
Developer Guide

AWS Deep Learning Containers

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Deep Learning Containers Developer Guide

AWS Deep Learning Containers: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Deep Learning Containers Developer Guide

Table of Contents

What are AWS Deep Learning Containers? .. 1
About this guide ... 1
Python 2 Support ... 2
Prerequisites .. 2

Getting Started With Deep Learning Containers ... 3
Amazon EC2 Tutorials ... 3

Amazon EC2 setup .. 3
Training .. 4
Inference .. 9
Custom Entrypoints .. 18

Amazon ECS Tutorials ... 18
Amazon ECS setup .. 19
Training ... 22
Inference ... 35
Custom Entrypoints .. 51

Amazon EKS Tutorials ... 52
Amazon EKS Setup ... 53
Kubeflow on AWS Setup ... 115
Custom Entrypoints ... 142
Troubleshooting AWS Deep Learning Containers on EKS .. 144

Framework Support Policy ... 147
Supported Frameworks .. 147
Frequently Asked Questions .. 147

What framework versions get security patches? ... 148
What images does AWS publish when new framework versions are released? 148
What images get new SageMaker/AWS features? ... 148
How is current version defined in the Supported Frameworks table? 148
What if I am running a version that is not in the Supported Frameworks table? 149
Do DLCs support previous versions of TensorFlow? .. 149
How can I find the latest patched image for a supported framework version? 149
How frequently are new images released? ... 149
Will my instance be patched in place while my workload is running? 149
What happens when a new patched or updated framework version is available? 150
Are dependencies updated without changing the framework version? 150

iii

AWS Deep Learning Containers Developer Guide

When does active support for my framework version end? .. 150
Will images with framework versions that are no longer actively maintained be
patched? ... 152
How do I use an older framework version? .. 152
How do I stay up-to-date with support changes in frameworks and their versions? 152
Do I need a commercial license to use the Anaconda Repository? .. 152

Deep Learning Containers Images .. 153
Deep Learning Containers Resources ... 154

Building Custom Images .. 154
How to Build Custom Images .. 154

MKL Recommendations .. 155
MKL Recommendation for CPU containers ... 155

Security .. 161
Data Protection .. 162
Identity and Access Management .. 163

Authenticating With Identities ... 163
Managing Access Using Policies .. 166
IAM with Amazon EMR .. 169

Monitoring and Usage Tracking .. 169
Usage Tracking .. 169
Failure Rate Tracking ... 169
Usage Tracking in the following Framework Versions .. 170

Compliance Validation .. 171
Resilience ... 171
Infrastructure Security .. 172

Release Notes for Deep Learning Containers .. 173
Single-framework Deep Learning Containers .. 173
Graviton Deep Learning Containers ... 176

Document History .. 177
AWS Glossary ... 178

iv

AWS Deep Learning Containers Developer Guide

What are AWS Deep Learning Containers?

Welcome to the User Guide for the AWS Deep Learning Containers.

AWS Deep Learning Containers (Deep Learning Containers) are a set of Docker images for training
and serving models in TensorFlow, TensorFlow 2, PyTorch, and Apache MXNet (Incubating). Deep
Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA
(for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon
Elastic Container Registry (Amazon ECR).

AWS Deep Learning Containers | Amazon Web Services

About this guide

This guide helps you set up and use AWS Deep Learning Containers. This guide also covers setting
up Deep Learning Containers with Amazon EC2, Amazon ECS, Amazon EKS, and SageMaker. It
covers several use cases that are common for deep learning, for both training and inference. This
guide also provides several tutorials for each of the frameworks.

• To run training and inference on Deep Learning Containers for Amazon EC2 using MXNet,
PyTorch, TensorFlow, and TensorFlow 2, see Amazon EC2 Tutorials

• To run training and inference on Deep Learning Containers for Amazon ECS using MXNet,
PyTorch, and TensorFlow, see Amazon ECS tutorials

• Deep Learning Containers for Amazon EKS offer CPU, GPU, and distributed GPU-based training,
as well as CPU and GPU-based inference. To run training and inference on Deep Learning
Containers for Amazon EKS using MXNet, PyTorch, and TensorFlow, see Amazon EKS Tutorials

• For an explanation of the Docker-based Deep Learning Containers images, the list of available
images, and how to use them, see Deep Learning Containers Images

• For information on security in Deep Learning Containers, see Security in AWS Deep Learning
Containers

• For a list of the latest Deep Learning Containers release notes, see Release Notes for Deep
Learning Containers

About this guide 1

https://www.youtube.com/embed/qAFUQwTFnkY

AWS Deep Learning Containers Developer Guide

Python 2 Support

The Python open source community has officially ended support for Python 2 on January 1, 2020.
The TensorFlow and PyTorch community have announced that the TensorFlow 2.1 and PyTorch
1.4 releases will be the last ones supporting Python 2. Previous releases of the Deep Learning
Containers that support Python 2 will continue to be available. However, we will provide updates
to the Python 2 Deep Learning Containers only if there are security fixes published by the open
source community for those versions. Deep Learning Containers releases with the next versions of
the TensorFlow and PyTorch frameworks will not include the Python 2 environments.

Prerequisites

You should be familiar with command line tools and basic Python to successfully run the Deep
Learning Containers. Tutorials on how to use each framework are provided by the frameworks
themselves. However, this guide shows you how to activate each one and find the appropriate
tutorials to get started.

Python 2 Support 2

AWS Deep Learning Containers Developer Guide

Getting Started With Deep Learning Containers

The following sections describe how to use Deep Learning Containers to run sample code from
each of the frameworks on AWS infrastructure. For information on using Deep Learning Containers
with SageMaker, see the Use Your Own Algorithms or Models with SageMaker Documentation.

Topics

• Amazon EC2 Tutorials

• Amazon ECS tutorials

• Amazon EKS Tutorials

Amazon EC2 Tutorials

This section shows how to run training and inference on Deep Learning Containers for EC2 using
MXNet, PyTorch, TensorFlow, and TensorFlow 2.

Before starting the following tutorials, complete the steps in Amazon EC2 setup.

Contents

• Amazon EC2 setup

• Training

• Inference

• Custom Entrypoints

Amazon EC2 setup

In this section, you learn how to set up AWS Deep Learning Containers with Amazon Elastic
Compute Cloud.

Complete the following steps to configure your instance:

• Create an AWS Identity and Access Management user or modify an existing user with the
following policies. You can search for them by name in the IAM console's policy tab.

• AmazonECS_FullAccess Policy

• AmazonEC2ContainerRegistryFullAccess

Amazon EC2 Tutorials 3

https://docs.aws.amazon.com//sagemaker/latest/dg/your-algorithms.html
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonECS_FullAccess
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess

AWS Deep Learning Containers Developer Guide

For more information about creating or editing an IAM user, see Adding and Removing IAM
Identity Permissions in the IAM user guide.

• Launch an Amazon Elastic Compute Cloud instance (CPU or GPU), preferably a Deep Learning
Base AMI. Other AMIs work, but require relevant GPU drivers.

• Connect to your instance by using SSH. For more information about connections, see
Troubleshooting Connecting to Your Instance in the Amazon EC2 user guide..

• Ensure your AWS CLI is up to date using the steps in Installing the current AWS CLI Version.

• In your instance, run aws configure and provide the credentials of your created user.

• In your instance, run the following command to log in to the Amazon ECR repository where Deep
Learning Containers images are hosted.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com

For a complete list of AWS Deep Learning Containers, refer to Deep Learning Containers Images.

Note

MKL users: Read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Next steps

To learn about training and inference on Amazon EC2 with Deep Learning Containers, see Amazon
EC2 Tutorials.

Training

This section shows how to run training on AWS Deep Learning Containers for Amazon EC2 using
Apache MXNet (Incubating), PyTorch, TensorFlow, and TensorFlow 2.

For a complete list of Deep Learning Containers, refer to Deep Learning Containers Images.

Training 4

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com//dlami/latest/devguide/overview-base.html
https://docs.aws.amazon.com//dlami/latest/devguide/overview-base.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled

AWS Deep Learning Containers Developer Guide

Note

MKL users: Read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Contents

• TensorFlow training

• Apache MXNet (Incubating) training

• PyTorch training

• Amazon S3 Plugin for PyTorch

• Next steps

TensorFlow training

After you log into your Amazon EC2 instance, you can run TensorFlow and TensorFlow 2 containers
with the following commands. You must use nvidia-docker for GPU images.

• For CPU-based training, run the following.

$ docker run -it <CPU training container>

• For GPU-based training, run the following.

$ nvidia-docker run -it <GPU training container>

The previous command runs the container in interactive mode and provides a shell prompt inside
the container. You can then run the following to import TensorFlow.

$ python

>> import tensorflow

Press Ctrl+D to return to the bash prompt. Run the following to begin training:

git clone https://github.com/fchollet/keras.git

Training 5

AWS Deep Learning Containers Developer Guide

$ cd keras

$ python examples/mnist_cnn.py

Next steps

To learn inference on Amazon EC2 using TensorFlow with Deep Learning Containers, see
TensorFlow Inference.

Apache MXNet (Incubating) training

To begin training with Apache MXNet (Incubating) from your Amazon EC2 instance, run the
following command to run the container:

• For CPU

$ docker run -it <CPU training container>

• For GPU

$ nvidia-docker run -it <GPU training container>

In the terminal of the container, run the following to begin training.

• For CPU

$ git clone -b v1.4.x https://github.com/apache/incubator-mxnet.git
python incubator-mxnet/example/image-classification/train_mnist.py

• For GPU

$ git clone -b v1.4.x https://github.com/apache/incubator-mxnet.git
python incubator-mxnet/example/image-classification/train_mnist.py --gpus 0

MXNet training with GluonCV

In the terminal of the container, run the following to begin training using GluonCV. GluonCV v0.6.0
is included in the Deep Learning Containers.

Training 6

AWS Deep Learning Containers Developer Guide

• For CPU

$ git clone -b v0.6.0 https://github.com/dmlc/gluon-cv.git
python gluon-cv/scripts/classification/cifar/train_cifar10.py --model resnet18_v1b

• For GPU

$ git clone -b v0.6.0 https://github.com/dmlc/gluon-cv.git
python gluon-cv/scripts/classification/cifar/train_cifar10.py --num-gpus 1 --model
 resnet18_v1b

Next steps

To learn inference on Amazon EC2 using MXNet with Deep Learning Containers, see Apache MXNet
(Incubating) Inference .

PyTorch training

To begin training with PyTorch from your Amazon EC2 instance, use the following commands to
run the container. You must use nvidia-docker for GPU images.

• For CPU

$ docker run -it <CPU training container>

• For GPU

$ nvidia-docker run -it <GPU training container>

• If you have docker-ce version 19.03 or later, you can use the --gpus flag with docker:

$ docker run -it --gpus <GPU training container>

Run the following to begin training.

• For CPU

$ git clone https://github.com/pytorch/examples.git
$ python examples/mnist/main.py --no-cuda

Training 7

AWS Deep Learning Containers Developer Guide

• For GPU

$ git clone https://github.com/pytorch/examples.git
$ python examples/mnist/main.py

PyTorch distributed GPU training with NVIDIA Apex

NVIDIA Apex is a PyTorch extension with utilities for mixed precision and distributed training. For
more information on the utilities offered with Apex, see the NVIDIA Apex website. Apex is currently
supported by Amazon EC2 instances in the following families:

• Amazon EC2 P3 Instances

• Amazon EC2 P2 Instances

• Amazon EC2 G4 Instances

• Amazon EC2 G3 Instances

To begin distributed training using NVIDIA Apex, run the following in the terminal of the GPU
training container. This example requires at least two GPUs on your Amazon EC2 instance to run
parallel distributed training.

$ git clone https://github.com/NVIDIA/apex.git && cd apex
$ python -m torch.distributed.launch --nproc_per_node=2 examples/simple/distributed/
distributed_data_parallel.py

Amazon S3 Plugin for PyTorch

Deep Learning Containers include a plugin that enables you to use data from an Amazon S3 bucket
for PyTorch training.

1. To begin using the Amazon S3 plugin in Deep Learning Containers, check to make sure that
your Amazon EC2 instance has full access to Amazon S3. Create an IAM role that grants
Amazon S3 access to an Amazon EC2 instance and attach the role to your instance. You can
use the AmazonS3FullAccess or AmazonS3ReadOnlyAccess policies.

2. Set up your AWS_REGION environment variable with the region of your choice.

export AWS_REGION=us-east-1

Training 8

https://nvidia.github.io/apex/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g3/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess$serviceLevelSummary
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess$serviceLevelSummary

AWS Deep Learning Containers Developer Guide

3. Use the following commands to run a container that is compatible with the Amazon S3 plugin.
You must use nvidia-docker for GPU images.

• For CPU

docker run -it 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.8.1-cpu-py36-ubuntu18.04-v1.6

• For GPU

nvidia-docker run -it 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.8.1-gpu-py36-cu111-ubuntu18.04-v1.7

4. Run the following to test an example.

git clone https://github.com/aws/amazon-s3-plugin-for-pytorch.git
cd amazon-s3-plugin-for-pytorch/examples
python s3_cv_iterable_shuffle_example.py

For more information and additional examples, see the Amazon S3 Plugin for PyTorch repository.

Next steps

To learn inference on Amazon EC2 using PyTorch with Deep Learning Containers, see PyTorch
Inference .

Inference

This section shows how to run inference on AWS Deep Learning Containers for Amazon Elastic
Compute Cloud using Apache MXNet (Incubating), PyTorch, TensorFlow, and TensorFlow 2. You
can also use Elastic Inference to run inference with AWS Deep Learning Containers. For tutorials
and more information on Elastic Inference, see Using AWS Deep Learning Containers with Elastic
Inference on Amazon EC2.

For a complete list of Deep Learning Containers, refer to Deep Learning Containers Images.

Inference 9

https://github.com/aws/amazon-s3-plugin-for-pytorch
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-dlc-ec2.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-dlc-ec2.html

AWS Deep Learning Containers Developer Guide

Note

MKL users: read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Contents

• TensorFlow Inference

• TensorFlow 2 Inference

• Apache MXNet (Incubating) Inference

• PyTorch Inference

TensorFlow Inference

To demonstrate how to use Deep Learning Containers for inference, this example uses a simple half
plus two model with TensorFlow Serving. We recommend using the Deep Learning Base AMI for
TensorFlow. After you log into your instance, run the following:

$ git clone -b r1.15 https://github.com/tensorflow/serving.git
$ cd serving
$ git checkout r1.15

Use the commands here to start TensorFlow Serving with the Deep Learning Containers for this
model. Unlike the Deep Learning Containers for training, model serving starts immediately upon
running the container and runs as a background process.

• For CPU instances:

$ docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference --mount
 type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/testdata/
saved_model_half_plus_two_cpu,target=/models/saved_model_half_plus_two -e
 MODEL_NAME=saved_model_half_plus_two -d <cpu inference container>

For example:

$ docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference --mount
 type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/testdata/

Inference 10

https://docs.aws.amazon.com/dlami/latest/devguide/overview-base.html

AWS Deep Learning Containers Developer Guide

saved_model_half_plus_two_cpu,target=/models/saved_model_half_plus_two
 -e MODEL_NAME=saved_model_half_plus_two -d 763104351884.dkr.ecr.us-
east-1.amazonaws.com/tensorflow-inference:1.15.0-cpu-py36-ubuntu18.04

• For GPU instances:

$ nvidia-docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference --
mount type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/testdata/
saved_model_half_plus_two_gpu,target=/models/saved_model_half_plus_two -e
 MODEL_NAME=saved_model_half_plus_two -d <gpu inference container>

For example:

$ nvidia-docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference
 --mount type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/
testdata/saved_model_half_plus_two_gpu,target=/models/saved_model_half_plus_two
 -e MODEL_NAME=saved_model_half_plus_two -d 763104351884.dkr.ecr.us-
east-1.amazonaws.com/tensorflow-inference:1.15.0-gpu-py36-cu100-ubuntu18.04

• For Inf1 instances:

$ docker run -id --name tensorflow-inference -p 8500:8500 --device=/dev/neuron0 --
cap-add IPC_LOCK --mount type=bind,source={model_path},target=/models/{model_name}
 -e MODEL_NAME={model_name} <neuron inference container>

For example:

$ docker run -id --name tensorflow-inference -p 8500:8500 --device=/dev/neuron0 --
cap-add IPC_LOCK --mount type=bind,source={model_path},target=/models/{model_name}
 -e MODEL_NAME={model_name} 763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-
inference-neuron:1.15.4-neuron-py37-ubuntu18.04-v1.1

Next, run inference with the Deep Learning Containers.

$ curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://127.0.0.1:8501/v1/models/
saved_model_half_plus_two:predict

The output is similar to the following:

{

Inference 11

AWS Deep Learning Containers Developer Guide

 "predictions": [2.5, 3.0, 4.5
]
}

Note

If you want to debug the container's output, you can attach to it using the container name,
as in the following command:

$ docker attach <your docker container name>

In this example you used tensorflow-inference.

TensorFlow 2 Inference

To demonstrate how to use Deep Learning Containers for inference, this example uses a simple half
plus two model with TensorFlow 2 Serving. We recommend using the Deep Learning Base AMI for
TensorFlow 2. After you log into your instance run the following.

$ git clone -b r2.0 https://github.com/tensorflow/serving.git
$ cd serving

Use the commands here to start TensorFlow Serving with the Deep Learning Containers for this
model. Unlike the Deep Learning Containers for training, model serving starts immediately upon
running the container and runs as a background process.

• For CPU instances:

$ docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference --mount
 type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/testdata/
saved_model_half_plus_two_cpu,target=/models/saved_model_half_plus_two -e
 MODEL_NAME=saved_model_half_plus_two -d <cpu inference container>

For example:

$ docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference --mount
 type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/testdata/
saved_model_half_plus_two_cpu,target=/models/saved_model_half_plus_two

Inference 12

https://docs.aws.amazon.com//dlami/latest/devguide/overview-base.html

AWS Deep Learning Containers Developer Guide

 -e MODEL_NAME=saved_model_half_plus_two -d 763104351884.dkr.ecr.us-
east-1.amazonaws.com/tensorflow-inference:2.0.0-cpu-py36-ubuntu18.04

• For GPU instances:

$ nvidia-docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference --
mount type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/testdata/
saved_model_half_plus_two_gpu,target=/models/saved_model_half_plus_two -e
 MODEL_NAME=saved_model_half_plus_two -d <gpu inference container>

For example:

$ nvidia-docker run -p 8500:8500 -p 8501:8501 --name tensorflow-inference
 --mount type=bind,source=$(pwd)/tensorflow_serving/servables/tensorflow/
testdata/saved_model_half_plus_two_gpu,target=/models/saved_model_half_plus_two
 -e MODEL_NAME=saved_model_half_plus_two -d 763104351884.dkr.ecr.us-
east-1.amazonaws.com/tensorflow-inference:2.0.0-gpu-py36-cu100-ubuntu18.04

Note

Loading the GPU model server may take some time.

Next, run inference with the Deep Learning Containers.

$ curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://127.0.0.1:8501/v1/models/
saved_model_half_plus_two:predict

The output is similar to the following.

{
 "predictions": [2.5, 3.0, 4.5
]
}

Note

To debug the container's output, you can use the name to attach to it as shown in the
following command:

Inference 13

AWS Deep Learning Containers Developer Guide

$ docker attach <your docker container name>

This example used tensorflow-inference.

Apache MXNet (Incubating) Inference

To begin inference with Apache MXNet (Incubating), this example uses a pretrained model from a
public S3 bucket.

For CPU instances, run the following command.

$ docker run -it --name mms -p 80:8080 -p 8081:8081 <your container image id> \
mxnet-model-server --start --mms-config /home/model-server/config.properties \
--models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/
squeezenet_v1.1.model

For GPU instances, run the following command:

$ nvidia-docker run -it --name mms -p 80:8080 -p 8081:8081 <your container image id> \
mxnet-model-server --start --mms-config /home/model-server/config.properties \
--models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/
squeezenet_v1.1.model

The configuration file is included in the container.

With your server started, you can now run inference from a different window by using the
following command.

$ curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
curl -X POST http://127.0.0.1/predictions/squeezenet -T kitten.jpg

After you are done using your container, you can remove it using the following command:

$ docker rm -f mms

MXNet Inference with GluonCV

To begin inference using GluonCV, this example uses a pretrained model from a public S3 bucket.

Inference 14

AWS Deep Learning Containers Developer Guide

For CPU instances, run the following command.

$ docker run -it --name mms -p 80:8080 -p 8081:8081 <your container image id> \
mxnet-model-server --start --mms-config /home/model-server/config.properties \
--models gluoncv_yolo3=https://dlc-samples.s3.amazonaws.com/mxnet/gluon/
gluoncv_yolo3.mar

For GPU instances, run the following command.

$ nvidia-docker run -it --name mms -p 80:8080 -p 8081:8081 <your container image id> \
mxnet-model-server --start --mms-config /home/model-server/config.properties \
--models gluoncv_yolo3=https://dlc-samples.s3.amazonaws.com/mxnet/gluon/
gluoncv_yolo3.mar

The configuration file is included in the container.

With your server started, you can now run inference from a different window by using the
following command.

$ curl -O https://dlc-samples.s3.amazonaws.com/mxnet/gluon/dog.jpg
curl -X POST http://127.0.0.1/predictions/gluoncv_yolo3/predict -T dog.jpg

Your output should look like the following:

{
 "bicycle": [
 "[79.674225 87.403786 409.43515 323.12167]",
 "[98.69891 107.480446 200.0086 155.13412]"
],
 "car": [
 "[336.61322 56.533463 499.30566 125.0233]"
],
 "dog": [
 "[100.50538 156.50375 223.014 384.60873]"
]
}

After you are done using your container, you can remove it using this command.

$ docker rm -f mms

Inference 15

AWS Deep Learning Containers Developer Guide

PyTorch Inference

Deep Learning Containers with PyTorch version 1.6 and later use TorchServe for inference calls.
Deep Learning Containers with PyTorch version 1.5 and earlier use mxnet-model-server for
inference calls.

PyTorch 1.6 and later

To run inference with PyTorch, this example uses a model pretrained on Imagenet from a public
S3 bucket. Inference is served using TorchServe. For more information, see this blog on Deploying
PyTorch inference with TorchServe.

For CPU instances:

$ docker run -itd --name torchserve -p 80:8080 -p 8081:8081 <your container image id>
 \
torchserve --start --ts-config /home/model-server/config.properties \
--models pytorch-densenet=https://torchserve.s3.amazonaws.com/mar_files/densenet161.mar

For GPU instances

$ nvidia-docker run -itd --name torchserve -p 80:8080 -p 8081:8081 <your container
 image id> \
torchserve --start --ts-config /home/model-server/config.properties \
--models pytorch-densenet=https://torchserve.s3.amazonaws.com/mar_files/densenet161.mar

If you have docker-ce version 19.03 or later, you can use the --gpus flag when you start Docker.

The configuration file is included in the container.

With your server started, you can now run inference from a different window by using the
following.

$ curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg
curl -X POST http://127.0.0.1:80/predictions/pytorch-densenet -T flower.jpg

After you are done using your container, you can remove it using the following.

$ docker rm -f torchserve

Inference 16

https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/
https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/

AWS Deep Learning Containers Developer Guide

PyTorch 1.5 and earlier

To run inference with PyTorch, this example uses a model pretrained on Imagenet from a public
S3 bucket. Similar to MXNet containers, inference is served using mxnet-model-server, which can
support any framework as the backend. For more information, see Model Server for Apache MXNet
and this blog on Deploying PyTorch inference with MXNet Model Server.

For CPU instances:

$ docker run -itd --name mms -p 80:8080 -p 8081:8081 <your container image id> \
mxnet-model-server --start --mms-config /home/model-server/config.properties \
--models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/multi-model-server/
densenet/densenet.mar

For GPU instances

$ nvidia-docker run -itd --name mms -p 80:8080 -p 8081:8081 <your container image id>
 \
mxnet-model-server --start --mms-config /home/model-server/config.properties \
--models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/multi-model-server/
densenet/densenet.mar

If you have docker-ce version 19.03 or later, you can use the --gpus flag when you start Docker.

The configuration file is included in the container.

With your server started, you can now run inference from a different window by using the
following.

$ curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg
curl -X POST http://127.0.0.1/predictions/densenet -T flower.jpg

After you are done using your container, you can remove it using the following.

$ docker rm -f mms

Next steps

To learn about using custom entrypoints with Deep Learning Containers on Amazon ECS, see
Custom entrypoints.

Inference 17

https://github.com/awslabs/mxnet-model-server
https://aws.amazon.com/blogs/machine-learning/deploying-pytorch-inference-with-mxnet-model-server/

AWS Deep Learning Containers Developer Guide

Custom Entrypoints

For some images, Deep Learning Containers uses a custom entrypoint script. If you want to use
your own entrypoint, you can override the entrypoint as follows.

• To specify a custom entrypoint script to run, use this command.

docker run --entrypoint=/path/to/custom_entrypoint_script -it <image> /bin/bash

• To set the entrypoint to be empty, use this command.

docker run --entrypoint="" <image> /bin/bash

Amazon ECS tutorials

This section shows how to run training and inference on AWS Deep Learning Containers for
Amazon ECS using MXNet, PyTorch, and TensorFlow.

Before starting the following tutorials, complete the steps in Amazon ECS setup.

For a complete list of Deep Learning Containers, refer to Deep Learning Containers Images.

Note

MKL users: Read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Contents

• Amazon ECS setup

• Training

• Inference

• Custom entrypoints

Custom Entrypoints 18

AWS Deep Learning Containers Developer Guide

Amazon ECS setup

This topic shows how to setup AWS Deep Learning Containers with Amazon Elastic Container
Service.

Contents

• Prerequisites

• Setting up Amazon ECS for Deep Learning Containers

Prerequisites

This setup guide assumes that you have completed the following prerequisites:

• Install and configure the latest version of the AWS CLI. For more information about installing or
upgrading the AWS CLI, see Installing the AWS Command Line Interface.

• Complete the steps in Setting Up with Amazon ECS.

• Verify that you have the Amazon ECS Container Instance role. For more information, see Amazon
ECS Container Instance IAM Role in the Amazon Elastic Container Service Developer Guide.

• The Amazon CloudWatch Logs IAM policy is added to the Amazon ECS Container Instance
role,which allows Amazon ECS to send logs to Amazon CloudWatch. For more information, see
CloudWatch Logs IAM Policy in the Amazon Elastic Container Service Developer Guide.

• Create a new security group or update an existing security group to have the ports open for your
desired inference server.

• For MXNet inference, ports 80 and 8081 open to TCP traffic.

• For TensorFlow inference, ports 8501 and 8500 open to TCP traffic.

For more information see Amazon EC2 Security Groups.

Setting up Amazon ECS for Deep Learning Containers

This section explains how to set up Amazon ECS to use Deep Learning Containers.

Important

If your account has already created the Amazon ECS service-linked role, then that role
is used by default for your service unless you specify a role here. The service-linked

Amazon ECS setup 19

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_cloudwatch_logs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS Deep Learning Containers Developer Guide

role is required if your task definition uses the awsvpc network mode or if the service
is configured to use any of the following: Service discovery, an external deployment
controller, multiple target groups, or Elastic Inference accelerators. If this is the case, you
should not specify a role here. For more information, see Using Service-Linked Roles for
Amazon ECS in the Amazon ECS Developer Guide.

Run the following actions from your host.

1. Create an Amazon ECS cluster in the Region that contains the key pair and security group that
you created previously.

aws ecs create-cluster --cluster-name ecs-ec2-training-inference --region us-east-1

2. Launch one or more Amazon EC2 instances into your cluster. For GPU-based work, refer
to Working with GPUs on Amazon ECS in the Amazon ECS Developer Guide to inform your
instance type selection. If you select a GPU instance type, be sure to then choose the Amazon
ECS GPU-optimized AMI. For CPU-based work, you can use the Amazon Linux or Amazon Linux
2 ECS-optimized AMIs. For more information about compatible instance types and Amazon
ECS-optimized AMI IDs, see Amazon ECS-optimized AMIs. In this example, you launch one
instance with a GPU-based AMI with 100 GB of disk size in us-east-1.

a. Create a file named my_script.txt with the following contents. Reference the same
cluster name that you created in the previous step.

#!/bin/bash
echo ECS_CLUSTER=ecs-ec2-training-inference >> /etc/ecs/ecs.config

b. (Optional) Create a file named my_mapping.txt with the following content, which
changes the size of the root volume after the instance is created.

