DataSync Discovery to help accelerate your migration to AWS.</td>
<td>September 21, 2022</td>
</tr>
<tr>
<td>New feature</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>New option for migrating data to or from Google Cloud Storage</td>
<td>You can transfer data to or from Google Cloud Storage by deploying an AWS DataSync agent in Google Cloud.</td>
<td>July 21, 2022</td>
</tr>
<tr>
<td>Support for Amazon FSx for NetApp ONTAP file systems</td>
<td>AWS DataSync can now transfer files and folders to and from FSx for ONTAP file systems.</td>
<td>June 28, 2022</td>
</tr>
<tr>
<td>New security options for Amazon EFS locations</td>
<td>AWS DataSync can access Amazon EFS file systems using TLS, access points, and IAM roles.</td>
<td>May 31, 2022</td>
</tr>
<tr>
<td>Migrating data to or from Google Cloud Storage and Azure Files (p. 523)</td>
<td>With AWS DataSync, you can transfer data to or from Google Cloud Storage and Azure Files. For more information, see Creating a location for object storage and Creating a location for SMB.</td>
<td>May 24, 2022</td>
</tr>
<tr>
<td>New AWS DataSync task setting</td>
<td>With the Copy object tags option, you can specify whether to maintain object tags when transferring between object storage systems.</td>
<td>May 5, 2022</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Asia Pacific (Jakarta) Region.</td>
<td>April 19, 2022</td>
</tr>
<tr>
<td>Support for Amazon FSx for OpenZFS file systems</td>
<td>AWS DataSync can now transfer files and folders to and from FSx for OpenZFS file systems.</td>
<td>April 5, 2022</td>
</tr>
<tr>
<td>Support for Amazon FSx for Lustre file systems</td>
<td>AWS DataSync can now transfer files and folders to and from FSx for Lustre file systems.</td>
<td>December 10, 2021</td>
</tr>
<tr>
<td>Support for Hadoop Distributed File Systems (HDFS)</td>
<td>AWS DataSync now supports transferring files and folders to and from HDFS clusters.</td>
<td>November 3, 2021</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Asia Pacific (Osaka) Region.</td>
<td>July 28, 2021</td>
</tr>
<tr>
<td>Fully automated transfers between AWS storage services</td>
<td>AWS DataSync can now transfer files or objects between Amazon S3, Amazon EFS, or FSx for Windows File Server with just a few clicks in the DataSync console.</td>
<td>November 9, 2020</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Adjusting the network bandwidth used by a running task</td>
<td>AWS DataSync now enables customers to adjust the network bandwidth used by a running DataSync task. This helps to minimize impact on other users or applications when a task spans multiple days.</td>
<td>November 9, 2020</td>
</tr>
<tr>
<td>Enhanced support for on-premises DataSync virtual machine (VM) functions</td>
<td>The AWS DataSync agent VM host console now supports enhanced functions, including activating an agent from the local console.</td>
<td>October 19, 2020</td>
</tr>
<tr>
<td>AWS DataSync can now transfer data to and from AWS Outposts</td>
<td>DataSync now supports transferring objects to and from Amazon S3 on AWS Outposts.</td>
<td>September 30, 2020</td>
</tr>
<tr>
<td>Support for API filtering</td>
<td>AWS DataSync now supports filtering for the ListTasks and ListLocations API calls, enabling you to easily retrieve configuration of data transfer tasks by using filters such as the source or destination for the data transfer.</td>
<td>August 18, 2020</td>
</tr>
<tr>
<td>Support for copying data from your self-managed object storage</td>
<td>AWS DataSync now supports data transfer between self-managed object storage and Amazon S3, Amazon Elastic File System, or FSx for Windows File Server.</td>
<td>July 27, 2020</td>
</tr>
<tr>
<td>Support for Linux Kernel-based Virtual Machine (KVM) and Microsoft Hyper-V hypervisors</td>
<td>AWS DataSync now provides the ability to deploy on-premises agents on the KVM and Microsoft Hyper-V virtualization platforms, in addition to the existing VMware and Amazon EC2 options.</td>
<td>July 1, 2020</td>
</tr>
<tr>
<td>AWS DataSync can now automatically configure your Amazon CloudWatch Logs configuration (p. 523)</td>
<td>When using DataSync, you now have the option of automatically generating the CloudWatch log group and resource policy required to publish logs for your data transfer, simplifying task creation and monitoring setup.</td>
<td>July 1, 2020</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>AWS DataSync can now transfer data to and from AWS Snowcone (p. 523)</td>
<td>DataSync now supports transferring files to and from AWS Snowcone, the smallest member of the AWS Snow Family of edge computing and data transfer devices. Snowcone is portable, ruggedized, and secure—small and light enough to fit in a backpack and able to withstand harsh environments.</td>
<td>June 17, 2020</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Africa (Cape Town) Region and the Europe (Milan) Region.</td>
<td>June 16, 2020</td>
</tr>
<tr>
<td>Enhanced monitoring capabilities with file-level logging</td>
<td>You can now enable detailed logging for files and objects copied between your NFS servers, SMB servers, Amazon S3 buckets, Amazon EFS file systems, and FSx for Windows File Server file systems.</td>
<td>April 24, 2020</td>
</tr>
<tr>
<td>Support for copying data between your SMB share and Amazon FSx for Windows File Server</td>
<td>You can now copy data between your SMB share and FSx for Windows File Server.</td>
<td>January 24, 2020</td>
</tr>
<tr>
<td>Support for scheduling tasks</td>
<td>You can now run tasks manually or schedule them to run based on a specified schedule.</td>
<td>November 20, 2019</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Asia Pacific (Hong Kong) Region, Asia Pacific (Mumbai) Region, Europe (Stockholm) Region, South America (São Paulo) Region, and AWS GovCloud (US-East) Region.</td>
<td>November 20, 2019</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Canada (Central) Region, Europe (London) Region, and Europe (Paris) Region.</td>
<td>October 2, 2019</td>
</tr>
<tr>
<td>Support for Amazon S3 storage classes</td>
<td>You can now transfer objects directly into Amazon S3 storage classes.</td>
<td>September 24, 2019</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the Middle East (Bahrain) Region.</td>
<td>August 28, 2019</td>
</tr>
<tr>
<td>Support for copying data between your Server Message Block (SMB) share and Amazon S3 or Amazon EFS</td>
<td>You can now copy data between your SMB file share and Amazon S3 or Amazon EFS.</td>
<td>August 22, 2019</td>
</tr>
<tr>
<td>Support for using virtual private cloud (VPC) endpoints</td>
<td>You can now create a private connection between your agent and AWS and run tasks in a private network. Doing this increases the security of your data as it's copied over the network.</td>
<td>August 5, 2019</td>
</tr>
<tr>
<td>Support for Federal Information Processing Standard (FIPS) endpoints</td>
<td>You can now use FIPS endpoints to create agents and run tasks.</td>
<td>August 5, 2019</td>
</tr>
<tr>
<td>New AWS Region</td>
<td>AWS DataSync is now available in the AWS GovCloud (US-West) Region.</td>
<td>June 11, 2019</td>
</tr>
<tr>
<td>Support for filtering</td>
<td>You can now apply filters to transfer only a subset of the files in your source location when you transfer data from your source to your destination location.</td>
<td>May 22, 2019</td>
</tr>
<tr>
<td>First release of AWS DataSync (p. 523)</td>
<td>General release of the AWS DataSync service.</td>
<td>November 26, 2018</td>
</tr>
</tbody>
</table>
AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.