
Developer Guide

Deep Learning AMI

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Deep Learning AMI Developer Guide

Deep Learning AMI: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Deep Learning AMI Developer Guide

Table of Contents

What Is the AWS Deep Learning AMI? ... 1
About This Guide .. 1
Prerequisites .. 1
Example Uses .. 1
Features .. 2

Preinstalled Frameworks .. 2
Preinstalled GPU Software .. 3
Model Serving and Visualization ... 3

Getting Started .. 4
How to Get Started with the DLAMI .. 4
DLAMI Selection .. 4

CUDA Installations and Framework Bindings .. 5
Base .. 6
Conda ... 6
Architecture .. 8
OS ... 9

Instance Selection ... 9
Pricing .. 10
Region Availability .. 11
GPU .. 11
CPU .. 12
Inferentia .. 13
Trainium .. 13
Habana .. 14

Framework Support Policy ... 15
Supported Frameworks ... 15
Frequently Asked Questions .. 15

What framework versions get security patches? .. 16
What images does AWS publish when new framework versions are released? 16
What images get new SageMaker/AWS features? ... 16
How is current version defined in the Supported Frameworks table? 16
What if I am running a version that is not in the Supported Frameworks table? 17
Do DLAMIs support previous versions of TensorFlow? ... 17
How can I find the latest patched image for a supported framework version? 17

iii

Deep Learning AMI Developer Guide

How frequently are new images released? ... 17
Will my instance be patched in place while my workload is running? 18
What happens when a new patched or updated framework version is available? 18
Are dependencies updated without changing the framework version? 18
When does active support for my framework version end? .. 18
Will images with framework versions that are no longer actively maintained be
patched? .. 20
How do I use an older framework version? .. 20
How do I stay up-to-date with support changes in frameworks and their versions? 20
Do I need a commercial license to use the Anaconda Repository? ... 20

Launching a DLAMI ... 21
Step 1: Launch a DLAMI ... 21

Retrieve the DLAMI ID ... 22
Launch from Amazon EC2 Console ... 23

Step 2: Connect to the DLAMI .. 24
Step 3: Test Your DLAMI .. 24
Step 4: Manage Your DLAMI Instance ... 25
Clean Up ... 25
Jupyter Setup .. 25

Secure Jupyter ... 26
Start Server .. 27
Configure Client .. 28
Log in to the Jupyter notebook server .. 29

Using a DLAMI ... 32
Conda DLAMI .. 32

Introduction to the Deep Learning AMI with Conda ... 32
Log in to Your DLAMI .. 33
Start the TensorFlow Environment ... 34
Switch to the PyTorch Python 3 Environment ... 35
Switch to the MXNet Python 3 Environment ... 36
Removing Environments .. 37

Base DLAMI .. 37
Using the Deep Learning Base AMI .. 37
Configuring CUDA Versions .. 37

Jupyter Notebooks ... 38
Navigating the Installed Tutorials ... 39

iv

Deep Learning AMI Developer Guide

Switching Environments with Jupyter .. 39
Tutorials .. 40

10 Minute Tutorials .. 40
Activating Frameworks .. 41
Debugging and Visualization .. 61
Distributed Training .. 66
Elastic Fabric Adapter .. 89
GPU Monitoring and Optimization ... 108
AWS Inferentia .. 118
Graviton DLAMI ... 140
Habana DLAMI .. 150
Inference ... 152
Using Frameworks with ONNX .. 158
Model Serving ... 170

Upgrading Your DLAMI ... 179
DLAMI Upgrade .. 179
Software Updates .. 180

Security .. 181
Data Protection .. 182
Identity and Access Management .. 182

Authenticating With Identities ... 183
Managing Access Using Policies .. 186
IAM with Amazon EMR .. 188

Logging and Monitoring ... 188
Usage Tracking .. 189

Compliance Validation .. 189
Resilience ... 190
Infrastructure Security .. 190

Important Changes to DLAMI ... 191
Frequently Asked Questions .. 191

What is changing? .. 191
Why is this change required? ... 192
Which DLAMIs are affected by this change? ... 192
What does this mean for you? .. 193
When should you start using the new DLAMIs? .. 194
Will there be any loss in functionality with the new DLAMIs? .. 194

v

Deep Learning AMI Developer Guide

What about DLCs? .. 194
Related Information .. 195

Forums .. 195
Blogs ... 195
FAQ .. 195

Release Notes for DLAMI .. 199
... 199
Base DLAMI ... 199
Single-Framework DLAMI ... 199
Multi-Framework DLAMI ... 200

DLAMI Deprecation Notices .. 201
Document History .. 203
AWS Glossary ... 208

vi

Deep Learning AMI Developer Guide

What Is the AWS Deep Learning AMI?

Welcome to the User Guide for the AWS Deep Learning AMI.

The AWS Deep Learning AMI (DLAMI) is your one-stop shop for deep learning in the cloud. This
customized machine instance is available in most Amazon EC2 regions for a variety of instance
types, from a small CPU-only instance to the latest high-powered multi-GPU instances. It comes
preconfigured with NVIDIA CUDA and NVIDIA cuDNN, as well as the latest releases of the most
popular deep learning frameworks.

About This Guide

This guide will help you launch and use the DLAMI. It covers several use cases that are common for
deep learning, for both training and inference. Choosing the right AMI for your purpose and the
kind of instances you may prefer is also covered. The DLAMI comes with several tutorials for each
of the frameworks. It also has tutorials on distributed training, debugging, using AWS Inferentia,
and other key concepts. You will find instructions on how to configure Jupyter to run the tutorials
in your browser.

Prerequisites

You should be familiar with command line tools and basic Python to successfully run the DLAMI.
Tutorials on how to use each framework are provided by the frameworks themselves, however, this
guide can show you how to activate each one and find the appropriate tutorials to get started.

Example DLAMI Uses

Learning about deep learning: The DLAMI is a great choice for learning or teaching machine
learning and deep learning frameworks. It takes the headache away from troubleshooting the
installations of each framework and getting them to play along on the same computer. The DLAMI
comes with a Jupyter notebook and makes it easy to run the tutorials provided by the frameworks
for people new to machine learning and deep learning.

App development: If you're an app developer and are interested in using deep learning to
make your apps utilize the latest advances in AI, the DLAMI is the perfect test bed for you. Each
framework comes with tutorials on how to get started with deep learning, and many of them

About This Guide 1

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning AMI Developer Guide

have model zoos that make it easy to try out deep learning without having to create the neural
networks yourself or to do any of the model training. Some examples show you how to build an
image detection application in just a few minutes, or how to build a speech recognition app for
your own chatbot.

Machine learning and data analytics: If you're a data scientist or interested in processing your
data with deep learning, you'll find that many of the frameworks have support for R and Spark.
You will find tutorials on how to do simple regressions, all the way up to building scalable data
processing systems for personalization and predictions systems.

Research: If you're a researcher and want to try out a new framework, test out a new model,
or train new models, the DLAMI and AWS capabilities for scale can alleviate the pain of tedious
installations and management of multiple training nodes.

Note

While your initial choice might be to upgrade your instance type up to a larger instance
with more GPUs (up to 8), you can also scale horizontally by creating a cluster of DLAMI
instances. Check out Related Information for more information on cluster builds.

Features of the DLAMI

Preinstalled Frameworks

There are currently two primary flavors of the DLAMI with other variations related to the operating
system (OS) and software versions:

• Deep Learning AMI with Conda - frameworks installed separately using conda packages and
separate Python environments

• Deep Learning Base AMI - no frameworks installed; only NVIDIA CUDA and other dependencies

The Deep Learning AMI with Conda uses conda environments to isolate each framework, so you
can switch between them at will and not worry about their dependencies conflicting.

This is the full list of supported frameworks by Deep Learning AMI with Conda:

• Apache MXNet (Incubating)

Features 2

https://developer.nvidia.com/cuda-zone

Deep Learning AMI Developer Guide

• PyTorch

• TensorFlow 2

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, or Keras Conda
environments in the AWS Deep Learning AMI starting with the v28 release. Previous
releases of the AWS Deep Learning AMI that contain these environments will continue to be
available. However, we will only provide updates to these environments if there are security
fixes published by the open source community for these frameworks.

Preinstalled GPU Software

Even if you use a CPU-only instance, the DLAMI will have NVIDIA CUDA and NVIDIA cuDNN. The
installed software is the same regardless of the instance type. Keep in mind that GPU-specific tools
only work on an instance that has at least one GPU. More information on this is covered in the
Selecting the Instance Type for DLAMI.

For more information on CUDA Installation, see the CUDA Installations and Framework Bindings.