[
 {
 "DeviceName": "/dev/xvda",
 "Ebs": {
 "VolumeSize": 100
 }
 }

Amazon ECS setup 20

https://docs.aws.amazon.com//AmazonECS/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-gpu.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

AWS Deep Learning Containers Developer Guide

]

c. Launch an Amazon EC2 instance with the Amazon ECS-optimized AMI and attach it to the
cluster. Use the security group ID and key pair name that you created and replace them
in the following command. To get the latest Amazon ECS-optimized AMI ID, see Amazon
ECS-optimized AMIs in the Amazon Elastic Container Service Developer Guide.

aws ec2 run-instances --image-id ami-0dfdeb4b6d47a87a2 \
 --count 1 \
 --instance-type p2.8xlarge \
 --key-name key-pair-1234 \
 --security-group-ids sg-abcd1234 \
 --iam-instance-profile Name="ecsInstanceRole" \
 --user-data file://my_script.txt \
 --block-device-mapping file://my_mapping.txt \
 --region us-east-1

In the Amazon EC2 console, you can verify that this step was successful by the instance-
id from the response.

You now have an Amazon ECS cluster with container instances running. Verify that the Amazon EC2
instances are registered with the cluster with the following steps.

To verify that the Amazon EC2 instance is registered with the cluster

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Select the cluster with your registered Amazon EC2 instances.

3. On the Cluster page, choose Infrastructure.

4. Under Container instances, verify that the the instance-id created in previous step is
displayed. Also, note the values for the CPU available and Memory available as these values
can be useful in the following tutorials. It might take a few minutes to appear in the console.

Next steps

To learn about training and inference with Deep Learning Containers on Amazon ECS, see Amazon
ECS tutorials.

Amazon ECS setup 21

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

Training

This section shows how to run training on AWS Deep Learning Containers for Amazon Elastic
Container Service using Apache MXNet (Incubating), PyTorch, TensorFlow, and TensorFlow 2.

For a complete list of Deep Learning Containers, refer to Deep Learning Containers Images.

Note

MKL users: Read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Important

If your account has already created the Amazon ECS service-linked role, that role is used by
default for your service unless you specify a role here. The service-linked role is required
if your task definition uses the awsvpc network mode or if the service is configured to
use service discovery. The role is also required if the service uses an external deployment
controller, multiple target groups, or Elastic Inference accelerators in which case you should
not specify a role here. For more information, see Using Service-Linked Roles for Amazon
ECS in the Amazon ECS Developer Guide.

Contents

• TensorFlow training

• Apache MXNet (Incubating) training

• PyTorch training

• Amazon S3 Plugin for PyTorch

• Next steps

TensorFlow training

Before you can run a task on your ECS cluster, you must register a task definition. Task definitions
are lists of containers grouped together. The following example uses a sample Docker image that
adds training scripts to Deep Learning Containers. You can use this script with either TensorFlow or
TensorFlow 2. To use it with TensorFlow 2, change the Docker image to a TensorFlow 2 image.

Training 22

https://docs.aws.amazon.com//AmazonECS/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/using-service-linked-roles.html

AWS Deep Learning Containers Developer Guide

1. Create a file named ecs-deep-learning-container-training-taskdef.json with the
following contents.

• For CPU

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mkdir -p /test && cd /test && git clone https://github.com/fchollet/keras.git
 && chmod +x -R /test/ && python keras/examples/mnist_cnn.py"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "tensorflow-training-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:1.15.2-cpu-py36-ubuntu18.04",
 "memory": 4000,
 "cpu": 256,
 "essential": true,
 "portMappings": [{
 "containerPort": 80,
 "protocol": "tcp"
 }],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "awslogs-tf-ecs",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "tf",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "TensorFlow"
}

Training 23

AWS Deep Learning Containers Developer Guide

• For GPU

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [
 {
 "command": [
 "mkdir -p /test && cd /test && git clone https://github.com/
fchollet/keras.git && chmod +x -R /test/ && python keras/examples/mnist_cnn.py"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "tensorflow-training-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
training:1.15.2-gpu-py37-cu100-ubuntu18.04",
 "memory": 6111,
 "cpu": 256,
 "resourceRequirements" : [{
 "type" : "GPU",
 "value" : "1"
 }],
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "awslogs-tf-ecs",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "tf",
 "awslogs-create-group": "true"
 }
 }
 }
],

Training 24

AWS Deep Learning Containers Developer Guide

 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "tensorflow-training"
 }

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-deep-learning-
container-training-taskdef.json

3. Create a task using the task definition. You need the revision number from the previous step
and the name of the cluster you created during setup

aws ecs run-task --cluster ecs-ec2-training-inference --task-definition tf:1

4. Open the Amazon ECS classic console at https://console.aws.amazon.com/ecs/.

5. Select the ecs-ec2-training-inference cluster.

6. On the Cluster page, choose Tasks.

7. After your task is in a RUNNING state, choose the task identifier.

8. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console to
view the training progress logs.

Next steps

To learn inference on Amazon ECS using TensorFlow with Deep Learning Containers, see
TensorFlow inference.

Apache MXNet (Incubating) training

Before you can run a task on your Amazon Elastic Container Service cluster, you must register a
task definition. Task definitions are lists of containers grouped together. The following example
uses a sample Docker image that adds training scripts to Deep Learning Containers.

1. Create a file named ecs-deep-learning-container-training-taskdef.json with the
following contents.

• For CPU

{

Training 25

https://console.aws.amazon.com/ecs/

AWS Deep Learning Containers Developer Guide

 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "command":[
 "git clone -b 1.4 https://github.com/apache/incubator-mxnet.git &&
 python /incubator-mxnet/example/image-classification/train_mnist.py"
],
 "entryPoint":[
 "sh",
 "-c"
],
 "name":"mxnet-training",
 "image":"763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-
training:1.6.0-cpu-py36-ubuntu16.04",
 "memory":4000,
 "cpu":256,
 "essential":true,
 "portMappings":[
 {
 "containerPort":80,
 "protocol":"tcp"
 }
],
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/mxnet-training-cpu",
 "awslogs-region":"us-east-1",
 "awslogs-stream-prefix":"mnist",
 "awslogs-create-group":"true"
 }
 }
 }
],
 "volumes":[

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"mxnet"

Training 26

AWS Deep Learning Containers Developer Guide

}

• For GPU

{
 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "command":[
 "git clone -b 1.4 https://github.com/apache/incubator-mxnet.git &&
 python /incubator-mxnet/example/image-classification/train_mnist.py --gpus 0"
],
 "entryPoint":[
 "sh",
 "-c"
],
 "name":"mxnet-training",
 "image":"763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-
training:1.6.0-gpu-py36-cu101-ubuntu16.04",
 "memory":4000,
 "cpu":256,
 "resourceRequirements":[
 {
 "type":"GPU",
 "value":"1"
 }
],
 "essential":true,
 "portMappings":[
 {
 "containerPort":80,
 "protocol":"tcp"
 }
],
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/mxnet-training-gpu",
 "awslogs-region":"us-east-1",
 "awslogs-stream-prefix":"mnist",
 "awslogs-create-group":"true"
 }

Training 27

AWS Deep Learning Containers Developer Guide

 }
 }
],
 "volumes":[

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"mxnet-training"
}

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-deep-learning-
container-training-taskdef.json

3. Create a task using the task definition. You need the revision number from the previous step.

aws ecs run-task --cluster ecs-ec2-training-inference --task-definition mx:1

4. Open the console at https://console.aws.amazon.com/ecs/v2.

5. Select the ecs-ec2-training-inference cluster.

6. On the Cluster page, choose Tasks.

7. After your task is in a RUNNING state, choose the task identifier.

8. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console to
view the training progress logs.

Next steps

To learn inference on Amazon ECS using MXNet with Deep Learning Containers, see Apache MXNet
(Incubating) inference.

PyTorch training

Before you can run a task on your Amazon ECS cluster, you must register a task definition. Task
definitions are lists of containers grouped together. The following example uses a sample Docker
image that adds training scripts to Deep Learning Containers.

Training 28

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

1. Create a file named ecs-deep-learning-container-training-taskdef.json with the
following contents.

• For CPU

{
 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "command":[
 "git clone https://github.com/pytorch/examples.git && python
 examples/mnist/main.py --no-cuda"
],
 "entryPoint":[
 "sh",
 "-c"
],
 "name":"pytorch-training-container",
 "image":"763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.5.1-cpu-py36-ubuntu16.04",
 "memory":4000,
 "cpu":256,
 "essential":true,
 "portMappings":[
 {
 "containerPort":80,
 "protocol":"tcp"
 }
],
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/pytorch-training-cpu",
 "awslogs-region":"us-east-1",
 "awslogs-stream-prefix":"mnist",
 "awslogs-create-group":"true"
 }
 }
 }
],
 "volumes":[

Training 29

AWS Deep Learning Containers Developer Guide

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"pytorch"
}

• For GPU

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [
 {
 "command": [
 "git clone https://github.com/pytorch/examples.git && python
 examples/mnist/main.py"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "pytorch-training-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.5.1-gpu-py36-cu101-ubuntu16.04",
 "memory": 6111,
 "cpu": 256,
 "resourceRequirements" : [{
 "type" : "GPU",
 "value" : "1"
 }],
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {

Training 30

AWS Deep Learning Containers Developer Guide

 "awslogs-group": "/ecs/pytorch-training-gpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "mnist",
 "awslogs-create-group": "true"
 }
 }
 }
],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "pytorch-training"
 }

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-deep-learning-
container-training-taskdef.json

3. Create a task using the task definition. You need the revision identifier from the previous step.

aws ecs run-task --cluster ecs-ec2-training-inference --task-definition pytorch:1

4. Open the console at https://console.aws.amazon.com/ecs/v2.

5. Select the ecs-ec2-training-inference cluster.

6. On the Cluster page, choose Tasks.

7. After your task is in a RUNNING state, choose the task identifier.

8. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console to
view the training progress logs.

Amazon S3 Plugin for PyTorch

Deep Learning Containers include a plugin that enables you to use data from an Amazon S3 bucket
for PyTorch training.

1. To begin using the Amazon S3 plugin in Amazon ECS, set up your AWS_REGION environment
variable with the region of your choice.

export AWS_REGION=us-east-1

Training 31

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

2. Create a file named ecs-deep-learning-container-pytorch-s3-plugin-
taskdef.json with the following contents.

• For CPU

{
 "requiresCompatibilities":[
 "EC2"
],
 "containerDefinitions":[
 {
 "command":[
 "git clone https://github.com/aws/amazon-s3-plugin-for-pytorch.git &&
 python amazon-s3-plugin-for-pytorch/examples/s3_imagenet_example.py"
],
 "entryPoint":[
 "sh",
 "-c"
],
 "name":"pytorch-s3-plugin-container",
 "image":"763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.8.1-cpu-py36-ubuntu18.04-v1.6",
 "memory":4000,
 "cpu":256,
 "essential":true,
 "portMappings":[
 {
 "containerPort":80,
 "protocol":"tcp"
 }
],
 "logConfiguration":{
 "logDriver":"awslogs",
 "options":{
 "awslogs-group":"/ecs/pytorch-s3-plugin-cpu",
 "awslogs-region":"us-east-1",
 "awslogs-stream-prefix":"imagenet",
 "awslogs-create-group":"true"
 }
 }
 }
],
 "volumes":[

Training 32

AWS Deep Learning Containers Developer Guide

],
 "networkMode":"bridge",
 "placementConstraints":[

],
 "family":"pytorch-s3-plugin"
}

• For GPU

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [
 {
 "command": [
 "git clone https://github.com/aws/amazon-s3-plugin-
for-pytorch.git && python amazon-s3-plugin-for-pytorch/examples/
s3_imagenet_example.py"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "pytorch-s3-plugin-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.8.1-gpu-py36-cu111-ubuntu18.04-v1.7",
 "memory": 6111,
 "cpu": 256,
 "resourceRequirements" : [{
 "type" : "GPU",
 "value" : "1"
 }],
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",

Training 33

AWS Deep Learning Containers Developer Guide

 "options": {
 "awslogs-group": "/ecs/pytorch-s3-plugin-gpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "imagenet",
 "awslogs-create-group": "true"
 }
 }
 }
],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "pytorch-s3-plugin"
 }

3. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-deep-learning-
container-pytorch-s3-plugin-taskdef.json

4. Create a task using the task definition. You need the revision identifier from the previous step.

aws ecs run-task --cluster ecs-pytorch-s3-plugin --task-definition pytorch-s3-
plugin:1

5. Open the console at https://console.aws.amazon.com/ecs/v2.

6. Select the ecs-pytorch-s3-plugin cluster.

7. On the Cluster page, choose Tasks.

8. After your task is in a RUNNING state, choose the task identifier.

9. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console to
view the Amazon S3 plugin example logs.

For more information and additional examples, see the Amazon S3 Plugin for PyTorch repository.

Next steps

To learn inference on Amazon ECS using PyTorch with Deep Learning Containers, see PyTorch
inference.

Training 34

https://console.aws.amazon.com/ecs/v2
https://github.com/aws/amazon-s3-plugin-for-pytorch

AWS Deep Learning Containers Developer Guide

Inference

This section shows how to run inference on AWS Deep Learning Containers for Amazon Elastic
Container Service (Amazon ECS) using Apache MXNet (Incubating), PyTorch, TensorFlow, and
TensorFlow 2. You can also use Elastic Inference to run inference with AWS Deep Learning
Containers. For tutorials and more information on Elastic Inference, see Using AWS Deep Learning
Containers with Elastic Inference on Amazon ECS.

For a complete list of Deep Learning Containers, see Deep Learning Containers Images.

Note

MKL users: Read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Important

If your account has already created the Amazon ECS service-linked role, then that role is
used by default for your service unless you specify a role here. The service-linked role is
required if your task definition uses the awsvpc network mode. The role is also required
if the service is configured to use service discovery, an external deployment controller,
multiple target groups, or Elastic Inference accelerators in which case you should not
specify a role here. For more information, see Using Service-Linked Roles for Amazon ECS
in the Amazon ECS Developer Guide.

Contents

• TensorFlow inference

• Apache MXNet (Incubating) inference

• PyTorch inference

TensorFlow inference

The following examples use a sample Docker image that adds either CPU or GPU inference scripts
to Deep Learning Containers from your host machine's command line.

Inference 35

https://docs.aws.amazon.com//elastic-inference/latest/developerguide/ei-dlc-ecs.html
https://docs.aws.amazon.com//elastic-inference/latest/developerguide/ei-dlc-ecs.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/using-service-linked-roles.html

AWS Deep Learning Containers Developer Guide

CPU-based inference

Use the following example to run CPU-based inference.

1. Create a file named ecs-dlc-cpu-inference-taskdef.json with the following contents.
You can use this with either TensorFlow or TensorFlow 2. To use it with TensorFlow 2, change
the Docker image to a TensorFlow 2 image and clone the r2.0 serving repository branch
instead of r1.15.

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mkdir -p /test && cd /test && git clone -b r1.15 https://github.com/
tensorflow/serving.git && tensorflow_model_server --port=8500 --rest_api_port=8501
 --model_name=saved_model_half_plus_two --model_base_path=/test/serving/
tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "tensorflow-inference-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:1.15.0-cpu-py36-ubuntu18.04",
 "memory": 8111,
 "cpu": 256,
 "essential": true,
 "portMappings": [{
 "hostPort": 8500,
 "protocol": "tcp",
 "containerPort": 8500
 },
 {
 "hostPort": 8501,
 "protocol": "tcp",
 "containerPort": 8501
 },
 {
 "containerPort": 80,
 "protocol": "tcp"

Inference 36

AWS Deep Learning Containers Developer Guide

 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/tensorflow-inference-gpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "half-plus-two",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "tensorflow-inference"
}

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-dlc-cpu-inference-
taskdef.json

3. Create an Amazon ECS service. When you specify the task definition, replace revision_id
with the revision number of the task definition from the output of the previous step.

aws ecs create-service --cluster ecs-ec2-training-inference \
 --service-name cli-ec2-inference-cpu \
 --task-definition Ec2TFInference:revision_id \
 --desired-count 1 \
 --launch-type EC2 \
 --scheduling-strategy="REPLICA" \
 --region us-east-1

4. Verify the service and get the network endpoint by completing the following steps.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. Select the ecs-ec2-training-inference cluster.

c. On the Cluster page, choose Services and then cli-ec2-inference-cpu.

d. After your task is in a RUNNING state, choose the task identifier.

Inference 37

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

e. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console
to view the training progress logs.

f. Under Containers, expand the container details.

g. Under Name and then Network Bindings, under External Link note the IP address for
port 8501 and use it in the next step.

5. To run inference, use the following command. Replace the external IP address with the
external link IP address from the previous step.

curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://<External ip>:8501/v1/
models/saved_model_half_plus_two:predict

The following is sample output.

{
 "predictions": [2.5, 3.0, 4.5
]
}

Important

If you are unable to connect to the external IP address, be sure that your corporate
firewall is not blocking non-standards ports, like 8501. You can try switching to a guest
network to verify.

GPU-based inference

Use the following example to run GPU-based inference.

1. Create a file named ecs-dlc-gpu-inference-taskdef.json with the following contents.
You can use this with either TensorFlow or TensorFlow 2. To use it with TensorFlow 2, change
the Docker image to a TensorFlow 2 image and clone the r2.0 serving repository branch
instead of r1.15.

{
 "requiresCompatibilities": [
 "EC2"
],

Inference 38

AWS Deep Learning Containers Developer Guide

 "containerDefinitions": [{
 "command": [
 "mkdir -p /test && cd /test && git clone -b r1.15 https://github.com/
tensorflow/serving.git && tensorflow_model_server --port=8500 --rest_api_port=8501
 --model_name=saved_model_half_plus_two --model_base_path=/test/serving/
tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_gpu"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "tensorflow-inference-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:1.15.0-gpu-py36-cu100-ubuntu18.04",
 "memory": 8111,
 "cpu": 256,
 "resourceRequirements": [{
 "type": "GPU",
 "value": "1"
 }],
 "essential": true,
 "portMappings": [{
 "hostPort": 8500,
 "protocol": "tcp",
 "containerPort": 8500
 },
 {
 "hostPort": 8501,
 "protocol": "tcp",
 "containerPort": 8501
 },
 {
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/TFInference",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs",
 "awslogs-create-group": "true"
 }

Inference 39

AWS Deep Learning Containers Developer Guide

 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "TensorFlowInference"
}

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-dlc-gpu-inference-
taskdef.json

3. Create an Amazon ECS service. When you specify the task definition, replace revision_id
with the revision number of the task definition from the output of the previous step.

aws ecs create-service --cluster ecs-ec2-training-inference \
 --service-name cli-ec2-inference-gpu \
 --task-definition Ec2TFInference:revision_id \
 --desired-count 1 \
 --launch-type EC2 \
 --scheduling-strategy="REPLICA" \
 --region us-east-1

4. Verify the service and get the network endpoint by completing the following steps.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. Select the ecs-ec2-training-inference cluster.

c. On the Cluster page, choose Services and then cli-ec2-inference-cpu.

d. After your task is in a RUNNING state, choose the task identifier.

e. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console
to view the training progress logs.

f. Under Containers, expand the container details.

g. Under Name and then Network Bindings, under External Link note the IP address for
port 8501 and use it in the next step.

5. To run inference, use the following command. Replace the external IP address with the
external link IP address from the previous step.

Inference 40

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://<External ip>:8501/v1/
models/saved_model_half_plus_two:predict

The following is sample output.

{
 "predictions": [2.5, 3.0, 4.5
]
}

Important

If you are unable to connect to the external IP address, be sure that your corporate
firewall is not blocking non-standards ports, like 8501. You can try switching to a guest
network to verify.

Apache MXNet (Incubating) inference

Before you can run a task on your Amazon ECS cluster, you must register a task definition. Task
definitions are lists of containers grouped together. The following examples use a sample Docker
image that adds either CPU or GPU inference scripts to Deep Learning Containers from your host
machine's command line.

CPU-based inference

Use the following task definition to run CPU-based inference.

1. Create a file named ecs-dlc-cpu-inference-taskdef.json with the following contents.

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mxnet-model-server --start --mms-config /home/model-server/config.properties
 --models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/
squeezenet_v1.1.model"

Inference 41

AWS Deep Learning Containers Developer Guide

],
 "name": "mxnet-inference-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-inference:1.6.0-cpu-
py36-ubuntu16.04",
 "memory": 8111,
 "cpu": 256,
 "essential": true,
 "portMappings": [{
 "hostPort": 8081,
 "protocol": "tcp",
 "containerPort": 8081
 },
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 8080
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/mxnet-inference-cpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "squeezenet",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "mxnet-inference"
}

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-dlc-cpu-inference-
taskdef.json

3. Create an Amazon ECS service. When you specify the task definition, replace revision_id
with the revision number of the task definition from the output of the previous step.

aws ecs create-service --cluster ecs-ec2-training-inference \

Inference 42

AWS Deep Learning Containers Developer Guide

 --service-name cli-ec2-inference-cpu \
 --task-definition Ec2TFInference:revision_id \
 --desired-count 1 \
 --launch-type EC2 \
 --scheduling-strategy REPLICA \
 --region us-east-1

4. Verify the service and get the endpoint.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. Select the ecs-ec2-training-inference cluster.

c. On the Cluster page, choose Services and then cli-ec2-inference-cpu.

d. After your task is in a RUNNING state, choose the task identifier.

e. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console
to view the training progress logs.

f. Under Containers, expand the container details.

g. Under Name and then Network Bindings, under External Link note the IP address for
port 8081 and use it in the next step.

5. To run inference, use the following command. Replace the external IP address with the
external link IP address from the previous step.

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
curl -X POST http://<External ip>/predictions/squeezenet -T kitten.jpg

The following is sample output.

[
 {
 "probability": 0.8582226634025574,
 "class": "n02124075 Egyptian cat"
 },
 {
 "probability": 0.09160050004720688,
 "class": "n02123045 tabby, tabby cat"
 },
 {
 "probability": 0.037487514317035675,
 "class": "n02123159 tiger cat"
 },

Inference 43

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

 {
 "probability": 0.0061649843119084835,
 "class": "n02128385 leopard, Panthera pardus"
 },
 {
 "probability": 0.003171598305925727,
 "class": "n02127052 lynx, catamount"
 }
]

Important

If you are unable to connect to the external IP address, be sure that your corporate
firewall is not blocking non-standards ports, like 8081. You can try switching to a guest
network to verify.

GPU-based inference

Use the following task definition to run GPU-based inference.

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mxnet-model-server --start --mms-config /home/model-server/config.properties
 --models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/
squeezenet_v1.1.model"
],
 "name": "mxnet-inference-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-inference:1.6.0-gpu-
py36-cu101-ubuntu16.04",
 "memory": 8111,
 "cpu": 256,
 "resourceRequirements": [{
 "type": "GPU",
 "value": "1"
 }],
 "essential": true,
 "portMappings": [{

Inference 44

AWS Deep Learning Containers Developer Guide

 "hostPort": 8081,
 "protocol": "tcp",
 "containerPort": 8081
 },
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 8080
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/mxnet-inference-gpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "squeezenet",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "mxnet-inference"
}

1. Use the following command to register the task definition. Note the output of the revision
number and use it in the next step.

aws ecs register-task-definition --cli-input-json file://<Task definition file>

2. To create the service, replace the revision_id with the output from the previous step in the
following command.

aws ecs create-service --cluster ecs-ec2-training-inference \
 --service-name cli-ec2-inference-gpu \
 --task-definition Ec2TFInference:<revision_id> \
 --desired-count 1 \
 --launch-type "EC2" \
 --scheduling-strategy REPLICA \
 --region us-east-1

Inference 45

AWS Deep Learning Containers Developer Guide

3. Verify the service and get the endpoint.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. Select the ecs-ec2-training-inference cluster.

c. On the Cluster page, choose Services and then cli-ec2-inference-cpu.

d. After your task is in a RUNNING state, choose the task identifier.

e. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console
to view the training progress logs.

f. Under Containers, expand the container details.

g. Under Name and then Network Bindings, under External Link note the IP address for
port 8081 and use it in the next step.

4. To run inference, use the following command. Replace the external IP address with the
external link IP address from the previous step.

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
curl -X POST http://<External ip>/predictions/squeezenet -T kitten.jpg

The following is sample output.

[
 {
 "probability": 0.8582226634025574,
 "class": "n02124075 Egyptian cat"
 },
 {
 "probability": 0.09160050004720688,
 "class": "n02123045 tabby, tabby cat"
 },
 {
 "probability": 0.037487514317035675,
 "class": "n02123159 tiger cat"
 },
 {
 "probability": 0.0061649843119084835,
 "class": "n02128385 leopard, Panthera pardus"
 },
 {
 "probability": 0.003171598305925727,
 "class": "n02127052 lynx, catamount"

Inference 46

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

 }
]

Important

If you are unable to connect to the external IP address, be sure that your corporate
firewall is not blocking non-standards ports, like 8081. You can try switching to a guest
network to verify.

PyTorch inference

Before you can run a task on your Amazon ECS cluster, you must register a task definition. Task
definitions are lists of containers grouped together. The following examples use a sample Docker
image that adds either CPU or GPU inference scripts to Deep Learning Containers.

CPU-based inference

Use the following task definition to run CPU-based inference.

1. Create a file named ecs-dlc-cpu-inference-taskdef.json with the following contents.

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mxnet-model-server --start --mms-config /home/model-server/
config.properties --models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/
multi-model-server/densenet/densenet.mar"
],
 "name": "pytorch-inference-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
inference:1.3.1-cpu-py36-ubuntu16.04",
 "memory": 8111,
 "cpu": 256,
 "essential": true,
 "portMappings": [{
 "hostPort": 8081,
 "protocol": "tcp",
 "containerPort": 8081

Inference 47

AWS Deep Learning Containers Developer Guide

 },
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 8080
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/densenet-inference-cpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "densenet",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "pytorch-inference"
}

2. Register the task definition. Note the revision number in the output and use it in the next step.

aws ecs register-task-definition --cli-input-json file://ecs-dlc-cpu-inference-
taskdef.json

3. Create an Amazon ECS service. When you specify the task definition, replace revision_id
with the revision number of the task definition from the output of the previous step.

aws ecs create-service --cluster ecs-ec2-training-inference \
 --service-name cli-ec2-inference-cpu \
 --task-definition Ec2PTInference:revision_id \
 --desired-count 1 \
 --launch-type EC2 \
 --scheduling-strategy REPLICA \
 --region us-east-1

4. Verify the service and get the network endpoint by completing the following steps.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. Select the ecs-ec2-training-inference cluster.

Inference 48

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

c. On the Cluster page, choose Services and then cli-ec2-inference-cpu.

d. After your task is in a RUNNING state, choose the task identifiter.

e. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console
to view the training progress logs.

f. Under Containers, expand the container details.

g. Under Name and then Network Bindings, under External Link note the IP address for
port 8081 and use it in the next step.

5. To run inference, use the following command. Replace the external IP address with the
external link IP address from the previous step.

curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg
curl -X POST http://<External ip>/predictions/densenet -T flower.jpg

Important

If you are unable to connect to the external IP address, be sure that your corporate
firewall is not blocking non-standards ports, like 8081. You can try switching to a guest
network to verify.

GPU-based inference

Use the following task definition to run GPU-based inference.

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mxnet-model-server --start --mms-config /home/model-server/
config.properties --models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/multi-
model-server/densenet/densenet.mar"
],
 "name": "pytorch-inference-container",
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference:1.3.1-
gpu-py36-cu101-ubuntu16.04",
 "memory": 8111,
 "cpu": 256,

Inference 49

AWS Deep Learning Containers Developer Guide

 "essential": true,
 "portMappings": [{
 "hostPort": 8081,
 "protocol": "tcp",
 "containerPort": 8081
 },
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 8080
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/densenet-inference-cpu",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "densenet",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "pytorch-inference"
}

1. Use the following command to register the task definition. Note the output of the revision
number and use it in the next step.

aws ecs register-task-definition --cli-input-json file://<Task definition file>

2. To create the service, replace the revision_id with the output from the previous step in the
following command.

aws ecs create-service --cluster ecs-ec2-training-inference \
 --service-name cli-ec2-inference-gpu \
 --task-definition Ec2PTInference:<revision_id> \
 --desired-count 1 \
 --launch-type "EC2" \
 --scheduling-strategy REPLICA \

Inference 50

AWS Deep Learning Containers Developer Guide

 --region us-east-1

3. Verify the service and get the network endpoint by completing the following steps.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. Select the ecs-ec2-training-inference cluster.

c. On the Cluster page, choose Services and then cli-ec2-inference-cpu.

d. After your task is in a RUNNING state, choose the task identifier.

e. Under Logs, choose View logs in CloudWatch. This takes you to the CloudWatch console
to view the training progress logs.

f. Under Containers, expand the container details.

g. Under Name and then Network Bindings, under External Link note the IP address for
port 8081 and use it in the next step.

