aws

Developer Guide

AWS Device Farm

API Version 2015-06-23

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Device Farm Developer Guide

AWS Device Farm: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Device Farm Developer Guide

Table of Contents

What is AWS DeViCe FArM? ...cccciiiiiiiisss 1
AUtOMAtEd PP tESTING ..ottt te e e e e e e e e et e st e s ae b e sesae e e e e e e e nenaans 1
RemMOte aCCeSS INTEIACTION ..c..eieiieeeeee ettt ettt et st et se b st ae s sae s e e sne s 1
TEIMUNOLOGY «envetiieeeeeeeteteterte ettt et et e st e st e st e e se e e et e s et et essassessassaeseesaessastantansansassassaasesssensansansansan 2
SEEEING UP ittt ettt s e e st e st e st e s ae e s b e s ae e s b e s b e e s b e e aaeeae s sa e st e e seesssesaseeesteeseessseanses 3

SEELING UP ceeriiiiiiiiiiiiiieeennniiiiiieeiiineeesssnne 4
SEEP T2 SIGN UP TOr AWS ..ottt ettt et st e s b e st e e e e e e e e et et e se st e ssassessnesnaseenaensanes 4
Step 2: Create or use an IAM user in your AWS aCCOUNTc.ciiviirieriiirierieccteereeseeesre e e ssae s ae e 4
Step 3: Give the IAM user permission to access Device Farmccoeoeeeeveeceereeceeceseseseseeeeeenens 5
NEXE SEOP tiriicieiieectere ettt et e st e e e e s ae e s e e s s ae e s s b e s ba s sa e s s e essaessaa e sae s sa e st assse e saeeseesstesssaessaesssaensaens 6

Getting StArtedcccciiiiiiieeeeeriiiiiiieiiiiiieneeeeeeisisiseeeesteesssans 7
PrEIEGQUISITES ..ottt ettt et e s et s e e e s ae e st e s st e s s st e s be e st e s ae s saesssaesstasssesassasssesstesssesssaessseessaens 7
Step 1: SigN iN 10 the CONSOLE ..ttt b e s s e s s re e e ne 8
STEP 2: Create @ PrOJECT ittt ettt e st et e s sae e st e s s st s ssae s sae s s st e s aeessaesssaessaessseessaesseesseesseans 8
Step 3: Create and STArt @ UM ...ttt st e te e e e e sa e sa et e sae st e s e s se e e ennens 8
Step 4: VIEW the FUN'S FESULLS ...ttt s et sa et e st b s ae s e nnennan 10
INEXE SEEPS eeeiiiiieteecteererct ettt st s e e st e s te s s e e st e e s e e s s ae s ssaesae e st essse s saesssassstasssessssesssessstesssessseesssassseenns 10

PUrchase device SLOtSccccciiiiiriiirccsnnennneenseesesnneennneennnennnnnnieeiiiteeeseessses 11
PUrchase deVvice SLOtS (CONSOLE) ...uuiiieiiieeiieeeeeeteeee ettt eeseteeesaeeeesaeeeesseesssseessssesssssessssseesssssesssessssssesan 11
PUrchase @ deVice SOt (AWS CLI) .eeueioeeiieeieeeeeeeeeeeeeeeteeeeeteseveeeeseeessssesssssesesssesssseessssesssssesssnsesssnsees 13
PUIFCNASE @ AEVICE SLOT (API) oottt et ee et e eseeessstesssatesesstesesssessseesssseessnsesssssesssssesssnns 17

000 1 = 1 N 18
DIBVICES ..ttt ettt st st a e e st a e st et a e et e et e b st et e b e et e et e ese s be s st e sseenrannt 18

SUPPOTEEA EBVICES ...ttt ettt e s te st e st e s tesae e e e e e e e e et et e ste st asseessesaessensansansansanes 18
DEVICE POOLS ...ttt rte et e e e ettt e st et e be st e st e st e s seese e e e s e e s e b e tessassassassaessasasnsansantansansansans 19
PRIVATE BVICES ..ottt ettt ettt sttt ettt s st e st s sae st et e b et et e e sassenssnessanssnens 19
DEVICE DIranding c...cueceeeeeeececeteeteete ettt teste e e et et e st e stesae s e e se s e e e s e e s e saestassassessaensensansans 19
DEVICE SLOLS ..ttt sttt ettt et e st et s et et e s b e b et e e st et esa s s et et esesaentesesensesasn 19
Preinstalled dEVICE QPPS ..ottt ettt e s aeste st e e e s e e e e s et e stestassesseesaesaennesaanes 20
DEVICE CAPADILITIES ..ottt st e st s e se s e e e e saesaesbesbesseesnennannans 20
TEST ENVIFONIMENTS ...ttt s a st s st e a e st e s st s sbe st e s st e st e ssesbe s st esseenbesanenness 20
Standard teSt ENVIFONMENTccueviiireieeereteeretet ettt ettt s sse st e s sae st e e ssasae e ene 20
CuStom teSt eNVIFONMENT ...ttt ettt ettt ae s e s snesae s s 21
RURS ettt ettt e a e st et s e et e e b st e st s s e et e e st e e b e e b e s st s st s b e e st e saeebessae st esannes 21

API Version 2015-06-23 iii

AWS Device Farm Developer Guide

RUN CONTIGUIATION .ttt ettt st e s te s e e s e e e et e ae s b et e s sesseeseesae s e s ensansanes 22
RUN fIlES FEEENTION ...ttt sttt st s sttt et e e b e s s e ssasnesnes 22
RUN AEVICE STATE ottt ettt sttt et ettt s e st et s ae b e e ssasa et esane 22
PATALLEL FUNS .ttt et sttt et e sa et s s b et e e s ae st e e sse b e e ssessensenessansanaes 22
Setting the execution tIMEOUL ..ottt s a s 22
INSErUMENTING QPPS coiieeiiiriertereecteete ettt rre s st e s ste s s e e s sae e s st esssesssaesssessssesssesssaesssessssasssesssaesssens 23
RE-SIGNING QPPS 1N FUNS .ceeiiiiiieieeiteeteeceesite et eetessseesstesssaasssessseesssessseesssessssesssessseesssessssesssesssesssaessns 23
ODbfUSCAtEA QPPS IN TUNS ...ttt ettt ae st e s e e e e et et et esae st e s sassessaensensansansansansans 23
AAS 1N TUNS ettt sttt et e st st e st e e st e st et s s e be st et s be st et s sabe st esassessestssassensesessansesessanseneses 23
MEAIA N TUNS oottt ettt sttt et et s s et et s e s b et esesse b e st ssassestesassansentesarsensenesns 23
COMMION tASKS TOI FUNS ..ottt sttt ettt st e st s e sae st et s et et e e sse st enasnessessenassans 23
REPOITS ettt ettt e sttt e st st e s s st s s st e s st e s st e s b e e s st e e sae s s e e e b e e sa e e be e s st e et aessteesteessaeesteesseesnsannne 24
REPOIT FEEENTION ..ttt et e st e st e s ae e st e s sae e st e s ssa e saessaeesssessssesssesssnasssanans 24
REPOIT COMPONENTS ...ttt ettt ettt ree e st e s ae s s st e s e e s saa e s saesssaestessaaesssessssessasssessssessnes 24
LOGS 1N FEPOIES ittt ettt e e e st e s sae s sae e s ae s saeessae s saesaeessaesssesssaesssassssesssessssesseessaesssennns 24
COMMON tASKS FOI FEPOILS ...ttt te e et st e b e s tesae s s e e e e e esaeaansantans 24
SESSIONS .ttt ettt ettt s e et e et e b st e st st e et e e Rt e b e et e Rt s b e et e e Rt e be st e st e b e et e st e sbe et antas 24
Supported devices fOr reMOLE ACCESSc.ccieerrereeeeeeeecteteste et e e e ra et e stestestesse e e esae s e s esaannan 25
SESSION fIlES FELENTION ..ottt sttt ettt sa e st et e e s s 25
INSErUMENTING QPPS woioteiiiiriietirteect ettt s e s st e s ste s s e e s sae e s st essaesssaesssassssesssesssaesssessneasssessssesssens 25
RE-SIgNING QPPS 1N SESSIONS ...ueiieeieiiierieeitieteeieesrteesrtestessseesstesssessssessssesssesssessssesssessssesssessssessssssseens 25
Obfuscated aPPS IN SESSIONSccueceeeeeeeeeeteie et ste e e e e e e e stestesse s e s e e e e e e s esaessesaessassessesssensanes 26
WOrking With ProjJeCtsccciciiiiiiiiieeeeeniiiiiiciciiiiinmeessssnssssssssessns 27
CrEate @ PrOJECT ..ttt ettt et st e s e e s sae e st e s ae e s b e s aa e st e e ae e s s s e s st et e e seessaeesaeesaans 27
PrEIrEGQUISITES ...eeeiiieeieetect ettt ettt e s sre st e s ste s st e s sae e st e s ae e st e s sae e s e essaeesssesssassssasssessssessseesssesseanns 27
Create a ProJeCt (CONSOLE) ...ttt ettt e e e s sa e st esae b e s sesse e e eaenensansans 27
Create @ ProJECt (AWS CLI) .ottt te e steste s e e e e e e e e s e e e sse st e ssesse s e e e e s esaesaeaensansans 28
Create @ ProJECE (API) ettt te et e e e e et et e st et e s tesbe s b e s e e e et eaestenbessasesseesnenean 28
VIEW the ProjJECLS LISt ..ttt ettt e s ae s e e e e a et et et e st e sbassassaesnenaanns 28
PrEIEGQUISITES ...eeeiiiieeieecteetestert ettt s e st e s te s st e s sse e st e s ae e st e s saa e st essaeesssessaesssasssessssesseesssasseanns 29
View the projects list (CONSOLE) ..ottt re e ns 29
View the projects Llist (AWS CLI) ettt e e e saestestessesae e s e e e e s e aesaasaanne 29
View the projects LISt (API) ...ttt ste e e e s e e e s e s s et esaesaessesse s e e e e s ennannans 29
WOrking With t@St FUNS ..cciiiiiiieeeeiiiiiiiiiiiiiiiteeanneiiiiieeeeetttesses 30
Create @ TOST FUNM .ottt st e sb e st essae st st sb e s e e st s b e st e aeesne s e enesn 30
PrEIrEGQUISITES ...eeeiiiieeieecteecteste ettt sttt e s ste st e s st s s ae s sae e st e s se e st e s saa e st essaeasssesssaesssesssassssessseesssasseanns 31

API Version 2015-06-23 iv

AWS Device Farm Developer Guide

Create @ tOSt FUN (CONSOLE) wouueiieeieeieieeeeteeeteeett et eestecesareeesaeeeesseesssseessseesssseessssesssssesssssesssssessnns 31
Create @ tSE FUN (AWS CLI) cotiieiieeeteeeeteeeet ettt eeteeeesatesesateeeseeesssesssssesssssesssssesssssesssssessssesssssesssnne 33
Create @ TOSE FUN (AP) ettt ettt et ee st e eesatesesatese st e sesseesessesssssesssssessssesssssessnssessseesns 43
NEXE STEPS ittt ettt e s et e s sre e s e be e s s aeesssseessssesssssasssssesssssessssaessssaessseessnsasssnseessnnes 44
Set XECULION TIMEBOULooeeieetectcccctete ettt sttt e st e s ae s ae e s ae s ssaessbesssaessasssaasssesssassaaesseanns 44
PrErEQUISITES .eeeeiiteeieeteece ettt s et s e st e st e s sae e s b e s s st e sbesssaesssasssaesssasssaesssessssesaessseesssennses 45
Set the execution timeout fOr @ ProjJECt ... 45
Set the execution timeout fOr @ tESt FUN ...t 46
Simulate network connections and cONAItiONS ..o 46
Set up network shaping when scheduling a test run ..o 46
Create @ NETWOIK Profile ...ttt te st s e e s e e e e sa e aatans 47
Change network conditions during Your teSt ... ieiececenececeeeeee e 49
STOP @ FUN ettt sttt st e s sae e st e s sae e st e s ae e sae s ae e st e s se e ssesssaessaasssesssessseesssesssessssessseesseanns 49
SEOP @ FUN (CONSOLE) ..ttt e e et e st e st e st e s s e e e e e e e esa et e saestessassassessassnensansans 49
SEOP @ FUN (AWS CLI) oottt ettt et stesaesteste s e e e e e e s et e st et e bessassassassassaensansansansansansans 51
SEOP @ FUN (API) ettt ettt e te st e st e st e et e e s e e st et et e aesbesseesae e estessansansensassassesssensanes 53
VIEW @ LISt OF FUNS ettt ettt e st s e s e e e e e e et et e st e sessessaeseenaensansansansn 53
ViIieW @ LiSt OF FUNS (CONSOLE) ..uueeeeiieeeeeeeeeeeteette ettt et eereeeesteeesseesesstesesseessssesssssessnsessssesssnne 53
VIEW @ LISt OF FUNS (AWS CLI) vttt eetteeeaeeeeseesesseessssesssssesssssesssssessnsesssssesssssesssnee 53
VIEW @ LIST OF FUNS (API) ceeeeeeeeeeeeeeeeeeeetteeet ettt et seveeeesaeeseseesesssesssssesssseesessssssssessssesssssesssssesas 54
Create @ dEVICE POOL ..ttt e e e e et e st e st e e s b e e s e e e e e et et e aessessessessesnaesaanes 54
PrErEQUISITES .eeeeeiieeieeteece ettt ettt s sttt s e e st e s sae s sae e s b e s sse e s saesssaesssesssaesssasssaesssessssenssessseesssesnses 54
Create a device POOL (CONSOLE) ...ttt ettt et sa e s ae s se e e nans 54
Create a device POOL (AWS CLI) ottt ettt ste s te e s e e e s e e e s s et e saesaessesaessessnennans 56
Create @ deViCe POOL (API) .o ettt ettt te st e s e e e e e s et et estesaessasseesessaenaenennans 56
ANQLYZING FESULES .uveveteieeeeteeeteteteste ettt te st et este s e e e s e s et et e se st e s s e s seesaess e st ensansassansassessasssesaensanes 56
WOrking With t@St FEPOILS ..ottt e et st e s ae st e s aesse s e ssnenaennans 56
WOrKing With @Qrtifacts ...ttt ettt st s e s e n e nanes 65
Tagging in DeVICE FArmuuiiiiiiiiiiiiiinneennmiiiiiiiceiisesssasss 70
TQGGING FESOUICESeviieeeeeireinieeirereteesseestessseessesssessssesssesssaesssessssesssessssesssessssesssessseesssessssesssessseessessssessnes 70
LOOKING UP reSOUICES DY TG .ouiiiiieeeeeeeeee ettt ettt e s te s e e et et st sa e s be s s s e ns 71
REMOVING tagS frOM FESOUICTESccueeueeeeeieietectecteeteste e et e et e et e stestestessesse s e e s e s essessessessessassessassaensansansan 72
Test types and frameEWOTKSeiiiiiiiiiiiiiinenniiiiiiiieiiiiniaseesssssssssssecesss 73
TESEING FramMEBWOTKS ...ttt e e e e e st et e st e s b e s b e s seeseese e e e b esesaansansans 73
Android application testing frameWOrks ... 73
iOS application testing framEWOTIKS ...t nens 73

API Version 2015-06-23 v

AWS Device Farm Developer Guide

Web application testing frameWorks ...t 73
Frameworks in @ custom test enNVIFONMENTccoeviiirienienirienerteenesee ettt sse st e ssessesees 73
APPIUM VEIrSION SUPPOIT ..eeiiieiiietercteeteesteete st essteesreeesaessseessaessseesssessssesssesssessssessssesssesssassssesssaessees 73
BUILE-IN TEST 1Y PES ettt ettt et e s e e e e e e st e st e st e st e s be s b e e seese e s et essansasassassessesnnanean 74
APPIUM ottt ettt este e st e s te st e st e s saesesaesssaessaessseassaesssaessaessstesssesseesssessseesssessssesseessseesssessseesaessseanns 74
VEISION SUPPOIT .ottt cste et e st e s ste s steesae e st e ssse e steesaeessaesssaesssessseasssessseesssassseesssessseessassseens 74
Configure your Appium teSt PACKAGE ..ottt 75
Create a zipped PACKAGE FIlE ...ttt sae st an 85
Upload your test package to DeVIiCe FArmcccoecieieieieeeeceeecee ettt sreste e ns 88
Take screenshots of your tests (OPtionNal) ... sae e 89
ANAIOIA tESES ..ottt ettt et st et s st e st et s et e e e e s b et e e ssebe st esessanteseesensentesansan 90
Android application testing frameWOrks ... 90
Built-in test types for ANAroid ...ttt 90
INSTFUMIENTATION ..ottt sttt sr e s s s sa et sb e st e sne s b e nis 90
TOS LSS ettt sttt ettt sttt b e et a e st e et e st e b e et e s st s b e e st e e st e b e et enneens 93
iOS application testing framEWOTIKS ...t saenens 93
BUIlt-iN teSt tYPES FOr iOS ..ottt ettt st s e s e e e ae s 93
KETESTE ettt ettt ettt st s a e st e b st e s st s bt st e st e ae et e st s se et e st e ese et eenteesesabenntesans 93
XETESE UL ettt sttt et e et sb e st st b e et st s b st e st s b e et e eae s ebe st e st ssaenbeseanness 96
WED QPP TESES .ttt ettt et e e et a et et e st e s besaeeaeesaeseesee e esentetetanaans 97
Rules for metered and unmetered dEVICES ...ttt ae e s 98
BUILE-IN LSS ettt ettt ettt sttt s b st e st e s b et et s s et et ssassansesassenseneass 98
BUILE-IN tEST LY PES ettt ra ettt e st s e e e e e et et e st e saessesseeseennennanes 98
BUilt-in: fUZZ (ANAIOid @Nd TOS) ..eueiioeiiieeieeeeeeeeeeeeee ettt eesateeesaeeesseeesssesssssesssssesssssesssssessssssssnne 98
Working with custom test eNVIrONMENTSccciiiiiiiiiiennneiiiiiiiceiiiiinneeesssessiiiiieesesssssssssssssssssssssns 100
TEST SPEC SYNLAX weeeiiiriiiiierieeiterte st eertee st e stessressreessse e st esssesssaessaeessaesssasssaesssassssesssessssessseesseesssenssaensens 101
TEST SPEC EXAMIPLE ..ttt st e e e e e e e e et et e s be st e st e s se e e e saesseseessantessessassassesnnasaanaans 103
ANdroid teSt ENVIFONMENTc.coviiiiirieieererete ettt ettt sae st et s et e st s e sbesae e s e sseseesassassesssaenns 108
SUPPOIEEA SOFLWAIE ...ttt ettt ae s e s s e e s et st e b et e e b e se e e e e e naaaesanean 109
AEVICETATM=CLI ettt ettt sttt ettt s st e e s s e b et e e saassesasnans 111
ANdroid test oSt SELECLION ...c.ccveuiieiieieee ettt ettt ne 112
Test SPEC file EXAMIPLE ...ttt ettt esae s te st e s e s e e e e e e e s et e tenaenes 113
Migrating to Amazon LiNUX 2 TESE HOST ..ottt e s esae s seesanes 117
ENVIrONMENT VAFIADLES ..ottt ettt sttt sttt st et sb et es 119
Common enViroNMENt Variablescocoviviiiriniiieieeereeeree ettt e e sae e e ssens 119
Appium Java JUnit environment variables ... 121