Model Serving and Visualization

Deep Learning AMI with Conda comes preinstalled with two kinds of model servers, one for MXNet
and one for TensorFlow, as well as TensorBoard, for model visualizations.

• Model Server for Apache MXNet (MMS)

• TensorFlow Serving

• TensorBoard

Preinstalled GPU Software 3

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning AMI Developer Guide

Getting Started

How to Get Started with the DLAMI

This guide includes tips about picking the DLAMI that's right for you, selecting an instance type
that fits your use case and budget, and Related Information that describes custom setups that may
be of interest.

If you're new to using AWS or using Amazon EC2, start with the Deep Learning AMI with Conda.
If you're familiar with Amazon EC2 and other AWS services like Amazon EMR, Amazon EFS, or
Amazon S3, and are interested in integrating those services for projects that need distributed
training or inference, then check out Related Information to see if one fits your use case.

We recommend that you check out Choosing Your DLAMI to get an idea of which instance type
might be best for your application.

Another option is this quick tutorial: Launch a AWS Deep Learning AMI (in 10 minutes).

Next Step

Choosing Your DLAMI

Choosing Your DLAMI

We offer a range of DLAMI options. To help you select the correct DLAMI for your use case, we
group images by the hardware type or functionality for which they were developed. Our top level
groupings are:

• DLAMI Type: CUDA versus Base versus Single-Framework versus Multi-Framework (Conda
DLAMI)

• Compute Architecture: x86-based versus Arm-based AWS Graviton

• Processor Type: GPU versus CPU versus Inferentia versus Habana

• SDK: CUDA versus AWS Neuron versus SynapsesAI

• OS: Amazon Linux versus Ubuntu

The rest of the topics in this guide help further inform you and go into more details.

How to Get Started with the DLAMI 4

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/dlami/latest/devguide/gpu
https://docs.aws.amazon.com/dlami/latest/devguide/cpu
https://docs.aws.amazon.com/dlami/latest/devguide/inferentia
https://docs.aws.amazon.com/dlami/latest/devguide/habana
https://developer.nvidia.com/cuda-toolkit
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-intro/get-started.html
https://github.com/HabanaAI/Setup_and_Install

Deep Learning AMI Developer Guide

Topics

• CUDA Installations and Framework Bindings

• Deep Learning Base AMI

• Deep Learning AMI with Conda

• DLAMI CPU Architecture Options

• DLAMI Operating System Options

Next Up

Deep Learning AMI with Conda

CUDA Installations and Framework Bindings

While deep learning is all pretty cutting edge, each framework offers "stable" versions. These stable
versions may not work with the latest CUDA or cuDNN implementation and features. Your use case
and the features you require can help you choose a framework. If you are not sure, then use the
latest Deep Learning AMI with Conda. It has official pip binaries for all frameworks with CUDA
10, using whichever most recent version is supported by each framework. If you want the latest
versions, and to customize your deep learning environment, use the Deep Learning Base AMI.

Look at our guide on Stable Versus Release Candidates for further guidance.

Choose a DLAMI with CUDA

The Deep Learning Base AMI has all available CUDA 11 series, including 11.0, 11.1, and 11.2.

The Deep Learning AMI with Conda has all available CUDA 11 series, including 11.0, 11.1, and 11.2.

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, or Keras Conda
environments in the AWS Deep Learning AMI starting with the v28 release. Previous
releases of the AWS Deep Learning AMI that contain these environments continue to be
available. However, we only provide updates to these environments if there are security
fixes published by the open-source community for these frameworks.

For specific framework version numbers, see the Release Notes for DLAMI

CUDA Installations and Framework Bindings 5

Deep Learning AMI Developer Guide

Choose this DLAMI type or learn more about the different DLAMIs with the Next Up option.

Choose one of the CUDA versions and review the full list of DLAMIs that have that version in the
Appendix, or learn more about the different DLAMIs with the Next Up option.

Next Up

Deep Learning Base AMI

Related Topics

• For instructions on switching between CUDA versions, refer to the Using the Deep Learning Base
AMI tutorial.

Deep Learning Base AMI

The Deep Learning Base AMI is like an empty canvas for deep learning. It comes with everything
you need up until the point of the installation of a particular framework, and has your choice of
CUDA versions.

Why to Choose the Base DLAMI

This AMI group is useful for project contributors who want to fork a deep learning project and build
the latest. It's for someone who wants to roll their own environment with the confidence that the
latest NVIDIA software is installed and working so they can focus on picking which frameworks and
versions they want to install.

Choose this DLAMI type or learn more about the different DLAMIs with the Next Up option.

Next Up

DLAMI with Conda

Related Topics

• Using the Deep Learning Base AMI

Deep Learning AMI with Conda

The Conda DLAMI uses conda virtual environments. These environments are configured to keep
the different framework installations separate and streamline switching between frameworks. This

Base 6

https://docs.aws.amazon.com/dlami/latest/devguide/overview-conda.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-base.html

Deep Learning AMI Developer Guide

is great for learning and experimenting with all of the frameworks the DLAMI has to offer. Most
users find that the new Deep Learning AMI with Conda is perfect for them.

These AMIs are the primary DLAMIs. They are updated often with the latest versions from the
frameworks, and have the latest GPU drivers and software. They are generally referred to as the
AWS Deep Learning AMI in most documents.

• The Ubuntu 18.04 DLAMI has the following frameworks: Apache MXNet (Incubating), PyTorch,
and TensorFlow 2.

• The Amazon Linux 2 DLAMI has the following frameworks: Apache MXNet (Incubating), PyTorch,
and TensorFlow 2.

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, and Keras Conda
environments in the AWS Deep Learning AMI starting with the v28 release. Previous
releases of the AWS Deep Learning AMI that contain these environments continue to be
available. However, we only provide updates to these environments if there are security
fixes published by the open-source community for these frameworks.

Stable Versus Release Candidates

The Conda AMIs use optimized binaries of the most recent formal releases from each framework.
Release candidates and experimental features are not to be expected. The optimizations depend
on the framework's support for acceleration technologies like Intel's MKL DNN, which speeds up
training and inference on C5 and C4 CPU instance types. The binaries are also compiled to support
advanced Intel instruction sets including but not limited to AVX, AVX-2, SSE4.1, and SSE4.2. These
accelerate vector and floating point operations on Intel CPU architectures. Additionally, for GPU
instance types, the CUDA and cuDNN are updated with whichever version the latest official release
supports.

The Deep Learning AMI with Conda automatically installs the most optimized version of the
framework for your Amazon EC2 instance upon the framework's first activation. For more
information, refer to Using the Deep Learning AMI with Conda.

If you want to install from source, using custom or optimized build options, the Deep Learning Base
AMIs might be a better option for you.

Conda 7

Deep Learning AMI Developer Guide

Python 2 Deprecation

The Python open source community has officially ended support for Python 2 on January 1, 2020.
The TensorFlow and PyTorch community have announced that the TensorFlow 2.1 and PyTorch
1.4 releases are the last ones supporting Python 2. Previous releases of the DLAMI (v26, v25, etc)
that contain Python 2 Conda environments continue to be available. However, we provide updates
to the Python 2 Conda environments on previously published DLAMI versions only if there are
security fixes published by the open-source community for those versions. DLAMI releases with
the latest versions of the TensorFlow and PyTorch frameworks do not contain the Python 2 Conda
environments.

CUDA Support

Specific CUDA version numbers can be found in the GPU DLAMI release notes.

Next Up

DLAMI CPU Architecture Options

Related Topics

• For a tutorial on using a Deep Learning AMI with Conda, see the Using the Deep Learning AMI
with Conda tutorial.

DLAMI CPU Architecture Options

AWS Deep Learning AMIs are offered with either x86-based or Arm-based AWS Graviton2 CPU
architectures.

Choose one of the Graviton GPU DLAMIs to work with an Arm-based CPU architecture. All other
GPU DLAMIs are currently x86-based.

• AWS Deep Learning AMI Graviton GPU CUDA 11.4 (Ubuntu 20.04)

• AWS Deep Learning AMI Graviton GPU TensorFlow 2.6 (Ubuntu 20.04)

• AWS Deep Learning AMI Graviton GPU PyTorch 1.10 (Ubuntu 20.04)

For information about getting started with the Graviton GPU DLAMI, see The Graviton DLAMI. For
more details on available instance types, see Selecting the Instance Type for DLAMI.

Architecture 8

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-gpu
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-cuda-11-4-ubuntu-20-04/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/
https://aws.amazon.com/releasenotes/deep-learning-ami-graviton-gpu-pytorch-1-10-ubuntu-20-04/

Deep Learning AMI Developer Guide

Next Up

DLAMI Operating System Options

DLAMI Operating System Options

DLAMIs are offered in the following operating systems.