4. To run inference, use the following command. Replace the external IP address with the
external link IP address from the previous step.

curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg
curl -X POST http://<External ip>/predictions/densenet -T flower.jpg

Important

If you are unable to connect to the external IP address, be sure that your corporate
firewall is not blocking non-standards ports, like 8081. You can try switching to a guest
network to verify.

Next steps

To learn about using Custom Entrypoints with Deep Learning Containers on Amazon ECS, see
Custom entrypoints.

Custom entrypoints

For some images, Deep Learning Containers use a custom entrypoint script. If you want to use your
own entrypoint, you can override the entrypoint as follows.

Modify the entryPoint parameter in the JSON file that includes your task definition. Include the
file path to your custom entry point script. An example is shown here.

Custom Entrypoints 51

https://console.aws.amazon.com/ecs/v2

AWS Deep Learning Containers Developer Guide

"entryPoint":[
 "sh",
 "-c",
 "/usr/local/bin/mxnet-model-server --start --foreground --mms-config /home/
model-server/config.properties --models densenet=https://dlc-samples.s3.amazonaws.com/
pytorch/multi-model-server/densenet/densenet.mar"],

Amazon EKS Tutorials

Amazon EKS tutorials provide training and inference examples and show how to set up and use
AWS Deep Learning Containers on:

• Amazon Elastic Kubernetes Service (Amazon EKS)

• Kubeflow on AWS

Kubeflow on AWS is an optimized open source distribution of Kubeflow for Amazon Elastic
Kubernetes Service (Amazon EKS). For more information, see AWS features for Kubeflow.

Note

All of the training and inference examples in this section run on a single node cluster.

Before running any example, visit Amazon EKS Setup or Kubeflow on AWS Setup and follow the
setup instructions to deploy an Amazon EKS cluster.

The installation instructions for Kubeflow on AWS provide steps to create an Amazon EKS cluster
before deploying the AWS distribution of Kubeflow.

Contents

• Amazon EKS Setup

• Kubeflow on AWS Setup

• Custom Entrypoints

• Troubleshooting AWS Deep Learning Containers on EKS

Amazon EKS Tutorials 52

https://awslabs.github.io/kubeflow-manifests/docs/about/
https://awslabs.github.io/kubeflow-manifests/main/docs/about/features/

AWS Deep Learning Containers Developer Guide

Amazon EKS Setup

This section provides installation instructions to setup a deep learning environment running AWS
Deep Learning Containers on Amazon Elastic Kubernetes Service (Amazon EKS).

Custom Images

Custom images are helpful if you want to load your own code or datasets and have them available
on each node in your cluster. Examples are provided that use custom images. You can try them out
to get started without creating your own.

• Building AWS Deep Learning Containers Custom Images

Licensing

To use GPU hardware, use an Amazon Machine Image that has the necessary GPU drivers. We
recommend using the Amazon EKS-optimized AMI with GPU support, which is used in subsequent
steps of this guide. This AMI includes software that is not AWS, so it requires an end user license
agreement (EULA). You must subscribe to the EKS-optimized AMI in the AWS Marketplace and
accept the EULA before you can use the AMI in your worker node groups.

Important

To subscribe to the AMI, visit the AWS Marketplace.

Configure Security Settings

To use Amazon EKS you must have a user account that has access to several security permissions.
These are set with the AWS Identity and Access Management (IAM) tool.

1. Create an IAM user or update an existing IAM user by following the steps in Creating an IAM
user in your AWS account.

2. Get the credentials of this user.

a. Open the IAM console at https://console.aws.amazon.com/iam/.

b. Under Users, select your user.

c. Select Security Credentials.

Amazon EKS Setup 53

https://aws.amazon.com/marketplace/pp/B07GRHFXGM
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://console.aws.amazon.com/iam/

AWS Deep Learning Containers Developer Guide

d. Select Create access key.

e. Download the key pair or copy the information for use later.

3. Add the following policies to your IAM user. These policies provide the required access for
Amazon EKS, IAM, and Amazon Elastic Compute Cloud (Amazon EC2).

a. Select Permissions.

b. Select Add permissions.

c. Select Create policy.

d. From the Create policy window, select the JSON tab.

e. Paste the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "eks:*",
 "Resource": "*"
 }
]
}

f. Name the policy EKSFullAccess and create the policy.

g. Navigate back to the Grant permissions window.

h. Select Attach existing policies directly.

i. Search for EKSFullAccess, and select the check box.

j. Search for AWSCloudFormationFullAccess, and select the check box.

k. Search for AmazonEC2FullAccess, and select the check box.

l. Search for IAMFullAccess, and select the check box.

m. Search AmazonEC2ContainerRegistryReadOnly, and select the check box.

n. Search AmazonEKS_CNI_Policy, and select the check box.

o. Search AmazonS3FullAccess, and select the check box.

p. Accept the changes.

Amazon EKS Setup 54

AWS Deep Learning Containers Developer Guide

Gateway Node

To setup an Amazon EKS cluster, use the open source tool, eksctl. We recommend that you use
an Amazon EC2 instance with the Deep Learning Base AMI (Ubuntu) to allocate and control your
cluster. You can run these tools locally on your computer or an Amazon EC2 instance that you
already have running. However, to simplify this guide we assume you're using a Deep Learning Base
AMI (DLAMI) with Ubuntu 16.04. We refer to this as your gateway node.

Before you start, consider the location of your training data or where you want to run your cluster
for responding to inference requests. Typically your data and cluster for training or inference
should be in the same Region. Also, you spin up your gateway node in this same Region. You can
follow this quick 10 minute tutorial that guides you to launch a DLAMI to use as your gateway
node.

1. Login to your gateway node.

2. Install or upgrade AWS CLI. To access the required new Kubernetes features, you must have the
latest version.

$ sudo pip install --upgrade awscli

3. Install eksctl by running the command corresponding to your operating system in Amazon
EKS User Guide's installation instructions. For more information about eksctl, see also eksctl
documentation.

4. Install kubectl by following the steps in the Installing kubectl guide.

Note

You must use a kubectl version that is within one minor version difference of your
Amazon EKS cluster control plane version. For example, a 1.18 kubectl client works
with Kubernetes 1.17, 1.18 and 1.19 clusters.

5. Install aws-iam-authenticator by running the following commands. For more information
on aws-iam-authenticator, see Installing aws-iam-authenticator.

$ curl -o aws-iam-authenticator https://amazon-eks.s3.us-
west-2.amazonaws.com/1.19.6/2021-01-05/bin/linux/amd64/aws-iam-authenticator
$ chmod +x aws-iam-authenticator

Amazon EKS Setup 55

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://eksctl.io/
https://eksctl.io/
https://docs.aws.amazon.com//eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html

AWS Deep Learning Containers Developer Guide

$ cp ./aws-iam-authenticator $HOME/bin/aws-iam-authenticator && export PATH=$HOME/
bin:$PATH

6. Run aws configure for the IAM user from the Security Configuration section. You are
copying the IAM user's AWS Access Key, then the AWS Secret Access Key that you accessed in
the IAM console and pasting these into the prompts from aws configure.

GPU Clusters

1. Examine the following command to create a cluster using a p3.8xlarge instance type. You must
make the following modifications before you run it.

• name is what you use to manage your cluster. You can change cluster-name to be
whatever name you like as long as there are no spaces or special characters.

• eks-version is the Amazon EKS kubernetes version. For the supported Amazon EKS
versions, see Available Amazon EKS Kubernetes versions.

• nodes is the number of instances you want in your cluster. In this example, we're starting
with three nodes.

• node-type refers to an instance class.

• timeout and *ssh-access * can be left alone.

• ssh-public-key is the name of the key that you want to use to login your worker nodes.
Either use a security key you already use or create a new one but be sure to swap out the
ssh-public-key with a key that was allocated for the Region you used. Note: You only need to
provide the key name as seen in the 'key pairs' section of the Amazon EC2 Console.

• region is the Amazon EC2 Region where the cluster is launched. If you plan to use training
data that resides in a specific Region (other than <us-east-1>) we recommend that you
use the same Region. The ssh-public-key must have access to launch instances in this Region.

Note

The rest of this guide assumes <us-east-1> as the Region.

2. After you have made changes to the command, run it, and wait. It can take several minutes for
a single node cluster, and can take even longer if you chose to create a large cluster.

$ eksctl create cluster <cluster-name> \
 --version <eks-version> \

Amazon EKS Setup 56

https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://aws.amazon.com/ec2/instance-types/

AWS Deep Learning Containers Developer Guide

 --nodes 3 \
 --node-type=<p3.8xlarge> \
 --timeout=40m \
 --ssh-access \
 --ssh-public-key <key_pair_name> \
 --region <us-east-1> \
 --zones=us-east-1a,us-east-1b,us-east-1d \
 --auto-kubeconfig

You should see something similar to the following output:

EKS cluster "training-1" in "us-east-1" region is ready

3. Ideally the auto-kubeconfig should have configured your cluster. However, if you run into
issues you can run the command below to set your kubeconfig. This command can also be
used if you want to change your gateway node and manage your cluster from elsewhere.

$ aws eks --region <region> update-kubeconfig --name <cluster-name>

You should see something similar to the following output:

Added new context arn:aws:eks:us-east-1:999999999999:cluster/training-1 to /home/
ubuntu/.kube/config

4. If you plan to use GPU instance types, make sure to run the NVIDIA device plugin for
Kubernetes on your cluster with the following command:

$ kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/
v1.12/nvidia-device-plugin.yml
$ kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/
v0.9.0/nvidia-device-plugin.yml

5. Verify the GPUs available on each node in your cluster

$ kubectl get nodes "-o=custom-
columns=NAME:.metadata.name,GPU:.status.allocatable.nvidia\.com/gpu"

Amazon EKS Setup 57

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin

AWS Deep Learning Containers Developer Guide

CPU Clusters

Refer to the previous section's discussion on using the eksctl command to launch a GPU cluster,
and modify node-type to use a CPU instance type.

Habana Clusters

Refer to the previous discussion on using the eksctl command to launch a GPU cluster, and modify
node-type to use an instance with Habana Gaudi accelerators, such as the DL1 instance type.

Test Your Clusters

1. You can run a kubectl command on the cluster to check its status. Try the command to make
sure it is picking up the current cluster you want to manage.

$ kubectl get nodes -o wide

2. Take a look in ~/.kube. This directory has the kubeconfig files for the various clusters
configured from your gateway node. If you browse further into the folder you can find
~/.kube/eksctl/clusters - This holds the kubeconfig file for clusters created using eksctl. This
file has some details which you ideally shouldn't have to modify, since the tools are generating
and updating the configurations for you, but it is good to reference when troubleshooting.

3. Verify that the cluster is active.

$ aws eks --region <region> describe-cluster --name <cluster-name> --query
 cluster.status

You should see the following output:

"ACTIVE"

4. Verify the kubectl context if you have multiple clusters set up from the same host instance.
Sometimes it helps to make sure that the default context found by kubectl is set properly.
Check this using the following command:

$ kubectl config get-contexts

5. If the context is not set as expected, fix this using the following command:

Amazon EKS Setup 58

https://aws.amazon.com/https://aws.amazon.com/ec2/instance-types/dl1/

AWS Deep Learning Containers Developer Guide

$ aws eks --region <region> update-kubeconfig --name <cluster-name>

Manage Your Clusters

When you want to control or query a cluster you can address it by the configuration file using the
kubeconfig parameter. This is useful when you have more than one cluster. For example, if you
have a separate cluster called “training-gpu-1” you can call the get pods command on it by passing
the configuration file as a parameter as follows:

$ kubectl --kubeconfig=/home/ubuntu/.kube/eksctl/clusters/training-gpu-1 get pods

It is useful to note that you can run this same command without the kubeconfig parameter. In that
case, the command will use the current actively controlled cluster (current-context).

$ kubectl get pods

If you setup multiple clusters and they have yet to have the NVIDIA plugin installed, you can install
it this way:

$ kubectl --kubeconfig=/home/ubuntu/.kube/eksctl/clusters/training-gpu-1 create -f
 https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.9.0/nvidia-device-
plugin.yml

You also change the active cluster by updating the kubeconfig, passing the name of the cluster you
want to manage. The following command updates kubeconfig and removes the need to use the
kubeconfig parameter.

$ aws eks —region us-east-1 update-kubeconfig —name training-gpu-1

If you follow all of the examples in this guide, you might switch frequently between active clusters.
This is so you can orchestrate training or inference or use different frameworks running on
different clusters.

Cleanup

When you're done using the cluster, delete it to avoid incurring additional costs.

Amazon EKS Setup 59

AWS Deep Learning Containers Developer Guide

$ eksctl delete cluster --name=<cluster-name>

To delete only a pod, run the following:

$ kubectl delete pods <name>

To reset the secret for access to the cluster, run the following:

$ kubectl delete secret ${SECRET} -n ${NAMESPACE} || true

To delete a nodegroup attached to a cluster, run the following:

$ eksctl delete nodegroup --name <cluster_name>

To attach a nodegroup to a cluster, run the following:

$ eksctl create nodegroup
 --cluster <cluster-name> \
 --node-ami <ami_id> \
 --nodes <num_nodes> \
 --node-type=<instance_type> \
 --timeout=40m \
 --ssh-access \
 --ssh-public-key <key_pair_name> \
 --region <us-east-1> \
 --auto-kubeconfig

Next steps

To learn about training and inference with Deep Learning Containers on Amazon EKS, visit Training
or Inference.

Contents

• Training

• Inference

Amazon EKS Setup 60

AWS Deep Learning Containers Developer Guide

Training

Once you've created a cluster using the steps in Amazon EKS Setup, you can use it to run training
jobs. For training, you can use either a CPU, GPU, or distributed GPU example depending on
the nodes in your cluster. The topics in the following sections show how to use Apache MXNet
(Incubating), PyTorch, TensorFlow, and TensorFlow 2 training examples.

Contents

• CPU Training

• GPU Training

• Distributed GPU Training

CPU Training

This section is for training on CPU-based containers.

For a complete list of Deep Learning Containers, see Deep Learning Containers Images. For tips
about the best configuration settings if you're using the Intel Math Kernel Library (MKL), see AWS
Deep Learning Containers Intel Math Kernel Library (MKL) Recommendations.

Contents

• Apache MXNet (Incubating) CPU training

• TensorFlow CPU training

• PyTorch CPU training

• Amazon S3 Plugin for PyTorch

• Next steps

Apache MXNet (Incubating) CPU training

This tutorial guides you on training with Apache MXNet (Incubating) on your single node CPU
cluster.

1. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will download the MXNet repository and run an MNIST example.
Open vi or vim and copy and past the following content. Save this file as mxnet.yaml.

apiVersion: v1

Amazon EKS Setup 61

AWS Deep Learning Containers Developer Guide

kind: Pod
metadata:
 name: mxnet-training
spec:
 restartPolicy: OnFailure
 containers:
 - name: mxnet-training
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-inference:1.6.0-cpu-
py36-ubuntu16.04
 command: ["/bin/sh","-c"]
 args: ["git clone -b v1.4.x https://github.com/apache/incubator-mxnet.git &&
 python ./incubator-mxnet/example/image-classification/train_mnist.py"]

2. Assign the pod file to the cluster using kubectl.

$ kubectl create -f mxnet.yaml

3. You should see the following output:

pod/mxnet-training created

4. Check the status. The name of the job "mxnet-training” was in the mxnet.yaml file. It will now
appear in the status. If you're running any other tests or have previously run something, it
appears in this list. Run this several times until you see the status change to “Running”.

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
mxnet-training 0/1 Running 8 19m

5. Check the logs to see the training output.

$ kubectl logs mxnet-training

You should see something similar to the following output:

Cloning into 'incubator-mxnet'...
INFO:root:Epoch[0] Batch [0-100] Speed: 18437.78 samples/sec
 accuracy=0.777228

Amazon EKS Setup 62

AWS Deep Learning Containers Developer Guide

INFO:root:Epoch[0] Batch [100-200] Speed: 16814.68 samples/sec
 accuracy=0.907188
INFO:root:Epoch[0] Batch [200-300] Speed: 18855.48 samples/sec
 accuracy=0.926719
INFO:root:Epoch[0] Batch [300-400] Speed: 20260.84 samples/sec
 accuracy=0.938438
INFO:root:Epoch[0] Batch [400-500] Speed: 9062.62 samples/sec
 accuracy=0.938594
INFO:root:Epoch[0] Batch [500-600] Speed: 10467.17 samples/sec
 accuracy=0.945000
INFO:root:Epoch[0] Batch [600-700] Speed: 11082.03 samples/sec
 accuracy=0.954219
INFO:root:Epoch[0] Batch [700-800] Speed: 11505.02 samples/sec
 accuracy=0.956875
INFO:root:Epoch[0] Batch [800-900] Speed: 9072.26 samples/sec
 accuracy=0.955781
INFO:root:Epoch[0] Train-accuracy=0.923424
...

6. Check the logs to watch the training progress. You can also continue to check “get pods” to
refresh the status. When the status changes to “Completed”, the training job is done.

Next steps

To learn CPU-based inference on Amazon EKS using MXNet with Deep Learning Containers, see
Apache MXNet (Incubating) CPU inference.

TensorFlow CPU training

This tutorial guides you on training TensorFlow models on your single node CPU cluster.

1. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will download Keras and run a Keras example. This example uses
the TensorFlow framework. Open vi or vim and copy and paste the following content. Save
this file as tf.yaml. You can use this with either TensorFlow or TensorFlow 2. To use it with
TensorFlow 2, change the Docker image to a TensorFlow 2 image.

apiVersion: v1
kind: Pod
metadata:
 name: tensorflow-training
spec:

Amazon EKS Setup 63

AWS Deep Learning Containers Developer Guide

 restartPolicy: OnFailure
 containers:
 - name: tensorflow-training
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:1.15.2-cpu-py36-ubuntu18.04
 command: ["/bin/sh","-c"]
 args: ["git clone https://github.com/fchollet/keras.git && python /keras/
examples/mnist_cnn.py"]

2. Assign the pod file to the cluster using kubectl.

$ kubectl create -f tf.yaml

3. You should see the following output:

pod/tensorflow-training created

4. Check the status. The name of the job “tensorflow-training” was in the tf.yaml file. It will now
appear in the status. If you're running any other tests or have previously run something, it
appears in this list. Run this several times until you see the status change to “Running”.

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
tensorflow-training 0/1 Running 8 19m

5. Check the logs to see the training output.

$ kubectl logs tensorflow-training

You should see something similar to the following output:

Cloning into 'keras'...
Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

 8192/11490434 [..............................] - ETA: 0s
 6479872/11490434 [===============>..............] - ETA: 0s
 8740864/11490434 [=====================>........] - ETA: 0s

Amazon EKS Setup 64

AWS Deep Learning Containers Developer Guide

11493376/11490434 [==============================] - 0s 0us/step
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
2019-03-19 01:52:33.863598: I tensorflow/core/platform/cpu_feature_guard.cc:141]
 Your CPU supports instructions that this TensorFlow binary was not compiled to
 use: AVX512F
2019-03-19 01:52:33.867616: I tensorflow/core/common_runtime/process_util.cc:69]
 Creating new thread pool with default inter op setting: 2. Tune using
 inter_op_parallelism_threads for best performance.

 128/60000 [..............................] - ETA: 10:43 - loss: 2.3076 - acc:
 0.0625
 256/60000 [..............................] - ETA: 5:59 - loss: 2.2528 - acc:
 0.1445
 384/60000 [..............................] - ETA: 4:24 - loss: 2.2183 - acc:
 0.1875
 512/60000 [..............................] - ETA: 3:35 - loss: 2.1652 - acc:
 0.1953
 640/60000 [..............................] - ETA: 3:05 - loss: 2.1078 - acc:
 0.2422
 ...

6. You can check the logs to watch the training progress. You can also continue to check “get
pods” to refresh the status. When the status changes to “Completed” you will know that the
training job is done.

Next steps

To learn CPU-based inference on Amazon EKS using TensorFlow with Deep Learning Containers,
see TensorFlow CPU inference.

PyTorch CPU training

This tutorial guides you through training a PyTorch model on your single node CPU pod.

1. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will download the PyTorch repository and run an MNIST example.
Open vi or vim, then copy and paste the following content. Save this file as pytorch.yaml.

Amazon EKS Setup 65

AWS Deep Learning Containers Developer Guide

apiVersion: v1
kind: Pod
metadata:
 name: pytorch-training
spec:
 restartPolicy: OnFailure
 containers:
 - name: pytorch-training
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.5.1-cpu-
py36-ubuntu16.04
 command:
 - "/bin/sh"
 - "-c"
 args:
 - "git clone https://github.com/pytorch/examples.git && python examples/mnist/
main.py --no-cuda"
 env:
 - name: OMP_NUM_THREADS
 value: "36"
 - name: KMP_AFFINITY
 value: "granularity=fine,verbose,compact,1,0"
 - name: KMP_BLOCKTIME
 value: "1"

2. Assign the pod file to the cluster using kubectl.

$ kubectl create -f pytorch.yaml

3. You should see the following output:

pod/pytorch-training created

4. Check the status. The name of the job "pytorch-training” was in the pytorch.yaml file. It will
now appear in the status. If you're running any other tests or have previously run something, it
appears in this list. Run this several times until you see the status change to “Running”.

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE

Amazon EKS Setup 66

AWS Deep Learning Containers Developer Guide

pytorch-training 0/1 Running 8 19m

5. Check the logs to see the training output.

$ kubectl logs pytorch-training

You should see something similar to the following output:

Cloning into 'examples'...
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/
MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:00, 40133996.38it/s]
Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/
MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw
32768it [00:00, 831315.84it/s]
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/
MNIST/raw/t10k-images-idx3-ubyte.gz
1654784it [00:00, 13019129.43it/s]
Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/
MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:00, 337197.38it/s]
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw
Processing...
Done!
Train Epoch: 1 [0/60000 (0%)] Loss: 2.300039
Train Epoch: 1 [640/60000 (1%)] Loss: 2.213470
Train Epoch: 1 [1280/60000 (2%)] Loss: 2.170460
Train Epoch: 1 [1920/60000 (3%)] Loss: 2.076699
Train Epoch: 1 [2560/60000 (4%)] Loss: 1.868078
Train Epoch: 1 [3200/60000 (5%)] Loss: 1.414199
Train Epoch: 1 [3840/60000 (6%)] Loss: 1.000870

6. Check the logs to watch the training progress. You can also continue to check “get pods” to
refresh the status. When the status changes to “Completed” you will know that the training
job is done.

See Cleanup for information on cleaning up a cluster after you are done using it.

Amazon EKS Setup 67

AWS Deep Learning Containers Developer Guide

Amazon S3 Plugin for PyTorch

Deep Learning Containers include a plugin that enables you to use data from an Amazon S3 bucket
for PyTorch training.

1. To begin using the Amazon S3 plugin on Amazon EKS, check to make sure that your
cluster instances have full access to Amazon S3. Create an IAM role that grants Amazon
S3 access to an Amazon EC2 instance and attach the role to your instance. You can use the
AmazonS3FullAccess or AmazonS3ReadOnlyAccess policies.

2. Set up your AWS_REGION environment variable with the region of your choice.

export AWS_REGION=us-east-1

3. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will use the PyTorch Amazon S3 plugin to access an example Amazon
S3 dataset.

Note

Your CPU cluster should use c5.12xlarge nodes or greater for this example.

Open vi or vim, then copy and paste the following content. Save this file as s3plugin.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: pytorch-s3-plugin
spec:
 restartPolicy: OnFailure
 containers:
 - name: pytorch-s3-plugin
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.8.1-cpu-
py36-ubuntu18.04-v1.6
 command:
 - "/bin/sh"
 - "-c"
 args:
 - "git clone https://github.com/aws/amazon-s3-plugin-for-pytorch.git && python
 amazon-s3-plugin-for-pytorch/examples/s3_imagenet_example.py"
 env:

Amazon EKS Setup 68

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess$serviceLevelSummary
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess$serviceLevelSummary

AWS Deep Learning Containers Developer Guide

 - name: OMP_NUM_THREADS
 value: "36"
 - name: KMP_AFFINITY
 value: "granularity=fine,verbose,compact,1,0"
 - name: KMP_BLOCKTIME
 value: "1"

4. Assign the pod file to the cluster using kubectl.

$ kubectl create -f s3plugin.yaml

5. Check the status. The name of the job pytorch-s3-plugin that was specified in the
s3plugin.yaml file will now appear alongside the status information. You can run the
following command several times until you see the status change to “Running.”

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
pytorch-s3-plugin 0/1 Running 8 19m

6. Check the logs to see more details.

$ kubectl logs pytorch-s3-plugin

For more information, see the Amazon S3 Plugin for PyTorch repository.

Next steps

To learn CPU-based inference on Amazon EKS using PyTorch with Deep Learning Containers, see
PyTorch CPU inference.

GPU Training

This section is for training on GPU-based clusters.

For a complete list of Deep Learning Containers, refer to Deep Learning Containers Images. For tips
about the best configuration settings if you're using the Intel Math Kernel Library (MKL), see AWS
Deep Learning Containers Intel Math Kernel Library (MKL) Recommendations.

Amazon EKS Setup 69

https://github.com/aws/amazon-s3-plugin-for-pytorch

AWS Deep Learning Containers Developer Guide

Contents

• Apache MXNet (Incubating) GPU training

• TensorFlow GPU training

• PyTorch GPU training

• Amazon S3 Plugin for PyTorch

Apache MXNet (Incubating) GPU training

This tutorial guides you on training with Apache MXNet (Incubating) on your single node GPU
cluster.

1. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will download the MXNet repository and run an MNIST example.
Open vi or vim and copy and past the following content. Save this file as mxnet.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: mxnet-training
spec:
 restartPolicy: OnFailure
 containers:
 - name: mxnet-training
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-training:1.6.0-gpu-
py36-cu101-ubuntu16.04
 command: ["/bin/sh","-c"]
 args: ["git clone -b v1.4.x https://github.com/apache/incubator-mxnet.git &&
 python ./incubator-mxnet/example/image-classification/train_mnist.py"]

2. Assign the pod file to the cluster using kubectl.

$ kubectl create -f mxnet.yaml

3. You should see the following output:

pod/mxnet-training created

4. Check the status. The name of the job “tensorflow-training” was in the tf.yaml file. It will now
appear in the status. If you're running any other tests or have previously run something, it will
appear in this list. Run this several times until you see the status change to “Running”.

Amazon EKS Setup 70

AWS Deep Learning Containers Developer Guide

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
mxnet-training 0/1 Running 8 19m

5. Check the logs to see the training output.

$ kubectl logs mxnet-training

You should see something similar to the following output:

Cloning into 'incubator-mxnet'...
INFO:root:Epoch[0] Batch [0-100] Speed: 18437.78 samples/sec
 accuracy=0.777228
INFO:root:Epoch[0] Batch [100-200] Speed: 16814.68 samples/sec
 accuracy=0.907188
INFO:root:Epoch[0] Batch [200-300] Speed: 18855.48 samples/sec
 accuracy=0.926719
INFO:root:Epoch[0] Batch [300-400] Speed: 20260.84 samples/sec
 accuracy=0.938438
INFO:root:Epoch[0] Batch [400-500] Speed: 9062.62 samples/sec
 accuracy=0.938594
INFO:root:Epoch[0] Batch [500-600] Speed: 10467.17 samples/sec
 accuracy=0.945000
INFO:root:Epoch[0] Batch [600-700] Speed: 11082.03 samples/sec
 accuracy=0.954219
INFO:root:Epoch[0] Batch [700-800] Speed: 11505.02 samples/sec
 accuracy=0.956875
INFO:root:Epoch[0] Batch [800-900] Speed: 9072.26 samples/sec
 accuracy=0.955781
INFO:root:Epoch[0] Train-accuracy=0.923424
...

6. Check the logs to watch the training progress. You can also continue to check “get pods” to
refresh the status. When the status changes to “Completed”, the training job is done.