API Version 2015-06-23 vi

AWS Device Farm Developer Guide

Appium Java TestNG environment Variables ...t 121
XCUITest enviroNmMeNnt VAriables ...ttt seste et st sessessessssessesaesasaens 122
MiIGEAtiNg TOSES ..ottt e st e s s a e s s e e s s ae e aa e s sae st e s sae e st e e seesssesssaennans 122
Considerations When MiIgratingoceceeceeeceeececeeeee et sae et e e e e saesaeeens 122
MiIGEAtiON SEEPS «.eeeiiieeeceee ettt e e e st e s r e s s e e s s b e s sae e s b e s ssaesssessseesssesssesssasssassssannns 124
APPIUM FrAMEWOIK ..ttt e st e s aesbe e s e e s et et et e b e sessaesasneenaensanes 124
ANdroid iNSTFUMENTALION ...c.oiuiiiiiieeeceetee ettt ae sttt s e s s e e s e ssesae e esans 125
Migrating existing iOS XCUITEST TESES ...coviiviieeteterecree ettt sre s e sae s aessaaesane s 125
EXteNding CUSEOM MOAE ...ttt ettt e s ae s e e e e e s e st e b e saesbasseesnesaesnennan 125
SEEEING @ PIN ettt s sre s e e st e s b s s s e e s b e s st e s b e s ssaessaaesaaasssassaesssassneesssessses 125
Speeding up Appium-based tests through desired capabilitiesccccceeeeeeeeveeerceeceeciereee 126
Using Webhooks and other APIs after your tests runcoeveeveececececececeeeeeeeeee e 128
Adding extra files to your test PACKAGEcoueeeeieieieeeeee et 129
Working With remote QCCESS ...cciiiieeeeureeiiiiiiiiiiiiinneeensnsssisieceeeetssns 133
CrEate @ SESSION ..ueiiiiiieteeiecieete ettt ettt e st s a e et e st s b e st e et s ae st e et s be e b e st e st et e et e se e be st e aeebeens 133
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 134
Create a session with the Device Farm CONSOLEcoocvereriiiinenieireecereeeeeseee e 134
NEXE STEPS ettt ettt et s et e s e sre e s s st e s e be e s ssseesssneassssaasssaasssssassssnesssssessssaassssaessneenss 134
USE @ SESSION .ttt ettt ettt st et et s st s e e st st e st e s e e b e st e st st e s st e se e b e st essesabeentesesabanneans 135
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 135
Use a session in the Device Farm CONSOLE ...ttt sees 135
NEXE SEEPS ettt ettt te et s e s s ae e st e e sae e s ae s saeessaessae e st e s saesssesssaessaesssessssessseesssesssessseennses 136
TIPS ANA TFICKS oottt et e e e e e et et e st e s ae st e s b e e e e e ese et e tasaessassassessnenaennans 136
GEL SESSION TESULES ...evireiirieteteerestet ettt sttt et ettt s s b et e e s be st e e ssesbe st esassansensesessansesasans 136
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 136
VieWing SESSION dETAILS ...ccveeuieieeeeeeeete ettt ra et et e s ae st s e e a e aeaenan 137
Downloading $ession VIAE0 OF LOGSceeieiiieiieieieeeeectete e restestesaesre s e e neaanes 137
Working With private deViCesceeeeeecciiiiiiiiiiinienennnsniiiiiiiceiininssesss 138
MaNAGiNg PriVAte AEVICEScoueeeeeeeieieeetececer ettt stestesteste s e s e e e e e st e st et e stessassessaesaensessensansansansan 139
Create an iNSTANCE Profile ...ttt 139
Manage a private device INSTANCE ..ottt st aesa e sa et aas 141
Create a test run Or remMote aCCESS SESSIONcciieirririerirrieeteeeereeteet e te st s sae st e sseesresseesneens 142
NEXE STEPS ittt ettt et e s e sae e s sre e s sae e s e sae e s s s s e e s ssseessssaessssasssssasssssesssssesssaessssaessneenss 143
SELECtiNg PriVAte AEVICES ...ttt ettt e st e e e e sa e s e te st et e s sesseeseeseesaeeensasansans 144
DEVICE ARN TULES ...ttt e sttt et st s st e st e e sse st e e s e s e e e e aesaesassassesssnessansensssanseneen 144
Device iNStANCE LADELS FULEScoveiiieeeeete ettt st sttt sa et s s s e 145

API Version 2015-06-23 vii

AWS Device Farm Developer Guide

INSEANCE ARN TULES ..ttt sttt ettt s s b et s s s et et s e s b et e e ssessenaens 146
Create a private deVICE POOL ... ettt st r e e e e e e e sa et nes 147
Creating a private device pool with private devices (AWS CLI) ...c.ocovevveereeeneneeeeeeeeeeeeceenne 148
Creating a private device pool with private devices (API)coeeeeeecececereeeeeeee e 149
SKIipPING QPP ME-SIGNING ..oiviieeieeieeeecte et cte et e e e e e e e et et e te st e stessessessassae s e s essessansasassassassassssssenean 149
Skip app re-signing on ANAroid AEVICEScceeieieeiecieceeeceseeeeee ettt e e e e aeaenaens 151
Skip app re-signing 0N i0S EVICESccuccueeieeeeeceeeeeeeete e ste e se e e e e aesaesaesaesse s e sse e e e s esaennan 151
Create a remote access SessSion tO truSt YOUN QPP cccccveeciirrieireeniieerteneesseesreeesreessaessseesseessseens 151
USING VPC @NAPOINT SEIVICES ...oocveeeeteeieeeeeetetetestesteseste e e testestestesae s e ssaessesaesesaessessessassessssnsensensans 153
BEFOIE YOU DEGIN ettt ettt s s e e e e e e b et e saa s e saennenaanes 154
Step 1: Creating a Network Load BalanCer ...ttt 155
Step 2: Create @ VPC eNAPOINt SEIVICE ...cuivveeueeeeicietetectecteete e s e e eaessesaesaessessessessssseenessaneans 157
Step 3: Create a VPC endpoint configuration ... 158
STEP 4: Create @ TESE FUN ..ttt e st s st s sae et e e sae e s e e s saeesnessna e snasanas 159
WOTrKiNG @CrOSS REGIONSveveeiieiieieiectectestecte e e e e e e seestesaestestestesse s e esaesaesaessessesassassassassssssensessensensanes 159
VP C PEEIING OVEIVIBW ...ueeieeieiieeiieinieeietestessreessseesseessesssessssessssesssesssessssessssesssessssssssessssesssesssssssaens 160
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 161
Step 1: Establish a peering connection between two VPCsoieiecececeneceeeeeeeeeecienens 162
Step 2: Update the route tables for VPC-1 and VPC-2 ... 162
Step 3: Creating target GrOUPS ...ttt sre e st e s saessse e s saesssaessaessssesssassanesssasnnas 163
Step 4: Create @ Network LOad BalanCer ...ttt e e e s saesaeaens 165
Step 5: Create @ VPC eNAPOINt SEIVICE ...ccuecveeueeeeieeetetectecteste e e e e e et saesaesaessessesseeses e esnensannens 166
Step 6: Create a VPC endpoint configuration in applicationcceceeeeeeenecieccecceeceeceeeee 166
STEP 7: Create @ TOSE FUN ..ttt sttt sae s e s sae et e e sae e s a e s saa e s nessaaassnasanas 166
Creating SCalable VPC SYSTEIMS ...ttt sttt aesaeste s e s e e e s s e e eaanaans 166
Terminating Private AEVICES ...ttt e st e saesae e e e e s a e aa s eaanean 167
VPC CONNECEIVITY .cceereeniiiiiiiiiiiiiienennniiiiiiceciiiieesssssssssssssssessses 168
AWS access CONErOL @Nd TAM ...ttt ettt s sae st et e e b e s e e saanes 170
SEIVICE-LINKEA FOLES ...ttt ettt b ettt st et e s be st et e et e s e e ssanes 171
Service-linked role permissions for DeVICe FArMcccceciecenenenecececeeseeete e sre e eanens 172
Creating a service-linked role for DeVvice Farmieceeeceeeeeceeeeeeteve e 175
Editing a service-linked role for DeVvice Farm ...ttt sae e 175
Deleting a service-linked role for DeVice FArmc.cceeeeeeeeeeceeecteceestese e saeaens 175
Supported Regions for Device Farm service-linked rolesccoeeveeveeceeceeceecesececeeeeeeee s 176
PrErEGQUISITES .ottt ettt ettt s st e s st e e st e st e ssae s s saeessaessbesssaessaeesssasssesssaesssessssesssessseesssansseens 177
Connecting t0 AMAZON VPC ... ettt sre st e s st s s aessae s st e s saesssaesssaesssassaaasssesssaesssessanans 178

API Version 2015-06-23 viii

AWS Device Farm Developer Guide

LIITIES ettt ettt et ettt a e s bbb e e b s b e Rt e b e et e e ae e be st e ateseeaee 179
Logging API calls with AWS CloudTrailccccciiiiiiiinennnnnniiiiiicceiiinnneeesssssssssssscessssssssssssssssssssssssns 180
AWS Device Farm information in CloudTrailcoceeviiinenininenreneseecesesree et see e 180
Understanding AWS Device Farm Log file entriescoeeeeeceeceecieceececeees e 181
CodePipeline iNtegrationccciiiiiiiiiiiiineeneeiiiiiiiiiiiiiitss 184
Configure CodePipeline to use your Device Farm testscoveeciecieciecececeseeeceeeeceese e eveeeens 184
AWS CLI FEfEIreNCE auueeeeeeerreereerrriiiiiiiiiiiiieieniesses 189
Windows PowerShell ref@re@nceccccccieciccciccccnnnennnnensenessesnnnneenneeeneneniieiiiieiieseessssssssssssssssssssssssss 190
Automating DeViCe Farmmueeiiiiiiiiiiiiinnnennmeciiiiieceeniesss 191
Example: Using the AWS SDK to start a Device Farm run and collect artifactsccccueueueneeee. 191
TrouDBLeShOOTING ..cciiiiiiieeiiiiiiiciiiiiiiiteneneiiiiiieeiettttsasssssssessssseesesssanns 196
ANAroid aPPLICATIONSeeeeeeeee ettt e s te s ae st e s e e e e e s et e sbe st e s e e sseeseeseennanaanaans 196
ANDROID_APP_UNZIP_FAILEDcetioteeteeieecterteestestessrtesstesssesstessseessaesssssssaesssessssasssessssssssssssaens 196
ANDROID_APP_AAPT_DEBUG_BADGING_FAILEDcoovtieteereirtenreentenreeeseessreeseessseessessssesaees 197
ANDROID_APP_PACKAGE_NAME_VALUE_MISSINGcccotirrriretirreintenseestesseeseeesseeeseessseessessnes 198
ANDROID_APP_SDK_VERSION_VALUE_MISSINGcccctirrtirtirterrtinieeseeestessresseessseesseesssessssesnnes 199
ANDROID_APP_AAPT_DUMP_XMLTREE_FAILEDccootirtiertieteeneeetenseeeseesseeeseesssessssessseesseenns 200
ANDROID_APP_DEVICE_ADMIN_PERMISSIONSccotiititerterterstestessreeseessseeseesssessssessssessnens 201
Certain windows in my Android application show a blank or black screen 203
APPIUM JAVA JURNIE oottt st st e s sae s saeesaessseessteesaeassaessaesssassseasssesssaesssessseasssessssesssens 203
APPIUM_JAVA_JUNIT_TEST_PACKAGE_PACKAGE_UNZIP_FAILEDccovervtrrrerceerreenreeeeenanes 203
APPIUM_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSINGcccovrvrerrerrrerrrerreennne 204
APPIUM_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIRcccccervueeeennne 205
APPIUM_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSINGccceeevtrrrrerrerrrerceeneeenneens 206
APPIUM_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JARcccovvrvuvennn. 207
APPIUM_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWNcccceceevvruen. 209
APPIUM_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSIONcccovrvirrtrrrrerireereersrennne 210
APPIUM JAVA JUNIE WED ...ttt et e te st et s e e e e s e st e st et e se s s e e ae e e ennennanes 211
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_UNZIP_FAILEDcoovereiirterntrneerreeeneeesneesnennes 211
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_DEPENDENCY_DIR_MISSINGccccevverrvuerrennne 212
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR 213
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_TESTS_JAR_FILE_MISSINGccccvevververrrennnen. 214
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR 215
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_JUNIT_VERSION_VALUE_UNKNOWN 217
APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE_INVALID_JUNIT_VERSIONccccccervirrrrervrernnnen. 218
APPIUM JAVa TESTNG ...ttt ettt et rte s st s sae s s e e s saesssaessae s s e assaesssaesssessssassseessaesssaesnsens 219

API Version 2015-06-23 ix

AWS Device Farm Developer Guide

APPIUM_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILEDcoceeertrirretrirenieereneeneeesresseesaenns 219
APPIUM_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSINGcccccecerertrrererrrernens 220
APPIUM_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIRccceceeurue. 221
APPIUM_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSINGcccecerremenrrerenreerrennen 222
APPIUM_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JARccceceue.. 223
ApPIuM Java TESENG WED ...ttt st re sttt st et s aanas 225
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_UNZIP_FAILEDccceevrererrerrrirenrererenreneeennens 225
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_DEPENDENCY_DIR_MISSINGcccccvverurruruene 226
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_JAR_MISSING_IN_DEPENDENCY_DIR 227
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_TESTS_JAR_FILE_MISSINGccceceevvverrenuenene. 228
APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE_CLASS_FILE_MISSING_IN_TESTS_JAR 229
APPIUM PYTRON ettt ettt e st e e e s et e sa e st e st e s e s s e e s e ese e s eaestassansassassnesaanaans 231
APPIUM_PYTHON_TEST_PACKAGE_UNZIP_FAILEDccecevertrirrenteirenrenteenenteesesseseeessessesesnes 231
APPIUM_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSINGccccecevtrvererrrerenrenennen 232
APPIUM_PYTHON_TEST_PACKAGE_INVALID_PLATFORMccccvrtrenretrirenieesenieneeessensesesenees 233
APPIUM_PYTHON_TEST_PACKAGE_TEST_DIR_MISSINGccccvvemtrrtrinrentrerenireseneereeeseenseeenes 234
APPIUM_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAMEcccecestrimerrrirerrerrerrenrenenne 235
APPIUM_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSINGccccecvrurrererurnennen 236
APPIUM_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSIONccceserireneirerrenreeneneeennens 237
APPIUM_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILEDcccce..... 238
APPIUM_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILED ...cceeceverreirerreirereeeeseneeenes 240
APPIUM_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEELS_INSUFFICIENTccccccecerverurnene 241
APPIUM PYTRON WED ...ttt sttt st st st e b s seenanes 242
APPIUM_WEB_PYTHON_TEST_PACKAGE_UNZIP_FAILEDcocectvimertrtrenretrenieneesesenaeseeenaens 242
APPIUM_WEB_PYTHON_TEST_PACKAGE_DEPENDENCY_WHEEL_MISSINGccceceeerervennne. 243
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PLATFORMcccevririnrerirereneeeneneeeenennes 244
APPIUM_WEB_PYTHON_TEST_PACKAGE_TEST_DIR_MISSINGcoceovrtremrerrenreneeereneenesennens 245
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_TEST_FILE_NAMEccccecrremerrrrerrenrenenn. 246
APPIUM_WEB_PYTHON_TEST_PACKAGE_REQUIREMENTS_TXT_FILE_MISSING 247
APPIUM_WEB_PYTHON_TEST_PACKAGE_INVALID_PYTEST_VERSIONcccccocerertrrenenrreraenn 248
APPIUM_WEB_PYTHON_TEST_PACKAGE_INSTALL_DEPENDENCY_WHEELS_FAILED 250
APPIUM_WEB_PYTHON_TEST_PACKAGE_PYTEST_COLLECT_FAILEDccceevvererrerrrerrenrennne 251
INSTRUMENTATION .ottt et sr et a e st et sa e s b e s st s sae st e st esnens 252
INSTRUMENTATION_TEST_PACKAGE_UNZIP_FAILEDcctvirieieirienieirenienteeseneeeeeseessesesseees 252
INSTRUMENTATION_TEST_PACKAGE_AAPT_DEBUG_BADGING_FAILEDcccecererirenerrennne 253
INSTRUMENTATION_TEST_PACKAGE_INSTRUMENTATION_RUNNER_VALUE_MISSING 254

API Version 2015-06-23 x

AWS Device Farm Developer Guide

INSTRUMENTATION_TEST_PACKAGE_AAPT_DUMP_XMLTREE_FAILEDccceeovueriirrencreeeneenne 255
INSTRUMENTATION_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSINGccceeuuenee 257
IOS APPLICATIONS ..ttt et e st e st e st e e s e e e e e e s e b et e st e sesseesassaeseenaensansansansas 258
[OS_APP_UNZIP_FAILEDoootiiiiieteectenterceeeseeestessessseesssessseesssessssesssessssssssessssesssessssasssessssesssasssaans 258
[OS_APP_PAYLOAD_DIR_MISSINGcutteiteiitirternteesieestensseesstessseessessseesssesssesssessssssssesssesssssssssessees 259
[OS_APP_APP_DIR_MISSINGoiiitieiiiitinitenteesieeseessteestesssesssessseesssesssessssessssssssesssessssessssssssesssensns 260
[OS_APP_PLIST_FILE_MISSINGuttiitiiiiiienieerteeresseesseeestesssesseessseesseesssessssesssessssassssssssesssessseasns 260
IOS_APP_CPU_ARCHITECTURE_VALUE_MISSING ...uttiiiirieetenrenseenieeeseeneessseesneesseesssesssessnnes 261
IOS_APP_PLATFORM_VALUE_MISSINGcoottiitiitieteeseeriesseesreeseessessssessaessseesssesssssssessseesssesnne 263
IOS_APP_WRONG_PLATFORM_DEVICE_VALUE ...ttt sseessaeeseesssessnessssessnens 264
IOS_APP_FORM_FACTOR_VALUE_MISSINGccttiotiertictennieerteesiesseessseeseesssessseessseesssesssesssesssens 265
IOS_APP_PACKAGE_NAME_VALUE_MISSINGccootirterientenrtistesseeseessresseessseeseesssessssssssessseens 267
IOS_APP_EXECUTABLE_VALUE_MISSINGccoutiiiiteetieieeieestesseesseesseeesaeesssessseesssessseesssesssnesnnes 268
KOTST ettt ettt e e s b et et b e et st s b e st e st e sb e et e ese s b e st e st e sbessbeesesnesnbantesanns 269
XCTEST_TEST_PACKAGE_UNZIP_FAILEDccoctiiteertieieritenrteestessessseesseeessessssessssesssesssessssessssesanes 270
XCTEST_TEST_PACKAGE_XCTEST_DIR_MISSINGcoovtiriiieiirieenteeierseesieeesneesssessneesseessseesssesnns 270
XCTEST_TEST_PACKAGE_PLIST_FILE_MISSINGuttviiietirieerienienceenseeeseesssessseesseeesseesssessssessnes 271
XCTEST_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSINGcoovtirreiiirrereeeneeeseeneeesneeenees 272
XCTEST_TEST_PACKAGE_EXECUTABLE_VALUE_MISSINGccooeiiiiiieeeineerseereeesreeseessneeseens 273
XETESE UL ettt ettt st este s st s st e s s e e s e e ssaa e s saesssaassaesssaesssaessaasssesssaassseesssesssessseessseesssesssenses 275
XCTEST_UI_TEST_PACKAGE_UNZIP_FAILEDuttiotiiteeeintenireirtenieestesssesssessseeseesssessssesssessseens 275
XCTEST_UI_TEST_PACKAGE_PAYLOAD_DIR_MISSINGccoctiirtirrirtinreenteneesseeseeesneessessseesnnes 276
XCTEST_UI_TEST_PACKAGE_APP_DIR_MISSINGcccutrrtirreiterreintenieestessresseessseessesssessseessneas 277
XCTEST_UI_TEST_PACKAGE_PLUGINS_DIR_MISSINGccttrrtirterreenienrteneenseeseessseeseessseesanens 278
XCTEST_UI_TEST_PACKAGE_XCTEST_DIR_MISSING_IN_PLUGINS_DIRcceeevterrrrrrtrrrerereeneen 279
XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSINGccctiiteitirrerrtenteeteseesseeeseessseeseessseesseens 280
XCTEST_UI_TEST_PACKAGE_PLIST_FILE_MISSING_IN_XCTEST_DIR ...cccvtterrtirrerreereernreeneennne 281
XCTEST_UI_TEST_PACKAGE_CPU_ARCHITECTURE_VALUE_MISSINGcccccvvvirrrrrrterrerereennen 282
XCTEST_UI_TEST_PACKAGE_PLATFORM_VALUE_MISSINGcoovtirrtrrierieenieerrerneeeseeeseessnennns 283
XCTEST_UI_TEST_PACKAGE_WRONG_PLATFORM_DEVICE_VALUEcccereverrerrterrercreennnens 284
XCTEST_UI_TEST_PACKAGE_FORM_FACTOR_VALUE_MISSINGcccovterrrtrrrercreeneeeneeneesseeennees 286
XCTEST_UI_TEST_PACKAGE_PACKAGE_NAME_VALUE_MISSINGcccceeevtirrirerenieeneenreeeeennne 287
XCTEST_UI_TEST_PACKAGE_EXECUTABLE_VALUE_MISSINGcceevirriirreenienrereeenieeeseessnenne 288
XCTEST_UI_TEST_PACKAGE_TEST_PACKAGE_NAME_VALUE_MISSINGccccevtrrvrerrreereerrennne 290
XCTEST_UI_TEST_PACKAGE_TEST_EXECUTABLE_VALUE_MISSINGcoovvervierrerrerneeneeenneene 291
SECUNITY ceiiiiiiiiennnneiiiieiienitinensessssssssssssesessnssssss 293