• Amazon Linux 2

• Ubuntu 20.04

• Ubuntu 18.04

Older versions of operating systems are available on deprecated DLAMIs. For more information on
DLAMI deprecation, see Deprecations for DLAMI

Before choosing a DLAMI, assess what instance type you need and identify your AWS Region.

Next Up

Selecting the Instance Type for DLAMI

Selecting the Instance Type for DLAMI

See the AWS Deep Learning AMI Catalog for recommended Amazon EC2 instance families that are
compatible with specific DLAMIs.

More generally, consider the following when selecting an instance type for a DLAMI.

• If you're new to deep learning, then an instance with a single GPU might suit your needs.

• If you're budget conscious, then you can use CPU-only instances.

• If you're looking to optimize high performance and cost efficiency for deep learning model
inference, then you can use instances with AWS Inferentia chips.

• If you're looking to optimize high performance and cost efficiency for deep learning model
training, then you can use instances with Habana accelerators.

• If you're looking for a high performance GPU instance with an Arm-based CPU architecture, then
you can use the G5g instance type.

• If you're interested in running a pretrained model for inference and predictions, then you can
attach an Amazon Elastic Inference to your Amazon EC2 instance. Amazon Elastic Inference gives
you access to an accelerator with a fraction of a GPU.

OS 9

https://docs.aws.amazon.com/dlami/latest/devguide/deprecations.html
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-is-ei.html

Deep Learning AMI Developer Guide

• For high-volume inference services, a single CPU instance with a lot of memory, or a cluster of
such instances, might be a better solution.

• If you're using a large model with a lot of data or a high batch size, then you need a larger
instance with more memory. You can also distribute your model to a cluster of GPUs. You may
find that using an instance with less memory is a better solution for you if you decrease your
batch size. This may impact your accuracy and training speed.

• If you’re interested in running machine learning applications using NVIDIA Collective
Communications Library (NCCL) requiring high levels of inter-node communications at scale, you
might want to use Elastic Fabric Adapter (EFA).

For more detail on instances, see EC2 Instance Types.

The following topics provide information about instance type considerations.

Important

The Deep Learning AMIs include drivers, software, or toolkits developed, owned, or
provided by NVIDIA Corporation. You agree to use these NVIDIA drivers, software, or
toolkits only on Amazon EC2 instances that include NVIDIA hardware.

Topics

• Pricing for the DLAMI

• DLAMI Region Availability

• Recommended GPU Instances

• Recommended CPU Instances

• Recommended Inferentia Instances

• Recommended Trainium Instances

• Recommended Habana Instances

Pricing for the DLAMI

The deep learning frameworks included in the DLAMI are free, and each has its own open-
source licenses. Although the software included in the DLAMI is free, you still have to pay for the
underlying Amazon EC2 instance hardware.

Pricing 10

https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://aws.amazon.com/ec2/instance-types/

Deep Learning AMI Developer Guide

Some Amazon EC2 instance types are labeled as free. It is possible to run the DLAMI on one of
these free instances. This means that using the DLAMI is entirely free when you only use that
instance's capacity. If you need a more powerful instance with more CPU cores, more disk space,
more RAM, or one or more GPUs, then you need an instance that is not in the free-tier instance
class.

For more information about instance selection and pricing, see Amazon EC2 pricing.

DLAMI Region Availability

Each Region supports a different range of instance types and often an instance type has a slightly
different cost in different Regions. DLAMIs are not available in every Region, but it is possible to
copy DLAMIs to the Region of your choice. See Copying an AMI for more information. Note the
Region selection list and be sure you pick a Region that's close to you or your customers. If you plan
to use more than one DLAMI and potentially create a cluster, be sure to use the same Region for all
of nodes in the cluster.

For a more info on Regions, visit EC2 Regions.

Next Up

Recommended GPU Instances

Recommended GPU Instances

We recommend a GPU instance for most deep learning purposes. Training new models is faster on
a GPU instance than a CPU instance. You can scale sub-linearly when you have multi-GPU instances
or if you use distributed training across many instances with GPUs. To set up distributed training,
see Distributed Training.

The following instance types support the DLAMI. For information about GPU instance type options
and their uses, see EC2 Instance Types and select Accelerated Computing.

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

Region Availability 11

https://aws.amazon.com/ec2/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://aws.amazon.com/ec2/instance-types/

Deep Learning AMI Developer Guide

• Amazon EC2 P3 Instances have up to 8 NVIDIA Tesla V100 GPUs.

• Amazon EC2 P4 Instances have up to 8 NVIDIA Tesla A100 GPUs.

• Amazon EC2 G3 Instances have up to 4 NVIDIA Tesla M60 GPUs.

• Amazon EC2 G4 Instances have up to 4 NVIDIA T4 GPUs.

• Amazon EC2 G5 Instances have up to 8 NVIDIA A10G GPUs.

• Amazon EC2 G5g Instances have Arm-based AWS Graviton2 processors.

DLAMI instances provide tooling to monitor and optimize your GPU processes. For more
information about monitoring your GPU processes, see GPU Monitoring and Optimization.

For specific tutorials on working with G5g instances, see The Graviton DLAMI.

Next Up

Recommended CPU Instances

Recommended CPU Instances

Whether you're on a budget, learning about deep learning, or just want to run a prediction service,
you have many affordable options in the CPU category. Some frameworks take advantage of Intel's
MKL DNN, which speeds up training and inference on C5 (not available in all Regions), C4, and C3
CPU instance types. For information about CPU instance types, see EC2 Instance Types and select
Compute Optimized.

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 C5 Instances have up to 72 Intel vCPUs. C5 instances excel at scientific modeling,
batch processing, distributed analytics, high-performance computing (HPC), and machine and
deep learning inference.

• Amazon EC2 C4 Instances have up to 36 Intel vCPUs.

Next Up

CPU 12

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g5/
https://aws.amazon.com/ec2/instance-types/g5g/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/c5/

Deep Learning AMI Developer Guide

Recommended Inferentia Instances

Recommended Inferentia Instances

AWS Inferentia instances are designed to provide high performance and cost efficiency for deep
learning model inference workloads. Specifically, Inf2 instance types use AWS Inferentia chips
and the AWS Neuron SDK, which is integrated with popular machine learning frameworks such as
TensorFlow and PyTorch.

Customers can use Inf2 instances to run large scale machine learning inference applications
such as search, recommendation engines, computer vision, speech recognition, natural language
processing, personalization, and fraud detection, at the lowest cost in the cloud.

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 Inf2 Instances have up to up to 16 AWS Inferentia chips and 100 Gbps of
networking throughput.

For more information about getting started with AWS Inferentia DLAMIs, see The AWS Inferentia
Chip With DLAMI.

Next Up

Recommended Trainium Instances

Recommended Trainium Instances

AWS Trainium instances are designed to provide high performance and cost efficiency for deep
learning model inference workloads. Specifically, Trn1 instance types use AWS Trainium chips
and the AWS Neuron SDK, which is integrated with popular machine learning frameworks such as
TensorFlow and PyTorch.

Customers can use Trn1 instances to run large scale machine learning inference applications
such as search, recommendation engines, computer vision, speech recognition, natural language
processing, personalization, and fraud detection, at the lowest cost in the cloud.

Inferentia 13

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://aws.amazon.com/ec2/instance-types/inf2/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/

Deep Learning AMI Developer Guide

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 Trn1 Instances have up to up to 16 AWS Trainium chips and 100 Gbps of
networking throughput.

Next Up

Recommended Habana Instances

Recommended Habana Instances

Instances with Habana accelerators are designed to provide high performance and cost efficiency
for deep learning model training workloads. Specifically, DL1 instance types use Habana Gaudi
accelerators from Habana Labs, an Intel company. DL1 instances are ideal for training machine
learning models used in applications such as natural language processing, object detection and
classification, recommendation engines, and autonomous vehicle perception.

Instances with Habana accelerators are configured with Habana SynapseAI software and pre-
integrated with popular machine learning frameworks such as TensorFlow and PyTorch. If you are
looking for an optimal combination of performance and price for training deep learning models,
consider instances with Habana accelerators for the lowest cost to train.

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 DL1 Instances have up to eight Habana Gaudi accelerators, 256GB of accelerator
memory, 4TB of local NVMe storage, and 400 Gbps of networking throughput.

For more information about getting started with Habana DLAMIs, see The Habana DLAMI.