Amazon EKS Setup 71

AWS Deep Learning Containers Developer Guide

Next steps

To learn GPU-based inference on Amazon EKS using MXNet with Deep Learning Containers, see
Apache MXNet (Incubating) GPU inference.

TensorFlow GPU training

This tutorial guides you on training TensorFlow models on your single node GPU cluster.

1. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will download Keras and run a Keras example. This example uses
the TensorFlow framework. Open vi or vim and copy and past the following content. Save
this file as tf.yaml. You can use this with either TensorFlow or TensorFlow 2. To use it with
TensorFlow 2, change the Docker image to a TensorFlow 2 image.

apiVersion: v1
kind: Pod
metadata:
 name: tensorflow-training
spec:
 restartPolicy: OnFailure
 containers:
 - name: tensorflow-training
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-training:1.15.2-
gpu-py37-cu100-ubuntu18.04
 command: ["/bin/sh","-c"]
 args: ["git clone https://github.com/fchollet/keras.git && python /keras/
examples/mnist_cnn.py"]
 resources:
 limits:
 nvidia.com/gpu: 1

2. Assign the pod file to the cluster using kubectl.

$ kubectl create -f tf.yaml

3. You should see the following output:

pod/tensorflow-training created

Amazon EKS Setup 72

AWS Deep Learning Containers Developer Guide

4. Check the status. The name of the job “tensorflow-training” was in the tf.yaml file. It will now
appear in the status. If you're running any other tests or have previously run something, it
appears in this list. Run this several times until you see the status change to “Running”.

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
tensorflow-training 0/1 Running 8 19m

5. Check the logs to see the training output.

$ kubectl logs tensorflow-training

You should see something similar to the following output:

Cloning into 'keras'...
Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

 8192/11490434 [..............................] - ETA: 0s
 6479872/11490434 [===============>..............] - ETA: 0s
 8740864/11490434 [=====================>........] - ETA: 0s
11493376/11490434 [==============================] - 0s 0us/step
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
2019-03-19 01:52:33.863598: I tensorflow/core/platform/cpu_feature_guard.cc:141]
 Your CPU supports instructions that this TensorFlow binary was not compiled to
 use: AVX512F
2019-03-19 01:52:33.867616: I tensorflow/core/common_runtime/process_util.cc:69]
 Creating new thread pool with default inter op setting: 2. Tune using
 inter_op_parallelism_threads for best performance.

 128/60000 [..............................] - ETA: 10:43 - loss: 2.3076 - acc:
 0.0625
 256/60000 [..............................] - ETA: 5:59 - loss: 2.2528 - acc:
 0.1445

Amazon EKS Setup 73

AWS Deep Learning Containers Developer Guide

 384/60000 [..............................] - ETA: 4:24 - loss: 2.2183 - acc:
 0.1875
 512/60000 [..............................] - ETA: 3:35 - loss: 2.1652 - acc:
 0.1953
 640/60000 [..............................] - ETA: 3:05 - loss: 2.1078 - acc:
 0.2422
 ...

6. Check the logs to watch the training progress. You can also continue to check “get pods” to
refresh the status. When the status changes to “Completed”, the training job is done.

Next steps

To learn GPU-based inference on Amazon EKS using TensorFlow with Deep Learning Containers,
see TensorFlow GPU inference.

PyTorch GPU training

This tutorial guides you on training with PyTorch on your single node GPU cluster.

1. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will download the PyTorch repository and run an MNIST example.
Open vi or vim, then copy and paste the following content. Save this file as pytorch.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: pytorch-training
spec:
 restartPolicy: OnFailure
 containers:
 - name: pytorch-training
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.5.1-gpu-
py36-cu101-ubuntu16.04
 command:
 - "/bin/sh"
 - "-c"
 args:
 - "git clone https://github.com/pytorch/examples.git && python examples/mnist/
main.py --no-cuda"
 env:
 - name: OMP_NUM_THREADS
 value: "36"

Amazon EKS Setup 74

AWS Deep Learning Containers Developer Guide

 - name: KMP_AFFINITY
 value: "granularity=fine,verbose,compact,1,0"
 - name: KMP_BLOCKTIME
 value: "1"

2. Assign the pod file to the cluster using kubectl.

$ kubectl create -f pytorch.yaml

3. You should see the following output:

pod/pytorch-training created

4. Check the status. The name of the job "pytorch-training” was in the pytorch.yaml file. It will
now appear in the status. If you're running any other tests or have previously run something, it
appears in this list. Run this several times until you see the status change to “Running”.

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
pytorch-training 0/1 Running 8 19m

5. Check the logs to see the training output.

$ kubectl logs pytorch-training

You should see something similar to the following output:

Cloning into 'examples'...
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/
MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:00, 40133996.38it/s]
Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/
MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw
32768it [00:00, 831315.84it/s]
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/
MNIST/raw/t10k-images-idx3-ubyte.gz

Amazon EKS Setup 75

AWS Deep Learning Containers Developer Guide

1654784it [00:00, 13019129.43it/s]
Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/
MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:00, 337197.38it/s]
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw
Processing...
Done!
Train Epoch: 1 [0/60000 (0%)] Loss: 2.300039
Train Epoch: 1 [640/60000 (1%)] Loss: 2.213470
Train Epoch: 1 [1280/60000 (2%)] Loss: 2.170460
Train Epoch: 1 [1920/60000 (3%)] Loss: 2.076699
Train Epoch: 1 [2560/60000 (4%)] Loss: 1.868078
Train Epoch: 1 [3200/60000 (5%)] Loss: 1.414199
Train Epoch: 1 [3840/60000 (6%)] Loss: 1.000870

6. Check the logs to watch the training progress. You can also continue to check “get pods” to
refresh the status. When the status changes to “Completed", the training job is done.

See Cleanup for information on cleaning up a cluster after you are done using it.

Next steps

To learn GPU-based inference on Amazon EKS using PyTorch with Deep Learning Containers, see
PyTorch GPU inference.

Amazon S3 Plugin for PyTorch

Deep Learning Containers include a plugin that enables you to use data from an Amazon S3 bucket
for PyTorch training.

1. To begin using the Amazon S3 plugin on Amazon EKS, check to make sure that your
cluster instances have full access to Amazon S3. Create an IAM role that grants Amazon
S3 access to an Amazon EC2 instance and attach the role to your instance. You can use the
AmazonS3FullAccess or AmazonS3ReadOnlyAccess policies.

2. Set up your AWS_REGION environment variable with the region of your choice.

export AWS_REGION=us-east-1

Amazon EKS Setup 76

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess$serviceLevelSummary
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess$serviceLevelSummary

AWS Deep Learning Containers Developer Guide

3. Create a pod file for your cluster. A pod file will provide the instructions about what the cluster
should run. This pod file will use the PyTorch Amazon S3 plugin to access an example Amazon
S3 dataset.

Note

Your GPU cluster should use p3.8xlarge nodes or greater for this example.

Open vi or vim, then copy and paste the following content. Save this file as s3plugin.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: pytorch-s3-plugin
spec:
 restartPolicy: OnFailure
 containers:
 - name: pytorch-s3-plugin
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.8.1-gpu-
py36-cu111-ubuntu18.04-v1.7
 command:
 - "/bin/sh"
 - "-c"
 args:
 - "git clone https://github.com/aws/amazon-s3-plugin-for-pytorch.git && python
 amazon-s3-plugin-for-pytorch/examples/s3_imagenet_example.py"
 env:
 - name: OMP_NUM_THREADS
 value: "36"
 - name: KMP_AFFINITY
 value: "granularity=fine,verbose,compact,1,0"
 - name: KMP_BLOCKTIME
 value: "1"

4. Assign the pod file to the cluster using kubectl.

$ kubectl create -f s3plugin.yaml

Amazon EKS Setup 77

AWS Deep Learning Containers Developer Guide

5. Check the status. The name of the job pytorch-s3-plugin that was specified in the
s3plugin.yaml file will now appear alongside the status information. You can run the
following command several times until you see the status change to “Running.”

$ kubectl get pods

You should see the following output:

NAME READY STATUS RESTARTS AGE
pytorch-s3-plugin 0/1 Running 8 19m

6. Check the logs to see more details.

$ kubectl logs pytorch-s3-plugin

For more information, see the Amazon S3 Plugin for PyTorch repository.

Distributed GPU Training

This section is for running distributed training on multi-node GPU clusters.

For a complete list of Deep Learning Containers, refer to Deep Learning Containers Images.

Contents

• Set up your cluster for distributed training

• Apache MXNet (Incubating) distributed GPU training

• Apache MXNet (Incubating) with Horovod distributed GPU training

• TensorFlow with Horovod distributed GPU training

• PyTorch distributed GPU training

• Amazon S3 Plugin for PyTorch

Set up your cluster for distributed training

To run distributed training on EKS, you need the following components installed on your cluster.

• The default installation of Kubeflow with required components, such as PyTorch operators,
TensorFlow operators, and the NVIDIA plugin.

Amazon EKS Setup 78

https://github.com/aws/amazon-s3-plugin-for-pytorch
https://www.kubeflow.org/docs/aws/deploy/install-kubeflow/

AWS Deep Learning Containers Developer Guide

• Apache MXNet and MPI operators.

Download and run the script to install the required components in the cluster.

$ wget -O install_kubeflow.sh https://raw.githubusercontent.com/aws/deep-
learning-containers/master/test/dlc_tests/eks/eks_manifest_templates/kubeflow/
install_kubeflow.sh
$ chmod +x install_kubeflow.sh
$./install_kubeflow.sh <EKS_CLUSTER_NAME> <AWS_REGION>

Apache MXNet (Incubating) distributed GPU training

This tutorial shows how to run distributed training with Apache MXNet (Incubating) on your multi-
node GPU cluster using Parameter Server. To run MXNet distributed training on EKS, you use the
Kubernetes MXNet-operator named MXJob. It provides a custom resource that makes it easy to run
distributed or non-distributed MXNet jobs (training and tuning) on Kubernetes. This operator is
installed in the previous setup step.

Using a Custom Resource Definition (CRD) gives users the ability to create and manage MX Jobs
just like builtin K8s resources. Verify that the MXNet custom resource is installed.

$ kubectl get crd

The output should include mxjobs.kubeflow.org.

Running MNIST distributed training with parameter server example

Create a pod file(mx_job_dist.yaml) for your job according to the available cluster configuration
and job to run. There are 3 jobModes you need to specify: Scheduler, Server and Worker. You
can specify how many pods you want to spawn with the field replicas. The instance type of the
Scheduler, Server, and Worker will be of the type specified at cluster creation.

• Scheduler: There is only one scheduler. The role of the scheduler is to set up the cluster. This
includes waiting for messages that each node has come up and which port the node is listening
on. The scheduler then lets all processes know about every other node in the cluster, so that they
can communicate with each other.

• Server: There can be multiple servers which store the model’s parameters, and communicate
with workers. A server may or may not be co-located with the worker processes.

Amazon EKS Setup 79

https://www.kubeflow.org/docs/components/mxnet/

AWS Deep Learning Containers Developer Guide

• Worker: A worker node actually performs training on a batch of training samples. Before
processing each batch, the workers pull weights from servers. The workers also send gradients to
the servers after each batch. Depending on the workload for training a model, it might not be a
good idea to run multiple worker processes on the same machine.

• Provide container image you want to use with the field image.

• You can provide restartPolicy from one of the Always, OnFailure and Never. It determines
whether pods will be restarted when they exit or not.

• Provide container image you want to use with the field image.

1. To create a MXJob template, modify the following code block according to your requirements
and save it in a file named mx_job_dist.yaml.

apiVersion: "kubeflow.org/v1beta1"
kind: "MXJob"
metadata:
 name: <JOB_NAME>
spec:
 jobMode: MXTrain
 mxReplicaSpecs:
 Scheduler:
 replicas: 1
 restartPolicy: Never
 template:
 spec:
 containers:
 - name: mxnet
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
mxnet-training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 Server:
 replicas: <NUM_SERVERS>
 restartPolicy: Never
 template:
 spec:
 containers:
 - name: mxnet
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
mxnet-training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 Worker:
 replicas: <NUM_WORKERS>
 restartPolicy: Never

Amazon EKS Setup 80

AWS Deep Learning Containers Developer Guide

 template:
 spec:
 containers:
 - name: mxnet
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
mxnet-training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 command:
 - "python"
 args:
 - "/incubator-mxnet/example/image-classification/train_mnist.py"
 - "--num-epochs"
 - <EPOCHS>
 - "--num-layers"
 - <LAYERS>
 - "--kv-store"
 - "dist_device_sync"
 - "--gpus"
 - <GPUS>
 resources:
 limits:
 nvidia.com/gpu: <GPU_LIMIT>

2. Run distributed training job with the pod file you just created.

$ # Create a job by defining MXJob
kubectl create -f mx_job_dist.yaml

3. List the running jobs.

$ kubectl get mxjobs

4. To get status of a running job, run the following. Replace the JOB variable with whatever the
job's name is.

$ JOB=<JOB_NAME>
kubectl get mxjobs $JOB -o yaml

The output should be similar to the following:

apiVersion: kubeflow.org/v1beta1
kind: MXJob
metadata:

Amazon EKS Setup 81

AWS Deep Learning Containers Developer Guide

 creationTimestamp: "2020-07-23T16:38:41Z"
 generation: 8
 name: kubeflow-mxnet-gpu-dist-job-3910
 namespace: mxnet-multi-node-training-3910
 resourceVersion: "688398"
 selfLink: /apis/kubeflow.org/v1beta1/namespaces/mxnet-multi-node-training-3910/
mxjobs/kubeflow-mxnet-gpu-dist-job-3910
spec:
 cleanPodPolicy: All
 jobMode: MXTrain
 mxReplicaSpecs:
 Scheduler:
 replicas: 1
 restartPolicy: Never
 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-mxnet-
training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 name: mxnet
 ports:
 - containerPort: 9091
 name: mxjob-port
 resources: {}
 Server:
 replicas: 2
 restartPolicy: Never
 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-mxnet-
training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 name: mxnet
 ports:
 - containerPort: 9091
 name: mxjob-port
 resources: {}
 Worker:
 replicas: 3
 restartPolicy: Never

Amazon EKS Setup 82

AWS Deep Learning Containers Developer Guide

 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:
 - args:
 - /incubator-mxnet/example/image-classification/train_mnist.py
 - --num-epochs
 - "20"
 - --num-layers
 - "2"
 - --kv-store
 - dist_device_sync
 - --gpus
 - "0"
 command:
 - python
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-mxnet-
training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 name: mxnet
 ports:
 - containerPort: 9091
 name: mxjob-port
 resources:
 limits:
 nvidia.com/gpu: "1"
status:
 conditions:
 - lastTransitionTime: "2020-07-23T16:38:41Z"
 lastUpdateTime: "2020-07-23T16:38:41Z"
 message: MXJob kubeflow-mxnet-gpu-dist-job-3910 is created.
 reason: MXJobCreated
 status: "True"
 type: Created
 - lastTransitionTime: "2020-07-23T16:38:41Z"
 lastUpdateTime: "2020-07-23T16:40:50Z"
 message: MXJob kubeflow-mxnet-gpu-dist-job-3910 is running.
 reason: MXJobRunning
 status: "True"
 type: Running
 mxReplicaStatuses:
 Scheduler:
 active: 1
 Server:

Amazon EKS Setup 83

AWS Deep Learning Containers Developer Guide

 active: 2
 Worker:
 active: 3
 startTime: "2020-07-23T16:40:50Z"

Note

Status provides information about the state of the resources.
Phase - Indicates the phase of a job and will be one of Creating, Running, CleanUp,
Failed, or Done.
State - Provides the overall status of the job and will be one of Running, Succeeded, or
Failed.

5. If you want to delete a job, change directories to where you launched the job and run the
following:

$ kubectl delete -f mx_job_dist.yaml

Apache MXNet (Incubating) with Horovod distributed GPU training

This tutorial shows how to setup distributed training of Apache MXNet (Incubating) models on your
multi-node GPU cluster that uses Horovod. It uses an example image that already has a training
script included, and it uses a 3-node cluster with node-type=p3.8xlarge. This tutorial runs the
Horovod example script for MXNet on an MNIST model.

1. Verify that the MPIJob custom resource is installed.

$ kubectl get crd

The output should include mpijobs.kubeflow.org.

2. Create a MPI Job template and define the number of nodes (replicas) and number of
GPUs each node has (gpusPerReplica). Modify the following code block according to your
requirements and save it in a file named mx-mnist-horovod-job.yaml.

apiVersion: kubeflow.org/v1alpha2
kind: MPIJob
metadata:
 name: <JOB_NAME>

Amazon EKS Setup 84

https://github.com/horovod/horovod
https://github.com/horovod/horovod/blob/master/examples/mxnet/mxnet_mnist.py

AWS Deep Learning Containers Developer Guide

spec:
 slotsPerWorker: 1
 cleanPodPolicy: Running
 mpiReplicaSpecs:
 Launcher:
 replicas: 1
 template:
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-mxnet-
training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 name: <JOB_NAME>
 args:
 - --epochs
 - "10"
 - --lr
 - "0.001"
 command:
 - mpirun
 - -mca
 - btl_tcp_if_exclude
 - lo
 - -mca
 - pml
 - ob1
 - -mca
 - btl
 - ^openib
 - --bind-to
 - none
 - -map-by
 - slot
 - -x
 - LD_LIBRARY_PATH
 - -x
 - PATH
 - -x
 - NCCL_SOCKET_IFNAME=eth0
 - -x
 - NCCL_DEBUG=INFO
 - -x
 - MXNET_CUDNN_AUTOTUNE_DEFAULT=0
 - python
 - /horovod/examples/mxnet_mnist.py

Amazon EKS Setup 85

AWS Deep Learning Containers Developer Guide

 Worker:
 replicas: <NUM_WORKERS>
 template:
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-mxnet-
training:1.8.0-gpu-py37-cu110-ubuntu16.04-example
 name: mpi-worker
 resources:
 limits:
 nvidia.com/gpu: <GPUS>

3. Run the distributed training job with the pod file you just created.

$ kubectl create -f mx-mnist-horovod-job.yaml

4. Check the status. The name of the job appears in the status. If you're running any other tests
or have previously run something, it appears in this list. Run this several times until you see the
status change to “Running”.

$ kubectl get pods -o wide

You should see something similar to the following output:

NAME READY STATUS RESTARTS AGE

mxnet-mnist-horovod-job-716-launcher-4wc7f 1/1 Running 0 31s
mxnet-mnist-horovod-job-716-worker-0 1/1 Running 0 31s
mxnet-mnist-horovod-job-716-worker-1 1/1 Running 0 31s
mxnet-mnist-horovod-job-716-worker-2 1/1 Running 0 31s

5. Based on the name of the launcher pod above, check the logs to see the training output.

$ kubectl logs -f --tail 10 <LAUNCHER_POD_NAME>

6. You can check the logs to watch the training progress. You can also continue to check “get
pods” to refresh the status. When the status changes to “Completed” you will know that the
training job is done.

7. To clean up and rerun a job:

Amazon EKS Setup 86

AWS Deep Learning Containers Developer Guide

$ kubectl delete -f mx-mnist-horovod-job.yaml

Next steps

To learn GPU-based inference on Amazon EKS using MXNet with Deep Learning Containers, see
Apache MXNet (Incubating) GPU inference.

TensorFlow with Horovod distributed GPU training

This tutorial shows how to setup distributed training of TensorFlow models on your multi-
node GPU cluster that uses Horovod. It uses an example image that already has a training script
included, and it uses a 3-node cluster with node-type=p3.16xlarge. You can use this tutorial
with either TensorFlow or TensorFlow 2. To use it with TensorFlow 2, change the Docker image to a
TensorFlow 2 image.

1. Verify that the MPIJob custom resource is installed.

$ kubectl get crd

The output should include mpijobs.kubeflow.org.

2. Create a MPI Job template and define the number of nodes (replicas) and number of
GPUs each node has (gpusPerReplica). Modify the following code block according to your
requirements and save it in a file named tf-resnet50-horovod-job.yaml.

apiVersion: kubeflow.org/v1alpha2
kind: MPIJob
metadata:
 name: <JOB_NAME>
spec:
 slotsPerWorker: 1
 cleanPodPolicy: Running
 mpiReplicaSpecs:
 Launcher:
 replicas: 1
 template:
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
tensorflow-training:1.15.5-gpu-py37-cu100-ubuntu18.04-example

Amazon EKS Setup 87

https://github.com/horovod/horovod

AWS Deep Learning Containers Developer Guide

 name: <JOB_NAME>
 command:
 - mpirun
 - -mca
 - btl_tcp_if_exclude
 - lo
 - -mca
 - pml
 - ob1
 - -mca
 - btl
 - ^openib
 - --bind-to
 - none
 - -map-by
 - slot
 - -x
 - LD_LIBRARY_PATH
 - -x
 - PATH
 - -x
 - NCCL_SOCKET_IFNAME=eth0
 - -x
 - NCCL_DEBUG=INFO
 - -x
 - MXNET_CUDNN_AUTOTUNE_DEFAULT=0
 - python
 - /deep-learning-models/models/resnet/tensorflow/
train_imagenet_resnet_hvd.py
 args:
 - --num_epochs
 - "10"
 - --synthetic
 Worker:
 replicas: <NUM_WORKERS>
 template:
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
tensorflow-training:1.15.5-gpu-py37-cu100-ubuntu18.04-example
 name: tensorflow-worker
 resources:
 limits:

Amazon EKS Setup 88

AWS Deep Learning Containers Developer Guide

 nvidia.com/gpu: <GPUS>

3. Run the distributed training job with the pod file you just created.

$ kubectl create -f tf-resnet50-horovod-job.yaml

4. Check the status. The name of the job appears in the status. If you're running any other tests
or have previously run other tests, they appear in this list. Run this several times until you see
the status change to “Running”.

$ kubectl get pods -o wide

You should see something similar to the following output:

NAME READY STATUS RESTARTS AGE

tf-resnet50-horovod-job-1794-launcher-9wbsg 1/1 Running 0 31s
tf-resnet50-horovod-job-1794-worker-0 1/1 Running 0 31s
tf-resnet50-horovod-job-1794-worker-1 1/1 Running 0 31s
tf-resnet50-horovod-job-1794-worker-2 1/1 Running 0 31s

5. Based on the name of the launcher pod above, check the logs to see the training output.

$ kubectl logs -f --tail 10 <LAUNCHER_POD_NAME>

6. You can check the logs to watch the training progress. You can also continue to check “get
pods” to refresh the status. When the status changes to “Completed” you will know that the
training job is done.

7. To clean up and rerun a job:

$ kubectl delete -f tf-resnet50-horovod-job.yaml

Next steps

To learn GPU-based inference on Amazon EKS using TensorFlow with Deep Learning Containers,
see TensorFlow GPU inference.

Amazon EKS Setup 89

AWS Deep Learning Containers Developer Guide

PyTorch distributed GPU training

This tutorial will guide you on distributed training with PyTorch on your multi-node GPU cluster. It
uses Gloo as the backend.

1. Verify that the PyTorch custom resource is installed.

$ kubectl get crd

The output should include pytorchjobs.kubeflow.org.

2. Ensure that the NVIDIA plugin daemonset is running.

$ kubectl get daemonset -n kubeflow

The output should should look similar to the following.

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
 SELECTOR AGE
nvidia-device-plugin-daemonset 3 3 3 3 3 <none>
 35h

3. Use the following text to create a gloo-based distributed data parallel job. Save it in a file
named distributed.yaml.

apiVersion: kubeflow.org/v1
kind: PyTorchJob
metadata:
 name: "kubeflow-pytorch-gpu-dist-job"
spec:
 pytorchReplicaSpecs:
 Master:
 replicas: 1
 restartPolicy: OnFailure
 template:
 spec:
 containers:
 - name: "pytorch"
 image: "763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
pytorch-training:1.7.1-gpu-py36-cu110-ubuntu18.04-example"
 args:

Amazon EKS Setup 90

AWS Deep Learning Containers Developer Guide

 - "--backend"
 - "gloo"
 - "--epochs"
 - "5"
 Worker:
 replicas: 2
 restartPolicy: OnFailure
 template:
 spec:
 containers:
 - name: "pytorch"
 image: "763104351884.dkr.ecr.us-east-1.amazonaws.com/aws-samples-
pytorch-training:1.7.1-gpu-py36-cu110-ubuntu18.04-example"
 args:
 - "--backend"
 - "gloo"
 - "--epochs"
 - "5"
 resources:
 limits:
 nvidia.com/gpu: 1

4. Run a distributed training job with the pod file you just created.

$ kubectl create -f distributed.yaml

5. You can check the status of the job using the following:

$ kubectl logs kubeflow-pytorch-gpu-dist-job

To view logs continuously, use:

$ kubectl logs -f <pod>

See Cleanup for information on cleaning up a cluster after you are done using it.

Amazon S3 Plugin for PyTorch

Deep Learning Containers include a plugin that enables you to use data from an Amazon S3 bucket
for PyTorch training. See the Amazon EKS Amazon S3 Plugin for PyTorch GPU guide to get started.

For more information and additional examples, see the Amazon S3 Plugin for PyTorch repository.

Amazon EKS Setup 91

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks-tutorials-gpu-training.html#deep-learning-containers-eks-training-gpu-pytorch-s3-plugin
https://github.com/aws/amazon-s3-plugin-for-pytorch

AWS Deep Learning Containers Developer Guide

See Cleanup for information on cleaning up a cluster after you are done using it.

Next steps

To learn GPU-based inference on Amazon EKS using PyTorch with Deep Learning Containers, see
PyTorch GPU inference.

Inference

Once you've created a cluster using the steps in Amazon EKS Setup, you can use it to run inference
jobs. For inference, you can use either a CPU or GPU example depending on the nodes in your
cluster. Inference supports only single node configurations. The following topics show how to run
inference with AWS Deep Learning Containers on EKS using Apache MXNet (Incubating), PyTorch,
TensorFlow, and TensorFlow 2.

Contents

• CPU Inference

• GPU Inference

CPU Inference

This section guides you on running inference on Deep Learning Containers for EKS CPU clusters
using Apache MXNet (Incubating), PyTorch, TensorFlow, and TensorFlow 2.

For a complete list of Deep Learning Containers, see Available Deep Learning Containers Images.

Note

If you're using MKL, see AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Contents

• Apache MXNet (Incubating) CPU inference

• TensorFlow CPU inference

• PyTorch CPU inference

Amazon EKS Setup 92

https://github.com/aws/deep-learning-containers/blob/master/available_images.md

AWS Deep Learning Containers Developer Guide

Apache MXNet (Incubating) CPU inference

In this tutorial, you create a Kubernetes Service and a Deployment to run CPU inference with
MXNet. The Kubernetes Service exposes a process and its ports. When you create a Kubernetes
Service, you can specify the kind of Service you want using ServiceTypes. The default
ServiceType is ClusterIP. The Deployment is responsible for ensuring that a certain number of
pods is always up and running.

1. Create the namespace. You may need to change the kubeconfig to point to the right cluster.
Verify that you have setup a "training-cpu-1" or change this to your CPU cluster's config. For
more information on setting up your cluster, see Amazon EKS Setup.

$ NAMESPACE=mx-inference; kubectl —kubeconfig=/home/ubuntu/.kube/eksctl/clusters/
training-cpu-1 create namespace ${NAMESPACE}

2. (Optional step when using public models.) Set up your model at a network location that is
mountable, like in Amazon S3. For information on how to upload a trained model to S3, see
TensorFlow CPU inference. Apply the secret to your namespace. For more information on
secrets, see the Kubernetes Secrets documentation.