API Version 2015-06-23 xi

AWS Device Farm Developer Guide

Identity and access MANAGEMENT ..ottt te st e s e e s e e e e e e s e saesaenans 294
AUAIENCE ..ttt sttt sttt s b et s s b et et e e b et e s s et et s sa b et esassabestesassansesessansensenanns 294
Authenticating With identities ..ottt nnens 294
How AWS Device Farm works With TAM ...ttt sae e ssessesaesens 297
Managing access USING POLICIES ...cceeeiieiieieceeeceeeeee et ste e ste e e e e e e e e e e s e ste st e sse s e sse e e esaennennan 302
Identity-based POliCYy XAMPLES ...ttt te e s e e e e et saesaanaans 304
TrOUBLESNOOTING ...ttt e e et et e st et e st e be s e e sa e e e e e a e s ensanean 309

ComPLANCE VAliIAAtiON ..ottt st a et st esae s aesbesbe e e e e e aeaeaantans 312

DAta PrOTECLION ...ttt s e et s s ae e s e e s sae e sae e s aesssaessaaessnasssaasssasssaesssesssnanns 312
ENCryPLion N TraANSIT ..coeeieeeeeeee ettt sre et sre s s e e e ae e s e e s sae s sa e s saeessaesaesssaassneas 313
ENCIYPLION @t FOST ..ttt et s e s ae e s e e s s ae e s b e s sa e s aeesseesnasssnasnnas 313
DAta FELENTION ..ottt ettt s s e s sae st ae st e st e s s b e st e nesnanis 314
Data ManNQ@geIMENT ...ttt st e st e s sare s s sseessssnessseassssaessssnessssassssneessssesssssessnns 314
KEY MAaNQGEMENT ...ttt se et s st e st e s s se e s s s e e s s ssaesssanessseasssseassssaassssaessssenns 315
INternetwork traffic PriVacy et sttt 315

RESILIEICE .ottt ettt ettt s s b et et s s et et e e b et esa s s et e st esassastesasansensenn 316

INFrasStrUCTUIE SECUNILY .uviieeeeeceeee ettt ettt e st e e e e e e e e et e sae b e saassesse e e e saesenaenaansans 316
Infrastructure security for physical device teSting ... 317
Infrastructure security for desktop browser testing ..., 317

Configuration and vulnerability @nalysis ... 317

INCIAENT FESPONSE ...ttt ettt et e st e s te s e e e e e e e e s e sae st e b e s b essaesaesaesaessastensesansassasseesasssansanes 318

LOgging and MONTLOIING ..ceccueeuieeeeieieteceeecectee e e et stestesteste e e e e e e e s e ssesaesaassessassaesaensensansansans 319

SECUNITY DEST PraCiCES ..ottt et e st esae s be st e e s e e e e e e et et estassessesnnenaannans 319

LIMIES vevvereeennnnnnnnnmnnniiiiiiiiiiiiiiniieeseess 320
TOOLS ANA PLUGINS ceuiiiiiiiiiienieiiiiiieiiiiiiieeeesesesisisseceeesss 321

JENKINS Cl PLUGIN ettt sttt s e e e e et et t et e st e b e s s e e sa e e et e b ansessessassassaenaanes 321
Step 1: INStAll the PLUGIN ..ottt a e e st st ae s nn e ns 324
STEP 2: Create AN TAM USEK ...ttt sre st ste st e s stessse e s s e s saeessaesssaesaessseasssessseennens 325
Step 3: First-time configuration iNStrUCLIONSc.ccviiiiecieeeeeee e 326
Step 4: USE the PLUGIN ottt ettt a ettt e s re s se s n s 327
DEPENUENCIES ...eeveeeeeeeeieteteeteeteeee e ee e rte e s te s e s e s se e e s e e s e s et e bassassassassessaessansastessasansessassessaensensensans 327

Device Farm Gradle PLUGIN ...ttt te e et et esaesaesse s s s e e e e e e saananaans 327
Building the Device Farm Gradle PlUGIN ...ttt 328
Setting up the Device Farm Gradle plUugin ...ttt 329
GENErAtING AN TAM USEF ...uoiiieeteettecteeteeet et see e s e s st essteesseesssessstessaesssaasssesssaesssessssesssessseesssesssaens 331
CONFIGUIING tEST TYPES ettt ettt st te st e e s e e e e et e s aestebessa e s seenaenaanes 333

API Version 2015-06-23 xii

AWS Device Farm Developer Guide

DEPENUENCIES ..ottt et e rte st e s testesteese s e e e e s e tesae b e b assaesaesaessassantassansassassassaassessanean 334
DOCUMENT NISTOIY auueuiiiiiiiiiiiiiieeennnniiiiiiiieeiiieensnsssssssssssssseesssnee 335
AWS GLOSSANY .ceeeerennesiseeeennnesssesss 340

API Version 2015-06-23 xiii

AWS Device Farm Developer Guide

What is AWS Device Farm?

Device Farm is an app testing service that you can use to test and interact with your Android, iOS,
and web apps on real, physical phones and tablets that are hosted by Amazon Web Services (AWS).

There are two main ways to use Device Farm:

» Automated testing of apps using a variety of testing frameworks.

« Remote access of devices onto which you can load, run, and interact with apps in real time.

(® Note

Device Farm is only available in the us-west-2 (Oregon) region.

Automated app testing

Device Farm allows you to upload your own tests or use built-in, script-free compatibility tests.
Because testing is performed in parallel, tests on multiple devices begin in minutes.

As tests are completed, a test report that contains high-level results, low-level logs, pixel-to-pixel
screenshots, and performance data is updated.

Device Farm supports testing of native and hybrid Android and iOS apps, including those created
with PhoneGap, Titanium, Xamarin, Unity, and other frameworks. It supports remote access of
Android and iOS apps for interactive testing. For more information about supported test types, see
Working with test types in AWS Device Farm.

Remote access interaction

Remote access allows you to swipe, gesture, and interact with a device through your web browser
in real time. There are a number of situations where real-time interaction with a device is useful.
For example, customer service representatives can guide customers through the use or setup of
their device. They can also walk customers through the use of apps running on a specific device.
You can install apps on a device running in a remote access session and then reproduce customer
problems or reported bugs.

Automated app testing API Version 2015-06-23 1

AWS Device Farm Developer Guide

During a remote access session, Device Farm collects details about actions that take place as you
interact with the device. Logs with these details and a video capture of the session are produced at
the end of the session.

Terminology

Device Farm introduces the following terms that define the way information is organized:

device pool

A collection of devices that typically share similar characteristics, such as platform,
manufacturer, or model.

job
A request for Device Farm to test a single app against a single device. A job contains one or
more suites.

metering

Refers to billing for devices. You might see references to metered devices or unmetered devices
in the documentation and API reference. For more information about pricing, see AWS Device

Farm Pricing.

project

A logical workspace that contains runs, one run for each test of a single app against one or
more devices. You can use projects to organize workspaces in whatever way you choose. For
example, you can have one project per app title or one project per platform. You can create as
many projects as you need.

report

Contains information about a run, which is a request for Device Farm to test a single app
against one or more devices. For more information, see Reports in AWS Device Farm.

run

A specific build of your app, with a specific set of tests, to be run on a specific set of devices. A
run produces a report of the results. A run contains one or more jobs. For more information, see
Runs.

Terminology API Version 2015-06-23 2

https://aws.amazon.com/device-farm/pricing/
https://aws.amazon.com/device-farm/pricing/

AWS Device Farm Developer Guide

session

A real-time interaction with an actual, physical device through your web browser. For more
information, see Sessions.

suite

The hierarchical organization of tests in a test package. A suite contains one or more tests.
test

An individual test case in a test package.

For more information about Device Farm, see Concepts.

Setting up

To use Device Farm, see Setting up.

Setting up API Version 2015-06-23 3

AWS Device Farm Developer Guide

Setting up AWS Device Farm

Before you use Device Farm for the first time, you must complete the following tasks:

Topics

Step 1: Sign up for AWS

Step 2: Create or use an IAM user in your AWS account

Step 3: Give the IAM user permission to access Device Farm

Next step

Step 1: Sign up for AWS
Sign up for Amazon Web Services (AWS).
If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

Step 2: Create or use an IAM user in your AWS account

We recommend that you do not use your AWS root account to access Device Farm. Instead, create
an AWS Identity and Access Management (IAM) user (or use an existing one) in your AWS account,
and then access Device Farm with that IAM user.

For more information, see Creating an IAM User (AWS Management Console).

Step 1: Sign up for AWS API Version 2015-06-23 4

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console

AWS Device Farm Developer Guide

Step 3: Give the IAM user permission to access Device Farm

Give the IAM user permission to access Device Farm. To do this, create an access policy in IAM, and
then assign the access policy to the IAM user, as follows.

(® Note

The AWS root account or IAM user that you use to complete the following steps must
have permission to create the following IAM policy and attach it to the IAM user. For more
information, see Working with Policies.

1. Create a policy with the following JSON body. Give it a descriptive title, such as
DeviceFarmAdmin.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"devicefarm:*"

1,

"Resource": [

nmin

For more information on creating IAM policies, see Creating IAM Policies in the IAM User Guide.

2. Attach the IAM policy you created to your new user. For more information on attaching IAM
policies to users, see Adding and Removing IAM Policies in the IAM User Guide.

Attaching the policy provides the IAM user with access to all Device Farm actions and resources
associated with that IAM user. For information about how to restrict IAM users to a limited set of
Device Farm actions and resources, see Identity and access management in AWS Device Farm.

Step 3: Give the IAM user permission to access Device Farm API Version 2015-06-23 5

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS Device Farm Developer Guide

Next step

You are now ready to start using Device Farm. See Getting started with Device Farm.

Next step API Version 2015-06-23 6

AWS Device Farm Developer Guide

Getting started with Device Farm

This walkthrough shows you how to use Device Farm to test a native Android or iOS app. You use
the Device Farm console to create a project, upload an .apk or .ipa file, run a suite of standard tests,
and then view the results.

(@ Note

Device Farm is available only in the us-west-2 (Oregon) AWS Region.

Topics

 Prerequisites
« Step 1:Sign in to the console

» Step 2: Create a project

» Step 3: Create and start a run

o Step 4: View the run's results

» Next steps

Prerequisites

Before you begin, make sure you have completed the following requirements:
« Complete the steps in Setting up. You need an AWS account and an AWS Identity and Access

Management (IAM) user with permission to access Device Farm.

» For Android, you need an .apk (Android app package) file. For iOS, you need an .ipa (iOS app
archive) file. You upload the file to Device Farm later in this walkthrough.

(® Note

Make sure that your .ipa file is built for an iOS device and not for a simulator.

» (Optional) You need a test from one of the testing frameworks that Device Farm supports. You
upload this test package to Device Farm, and then run the test later in this walkthrough. If you

Prerequisites API Version 2015-06-23 7

AWS Device Farm Developer Guide

don't have a test package available, you can specify and run a standard built-in test suite. For
more information, see Working with test types in AWS Device Farm.

Step 1: Sign in to the console

You can use the Device Farm console to create and manage projects and runs for testing. You learn
about projects and runs later in this walkthrough.

« Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

Step 2: Create a project

To test an app in Device Farm, you must first create a project.

1. In the navigation pane, choose Mobile Device Testing, and then choose Projects.
2. Under Mobile Device Testing Projects, choose New project.

3. Under Create project, enter a Project Name (for example, M\yDemoProject).

4

Choose Create.

The console opens the Automated tests page of your newly created project.

Step 3: Create and start a run

Now that you have a project, you can create and then start a run. For more information, see Runs.

1. On the Automated tests page, choose Create a new run.

2. On the Choose application page, under Mobile App, choose Choose File, and then choose an
Android (.apk) or iOS (.ipa) file from your computer. Or, drag the file from your computer and
drop it in the console.

3. Enter a Run name, suchasmy first test. By default, the Device Farm console uses the file
name.

4. Choose Next.

5. On the Configure page, under Setup test framework, choose one of the testing frameworks or
built-in test suites. For information about each option, see Test types and frameworks.

Step 1: Sign in to the console API Version 2015-06-23 8

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

w L N o

If you have not yet packaged your tests for Device Farm, choose Built-in: Fuzz to run
a standard, built-in test suite. You can keep the default values for Event count, Event
throttle, and Randomizer seed. For more information, see the section called “Built-in:
fuzz (Android and iOS)".

If you have a test package from one of the supported testing frameworks, choose the
corresponding testing framework, and then upload the file that contains your tests.

Choose Next.
On the Select devices page, for Device pool, choose Top Devices.
Choose Next.

On the Specify device state page, do any of the following:

To provide additional data for Device Farm to use during the run, under Add extra data,
upload a .zip file.

To install other apps for the run, under Install other apps, upload the .apk or .ipa files for
the apps. To change the installation order, drag and drop the files.

To turn on Wi-Fi, Bluetooth, GPS, or NFC radios for the run, under Set radio states, select
the corresponding check boxes.

(® Note

Setting the device radio state is available only for Android native tests at this time.

To test location-specific behavior during the run, under Device location, specify preset
Latitude and Longitude coordinates.

To preset device language and region for the run, under Device locale, choose a locale.

To preset the network profile for the run, under Network profile, choose a curated profile.
Or, choose Create network profile to create your own.

10. Choose Next.

11. On the Review and start run page, choose Confirm and start run.

Device Farm starts the run as soon as devices are available, typically within a few minutes.

To view the run status, on the Automated tests page of your project, choose the name

of your run. One the run page, under Devices, each device starts with the pending icon

@

in the device table, then switches to the running icon

Step 3: Create and start a run API Version 2015-06-23 9

AWS Device Farm Developer Guide

©

when the test begins. As each test finishes, the console displays a test result icon next to the device
name. When all tests are complete, the pending icon next to the run changes to a test result icon.

Step 4: View the run's results

To view test results from the run, on the Automated tests page of your project, choose the name
of your run. A summary page displays:

The total number of tests, by outcome.

Lists of tests with unique warnings or failures.

A list of devices with test results for each.

Any screenshots captured during the run, grouped by device.

A section to download the parsing result.

For more information, see Working with test reports in Device Farm.

Next steps

For more information about Device Farm, see Concepts.

Step 4: View the run's results API Version 2015-06-23 10

AWS Device Farm Developer Guide

Purchase a device slot in Device Farm

You can use the Device Farm console, AWS Command Line Interface (AWS CLI), or Device Farm API
to purchase a device slot.

Topics

» Purchase device slots (console)

o Purchase a device slot (AWS CLI)

» Purchase a device slot (API)

Purchase device slots (console)

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the navigation pane, choose Mobile Device Testing, and then choose Device slots.

3. On the Purchase and manage device slots page, you can create your own custom package by
choosing the number of slots of Automated testing and Remote access devices that you want
to purchase. Specify slot amounts for both the current and next billing periods.

As you change the slot amount, the text dynamically updates with the billing amount. For
more information, see AWS Device Farmpricing.

/A Important

If you change the number of device slots but see a contact us or contact us to
purchase message, your AWS account is not yet approved to purchase the number of
device slots that you requested.

These options prompt you to send an email to the Device Farm support team. In the
email, specify the number of each device type that you want to purchase and for which
billing cycle.

(® Note

Changes to the device slots apply to your entire account and affect all projects.

Purchase device slots (console) API Version 2015-06-23 11

https://console.aws.amazon.com/devicefarm
https://aws.amazon.com/device-farm/pricing/

AWS Device Farm Developer Guide

Purchase and manage device slots

(@ Changes to device slots apply to your entire account and will affect all projects. X
Automated testing Remote access
Automated testing allows you to run built-in or your own tests against devices in parallel with Remote access allows you to manually interact with devices through your browser with the

concurrency equal to the number of slots you've purchased. Learn more 3 number of concurrent sessions equal to the number of slots you've purchased.

Learn more)
Current billing period
Current billing period
You currently have

You currently have
0 = | Android slots 0 = iOSslots

0 = Android slots 0 =) i0Sslots

Next billing period

Next billing period
From August 16, you will have

From August 16, you will have
0 4 | Android slots 0 4+, iOSslots

0 + Android slots 0 2, iOSslots

4. Choose Purchase. A Confirm purchase window appears. Review the information, and then
choose Confirm to complete the transaction.

Confirm purchase X

e Automated Testing Android slot will be added to your account and =
will be immediately added to your bill.

e In , you will have”™ Remote Access Android slot, Automated Testing
Android slot, ® Automated Testing iOS slot and m Remote Access iOS slot and
o will be added to your recurring monthly bill.

Purchase device slots (console) API Version 2015-06-23 12

AWS Device Farm Developer Guide

On the Purchase and manage device slots page, you can see the number of device slots that you
currently have. If you increased or decreased the number of slots, you'll see the number of slots
that you'll have one month after the date you made the change.

Purchase a device slot (AWS CLI)

You can run the purchase-offering command to purchase the offering.

To list your Device Farm account settings, including the maximum number of device slots that
you can purchase and the number of remaining free trial minutes, run the get-account-settings
command. You'll see output similar to the following:

{
"accountSettings": {
"maxSlots": {
"GUID": 1,
"GUID": 1,
"GUID": 1,
"GUID": 1
},
"unmeteredRemoteAccessDevices": {
"ANDROID": 0,
"I0S": O
},
"maxJobTimeoutMinutes": 150,
"trialMinutes": {
"total": 1000.0,
"remaining": 954.1
.
"defaultJobTimeoutMinutes": 150,
"awsAccountNumber": "AWS-ACCOUNT-NUMBER",
"unmeteredDevices": {
"ANDROID": 0,
"I0S": O
}
}
}

To list the device slot offerings that are available to you, run the list-offerings command. You
should see output similar to the following:

Purchase a device slot (AWS CLI) API Version 2015-06-23 13

AWS Device Farm Developer Guide

"offerings": [

{
"recurringCharges": [
{
"cost": {
"amount": 250.0,
"currencyCode": "USD"
1,
"frequency": "MONTHLY"
}
1,
"platform": "IOS",
"type": "RECURRING",
"id": "GUID",
"description": "iOS Unmetered Device Slot"
1,
{
"recurringCharges": [
{
"cost": {
"amount": 250.0,
"currencyCode": "USD"
1,
"frequency": "MONTHLY"
}
1,
"platform": "ANDROID",
"type": "RECURRING",
"id": "GUID",
"description": "Android Unmetered Device Slot"
1,
{
"recurringCharges": [
{
"cost": {
"amount": 250.0,
"currencyCode": "USD"
1,
"frequency": "MONTHLY"
}

iF

"platform": "ANDROID",
"type": "RECURRING",
Ilidll: "GUID",

Purchase a device slot (AWS CLI) API Version 2015-06-23 14

AWS Device Farm Developer Guide

"description": "Android Remote Access Unmetered Device Slot"
.
{
"recurringCharges": [
{
"cost": {
"amount": 250.0,
"currencyCode": "USD"
},
"frequency": "MONTHLY"
}
1,
"platform": "IOS",
"type": "RECURRING",
"id": "GUID",
"description": "iOS Remote Access Unmetered Device Slot"
}

To list the available offering promotions, run the list-offering-promotions command.

(® Note

This command returns only promotions that you haven't yet purchased. As soon as you
purchase one or more slots across any offering using a promotion, that promotion no
longer appears in the results.

You should see output similar to the following:

{
"offeringPromotions": [
{
"id": "2FREEMONTHS",
"description": "New device slot customers get 3 months for the price of 1."
}
]
}

To get the offering status, run the get-offering-status command. You should see output similar to
the following:

Purchase a device slot (AWS CLI) API Version 2015-06-23 15

AWS Device Farm Developer Guide

"current": {
"GUID": {
"offering": {
"platform": "IOS",
"type": "RECURRING",

"id": "GUID",
"description": "iOS Unmetered Device Slot"
.
"quantity": 1
.
"GUID": {
"offering": {
"platform": "ANDROID",
"type": "RECURRING",
"id": "GUID",
"description": "Android Unmetered Device Slot"
1,
"quantity": 1
}
.
"nextPeriod": {
"GUID": {
"effectiveOn": 1459468800.0,
"offering": {
"platform": "IOS",
"type": "RECURRING",
"id": "GUID",
"description": "iOS Unmetered Device Slot"
1,
"quantity": 1
1,
"GUID": {
"effectiveOn": 1459468800.0,
"offering": {
"platform": "ANDROID",
"type": "RECURRING",
"id": "GUID",
"description": "Android Unmetered Device Slot"
1,
"quantity": 1
}
}

Purchase a device slot (AWS CLI) API Version 2015-06-23 16

AWS Device Farm Developer Guide

}

The renew-offering and list-offering-transactions commands are also available for this feature.
For more information, see the AWS CLI reference.