Habana 14

https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/dl1/

Deep Learning AMI Developer Guide

Framework Support Policy

AWS Deep Learning AMIs(DLAMIs) simplify image configuration for deep learning workloads and
are optimized with the latest frameworks, hardware, drivers, libraries, and operating systems. This
page details the framework support policy for DLAMIs. For a list of available DLAMIs, see Release
Notes for DLAMI.

Supported Frameworks

Reference the following AWS Deep Learning AMI Framework Support Policy table to check which
frameworks and versions are actively supported.

Refer to End of patch to check how long AWS supports current versions that are actively supported
by the origin framework’s maintenance team. Frameworks and versions are available in single-
framework DLAMIs, or multi-framework DLAMIs.

Note

In the framework version x.y.z, x refers to the major version, y refers to the minor version,
and z refers to the patch version. For example, for TensorFlow 2.6.5, the major version is 2,
the minor version is 6, and the patch version is 5.

Refer to the release notes for more details on specific images:

• Single-framework DLAMI release notes

• Multi-framework DLAMI release notes

Frequently Asked Questions

• What framework versions get security patches?

• What images does AWS publish when new framework versions are released?

• What images get new SageMaker/AWS features?

• How is current version defined in the Supported Frameworks table?

• What if I am running a version that is not in the Supported Frameworks table?

Supported Frameworks 15

https://aws.amazon.com/machine-learning/amis/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-single
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-multi

Deep Learning AMI Developer Guide

• Do DLAMIs support previous versions of TensorFlow?

• How can I find the latest patched image for a supported framework version?

• How frequently are new images released?

• Will my instance be patched in place while my workload is running?

• What happens when a new patched or updated framework version is available?

• Are dependencies updated without changing the framework version?

• When does active support for my framework version end?

• Will images with framework versions that are no longer actively maintained be patched?

• How do I use an older framework version?

• How do I stay up-to-date with support changes in frameworks and their versions?

• Do I need a commercial license to use the Anaconda Repository?

What framework versions get security patches?

If the framework version is labeled Supported in the AWS Deep Learning AMI Framework Support
Policy table, it gets security patches.

What images does AWS publish when new framework versions are
released?

We publish new DLAMIs soon after new versions of TensorFlow and PyTorch are released. This
includes major versions, major-minor versions, and major-minor-patch versions of frameworks.
We also update images when new versions of drivers and libraries become available. For more
information on image maintenance, see When does active support for my framework version end?

What images get new SageMaker/AWS features?

New features typically release in the latest version of DLAMIs for PyTorch and TensorFlow. Refer to
the release notes for a specific image for details on new SageMaker or AWS features. For a list of
available DLAMIs, see Release Notes for DLAMI. For more information on image maintenance, see
When does active support for my framework version end?

How is current version defined in the Supported Frameworks table?

The current version in the AWS Deep Learning AMI Framework Support Policy table refers to
the newest framework version that AWS makes available on GitHub. Each latest release includes

What framework versions get security patches? 16

https://aws.amazon.com/releasenotes/dlami-support-policy/
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://aws.amazon.com/releasenotes/dlami-support-policy/

Deep Learning AMI Developer Guide

updates to the drivers, libraries, and relevant packages in the DLAMI. For information on image
maintenance, see When does active support for my framework version end?

What if I am running a version that is not in the Supported Frameworks
table?

If you are running a version that is not in the AWS Deep Learning AMI Framework Support Policy
table, you may not have the most updated drivers, libraries, and relevant packages. For a more up-
to-date version, we recommend that you upgrade to one of the supported frameworks available
using the latest DLAMI of your choice. For a list of available DLAMIs, see Release Notes for DLAMI.

Do DLAMIs support previous versions of TensorFlow?

No. We support the latest patch version of each framework’s latest major version released 365
days from its initial GitHub release as stated in the AWS Deep Learning AMI Framework Support
Policy table. For more information, see What if I am running a version that is not in the Supported
Frameworks table?

How can I find the latest patched image for a supported framework
version?

To use a DLAMI with the latest framework version, retrieve the DLAMI ID and use it to launch the
DLAMI using the EC2 Console. For sample AWS CLI commands to retrieve the AWS Deep Learning
AMI ID, refer to the Deep Learning Frameworks section in the AWS Deep Learning AMI Catalog. AWS
CLI AMI ID queries are also included in the single-framework DLAMI release notes. The framework
version that you choose must be labeled Supported in the AWS Deep Learning AMI Framework
Support Policy table.

How frequently are new images released?

Providing updated patch versions is our highest priority. We routinely create patched images at
the earliest opportunity. We monitor for newly patched framework versions (ex. TensorFlow 2.9
to TensorFlow 2.9.1) and new minor release versions (ex. TensorFlow 2.9 to TensorFlow 2.10)
and make them available at the earliest opportunity. When an existing version of TensorFlow is
released with a new version of CUDA, we release a new DLAMI for that version of TensorFlow with
support for the new CUDA version.

What if I am running a version that is not in the Supported Frameworks table? 17

https://aws.amazon.com/releasenotes/dlami-support-policy/
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://docs.aws.amazon.com/dlami/latest/devguide/find-dlami-id.html
https://docs.aws.amazon.com/dlami/latest/devguide/launch-from-console.html
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-single
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://aws.amazon.com/releasenotes/dlami-support-policy/

Deep Learning AMI Developer Guide

Will my instance be patched in place while my workload is running?

No. Patch updates for DLAMI are not “in-place” updates.

You must turn on a new EC2 instance, migrate your workloads and scripts, and then turn off your
previous instance.

What happens when a new patched or updated framework version is
available?

Regularly check the release notes page for your image. We encourage you to upgrade to new
patched or updated frameworks when they are available. For a list of available DLAMIs, see Release
Notes for DLAMI.

Are dependencies updated without changing the framework version?

We update dependencies without changing the framework version. However, if a dependency
update causes an incompatibility, we create an image with a different version. Be sure to check the
Release Notes for DLAMI for updated dependency information.

When does active support for my framework version end?

DLAMI images are immutable. Once they are created they do not change. There are four main
reasons why active support for a framework version ends:

• Framework version (patch) upgrades

• AWS security patches

• End of patch date (Aging out)

• Dependency end-of-support

Note

Due to the frequency of version patch upgrades and security patches, we recommend
checking the release notes page for your DLAMI often, and upgrading when changes are
made.

Will my instance be patched in place while my workload is running? 18

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html

Deep Learning AMI Developer Guide

Framework version (patch) upgrades

If you have a DLAMI workload based on TensorFlow 2.7.0 and TensorFlow releases version 2.7.1
on GitHub, then AWS releases a new DLAMI with TensorFlow 2.7.1. The previous images with
2.7.0 are no longer actively maintained once the new image with TensorFlow 2.7.1 is released. The
DLAMI with TensorFlow 2.7.0 does not receive further patches. The DLAMI release notes page for
TensorFlow 2.7 is then updated with the latest information. There is no individual release note
page for each minor patch.

New DLAMIs created due to patch upgrades are designated with a new AMI ID.

AWS security patches

If you have a workload based on an image with TensorFlow 2.7.0 and AWS makes a security patch,
then a new version of the DLAMI is released for TensorFlow 2.7.0. The previous version of the
images with TensorFlow 2.7.0 is no longer actively maintained. For more information, see Will my
instance be patched in place while my workload is running? For steps on finding the latest DLAMI,
see How can I find the latest patched image for a supported framework version?

New DLAMIs created due to patch upgrades are designated with a new AMI ID.

End of patch date (Aging out)

DLAMIs hit their end of patch date 365 days after the GitHub release date.

For multi-framework DLAMIs, when one of the framework versions is updated, a new DLAMI with
the updated version is required. The DLAMI with the old framework version is no longer actively
maintained.

Important

We make an exception when there is a major framework update. For example. if TensorFlow
1.15 updates to TensorFlow 2.0, then we continue to support the most recent version
of TensorFlow 1.15 for a period of two years from the date of the GitHub release or six
months after the origin framework maintenance team drops support, whichever date is
earlier.

When does active support for my framework version end? 19

https://docs.aws.amazon.com/dlami/latest/devguide/find-dlami-id.html
https://docs.aws.amazon.com/dlami/latest/devguide/find-dlami-id.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-multi

Deep Learning AMI Developer Guide

Dependency end-of-support

If you are running a workload on a TensorFlow 2.7.0 DLAMI image with Python 3.6 and that version
of Python is marked for end-of-support, then all DLAMI images based on Python 3.6 will no longer
be actively maintained. Similarly, if an OS version like Ubuntu 16.04 is marked for end-of-support,
then all DLAMI images that are dependent on Ubuntu 16.04 will no longer be actively maintained.