$ kubectl -n ${NAMESPACE} apply -f secret.yaml

3. Create a file named mx_inference.yamlwith the following content. This example file
specifies the model, MXNet inference image used, and the location of the model. This example
uses a public model, so you don't need to modify it.

kind: Service
apiVersion: v1
metadata:
 name: squeezenet-service
 labels:
 app: squeezenet-service
spec:
 ports:
 - port: 8080
 targetPort: mms
 selector:
 app: squeezenet-service

kind: Deployment

Amazon EKS Setup 93

https://kubernetes.io/docs/concepts/configuration/secret/

AWS Deep Learning Containers Developer Guide

apiVersion: apps/v1
metadata:
 name: squeezenet-service
 labels:
 app: squeezenet-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: squeezenet-service
 template:
 metadata:
 labels:
 app: squeezenet-service
 spec:
 containers:
 - name: squeezenet-service
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-inference:1.6.0-
cpu-py36-ubuntu16.04
 args:
 - mxnet-model-server
 - --start
 - --mms-config /home/model-server/config.properties
 - --models squeezenet=https://s3.amazonaws.com/model-server/
model_archive_1.0/squeezenet_v1.1.mar
 ports:
 - name: mms
 containerPort: 8080
 - name: mms-management
 containerPort: 8081
 imagePullPolicy: IfNotPresent

4. Apply the configuration to a new pod in the previously defined namespace.

$ kubectl -n ${NAMESPACE} apply -f mx_inference.yaml

Your output should be similar to the following:

service/squeezenet-service created
deployment.apps/squeezenet-service created

5. Check the status of the pod.

Amazon EKS Setup 94

AWS Deep Learning Containers Developer Guide

$ kubectl get pods -n ${NAMESPACE}

Repeat the status check until you see the following "RUNNING" state:

NAME READY STATUS RESTARTS AGE
squeezenet-service-xvw1 1/1 Running 0 3m

6. To further describe the pod, run the following:

$ kubectl describe pod <pod_name> -n ${NAMESPACE}

7. Because the serviceType here is ClusterIP, you can forward the port from your container to
your host machine using the following command:

$ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --
selector=app=squeezenet-service -o jsonpath='{.items[0].metadata.name}'` 8080:8080
 &

8. Download an image of a kitten.

$ curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg

9. Run inference on the model using the image of the kitten:

$ curl -X POST http://127.0.0.1:8080/predictions/squeezenet -T kitten.jpg

TensorFlow CPU inference

In this tutorial, you create a Kubernetes Service and a Deployment to run CPU inference with
TensorFlow. The Kubernetes Service exposes a process and its ports. When you create a Kubernetes
Service, you can specify the kind of Service you want using ServiceTypes. The default
ServiceType is ClusterIP. The Deployment is responsible for ensuring that a certain number of
pods is always up and running.

1. Create the namespace. You may need to change the kubeconfig to point to the right cluster.
Verify that you have setup a "training-cpu-1" or change this to your CPU cluster's config. For
more information on setting up your cluster, see Amazon EKS Setup.

Amazon EKS Setup 95

AWS Deep Learning Containers Developer Guide

$ NAMESPACE=tf-inference; kubectl —kubeconfig=/home/ubuntu/.kube/eksctl/clusters/
training-cpu-1 create namespace ${NAMESPACE}

2. Models served for inference can be retrieved in different ways, such as using shared volumes
and Amazon S3. Because the Kubernetes Service requires access to Amazon S3 and Amazon
ECR, you must store your AWS credentials as a Kubernetes secret. For the purpose of this
example, use S3 to store and fetch trained models.

Verify your AWS credentials. They must have S3 write access.

$ cat ~/.aws/credentials

3. The output will be similar to the following:

$ [default]
aws_access_key_id = YOURACCESSKEYID
aws_secret_access_key = YOURSECRETACCESSKEY

4. Encode the credentials using base64.

Encode the access key first.

$ echo -n 'YOURACCESSKEYID' | base64

Encode the secret access key next.

$ echo -n 'YOURSECRETACCESSKEY' | base64

Your output should look similar to the following:

$ echo -n 'YOURACCESSKEYID' | base64
RkFLRUFXU0FDQ0VTU0tFWUlE
$ echo -n 'YOURSECRETACCESSKEY' | base64
RkFLRUFXU1NFQ1JFVEFDQ0VTU0tFWQ==

5. Create a file named secret.yaml with the following content in your home directory. This file
is used to store the secret.

apiVersion: v1

Amazon EKS Setup 96

AWS Deep Learning Containers Developer Guide

kind: Secret
metadata:
 name: aws-s3-secret
type: Opaque
data:
 AWS_ACCESS_KEY_ID: YOURACCESSKEYID
 AWS_SECRET_ACCESS_KEY: YOURSECRETACCESSKEY

6. Apply the secret to your namespace.

$ kubectl -n ${NAMESPACE} apply -f secret.yaml

7. Clone the tensorflow-serving repository.

$ git clone https://github.com/tensorflow/serving/
$ cd serving/tensorflow_serving/servables/tensorflow/testdata/

8. Sync the pretrained saved_model_half_plus_two_cpu model to your S3 bucket.

$ aws s3 sync saved_model_half_plus_two_cpu s3://<your_s3_bucket>/
saved_model_half_plus_two

9. Create a file named tf_inference.yaml with the following content. Update --
model_base_path to use your S3 bucket. You can use this with either TensorFlow or
TensorFlow 2. To use it with TensorFlow 2, change the Docker image to a TensorFlow 2 image.

 kind: Service
 apiVersion: v1
 metadata:
 name: half-plus-two
 labels:
 app: half-plus-two
 spec:
 ports:
 - name: http-tf-serving
 port: 8500
 targetPort: 8500
 - name: grpc-tf-serving
 port: 9000
 targetPort: 9000
 selector:
 app: half-plus-two

Amazon EKS Setup 97

https://github.com/tensorflow/serving/

AWS Deep Learning Containers Developer Guide

 role: master
 type: ClusterIP

 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: half-plus-two
 labels:
 app: half-plus-two
 role: master
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: half-plus-two
 role: master
 template:
 metadata:
 labels:
 app: half-plus-two
 role: master
 spec:
 containers:
 - name: half-plus-two
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:1.15.0-cpu-py36-ubuntu18.04
 command:
 - /usr/bin/tensorflow_model_server
 args:
 - --port=9000
 - --rest_api_port=8500
 - --model_name=saved_model_half_plus_two
 - --model_base_path=s3://tensorflow-trained-models/
saved_model_half_plus_two
 ports:
 - containerPort: 8500
 - containerPort: 9000
 imagePullPolicy: IfNotPresent
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 key: AWS_ACCESS_KEY_ID
 name: aws-s3-secret

Amazon EKS Setup 98

AWS Deep Learning Containers Developer Guide

 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 key: AWS_SECRET_ACCESS_KEY
 name: aws-s3-secret
 - name: AWS_REGION
 value: us-east-1
 - name: S3_USE_HTTPS
 value: "true"
 - name: S3_VERIFY_SSL
 value: "true"
 - name: S3_ENDPOINT
 value: s3.us-east-1.amazonaws.com

10. Apply the configuration to a new pod in the previously defined namespace.

$ kubectl -n ${NAMESPACE} apply -f tf_inference.yaml

Your output should be similar to the following:

service/half-plus-two created
deployment.apps/half-plus-two created

11. Check the status of the pod.

$ kubectl get pods -n ${NAMESPACE}

Repeat the status check until you see the following "RUNNING" state:

NAME READY STATUS RESTARTS AGE
half-plus-two-vmwp9 1/1 Running 0 3m

12. To further describe the pod, you can run:

$ kubectl describe pod <pod_name> -n ${NAMESPACE}

13. Because the serviceType is ClusterIP, you can forward the port from your container to your
host machine.

$ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --
selector=app=half-plus-two -o jsonpath='{.items[0].metadata.name}'` 8500:8500 &

Amazon EKS Setup 99

AWS Deep Learning Containers Developer Guide

14. Place the following json string in a file named half_plus_two_input.json

{"instances": [1.0, 2.0, 5.0]}

15. Run inference on the model.

$ curl -d @half_plus_two_input.json -X POST http://localhost:8500/v1/models/
saved_model_half_plus_two_cpu:predict

Your output should look like the following:

{
 "predictions": [2.5, 3.0, 4.5
]
}

PyTorch CPU inference

In this approach, you create a Kubernetes Service and a Deployment to run CPU inference with
PyTorch. The Kubernetes Service exposes a process and its ports. When you create a Kubernetes
Service, you can specify the kind of Service you want using ServiceTypes. The default
ServiceType is ClusterIP. The Deployment is responsible for ensuring that a certain number of
pods is always up and running.

1. Create the namespace. You may need to change the kubeconfig to point to the right cluster.
Verify that you have setup a "training-cpu-1" or change this to your CPU cluster's config. For
more information on setting up your cluster, see Amazon EKS Setup.

$ NAMESPACE=pt-inference; kubectl create namespace ${NAMESPACE}

2. (Optional step when using public models.) Setup your model at a network location that is
mountable, like in Amazon S3. For information on how to upload a trained model to S3, see
TensorFlow CPU inference. Apply the secret to your namespace. For more information on
secrets, see the Kubernetes Secrets documentation.

$ kubectl -n ${NAMESPACE} apply -f secret.yaml

Amazon EKS Setup 100

https://kubernetes.io/docs/concepts/configuration/secret/

AWS Deep Learning Containers Developer Guide

3. Create a file named pt_inference.yaml with the following content. This example file
specifies the model, PyTorch inference image used, and the location of the model. This
example uses a public model, so you don't need to modify it.

kind: Service
apiVersion: v1
metadata:
 name: densenet-service
 labels:
 app: densenet-service
spec:
 ports:
 - port: 8080
 targetPort: mms
 selector:
 app: densenet-service

kind: Deployment
apiVersion: apps/v1
metadata:
 name: densenet-service
 labels:
 app: densenet-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: densenet-service
 template:
 metadata:
 labels:
 app: densenet-service
 spec:
 containers:
 - name: densenet-service
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
inference:1.3.1-cpu-py36-ubuntu16.04
 args:
 - mxnet-model-server
 - --start
 - --mms-config /home/model-server/config.properties

Amazon EKS Setup 101

AWS Deep Learning Containers Developer Guide

 - --models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/multi-
model-server/densenet/densenet.mar
 ports:
 - name: mms
 containerPort: 8080
 - name: mms-management
 containerPort: 8081
 imagePullPolicy: IfNotPresent

4. Apply the configuration to a new pod in the previously defined namespace.

$ kubectl -n ${NAMESPACE} apply -f pt_inference.yaml

Your output should be similar to the following:

service/densenet-service created
deployment.apps/densenet-service created

5. Check the status of the pod and wait for the pod to be in “RUNNING” state:

$ kubectl get pods -n ${NAMESPACE} -w

Your output should be similar to the following:

NAME READY STATUS RESTARTS AGE
densenet-service-xvw1 1/1 Running 0 3m

6. To further describe the pod, run the following:

$ kubectl describe pod <pod_name> -n ${NAMESPACE}

7. Because the serviceType here is ClusterIP, you can forward the port from your container to
your host machine.

$ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --
selector=app=densenet-service -o jsonpath='{.items[0].metadata.name}'` 8080:8080 &

8. With your server started, you can now run inference from a different window using the
following:

$ curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg

Amazon EKS Setup 102

AWS Deep Learning Containers Developer Guide

curl -X POST http://127.0.0.1:8080/predictions/densenet -T flower.jpg

See EKS Cleanup for information on cleaning up a cluster after you're done using it.

Next steps

To learn about using Custom Entrypoints with Deep Learning Containers on Amazon EKS, see
Custom Entrypoints.

GPU Inference

This section shows how to run inference on Deep Learning Containers for EKS GPU clusters using
Apache MXNet (Incubating), PyTorch, TensorFlow, and TensorFlow 2.

For a complete list of Deep Learning Containers, see Available Deep Learning Containers Images.

Note

MKL users: read the AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations to get the best training or inference performance.

Contents

• Apache MXNet (Incubating) GPU inference

• TensorFlow GPU inference

• PyTorch GPU inference

Apache MXNet (Incubating) GPU inference

In this approach, you create a Kubernetes Service and a Deployment. The Kubernetes Service
exposes a process and its ports. When you create a Kubernetes Service, you can specify the
kind of Service you want using ServiceTypes. The default ServiceType is ClusterIP. The
Deployment is responsible for ensuring that a certain number of pods is always up and running.

1. For GPU-base inference, install the NVIDIA device plugin for Kubernetes:

$ kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/
v1.12/nvidia-device-plugin.yml

Amazon EKS Setup 103

https://docs.aws.amazon.com//dlami/latest/devguide/deep-learning-containers-eks-setup.html#deep-learning-containers-eks-setup-cleanup
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

AWS Deep Learning Containers Developer Guide

2. Verify that the nvidia-device-plugin-daemonset is running correctly.

$ kubectl get daemonset -n kube-system

The output will be similar to the following:

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
aws-node 3 3 3 3 3
 <none> 6d
kube-proxy 3 3 3 3 3
 <none> 6d
nvidia-device-plugin-daemonset 3 3 3 3 3
 <none> 57s

3. Create the namespace. You might need to change the kubeconfig to point to the right cluster.
Verify that you have setup a "training-gpu-1" or change this to your GPU cluster's config. For
more information on setting up your cluster, see Amazon EKS Setup.

$ NAMESPACE=mx-inference; kubectl —kubeconfig=/home/ubuntu/.kube/eksctl/clusters/
training-gpu-1 create namespace ${NAMESPACE}

4. (Optional step when using public models.) Setup your model at a network location that is
mountable e.g., in S3. Refer to the steps to upload a trained model to S3 mentioned in the
section Inference with TensorFlow. Apply the secret to your namespace. For more information
on secrets, see the Kubernetes Secrets documentation.

$ kubectl -n ${NAMESPACE} apply -f secret.yaml

5. Create the file mx_inference.yaml. Use the contents of the next code block as its content.

kind: Service
apiVersion: v1
metadata:
 name: squeezenet-service
 labels:
 app: squeezenet-service
spec:
 ports:
 - port: 8080

Amazon EKS Setup 104

https://kubernetes.io/docs/concepts/configuration/secret/

AWS Deep Learning Containers Developer Guide

 targetPort: mms
 selector:
 app: squeezenet-service

kind: Deployment
apiVersion: apps/v1
metadata:
 name: squeezenet-service
 labels:
 app: squeezenet-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: squeezenet-service
 template:
 metadata:
 labels:
 app: squeezenet-service
 spec:
 containers:
 - name: squeezenet-service
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-inference:1.6.0-
gpu-py36-cu101-ubuntu16.04
 args:
 - mxnet-model-server
 - --start
 - --mms-config /home/model-server/config.properties
 - --models squeezenet=https://s3.amazonaws.com/model-server/
model_archive_1.0/squeezenet_v1.1.mar
 ports:
 - name: mms
 containerPort: 8080
 - name: mms-management
 containerPort: 8081
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 cpu: 4
 memory: 4Gi
 nvidia.com/gpu: 1
 requests:
 cpu: "1"

Amazon EKS Setup 105

AWS Deep Learning Containers Developer Guide

 memory: 1Gi

6. Apply the configuration to a new pod in the previously defined namespace:

$ kubectl -n ${NAMESPACE} apply -f mx_inference.yaml

Your output should be similar to the following:

service/squeezenet-service created
deployment.apps/squeezenet-service created

7. Check status of the pod and wait for the pod to be in “RUNNING” state:

$ kubectl get pods -n ${NAMESPACE}

8. Repeat the check status step until you see the following "RUNNING" state:

NAME READY STATUS RESTARTS AGE
squeezenet-service-xvw1 1/1 Running 0 3m

9. To further describe the pod, you can run:

$ kubectl describe pod <pod_name> -n ${NAMESPACE}

10. Since the serviceType here is ClusterIP, you can forward the port from your container to your
host machine (the ampersand runs this in the background):

$ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --
selector=app=squeezenet-service -o jsonpath='{.items[0].metadata.name}'` 8080:8080
 &

11. Download an image of a kitten:

$ curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg

12. Run inference on the model:

$ curl -X POST http://127.0.0.1:8080/predictions/squeezenet -T kitten.jpg

Amazon EKS Setup 106

AWS Deep Learning Containers Developer Guide

TensorFlow GPU inference

In this approach, you create a Kubernetes Service and a Deployment. The Kubernetes Service
exposes a process and its ports. When you create a Kubernetes Service, you can specify the
kind of Service you want using ServiceTypes. The default ServiceType is ClusterIP. The
Deployment is responsible for ensuring that a certain number of pods is always up and running.

1. For GPU-base inference, install the NVIDIA device plugin for Kubernetes:

$ kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/
v1.12/nvidia-device-plugin.yml

2. Verify that the nvidia-device-plugin-daemonset is running correctly.

$ kubectl get daemonset -n kube-system

The output will be similar to the following:

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
aws-node 3 3 3 3 3
 <none> 6d
kube-proxy 3 3 3 3 3
 <none> 6d
nvidia-device-plugin-daemonset 3 3 3 3 3
 <none> 57s

3. Create the namespace. You might need to change the kubeconfig to point to the right cluster.
Verify that you have setup a "training-gpu-1" or change this to your GPU cluster's config. For
more information on setting up your cluster, see Amazon EKS Setup.

$ NAMESPACE=tf-inference; kubectl —kubeconfig=/home/ubuntu/.kube/eksctl/clusters/
training-gpu-1 create namespace ${NAMESPACE}

4. Models served for inference can be retrieved in different ways e.g., using shared volumes, S3
etc. Since the service will require access to S3 and ECR, you must store your AWS credentials as
a Kubernetes secret. For the purpose of this example, you will use S3 to store and fetch trained
models.

Check your AWS credentials. These must have S3 write access.

Amazon EKS Setup 107

AWS Deep Learning Containers Developer Guide

$ cat ~/.aws/credentials

5. The output will be something similar to the following:

$ [default]
aws_access_key_id = FAKEAWSACCESSKEYID
aws_secret_access_key = FAKEAWSSECRETACCESSKEY

6. Encode the credentials using base64. Encode the access key first.

$ echo -n 'FAKEAWSACCESSKEYID' | base64

Encode the secret access key next.

$ echo -n 'FAKEAWSSECRETACCESSKEYID' | base64

Your output should look similar to the following:

$ echo -n 'FAKEAWSACCESSKEYID' | base64
RkFLRUFXU0FDQ0VTU0tFWUlE
$ echo -n 'FAKEAWSSECRETACCESSKEY' | base64
RkFLRUFXU1NFQ1JFVEFDQ0VTU0tFWQ==

7. Create a yaml file to store the secret. Save it as secret.yaml in your home directory.

apiVersion: v1
kind: Secret
metadata:
 name: aws-s3-secret
type: Opaque
data:
 AWS_ACCESS_KEY_ID: RkFLRUFXU0FDQ0VTU0tFWUlE
 AWS_SECRET_ACCESS_KEY: RkFLRUFXU1NFQ1JFVEFDQ0VTU0tFWQ==

8. Apply the secret to your namespace:

$ kubectl -n ${NAMESPACE} apply -f secret.yaml

Amazon EKS Setup 108

AWS Deep Learning Containers Developer Guide

9. In this example, you will clone the tensorflow-serving repository and sync a pretrained model
to an S3 bucket. The following sample names the bucket tensorflow-serving-models. It
also syncs a saved model to an S3 bucket called saved_model_half_plus_two_gpu.

$ git clone https://github.com/tensorflow/serving/
$ cd serving/tensorflow_serving/servables/tensorflow/testdata/

10. Sync the CPU model.

$ aws s3 sync saved_model_half_plus_two_gpu s3://<your_s3_bucket>/
saved_model_half_plus_two_gpu

11. Create the file tf_inference.yaml. Use the contents of the next code block as its content,
and update --model_base_path to use your S3 bucket. You can use this with either
TensorFlow or TensorFlow 2. To use it with TensorFlow 2, change the Docker image to a
TensorFlow 2 image.

 kind: Service
 apiVersion: v1
 metadata:
 name: half-plus-two
 labels:
 app: half-plus-two
 spec:
 ports:
 - name: http-tf-serving
 port: 8500
 targetPort: 8500
 - name: grpc-tf-serving
 port: 9000
 targetPort: 9000
 selector:
 app: half-plus-two
 role: master
 type: ClusterIP

 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: half-plus-two
 labels:

Amazon EKS Setup 109

https://github.com/tensorflow/serving/

AWS Deep Learning Containers Developer Guide

 app: half-plus-two
 role: master
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: half-plus-two
 role: master
 template:
 metadata:
 labels:
 app: half-plus-two
 role: master
 spec:
 containers:
 - name: half-plus-two
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:1.15.0-gpu-py36-cu100-ubuntu18.04
 command:
 - /usr/bin/tensorflow_model_server
 args:
 - --port=9000
 - --rest_api_port=8500
 - --model_name=saved_model_half_plus_two_gpu
 - --model_base_path=s3://tensorflow-trained-models/
saved_model_half_plus_two_gpu
 ports:
 - containerPort: 8500
 - containerPort: 9000
 imagePullPolicy: IfNotPresent
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 key: AWS_ACCESS_KEY_ID
 name: aws-s3-secret
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 key: AWS_SECRET_ACCESS_KEY
 name: aws-s3-secret
 - name: AWS_REGION
 value: us-east-1
 - name: S3_USE_HTTPS

Amazon EKS Setup 110

AWS Deep Learning Containers Developer Guide

 value: "true"
 - name: S3_VERIFY_SSL
 value: "true"
 - name: S3_ENDPOINT
 value: s3.us-east-1.amazonaws.com
 resources:
 limits:
 cpu: 4
 memory: 4Gi
 nvidia.com/gpu: 1
 requests:
 cpu: "1"
 memory: 1Gi

12. Apply the configuration to a new pod in the previously defined namespace:

$ kubectl -n ${NAMESPACE} apply -f tf_inference.yaml

Your output should be similar to the following:

service/half-plus-two created
deployment.apps/half-plus-two created

13. Check status of the pod and wait for the pod to be in “RUNNING” state:

$ kubectl get pods -n ${NAMESPACE}

14. Repeat the check status step until you see the following "RUNNING" state:

NAME READY STATUS RESTARTS AGE
half-plus-two-vmwp9 1/1 Running 0 3m

15. To further describe the pod, you can run:

$ kubectl describe pod <pod_name> -n ${NAMESPACE}

16. Since the serviceType here is ClusterIP, you can forward the port from your container to your
host machine (the ampersand runs this in the background):

Amazon EKS Setup 111

AWS Deep Learning Containers Developer Guide

$ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --
selector=app=half-plus-two -o jsonpath='{.items[0].metadata.name}'` 8500:8500 &

17. Place the following json string in a file called half_plus_two_input.json

{"instances": [1.0, 2.0, 5.0]}

18. Run inference on the model:

$ curl -d @half_plus_two_input.json -X POST http://localhost:8500/v1/models/
saved_model_half_plus_two_cpu:predict

The expected output is as follows:

{
 "predictions": [2.5, 3.0, 4.5
]
}

PyTorch GPU inference

In this approach, you create a Kubernetes Service and a Deployment. The Kubernetes Service
exposes a process and its ports. When you create a Kubernetes Service, you can specify the
kind of Service you want using ServiceTypes. The default ServiceType is ClusterIP. The
Deployment is responsible for ensuring that a certain number of pods is always up and running.

1. For GPU-base inference, install the NVIDIA device plugin for Kubernetes.

$ kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/
v1.12/nvidia-device-plugin.yml

2. Verify that the nvidia-device-plugin-daemonset is running correctly.

$ kubectl get daemonset -n kube-system

The output will be similar to the following.

Amazon EKS Setup 112

AWS Deep Learning Containers Developer Guide

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
aws-node 3 3 3 3 3
 <none> 6d
kube-proxy 3 3 3 3 3
 <none> 6d
nvidia-device-plugin-daemonset 3 3 3 3 3
 <none> 57s

3. Create the namespace.

$ NAMESPACE=pt-inference; kubectl create namespace ${NAMESPACE}

4. (Optional step when using public models.) Setup your model at a network location that is
mountable e.g., in S3. Refer to the steps to upload a trained model to S3 mentioned in the
section Inference with TensorFlow. Apply the secret to your namespace. For more information
on secrets, see the Kubernetes Secrets documentation.

$ kubectl -n ${NAMESPACE} apply -f secret.yaml

5. Create the file pt_inference.yaml. Use the contents of the next code block as its content.

kind: Service
apiVersion: v1
metadata:
 name: densenet-service
 labels:
 app: densenet-service
spec:
 ports:
 - port: 8080
 targetPort: mms
 selector:
 app: densenet-service

kind: Deployment
apiVersion: apps/v1
metadata:
 name: densenet-service
 labels:

Amazon EKS Setup 113

https://kubernetes.io/docs/concepts/configuration/secret/

AWS Deep Learning Containers Developer Guide

 app: densenet-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: densenet-service
 template:
 metadata:
 labels:
 app: densenet-service
 spec:
 containers:
 - name: densenet-service
 image: "763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
inference:1.3.1-gpu-py36-cu101-ubuntu16.04"
 args:
 - mxnet-model-server
 - --start
 - --mms-config /home/model-server/config.properties
 - --models densenet=https://dlc-samples.s3.amazonaws.com/pytorch/multi-
model-server/densenet/densenet.mar
 ports:
 - name: mms
 containerPort: 8080
 - name: mms-management
 containerPort: 8081
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 cpu: 4
 memory: 4Gi
 nvidia.com/gpu: 1
 requests:
 cpu: "1"
 memory: 1Gi

6. Apply the configuration to a new pod in the previously defined namespace.

$ kubectl -n ${NAMESPACE} apply -f pt_inference.yaml

Your output should be similar to the following:

service/densenet-service created

Amazon EKS Setup 114

AWS Deep Learning Containers Developer Guide

deployment.apps/densenet-service created

7. Check status of the pod and wait for the pod to be in “RUNNING” state.

$ kubectl get pods -n ${NAMESPACE}

Your output should be similar to the following:

NAME READY STATUS RESTARTS AGE
densenet-service-xvw1 1/1 Running 0 3m

8. To further describe the pod, you can run:

$ kubectl describe pod <pod_name> -n ${NAMESPACE}

9. Since the serviceType here is ClusterIP, you can forward the port from your container to your
host machine (the ampersand runs this in the background).

$ kubectl port-forward -n ${NAMESPACE} `kubectl get pods -n ${NAMESPACE} --
selector=app=densenet-service -o jsonpath='{.items[0].metadata.name}'` 8080:8080 &

10. With your server started, you can now run inference from a different window.

$ curl -O https://s3.amazonaws.com/model-server/inputs/flower.jpg
curl -X POST http://127.0.0.1:8080/predictions/densenet -T flower.jpg

See EKS Cleanup for information on cleaning up a cluster after you're done using it.

Next steps

To learn about using Custom Entrypoints with Deep Learning Containers on Amazon EKS, see
Custom Entrypoints.

Kubeflow on AWS Setup

This section provides installation instructions to set up a deep learning environment using AWS
Deep Learning Containers with Kubeflow on AWS, an open source distribution of Kubeflow. After
you finish Kubeflow on AWS setup, you can continue with training tutorials in this series.

Kubeflow on AWS Setup 115

https://docs.aws.amazon.com//dlami/latest/devguide/deep-learning-containers-eks-setup.html#deep-learning-containers-eks-setup-cleanup

AWS Deep Learning Containers Developer Guide

Deploy Kubeflow on AWS

To deploy Kubeflow on AWS, follow the Vanilla deployment option in the Kubeflow on AWS
documentation. Make sure that you follow all the prerequisites. The installation instructions guide
you through creating an Amazon EKS cluster before deploying Kubeflow on AWS.

If you deployed a GPU cluster following the previous instructions, the NVIDIA device plug-in for
Kubernetes is already installed. You do not need any additional setup.

Note

The following tutorials use the Vanilla version of Kubeflow on AWS as an example.
However, you can run all training and inference tutorials in this Kubeflow on AWS section
with any other deployment option of Kubeflow on AWS.
For information about setting up and configuring Amazon RDS, Amazon S3, and Amazon
Cognito resources as part of your Kubeflow on AWS deployment, see Deployment options
in the Kubeflow on AWS documentation.

After you have set up your Amazon EKS cluster, you can verify that your context points to your
cluster in the following section.

Verify cluster connection

These steps show how to verify your context. This is to make sure that you interact with the correct
cluster.

1. First, confirm that the cluster is active by running the following command.

aws eks --region <region> describe-cluster --name <cluster-name> --query
 cluster.status

You should see the following output.

"ACTIVE"

2. To check your current context, run this command. The current-context field in the output
should contain your cluster name.

Kubeflow on AWS Setup 116

https://awslabs.github.io/kubeflow-manifests/docs/deployment/vanilla
https://awslabs.github.io/kubeflow-manifests/docs/deployment/prerequisites
https://awslabs.github.io/kubeflow-manifests/docs/deployment/create-eks-cluster/
https://awslabs.github.io/kubeflow-manifests/docs/deployment

AWS Deep Learning Containers Developer Guide

kubectl config view

If your current-context is not the cluster you want to interact with, run the following
command to update it. For more information about updating your kubeconfig, visit Amazon
EKS documentation

aws eks update-kubeconfig --region <region> --name <cluster-name>

After you have deployed Kubeflow on AWS and updated your current context, verify that your
Kubeflow user profile uses the right namespace in the following section.