Purchase a device slot (API)

1. Call the GetAccountSettings operation to list your account settings.

2. Call the ListOfferings operation to list the device slot offerings available to you.

3. Call the ListOfferingPromotions operation to list the offering promotions that are available.

(® Note

This command returns only promotions that you haven't yet purchased. As soon as you
purchase one or more slots using an offering promotion, that promotion no longer
appears in the results.

4. Call the PurchaseOffering operation to purchase an offering.

Call the GetOfferingStatus operation to get the offering status.

The RenewOffering and ListOfferingTransactions commands are also available for this feature.

For information about using the Device Farm API, see Automating Device Farm.

Purchase a device slot (API) API Version 2015-06-23 17

../../latest/APIReference/API_GetAccountSettings.html
../../latest/APIReference/API_ListOfferings.html
../../latest/APIReference/API_ListOfferingPromotions.html
../../latest/APIReference/API_PurchaseOffering.html
../../latest/APIReference/API_GetOfferingStatus.html
../../latest/APIReference/API_RenewOffering.html
../../latest/APIReference/API_ListOfferingTransactions.html

AWS Device Farm Developer Guide

AWS Device Farm concepts

This section describes important Device Farm concepts.

Device support in AWS Device Farm

Test environments

Runs

Reports in AWS Device Farm

Sessions

For more information about supported test types in Device Farm, see Working with test types in
AWS Device Farm.

Device support in AWS Device Farm

The following sections provide information about device support in Device Farm.

Topics

» Supported devices

« Device pools

« Private devices

» Device branding

« Device slots

» Preinstalled device apps

» Device capabilities

Supported devices

Device Farm provides support for hundreds of unique, popular Android and iOS devices and
operating system combinations. The list of available devices grows as new devices enter the
market. For the full list of devices, see Device List.

Devices API Version 2015-06-23 18

https://aws.amazon.com/device-farm/device-list/

AWS Device Farm Developer Guide

Device pools

Device Farm organizes its devices into device pools that you can use for your testing. These device
pools contain related devices, such as devices that run only on Android or only on iOS. Device Farm
provides curated device pools, such as those for top devices. You can also create device pools that
mix public and private devices.

Private devices

Private devices allow you to specify exact hardware and software configurations for your testing
needs. Certain configurations, such as rooted Android devices, can be supported as private devices.
Each private device is a physical device that Device Farm deploys on your behalf in an Amazon

data center. Your private devices are available exclusively to you for both automated and manual
testing. After you choose to end your subscription, the hardware is removed from our environment.
For more information, see Private Devices and Working with private devices in AWS Device Farm.

Device branding

Device Farm runs tests on physical mobile and tablet devices from a variety of OEMs.

Device slots

Device slots correspond to concurrency in which the number of device slots you have purchased
determines how many devices you can run in tests or remote access sessions.

There are two types of device slots:

« A remote access device slot is one you can run in remote access sessions concurrently.

If you have one remote access device slot, you can only run one remote access session at a
time. If you purchase additional remote testing device slots, you can run multiple sessions
concurrently.

« An automated testing device slot is one on which you can run tests concurrently.

If you have one automated testing device slot, you can only run tests on one device at a time. If
you purchase additional automated testing device slots, you can run multiple tests concurrently,
on multiple devices, to get test results faster.

Device pools API Version 2015-06-23 19

https://aws.amazon.com/device-farm/pricing/#privateDevices

AWS Device Farm Developer Guide

You can purchase device slots based on the device family (Android or iOS devices for automated
testing and Android or iOS devices for remote access). For more information, see Device Farm

Pricing.
Preinstalled device apps

Devices in Device Farm include a small number of apps that are already installed by manufacturers
and carriers.

Device capabilities

All devices have a Wi-Fi connection to the internet. They do not have carrier connections and
cannot make phone calls or send SMS messages.

You can take photos with any device that supports a front- or rear-facing camera. Due to the way
the devices are mounted, photos might look dark and blurry.

Google Play Services is installed on devices that support it, but these devices do not have an active
Google account.

Test environments in AWS Device Farm

AWS Device Farm provides both custom and standard test environments for running your
automated tests. You can choose a custom test environment for complete control over your
automated tests. Or, you can choose the Device Farm default standard test environment, which
offers granular reporting of each test in your automated test suite.

Topics

+ Standard test environment

e Custom test environment

Standard test environment

When you run a test in the standard environment, Device Farm provides detailed logs and
reporting for every case in your test suite. You can view performance data, videos, screenshots, and
logs for each test to pinpoint and fix issues in your app.

Preinstalled device apps API Version 2015-06-23 20

https://aws.amazon.com/device-farm/pricing/
https://aws.amazon.com/device-farm/pricing/

AWS Device Farm Developer Guide

® Note

Because Device Farm provides granular reporting in the standard environment, test
execution times can be longer than when you run your tests locally. If you want faster
execution times, run your tests in a custom test environment.

Custom test environment

When you customize the test environment, you can specify the commands Device Farm should run
to execute your tests. This ensures that tests on Device Farm run in a way that is similar to tests run
on your local machine. Running your tests in this mode also enables live log and video streaming of
your tests. When you run tests in a customized test environment, you do not get granular reports
for each test case. For more information, see Working with custom test environments.

You have the option to use a custom test environment when you use the Device Farm console, AWS
CLI, or Device Farm API to create a test run.

For more information, see Uploading a Custom Test Spec Using the AWS CLI and Create a test run

in Device Farm.

Runs in AWS Device Farm

The following sections contain information about runs in Device Farm.

A run in Device Farm represents a specific build of your app, with a specific set of tests, to be run on
a specific set of devices. A run produces a report that contains information about the results of the
run. A run contains one or more jobs.

Topics

» Run configuration

« Run files retention

e Run device state

« Parallel runs

» Setting the execution timeout

« Instrumenting apps

Custom test environment API Version 2015-06-23 21

https://docs.aws.amazon.com/devicefarm/latest/developerguide/how-to-create-test-run.html#how-to-create-test-run-cli-step5

AWS Device Farm Developer Guide

» Re-signing apps in runs

Obfuscated apps in runs

Ads in runs

Media in runs

Common tasks for runs

Run configuration

As part of a run, you can supply settings Device Farm can use to override current device settings.
These include latitude and longitude coordinates, locale, radio states (such as Bluetooth, GPS, NFC,
and Wi-Fi), extra data (contained in a .zip file), and auxiliary apps (apps that should be installed
before the app to be tested).

Run files retention

Device Farm stores your apps and files for 30 days and then deletes them from its system. You can
delete your files at any time, however.

Device Farm stores your run results, logs, and screenshots for 400 days and then deletes them from
its system.

Run device state

Device Farm always reboots a device before making it available for the next job.

Parallel runs

Device Farm runs tests in parallel as devices become available.

Setting the execution timeout

You can set a value for how long a test run should execute before you stop each device from
running a test. For example, if your tests take 20 minutes per device to complete, you should
choose a timeout of 30 minutes per device.

For more information, see Set the execution timeout for test runs in AWS Device Farm.

Run configuration API Version 2015-06-23 22

AWS Device Farm Developer Guide

Instrumenting apps

You do not need to instrument your apps or provide Device Farm with the source code for your
apps. Android apps can be submitted unmodified. iOS apps must be built with the iOS Device
target instead of with the simulator.

Re-signing apps in runs

For iOS apps, you do not need to add any Device Farm UUIDs to your provisioning profile. Device
Farm replaces the embedded provisioning profile with a wildcard profile and then re-signs

the app. If you provide auxiliary data, Device Farm adds it to the app's package before Device

Farm installs it, so that the auxiliary exists in your app's sandbox. Re-signing the app removes
entitlements such as App Group, Associated Domains, Game Center, HealthKit, HomeKit, Wireless
Accessory Configuration, In-App Purchase, Inter-App Audio, Apple Pay, Push Notifications, and VPN
Configuration & Control.

For Android apps, Device Farm re-signs the app. This might break any functionality that depends
on the app's signature, such as the Google Maps Android API, or it might trigger antipiracy or
antitamper detection from products such as DexGuard.

Obfuscated apps in runs

For Android apps, if the app is obfuscated, you can still test it with Device Farm if you use
ProGuard. However, if you use DexGuard with antipiracy measures, Device Farm cannot re-sign and
run tests against the app.

Ads in runs

We recommend that you remove ads from your apps before you upload them to Device Farm. We
cannot guarantee that ads are displayed during runs.

Media in runs

You can provide media or other data to accompany your app. Additional data must be provided in
a .zip file no more than 4 GB in size.

Common tasks for runs

For more information, see Create a test run in Device Farm and Working with test runs in AWS
Device Farm.

Instrumenting apps API Version 2015-06-23 23

AWS Device Farm Developer Guide

Reports in AWS Device Farm

The following sections provide information about Device Farm test reports.

Topics

» Report retention

» Report components

e Logs in reports

o Common tasks for reports

Report retention

Device Farm stores your reports for 400 days. These reports include metadata, logs, screenshots,
and performance data.

Report components

Reports in Device Farm contain pass and fail information, crash reports, test and device logs,
screenshots, and performance data.

Reports include detailed per-device data and high-level results, such as the number of occurrences
of a given problem.

Logs in reports

Reports include complete logcat captures for Android tests and complete Device Console logs for
iOS tests.

Common tasks for reports

For more information, see Working with test reports in Device Farm.

Sessions in AWS Device Farm

You can use Device Farm to perform interactive testing of Android and iOS apps through remote
access sessions in a web browser. This kind of interactive testing helps support engineers on

Reports API Version 2015-06-23 24

AWS Device Farm Developer Guide

a customer call to walk through, step by step, the customer's issue. Developers can reproduce
a problem on a specific device to isolate possible sources of the problem. You can use remote
sessions to conduct usability tests with your target customers.

Topics

» Supported devices for remote access

« Session files retention

« Instrumenting apps

» Re-signing apps in sessions

« Obfuscated apps in sessions

Supported devices for remote access

Device Farm provides support for a number of unique, popular Android and iOS devices. The list
of available devices grows as new devices enter the market. The Device Farm console displays
the current list of Android and iOS devices available for remote access. For more information, see
Device support in AWS Device Farm.

Session files retention

Device Farm stores your apps and files for 30 days and then deletes them from its system. You can
delete your files at any time, however.

Device Farm stores your session logs and captured video for 400 days and then deletes them from
its system.

Instrumenting apps

You do not need to instrument your apps or provide Device Farm with the source code for your
apps. Android and iOS apps can be submitted unmodified.

Re-signing apps in sessions

Device Farm re-signs Android and iOS apps. This can break functionality that depends on the app's
signature. For example, the Google Maps API for Android depends on your app's signature. App
re-signing can also trigger antipiracy or antitamper detection from products such as DexGuard for
Android devices.

Supported devices for remote access API Version 2015-06-23 25

AWS Device Farm Developer Guide

Obfuscated apps in sessions

For Android apps, if the app is obfuscated, you can still test it with Device Farm if you use

ProGuard. However, if you use DexGuard with antipiracy measures, Device Farm cannot re-sign the
app.

Obfuscated apps in sessions API Version 2015-06-23 26

AWS Device Farm Developer Guide

Working with projects in AWS Device Farm

A project in Device Farm represents a logical workspace in Device Farm that contains runs, one
run for each test of a single app against one or more devices. Projects enable you to organize
workspaces in whatever way you choose. For example, there can be one project per app title, or
there can be one project per platform. You can create as many projects as you need.

You can use the AWS Device Farm console, AWS Command Line Interface (AWS CLI), or AWS Device

Farm API to work with projects.

Topics

« Create a project in AWS Device Farm

» View the projects list in AWS Device Farm

Create a project in AWS Device Farm

You can create a project by using the AWS Device Farm console, AWS CLI, or AWS Device Farm API.

Prerequisites

« Complete the steps in Setting up.

Create a project (console)

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.
Choose New project.

Enter a name for your project, then choose Submit.

i A W

To specify settings for the project, choose Project settings. These settings include the default
timeout for test runs. After the settings are applied, they are used by all test runs for the
project. For more information, see Set the execution timeout for test runs in AWS Device Farm.

Create a project API Version 2015-06-23 27

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

Create a project (AWS CLI)

« Run create-project, specifying the project name.

Example:

aws devicefarm create-project --name MyProjectName

The AWS CLI response includes the Amazon Resource Name (ARN) of the project.

"project": {
"name": "MyProjectName",
"arn": "arn:aws:devicefarm:us-west-2:123456789101:project:5e01a8c7-
c861-4c0a-b1ld5-12345EXAMPLE",
"created": 1535675814.414

For more information, see create-project and AWS CLI reference.

Create a project (API)

« Callthe CreateProject API.

For information about using the Device Farm API, see Automating Device Farm.

View the projects list in AWS Device Farm

You can use the AWS Device Farm console, AWS CLI, or AWS Device Farm API to view the list of
projects.

Topics

Prerequisites

View the projects list (console)

View the projects list (AWS CLI)

View the projects list (API)

Create a project (AWS CLI) API Version 2015-06-23 28

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-project.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateProject.html

AWS Device Farm Developer Guide

Prerequisites

o Create at least one project in Device Farm. Follow the instructions in Create a project in AWS
Device Farm, and then return to this page.

View the projects list (console)

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. To find the list of available projects, do the following:

« For mobile device testing projects, on the Device Farm navigation menu, choose Mobile
Device Testing, then choose Projects.

» For desktop browser testing projects, on the Device Farm navigation menu, choose Desktop
Browser Testing, then choose Projects.

View the projects list (AWS CLI)

« To view the projects list, run the list-projects command.

To view information about a single project, run the get-project command.

For information about using Device Farm with the AWS CLI, see AWS CLI reference.

View the projects list (API)

« To view the projects list, call the ListProjects API.

To view information about a single project, call the GetProject API.

For information about the AWS Device Farm API, see Automating Device Farm.

Prerequisites API Version 2015-06-23 29

https://console.aws.amazon.com/devicefarm
https://docs.aws.amazon.com/cli/latest/reference/devicefarm/list-projects.html
https://docs.aws.amazon.com/cli/latest/reference/devicefarm/get-project.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ListProjects.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_GetProject.html

AWS Device Farm Developer Guide

Working with test runs in AWS Device Farm

A run in Device Farm represents a specific build of your app, with a specific set of tests, to be run on
a specific set of devices. A run produces a report that contains information about the results of the
run. A run contains one or more jobs. For more information, see Runs.

You can use the AWS Device Farm console, AWS Command Line Interface (AWS CLI), or AWS Device
Farm API to work with runs.

Topics

e Create a test run in Device Farm

« Set the execution timeout for test runs in AWS Device Farm

» Simulate network connections and conditions for your AWS Device Farm runs

e Stop arun in AWS Device Farm

« View a list of runs in AWS Device Farm

o Create a device pool in AWS Device Farm

« Analyzing results in AWS Device Farm

Create a test run in Device Farm

You can use the Device Farm console, AWS CLI, or Device Farm API to create a test run. You can
also use a supported plugin, such as the Jenkins or Gradle plugins for Device Farm. For more
information about plugins, see Tools and plugins. For information about runs, see Runs.

Topics

Prerequisites

Create a test run (console)

Create a test run (AWS CLI)

Create a test run (API)

Next steps

Create a test run API Version 2015-06-23 30

AWS Device Farm Developer Guide

Prerequisites

You must have a project in Device Farm. Follow the instructions in Create a project in AWS Device

Farm, and then return to this page.

Create a test run (console)

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the navigation pane, choose Mobile Device Testing, and then choose Projects.

3. If you already have a project, you can upload your tests to it. Otherwise, choose New project,
enter a Project Name, and then choose Create.

4. Open your project, and then choose Create a new run.

5. On the Choose application page, choose Mobile App or Web App.

Step 1

Choose application

Choose application
Step 2 Web App

Upload an Android app as a .apk. Upload an iOS app as a .ipa. Be sure to build for ‘iOS device'. No instrumentation or provisioning required

Step 3

Step 4

Cancel
Step 5

6. Upload your application file. You can also drag and drop your file or choose a recent upload. If
you're uploading an iOS app, be sure to choose iOS device, as opposed to a simulator.

7. (Optional) In Run name, enter a name. By default, Device Farm uses the app file name.
8. Choose Next.

9. On the Configure page, choose one of the available test suites.

(@ Note

If you don't have any tests available, choose Built-in: Fuzz to run a standard, built-
in test suite. If you choose Built-in: Fuzz, and the Event count, Event throttle, and
Randomizer seed boxes appear, you can change or keep the values.

Prerequisites API Version 2015-06-23 31

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

For information about the available test suites, see Working with test types in AWS Device

Farm.

10. If you didn't choose Built-in: Fuzz, select Choose File, and then browse to and choose the file
that contains your tests.

11. For your testing environment, choose Run your test in our standard environment or Run your
test in a custom environment. For more information, see Test environments.

12. If you're using the standard test environment, skip to step 13. If you're using a custom test
environment with the default test spec YAML file, skip to step 13.

a. If you want to edit the default test spec in a custom test environment, choose Edit to
update the default YAML specification.

b. If you changed the test spec, choose Save as New to update it.

13. If you want to configure the video recording or performance data capture options, choose
Advanced Configuration.

a. Select Enable video recording to record video during testing.

b. Select Enable app performance data capture to capture performance data from the
device.

(® Note

If you have private devices, Configuration specific to Private Devices is also displayed.

14. Choose Next.

15. On the Select devices page, do one of the following:

» To choose a built-in device pool to run the tests against, for Device pool, choose Top
Devices.

» To create your own device pool to run the tests against, follow the instructions in Create a
device pool, and then return to this page.

o If you created your own device pool earlier, for Device pool, choose your device pool.

For more information, see Device support in AWS Device Farm.

16. Choose Next.

Create a test run (console) API Version 2015-06-23 32

AWS Device Farm Developer Guide

17. On the Specify device state page:

» To provide other data for Device Farm to use during the run, next to Add extra data, choose
Choose File, and then browse to and choose the .zip file that contains the data.

« To install an additional app for Device Farm to use during the run, next to Install other apps,
choose Choose File, and then browse to and choose the .apk or .ipa file that contains the
app. Repeat this for other apps you want to install. You can change the installation order by
dragging and dropping the apps after you upload them.

» To specify whether Wi-Fi, Bluetooth, GPS, or NFC is enabled during the run, next to Set radio
states, select the appropriate boxes.

» To preset the device latitude and longitude for the run, next to Device location, enter the
coordinates.

» To preset the device locale for the run, in Device locale, choose the locale.
18. Choose Next.

19. On the Review and start run page, you can specify the execution timeout for your test run. If
you're using unlimited testing slots, confirm that Run on unmetered slots is selected.

20. Enter a value or use the slider bar to change the execution timeout. For more information, see
Set the execution timeout for test runs in AWS Device Farm.

21. Choose Confirm and start run.

Device Farm starts the run as soon as devices are available, typically within a few
minutes. During your test run, the Device Farm console displays a pending icon

@

in the run table. Each device in the run will also start with the pending icon, then switch to the
running icon

©

when the test begins. As each test finishes, a test result icon is displayed next to the device name.
When all tests have been completed, the pending icon next to the run changes to a test result icon.

If you want to stop the test run, see Stop a run in AWS Device Farm.

Create a test run (AWS CLI)

You can use the AWS CLI to create a test run.

Topics

Create a test run (AWS CLI) API Version 2015-06-23 33

AWS Device Farm Developer Guide

» Step 1: Choose a project

o Step 2: Choose a device pool

» Step 3: Upload your application file

» Step 4: Upload your test scripts package

» Step 5: (Optional) Upload your custom test spec

» Step 6: Schedule a test run

Step 1: Choose a project

You must associate your test run with a Device Farm project.

1. To list your Device Farm projects, run list-projects. If you do not have a project, see Create a
project in AWS Device Farm.

Example:

aws devicefarm list-projects

The response includes a list of your Device Farm projects.

"projects": [
{
"name": "MyProject",
"arn": "arn:aws:devicefarm:us-west-2:123456789101:project:5e01la8c7-
c861-4c@a-b1ld5-12345EXAMPLE",
"created": 1503612890.057

2. Choose a project to associate with your test run, and make a note of its Amazon Resource
Name (ARN).

Step 2: Choose a device pool

You must choose a device pool to associate with your test run.