Will images with framework versions that are no longer actively
maintained be patched?

No. Images that are no longer actively maintained will not have new releases.

How do I use an older framework version?

To use a DLAMI with an older framework version, retrieve the DLAMI ID and use it to launch the
DLAMI using the EC2 Console. For AWS CLI commands to retrieve the AMI ID, refer to the Deep
Learning Frameworks section in the AWS Deep Learning AMI Catalog. AWS CLI AMI ID queries are
also included in the single-framework DLAMI release notes.

How do I stay up-to-date with support changes in frameworks and their
versions?

Stay up-to-date with DLAMI frameworks and versions using the AWS Deep Learning AMI
Framework Support Policy table, the DLAMI release notes.

Do I need a commercial license to use the Anaconda Repository?

Anaconda shifted to a commercial licensing model for certain users. Actively maintained DLAMIs
have been migrated to the publicly available open-source version of Conda (conda-forge) from the
Anaconda channel.

Will images with framework versions that are no longer actively maintained be patched? 20

https://docs.aws.amazon.com/dlami/latest/devguide/find-dlami-id.html
https://docs.aws.amazon.com/dlami/latest/devguide/launch-from-console.html
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-single
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://aws.amazon.com/releasenotes/dlami-support-policy/
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://anaconda.org/conda-forge

Deep Learning AMI Developer Guide

Launching and Configuring a DLAMI

If you're here you should already have a good idea of which AMI you want to launch. If not, find
a DLAMI and its related hardware, frameworks, and ID retrieval in the AWS Deep Learning AMI
Catalog or view the current and historic DLAMI release notes in Release Notes for DLAMI.

You should also know which instance type and region you're going to choose. If not, browse
Selecting the Instance Type for DLAMI.

Note

We will use p3.16xlarge as the default instance type in the examples. Just replace this with
whichever instance type you have in mind.

Important

If you plan to use Elastic Inference, you have Elastic Inference Setup that must be
completed prior to launching your DLAMI.

Topics

• Step 1: Launch a DLAMI

• Step 2: Connect to the DLAMI

• Step 3: Test Your DLAMI

• Step 4: Manage Your DLAMI Instance

• Clean Up

• Set up a Jupyter Notebook Server

Step 1: Launch a DLAMI

Note

For this walkthrough, we might make references specific to the Deep Learning AMI (Ubuntu
18.04). Even if you select a different DLAMI, you should be able to follow this guide.

Step 1: Launch a DLAMI 21

https://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html

Deep Learning AMI Developer Guide

1. Find the ID of your DLAMI

2. Launch an Amazon EC2 instance from your DLAMI

You will use the Amazon EC2 Console. Follow the instructions detailed in Launch from Amazon
EC2 Console

Tip

CLI Option: If you choose to spin up a DLAMI using the AWS CLI, you will need the AMI's
ID, the region and instance type, and your security token information. Be sure you have
your AMI and instance IDs ready. If you haven't set up the AWS CLI yet, do that first
using the guide for Installing the AWS Command Line Interface.

3. After you have completed the steps of one of those options, wait for the instance to be ready.
This usually takes only a few minutes. You can verify the status of the instance in the EC2
Console.

Retrieve the DLAMI ID

Each AMI possesses a unique identifier (ID). You can query the ID for the DLAMI of your choice with
the AWS Command Line Interface (AWS CLI). If you do not already have the AWS CLI installed, see
Getting started with the AWS CLI.

Note

Reminder: You can find all DLAMIs and their related processor/accelorator, operating
system, compute architecture, recommended Amazon EC2 instance families, support status,
and ID retrieval queries, in the AWS Deep Learning AMI Catalog. See also the DLAMI
release notes in Release Notes for DLAMI for additional informations (drivers, python
versions, Amazon EBS type).

1. Make sure that your AWS credentials are configured.

aws configure

2. Use the following command to retrieve the ID of your DLAMI or find the query provided in the
AWS Deep Learning AMI Catalog.

Retrieve the DLAMI ID 22

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/

Deep Learning AMI Developer Guide

aws ec2 describe-images --region us-east-1 --owners amazon \
--filters 'Name=name,Values=Deep Learning AMI (Ubuntu 18.04) Version ??.?'
 'Name=state,Values=available' \
--query 'reverse(sort_by(Images, &CreationDate))[:1].ImageId' --output text

Note

You can specify a release version for a given framework or get the latest release by
replacing the version number with a question mark.

3. The output should look similar to the following:

ami-094c089c38ed069f2

Copy this DLAMI ID and press q to exit the prompt.

Next Step

Launch from Amazon EC2 Console

Launch from Amazon EC2 Console

Note

To launch an instance with Elastic Fabric Adapter (EFA), refer to these steps.

1. Open the EC2 Console.

2. Note your current region in the top-most navigation. If this isn't your desired AWS Region,
change this option before proceeding. For more information, see EC2 Regions.

3. Choose Launch Instance.

4. Enter a name for your instance and select the DLAMI that is right for you.

a. Find an existing DLAMI in My AMIs or choose Quick Start.

b. Search by DLAMI ID. Browse the options then select your choice.

Launch from Amazon EC2 Console 23

https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region

Deep Learning AMI Developer Guide

5. Choose an instance type. You can find the recommended instance families for your DLAMI in
the AWS Deep Learning AMI Catalog. For general recommendations on DLAMI instance types,
see Instance Selection.

Note

If you want to use Elastic Inference (EI), click Configure Instance Details, select Add an
Amazon EI accelerator, then select the size of the Amazon EI accelerator.

6. Choose Launch Instance.

Tip

Check out Get Started with Deep Learning Using the AWS Deep Learning AMI for a walk-
through with screenshots.

Next Step

Step 2: Connect to the DLAMI

Step 2: Connect to the DLAMI

Connect to the DLAMI that you launched from a client (Windows, MacOS, or Linux). For more
information, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux Instances.

Keep a copy of the SSH login command handy if you want to do the Jupyter setup after logging in.
You will use a variation of it to connect to the Jupyter webpage.

Next Step

Step 3: Test Your DLAMI

Step 3: Test Your DLAMI

Depending on your DLAMI version, you have different testing options:

• Deep Learning AMI with Conda – go to Using the Deep Learning AMI with Conda.

• Deep Learning Base AMI – refer to your desired framework's installation documentation.

Step 2: Connect to the DLAMI 24

https://docs.aws.amazon.com/dlami/latest/devguide/instance-select.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-inference.html
https://aws.amazon.com/blogs/ai/get-started-with-deep-learning-using-the-aws-deep-learning-ami/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Deep Learning AMI Developer Guide

You can also create a Jupyter notebook, try out tutorials, or start coding in Python. For more
information, see Set up a Jupyter Notebook Server.

Step 4: Manage Your DLAMI Instance

Always keep your operating system and other installed software up to date by applying patches
and updates as soon as they become available.

If you are using Amazon Linux or Ubuntu, when you login to your DLAMI, you are notified if
updates are available and see instructions for updating. For further information on Amazon Linux
maintenance, see Updating Instance Software. For Ubuntu instances, refer to the official Ubuntu
documentation.

On Windows, check Windows Update regularly for software and security updates. If you prefer,
have updates applied automatically.

Important

For information about the Meltdown and Spectre vulnerabilities and how to patch your
operating system to address them, see Security Bulletin AWS-2018-013.

Clean Up

When you no longer need the DLAMI, you can stop it or terminate it to avoid incurring continuing
charges. Stopping an instance will keep it around so you can resume it later. Your configurations,
files, and other non-volatile information is being stored in a volume on Amazon S3. You will be
charged the small S3 fee to retain the volume while the instance is stopped, but you will no longer
be charged for the compute resources while it is in the stopped state. When your start the instance
again, it will mount that volume and your data will be there. If you terminate an instance, it is
gone, and you cannot start it again. Your data actually still resides on S3, so to prevent any further
charges you need to delete the volume as well. For more instructions, see Terminate Your Instance
in the Amazon EC2 User Guide for Linux Instances.

Set up a Jupyter Notebook Server

A Jupyter notebook server enables you to create and run Jupyter notebooks from your DLAMI
instance. With Jupyter notebooks, you can conduct machine learning (ML) experiments for training

Step 4: Manage Your DLAMI Instance 25

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-updates.html
https://help.ubuntu.com/
https://help.ubuntu.com/
https://aws.amazon.com/security/security-bulletins/AWS-2018-013/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Deep Learning AMI Developer Guide

and inference while using the AWS infrastructure and accessing packages built into the DLAMI. For
more information about Jupyter notebooks, see the Jupyter Notebook documentation.