Verify your namespace

These steps show how to verify that your active Kubeflow user profile uses the namespace
kubeflow-user-example-com. All tutorials in this series run in this namespace.

1.
Note

In Kubeflow, all namespaces should be created via profiles. Kubeflow on AWS Vanilla
installation creates a user profile with the namespace kubeflow-user-example-com
by default.

Ensure that a namespace named kubeflow-user-example-com exists by running the
following command.

kubectl get namespace

If the namespace does not appear in the output, create a new Kubeflow profile as follows.

2. Open vi or vim, then copy and paste the following content. Save this profile description file as
profile.yaml. Make sure to replace the email under owner.name with your email.

apiVersion: kubeflow.org/v1beta1
kind: Profile
metadata:
 # replace with the name of profile you want, this is the user's namespace name

Kubeflow on AWS Setup 117

https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig
https://www.kubeflow.org/docs/components/multi-tenancy/getting-started/#manual-profile-creation

AWS Deep Learning Containers Developer Guide

 name: kubeflow-user-example-com
spec:
 owner:
 kind: User
 # replace with the email of the user
 name: user@example.com

3. Run the following command to create the corresponding profile resource.

kubectl apply -f profile.yaml

4. Export the NAMESPACE variable.

export NAMESPACE=kubeflow-user-example-com

We refer to this namespace as the variable ${NAMESPACE} in all Kubeflow on AWS tutorials.

Next steps

Now that you have finished the Kubeflow on AWS setup, you can continue with the training and
inference tutorials.

To learn about training and inference with Deep Learning Containers on Kubeflow on AWS, see the
Training or Inference guides.

Cleanup

This section provides cleanup instructions after you have finished running your tutorials.

Clean Jobs

You can delete a specific training job when you are done running an example. To list the jobs
of a specific type (PyTorchJob, MPIJob, TfJob) running in a given namespace, run the following
command.

kubectl get job_type -n ${NAMESPACE}

Retrieve the name of the job you want to delete, then run the following command.

kubectl delete job_type job_name -n ${NAMESPACE}

Kubeflow on AWS Setup 118

AWS Deep Learning Containers Developer Guide

Your output should look similar to the following.

job_type.kubeflow.org "job_name" deleted

Uninstall Kubeflow on AWS

Kubeflow on AWS documentation provides uninstall commands. Make sure that you run the
command that corresponds to your deployment method: Kustomize, Helm, or Terraform.

Delete an Amazon EKS cluster

Kubeflow on AWS documentation provides a single command to delete your entire Amazon EKS
cluster.

Contents

• Training

• Inference

Training

In these Kubeflow on AWS tutorials, you learn about PyTorch and TensorFlow training using Deep
Learning Containers and Kubeflow on AWS with CPU and GPU instances.

After you have created a cluster by following the Kubeflow on AWS Setup instructions, you can
begin this training.

When you run one of the PyTorch or TensorFlow training examples in this series, select the training
example in the category that matches your Amazon EKS cluster. The categories are CPU, GPU, or
distributed GPU.

CPU Training

This section shows how to train a model on CPU instances by using Kubeflow training operators
and Deep Learning Containers.

For a complete list of Deep Learning Containers, see Deep Learning Containers Images. For tips
about configuration settings when using the Intel Math Kernel Library (MKL), see AWS Deep
Learning Containers Intel Math Kernel Library (MKL) Recommendations.

Kubeflow on AWS Setup 119

https://awslabs.github.io/kubeflow-manifests/docs/deployment/vanilla/guide/#uninstall-kubeflow-on-aws
https://awslabs.github.io/kubeflow-manifests/docs/deployment/vanilla/guide-terraform/#cleanup
https://awslabs.github.io/kubeflow-manifests/docs/deployment/vanilla/guide/#optional-delete-amazon-eks-cluster
https://awslabs.github.io/kubeflow-manifests/docs/deployment/vanilla/guide/#optional-delete-amazon-eks-cluster
https://www.kubeflow.org/docs/components/training/

AWS Deep Learning Containers Developer Guide

Contents

• PyTorch CPU training

• TensorFlow CPU training

• Next steps

PyTorch CPU training

Your deployment of Kubeflow on AWS comes with PyTorchJob. This is the Kubeflow
implementation of Kubernetes custom resource that is used to run distributed PyTorch training
jobs on Kubernetes.

This tutorial guides you through training a classification model on MNIST with PyTorch in a single
node CPU instance running a container from Deep Learning Containers managed by Kubeflow on
AWS.

1. To create a PyTorchJob, follow these instructions.

1. Create the job configuration file.

Open vi or vim, then copy and paste the following content. Save this file as
pytorch.yaml.

apiVersion: "kubeflow.org/v1"
kind: PyTorchJob
metadata:
 name: pytorch-training
spec:
 pytorchReplicaSpecs:
 Worker:
 restartPolicy: OnFailure
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:
 - name: pytorch
 imagePullPolicy: Always
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:2.0.0-cpu-py310-ubuntu20.04-ec2
 command:

Kubeflow on AWS Setup 120

https://www.kubeflow.org/docs/components/training/pytorch/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/pytorch/examples/blob/main/mnist/main.py

AWS Deep Learning Containers Developer Guide

 - "/bin/sh"
 - "-c"
 args:
 - "git clone https://github.com/pytorch/examples.git && python
 examples/mnist/main.py --no-cuda --epochs=1"
 env:
 - name: OMP_NUM_THREADS
 value: "36"
 - name: KMP_AFFINITY
 value: "granularity=fine,verbose,compact,1,0"
 - name: KMP_BLOCKTIME
 value: "1"

2. Deploy the PyTorchJob configuration file using kubectl to start training.

kubectl create -f pytorch.yaml -n ${NAMESPACE}

The job creates a pod running the container from Deep Learning Containers. This is
referenced in the field spec.containers.image in the YAML file above under the
container name pytorch.

3. You should see the following output.

pytorchjob.kubeflow.org/pytorch-training created

4. Check the status.

The name of the job pytorch-training appears in the status. It might take some time for
the job to reach a Running state. Run the following watch command to monitor the state
of the job.

kubectl get pods -n ${NAMESPACE} -w

You should see the following output.

NAME READY STATUS RESTARTS AGE
pytorch-training 0/1 Running 8 19m

2. Monitor your PyTorchJob

1. Check the logs to watch the training progress.
Kubeflow on AWS Setup 121

AWS Deep Learning Containers Developer Guide

kubectl logs pytorch-training-worker-0 -n ${NAMESPACE}

You should see something similar to the following output.

Cloning into 'examples'...
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../
data/MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:00, 40133996.38it/s]
Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../
data/MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw
32768it [00:00, 831315.84it/s]
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../
data/MNIST/raw/t10k-images-idx3-ubyte.gz
1654784it [00:00, 13019129.43it/s]
Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../
data/MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:00, 337197.38it/s]
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw
Processing...
Done!
Train Epoch: 1 [0/60000 (0%)] Loss: 2.300039
Train Epoch: 1 [640/60000 (1%)] Loss: 2.213470
Train Epoch: 1 [1280/60000 (2%)] Loss: 2.170460
Train Epoch: 1 [1920/60000 (3%)] Loss: 2.076699
Train Epoch: 1 [2560/60000 (4%)] Loss: 1.868078
Train Epoch: 1 [3200/60000 (5%)] Loss: 1.414199
Train Epoch: 1 [3840/60000 (6%)] Loss: 1.000870

2. Monitor the job state.

Run the following command to refresh the job state. When the status changes to
Succeeded, the training job is done.

watch -n 5 kubectl get pytorchjobs pytorch-training -n ${NAMESPACE}

See Cleanup for information on cleaning up a cluster after you are done using it.

Kubeflow on AWS Setup 122

AWS Deep Learning Containers Developer Guide

TensorFlow CPU training

Your deployment of Kubeflow on AWS comes with TFJob. This is the Kubeflow implementation of
Kubernetes custom resource that is used to run distributed TensorFlow training jobs on Kubernetes.

This tutorial guides you through training a classification model on MNIST with Keras in a single
node CPU instance running a container from Deep Learning Containers managed by Kubeflow on
AWS.

1. Create a TFJob.

1. Create the job configuration file.

Open vi or vim, then copy and paste the following content. Save this file as tf.yaml.

apiVersion: kubeflow.org/v1
kind: TFJob
metadata:
 name: tensorflow-training
spec:
 tfReplicaSpecs:
 Worker:
 restartPolicy: OnFailure
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:
 - name: tensorflow
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
training:2.12.0-cpu-py310-ubuntu20.04-ec2
 command: ["/bin/sh","-c"]
 args: ["git clone https://github.com/keras-team/keras-io.git &&
 python keras-io/examples/vision/mnist_convnet.py"]

2. To start training, deploy the TFJob configuration file using kubectl.

kubectl create -f tf.yaml -n ${NAMESPACE}

Kubeflow on AWS Setup 123

https://www.kubeflow.org/docs/components/training/tftraining/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py

AWS Deep Learning Containers Developer Guide

The job creates a pod by running the container from Deep Learning Containers that you
referenced in the field spec.containers.image in the YAML file above under the
container name tensorflow.

3. You should see the following output.

pod/tensorflow-training created

4. Check the status.

The name of the job tensorflow-training appears in the status. It might take some
time for the job to reach a Running state. Run the following watch command to monitor
the state of the job.

kubectl get pods -n ${NAMESPACE} -w

You should see the following output.

NAME READY STATUS RESTARTS AGE
tensorflow-training 0/1 Running 8 19m

2. Monitor your TFJob.

1. Check the logs to watch the training progress.

kubectl logs tensorflow-training-worker-0 -n ${NAMESPACE}

You should see something similar to the following output.

Cloning into 'keras'...
Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

 8192/11490434 [..............................] - ETA: 0s
 6479872/11490434 [===============>..............] - ETA: 0s
 8740864/11490434 [=====================>........] - ETA: 0s
11493376/11490434 [==============================] - 0s 0us/step
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples

Kubeflow on AWS Setup 124

AWS Deep Learning Containers Developer Guide

Train on 60000 samples, validate on 10000 samples
Epoch 1/12
2019-03-19 01:52:33.863598: I tensorflow/core/platform/cpu_feature_guard.cc:141]
 Your CPU supports instructions that this TensorFlow binary was not compiled to
 use: AVX512F
2019-03-19 01:52:33.867616: I tensorflow/core/common_runtime/process_util.cc:69]
 Creating new thread pool with default inter op setting: 2. Tune using
 inter_op_parallelism_threads for best performance.

 128/60000 [..............................] - ETA: 10:43 - loss: 2.3076 - acc:
 0.0625
 256/60000 [..............................] - ETA: 5:59 - loss: 2.2528 - acc:
 0.1445
 384/60000 [..............................] - ETA: 4:24 - loss: 2.2183 - acc:
 0.1875
 512/60000 [..............................] - ETA: 3:35 - loss: 2.1652 - acc:
 0.1953
 640/60000 [..............................] - ETA: 3:05 - loss: 2.1078 - acc:
 0.2422
 ...

2. Monitor the job state.

Run the following command to refresh the job state. When the status changes to
Succeeded, the training job is done.

watch -n 5 kubectl get tfjobs tensorflow-training -n ${NAMESPACE}

See Cleanup for information on cleaning up a cluster after you are done using it.

Next steps

To learn CPU-based inference on Kubeflow on AWS using PyTorch or TensorFlow with Deep
Learning Containers, see Inference.

GPU Training

This section demonstrates how to train a model on GPU instances using Kubeflow training operator
and Deep Learning Containers.

Kubeflow on AWS Setup 125

https://www.kubeflow.org/docs/components/training/

AWS Deep Learning Containers Developer Guide

Make sure that your cluster has GPU nodes before you run the examples. If you do not have GPU
nodes in your cluster, use the following command to add a nodegroup to your cluster. Be sure to
select an Amazon EC2 instance (node-type) in the Accelerated Computing category.

eksctl create nodegroup --cluster $CLUSTER_NAME --region $CLUSTER_REGION \
 --nodes 2 --nodes-min 1 --nodes-max 3 --node-type p3.2xlarge

For a complete list of Deep Learning Containers, see Deep Learning Containers Images. For tips
about configuration settings when using the Intel Math Kernel Library (MKL), see AWS Deep
Learning Containers Intel Math Kernel Library (MKL) Recommendations.

Contents

• PyTorch GPU training

• TensorFlow GPU training

PyTorch GPU training

Your deployment of Kubeflow on AWS comes with PyTorchJob. This is the Kubeflow
implementation of Kubernetes custom resource that is used to run distributed PyTorch training
jobs on Amazon EKS.

This tutorial shows how to train a model with PyTorch in a single node GPU instance. You will run
this PyTorch MNIST example in your container from Deep Learning Containers, that is managed by
Kubeflow on AWS.

1. Create a PyTorchJob.

1. Create the job configuration file.

Open vi or vim, then copy and paste the following content. Save this file as
pytorch.yaml.

apiVersion: "kubeflow.org/v1"
kind: PyTorchJob
metadata:
 name: pytorch-training
spec:
 pytorchReplicaSpecs:
 Worker:
 restartPolicy: OnFailure

Kubeflow on AWS Setup 126

https://aws.amazon.com/ec2/instance-types/
https://www.kubeflow.org/docs/components/training/pytorch/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/pytorch/examples/blob/main/mnist/main.py

AWS Deep Learning Containers Developer Guide

 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:
 - name: pytorch
 imagePullPolicy: Always
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:2.0.0-gpu-py310-cu118-ubuntu20.04-ec2
 command:
 - "/bin/sh"
 - "-c"
 args:
 - "git clone https://github.com/pytorch/examples.git && python
 examples/mnist/main.py --no-cuda --epochs=1"
 env:
 - name: OMP_NUM_THREADS
 value: "36"
 - name: KMP_AFFINITY
 value: "granularity=fine,verbose,compact,1,0"
 - name: KMP_BLOCKTIME
 value: "1"
 resources:
 limits:
 nvidia.com/gpu: 1

2. Deploy the PyTorchJob configuration file using kubectl to start training.

kubectl create -f pytorch.yaml -n ${NAMESPACE}

The job creates a pod running the container from Deep Learning Containers that is
referenced in the field spec.containers.image. This is located in the YAML file above
under the container name pytorch.

3. You should see the following output.

pod/pytorch-training created

4. Check the status.

Kubeflow on AWS Setup 127

AWS Deep Learning Containers Developer Guide

The name of the job pytorch-training appears in the status. It might take some time for
the job to reach a Running state. Run the following watch command to monitor the state
of the job.

kubectl get pods n ${NAMESPACE} -w

You should see the following output.

NAME READY STATUS RESTARTS AGE
pytorch-training 0/1 Running 8 19m

2. Monitor your PyTorchJob.

1. Check the logs to watch the training progress.

kubectl logs pytorch-training-worker-0 -n ${NAMESPACE}

You should see something similar to the following output.

Cloning into 'examples'...
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../
data/MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:00, 40133996.38it/s]
Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../
data/MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw
32768it [00:00, 831315.84it/s]
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../
data/MNIST/raw/t10k-images-idx3-ubyte.gz
1654784it [00:00, 13019129.43it/s]
Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../
data/MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:00, 337197.38it/s]
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw
Processing...
Done!
Train Epoch: 1 [0/60000 (0%)] Loss: 2.300039
Train Epoch: 1 [640/60000 (1%)] Loss: 2.213470

Kubeflow on AWS Setup 128

AWS Deep Learning Containers Developer Guide

Train Epoch: 1 [1280/60000 (2%)] Loss: 2.170460
Train Epoch: 1 [1920/60000 (3%)] Loss: 2.076699
Train Epoch: 1 [2560/60000 (4%)] Loss: 1.868078
Train Epoch: 1 [3200/60000 (5%)] Loss: 1.414199
Train Epoch: 1 [3840/60000 (6%)] Loss: 1.000870

2. Monitor the job state.

Run the following command to refresh the job state. When the status changes to
Succeeded, the training job is done.

watch -n 5 kubectl get pytorchjobs pytorch-training -n ${NAMESPACE}

See Cleanup for information on cleaning up a cluster after you are done using it.

TensorFlow GPU training

Your deployment of Kubeflow on AWS comes with TFJob. This is the Kubeflow implementation of
Kubernetes custom resource that is used to run distributed TensorFlow training jobs on Kubernetes.

This tutorial guides you through training a classification model on MNIST with Keras in a single
node GPU instance running a container from Deep Learning Containers managed by Kubeflow on
AWS.

1. Create a TFJob.

1. Create the job configuration file.

Open vi or vim, then copy and paste the following content. Save this file as tf.yaml.

apiVersion: kubeflow.org/v1
kind: TFJob
metadata:
 name: tensorflow-training
spec:
 tfReplicaSpecs:
 Worker:
 restartPolicy: OnFailure
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"

Kubeflow on AWS Setup 129

https://www.kubeflow.org/docs/components/training/tftraining/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py

AWS Deep Learning Containers Developer Guide

 spec:
 containers:
 - name: tensorflow
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
training:2.12.0-gpu-py310-cu118-ubuntu20.04-ec2
 command: ["/bin/sh","-c"]
 args: ["git clone https://github.com/keras-team/keras-io.git &&
 python keras-io/examples/vision/mnist_convnet.py"]
 resources:
 limits:
 nvidia.com/gpu: 1

2. Deploy the TFJob configuration file using kubectl to start training.

kubectl create -f tf.yaml ${NAMESPACE}

The job creates a pod running the container from Deep Learning Containers that is
referenced in the field spec.containers.image. This is located in the YAML file above
under the container name tensorflow.

3. You should see the following output.

pod/tensorflow-training created

4. Check the status.

The name of the job tensorflow-training appears in the status. It might take some
time for the job to reach a Running state. Run the following watch command to monitor
the state of the job.

watch -n 5 kubectl get pods ${NAMESPACE}

You should see the following output.

NAME READY STATUS RESTARTS AGE
tensorflow-training 0/1 Running 8 19m

2. Monitor your TFJob.

1. Check the logs to watch the training progress.

Kubeflow on AWS Setup 130

AWS Deep Learning Containers Developer Guide

kubectl logs tensorflow-training-worker-0 ${NAMESPACE}

You should see something similar to the following output.

Cloning into 'keras'...
Using TensorFlow backend.
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

 8192/11490434 [..............................] - ETA: 0s
 6479872/11490434 [===============>..............] - ETA: 0s
 8740864/11490434 [=====================>........] - ETA: 0s
11493376/11490434 [==============================] - 0s 0us/step
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
2019-03-19 01:52:33.863598: I tensorflow/core/platform/cpu_feature_guard.cc:141]
 Your CPU supports instructions that this TensorFlow binary was not compiled to
 use: AVX512F
2019-03-19 01:52:33.867616: I tensorflow/core/common_runtime/process_util.cc:69]
 Creating new thread pool with default inter op setting: 2. Tune using
 inter_op_parallelism_threads for best performance.

 128/60000 [..............................] - ETA: 10:43 - loss: 2.3076 - acc:
 0.0625
 256/60000 [..............................] - ETA: 5:59 - loss: 2.2528 - acc:
 0.1445
 384/60000 [..............................] - ETA: 4:24 - loss: 2.2183 - acc:
 0.1875
 512/60000 [..............................] - ETA: 3:35 - loss: 2.1652 - acc:
 0.1953
 640/60000 [..............................] - ETA: 3:05 - loss: 2.1078 - acc:
 0.2422
 ...

2. Monitor the job state.

Run the following command to refresh the job state. When the status changes to
Succeeded, the training job is done.

Kubeflow on AWS Setup 131

AWS Deep Learning Containers Developer Guide

watch -n 5 kubectl get tfjobs tensorflow-training ${NAMESPACE}

See Cleanup for information on cleaning up a cluster after you are done using it.

Distributed GPU Training

This section is for distributed training on GPU-based clusters.

Make sure that your cluster has GPU nodes before you run the examples. If you do not have GPU
nodes in your cluster, use the following command to add a nodegroup to your cluster. Be sure to
select an Amazon EC2 instance (node-type) in the Accelerated Computing category.

eksctl create nodegroup --cluster $CLUSTER_NAME --region $CLUSTER_REGION \
 --nodes 2 --nodes-min 1 --nodes-max 3 --node-type p3.2xlarge

For a complete list of Deep Learning Containers, see Deep Learning Containers Images.

Contents

• PyTorch distributed GPU training

• TensorFlow with Horovod distributed GPU training

PyTorch distributed GPU training

This tutorial guides you through training a classification model on MNIST with PyTorch in a single
node GPU instance running a container from Deep Learning Containers managed by Kubeflow on
AWS. The example uses Gloo as the backend.

1. Create a PyTorchJob.

1. Verify that the PyTorch custom resource is installed.

kubectl get crd

The output should include pytorchjobs.kubeflow.org.

2. Ensure that the NVIDIA plugin daemonset is running.

kubectl get daemonset -n kube-system

Kubeflow on AWS Setup 132

https://aws.amazon.com/ec2/instance-types/
https://github.com/kubeflow/training-operator/tree/master/examples/pytorch/mnist

AWS Deep Learning Containers Developer Guide

The output should look similar to the following.

NDESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nvidia-device-plugin-daemonset 3 3 3 3 3 <none>
 35h

3. Use the following text to create a gloo-based distributed data parallel job. Save it in a file
named pt_distributed.yaml.

apiVersion: kubeflow.org/v1
kind: PyTorchJob
metadata:
 name: "kubeflow-pytorch-gpu-dist-job"
spec:
 pytorchReplicaSpecs:
 Master:
 replicas: 1
 restartPolicy: OnFailure
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:
 - name: "pytorch"
 image: "763104351884.dkr.ecr.us-west-2.amazonaws.com/aws-samples-
pytorch-training:2.0-gpu-py310-ec2"
 args:
 - "--backend"
 - "gloo"
 - "--epochs"
 - "5"
 Worker:
 replicas: 2
 restartPolicy: OnFailure
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:

Kubeflow on AWS Setup 133

AWS Deep Learning Containers Developer Guide

 - name: "pytorch"
 image: "763104351884.dkr.ecr.us-west-2.amazonaws.com/aws-samples-
pytorch-training:2.0-gpu-py310-ec2"
 args:
 - "--backend"
 - "gloo"
 - "--epochs"
 - "5"
 resources:
 limits:
 nvidia.com/gpu: 1

4. Run a distributed training job.

kubectl create -f pt_distributed.yaml -n ${NAMESPACE}

2. Monitor your PyTorchJob.

1. See the status section to monitor the job status. Here is an example of output when the job
is successfully completed.

kubectl get -o yaml pytorchjobs kubeflow-pytorch-gpu-dist-job ${NAMESPACE}

2. Check the logs for each pod.

The first command prints a list of pods for a specific PyTorchJob, as shown in the following
example.

kubectl get pods -l job-name=kubeflow-pytorch-gpu-dist-job -o name -n
 ${NAMESPACE}

The second command tails the logs for a specific pod.

kubectl logs pod name -n ${NAMESPACE}

See Cleanup for information about cleaning up a cluster after you finish using it.

Kubeflow on AWS Setup 134

AWS Deep Learning Containers Developer Guide

TensorFlow with Horovod distributed GPU training

This tutorial guides you through distributed training with Horovod TensorFlow on a GPU cluster.
You will run this distributed training example on ImageNet with ResNet based on TensorFlow in
your container from Deep Learning Containers, managed by Kubeflow on AWS.

The example requires a GPU instance with at least 2 GPUs. You can use node-type=p3.16xlarge
or above.

1. Create an MPIJob.

1. Verify that the TensorFlow custom resource is installed.

kubectl get crd

The output should include mpijobs.kubeflow.org.

2. Ensure that the NVIDIA plugin daemonset is running.

kubectl get daemonset -n kube-system

The output should look similar to the following.

NDESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nvidia-device-plugin-daemonset 3 3 3 3 3 <none>
 35h

3. Use the following text to create an MPIJob. Save it in a file named
tf_distributed.yaml..

apiVersion: kubeflow.org/v1
kind: MPIJob
metadata:
 name: tensorflow-tf-dist
spec:
 slotsPerWorker: 1
 cleanPodPolicy: Running
 mpiReplicaSpecs:
 Launcher:
 replicas: 1
 template:

Kubeflow on AWS Setup 135

https://github.com/horovod/horovod
https://github.com/aws-samples/deep-learning-models/blob/master/legacy/models/resnet/tensorflow/train_imagenet_resnet_hvd.py

AWS Deep Learning Containers Developer Guide

 metadata:
 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-west-2.amazonaws.com/aws-samples-
tensorflow-training:2.12-gpu-py310-ec2
 name: tensorflow-launcher
 command:
 - mpirun
 - -mca
 - btl_tcp_if_exclude
 - lo
 - -mca
 - pml
 - ob1
 - -mca
 - btl
 - ^openib
 - --bind-to
 - none
 - -map-by
 - slot
 - -x
 - LD_LIBRARY_PATH
 - -x
 - PATH
 - -x
 - NCCL_SOCKET_IFNAME=eth0
 - -x
 - NCCL_DEBUG=INFO
 - -x
 - MXNET_CUDNN_AUTOTUNE_DEFAULT=0
 - python
 - /deep-learning-models/models/resnet/tensorflow2/
train_tf2_resnet.py
 args:
 - --num_epochs
 - "10"
 - --synthetic
 Worker:
 replicas: 2
 template:
 metadata:

Kubeflow on AWS Setup 136

AWS Deep Learning Containers Developer Guide

 annotations:
 sidecar.istio.io/inject: "false"
 spec:
 containers:
 - image: 763104351884.dkr.ecr.us-west-2.amazonaws.com/aws-samples-
tensorflow-training:2.12-gpu-py310-ec2
 name: tensorflow-worker
 resources:
 limits:
 nvidia.com/gpu: 1

4. Run a distributed training job.

kubectl create -f tf_distributed.yaml -n ${NAMESPACE}

2. Monitor your PyTorchJob.

1. See the status section to monitor the job status. Here is an example of output after the job
is successfully completed.

kubectl get -o yaml mpijob tensorflow-tf-dist -n ${NAMESPACE}

2. Check the logs for each pod.

The first command prints a list of pods for a specific PyTorchJob, such as the following
example.

kubectl get -o yaml mpijob tensorflow-tf-dist -n ${NAMESPACE}

The second command tails the logs for a specific pod.

kubectl logs pod name -n ${NAMESPACE}

See Cleanup for information about cleaning up a cluster after you finish using it.

Inference

This guide shows how to run inference services on a PyTorch or TensorFlow model.

Kubeflow on AWS Setup 137

AWS Deep Learning Containers Developer Guide

If you have already created a cluster and deployed Kubeflow on AWS, you can begin this tutorial. If
not, follow the steps in Kubeflow on AWS Setup. Select a CPU or GPU example depending on your
cluster setup. Inference examples run on single node configurations.

TensorFlow CPU Inference with KServe

KServe enables serverless inferencing on Kubernetes for common machine learning (ML)
frameworks. Frameworks include TensorFlow, XGBoost, or PyTorch. KServe is pre-installed with
Kubeflow on AWS. In this tutorial, you create a KServe service to run a TensorFlow model inference
on a CPU cluster.

Note

For this example, the service is exposed on a cluster-internal IP ClusterIP. In a production
environment, you might need to expose inference services externally using a load balancer.

1. In Kubeflow 1.7, the inference services are not configured with external DNS via the kubeflow-
gateway by default. To workaround this issue, run the following commands, unless you have
already configured your custom domain. For more details follow this GitHub issue.

kubectl patch cm config-domain --patch '{"data":{"example.com":""}}' -n knative-
serving

2. Create a service specification file named tf_inference.yaml with the following contents.
This example specifies the remote location of a model and the TensorFlow inference image
that our inference service uses. The model is a public example provided by KServe, and it can
be used without modification.

apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
 name: "flower-sample"
 annotations:
 sidecar.istio.io/inject: "false"
spec:
 predictor:
 tensorflow:
 image: "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference:2.11.1-cpu-py39-ubuntu20.04-ec2"

Kubeflow on AWS Setup 138

https://github.com/kserve/kserve/issues/2846

AWS Deep Learning Containers Developer Guide

 storageUri: "gs://kfserving-examples/models/tensorflow/flowers"

3. Apply the service description to a pod in your cluster.

kubectl apply -f tf_inference.yaml -n ${NAMESPACE}

Your output appears as follows.

inferenceservice.serving.kserve.io/flower-sample created

4. Check the status of the inference service to ensure that it is READY by running the following
command. It might take few minutes for the inference service to come up.

kubectl get inferenceservices flower-sample -n ${NAMESPACE}

In the command output, the state of the deployment should be true under the READY
column.