Create a test run (AWS CLI) API Version 2015-06-23 34

AWS Device Farm Developer Guide

1. To view your device pools, run list-device-pools, specifying your project ARN.

Example:

aws devicefarm list-device-pools --arn arn:MyProjectARN

The response includes the built-in Device Farm device pools, such as Top Devices, and any
device pools previously created for this project:

{
"devicePools": [
{
"rules": [
{

"attribute": "ARN",

"operator": "IN",

"value": "[\"arn:aws:devicefarm:us-west-2::device:examplel\",

\"arn:aws:devicefarm:us-west-2::device:example2\",\"arn:aws:devicefarm:us-
west-2::device:example3\"]"

}
1,
"type": "CURATED",
"name": "Top Devices",
"arn": "arn:aws:devicefarm:us-west-2::devicepool:example",
"description": "Top devices"
1,
{
"rules": [
{
"attribute": "PLATFORM",
"operator": "EQUALS",
"value": "\"ANDROID\""
}
1,
"type": "PRIVATE",
"name": "MyAndroidDevices",
"arn": "arn:aws:devicefarm:us-west-2:605403973111:devicepool:example2"
}

2. Choose a device pool, and make a note of its ARN.

Create a test run (AWS CLI) API Version 2015-06-23 35

AWS Device Farm Developer Guide

You can also create a device pool, and then return to this step. For more information, see
Create a device pool (AWS CLI).

Step 3: Upload your application file

To create your upload request and get an Amazon Simple Storage Service (Amazon S3) presigned
upload URL, you need:

» Your project ARN.
« The name of your app file.

« The type of the upload.

For more information, see create-upload.

1. To upload a file, run create-upload with the --project-arn, --name, and --type
parameters.

This example creates an upload for an Android app:

aws devicefarm create-upload --project-arn arn:MyProjectArn --name MyAndroid.apk --
type ANDROID_APP

The response includes your app upload ARN and a presigned URL.

{
"upload": {
"status": "INITIALIZED",
"name": "MyAndroid.apk",
"created": 1535732625.964,
"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL",

"type": "ANDROID_APP",
"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e@1a8c7-
c861-4cQa-bld5-12345EXAMPLE"

}

2. Make a note of the app upload ARN and the presigned URL.

Create a test run (AWS CLI) API Version 2015-06-23 36

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-upload.html

AWS Device Farm Developer Guide

3. Upload your app file using the Amazon S3 presigned URL. This example uses curl to upload an
Android .apk file:

curl -T MyAndroid.apk "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL"

For more information, see Uploading objects using presigned URLs in the Amazon Simple
Storage Service User Guide.

4. To check the status of your app upload, run get-upload and specify the ARN of the app
upload.

aws devicefarm get-upload --arn arn:MyAppUploadARN

Wait until the status in the response is SUCCEEDED before you upload your test scripts
package.

"upload": {

"status": "SUCCEEDED",

"name": "MyAndroid.apk",

"created": 1535732625.964,

"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL",

"type": "ANDROID_APP",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e01a8c7-
c861-4c@a-bld5-12345EXAMPLE",

"metadata": "{"valid": truel}"

Step 4: Upload your test scripts package

Next, you upload your test scripts package.

1. To create your upload request and get an Amazon S3 presigned upload URL, run create-
upload with the --project-arn, --name, and --type parameters.

This example creates an Appium Java TestNG test package upload:

Create a test run (AWS CLI) API Version 2015-06-23 37

https://docs.aws.amazon.com/AmazonS3/latest/userguide/PresignedUrlUploadObject.html

AWS Device Farm Developer Guide

aws devicefarm create-upload --project-arn arn:MyProjectARN --name MyTests.zip --
type APPIUM_JAVA_TESTNG_TEST_PACKAGE

The response includes your test package upload ARN and a presigned URL.

{
"upload": {
"status": "INITIALIZED",
"name": "MyTests.zip",
"created": 1535738627.195,
"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/

ExampleURL",

"type": "APPIUM_JAVA_TESTNG_TEST_PACKAGE",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e01a8c7-
c861-4c@a-bld5-12345EXAMPLE"

}

2. Make a note of the ARN of the test package upload and the presigned URL.

3. Upload your test scripts package file using the Amazon S3 presigned URL. This example uses
curl to upload a zipped Appium TestNG scripts file:

curl -T MyTests.zip "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL"

4. To check the status of your test scripts package upload, run get-upload and specify the ARN of
the test package upload from step 1.

aws devicefarm get-upload --arn arn:MyTestsUploadARN

Wait until the status in the response is SUCCEEDED before you continue to the next, optional

step.
{
"upload": {
"status": "SUCCEEDED",
"name": "MyTests.zip",
"created": 1535738627.195,
"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/

ExampleURL",

Create a test run (AWS CLI) API Version 2015-06-23 38

AWS Device Farm Developer Guide

"type": "APPIUM_JAVA_TESTNG_TEST_PACKAGE",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e@1a8c7-
c861-4c@a-bld5-12345EXAMPLE",

"metadata": "{"valid": truel}"

Step 5: (Optional) Upload your custom test spec
If you're running your tests in a standard test environment, skip this step.

Device Farm maintains a default test spec file for each supported test type. Next, you download
your default test spec and use it to create a custom test spec upload for running your tests in a
custom test environment. For more information, see Test environments.

1. To find the upload ARN for your default test spec, run list-uploads and specify your project
ARN.

aws devicefarm list-uploads --arn arn:MyProjectARN

The response contains an entry for each default test spec:

"uploads": [
{

"status": "SUCCEEDED",

"name": "Default TestSpec for Android Appium Java TestNG",

"created": 1529498177.474,

"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL",

"type": "APPIUM_JAVA_TESTNG_TEST_SPEC",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e01a8c7-
c861-4c@a-bld5-12345EXAMPLE"

}

2. Choose your default test spec from the list. Make a note of its upload ARN.

Create a test run (AWS CLI) API Version 2015-06-23 39

AWS Device Farm Developer Guide

3. To download your default test spec, run get-upload and specify the upload ARN.

Example:

aws devicefarm get-upload --arn arn:MyDefaultTestSpecARN

The response contains a presigned URL where you can download your default test spec.

4. This example uses curl to download the default test spec and save it as MyTestSpec.yml:

curl "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/ExampleURL" >
MyTestSpec.yml

5. You can edit the default test spec to meet your testing requirements, and then use your
modified test spec in future test runs. Skip this step to use the default test spec as-isin a
custom test environment.

6. To create an upload of your custom test spec, run create-upload, specifying your test spec
name, test spec type, and project ARN.

This example creates an upload for an Appium Java TestNG custom test spec:

aws devicefarm create-upload --name MyTestSpec.yml --type
APPIUM_JAVA_TESTNG_TEST_SPEC --project-arn arn:MyProjectARN

The response includes the test spec upload ARN and presigned URL:

"upload": {
"status": "INITIALIZED",
"category": "PRIVATE",
"name": "MyTestSpec.yml",
"created": 1535751101.221,
"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL",
"type": "APPIUM_JAVA_TESTNG_TEST_SPEC",
"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e@1a8c7-
c861-4cQa-bld5-12345EXAMPLE"
}

7. Make a note of the ARN for the test spec upload and the presigned URL.

Create a test run (AWS CLI) API Version 2015-06-23 40

AWS Device Farm Developer Guide

8. Upload your test spec file using the Amazon S3 presigned URL. This example uses curl to
upload an Appium JavaTestNG test spec:

curl -T MyTestSpec.yml "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL"

9. To check the status of your test spec upload, run get-upload and specify the upload ARN.

aws devicefarm get-upload --arn arn:MyTestSpecUploadARN

Wait until the status in the response is SUCCEEDED before you schedule your test run.

"upload": {

"status": "SUCCEEDED",

"name": "MyTestSpec.yml",

"created": 1535732625.964,

"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL",

"type": "APPIUM_JAVA_TESTNG_TEST_SPEC",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e01a8c7-
c861-4c@a-bld5-12345EXAMPLE",

"metadata": "{"valid": truel}"

To update your custom test spec, run update-upload, specifying the upload ARN for the test
spec. For more information, see update-upload.

Step 6: Schedule a test run

To schedule a test run with the AWS CLI, run schedule-run, specifying:

The project ARN from step 1.

The device pool ARN from step 2.

The app upload ARN from step 3.

The test package upload ARN from step 4.

Create a test run (AWS CLI) API Version 2015-06-23 41

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/update-upload.html

AWS Device Farm Developer Guide

If you are running tests in a custom test environment, you also need your test spec ARN from step
5.

To schedule a run in a standard test environment

e Run schedule-run, specifying your project ARN, device pool ARN, application upload ARN, and
test package information.

Example:

aws devicefarm schedule-run --project-arn arn:MyProjectARN --app-
arn arn:MyAppUploadARN --device-pool-arn arn:MyDevicePoolARN --name MyTestRun --
test type=APPIUM_JAVA_TESTNG, testPackageArn=arn:MyTestPackageARN

The response contains a run ARN that you can use to check the status of your test run.

"run": {
"status": "SCHEDULING",
"appUpload": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e@1a8c7-

c861-4c@a-bld5-12345appEXAMPLE",

"name": "MyTestRun",
"radios": {
"gps": true,
"wifi": true,
"nfc": true,

"bluetooth": true

3,

"created": 1535756712.946,

"totalJobs": 179,

"completedJobs": 0,

"platform": "ANDROID_APP",

"result": "PENDING",

"devicePoolArn": "arn:aws:devicefarm:us-
west-2:123456789101:devicepool:5e01a8c7-c861-4c@a-bld5-12345devicepoolEXAMPLE",

"jobTimeoutMinutes": 150,

"billingMethod": "METERED",

"type": "APPIUM_JAVA_TESTNG",

"testSpecArn": "arn:aws:devicefarm:us-west-2:123456789101:upload:5e01a8c7-
c861-4c@a-bld5-12345specEXAMPLE",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:run:5e01a8c7-c861-4c0a-
b1d5-12345runEXAMPLE",

Create a test run (AWS CLI) API Version 2015-06-23 42

AWS Device Farm Developer Guide

"counters": {

"skipped": O,
"warned": 0,
"failed": O,
"stopped": 0,
"passed": 0,
"errored": 0,
"total": 0

For more information, see schedule-run.

To schedule a run in a custom test environment

« The steps are the almost the same as those for the standard test environment, with an
additional testSpecAxrn attribute in the --test parameter.

Example:

aws devicefarm schedule-run --project-arn arn:MyProjectARN --app-

arn arn:MyAppUploadARN --device-pool-arn arn:MyDevicePoolARN --name MyTestRun --

test

testSpecArn=arn:MyTestSpecUploadARN, type=APPIUM_JAVA_TESTNG, testPackageArn=arn:MyTestPacka

To check the status of your test run

« Use the get-run command and specify the run ARN:

aws devicefarm get-run --arn arn:aws:devicefarm:us-
west-2:111122223333:run:5e@1a8c7-c861-4cPa-bld5-12345runEXAMPLE

For more information, see get-run. For information about using Device Farm with the AWS CLI, see
AWS CLI reference.

Create a test run (API)

The steps are the same as those described in the AWS CLI section. See Create a test run (AWS CLI).

Create a test run (API) API Version 2015-06-23 43

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/schedule-run.html
https://docs.aws.amazon.com/cli/latest/reference/devicefarm/get-run.html

AWS Device Farm Developer Guide

You need this information to call the ScheduleRun API:

A project ARN. See Create a project (APl) and CreateProject.

An application upload ARN. See CreateUpload.

A test package upload ARN. See CreateUpload.

A device pool ARN. See Create a device pool and CreateDevicePool.

(® Note

If you're running tests in a custom test environment, you also need your test spec upload
ARN. For more information, see Step 5: (Optional) Upload your custom test spec and
CreateUpload.

For information about using the Device Farm API, see Automating Device Farm.

Next steps

In the Device Farm console, the clock icon

@

changes to a result icon such as success

©

when the run is complete. A report for the run appears as soon as tests are complete. For more
information, see Reports in AWS Device Farm.

To use the report, follow the instructions in Working with test reports in Device Farm.

Set the execution timeout for test runs in AWS Device Farm

You can set a value for how long a test run should execute before you stop each device from
running a test. The default execution timeout is 150 minutes per device, but you can set a value as
low as 5 minutes. You can use the AWS Device Farm console, AWS CLI, or AWS Device Farm API to
set the execution timeout.

Next steps API Version 2015-06-23 44

https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ScheduleRun.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateProject.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateUpload.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateUpload.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateDevicePool.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateUpload.html

AWS Device Farm Developer Guide

/A Important

The execution timeout option should be set to the maximum duration for a test run, along
with some buffer. For example, if your tests take 20 minutes per device, you should choose
a timeout of 30 minutes per device.

If the execution exceeds your timeout, the execution on that device is forcibly stopped. Partial
results are available, if possible. You are billed for execution up to that point, if you're using the
metered billing option. For more information about pricing, see Device Farm Pricing.

You might want to use this feature if you know how long a test run is supposed to take to execute
on each device. When you specify an execution timeout for a test run, you can avoid the situation
where a test run is stuck for some reason and you are being billed for device minutes when no tests
are being executed. In other words, using the execution timeout feature lets you stop that run if it's
taking longer than expected.

You can set the execution timeout in two places, at the project level and the test run level.
Prerequisites

1. Complete the steps in Setting up.

2. Create a project in Device Farm. Follow the instructions in Create a project in AWS Device Farm,

and then return to this page.

Set the execution timeout for a project

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

3. If you already have a project, choose it from the list. Otherwise, choose New project, enter a
name for your project, then choose Submit.

4. Choose Project settings.
On the General tab, for Execution timeout, enter a value or use the slider bar.

6. Choose Save.

All the test runs in your project now use the execution timeout value that you specified, unless
you override the timeout value when you schedule a run.

Prerequisites API Version 2015-06-23 45

https://aws.amazon.com/device-farm/pricing/
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

Set the execution timeout for a test run

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

3. If you already have a project, choose it from the list. Otherwise, choose New project, enter a
name for your project, then choose Submit.

4. Choose Create a new run.

5. Follow the steps to choose an application, configure your test, select your devices, and specify
a device state.

6. On Review and start run, for Set execution timeout, enter a value or use the slider bar.

7. Choose Confirm and start run.

Simulate network connections and conditions for your AWS
Device Farm runs

You can use network shaping to simulate network connections and conditions while testing your
Android, iOS, FireOS, and web apps in Device Farm. For example, you can test your app in less than
perfect network conditions.

When you create a run using the default network settings, each device has a full, unhindered Wi-

Fi connection with internet connectivity. When you use network shaping, you can change the Wi-Fi
connection to specify a network profile like 3G or Lossy WiFi that controls throughput, delay, jitter,
and loss for both inbound and outbound traffic.

Topics

» Set up network shaping when scheduling a test run

» Create a network profile

« Change network conditions during your test

Set up network shaping when scheduling a test run

When you schedule a run, you can choose from any of the Device Farm-curated profiles, or you can
create and manage your own.

Set the execution timeout for a test run API Version 2015-06-23 46

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

1. From any Device Farm project, choose Create a new run.

If you don't have a project yet, see Create a project in AWS Device Farm.

Choose your application, and then choose Next.
Configure your test, and then choose Next.

Select your devices, and then choose Next.

Lok W

In the Location and network settings section, choose a network profile or choose Create
network profile to create your own.

Network profile
Select a pre-defined network profile or create a new one by clicking the button on the right.

Full = Create network profile

6. Choose Next.
7. Review and start your test run.
Create a network profile

When you create a test run, you can create a network profile.

1. Choose Create network profile.

Create a network profile API Version 2015-06-23 47

AWS Device Farm Developer Guide

Create network profile X

Name

MyNetworkProfile

Description - optional

Uplink bandwidth (bps)

Data throughput rate in bits per second as a number from 0 to 105487600.

4

104857600

Downlink bandwidth (bps)
Data throughput rate in bits per second as a number from 0 to 105487600.

104857600

4

Uplink delay (ms)
Delay time for all packets to destination in milliseconds as a number from 0 to 2000.

0

4

Downlink delay (ms)
Delay time for all packets to destination in milliseconds as a number from 0 to 2000.

0

4

Uplink jitter (ms)
Time variation in the delay of received packets in milliseconds as a number from O to 2000.

4

0

Downlink jitter (ms)
Time variation in the delay of received packets in milliseconds as a number from O to 2000.

4

0

Uplink loss (%)

Proportion of transmitted packets that fail to arrive from 0 to 100 percent.

4

0

Downlink loss (%)

Proportion of received packets that fail to arrive from 0 to 100 percent.

4

0

2. Enter a name and settings for your network profile.
3. Choose Create.

4. Finish creating your test run and start the run.

After you have created a network profile, you'll be able to see and manage it on the Project
settings page.

Create a network profile API Version 2015-06-23 48

AWS Device Farm Developer Guide

General Device pools Network profiles Uploads

Name Bandwidth (bps) Delay (ms) Jitter (ms) Loss (%) Description
4 104857600 % 1048576 aA0VO0 AQVvO0 4a0v0
4 104857600 ¥ 1048576 a0vO0 AQ0VvO0 4A0vO0
A 104857600 ¥ 1048576 a0vO0 AQVvO0 a0v0

Change network conditions during your test

You can call an API from your device host using a framework like Appium to simulate dynamic
network conditions such as reduced bandwidth during your test run. For more information, see
CreateNetworkProfile.

Stop a run in AWS Device Farm

You might want to stop a run after you have started it. For example, if you notice an issue while
your tests are running you might want to restart the run with an updated test script.

You can use the Device Farm console, AWS CLI, or API to stop a run.

Topics

« Stop a run (console)

« Stop a run (AWS CLI)

« Stop a run (API)

Stop a run (console)

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.
3. Choose the project where you have an active test run.

4. On the Automated tests page, choose the test run.

The pending or running icon should appear to the left of the device name.

Change network conditions during your test API Version 2015-06-23 49

https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateNetworkProfile.html
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

aws—devicefarm—sample—app.apk Scheduled at: Thu Jul 15 2021 19:03:03 GMT-0700 (Pacific Daylight Time)

No recent tests

W Passed W Failed [Errored Warned [l Stopped skipped

@ Your app is currently being tested. Results will appear here as tests complete.

0 out of 5 devices completed

Unique problems Screenshots Parsing result
Devices
Q 1 @
Status Device 0s Test Results Total Minutes
© Running Google Pixel 4 XL (Unlocked) 10 Passed: 0, errored: 0, failed: 0 00:00:00
© Running Samsung Galaxy 520 {Unlocked) 10 Passed: 0, errored: 0, failed: 0 00:00:00

5. Choose Stop run.

After a short time, an icon with a red circle with a minus inside it appears next to the device
name. When the run has been stopped, the icon color changes from red to black.

/A Important

If a test has already been run, Device Farm cannot stop it. If a test is in progress, Device
Farm stops the test. The total minutes for which you will be billed appears in the
Devices section. In addition, you will also be billed for the total minutes that Device
Farm takes to run the setup suite and the teardown suite. For more information, see
Device Farm Pricing.

The following image shows an example Devices section after a test run was successfully
stopped.

Stop a run (console) API Version 2015-06-23 50

http://aws.amazon.com/device-farm/faq/#pricing

AWS Device Farm

Developer Guide

Devices

Devices
Q

Status.

@ stopped
@ Stopped
@ Stopped
® Failed

© Stopped

Unique problems Screenshots Parsing result

Device

Google Pixel 4 XL (Unlocked)

Samsung_Galaxy 520 (Unlocked)

Samsung Galaxy 520 ULTRA (Unlocked)

Samsung Galaxy 59 (Unlocked)

Samsung Galaxy Tab 54

Test Results

Passed: 2, errored: 0, failed: 0

Passed: 2, errored: 0, failed: 0

Passed: 2, errored: 0, failed: 0

Passed: 2, errored: 0, failed: 1

Passed: 2, errored: 0, failed: 0

Total Minutes

00:01:37

00:02:04

00:01:57

00:01:36

00:01:31

Stop a run (AWS CLI)

You can run the following command to stop the specified test run, where myARN is the Amazon

Resource Name (ARN) of the test run.