To set up a Jupyter notebook server, you must:

• Configure the Jupyter notebook server on your Amazon EC2 DLAMI instance.

• Configure your client so that you can connect to the Jupyter notebook server. We provide
configuration instructions for Windows, macOS, and Linux clients.

• Test the setup by logging in to the Jupyter notebook server.

To complete the steps to set up a Jupyter, follow the instructions in the following topics. Once
you've set up a Jupyter notebook server, see Running Jupyter Notebook Tutorials for information
on running the example notebooks that ship in the DLAMI.

Topics

• Secure Your Jupyter Server

• Start the Jupyter notebook server

• Configure the Client to Connect to the Jupyter Server

• Test by Logging in to the Jupyter notebook server

Secure Your Jupyter Server

Here we set up Jupyter with SSL and a custom password.

Connect to the Amazon EC2 instance, and then complete the following procedure.

Configure the Jupyter server

1. Jupyter provides a password utility. Run the following command and enter your preferred
password at the prompt.

$ jupyter notebook password

The output will look something like this:

Enter password:
Verify password:

Secure Jupyter 26

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Deep Learning AMI Developer Guide

[NotebookPasswordApp] Wrote hashed password to /home/ubuntu/.jupyter/
jupyter_notebook_config.json

2. Create a self-signed SSL certificate. Follow the prompts to fill out your locality as you see
fit. You must enter . if you wish to leave a prompt blank. Your answers will not impact the
functionality of the certificate.

$ cd ~
$ mkdir ssl
$ cd ssl
$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.key -out
 mycert.pem

Note

You might be interested in creating a regular SSL certificate that is third party signed and
does not cause the browser to give you a security warning. This process is much more
involved. Visit Jupyter's documention for more information.

Next Step

Start the Jupyter notebook server

Start the Jupyter notebook server

Now you can fire up the Jupyter server by logging in to the instance and running the following
command that uses the SSL certificate you created in the previous step.

$ jupyter notebook --certfile=~/ssl/mycert.pem --keyfile ~/ssl/mykey.key

With the server started, you can now connect to it via an SSH tunnel from your client computer.
When the server runs, you will see some output from Jupyter confirming that the server is running.
At this point, ignore the callout that you can access the server via a localhost URL, because that
won't work until you create the tunnel.

Start Server 27

https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-let-s-encrypt

Deep Learning AMI Developer Guide

Note

Jupyter will handle switching environments for you when you switch frameworks using
the Jupyter web interface. More info on this can be found in Switching Environments with
Jupyter.

Next Step

Configure the Client to Connect to the Jupyter Server

Configure the Client to Connect to the Jupyter Server

After configuring your client to connect to the Jupyter notebook server, you can create and access
notebooks on the server in your workspace and run your deep learning code on the server.

For configuration information, choose one of the following links.

Topics

• Configure a Windows Client

• Configure a Linux or macOS Client

Configure a Windows Client

Prepare

Be sure you have the following information, which you need to set up the SSH tunnel:

• The public DNS name of your Amazon EC2 instance. You can find the public DNS name in the
EC2 console.

• The key pair for the private key file. For more information about accessing your key pair, see
Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

Using Jupyter Notebooks from a Windows Client

Refer to these guides on connecting to your Amazon EC2 instance from a Windows client.

1. Troubleshooting Connecting to Your Instance

Configure Client 28

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Deep Learning AMI Developer Guide

2. Connecting to Your Linux Instance from Windows Using PuTTY

To create a tunnel to a running Jupyter server, a recommended approach is to install Git Bash
on your Windows client, then follow the Linux/macOS client instructions. However, you may use
whatever approach you want for opening an SSH tunnel with port mapping. Refer to Jupyter's
documentation for further information.

Next Step

Configure a Linux or macOS Client

Configure a Linux or macOS Client

1. Open a terminal.

2. Run the following command to forward all requests on local port 8888 to port 8888 on your
remote Amazon EC2 instance. Update the command by replacing the location of your key to
access the Amazon EC2 instance and the public DNS name of your Amazon EC2 instance. Note,
for an Amazon Linux AMI, the user name is ec2-user instead of ubuntu.

$ ssh -i ~/mykeypair.pem -N -f -L 8888:localhost:8888 ubuntu@ec2-###-##-##-
###.compute-1.amazonaws.com

This command opens a tunnel between your client and the remote Amazon EC2 instance that
is running the Jupyter notebook server.

Next Step

Test by Logging in to the Jupyter notebook server

Test by Logging in to the Jupyter notebook server

Now you are ready to log in to the Jupyter notebook server.

Your next step is to test the connection to the server through your browser.

1. In the address bar of your browser, type the following URL, or click on this link: https://
localhost:8888

2. With a self signed SSL certificate, your browser will warn you and prompt you to avoid
continuing to visit the website.

Log in to the Jupyter notebook server 29

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html
https://localhost:8888
https://localhost:8888

Deep Learning AMI Developer Guide

Since you set this up yourself, it is safe to continue. Depending your browser you will get an
"advanced", "show details", or similar button.

Log in to the Jupyter notebook server 30

Deep Learning AMI Developer Guide

Click on this, then click on the "proceed to localhost" link. If the connection is successful, you
see the Jupyter notebook server webpage. At this point, you will be asked for the password
you previously setup.

Now you have access to the Jupyter notebook server that is running on the DLAMI. You can
create new notebooks or run the provided Tutorials.

Log in to the Jupyter notebook server 31

Deep Learning AMI Developer Guide

Using a DLAMI

Topics

• Using the Deep Learning AMI with Conda

• Using the Deep Learning Base AMI

• Running Jupyter Notebook Tutorials

• Tutorials

The following sections describe how the Deep Learning AMI with Conda can be used to switch
environments, run sample code from each of the frameworks, and run Jupyter so you can try out
different notebook tutorials.

Using the Deep Learning AMI with Conda

Topics

• Introduction to the Deep Learning AMI with Conda

• Log in to Your DLAMI

• Start the TensorFlow Environment

• Switch to the PyTorch Python 3 Environment

• Switch to the MXNet Python 3 Environment

• Removing Environments

Introduction to the Deep Learning AMI with Conda

Conda is an open source package management system and environment management system that
runs on Windows, macOS, and Linux. Conda quickly installs, runs, and updates packages and their
dependencies. Conda easily creates, saves, loads and switches between environments on your local
computer.

The Deep Learning AMI with Conda has been configured for you to easily switch between deep
learning environments. The following instructions guide you on some basic commands with conda.
They also help you verify that the basic import of the framework is functioning, and that you can

Conda DLAMI 32

Deep Learning AMI Developer Guide

run a couple simple operations with the framework. You can then move on to more thorough
tutorials provided with the DLAMI or the frameworks' examples found on each frameworks' project
site.

Log in to Your DLAMI

After you log in to your server, you will see a server "message of the day" (MOTD) describing
various Conda commands that you can use to switch between the different deep learning
frameworks. Below is an example MOTD. Your specific MOTD may vary as new versions of the
DLAMI are released.

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, and Keras Conda
environments in the AWS Deep Learning AMI starting with the v28 release. Previous
releases of the AWS Deep Learning AMI that contain these environments will continue to be
available. However, we will only provide updates to these environments if there are security
fixes published by the open source community for these frameworks.

===
 __| __|_)
 _| (/ Deep Learning AMI (Ubuntu 18.04) Version 40.0
 ___|___|___|
===

Welcome to Ubuntu 18.04.5 LTS (GNU/Linux 5.4.0-1037-aws x86_64v)

Please use one of the following commands to start the required environment with the
 framework of your choice:
for AWS MX 1.7 (+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN)
 _______________________________ source activate mxnet_p36
for AWS MX 1.8 (+Keras2) with Python3 (CUDA + and Intel MKL-DNN)
 ___________________________ source activate mxnet_latest_p37
for AWS MX(+AWS Neuron) with Python3
 ___ source activate
 aws_neuron_mxnet_p36
for AWS MX(+Amazon Elastic Inference) with Python3
 _______________________________________ source activate amazonei_mxnet_p36
for TensorFlow(+Keras2) with Python3 (CUDA + and Intel MKL-DNN)
 _____________________________ source activate tensorflow_p37

Log in to Your DLAMI 33

Deep Learning AMI Developer Guide

for Tensorflow(+AWS Neuron) with Python3 ___
 source activate aws_neuron_tensorflow_p36
for TensorFlow 2(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN)
 _______________________ source activate tensorflow2_p36
for TensorFlow 2.3 with Python3.7 (CUDA + and Intel MKL-DNN) ________________________
 source activate tensorflow2_latest_p37
for PyTorch 1.4 with Python3 (CUDA 10.1 and Intel MKL)
 ___ source activate pytorch_p36
for PyTorch 1.7.1 with Python3.7 (CUDA 11.0 and Intel MKL)
 ________________________________ source activate pytorch_latest_p37
for PyTorch (+AWS Neuron) with Python3 __
 source activate aws_neuron_pytorch_p36
for base Python3 (CUDA 10.0)
 ___ source
 activate python3

Each Conda command has the following pattern:

source activate framework_python-version

For example, you may see for MXNet(+Keras1) with Python3 (CUDA 10.1)
_____________________ source activate mxnet_p36, which signifies that the
environment has MXNet, Keras 1, Python 3, and CUDA 10.1. And to activate this environment, the
command you would use is:

$ source activate mxnet_p36

Start the TensorFlow Environment

Note

When you launch your first Conda environment, please be patient while it loads. The
Deep Learning AMI with Conda automatically installs the most optimized version of the
framework for your EC2 instance upon the framework's first activation. You should not
expect subsequent delays.