NAME URL READY
 PREV LATEST PREVROLLEDOUTREVISION LATESTREADYREVISION
 AGE
flower-sample http://flower-sample.kubeflow-user-example-com.example.com True
 100 flower-sample-predictor-default-00001
 3m31s

5. Check the status of the pod with the following command.

kubectl get pods -n ${NAMESPACE}

Confirm that the pod is in a Running state by checking the STATUS in the command output.

NAME READY STATUS
 RESTARTS AGE
flower-sample-predictor-default-00001-deployment-76c89dc6c47cvl 3/3 Running
 0 24s

6. To describe the pod further, run the following command.

kubectl describe pod pod_name -n ${NAMESPACE}

Kubeflow on AWS Setup 139

AWS Deep Learning Containers Developer Guide

7. To access the inference service, forward a port from your container to your host machine.
In a typical inference service deployment, you most likely want to set up a more permanent
solution using a load balancer. This command runs continuously in the foreground of your
terminal.

INGRESS_GATEWAY_SERVICE=$(kubectl get svc --namespace istio-system --
selector="app=istio-ingressgateway" --output jsonpath='{.items[0].metadata.name}')
kubectl port-forward --namespace istio-system svc/${INGRESS_GATEWAY_SERVICE}
 8080:80

8. Download an input sample data by using this command. The command creates a file
flower_input.json containing sample data.

curl https://raw.githubusercontent.com/kserve/kserve/release-0.8/docs/samples/
v1beta1/tensorflow/input.json -o flower_input.json

9. In a separate terminal, log in to the inference service by creating and running the following
script.

a. Open vi or vim, then copy and paste the script below in a file named
inference_authentication.py. The script triggers an OpenID Connect (OIDC)
exchange resulting in a session cookie to authenticate inference requests.

import requests
import os
import json

CLUSTER_IP = os.environ.get("CLUSTER_IP", "localhost:8080")
DASHBOARD_URL = f"http://{CLUSTER_IP}"
NAMESPACE = os.environ.get("NAMESPACE", "kubeflow-user-example-com")
MODEL_NAME = os.environ.get("MODEL_NAME", "sklearn-iris")
SERVICE_HOSTNAME = os.environ.get("SERVICE_HOSTNAME", "flower-sample.kubeflow-
user-example-com.example.com")
URL = f"http://{CLUSTER_IP}/v1/models/{MODEL_NAME}:predict"
HEADERS = {"Host": f"{SERVICE_HOSTNAME}"}
USERNAME = os.environ.get("USERNAME", "user@example.com")
PASSWORD = os.environ.get("PASSWORD", "12341234")

def load_json_file(filepath):
 with open(filepath) as file:
 return json.load(file)

Kubeflow on AWS Setup 140

AWS Deep Learning Containers Developer Guide

data = load_json_file("./flower_input.json")

response = None

def session_cookie(host, login, password):
 session = requests.Session()
 response = session.get(host)
 headers = {
 "Content-Type": "application/x-www-form-urlencoded",
 }
 data = {"login": login, "password": password}
 session.post(response.url, headers=headers, data=data)
 session_cookie = session.cookies.get_dict()["authservice_session"]
 return session_cookie

cookie = {"authservice_session": session_cookie(DASHBOARD_URL, USERNAME,
 PASSWORD)}
response = requests.post(URL, headers=HEADERS, json=data, cookies=cookie)

print("Sending request to:", URL)

status_code = response.status_code
print("Status Code", status_code)
if status_code == 200:
 print("JSON Response ", json.dumps(response.json(), indent=2))

b. To run a prediction using the sample input data, run the script above using the commands
below.

export INGRESS_HOST=localhost
export INGRESS_PORT=8080
export CLUSTER_IP=${INGRESS_HOST}:${INGRESS_PORT}
export NAMESPACE=kubeflow-user-example-com
export MODEL_NAME=flower-sample
export SERVICE_HOSTNAME=$(kubectl get -n ${NAMESPACE} inferenceservice
 ${MODEL_NAME} -o jsonpath='{.status.url}' | cut -d "/" -f 3)
export USERNAME=user@example.com
export PASSWORD=12341234

pip install requests

Kubeflow on AWS Setup 141

AWS Deep Learning Containers Developer Guide

python3 ./inference_authentication.py

10. The output displays the inference results.

Sending request to: http://localhost:8080/v1/models/flower-sample:predict
Status Code 200
JSON Response {
 "predictions": [
 {
 "prediction": 0,
 "key": " 1",
 "scores": [
 0.999114931,
 9.20989623e-05,
 0.000136786606,
 0.000337258854,
 0.000300534302,
 1.84814289e-05
]
 }
]
}

See Cleanup for information on cleaning up a cluster after you are done using it.

Custom Entrypoints

For some images, AWS containers use a custom entrypoint script. If you want to use your own
entrypoint, you can override the entrypoint as follows.

Update the command parameter in your pod file. Replace the args parameters with your custom
entrypoint script.

apiVersion: v1
kind: Pod
metadata:
 name: pytorch-multi-model-server-densenet
spec:
 restartPolicy: OnFailure

Custom Entrypoints 142

AWS Deep Learning Containers Developer Guide

 containers:
 - name: pytorch-multi-model-server-densenet
 image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference:1.2.0-cpu-
py36-ubuntu16.04
 command:
 - "/bin/sh"
 - "-c"
 args:
 - /usr/local/bin/mxnet-model-server
 - --start
 - --mms-config /home/model-server/config.properties
 - --models densenet="https://dlc-samples.s3.amazonaws.com/pytorch/multi-model-
server/densenet/densenet.mar"

command is the Kubernetes field name for entrypoint. Refer to this table of Kubernetes field
names for more information.

If the EKS cluster has expired IAM permissions to access the ECR repository holding the image, or
you are using kubectl from a different user than the one that created the cluster, you will receive
the following error.

error: unable to recognize "job.yaml": Unauthorized

To address this issue, you need to refresh the IAM tokens. Run the following script.

set -ex

AWS_ACCOUNT=${AWS_ACCOUNT}
AWS_REGION=us-east-1
DOCKER_REGISTRY_SERVER=https://${AWS_ACCOUNT}.dkr.ecr.${AWS_REGION}.amazonaws.com
DOCKER_USER=AWS
DOCKER_PASSWORD=`aws ecr get-login --region ${AWS_REGION} --registry-ids ${AWS_ACCOUNT}
 | cut -d' ' -f6`
kubectl delete secret aws-registry || true
kubectl create secret docker-registry aws-registry \
--docker-server=$DOCKER_REGISTRY_SERVER \
--docker-username=$DOCKER_USER \
--docker-password=$DOCKER_PASSWORD
kubectl patch serviceaccount default -p '{"imagePullSecrets":[{"name":"aws-
registry"}]}'

Append the following under spec in your pod file.

Custom Entrypoints 143

https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes

AWS Deep Learning Containers Developer Guide

imagePullSecrets:
 - name: aws-registry

Troubleshooting AWS Deep Learning Containers on EKS

The following are common errors that might be returned in the command line when using AWS
Deep Learning Containers on an Amazon EKS cluster. Each error is followed by a solution to the
error.

Troubleshooting

Topics

• Setup Errors

• Usage Errors

• Cleanup Errors

Setup Errors

The following errors might be returned when setting up Deep Learning Containers on your Amazon
EKS cluster.

• Error: registry kubeflow does not exist

$ ks pkg install kubeflow/tf-serving
 ERROR registry 'kubeflow' does not exist

To solve this error, run the following command.

ks registry add kubeflow github.com/google/kubefl ow/tree/master/kubeflow

• Error: context deadline exceeded

$ eksctl create cluster <args>
 [#] waiting for CloudFormation stack "eksctl-training-cluster-1-nodegroup-
ng-8c4c94bc" to reach "CREATE_COMPLETE" status: RequestCanceled: waiter context
 canceled
 caused by: context deadline exceeded

Troubleshooting AWS Deep Learning Containers on EKS 144

AWS Deep Learning Containers Developer Guide

To solve this error, verify that you have not exceeded capacity for your account. You can also try
to create your cluster in a different region.

• Error: The connection to the server localhost:8080 was refused

$ kubectl get nodes
 The connection to the server localhost:8080 was refused - did you specify the right
 host or port?

To solve this error, copy the cluster to the Kubernetes configuration by running the following.

cp ~/.kube/eksctl/clusters/<cluster-name> ~/.kube/config

• Error: handle object: patching object from cluster: merging object with existing state:
Unauthorized

$ ks apply default
 ERROR handle object: patching object from cluster: merging object with existing
 state: Unauthorized

This error is due to a concurrency issue that can occur when multiple users with different
authorization or credentials credentials try to start jobs on the same cluster. Verify that you are
starting a job on the correct cluster.

• Error: Could not create app; directory '/home/ubuntu/kubeflow-tf-hvd' already exists

$ APP_NAME=kubeflow-tf-hvd; ks init ${APP_NAME}; cd ${APP_NAME}
 INFO Using context "arn:aws:eks:eu-west-1:999999999999:cluster/training-gpu-1" from
 kubeconfig file "/home/ubuntu/.kube/config"
 ERROR Could not create app; directory '/home/ubuntu/kubeflow-tf-hvd' already exists

You can safely ignore this warning. However, you may have additional cleanup to do inside that
folder. To simplify cleanup, delete the folder.

Usage Errors

ssh: Could not resolve hostname openmpi-worker-1.openmpi.kubeflow-dist-train-tf: Name
 or service not known

Troubleshooting AWS Deep Learning Containers on EKS 145

AWS Deep Learning Containers Developer Guide

If you see this error message while using the Amazon EKS cluster, run the NVIDIA device plugin
installation step again. Verify that you have targeted the right cluster by either passing in the
specific config file or switching your active cluster to the targeted cluster.

Cleanup Errors

The following errors might be returned when cleaning up the resources of your Amazon EKS
cluster.

• Error: the server doesn't have a resource type "namspace"

$ kubectl delete namespace ${NAMESPACE}
 error: the server doesn't have a resource type "namspace"

Verify the spelling of your namespace is correct.

• Error: the server has asked for the client to provide credentials

$ ks delete default
 ERROR the server has asked for the client to provide credentials

To solve this error, verify that ~/.kube/config points to the correct cluster and that AWS
credentials have been correctly configured using aws configure or by exporting AWS
environment variables.

• Error: finding app root from starting path: : unable to find ksonnet project

$ ks delete default
 ERROR finding app root from starting path: : unable to find ksonnet project

To solve this error, verify that you are in the directory created by the ksonnet app. This is the
folder where ks init was run.

• Error: Error from server (NotFound): pods "openmpi-master" not found

$ kubectl logs -n ${NAMESPACE} -f ${COMPONENT}-master > results/benchmark_1.out
 Error from server (NotFound): pods "openmpi-master" not found

This error might be caused by trying to access resources after the context is deleted. Deleting the
default context causes the corresponding resources to be deleted as well.

Troubleshooting AWS Deep Learning Containers on EKS 146

AWS Deep Learning Containers Developer Guide

Framework Support Policy

AWS Deep Learning Containers (DLCs) simplify image configuration for deep learning workloads
and are optimized with the latest frameworks, hardware, drivers, libraries, and operating systems.
This page details the framework support policy for DLCs. For a list of available DLCs, see Release
Notes for Deep Learning Containers.

Supported Frameworks

Reference the following AWS Deep Learning Containers Framework Support Policy table to check
which frameworks and versions are actively supported.

Refer to End of patch to check how long AWS supports current versions that are actively supported
by the origin framework’s maintenance team. Frameworks and versions are available in single-
framework DLCs.

Note

In the framework version x.y.z, x refers to the major version, y refers to the minor version,
and z refers to the patch version. For example, for TensorFlow 2.6.5, the major version is 2,
the minor version is 6, and the patch version is 5.

Refer to the release notes for more details on specific images:

• Single-framework DLC release notes

• Available Deep Learning Containers Images page

Frequently Asked Questions

• What framework versions get security patches?

• What images does AWS publish when new framework versions are released?

• What images get new SageMaker/AWS features?

• How is current version defined in the Supported Frameworks table?

• What if I am running a version that is not in the Supported Frameworks table?

Supported Frameworks 147

https://aws.amazon.com/machine-learning/containers/?nc2=h_ql_prod_ml_con
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://aws.amazon.com/releasenotes/dlc-support-policy/
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html#appendix-dlc-release-notes-frameworks
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

AWS Deep Learning Containers Developer Guide

• Do DLCs support previous versions of TensorFlow?

• How can I find the latest patched image for a supported framework version?

• How frequently are new images released?

• Will my instance be patched in place while my workload is running?

• What happens when a new patched or updated framework version is available?

• Are dependencies updated without changing the framework version?

• When does active support for my framework version end?

• Will images with framework versions that are no longer actively maintained be patched?

• How do I use an older framework version?

• How do I stay up-to-date with support changes in frameworks and their versions?

• Do I need a commercial license to use the Anaconda Repository?

What framework versions get security patches?

If the framework version is labeled Supported in the AWS Deep Learning Containers Framework
Support Policy table, it gets security patches.

What images does AWS publish when new framework versions are
released?

We publish new DLCs soon after new versions of TensorFlow and PyTorch are released. This
includes major versions, major-minor versions, and major-minor-patch versions of frameworks.
We also update images when new versions of drivers and libraries become available. For more
information on image maintenance, see When does active support for my framework version end?

What images get new SageMaker/AWS features?

New features typically release in the latest version of DLCs for PyTorch and TensorFlow. Refer to
the release notes for a specific image for details on new SageMaker or AWS features. For a list of
available DLCs, see Release Notes for AWS Deep Learning Containers. For more information on
image maintenance, see When does active support for my framework version end?

How is current version defined in the Supported Frameworks table?

The current version in the AWS Deep Learning Containers Framework Support Policy table refers
to the newest framework version that AWS makes available on GitHub. Each latest release includes

What framework versions get security patches? 148

https://aws.amazon.com/releasenotes/dlc-support-policy/
https://aws.amazon.com/releasenotes/dlc-support-policy/
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://aws.amazon.com/releasenotes/dlc-support-policy/

AWS Deep Learning Containers Developer Guide

updates to the drivers, libraries, and relevant packages in the DLC. For information on image
maintenance, see When does active support for my framework version end?

What if I am running a version that is not in the Supported Frameworks
table?

If you are running a version that is not in the AWS Deep Learning Containers Framework Support
Policy table, you may not have the most updated drivers, libraries, and relevant packages. For a
more up-to-date version, we recommend that you upgrade to one of the supported frameworks
available using the latest DLC of your choice. For a list of available DLCs, see Release Notes for AWS
Deep Learning Containers.

Do DLCs support previous versions of TensorFlow?

No. We support the latest patch version of each framework’s latest major version released 365 days
from its initial GitHub release as stated in the AWS Deep Learning Containers Framework Support
Policy table. For more information, see What if I am running a version that is not in the Supported
Frameworks table?

How can I find the latest patched image for a supported framework
version?

To use a DLC with the latest framework version, browse the DLC GitHub release tags to find
the sample image URI of your choice and use it to pull the latest available Docker image. The
framework version that you choose must be labeled Supported in the AWS Deep Learning
Containers Framework Support Policy table.

How frequently are new images released?

Providing updated patch versions is our highest priority. We routinely create patched images at
the earliest opportunity. We monitor for newly patched framework versions (ex. TensorFlow 2.9
to TensorFlow 2.9.1) and new minor release versions (ex. TensorFlow 2.9 to TensorFlow 2.10)
and make them available at the earliest opportunity. When an existing version of TensorFlow is
released with a new version of CUDA, we release a new DLC for that version of TensorFlow with
support for the new CUDA version.

Will my instance be patched in place while my workload is running?

No. Patch updates for DLC are not “in-place” updates.

What if I am running a version that is not in the Supported Frameworks table? 149

https://aws.amazon.com/releasenotes/dlc-support-policy/
https://aws.amazon.com/releasenotes/dlc-support-policy/
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://aws.amazon.com/releasenotes/dlc-support-policy/
https://aws.amazon.com/releasenotes/dlc-support-policy/
https://github.com/aws/deep-learning-containers/releases
https://aws.amazon.com/releasenotes/dlc-support-policy/
https://aws.amazon.com/releasenotes/dlc-support-policy/

AWS Deep Learning Containers Developer Guide

You must delete the existing image on your instance and pull the latest container image without
terminating you instance.

What happens when a new patched or updated framework version is
available?

Regularly check the release notes page for your image. We encourage you to upgrade to new
patched or updated frameworks when they are available. For a list of available DLCs, see Release
Notes for AWS Deep Learning Containers.

Are dependencies updated without changing the framework version?

We update dependencies without changing the framework version. However, if a dependency
update causes an incompatibility, we create an image with a different version. Be sure to check the
Release Notes for AWS Deep Learning Containers for updated dependency information.

When does active support for my framework version end?

DLC images are immutable. Once they are created they do not change. There are four main reasons
why active support for a framework version ends:

• Framework version (patch) upgrades

• AWS security patches

• End of patch date (Aging out)

• Dependency end-of-support

Note

Due to the frequency of version patch upgrades and security patches, we recommend
checking the release notes page for your DLC often, and upgrading when changes are
made.

Framework version (patch) upgrades

If you have a DLC workload based on TensorFlow 2.7.0 and TensorFlow releases version 2.7.1 on
GitHub, then AWS releases a new DLC with TensorFlow 2.7.1. The previous images with 2.7.0 are

What happens when a new patched or updated framework version is available? 150

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

AWS Deep Learning Containers Developer Guide

longer actively maintained once the new image with TensorFlow 2.7.1 is released. The DLC with
TensorFlow 2.7.0 does not receive further patches. The DLC release notes page for TensorFlow 2.7
is then updated with the latest information. There is no individual release note page for each minor
patch.

New DLCs created due to patch upgrades are designated with updated release tags. If changes are
not backwards compatible, the tag will change major versions rather than minor versions (ex. v1.0
will change to v2.0 rather than v 1.2).

AWS security patches

If you have a workload based on an image with TensorFlow 2.7.0 and AWS makes a security patch,
then a new version of the DLC is released for TensorFlow 2.7.0. The previous version of the images
with TensorFlow 2.7.0 is no longer actively maintained. For more information, see Will my instance
be patched in place while my workload is running? For steps on finding the latest DLC, see How can
I find the latest patched image for a supported framework version?

New DLCs created due to patch upgrades are designated with updated release tags. If changes are
not backwards compatible, the tag will change major versions rather than minor versions (ex. v1.0
will change to v2.0 rather than v 1.2).

End of patch date (Aging out)

DLCs hit their end of patch date 365 days after the GitHub release date.

Important

We make an exception when there is a major framework update. For example. if TensorFlow
1.15 updates to TensorFlow 2.0, then we continue to support the most recent version
of TensorFlow 1.15 for a period of two years from the date of the GitHub release or six
months after the origin framework maintenance team drops support, whichever date is
earlier.

Dependency end-of-support

If you are running a workload on a TensorFlow 2.7.0 DLC image with Python 3.6 and that version
of Python is marked for end-of-support, then all DLC images based on Python 3.6 will no longer
be actively maintained. Similarly, if an OS version like Ubuntu 16.04 is marked for end-of-support,
then all DLC images that are dependent on Ubuntu 16.04 will no longer be actively maintained.

When does active support for my framework version end? 151

https://github.com/aws/deep-learning-containers/tags
https://github.com/aws/deep-learning-containers/tags

AWS Deep Learning Containers Developer Guide

Will images with framework versions that are no longer actively
maintained be patched?

No. Images that are no longer actively maintained will not have new releases.

How do I use an older framework version?

To use a DLC with an older framework version, browse the DLC GitHub release tags to find the
image URI of your choice and use it to pull the docker image.

How do I stay up-to-date with support changes in frameworks and their
versions?

Stay up-to-date with DLC frameworks and versions using the DLC release notes, and the Available
Deep Learning Containers Images page.

Do I need a commercial license to use the Anaconda Repository?

Anaconda shifted to a commercial licensing model for certain users. Actively maintained DLCs
have been migrated to the publicly available open-source version of Conda (conda-forge) from the
Anaconda channel.

Warning

If you are actively using Anaconda to install and manage your packages and their
dependencies in a DLC that is no longer actively maintained, you are responsible for
complying with the governing license from the Anaconda Repository, if you determine that
the terms apply to you. Alternatively, you can migrate to one of the currently-supported
DLCs listed in the AWS Deep Learning Containers Framework Support Policy table or you
can install packages using conda-forge as a source.

Will images with framework versions that are no longer actively maintained be patched? 152

https://github.com/aws/deep-learning-containers/releases
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://anaconda.org/conda-forge
https://repo.anaconda.com/
https://aws.amazon.com/releasenotes/dlc-support-policy/

AWS Deep Learning Containers Developer Guide

Deep Learning Containers Images

AWS Deep Learning Containers are available as Docker images in Amazon ECR. Each Docker image
is built for training or inference on a specific Deep Learning framework version, python version,
with CPU or GPU support.

For the full list of available Deep Learning Containers and information on pulling them, see
Available Deep Learning Containers Images.

Once you've selected your desired Deep Learning Containers image, continue with the one of the
following:

• To run training and inference on Deep Learning Containers for Amazon EC2 using MXNet,
PyTorch, TensorFlow, and TensorFlow 2, see Amazon EC2 Tutorials

• To run training and inference on Deep Learning Containers for Amazon ECS using MXNet,
PyTorch, and TensorFlow, see Amazon ECS tutorials

• Deep Learning Containers for Amazon EKS offer CPU, GPU, and distributed GPU-based training,
as well as CPU and GPU-based inference. To run training and inference on Deep Learning
Containers for Amazon EKS using MXNet, PyTorch, and TensorFlow, see Amazon EKS Tutorials

• For information on security in Deep Learning Containers, see Security in AWS Deep Learning
Containers

• For a list of the latest Deep Learning Containers release notes, see Release Notes for Deep
Learning Containers

153

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

AWS Deep Learning Containers Developer Guide

Deep Learning Containers Resources

The following topics describe additional AWS Deep Learning Containers resources.

Contents

• Building AWS Deep Learning Containers Custom Images

• AWS Deep Learning Containers Intel Math Kernel Library (MKL) Recommendations

Building AWS Deep Learning Containers Custom Images

How to Build Custom Images

We can easily customize both training and inference with Deep Learning Containers to add custom
frameworks, libraries, and packages using Docker files.

Training with TensorFlow

In the following example Dockerfile, the resulting Docker image will have TensorFlow v1.15.2
optimized for GPUs and built to support Horovod and Python 3 for multi-node distributed
training. It will also have the AWS samples GitHub repo which contains many deep learning model
examples.

#Take base container
FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-training:1.15.2-gpu-py36-
cu100-ubuntu18.04

Add custom stack of code
RUN git clone https://github.com/aws-samples/deep-learning-models

Training with Apache MXNet (Incubating)

In the following example Dockerfile, the resulting Docker image will have Apache MXNet
(Incubating) v1.6.0 optimized for GPU inference built to support Horovod and Python 3. It will also
have the MXNet GitHub repo which contains many deep learning model examples.

Take the base MXNet Container
FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/mxnet-training:1.6.0-gpu-py36-cu101-
ubuntu16.04

Building Custom Images 154

AWS Deep Learning Containers Developer Guide

Add Custom stack of code
RUN git clone -b 1.6.0 https://github.com/apache/incubator-mxnet.git

ENTRYPOINT ["python", "/incubator-mxnet/example/image-classification/train_mnist.py"]

Build the Docker image, pointing to your personal Docker registry (usually your username), with the
image's custom name and custom tag.

docker build -f Dockerfile -t <registry>/<any name>:<any tag>

Push to your personal Docker Registry:

docker push <registry>/<any name>:<any tag>

You can use the following command to run the container:

docker run -it < name or tag>

Important

You may need to login to access to the Deep Learning Containers image repository. Specify
your region in the following command:

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com

AWS Deep Learning Containers Intel Math Kernel Library (MKL)
Recommendations

MKL Recommendation for CPU containers

Contents

• EC2 guide to set environment variables

• ECS guide to set environment variables

• EKS guide to set environment variables

MKL Recommendations 155

AWS Deep Learning Containers Developer Guide

The performance for training and inference workloads for a Deep Learning framework on CPU
instances can vary and depend on a variety of configuration settings. As an example, on AWS
EC2 c5.18xlarge instances the number of physical cores is 36 while the number of logical cores
is 72. MKL's configuration settings for training and inference are influenced by these factors. By
updating MKL's configuration to match your instance's capabilities, you may achieve performance
improvements.

Consider the following examples using an Intel-MKL-optimized TensorFlow binary:

•
A ResNet50v2 model, trained with TensorFlow and served for inference with TensorFlow Serving
was observed to achieve 2x inference performance when the MKL settings were adjusted to
match the instance's number cores. The following settings were used on a c5.18xlarge instance.

export TENSORFLOW_INTER_OP_PARALLELISM=2
For an EC2 c5.18xlarge instance, number of logical cores = 72
export TENSORFLOW_INTRA_OP_PARALLELISM=72
For an EC2 c5.18xlarge instance, number of physical cores = 36
export OMP_NUM_THREADS=36
export KMP_AFFINITY='granularity=fine,verbose,compact,1,0'
For an EC2 c5.18xlarge instance, number of physical cores / 4 = 36 /4 = 9
export TENSORFLOW_SESSION_PARALLELISM=9
export KMP_BLOCKTIME=1
export KMP_SETTINGS=0

•
A ResNet50_v1.5 model, trained with TensorFlow on the ImageNet dataset and using a NHWC
image shape, the training throughput performance was observed to be around 9x faster. This is
compared to the binary without MKL optimizations and measured in terms of samples/second.
The following environment variables were used:

export TENSORFLOW_INTER_OP_PARALLELISM=0
For an EC2 c5.18xlarge instance, number of logical cores = 72
export TENSORFLOW_INTRA_OP_PARALLELISM=72
For an EC2 c5.18xlarge instance, number of physical cores = 36
export OMP_NUM_THREADS=36

MKL Recommendation for CPU containers 156

AWS Deep Learning Containers Developer Guide

export KMP_AFFINITY='granularity=fine,verbose,compact,1,0'
For an EC2 c5.18xlarge instance, number of physical cores / 4 = 36 /4 = 9
export KMP_BLOCKTIME=1
export KMP_SETTINGS=0

The following links will help you learn how to use to tune Intel MKL and your Deep Learning
framework's settings to optimize your deep learning workload:

•
General best practices for Intel-optimized TensorFlow Serving

•
TensorFlow performance

•
Some Tips for improving Apache MXNet performance

•
MXNet with Intel MKL-DNN - Performance Benchmarking

EC2 guide to set environment variables

Refer to docker run documentation on how to set environment variables when creating a
container: https://docs.docker.com/engine/reference/run/#env-environment-variables

The following is an example on setting en environment variable called OMP_NUM_THREADS for
docker run.

ubuntu@ip-172-31-95-248:~$ docker run -e OMP_NUM_THREADS=36 -it --entrypoint ""
 999999999999.dkr.ecr.us-east-1.amazonaws.com/beta-tensorflow-inference:1.13-py2-cpu-
build bash
root@d437faf9b684:/# echo $OMP_NUM_THREADS
36

In rare cases Intel MKL can have adverse effects. To disable MKL with TensorFlow, set the following
environment variables:

export TF_DISABLE_MKL=1
export TF_DISABLE_POOL_ALLOCATOR=1

MKL Recommendation for CPU containers 157

https://github.com/IntelAI/models/blob/master/docs/general/tensorflow/GeneralBestPractices.md
https://www.tensorflow.org/guide/function
https://mxnet.apache.org/api/faq/perf
https://cwiki.apache.org/confluence/display/MXNET/MXNet+with+Intel+MKL-DNN+-+Performance+Benchmarking#MXNetwithIntelMKL-DNN-PerformanceBenchmarking-InferenceAccuracy
https://docs.docker.com/engine/reference/run/#env-environment-variables

AWS Deep Learning Containers Developer Guide

ECS guide to set environment variables

To specify the environment variables for a container at runtime in ECS, you must edit
the ECS task definition. Add the environment variables in the form of 'name' and 'value' key-
pairs in containerDefinitions part of the task definition. The following is an example of
setting OMP_NUM_THREADS and KMP_BLOCKTIME variables.