$ aws devicefarm stop-run --arn myARN

You should see output similar to the following:

run": {

"status": "STOPPING",
"name": "Name of your run",
"created": 1458329687.951,
"totallobs": 7,
"completedlJobs": 5,
"deviceMinutes": {

"unmetered": 0.0,

"total": 0.0,

"metered": 0.0
.
"platform": "ANDROID_APP",
"result": "PENDING",
"billingMethod": "METERED",
"type": "BUILTIN_EXPLORER",
"arn": "myARN",
"counters": {

"skipped": 0,

"warned": 0,

"failed": O,

"stopped": O,

"passed": 0,

Stop a run (AWS CLI)

API Version 2015-06-23 51

AWS Device Farm

Developer Guide

"errored": 0,
"total": 0

To get the ARN of your run, use the 1ist-runs command. The output should be similar to the

following:

"runs": [

"status": "RUNNING",
"name": "Name of your run",
"created": 1458329687.951,
"totallobs": 7,
"completedJobs": 5,
"deviceMinutes": {

"unmetered": 0.0,

"total": 0.0,

"metered": 0.0
1,
"platform": "ANDROID_APP",
"result": "PENDING",
"billingMethod": "METERED",
"type": "BUILTIN_EXPLORER",
"arn": "Your ARN will be here",
"counters": {

"skipped": O,

"warned": 0,

"failed": O,

"stopped": 0,

"passed": 0,

"errored": 0,

"total": 0

For information about using Device Farm with the AWS CLI, see AWS CLI reference.

Stop a run (AWS CLI)

API Version 2015-06-23 52

AWS Device Farm Developer Guide

Stop a run (API)

« Call the StopRun operation to the test run.

For information about using the Device Farm API, see Automating Device Farm.

View a list of runs in AWS Device Farm

You can use the Device Farm console, AWS CLI, or API to view a list of runs for a project.

Topics

e View a list of runs (console)

» View a list of runs (AWS CLI)

» View a list of runs (API)

View a list of runs (console)

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

3. In the list of projects, choose the project that corresponds to the list you want to view.

® Tip

You can use the search bar to filter the project list by name.

View a list of runs (AWS CLI)
e Run the list-runs command.

To view information about a single run, run the get-run command.

For information about using Device Farm with the AWS CLI, see AWS CLI reference.

Stop a run (API) API Version 2015-06-23 53

../../latest/APIReference/API_StopRun.html
https://console.aws.amazon.com/devicefarm
https://docs.aws.amazon.com/cli/latest/reference/devicefarm/list-runs.html
https://docs.aws.amazon.com/cli/latest/reference/devicefarm/get-run.html

AWS Device Farm Developer Guide

View a list of runs (API)

. Call the ListRuns API.

To view information about a single run, call the GetRun API.

For information about the Device Farm API, see Automating Device Farm.

Create a device pool in AWS Device Farm

You can use the Device Farm console, AWS CLI, or API to create a device pool.

Topics

Prerequisites

Create a device pool (console)

Create a device pool (AWS CLI)

Create a device pool (API)

Prerequisites

. Create a run in the Device Farm console. Follow the instructions in Create a test run in Device

Farm. When you get to the Select devices page, continue with the instructions in this section.

Create a device pool (console)

1. On the Select devices page, choose Create device pool.
For Name, enter a name that makes this device pool easy to identify.

For Description, enter a description that makes this device pool easy to identify.

P WD

If you want to use one or more selection criteria for the devices in this device pool, do the
following:

a. Choose Create dynamic device pool.
b. Choose Add a rule.

c. For Field (first drop-down list), choose one of the following:

View a list of runs (API) API Version 2015-06-23 54

https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ListRuns.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_GetRun.html

AWS Device Farm Developer Guide

» To include devices by their manufacturer name, choose Device Manufacturer.
« Toinclude devices by their type value, choose Form Factor.

d. For Operator (second drop-down list), choose EQUALS to include devices where the Field
value equals the Value value.

e. For Value (third drop-down list), enter or choose the value you want to specify for the
Field and Operator values. If you choose Platform for Field, the only available selections
are ANDROID and 10S. Similarly, if you choose Form Factor for Field, the only available
selections are PHONE and TABLET.

f. To add another rule, choose Add a rule.

g. To delete a rule, choose the X icon next to the rule.

After you create the first rule, in the list of devices, the box next to each device that matches
the rule is selected. After you create or change rules, in the list of devices, the box next to each
device that matches those combined rules is selected. Devices with selected boxes are included
in the device pool. Devices with cleared boxes are excluded.

5. If you want to manually include or exclude individual devices, do the following:

a. Choose Create static device pool.

b. Select or clear the box next to each device. You can select or clear the boxes only if you do
not have any rules specified.

6. If you want to include or exclude all displayed devices, select or clear the box in the column
header row of the list.

/A Important

Although you can use the boxes in the column header row to change the list of
displayed devices, this does not mean that the remaining displayed devices are the
only ones included or excluded. To confirm which devices are included or excluded,
be sure to clear the contents of all of the boxes in the column header row, and then
browse the boxes.

7. Choose Create.

Create a device pool (console) API Version 2015-06-23 55

AWS Device Farm Developer Guide

Create a device pool (AWS CLI)

e Run the create-device-pool command.

For information about using Device Farm with the AWS CLI, see AWS CLI reference.

Create a device pool (API)

. Call the CreateDevicePool API.

For information about using the Device Farm API, see Automating Device Farm.

Analyzing results in AWS Device Farm

In the standard test environment, you can use the Device Farm console to view reports for each
test in your test run.

Device Farm also gathers other artifacts such as files, logs, and images that you can download
when your test run is complete.

Topics

» Working with test reports in Device Farm

» Working with artifacts in Device Farm

Working with test reports in Device Farm

Use the Device Farm console to view your test reports. For more information, see Reports in AWS

Device Farm.

Topics

« Prerequisites

» Understanding test results

» Viewing reports

Create a device pool (AWS CLI) API Version 2015-06-23 56

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/create-device-pool.html
https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_CreateDevicePool.html

AWS Device Farm Developer Guide

Prerequisites

Set up a test run and verify that it is complete.

1. To create a run, see Create a test run in Device Farm, and then return to this page.

2. Verify that the run is complete. During your test run, the Device Farm console displays a
pending icon

@

for runs that are in progress. Each device in the run will also start with the pending icon, then
switch to the running

©

icon when the test begins. As each test finishes, a test result icon is displayed next to the
device name. When all tests have been completed, the pending icon next to the run changes to
a test result icon. For more information, see Understanding test results.

Understanding test results

The Device Farm console displays icons that help you quickly assess the state of your completed
test run.

Topics

» Reporting results for an individual test

» Reporting results for multiple tests

Reporting results for an individual test

For reports that describe an individual test, Device Farm displays an icon:
Description Icon
The test succeeded.

The test failed.

Device Farm skipped the test. ®

Working with test reports API Version 2015-06-23 57

AWS Device Farm Developer Guide

Description Icon

The test stopped. ©)
Device Farm returned a warning.

Device Farm returned an error.

Reporting results for multiple tests

If you choose a finished run, Device Farm displays a test results summary graph.

Stopped
4 tests, 27%

1 tests, 7% I

Failed
Passed
10 tests, 67%

@ Passed [Failed [Errored @ Warned [Stopped [Skipped

For example, this test run results graph shows that the run had 4 stopped tests, 1 failed test, and
10 successful tests.

Graphs are always color coded and labeled.
Viewing reports
You can view the results of your test in the Device Farm console.

Topics

» View the test run summary page

« View unique problem reports

Working with test reports API Version 2015-06-23 58

AWS Device Farm Developer Guide

View device reports

View test suite reports

View test reports

View performance data for a problem, device, suite, or test in a report

View log information for a problem, device, suite, or test in a report

View the test run summary page

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. In the navigation pane, choose Mobile Device Testing, and then choose Projects.

3. In the list of projects, choose the project for the run.

® Tip

To filter the project list by name, use the search bar.

4. Choose a completed run to view its summary report page.

5. The test run summary page displays an overview of your test results.

« The Unique problems section lists unique warnings and failures. To view unique problemes,
follow the instructions in View unique problem reports.

« The Devices section displays the total number of tests, by outcome, for each device.

Devices Unique problems Screenshots Parsing result
Devices
Q 1 &
Status ¢ Device v 0os ¢ Test Results v Total Minutes «
) Passed Google Pixel 4 XL (Unlocked) 10 Passed: 3, errored: 0, failed: 0 00:02:36
@ Passed Samsung Galaxy 520 (Unlocked) 10 Passed: 3, errored: 0, failed: 0 00:02:34
® Failed Samsung Galaxy 520 ULTRA (Unlocked) 10 Passed: 2, errored: 0, failed: 1 00:02:25
) Passed Samsung Galaxy 59 (Unlocked) 9 Passed: 3, errored: 0, failed: O 00:02:46
@ Passed Samsung Galaxy Tab S4 8.1.0 Passed: 3, errored: 0, failed: 0 00:03:13

Working with test reports API Version 2015-06-23 59

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

In this example, there are several devices. In the first table entry, the Google Pixel 4 XL
device running Android version 10 reports three successful tests that took 02:36 minutes to
run.

To view the results by device, follow the instructions in View device reports.

« The Screenshots section displays a list of any screenshots that Device Farm captured during
the run, grouped by device.

« In the Parsing result section, you can download the parsing result.

View unique problem reports

1.
2.

In Unique problems, choose the problem that you want to view.

Choose the device. The report displays information about the problem.
The Video section displays a downloadable video recording of the test.

The Result section displays the result of the test. The status is represented as a result icon. For
more information, see Reporting results for an individual test.

The Logs section displays any information that Device Farm logged during the test. To view
this information, follow the instructions in View log information for a problem, device, suite, or

test in a report.

The Performance tab displays information about any performance data that Device Farm
generated during the test. To view this performance data, follow the instructions in View
performance data for a problem, device, suite, or test in a report.

The Files tab displays a list of any of the test's associated files (such as log files) that you can
download. To download a file, choose the file's link in the list.

The Screenshots tab displays a list of any screenshots that Device Farm captured during the
test.

View device reports

In the Devices section, choose the device.

The Video section displays a downloadable video recording of the test.

Working with test reports API Version 2015-06-23 60

AWS Device Farm Developer Guide

The Suites section displays a table containing information about the suites for the device.

In this table, the Test results column summarizes the number of tests by outcome for each of
the test suites that have run on the device. This data also has a graphical component. For more
information, see Reporting results for multiple tests.

To view the full results by suite, follow the instructions in View test suite reports.

The Logs section displays any information that Device Farm logged for the device during the
run. To view this information, follow the instructions in View log information for a problem,

device, suite, or test in a report.

The Performance section displays information about any performance data that Device Farm
generated for the device during the run. To view this performance data, follow the instructions
in View performance data for a problem, device, suite, or test in a report.

The Files section displays a list of suites for the device and any associated files (such as log
files) that you can download. To download a file, choose the file's link in the list.

The Screenshots section displays a list of any screenshots that Device Farm captured during
the run for the device, grouped by suite.

View test suite reports

1.
2.

In the Devices section, choose the device.

In the Suites section, choose the suite from the table.
The Video section displays a downloadable video recording of the test.
The Tests section displays a table containing information about the tests in the suite.

In the table, the Test results column displays the result. This data also has a graphical
component. For more information, see Reporting results for multiple tests.

To view the full results by test, follow the instructions in View test reports.

The Logs section displays any information that Device Farm logged during the run for the
suite. To view this information, follow the instructions in View log information for a problem,

device, suite, or test in a report.

Working with test reports API Version 2015-06-23 61

AWS Device Farm Developer Guide

The Performance section displays information about any performance data that Device Farm
generated during the run for the suite. To view this performance data, follow the instructions
in View performance data for a problem, device, suite, or test in a report.

The Files section displays a list of tests for the suite and any associated files (such as log files)
that you can download. To download a file, choose the file's link in the list.

The Screenshots section displays a list of any screenshots that Device Farm captured during
the run for the suite, grouped by test.

View test reports

P WD

In the Devices section, choose the device.
In the Suites section, choose the suite.
In the Tests section, choose the test.

The Video section displays a downloadable video recording of the test.

The Result section displays the result of the test. The status is represented as a result icon. For
more information, see Reporting results for an individual test.

The Logs section displays any information that Device Farm logged during the test. To view
this information, follow the instructions in View log information for a problem, device, suite, or

test in a report.

The Performance tab displays information about any performance data that Device Farm
generated during the test. To view this performance data, follow the instructions in View
performance data for a problem, device, suite, or test in a report.

The Files tab displays a list of any of the test's associated files (such as log files) that you can
download. To download a file, choose the file's link in the list.

The Screenshots tab displays a list of any screenshots that Device Farm captured during the
test.

Working with test reports API Version 2015-06-23 62

AWS Device Farm Developer Guide

View performance data for a problem, device, suite, or test in a report

(® Note

Device Farm collects device performance data only for Android devices at this time.

The Performance tab displays the following information:

« The CPU graph displays the percentage of CPU that the app used on a single core during the
selected problem, device, suite, or test (along the vertical axis) over time (along the horizontal
axis).

The vertical axis is expressed in percentages, from 0% to the maximum recorded percentage.

This percentage might exceed 100% if the app used more than one core. For example, if three
cores are at 60% usage, this percentage is displayed as 180%.

« The Memory graph displays the number of MB that the app used during the selected problem,
device, suite, or test (along the vertical axis) over time (along the horizontal axis).

The vertical axis is expressed in MB, from 0 MB to the maximum number of recorded MB.

» The Threads graph displays the number of threads used during the selected problem, device,
suite, or test (along the vertical axis) over time (along the horizontal axis).

The vertical axis is expressed in number of threads, from zero threads to the maximum number
of recorded threads.

In all cases, the horizontal axis is represented, in seconds, from the start and end of the run for the
selected problem, device, suite, or test.

To display information for a specific data point, pause in the desired graph at the desired second
along the horizontal axis.

View log information for a problem, device, suite, or test in a report

The Logs section displays the following information:

» Source represents the source of a log entry. Possible values include:

« Harness represents a log entry that Device Farm created. These log entries are typically
created during start and stop events.

Working with test reports API Version 2015-06-23 63

AWS Device Farm Developer Guide

» Device represents a log entry that the device created. For Android, these log entries are logcat-
compatible. For iOS, these log entries are syslog-compatible.

» Test represents a log entry that either a test or its test framework created.

« Time represents the elapsed time between the first log entry and this log entry. The time is
expressed in MM:SS.SSS format, where M represents minutes and S represents seconds.

» PID represents the process identifier (PID) that created the log entry. All log entries created by an
app on a device have the same PID.

» Level represents the logging level for the log entry. For example, Logger.debug("This is a
message!") logs a Level of Debug. These are the possible values:

o Alert

e Critical
» Debug
 Emergency
e Error

« Errored
« Failed

« Info

« Internal
» Notice
» Passed
» Skipped
« Stopped
« Verbose
« Warned
« Warning

» Tag represents arbitrary metadata for the log entry. For example, Android logcat can use this to
describe which part of the system created the log entry (for example, ActivityManager).

» Message represents the message or data for the log entry. For example,
Logger.debug("Hello, World!") logs a Message of "Hello, World!".

WerigHS RkaYeQ)b & POrtion or the intormation: API Version 2015-06-23 64

AWS Device Farm Developer Guide

» To show all log entries that match a value for a specific column, enter the value into the search
bar. For example, to show all log entries with a Source value of Harness, enter Harness in the
search bar.

« To remove all of the characters from a column header box, choose the X in that column header
box. Removing all of the characters from a column header box is the same as entering * in that
column header box.

To download all of the log information for the device, including all of the suites and tests that you
ran, choose Download logs.

Working with artifacts in Device Farm

g L
Project 4 Run 1 Iob
o
(device) Test
suite
Test
AWS Coud

Device Farm gathers artifacts such as reports, log files, and images for each test in the run.
You can download artifacts created during your test run:
Files

Files generated during the test run including Device Farm reports. For more information, see
Working with test reports in Device Farm.

Logs

Output from each test in the test run.

Screenshots

Screen images recorded for each test in the test run.

Using artifacts (console)

1. On the test run report page, from Devices, choose a mobile device.

Working with artifacts API Version 2015-06-23 65

AWS Device Farm Developer Guide

2. To download a file, choose one from Files.
3. To download the logs from your test run, from Logs, choose Download logs.

4. To download a screenshot, choose a screenshot from Screenshots.

For more information about downloading artifacts in a custom test environment, see Using
artifacts in a custom test environment.

Using artifacts (AWS CLI)
You can use the AWS CLI to list your test run artifacts.

Topics

« Step 1: Get your Amazon Resource Names (ARN)

» Step 2: List your artifacts

» Step 3: Download your artifacts

Step 1: Get your Amazon Resource Names (ARN)
You can list your artifacts by run, job, test suite, or test. You need the corresponding ARN. This
table shows the input ARN for each of the AWS CLI list commands:

AWS CLI List Command Required ARN

list-projects This command returns all projects and does
not require an ARN.

list-runs project
list-jobs Tun
list-suites job
list-tests suite

For example, to find a test ARN, run list-tests using your test suite ARN as an input parameter.

Example:

Working with artifacts API Version 2015-06-23 66

AWS Device Farm Developer Guide

aws devicefarm list-tests --arn arn:MyTestSuiteARN

The response includes a test ARN for each test in the test suite.

"tests": [
{
"status": "COMPLETED",
"name": "Tests.FixturesTest.testExample",
"created": 1537563725.116,
"deviceMinutes": {
"unmetered": 0.0,
"total": 1.89,
"metered": 1.89

b
"result": "PASSED",
"message": "testExample passed",

"arn": "arn:aws:devicefarm:us-west-2:123456789101:test:5e01a8c7-c861-4c0a-
bld5-12345EXAMPLE",
"counters": {
"skipped": O,
"warned": 0,
"failed": O,
"stopped": 0,
"passed": 1,
"errored": 0,
"total": 1

Step 2: List your artifacts

The AWS CLI list-artifacts command returns a list of artifacts, such as files, screenshots, and logs.
Each artifact has a URL so you can download the file.

o Call list-artifacts specifying a run, job, test suite, or test ARN. Specify a type of FILE, LOG, or
SCREENSHOT.

This example returns a download URL for each artifact available for an individual test:

Working with artifacts API Version 2015-06-23 67

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/list-artifacts.html

AWS Device Farm Developer Guide

aws devicefarm list-artifacts --arn arn:MyTestARN --type "FILE"

The response contains a download URL for each artifact.

{
"artifacts": [
{
"url": "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/
ExampleURL",
"extension": "txt",
"type": "APPIUM_JAVA_OUTPUT",
"name": "Appium Java Output",

arn": "arn:aws:devicefarm:us-west-2:123456789101:artifact:5e01a8c7-
c861-4c@a-b1d5-12345EXAMPLE",

}

Step 3: Download your artifacts

« Download your artifact using the URL from the previous step. This example uses curl to
download an Android Appium Java output file:

curl "https://prod-us-west-2-uploads.s3-us-west-2.amazonaws.com/ExampleURL"
> MyArtifactName. txt

Using artifacts (API)

The Device Farm API ListArtifacts method returns a list of artifacts, such as files, screenshots, and
logs. Each artifact has a URL so you can download the file.

Working with artifacts API Version 2015-06-23 68

https://docs.aws.amazon.com/devicefarm/latest/APIReference/API_ListArtifacts.html

AWS Device Farm Developer Guide

Using artifacts in a custom test environment

e -
Project — Run 1 ob
o
(device) Test
suite
Test
AWS Cloud

In a custom test environment, Device Farm gathers artifacts such as custom reports, log files, and
images. These artifacts are available for each device in the test run.

You can download these artifacts created during your test run:
Test spec output

The output from running the commands in the test spec YAML file.

Customer artifacts

A zipped file that contains the artifacts from the test run. It is configured in the artifacts:
section of your test spec YAML file.

Test spec shell script

An intermediate shell script file created from your YAML file. Because it is used in the test run,
the shell script file can be used for debugging the YAML file.

Test spec file

The YAML file used in the test run.

For more information, see Working with artifacts in Device Farm.

Working with artifacts API Version 2015-06-23 69

AWS Device Farm Developer Guide

Tagging AWS Device Farm resources

AWS Device Farm works with the AWS Resource Groups Tagging API. This API allows you to manage
resources in your AWS account with tags. You can add tags to resources, such as projects and test
runs.

You can use tags to:

« Organize your AWS bill to reflect your own cost structure. To do this, sign up to get your AWS
account bill with tag key values included. Then, to see the cost of combined resources, organize
your billing information according to resources with the same tag key values. For example, you
can tag several resources with an application name, and then organize your billing information
to see the total cost of that application across several services. For more information, see Cost
Allocation and Tagging in About AWS Billing and Cost Management.

» Control access through IAM policies. To do so, create a policy that allows access to a resource or
set of resources using a tag value condition.

« ldentify and manage runs that have certain properties as tags, such as the branch used for
testing.

For more information about tagging resources, see the Tagging Best Practices whitepaper.