1. Activate the TensorFlow virtual environment for Python 3.

$ source activate tensorflow_p37

Start the TensorFlow Environment 34

Deep Learning AMI Developer Guide

2. Start the iPython terminal.

(tensorflow_37)$ ipython

3. Run a quick TensorFlow program.

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

You should see "Hello, Tensorflow!"

Next Up

Running Jupyter Notebook Tutorials

Switch to the PyTorch Python 3 Environment

If you're still in the iPython console, use quit(), then get ready to switch environments.

• Activate the PyTorch virtual environment for Python 3.

$ source activate pytorch_p36

Test Some PyTorch Code

To test your installation, use Python to write PyTorch code that creates and prints an array.

1. Start the iPython terminal.

(pytorch_p36)$ ipython

2. Import PyTorch.

import torch

You might see a warning message about a third-party package. You can ignore it.

Switch to the PyTorch Python 3 Environment 35

Deep Learning AMI Developer Guide

3. Create a 5x3 matrix with the elements initialized randomly. Print the array.

x = torch.rand(5, 3)
print(x)

Verify the result.

tensor([[0.3105, 0.5983, 0.5410],
 [0.0234, 0.0934, 0.0371],
 [0.9740, 0.1439, 0.3107],
 [0.6461, 0.9035, 0.5715],
 [0.4401, 0.7990, 0.8913]])

Switch to the MXNet Python 3 Environment

If you're still in the iPython console, use quit(), then get ready to switch environments.

• Activate the MXNet virtual environment for Python 3.

$ source activate mxnet_p36

Test Some MXNet Code

To test your installation, use Python to write MXNet code that creates and prints an array using the
NDArray API. For more information, see NDArray API.

1. Start the iPython terminal.

(mxnet_p36)$ ipython

2. Import MXNet.

import mxnet as mx

You might see a warning message about a third-party package. You can ignore it.

3. Create a 5x5 matrix, an instance of the NDArray, with elements initialized to 0. Print the array.

Switch to the MXNet Python 3 Environment 36

https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html

Deep Learning AMI Developer Guide

mx.ndarray.zeros((5,5)).asnumpy()

Verify the result.

array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]], dtype=float32)

You can find more examples of MXNet in the MXNet tutorials section.

Removing Environments

If you run out of space on the DLAMI, you can choose to uninstall Conda packages that you are not
using:

conda env list
conda env remove –-name <env_name>

Using the Deep Learning Base AMI

Using the Deep Learning Base AMI

The Base AMI comes with a foundational platform of GPU drivers and acceleration libraries to
deploy your own customized deep learning environment. By default the AMI is configured with the
NVIDIA CUDA 11.0 environment. You can also switch between different versions of CUDA. Refer to
the following instructions for how to do this.

Configuring CUDA Versions

You can verify the CUDA version by running NVIDIA's nvcc program.

nvcc --version

You can select and verify a particular CUDA version with the following bash command:

Removing Environments 37

Deep Learning AMI Developer Guide

sudo rm /usr/local/cuda
sudo ln -s /usr/local/cuda-11.0 /usr/local/cuda

For more information, see the Base DLAMI release notes.

Running Jupyter Notebook Tutorials

Tutorials and examples ship with each of the deep learning projects' source and in most cases they
will run on any DLAMI. If you chose the Deep Learning AMI with Conda, you get the added benefit
of a few hand-picked tutorials already set up and ready to try out.

Important

To run the Jupyter notebook tutorials installed on the DLAMI, you will need to Set up a
Jupyter Notebook Server.

Once the Jupyter server is running, you can run the tutorials through your web browser. If you are
running the Deep Learning AMI with Conda or if you have set up Python environments, you can
switch Python kernels from the Jupyter notebook interface. Select the appropriate kernel before
trying to run a framework-specific tutorial. Further examples of this are provided for users of the
Deep Learning AMI with Conda.

Note

Many tutorials require additional Python modules that may not be set up on your DLAMI.
If you get an error like "xyz module not found", log in to the DLAMI, activate the
environment as described above, then install the necessary modules.

Tip

Deep learning tutorials and examples often rely on one or more GPUs. If your instance type
doesn't have a GPU, you may need to change some of the example's code to get it to run.

Jupyter Notebooks 38

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-base

Deep Learning AMI Developer Guide

Navigating the Installed Tutorials

Once you're logged in to the Jupyter server and can see the tutorials directory (on Deep Learning
AMI with Conda only), you will be presented with folders of tutorials by each framework name.
If you don't see a framework listed, then tutorials are not available for that framework on your
current DLAMI. Click on the name of the framework to see the listed tutorials, then click a tutorial
to launch it.

The first time you run a notebook on the Deep Learning AMI with Conda, it will want to know
which environment you would like to use. It will prompt you to select from a list. Each environment
is named according to this pattern:

Environment (conda_framework_python-version)

For example, you might see Environment (conda_mxnet_p36), which signifies that the
environment has MXNet and Python 3. The other variation of this would be Environment
(conda_mxnet_p27), which signifies that the environment has MXNet and Python 2.

Tip

If you're concerned about which version of CUDA is active, one way to see it is in the MOTD
when you first log in to the DLAMI.

Switching Environments with Jupyter

If you decide to try a tutorial for a different framework, be sure to verify the currently running
kernel. This info can be seen in the upper right of the Jupyter interface, just below the logout
button. You can change the kernel on any open notebook by clicking the Jupyter menu item
Kernel, then Change Kernel, and then clicking the environment that suits the notebook you're
running.

At this point you'll need to rerun any cells because a change in the kernel will erase the state of
anything you've run previously.

Tip

Switching between frameworks can be fun and educational, however you can run out of
memory. If you start running into errors, look at the terminal window that has the Jupyter

Navigating the Installed Tutorials 39

Deep Learning AMI Developer Guide

server running. There are helpful messages and error logging here, and you may see an out-
of-memory error. To fix this, you can go to the home page of your Jupyter server, click the
Running tab, then click Shutdown for each of the tutorials that are probably still running
in the background and eating up all of your memory.

Next Up

For more examples and sample code from each framework, click Next or continue to Apache
MXNet (Incubating).

Tutorials

The following are tutorials on how to use the Deep Learning AMI with Conda's software.

Topics

• 10 Minute Tutorials

• Activating Frameworks

• Debugging and Visualization

• Distributed Training

• Elastic Fabric Adapter

• GPU Monitoring and Optimization

• The AWS Inferentia Chip With DLAMI

• The Graviton DLAMI

• The Habana DLAMI

• Inference

• Using Frameworks with ONNX

• Model Serving

10 Minute Tutorials

• Launch a AWS Deep Learning AMI (in 10 minutes)

• Train a Deep Learning model with DLC on Amazon EC2 (in 10 minutes)

Tutorials 40

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://aws.amazon.com/getting-started/tutorials/train-deep-learning-model-aws-ec2-containers/

Deep Learning AMI Developer Guide

Activating Frameworks

The following are the deep learning frameworks installed on the Deep Learning AMI with Conda.
Click on a framework to learn how to activate it.

Topics

• Apache MXNet (Incubating)

• Caffe2

• Chainer

• CNTK

• Keras

• PyTorch

• TensorFlow

• TensorFlow 2

• TensorFlow with Horovod

• TensorFlow 2 with Horovod

• Theano

Apache MXNet (Incubating)

Activating Apache MXNet (Incubating)

This tutorial shows how to activate MXNet on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a MXNet program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Installing MXNet's Nightly
Build (experimental) manually.