{
 "requiresCompatibilities": [
 "EC2"
],
 "containerDefinitions": [{
 "command": [
 "mkdir -p /test && cd /test && git clone -b r1.13 https://github.com/
tensorflow/serving.git && tensorflow_model_server --port=8500 --rest_api_port=8501
 --model_name=saved_model_half_plus_two_cpu --model_base_path=/test/serving/
tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_cpu"
],
 "entryPoint": [
 "sh",
 "-c"
],
 "name": "EC2TFInference",
 "image": "999999999999.dkr.ecr.us-east-1.amazonaws.com/tf-inference:1.12-cpu-
py3-ubuntu16.04",
 "memory": 8111,
 "cpu": 256,
 "essential": true,
 "environment": [{
 "name": "OMP_NUM_THREADS",
 "value": "36"
 },
 {
 "name": "KMP_BLOCKTIME",
 "value": 1
 }
],
 "portMappings": [{
 "hostPort": 8500,
 "protocol": "tcp",
 "containerPort": 8500
 },

MKL Recommendation for CPU containers 158

AWS Deep Learning Containers Developer Guide

 {
 "hostPort": 8501,
 "protocol": "tcp",
 "containerPort": 8501
 },
 {
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/TFInference",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "ecs",
 "awslogs-create-group": "true"
 }
 }
 }],
 "volumes": [],
 "networkMode": "bridge",
 "placementConstraints": [],
 "family": "Ec2TFInference"
}

In rare cases Intel MKL can have adverse effects. To disable MKL with TensorFlow, set the following
environment variables:

 {
 "name": "TF_DISABLE_MKL",
 "value": 1
 },
 {
 "name": "TF_DISABLE_POOL_ALLOCATOR",
 "value": 1
 }

EKS guide to set environment variables

To specify the environment variables for the container at runtime, edit the raw manifests of your
EKS job (.yaml, .json) . The following snippet of a manifest shows the definition of a container, with

MKL Recommendation for CPU containers 159

AWS Deep Learning Containers Developer Guide

name squeezenet-service. Along with other attributes such as args and ports, the environment
variables are listed in the form of 'name' and 'value' key-pairs.

 containers:
 - name: squeezenet-service
 image: 999999999999.dkr.ecr.us-east-1.amazonaws.com/beta-mxnet-inference:1.4.0-
py3-gpu-build
 command:
 - mxnet-model-server
 args:
 - --start
 - --mms-config /home/model-server/config.properties
 - --models squeezenet=https://s3.amazonaws.com/model-server/models/
squeezenet_v1.1/squeezenet_v1.1.model
 ports:
 - name: mms
 containerPort: 8080
 - name: mms-management
 containerPort: 8081
 imagePullPolicy: IfNotPresent
 env:
 - name: AWS_REGION
 value: us-east-1
 - name: OMP_NUM_THREADS
 value: 36
 - name: TENSORFLOW_INTER_OP_PARALLELISM
 value: 0
 - name: KMP_AFFINITY
 value: 'granularity=fine,verbose,compact,1,0'
 - name: KMP_BLOCKTIME
 value: 1

In rare cases Intel MKL can have adverse effects. To disable MKL with TensorFlow, set the following
environment variables:

- name: TF_DISABLE_MKL
 value: 1
- name: TF_DISABLE_POOL_ALLOCATOR
 value: 1

MKL Recommendation for CPU containers 160

AWS Deep Learning Containers Developer Guide

Security in AWS Deep Learning Containers

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Deep Learning
Containers, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Deep Learning Containers. The following topics show you how to configure Deep Learning
Containers to meet your security and compliance objectives. You also learn how to use other AWS
services that help you to monitor and secure your Deep Learning Containers resources.

For more information, see Security in Amazon EC2, Security in Amazon ECS, Security in Amazon
EKS, and Security in Amazon SageMaker.

Topics

• Data Protection in AWS Deep Learning Containers

• Identity and Access Management in AWS Deep Learning Containers

• Monitoring and Usage Tracking in AWS Deep Learning Containers

• Compliance Validation for AWS Deep Learning Containers

• Resilience in AWS Deep Learning Containers

• Infrastructure Security in AWS Deep Learning Containers

161

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/ec2-security.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/security.html
https://docs.aws.amazon.com//eks/latest/userguide/security.html
https://docs.aws.amazon.com//eks/latest/userguide/security.html
https://docs.aws.amazon.com//sagemaker/latest/dg/security.html

AWS Deep Learning Containers Developer Guide

Data Protection in AWS Deep Learning Containers

The AWS shared responsibility model applies to data protection in AWS Deep Learning Containers.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Deep Learning Containers or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Data Protection 162

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Deep Learning Containers Developer Guide

Identity and Access Management in AWS Deep Learning
Containers

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed
in) and authorized (have permissions) to use Deep Learning Containers resources. IAM is an AWS
service that you can use with no additional charge.

For more information on Identity and Access Management, see Identity and Access Management
for Amazon EC2, Identity and Access Management for Amazon ECS, Identity and Access
Management for Amazon EKS, and Identity and Access Management for Amazon SageMaker.

Topics

• Authenticating With Identities

• Managing Access Using Policies

• IAM with Amazon EMR

Authenticating With Identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the

Identity and Access Management 163

https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/security-iam.html
https://docs.aws.amazon.com//eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com//eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com//sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS Deep Learning Containers Developer Guide

recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating With Identities 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

AWS Deep Learning Containers Developer Guide

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must

Authenticating With Identities 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS Deep Learning Containers Developer Guide

have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Managing Access Using Policies 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS Deep Learning Containers Developer Guide

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access Control Lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing Access Using Policies 167

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS Deep Learning Containers Developer Guide

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other Policy Types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Managing Access Using Policies 168

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Deep Learning Containers Developer Guide

IAM with Amazon EMR

You can use AWS Identity and Access Management with Amazon EMR to define users, AWS
resources, groups, roles, and policies. You can also control which AWS services these users and roles
can access.

For more information on using IAM with Amazon EMR, see AWS Identity and Access Management
for Amazon EMR.

Monitoring and Usage Tracking in AWS Deep Learning
Containers

Your AWS Deep Learning Containers do not come with monitoring utilities. For information on
monitoring, see GPU Monitoring and Optimization, Monitoring Amazon EC2, Monitoring Amazon
ECS, Monitoring Amazon EKS, and Monitoring Amazon SageMaker Studio.

Usage Tracking

AWS uses customer feedback and usage information to improve the quality of the services and
software we offer to customers. We have added usage data collection to the supported AWS Deep
Learning Containers in order to better understand customer usage and guide future improvements.
Usage tracking for Deep Learning Containers is activated by default. Customers can change their
settings at any point of time to activate or deactivate usage tracking.

Usage tracking for AWS Deep Learning Containers collects the instance ID, frameworks, framework
versions, container types, and Python versions used for the containers. AWS also logs the event time
in which it receives this metadata.

No information on the commands used within the containers is collected or retained. No other
information about the containers is collected or retained.

To opt out of usage tracking, set the OPT_OUT_TRACKING environment variable to true.

OPT_OUT_TRACKING=true

Failure Rate Tracking

When using a first-party Amazon SageMaker AWS Deep Learning Containers container, the
SageMaker team will collect failure rate metadata to improve the quality of AWS Deep Learning

IAM with Amazon EMR 169

https://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com//emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logging-monitoring.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logging-monitoring.html
https://docs.aws.amazon.com/eks/latest/userguide/logging-monitoring.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-incident-response.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

AWS Deep Learning Containers Developer Guide

Containers. Failure rate tracking for AWS Deep Learning Containers is active by default. Customers
can change their settings to activate or deactivate failure rate tracking when creating an Amazon
SageMaker endpoint.

Failure rate tracking for AWS Deep Learning Containers collects the Instance ID, ModelServer name,
ModelServer version, ErrorType, and ErrorCode. AWS also logs the event time in which it receives this
metadata.

No information on the commands used within the containers is collected or retained. No other
information about the containers is collected or retained.

To opt out of failure rate tracking, set the OPT_OUT_TRACKING environment variable to true.

OPT_OUT_TRACKING=true

Usage Tracking in the following Framework Versions

These framework versions are no longer supported:

• TensorFlow 1.15

• TensorFlow 2.0

• TensorFlow 2.1

• PyTorch 1.2

• PyTorch 1.3.1

• MXNet 1.6

For a full description of our support policy, see Framework Support Policy.

While we recommend updating to supported Deep Learning Containers, to opt-out of usage
tracking for Deep Learning Containers that use these frameworks, set the OPT_OUT_TRACKING
environment variable to true and use a custom entry point to disable the call for the following
services:

• Amazon EC2 Custom Entrypoints

• Amazon ECS Custom Entrypoints

• Amazon EKS Custom Entrypoints

Usage Tracking in the following Framework Versions 170

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-ec2-tutorials-custom-entry.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-ecs-tutorials-custom-entry.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-eks-tutorials-custom-entry.html

AWS Deep Learning Containers Developer Guide

Compliance Validation for AWS Deep Learning Containers

Third-party auditors assess the security and compliance of services as part of multiple AWS
compliance programs. For information on the supported compliance programs, see Compliance
Validation for Amazon EC2, Compliance Validation for Amazon ECS, Compliance Validation for
Amazon EKS, and Compliance Validation for Amazon SageMaker.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Deep Learning Containers is determined by the
sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. AWS provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in AWS Deep Learning Containers

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Compliance Validation 171

https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/compliance-validation.html
https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/compliance-validation.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/ecs-compliance.html
https://docs.aws.amazon.com//eks/latest/userguide/compliance.html
https://docs.aws.amazon.com//eks/latest/userguide/compliance.html
https://docs.aws.amazon.com//sagemaker/latest/dg/SERVICENAME-compliance.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/

AWS Deep Learning Containers Developer Guide

For information on features to help support your data resiliency and backup needs, see Resilience
in Amazon EC2, Resilience in Amazon EKS, and Resilience in Amazon SageMaker.

Infrastructure Security in AWS Deep Learning Containers

The infrastructure security of AWS Deep Learning Containers is backed by Amazon EC2, Amazon
ECS, Amazon EKS, or SageMaker. For more information, see Infrastructure Security in Amazon EC2,
Infrastructure Security in Amazon ECS, Infrastructure Security in Amazon EKS, and Infrastructure
Security in Amazon SageMaker.

Infrastructure Security 172

https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com//eks/latest/userguide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com//sagemaker/latest/dg/disaster-recovery-resiliency.html
https://docs.aws.amazon.com//AWSEC2/latest/UserGuide/infrastructure-security.html
https://docs.aws.amazon.com//AmazonECS/latest/developerguide/infrastructure-security.html
https://docs.aws.amazon.com//eks/latest/userguide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com//sagemaker/latest/dg/infrastructure-security.html
https://docs.aws.amazon.com//sagemaker/latest/dg/infrastructure-security.html

AWS Deep Learning Containers Developer Guide

Release Notes for Deep Learning Containers

Check the latest release notes for AWS Deep Learning Containers built for specific machine
learning frameworks, infrastructures, and AWS services.

Note

Starting with PyTorch 1.10, and Tensorflow 2.7, CPU and GPU Deep Learning Containers
are released as either SageMaker or EC2, ECS, and EKS images.

Single-framework Deep Learning Containers

TensorFlow

• AWS Deep Learning Containers for TensorFlow 2.13 (Training on SageMaker): August 7, 2023

• AWS Deep Learning Containers for TensorFlow 2.13 (Inference on SageMaker): August 8, 2023

• AWS Deep Learning Containers for TensorFlow 2.13 (Training on EC2, ECS, and EKS): July 19,
2023

• AWS Deep Learning Containers for TensorFlow 2.13 (Inference on EC2, ECS, and EKS): August 3,
2023

• AWS Deep Learning Containers for TensorFlow 2.12 (Inference on SageMaker): May 18, 2023

• AWS Deep Learning Containers for TensorFlow 2.12 (Inference on EC2, ECS, and EKS): May 13,
2023

• AWS Deep Learning Containers for TensorFlow 2.12 (Training on SageMaker): April 11, 2023

• AWS Deep Learning Containers for TensorFlow 2.12 (Training on EC2, ECS, and EKS): March 23,
2023

• AWS Deep Learning Containers for TensorFlow 2.11 (Training on SageMaker): January 10, 2023

• AWS Deep Learning Containers for TensorFlow 2.11 (Inference on SageMaker): December 5, 2022

• AWS Deep Learning Containers for TensorFlow 2.11 (Inference on EC2, ECS, and EKS): December
5, 2022

• AWS Deep Learning Containers for TensorFlow 2.11 (Training on EC2, ECS, and EKS): December
5, 2022

Single-framework Deep Learning Containers 173

https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-2-13-training-sagemaker/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-2-13-inference-sagemaker/
https://aws.amazon.com/releasenotes/deep-learning-containers-for-tensorflow-2-13-training-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-for-tensorflow-2-13-training-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-2-13-inference-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-2-13-inference-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-12-inference-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-12-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-12-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-12-training-on-sagemaker
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-12-training-on-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-12-training-on-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-11-training-on-sagemaker
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-11-inference-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-11-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-11-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-11-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-11-training-on-ec2-ecs-and-eks/

AWS Deep Learning Containers Developer Guide

• AWS Deep Learning Containers for TensorFlow 2.10 (Inference on SageMaker): September 30,
2022

• AWS Deep Learning Containers for TensorFlow 2.10 (Training on SageMaker): September 30,
2022

• AWS Deep Learning Containers for TensorFlow 2.10 (Inference on EC2, ECS, and EKS): September
15, 2022

• AWS Deep Learning Containers for TensorFlow 2.10 (Training on EC2, ECS, and EKS): May 19,
2022

• AWS Deep Learning Containers for TensorFlow 2.9 (Inference on SageMaker): June 18, 2022

• AWS Deep Learning Containers for TensorFlow 2.9 (Inference on EC2, ECS, and EKS): June 18,
2022

• AWS Deep Learning Containers for TensorFlow 2.9 (Training on SageMaker): June 13, 2022

• AWS Deep Learning Containers for TensorFlow 2.9 (Training on EC2, ECS, and EKS): May 19, 2022

• AWS Deep Learning Containers for TensorFlow 2.8 (SageMaker): March 22, 2022

• AWS Deep Learning Containers for TensorFlow 2.8 (EC2, ECS, and EKS): March 22, 2022

• AWS Deep Learning Containers for TensorFlow 2.7 (SageMaker): March 22, 2022

• AWS Deep Learning Containers for TensorFlow 2.7 (EC2, ECS, and EKS): December 15, 2021

• AWS Deep Learning Containers for TensorFlow 2.6: September 24, 2021

• AWS Deep Learning Containers for TensorFlow 2.5: July 01, 2021

• AWS Deep Learning Containers for TensorFlow 2.4: March 15, 2021

• AWS Deep Learning Containers for TensorFlow 2.3: March 15, 2021

• AWS Deep Learning Containers for TensorFlow 2.3 with CUDA 11.0: October 15, 2020

• AWS Deep Learning Containers for TensorFlow 2.3: August 7, 2020

• AWS Deep Learning Containers for TensorFlow 2.2: March 15, 2021

• AWS Deep Learning Containers for TensorFlow 2.2 with CUDA 10.2: July 24, 2020

• AWS Deep Learning Containers for TensorFlow 2.2 with CUDA 10.1: July 20, 2020

• AWS Deep Learning Containers for TensorFlow 2.2 with CUDA 10.1: May 20, 2020

• AWS Deep Learning Containers for TensorFlow 2.1: March 15, 2021

• AWS Deep Learning Containers for TensorFlow 2.1: June 25, 2020

• AWS Deep Learning Containers for Tensorflow 2.1: March 19, 2020

• AWS Deep Learning Containers for TensorFlow 2.0: March 15, 2021

Single-framework Deep Learning Containers 174

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-inference-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-inference-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-training-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-training-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-10-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-inference-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-training-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-8-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-8-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-7-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-7-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-5/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-4-1/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-3-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-2-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-2-0-cuda10-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-2-0-with-cuda10-1/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-2-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-1-3/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-1-1/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v6-2-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-0-4/

AWS Deep Learning Containers Developer Guide

• AWS Deep Learning Containers for TensorFlow 2.0: June 19, 2020

• AWS Deep Learning Containers for TensorFlow 2.0: February 26, 2020

• AWS Deep Learning Containers for Tensorflow 1.15 July 29, 2020

• AWS Deep Learning Containers for TensorFlow 1.15 with python-3.7 support: May 6, 2020

• AWS Deep Learning Containers for Tensorflow 1.15 March 19, 2020

PyTorch

• AWS Deep Learning Containers for PyTorch 2.0.1 with CUDA 12.1 (Training on SageMaker):
November 2, 2023

• AWS Deep Learning Containers for PyTorch 2.1 (Training on EC2, ECS, and EKS): November 7,
2023

• AWS Deep Learning Containers for PyTorch 2.1 (Training on SageMaker): November 7, 2023

• AWS Deep Learning Containers for PyTorch 2.1 (Inference on EC2, ECS, and EKS): November 7,
2023

• AWS Deep Learning Containers for PyTorch 2.1 (Inference on SageMaker): November 7, 2023

• AWS Deep Learning Containers for PyTorch 2.0.1 with CUDA 12.1 (Training on EC2, ECS, and
EKS): September 6, 2023

• AWS Deep Learning Containers for PyTorch 2.0 (Training on SageMaker): April 18, 2023

• AWS Deep Learning Containers for PyTorch 2.0 (Inference on SageMaker): April 11, 2023

• AWS Deep Learning Containers for PyTorch 2.0 (Training on EC2, ECS, and EKS): March 30, 2023

• AWS Deep Learning Containers for PyTorch 2.0 (Inference on EC2, ECS, and EKS): March 29, 2023

• AWS Deep Learning Containers for PyTorch 1.13.1 (SageMaker): January 23, 2023

• AWS Deep Learning Containers for PyTorch 1.13 (EC2, ECS, and EKS): November 09, 2022

• AWS Deep Learning Containers for PyTorch 1.12 (SageMaker): Dec 15, 2022

• AWS Deep Learning Containers for PyTorch 1.12 (EC2, ECS, and EKS): Dec 15, 2022

• AWS Deep Learning Containers for PyTorch 1.11 (SageMaker): May 06, 2022

• AWS Deep Learning Containers for PyTorch 1.11 (EC2, ECS, and EKS): April 14, 2022

• AWS Deep Learning Containers for PyTorch 1.10 (SageMaker): April 14, 2022

• AWS Deep Learning Containers for PyTorch 1.10 (EC2, ECS, and EKS): November 3, 2021

• AWS Deep Learning Containers for PyTorch 1.9: August 30, 2021

• AWS Deep Learning Containers for PyTorch 1.8: March 16, 2021

Single-framework Deep Learning Containers 175

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-0-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-version-5-1-for-tensorflow
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-1-15-3/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v4-4-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-0-1-cuda121-training-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-0-1-cuda121-training-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-training-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-inference-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-inference-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-0-1-cuda121-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-0-1-cuda121-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-0-training-on-sagemaker/
https://aws.amazon.com/releasenotes/deep-learning-containers-pytorch-2-0-inference-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-0-training-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-pytorch-2-0-inference-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-13-1-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-13-0-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-11-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-11-0-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-0-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-9-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-8-0/

AWS Deep Learning Containers Developer Guide

• AWS Deep Learning Containers for PyTorch 1.7 with CUDA 11.0: March 15, 2021

• AWS Deep Learning Containers for PyTorch 1.6 with CUDA 11.0: December 9, 2020

• AWS Deep Learning Containers for PyTorch 1.6: August 3, 2020

• AWS Deep Learning Containers for PyTorch 1.5: June 19, 2020

• AWS Deep Learning Containers for PyTorch 1.5: May 05, 2020

• AWS Deep Learning Containers for PyTorch 1.4: June 06, 2020

• AWS Deep Learning Containers for PyTorch 1.4: April 03, 2020

Graviton Deep Learning Containers

TensorFlow

• AWS Deep Learning Containers for Graviton TensorFlow 2.13 (SageMaker): August 17, 2023

• AWS Deep Learning Containers for Graviton TensorFlow 2.13 (EC2, ECS, and EKS): August 17,
2023

• AWS Deep Learning Containers for Graviton TensorFlow 2.12 (SageMaker): May 18, 2023

• AWS Deep Learning Containers for Graviton TensorFlow 2.12 (EC2, ECS, and EKS): May 18, 2023

• AWS Deep Learning Containers for Graviton TensorFlow 2.9 (SageMaker): Oct 20, 2022

• AWS Deep Learning Containers for Graviton TensorFlow 2.9 (EC2, ECS, and EKS): August 29, 2022

• AWS Deep Learning Containers for Graviton TensorFlow 2.7 (EC2, ECS, and EKS): December 04,
2021

PyTorch

• AWS Deep Learning Containers for Graviton PyTorch 2.1 (SageMaker): October 25, 2023

• AWS Deep Learning Containers for Graviton PyTorch 2.1 (EC2, ECS, and EKS): October 25, 2023

• AWS Deep Learning Containers for Graviton PyTorch 2.0 (SageMaker): April 11, 2023

• AWS Deep Learning Containers for Graviton PyTorch 2.0 (EC2, ECS, and EKS): March 29, 2023

• AWS Deep Learning Containers for Graviton PyTorch 1.12 (SageMaker): Oct 20, 2022

• AWS Deep Learning Containers for Graviton PyTorch 1.12 (EC2, ECS, and EKS): August 29, 2022

• AWS Deep Learning Containers for Graviton PyTorch 1.10 (EC2, ECS, and EKS): December 04,
2021

Graviton Deep Learning Containers 176

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-7-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-6-0-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-6-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-5-1-v2-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-5-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-4-0-patch-release/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v3-2-for-pytorch/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-serving-2-13-graviton-sagemaker/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-serving-2-13-graviton-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-serving-2-13-graviton-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-serving-2-12-graviton-sagemaker/
https://aws.amazon.com/releasenotes/deep-learning-containers-tensorflow-serving-2-12-graviton-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-1-graviton-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-9-1-graviton-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-7-graviton-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-7-graviton-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-2-1-graviton-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-pytorch-2-1-graviton-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/deep-learning-containers-pytorch-2-0-graviton-sagemaker/
https://aws.amazon.com/releasenotes/deep-learning-containers-pytorch-2-0-graviton-ec2-ecs-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-1-graviton-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-1-graviton-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-graviton-on-ec2-ecs-and-eks/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-graviton-on-ec2-ecs-and-eks/

AWS Deep Learning Containers Developer Guide

Document History for Deep Learning Containers
Developer Guide

The following table describes the documentation for this release of Deep Learning Containers.

• API version: latest

• Latest documentation update: February 26, 2020

Change Description Date

Apache MXNet with Horovod Apache MXNet tutorial was
added to the developer guide.

February 26, 2020

Deep Learning Containers
Developer Guide Launch

Deep Learning Container
s setup and tutorials were
added to the developer guide.

February 17, 2020

177

AWS Deep Learning Containers Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

178

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Deep Learning Containers
	Table of Contents
	What are AWS Deep Learning Containers?
	About this guide
	Python 2 Support
	Prerequisites

	Getting Started With Deep Learning Containers
	Amazon EC2 Tutorials
	Amazon EC2 setup
	Next steps

	Training
	TensorFlow training
	Next steps

	Apache MXNet (Incubating) training
	MXNet training with GluonCV
	Next steps

	PyTorch training
	PyTorch distributed GPU training with NVIDIA Apex

	Amazon S3 Plugin for PyTorch
	Next steps

	Inference
	TensorFlow Inference
	TensorFlow 2 Inference
	Apache MXNet (Incubating) Inference
	MXNet Inference with GluonCV

	PyTorch Inference
	PyTorch 1.6 and later
	PyTorch 1.5 and earlier
	Next steps

	Custom Entrypoints

	Amazon ECS tutorials
	Amazon ECS setup
	Prerequisites
	Setting up Amazon ECS for Deep Learning Containers
	Next steps

	Training
	TensorFlow training
	Next steps

	Apache MXNet (Incubating) training
	Next steps

	PyTorch training
	Amazon S3 Plugin for PyTorch
	Next steps

	Inference
	TensorFlow inference
	CPU-based inference
	GPU-based inference

	Apache MXNet (Incubating) inference
	CPU-based inference
	GPU-based inference

	PyTorch inference
	CPU-based inference
	GPU-based inference
	Next steps

	Custom entrypoints

	Amazon EKS Tutorials
	Amazon EKS Setup
	Custom Images
	Licensing
	Configure Security Settings
	Gateway Node
	GPU Clusters
	CPU Clusters
	Habana Clusters
	Test Your Clusters
	Manage Your Clusters
	Cleanup
	Next steps
	Training
	CPU Training
	Apache MXNet (Incubating) CPU training
	Next steps

	TensorFlow CPU training
	Next steps

	PyTorch CPU training
	Amazon S3 Plugin for PyTorch
	Next steps

	GPU Training
	Apache MXNet (Incubating) GPU training
	Next steps

	TensorFlow GPU training
	Next steps

	PyTorch GPU training
	Next steps

	Amazon S3 Plugin for PyTorch

	Distributed GPU Training
	Set up your cluster for distributed training
	Apache MXNet (Incubating) distributed GPU training
	Apache MXNet (Incubating) with Horovod distributed GPU training
	Next steps

	TensorFlow with Horovod distributed GPU training
	Next steps

	PyTorch distributed GPU training
	Amazon S3 Plugin for PyTorch
	Next steps

	Inference
	CPU Inference
	Apache MXNet (Incubating) CPU inference
	TensorFlow CPU inference
	PyTorch CPU inference
	Next steps

	GPU Inference
	Apache MXNet (Incubating) GPU inference
	TensorFlow GPU inference
	PyTorch GPU inference
	Next steps

	Kubeflow on AWS Setup
	Deploy Kubeflow on AWS
	Verify cluster connection
	Verify your namespace
	Next steps
	Cleanup
	Clean Jobs
	Uninstall Kubeflow on AWS
	Delete an Amazon EKS cluster

	Training
	CPU Training
	PyTorch CPU training
	TensorFlow CPU training
	Next steps

	GPU Training
	PyTorch GPU training
	TensorFlow GPU training

	Distributed GPU Training
	PyTorch distributed GPU training
	TensorFlow with Horovod distributed GPU training

	Inference
	TensorFlow CPU Inference with KServe

	Custom Entrypoints
	Troubleshooting AWS Deep Learning Containers on EKS
	Troubleshooting
	Setup Errors
	Usage Errors
	Cleanup Errors

	Framework Support Policy
	Supported Frameworks
	Frequently Asked Questions
	What framework versions get security patches?
	What images does AWS publish when new framework versions are released?
	What images get new SageMaker/AWS features?
	How is current version defined in the Supported Frameworks table?
	What if I am running a version that is not in the Supported Frameworks table?
	Do DLCs support previous versions of TensorFlow?
	How can I find the latest patched image for a supported framework version?
	How frequently are new images released?
	Will my instance be patched in place while my workload is running?
	What happens when a new patched or updated framework version is available?
	Are dependencies updated without changing the framework version?
	When does active support for my framework version end?
	Framework version (patch) upgrades
	AWS security patches
	End of patch date (Aging out)
	Dependency end-of-support

	Will images with framework versions that are no longer actively maintained be patched?
	How do I use an older framework version?
	How do I stay up-to-date with support changes in frameworks and their versions?
	Do I need a commercial license to use the Anaconda Repository?

	Deep Learning Containers Images
	Deep Learning Containers Resources
	Building AWS Deep Learning Containers Custom Images
	How to Build Custom Images
	Training with TensorFlow
	Training with Apache MXNet (Incubating)

	AWS Deep Learning Containers Intel Math Kernel Library (MKL) Recommendations
	MKL Recommendation for CPU containers
	EC2 guide to set environment variables
	ECS guide to set environment variables
	EKS guide to set environment variables

	Security in AWS Deep Learning Containers
	Data Protection in AWS Deep Learning Containers
	Identity and Access Management in AWS Deep Learning Containers
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	IAM with Amazon EMR

	Monitoring and Usage Tracking in AWS Deep Learning Containers
	Usage Tracking
	Failure Rate Tracking
	Usage Tracking in the following Framework Versions

	Compliance Validation for AWS Deep Learning Containers
	Resilience in AWS Deep Learning Containers
	Infrastructure Security in AWS Deep Learning Containers

	Release Notes for Deep Learning Containers
	Single-framework Deep Learning Containers
	Graviton Deep Learning Containers

	Document History for Deep Learning Containers Developer Guide
	AWS Glossary