Topics

« Tagging resources

« Looking up resources by tag

« Removing tags from resources

Tagging resources

The AWS Resource Group Tagging API allows you to add, remove, or modify tags on resources. For
more information, see the AWS Resource Group Tagging API Reference.

To tag a resource, use the TagResources operation from the resourcegroupstaggingapi

endpoint. This operation takes a list of ARNs from supported services and a list of key-value pairs.
The value is optional. An empty string indicates that there should be no value for that tag. For
example, the following Python example tags a series of project ARNs with the tag build-config
with the value release:

Tagging resources API Version 2015-06-23 70

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/API_TagResources.html

AWS Device Farm Developer Guide

import boto3
client = boto3.client('resourcegroupstaggingapi')

client.tag_resources(ResourceARNList=["arn:aws:devicefarm:us-
west-2:111122223333:project:123e4567-e89b-12d3-a456-426655440000",
"arn:aws:devicefarm:us-
west-2:111122223333:project:123e4567-e89b-12d3-a456-426655441111",
"arn:aws:devicefarm:us-
west-2:111122223333:project:123e4567-e89b-12d3-a456-426655442222"]
Tags={"build-config":"release", "git-commit":"8fe28cb"})

A tag value is not required. To set a tag with no value, use an empty string (" ") when specifying
a value. A tag can only have one value. Any previous value a tag has for a resource will be
overwritten with the new value.

Looking up resources by tag

To look up resources by their tags, use the GetResources operation from the
resourcegrouptaggingapi endpoint. This operation takes a series of filters, none of which
are required, and returns the resources that match the given criteria. With no filters, all tagged
resources are returned. The GetResources operation allows you to filter resources based on

» Tag value

» Resource type (for example, devicefarm: run)

For more information, see the AWS Resource Group Tagging API Reference.

The following example looks up Device Farm desktop browser testing sessions
(devicefarm:testgrid-session resources) with the tag stack that have the value
production:

import boto3
client = boto3.client('resourcegroupstaggingapi')
sessions = client.get_resources(ResourceTypeFilters=['devicefarm:testgrid-session'],
TagFilters=[
{"Key":"stack","Values":["production"]}
ip)

Looking up resources by tag API Version 2015-06-23 71

https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/Welcome.html

AWS Device Farm Developer Guide

Removing tags from resources

To remove a tag, use the UntagResources operation, specifying a list of resources and the tags to
remove:

import boto3

client = boto3.client('resourcegroupstaggingapi')
client.UntagResources(ResourceARNList=["arn:aws:devicefarm:us-
west-2:111122223333:project:123e4567-e89b-12d3-a456-426655440000"], TagKeys=["RunCI"])

Removing tags from resources API Version 2015-06-23 72

AWS Device Farm Developer Guide

Working with test types in AWS Device Farm

This section describes Device Farm support for testing frameworks and built-in test types.

Testing frameworks

Device Farm supports these mobile automation testing frameworks:

Android application testing frameworks

» Working with Appium and AWS Device Farm

« Working with instrumentation for Android and AWS Device Farm

iOS application testing frameworks

» Working with Appium and AWS Device Farm

» Working with XCTest for iOS and AWS Device Farm

o XCTest Ul

Web application testing frameworks

Web applications are supported using Appium. For more information on bringing your tests to
Appium, see Working with Appium and AWS Device Farm.

Frameworks in a custom test environment

Device Farm does not provide support for customizing the test environment for the XCTest
framework. For more information, see Working with custom test environments.

Appium version support

For tests running in a custom environment, Device Farm supports Appium version 1. For more
information, see Test environments.

Testing frameworks API Version 2015-06-23 73

AWS Device Farm Developer Guide

Built-in test types

With built-in tests, you can test your application on multiple devices without having to write and
maintain test automation scripts. Device Farm offers one built-in test type:

e Built-in: fuzz (Android and iOS)

Working with Appium and AWS Device Farm

This section describes how to configure, package, and upload your Appium tests to Device Farm.
Appium is an open source tool for automating native and mobile web applications. For more
information, see Introduction to Appium on the Appium website.

For a sample app and links to working tests, see Device Farm Sample App for Android and Device
Farm Sample App for iOS on GitHub.

Version support

Support for various frameworks and programming languages depends on the language used.

Device Farm supports all Appium 1.x and 2.x server versions. For Android, you can choose any
major Appium version with devicefarm-cli. For example, to use Appium server version 2, add
these commands to your test spec YAML file:

phases:
install:
commands:
To install a newer version of Appium such as version 2:
- export APPIUM_VERSION=2
- devicefarm-cli use appium $APPIUM_VERSION

For iOS, you can choose specific Appium versions with the avm or npm commands. For example, to
use the avm command to set the Appium server version to 2.1.2, add these commands to your test
spec YAML file:

phases:
install:
commands:
To install a newer version of Appium such as version 2.1.2:

Built-in test types API Version 2015-06-23 74

http://appium.io/docs/en/about-appium/intro/
https://github.com/aws-samples/aws-device-farm-sample-app-for-android
https://github.com/aws-samples/aws-device-farm-sample-app-for-ios
https://github.com/aws-samples/aws-device-farm-sample-app-for-ios

AWS Device Farm Developer Guide

- export APPIUM_VERSION=2.1.2
- avm $APPIUM_VERSION

Using the npm command to use the latest version of Appium 2, add these commands to your test
spec YAML file:

phases:
install:
commands:
- export APPIUM_VERSION=2
- npm install -g appium@$APPIUM_VERSION

For more information about devicefarm-cli or any other CLI commands, see the AWS CLI
reference.

To use all the features of the framework, like annotations, choose a custom test environment, and
use the AWS CLI or the Device Farm console to upload a custom test spec.

Topics

Configure your Appium test package

Create a zipped test package file

Upload your test package to Device Farm

Take screenshots of your tests (Optional)

Configure your Appium test package

Use the following instructions to configure your test package.
Java (JUnit)

1. Modify pom. xml to set packaging to a JAR file:

<groupId>com.acme</groupId>
<artifactId>acme-myApp-appium</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

2. Modify pom. xml to use maven-jar-plugin to build your tests into a JAR file.

Configure your Appium test package API Version 2015-06-23 75

https://docs.aws.amazon.com/cli/latest/reference/devicefarm/
https://docs.aws.amazon.com/cli/latest/reference/devicefarm/

AWS Device Farm Developer Guide

The following plugin builds your test source code (anything in the src/test directory)
into a JAR file:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.6</version>
<executions>
<execution>
<goals>
<goal>test-jar</goal>
</goals>
</execution>
</executions>
</plugin>

3. Modify pom.xml to use maven-dependency-plugin to build dependencies as JAR files.

The following plugin copies your dependencies into the dependency-jars directory:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>2.10</version>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/dependency-jars/</
outputDirectory>
</configuration>
</execution>
</executions>
</plugin>

4. Save the following XML assembly to src/main/assembly/zip.xml.

Configure your Appium test package API Version 2015-06-23 76

AWS Device Farm Developer Guide

The following XML is an assembly definition that, when configured, instructs Maven to
build a .zip file that contains everything in the root of your build output directory and the
dependency-jars directory:

<assembly
xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
<id>zip</id>
<formats>
<format>zip</format>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<fileSets>
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>*.jar</include>
</includes>
</fileSet>
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>/dependency-jars/</include>
</includes>
</fileSet>
</fileSets>
</assembly>

5. Modify pom. xml to use maven-assembly-plugin to package tests and all dependencies
into a single .zip file.

The following plugin uses the preceding assembly to create a .zip file named zip-with-
dependencies in the build output directory every time mvn package is run:

<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.5.4</version>
<executions>

Configure your Appium test package API Version 2015-06-23 77

AWS Device Farm Developer Guide

<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
<configuration>
<finalName>zip-with-dependencies</finalName>
<appendAssemblyId>false</appendAssemblyId>
<descriptors>
<descriptor>src/main/assembly/zip.xml</descriptor>
</descriptors>
</configuration>
</execution>
</executions>
</plugin>

(@ Note
If you receive an error that says annotation is not supported in 1.3, add the following to
pom. xml:

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>

Java (TestNG)

1. Modify pom. xml to set packaging to a JAR file:

<groupId>com.acme</groupId>
<artifactId>acme-myApp-appium</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

2. Modify pom.xml to use maven-jar-plugin to build your tests into a JAR file.

Configure your Appium test package API Version 2015-06-23 78

AWS Device Farm Developer Guide

The following plugin builds your test source code (anything in the src/test directory)
into a JAR file:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.6</version>
<executions>
<execution>
<goals>
<goal>test-jar</goal>
</goals>
</execution>
</executions>
</plugin>

3. Modify pom.xml to use maven-dependency-plugin to build dependencies as JAR files.

The following plugin copies your dependencies into the dependency-jars directory:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>2.10</version>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/dependency-jars/</
outputDirectory>
</configuration>
</execution>
</executions>
</plugin>

4. Save the following XML assembly to src/main/assembly/zip.xml.

Configure your Appium test package API Version 2015-06-23 79

AWS Device Farm Developer Guide

The following XML is an assembly definition that, when configured, instructs Maven to
build a .zip file that contains everything in the root of your build output directory and the
dependency-jars directory:

<assembly
xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
<id>zip</id>
<formats>
<format>zip</format>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<fileSets>
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>*.jar</include>
</includes>
</fileSet>
<fileSet>
<directory>${project.build.directory}</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>/dependency-jars/</include>
</includes>
</fileSet>
</fileSets>
</assembly>

5. Modify pom. xml to use maven-assembly-plugin to package tests and all dependencies
into a single .zip file.

The following plugin uses the preceding assembly to create a .zip file named zip-with-
dependencies in the build output directory every time mvn package is run:

<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.5.4</version>
<executions>

Configure your Appium test package API Version 2015-06-23 80

AWS Device Farm Developer Guide

<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
<configuration>
<finalName>zip-with-dependencies</finalName>
<appendAssemblyId>false</appendAssemblyId>
<descriptors>
<descriptor>src/main/assembly/zip.xml</descriptor>
</descriptors>
</configuration>
</execution>
</executions>
</plugin>

(@ Note

If you receive an error that says annotation is not supported in 1.3, add the following to
pom. xml:

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>

Node.JS

To package your Appium Node.js tests and upload them to Device Farm, you must install the
following on your local machine:

» Node Version Manager (nvm)

Use this tool when you develop and package your tests so that unnecessary dependencies are
not included in your test package.

» Node.js

Configure your Appium test package API Version 2015-06-23 81

https://github.com/nvm-sh/nvm

AWS Device Farm Developer Guide

« npm-bundle (installed globally)

1. Verify that nvm is present
command -v nvm

You should see nvm as output.

For more information, see nvm on GitHub.

2. Run this command to install Node.js:

nvm install node

You can specify a particular version of Node.js:

nvm install 11.4.0

3. Verify that the correct version of Node is in use:

node -v

4. Install npm-bundle globally:

npm install -g npm-bundle

Python

1. We strongly recommend that you set up Python virtualenv for developing and packaging

tests so that unnecessary dependencies are not included in your app package.

$ virtualenv workspace
$ cd workspace
$ source bin/activate

Configure your Appium test package API Version 2015-06-23 82

https://github.com/nvm-sh/nvm
https://pypi.python.org/pypi/virtualenv

AWS Device Farm Developer Guide

® Tip

» Do not create a Python virtualenv with the --system-site-packages option,
because it inherits packages from your global site-packages directory. This can
result in including dependencies in your virtual environment that are not required
by your tests.

» You should also verify that your tests do not use dependencies that are
dependent on native libraries, because these native libraries might not be present
on the instance where these tests run.

2. Install py.test in your virtual environment.

$ pip install pytest

3. Install the Appium Python client in your virtual environment.

$ pip install Appium-Python-Client

4. Unless you specify a different path in custom mode, Device Farm expects your tests to be
stored in tests/. You can use find to show all files inside a folder:

$ find tests/

Confirm that these files contain test suites you wand to run on Device Farm

tests/
tests/my-first-tests.py
tests/my-second-tests/py

5. Run this command from your virtual environment workspace folder to show a list of your
tests without running them.

$ py.test --collect-only tests/

Confirm the output shows the tests that you want to run on Device Farm.

6. Clean all cached files under your tests/ folder:

Configure your Appium test package API Version 2015-06-23 83

AWS Device Farm Developer Guide

$ find . -name '__pycache_ ' -type d -exec rm -r {} +
$ find . -name '*.pyc' -exec rm -f {} +

$ find . -name '*.pyo' -exec rm -f {} +

$ find . -name '*~' -exec rm -f {} +

7. Run the following command in your workspace to generate the requirements.txt file:

$ pip freeze > requirements.txt

Ruby

To package your Appium Ruby tests and upload them to Device Farm, you must install the
following on your local machine:

Ruby Version Manager (RVM)

Use this command-line tool when you develop and package your tests so that unnecessary
dependencies are not included in your test package.

Ruby

Bundler (This gem is typically installed with Ruby.)

1. Install the required keys, RVM, and Ruby. For instructions, see Installing RVM on the RVM
website.

After the installation is complete, reload your terminal by signing out and then signing in
again.

(® Note
RVM is loaded as a function for the bash shell only.

2. Verify that rvm is installed correctly

command -v rvm

You should see rvm as output.

3. If you want to install a specific version of Ruby, such as 2. 5. 3, run the following command:

Configure your Appium test package API Version 2015-06-23 84

https://rvm.io/rvm/install
https://rvm.io/rvm/install

AWS Device Farm Developer Guide

rvm install ruby 2.5.3 --autolibs=0

Verify that you are on the requested version of Ruby:

ruby -v

4. Configure the bundler to compile packages for your desired testing platforms:

bundle config specific_platform true
5. Update your .lock file to add the platforms needed to run tests.

« If you're compiling tests to run on Android devices, then run this command to configure
the Gemfile to use dependencies for the Android test host:

bundle lock --add-platform x86_64-1inux

« If you're compiling tests to run on iOS devices, then run this command to configure the
Gemfile to use dependencies for the iOS test host:

bundle lock --add-platform x86_64-darwin

6. The bundler gem is usually installed by default. If it is not, install it:

gem install bundler -v 2.3.26

Create a zipped test package file

/A Warning

In Device Farm, the folder structure of files in your zipped test package matters, and some
archival tools will change the structure of your ZIP file implicitly. We recommend that you
follow the specified command-line utilities below rather than use the archival utilities built
into the file manager of your local desktop (such as Finder or Windows Explorer).

Now, bundle your tests for Device Farm.

Create a zipped package file API Version 2015-06-23 85

AWS Device Farm Developer Guide

Java (JUnit)

Build and package your tests:

$ mvn clean package -DskipTests=true

The file zip-with-dependencies. zip will be created as a result. This is your test package.
Java (TestNG)

Build and package your tests:

$ mvn clean package -DskipTests=true

The file zip-with-dependencies. zip will be created as a result. This is your test package.
Node.JS

1. Check out your project.

Make sure you are at the root directory of your project. You can see package. json at the
root directory.

2. Run this command to install your local dependencies.

npm install

This command also creates a node_modules folder inside your current directory.

(@ Note

At this point, you should be able to run your tests locally.

3. Run this command to package the files in your current folder into a *.tgz file. The file is
named using the name property in your package. json file.

npm-bundle

This tarball (.tgz) file contains all your code and dependencies.

4. Run this command to bundle the tarball (*.tgz file) generated in the previous step into a
single zipped archive:

Create a zipped package file API Version 2015-06-23 86

AWS Device Farm Developer Guide

zip -r MyTests.zip *.tgz

This is the MyTests. zip file that you upload to Device Farm in the following procedure.

Python
Python 2

Generate an archive of the required Python packages (called a "wheelhouse") using pip:

$ pip wheel --wheel-dir wheelhouse -r requirements.txt

Package your wheelhouse, tests, and pip requirements into a zip archive for Device Farm:
$ zip -r test_bundle.zip tests/ wheelhouse/ requirements.txt

Python 3

Package your tests and pip requirements into a zip file:

$ zip -r test_bundle.zip tests/ requirements.txt

Ruby

1. Run this command to create a virtual Ruby environment:

myGemset is the name of your virtual Ruby environment
rvm gemset create myGemset

2. Run this command to use the environment you just created:

rvm gemset use myGemset
3. Check out your source code.

Make sure you are at the root directory of your project. You can see Gemfile at the root
directory.

4. Run this command to install your local dependencies and all gems from the Gemfile:

Create a zipped package file API Version 2015-06-23 87

AWS Device Farm Developer Guide

bundle install

(@ Note

At this point, you should be able to run your tests locally. Use this command to run
a test locally:

bundle exec $test_command

5. Package your gems in the vendor/cache folder.

This will copy all the .gem files needed to run your tests into the vendor/
cache directory
bundle package --all-platforms

6. Run the following command to bundle your source code, along with all your dependencies,
into a single zipped archive:

zip -r MyTests.zip Gemfile vendor/ $(any other source code directory files)

This is the MyTests. zip file that you upload to Device Farm in the following procedure.

Upload your test package to Device Farm

You can use the Device Farm console to upload your tests.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

3. If you are a new user, choose New project, enter a name for the project, then choose Submit.

If you already have a project, you can choose it to upload your tests to it.
4. Open your project, and then choose Create a new run.

5. For native Android and iOS tests

On the Choose application page, choose Mobile App, then select Choose File to upload
your application's distributable package.

Upload your test package to Device Farm API Version 2015-06-23 88

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

® Note

The file must be either an Android . apk or aniOS . ipa. iOS Applications must be
built for real devices, not the Simulator.

For Mobile Web application tests

On the Choose application page, choose Web App.

6. Give your test an appropriate name. This may contain any combination of spaces or
punctuation.

7. Choose Next.

8. On the Configure page, in the Setup test framework section, choose Appium Language, then
Choose File.

9. Browse to and choose the .zip file that contains your tests. The .zip file must follow the format
described in Configure your Appium test package.

10. Choose Run your test in a custom environment. This execution environment allows for full
control over test setup, teardown, and invocation, as well as choosing specific versions of
runtimes and the Appium server. You can configure your custom environment via the test spec
file. For more information, see Working with custom test environments in AWS Device Farm.

11. Choose Next, and then follow the instructions to select devices and start the run. For more
information, see Create a test run in Device Farm.

(® Note

Device Farm does not modify Appium tests.

Take screenshots of your tests (Optional)
You can take screenshots as part of your tests.

Device Farm sets the DEVICEFARM_SCREENSHOT_PATH property to a fully qualified path on the
local file system where Device Farm expects Appium screenshots to be saved. The test-specific
directory where the screenshots are stored is defined at runtime. The screenshots are pulled into

Take screenshots of your tests (Optional) API Version 2015-06-23 89

https://docs.aws.amazon.com/devicefarm/latest/developerguide/custom-test-environments.html

AWS Device Farm Developer Guide

your Device Farm reports automatically. To view the screenshots, in the Device Farm console,
choose the Screenshots section.

For more information on taking screenshots in Appium tests, see Take Screenshot in the Appium

APl documentation.

Working with Android tests in AWS Device Farm

Device Farm provides support for several automation test types for Android devices, and two built-
in tests.

Android application testing frameworks
The following tests are available for Android devices.

» Working with Appium and AWS Device Farm

« Working with instrumentation for Android and AWS Device Farm

Built-in test types for Android
There's one built-in test type available for Android devices.

e Built-in: fuzz (Android and iOS)

Working with instrumentation for Android and AWS Device Farm

Device Farm provides support for Instrumentation (JUnit, Espresso, Robotium, or any
Instrumentation-based tests) for Android.

Device Farm also provides a sample Android application and links to working tests in three Android
automation frameworks, including Instrumentation (Espresso). The Device Farm sample app for

Android is available for download on GitHub.

Topics

+ What is instrumentation?

« Upload your Android instrumentation tests

» Taking screenshots in Android instrumentation tests

« Additional considerations for Android instrumentation tests

Android tests API Version 2015-06-23 90

http://appium.io/docs/en/commands/session/screenshot/
https://github.com/awslabs/aws-device-farm-sample-app-for-android
https://github.com/awslabs/aws-device-farm-sample-app-for-android

AWS Device Farm Developer Guide

» Standard mode test parsing

What is instrumentation?

Android instrumentation makes it possible for you to invoke callback methods in your test code

so you can run through the lifecycle of a component step by step, as if you were debugging the
component. For more information, see Instrumented tests in the Test types and locations section of
the Android Developer Tools documentation.

Upload your Android instrumentation tests

Use the Device Farm console to upload your tests.

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

3. Inthe list of projects, choose the project that you want to upload your tests to.

® Tip
You can use the search bar to filter the project list by name.
To create a project, follow the instructions in Create a project in AWS Device Farm.

If the Create a new run button is displayed, choose it.
On the Choose application page, select Choose File.
Browse to and choose your Android app file. The file must be an .apk file.

Choose Next.

© N o U A

On the Configure page, in the Setup test framework section, choose Instrumentation, and
then select Choose File.

9. Browse to and choose the .apk file that contains your tests.

10. Choose Next, and then complete the remaining instructions to select devices and start the run.

Taking screenshots in Android instrumentation tests
You can take screenshots as part of your Android Instrumentation tests.

To take screenshots, call one of the following methods:

Instrumentation API Version 2015-06-23 91

https://developer.android.com/studio/test/test-in-android-studio#test_types_and_locations
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

« For Robotium, call the takeScreenShot method (for example, solo.takeScreenShot();).

» For Spoon, call the screenshot method, for example:

Spoon.screenshot(activity, "initial_state");
/* Normal test code... */
Spoon.screenshot(activity, "after_login");

During a test run, Device Farm gets screenshots from the following locations on the devices, if they
exist, and then adds them to the test reports:

/sdcard/robotium-screenshots

/sdcard/test-screenshots

/sdcard/Download/spoon-screenshots/test-class-name/test-method-name

/data/data/application-package-name/app_spoon-screenshots/test-class-
name/test-method-name

Additional considerations for Android instrumentation tests

System Animations

Per the Android documentation for Espresso testing, it is recommended that system animations

are turned off when testing on real devices. Device Farm automatically disables Window
Animation Scale, Transition Animation Scale, and Animator Duration Scale settings when it
executes with the android.support.test.runner.AndroidJUnitRunner instrumentation test runner.

Test Recorders
Device Farm supports frameworks, such as Robotium, that have record-and-playback scripting
tools.

Standard mode test parsing

In the standard mode of a run, Device Farm parses your test suite and identifies the unique test
classes and methods that it will run. This is done through a tool called Dex Test Parser.

When given an Android instrumentation .apk file as input, the parser returns the fully qualified
method names of the tests that match JUnit 3 and JUnit 4 conventions.

Instrumentation API Version 2015-06-23 92

https://developer.android.com/training/testing/espresso
http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html
https://github.com/linkedin/dex-test-parser

AWS Device Farm Developer Guide

To test this in a local environment:

1. Download the dex-test-parser binary.

2. Run the following command to get the list of test methods that will run on Device Farm:

java -jar parser.jar path/to/apk path/for/output

Working with iOS tests in AWS Device Farm

Device Farm provides support for several automation test types for iOS devices, and a built-in test.

iOS application testing frameworks

The following tests are available for iOS devices.

» Working with Appium and AWS Device Farm
» Working with XCTest for iOS and AWS Device Farm
o XCTest Ul

Built-in test types for iOS

There is currently one built-in test type available for iOS devices.

e Built-in: fuzz (Android and iOS)

Working with XCTest for iOS and AWS Device Farm

With Device Farm, you can use the XCTest framework to test your app on real devices. For more
information about XCTest, see Testing Basics in Testing with Xcode.

To run a test, you create the packages for your test run, and you upload these packages to Device
Farm.

Topics

» Creating the packages for your XCTest run

» Uploading the packages for your XCTest run to Device Farm

iOS tests API Version 2015-06-23 93

https://github.com/linkedin/dex-test-parser
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/03-testing_basics.html

AWS Device Farm Developer Guide

Creating the packages for your XCTest run

To test your app by using the XCTest framework, Device Farm requires the following:

» Your app package as a . ipa file.

» Your XCTest package as a . zip file.

You create these packages by using the build output that Xcode generates. Complete the following
steps to create the packages so that you can upload them to Device Farm.

To generate the build output for your app

1. Open your app project in Xcode.

2. Inthe scheme dropdown menu in the Xcode toolbar, choose Generic iOS Device as the
destination.

3. In the Product menu, choose Build For, and then choose Testing.

To create the app package

1. In the project navigator in Xcode, under Products, open the contextual menu for the file
named app-project-name.app. Then, choose Show in Finder. Finder opens a folder named
Debug-iphoneos, which contains the output that Xcode generated for your test build. This
folder includes your . app file.

2. In Finder, create a new folder, and name it Payload.
3. Copythe app-project-name.app file, and paste it in the Payload folder.

4. Open the contextual menu for the Payload folder and choose Compress "Payload". A file
named Payload. zip is created.

5. Change the file name and extension of Payload.zip to app-project-name.ipa.
In a later step, you provide this file to Device Farm. To make the file easier to find, you might
want to move it to another location, such as your desktop.

6. Optionally, you can delete the Payload folder and the . app file in it.

XCTest API Version 2015-06-23 94

AWS Device Farm Developer Guide

To create the XCTest package

1.

In Finder, in the Debug-iphoneos directory, open the contextual menu for the app-
project-name.app file. Then, choose Show Package Contents.

In the package contents, open the Plugins folder. This folder contains a file named app-
project-name.xctest.

Open the contextual menu for this file and choose Compress "app-project-name.xctest".
A file named app-project-name.xctest.zip is created.

In a later step, you provide this file to Device Farm. To make the file easier to find, you might
want to move it to another location, such as your desktop.

Uploading the packages for your XCTest run to Device Farm

Use the Device Farm console to upload the packages for your test.

1.
2.

N o v &~ W

Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

If you don't have a project already, create one. For the steps to create a project, see Create a
project in AWS Device Farm.

Otherwise, on the Device Farm navigation panel, choose Mobile Device Testing, then choose
Projects.

Choose the project that you want to use to run the test.
Choose Create a new run.

On the Choose application page, choose Mobile App.
Select Choose File.

Browse to the . ipa file for your app and upload it.

(® Note

Your . ipa package must be built for testing.

After the upload completes, choose Next.

On the Configure page, in the Setup test framework section, choose XCTest. Then, select
Choose File.

10. Browse to the . zip file that contains the XCTest package for your app and upload it.

XCTest API Version 2015-06-23 95

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

11. After the upload completes, choose Next.

12. Complete the remaining steps in the project creation process. You will select the devices that
you want to test on and specify the device state.

13. After you configure your run, on the Review and start run page, choose Confirm and start
run.

Device Farm runs your test and shows the results in the console.

Working with XCTest Ul testing framework for iOS and AWS Device
Farm

Device Farm provides support for XCTest Ul testing framework for iOS. Specifically, Device Farm
supports XCTest Ul tests written in both Objective-C and Swift.

Topics

o What is XCTest Ul testing framework?

« Prepare your iOS XCTest Ul tests

« Upload your iOS XCTest Ul tests

» Taking screenshots in iOS XCTest Ul tests

What is XCTest Ul testing framework?

XCTest Ul framework is the new testing framework introduced with Xcode 7. This framework
extends XCTest with Ul testing capabilities. For more information, see User Interface Testing in the

iOS Developer Library.
Prepare your iOS XCTest Ul tests

Your iOS XCTest Ul test runner bundle must be contained in a properly formatted .ipa file.

To create an .ipa file, place your my-project-nameUITest-Runner.app bundle in an empty Payload
directory. Next, archive the Payload directory into a .zip file and then change the file extension
to .ipa. The *UITest-Runner.app bundle is produced by Xcode when you build your project for
testing. It can be found in the Products directory for your project.

XCTest Ul API Version 2015-06-23 96

https://developer.apple.com/swift/
https://developer.apple.com/library/prerelease/ios/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html#//apple_ref/doc/uid/TP40014132-CH13-SW1

AWS Device Farm Developer Guide

Upload your iOS XCTest Ul tests
Use the Device Farm console to upload your tests.

1. Signin to the Device Farm console at https://console.aws.amazon.com/devicefarm.

2. On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

3. Inthe list of projects, choose the project that you want to upload your tests to.

® Tip
You can use the search bar to filter the project list by name.
To create a project, follow the instructions in Create a project in AWS Device Farm

4. |If the Create a new run button is displayed, choose it.
On the Choose application page, select Choose File.

6. Browse to and choose your iOS app file. The file must be an .ipa file.

(@ Note

Make sure that your .ipa file is built for an iOS device and not for a simulator.

7. Choose Next.

8. On the Configure page, in the Setup test framework section, choose XCTest Ul, and then
select Choose File.

9. Browse to and choose the .ipa file that contains your iOS XCTest Ul test runner.

10. Choose Next, and then complete the remaining instructions to select the devices to run your
tests on and start the run.

Taking screenshots in iOS XCTest Ul tests

XCTest Ul tests capture screenshots automatically for every step of your tests. These screenshots
are displayed in your Device Farm test report. No additional code is required.

Working with web app tests in AWS Device Farm

Device Farm provides testing with Appium for web applications. For more information on setting
up your Appium tests on Device Farm, see the section called “Appium”.

Web app tests API Version 2015-06-23 97

https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

Rules for metered and unmetered devices

Metering refers to billing for devices. By default, Device Farm devices are metered and you are
charged per minute after the free trial minutes are used up. You can also choose to purchase
unmetered devices, which allow unlimited testing for a flat monthly fee. For more information
about pricing, see AWS Device Farm Pricing.

If you choose to start a run with a device pool that contains both iOS and Android devices, there
are rules for metered and unmetered devices. For example, if you have five unmetered Android
devices and five unmetered iOS devices, your web test runs use your unmetered devices.

Here is another example: Suppose you have five unmetered Android devices and O unmetered iOS
devices. If you select only Android devices for your web run, your unmetered devices are used. If
you select both Android and iOS devices for your web run, the billing method is metered, and your
unmetered devices are not used.

Working with built-in tests in AWS Device Farm
Device Farm provides support for built-in test types for Android and iOS devices.
Built-in test types

Built-in tests make it possible for you to test your apps without writing scripts.

e Built-in: fuzz (Android and iOS)

Working with the built-in fuzz test for Device Farm

Device Farm provides a built-in fuzz test type.

What is the built-in fuzz test?

The built-in fuzz test randomly sends user interface events to devices and then reports results.
Use the built-in fuzz test type

Use the Device Farm console to run the built-in fuzz test.

1. Sign in to the Device Farm console at https://console.aws.amazon.com/devicefarm.

Rules for metered and unmetered devices API Version 2015-06-23 98

https://aws.amazon.com/device-farm/
https://console.aws.amazon.com/devicefarm

AWS Device Farm Developer Guide

© 0 N o u b

On the Device Farm navigation panel, choose Mobile Device Testing, then choose Projects.

In the list of projects, choose the project where you want to run the built-in fuzz test.

® Tip
You can use the search bar to filter the project list by name.
To create a project, follow the instructions in Create a project in AWS Device Farm.

If the Create a new run button is displayed, choose it.

On the Choose application page, select Choose File.

Browse to and choose your app file where you want to run the built-in fuzz test.
Choose Next.

On the Configure page, in the Setup test framework section, choose Built-in: Fuzz.

If any of the following settings appear, you can either accept the default values or specify your
own:

« Event count: Specify a number between 1 and 10,000, representing the number of user
interface events for the fuzz test to perform.

« Event throttle: Specify a number between 0 and 1,000, representing the number of
milliseconds for the fuzz test to wait before performing the next user interface event.

« Randomizer seed: Specify a number for the fuzz test to use for randomizing user interface
events. Specifying the same number for subsequent fuzz tests ensures identical event
sequences.

10. Choose Next, and then complete the remaining instructions to select devices and start the run.

Built-in: fuzz (Android and iQS) API Version 2015-06-23 99

AWS Device Farm Developer Guide

Working with custom test environments in AWS Device
Farm

AWS Device Farm enables configuring a custom environment for automated testing (custom
mode), which is the recommended approach for all Device Farm users. To learn more about
environments in Device Farm, see Test environments.

Benefits of the Custom Mode as opposed to the Standard Mode include:

» Faster end-to-end test execution: The test package isn't parsed to detect every test in the suite,
avoiding preprocessing/postprocessing overhead.

« Live log and video streaming: Your client-side test logs and video are live streamed when using
Custom Mode. This feature isn't available in the standard mode.

« Captures all artifacts: On the host and device, Custom Mode allows you to capture all test
artifacts. This may not be possible in the standard mode.

« More consistent and replicable local environment: When in Standard Mode, artifacts will be
provided for each individual test separately, which can be beneficial under certain circumstances.
However, your local test environment may deviate from the original configuration as Device Farm
handles each executed test differently.

In contrast, Custom Mode enables you to make your Device Farm test execution environment
consistently in line with with your local test environment.

Custom environments are configured using a YAML-formatted test specification (test spec) file.
Device Farm provides a default test spec file for each supported test type that can be used as is or
customized; customizations like test filters or config files can be added to the test spec. Edited test
specs can be saved for future test runs.

For more information, see Uploading a Custom Test Spec Using the AWS CLI and Create a test run

in Device Farm.

Topics

» Test spec syntax

o Test spec example

« Working with the Amazon Linux 2 test environment for Android tests

API Version 2015-06-23 100

https://docs.aws.amazon.com/devicefarm/latest/developerguide/test-environments.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/how-to-create-test-run.html#how-to-create-test-run-cli-step5

AWS Device Farm

Developer Guide

» Migrating tests from a standard test environment to a custom test environment

» Extending custom test environments in Device Farm

Test spec syntax

This is the YAML test spec file structure:

The test spec contains the following:

Environment variables

version: 0.1

phases:
install:
commands:
- command
- command
pre_test:
commands:
- command
- command
test:
commands:
- command
- command
post_test:
commands:
- command
- command

artifacts:
- location
- location

version

Reflects the Device Farm supported test spec version. The current version number is 0.1.

phases

This section contains groups of commands executed during a test run.

Test spec syntax

API Version 2015-06-23 101

AWS Device Farm Developer Guide

The allowed test phase names are:

install
Optional.

Default dependencies for testing frameworks supported by Device Farm are already
installed. This phase contains additional commands, if any, that Device Farm runs during
installation.

pre_test
Optional.

The commands, if any, executed before your automated test run.

test
Optional.

The commands executed during your automated test run. If any command in the test phase
fails, the test is marked as failed.

post_test
Optional.

The commands, if any, executed after your automated test run.

artifacts
Optional.

Device Farm gathers artifacts such as custom reports, log files, and images from a location
specified here. Wildcard characters are not supported as part of an artifact location, so you
must specify a valid path for each location.

These test artifacts are available for each device in your test run. For information about
retrieving your test artifacts, see Using artifacts in a custom test environment.

/A Important

A test spec must be formatted as a valid YAML file. If the indenting or spacing in your test
spec are invalid, your test run can fail. Tabs are not allowed in YAML files. You can use a

Test spec syntax API Version 2015-06-23 102

AWS Device Farm Developer Guide

YAML validator to test whether your test spec is a valid YAML file. For more information,
see the YAML website.

Test spec example

This is an example of a Device Farm YAML test spec that configures an Appium Java TestNG test
run:

version: 0.1

This flag enables your test to run using Device Farm's Amazon Linux 2 test host when
scheduled on

Android devices. By default, i0S device tests will always run on Device Farm's macOS
test hosts.

For Android, you can explicitly select your test host to use our Amazon Linux 2
infrastructure.

For more information, please see:

https://docs.aws.amazon.com/devicefarm/latest/developerguide/amazon-linux-2.html
android_test_host: amazon_linux_2

Phases represent collections of commands that are executed during your test run on
the test host.
phases:

The install phase contains commands for installing dependencies to run your tests.
For your convenience, certain dependencies are preinstalled on the test host.

For Android tests running on the Amazon Linux 2 test host, many software libraries
are available

from the test host using the devicefarm-cli tool. To learn more, please see:

https://docs.aws.amazon.com/devicefarm/latest/developerguide/amazon-linux-2-
devicefarm-cli.html

For i0OS tests, you can use the Node.JS tools nvm, npm, and avm to setup your
environment. By
default, Node.js versions 16.20.2 and 14.19.3 are available on the test host.
install:
commands:
The Appium server is written using Node.js. In order to run your desired
version of Appium,

Test spec example API Version 2015-06-23 103

http://yaml.org/spec/1.2/spec.html

AWS Device Farm Developer Guide

you first need to set up a Node.js environment that is compatible with your
version of Appium.
- -
if [$DEVICEFARM_DEVICE_PLATFORM_NAME = "Android" 1;
then
devicefarm-cli use node 16;
else
For i0S, use "nvm use" to switch between the two preinstalled NodelS
versions 14 and 16,
and use '"nvm install" to download a new version of your choice.
nvm use 16;
fi;
- node --version

Use the devicefarm-cli to select a preinstalled major version of Appium on
Android.
Use avm or npm to select Appium for iOS.
= [=
if [$DEVICEFARM_DEVICE_PLATFORM_NAME = "Android" 1];
then
For Android, the Device Farm service automatically updates the preinstalled
Appium versions
over time to incorporate the latest minor and patch versions for each major
version. If you
wish to select a specific version of Appium, you can instead use NPM to
install it:
npm install -g appium@2.1.3;
devicefarm-cli use appium 2;
else
For i0S, Appium versions 1.22.2 and 2.2.1 are preinstalled and selectable
through avm.
For all other versions, please use npm to install them. For example:
npm install -g appium@2.1.3;
Note that, for iOS devices, Appium 2 is only supported on iOS version 14
and above using
NodeJS version 16 and above.
avm 2.2.1;
fi;
- appium --version

For Appium version 2, for Android tests, Device Farm automatically updates the
preinstalled

UIAutomator2 driver over time to incorporate the latest minor and patch
versions for its major

Test spec example API Version 2015-06-23 104

AWS Device Farm Developer Guide

version 2. If you want to install a specific version of the driver, you can use
the Appium

extension CLI to uninstall the existing UIAutomator2 driver and install your
desired version:

- |-

if [$DEVICEFARM_DEVICE_PLATFORM_NAME = "Android" 1;
then

appium driver uninstall uiautomator2;

appium driver install uiautomator2@2.34.0;

fi;

For Appium version 2, for iOS tests, the XCUITest driver is preinstalled using
version 5.7.0

If you want to install a different version of the driver, you can use the
Appium extension CLI

to uninstall the existing XCUITest driver and install your desired version:

- |-

if [$DEVICEFARM_DEVICE_PLATFORM_NAME = "i0QS" 1;
then

appium driver uninstall xcuitest;

appium driver install xcuitest@5.8.1;

fi;

We recommend setting the Appium server's base path explicitly for accepting
commands.
export APPIUM_BASE_PATH=/wd/hub

Install the NodelS dependencies.
cd $DEVICEFARM_TEST_PACKAGE_PATH

First, install dependencies which were packaged with the test package using
npm-bundle.

- npm install *.tgz

Then, optionally, install any additional dependencies using npm install.

If you do run these commands, we strongly recommend that you include your
package-lock.json

file with your test package so that the dependencies installed on Device Farm

match
the dependencies you've installed locally.
- cd node_modules/*
- npm install

The pre-test phase contains commands for setting up your test environment.
pre_test:
commands:

Test spec example API Version 2015-06-23 105

AWS Device Farm Developer Guide

Device farm provides different pre-built versions of WebDriverAgent, an
essential Appium

dependency for iOS devices, and each version is suggested for different
versions of Appium:

DEVICEFARM_WDA_DERIVED_DATA_PATH_V8: this version is suggested for Appium 2

DEVICEFARM_WDA_DERIVED_DATA_PATH_V7: this version is suggested for Appium 1

Additionally, for iOS versions 16 and below, the device unique identifier
(UDID) needs

to be slightly modified for Appium tests.

= [=

if [$DEVICEFARM_DEVICE_PLATFORM_NAME = "i0S" 1];

then
if [$(appium --version | cut -d "." -fl1) -ge 2];
then
DEVICEFARM_WDA_DERIVED_DATA_PATH=$DEVICEFARM_WDA_DERIVED_DATA_PATH_VS;
else
DEVICEFARM_WDA_DERIVED_DATA_PATH=$DEVICEFARM_WDA_DERIVED_DATA_PATH_V7;
fi;
if [$(echo $DEVICEFARM_DEVICE_OS_VERSION | cut -d "." -f 1) -le 16 1;
then
DEVICEFARM_DEVICE_UDID_FOR_APPIUM=$(echo $DEVICEFARM_DEVICE_UDID | tr -d
H=t)2
else
DEVICEFARM_DEVICE_UDID_FOR_APPIUM=$DEVICEFARM_DEVICE_UDID;
fi;
fi;

Appium downloads Chromedriver using a feature that is considered insecure for
multitenant

environments. This is not a problem for Device Farm because each test host is
allocated

exclusively for one customer, then terminated entirely. For more information,
please see

https://github.com/appium/appium/blob/master/packages/appium/docs/en/guides/
security.md

We recommend starting the Appium server process in