To run MXNet on the DLAMI with Conda

1. To activate the framework, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of
the DLAMI with Conda.

• For MXNet and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p36

Activating Frameworks 41

Deep Learning AMI Developer Guide

• For MXNet and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p27

2. Start the iPython terminal.

(mxnet_p36)$ ipython

3. Run a quick MXNet program. Create a 5x5 matrix, an instance of the NDArray, with elements
initialized to 0. Print the array.

import mxnet as mx
mx.ndarray.zeros((5,5)).asnumpy()

4. Verify the result.

array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]], dtype=float32)

Installing MXNet's Nightly Build (experimental)

You can install the latest MXNet build into either or both of the MXNet Conda environments on
your Deep Learning AMI with Conda.

To install MXNet from a nightly build

1. • For the Python 3 MXNet environment, run this command:

$ source activate mxnet_p36

• For the Python 2 MXNet environment, run this command:

$ source activate mxnet_p27

2. Remove the currently installed MXNet.

Activating Frameworks 42

Deep Learning AMI Developer Guide

Note

The remaining steps assume you are using the mxnet_p36 environment.

(mxnet_p36)$ pip uninstall mxnet-cu90mkl

3. Install the latest nightly build of MXNet.

(mxnet_p36)$ pip install --pre mxnet-cu90mkl

4. To verify you have successfully installed latest nightly build, start the IPython terminal and
check the version of MXNet.

(mxnet_p36)$ ipython

import mxnet
print (mxnet.__version__)

The output should print the latest stable version of MXNet.

More Tutorials

You can find more tutorials in the Deep Learning AMI with Conda tutorials folder, which is in the
home directory of the DLAMI.

1. Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model

2. Use Apache MXNet (Incubating) for Inference with an ONNX Model

3. Model Server for Apache MXNet (MMS)

For more tutorials and examples, see the framework's official Python documentation, the Python
API for MXNet, or the Apache MXNet website.

Activating Frameworks 43

https://mxnet.apache.org/api/python.html
https://mxnet.apache.org/api/python.html
https://mxnet.incubator.apache.org/

Deep Learning AMI Developer Guide

Caffe2

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

Caffe2 Tutorial

To activate the framework, follow these instructions on your Deep Learning AMI with Conda.

There is only the Python 2 with CUDA 9 with cuDNN 7 option:

$ source activate caffe2_p27

Start the iPython terminal.

(caffe2_p27)$ ipython

Run a quick Caffe2 program.

from caffe2.python import workspace, model_helper
import numpy as np
Create random tensor of three dimensions
x = np.random.rand(4, 3, 2)
print(x)
print(x.shape)
workspace.FeedBlob("my_x", x)
x2 = workspace.FetchBlob("my_x")
print(x2)

You should see the initial numpy random arrays printed and then those loaded into a Caffe2 blob.
Note that after loading they are the same.

Activating Frameworks 44

Deep Learning AMI Developer Guide

More Tutorials

For more tutorials and examples refer to the framework's official Python docs, Python API for
Caffe2, and the Caffe2 website.

Chainer

Note

We no longer include Chainer Conda environments in the AWS Deep Learning AMI starting
with the v28 release. Previous releases of the AWS Deep Learning AMI that contain these
environments will continue to be available. However, we will only provide updates to these
environments if there are security fixes published by the open source community for these
frameworks.

Chainer is a flexible Python-based framework for easily and intuitively writing complex neural
network architectures. Chainer makes it easy to use multi-GPU instances for training. Chainer also
automatically logs results, graph loss and accuracy, and produces output for visualizing the neural
network with a computational graph. It is included with the Deep Learning AMI with Conda (DLAMI
with Conda).

Activate Chainer

1. Connect to the instance running Deep Learning AMI with Conda. Refer to the the section called
“Instance Selection” or the Amazon EC2 documentation on how to select or connect to an
instance.

2. • Activate the Python 3 Chainer environment:

$ source activate chainer_p36

• Activate the Python 2 Chainer environment:

$ source activate chainer_p27

3. Start the iPython terminal:

(chainer_p36)$ ipython

4. Test importing Chainer to verify that it is working properly:

Activating Frameworks 45

https://caffe2.ai/doxygen-python/html/annotated.html
https://caffe2.ai/doxygen-python/html/annotated.html
https://caffe2.ai
https://chainer.org/
https://docs.chainer.org/en/stable/reference/graph.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Deep Learning AMI Developer Guide

import chainer

You may see a few warning messages, but no error.

More Info

• Try the tutorials for Chainer.

• The Chainer examples folder inside the source you downloaded earlier contains more examples.
Try them to see how they perform.

• To learn more about Chainer, see the Chainer documentation website.

CNTK

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

Activating CNTK

This tutorial shows how to activate CNTK on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a CNTK program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Install the CNTK Nightly Build
(experimental) manually.

To run CNTK on the DLAMI with Conda

1. To activate CNTK, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.

• For Python 3 with CUDA 9 with cuDNN 7:

Activating Frameworks 46

https://docs.chainer.org/

Deep Learning AMI Developer Guide

$ source activate cntk_p36

• For Python 2 with CUDA 9 with cuDNN 7:

$ source activate cntk_p27

2. Start the iPython terminal.

(cntk_p36)$ ipython

3. • If you have a CPU instance, run this quick CNTK program.

import cntk as C
C.__version__
c = C.constant(3, shape=(2,3))
c.asarray()

You should see the CNTK version, then the output of a 2x3 array of 3's.

• If you have a GPU instance, you can test it with the following code example. A result of
True is what you would expect if CNTK can access the GPU.

from cntk.device import try_set_default_device, gpu
try_set_default_device(gpu(0))

Install the CNTK Nightly Build (experimental)

You can install the latest CNTK build into either or both of the CNTK Conda environments on your
Deep Learning AMI with Conda.

To install CNTK from a nightly build

1. • For CNTK and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate cntk_p36

• For CNTK and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate cntk_p27

Activating Frameworks 47

Deep Learning AMI Developer Guide

2. The remaining steps assume you are using the cntk_p36 environment. Remove the currently
installed CNTK.

(cntk_p36)$ pip uninstall cntk

3. To install the CNTK nightly build, you first need to find the version you want to install from the
CNTK nightly website.

4. • (Option for GPU instances) - To install the nightly build, you would use the following,
substituting in the desired build:

(cntk_p36)$ pip install https://cntk.ai/PythonWheel/GPU/latest-nightly-build

Replace the URL in the previous command with the GPU version for your current Python
environment.

• (Option for CPU instances) - To install the nightly build, you would use the following,
substituting in the desired build:

(cntk_p36)$ pip install https://cntk.ai/PythonWheel/CPU-Only/latest-nightly-
build

Replace the URL in the previous command with the CPU version for your current Python
environment.

5. To verify you have successfully installed latest nightly build, start the IPython terminal and
check the version of CNTK.

(cntk_p36)$ ipython

import cntk
print (cntk.__version__)

The output should print something similar to 2.6-rc0.dev20181015

More Tutorials

For more tutorials and examples, see the framework's official Python docs, Python API for CNTK, or
the CNTK website.

Activating Frameworks 48

https://cntk.ai/nightly-linux.html
https://cntk.ai/pythondocs/gettingstarted.html
https://www.microsoft.com/en-us/cognitive-toolkit/

Deep Learning AMI Developer Guide

Keras

Keras Tutorial

1. To activate the framework, use these commands on your the section called “Conda DLAMI” CLI.

• For Keras 2 with an MXNet backend on Python 3 with CUDA 9 with cuDNN 7:

$ source activate mxnet_p36

• For Keras 2 with an MXNet backend on Python 2 with CUDA 9 with cuDNN 7:

$ source activate mxnet_p27

• For Keras 2 with a TensorFlow backend on Python 3 with CUDA 9 with cuDNN 7:

$ source activate tensorflow_p36

• For Keras 2 with a TensorFlow backend on Python 2 with CUDA 9 with cuDNN 7:

$ source activate tensorflow_p27

2. To test importing Keras to verify which backend is activated, use these commands:

$ ipython
import keras as k

The following should appear on your screen:

Using MXNet backend

If Keras is using TensorFlow, the following is displayed:

Using TensorFlow backend

Activating Frameworks 49

Deep Learning AMI Developer Guide

Note

If you get an error, or if the wrong backend is still being used, you can update your
Keras configuration manually. Edit the ~/.keras/keras.json file and change the
backend setting to mxnet or tensorflow.

More Tutorials

• For a multi-GPU tutorial using Keras with a MXNet backend, try the Keras-MXNet Multi-GPU
Training Tutorial.

• You can find examples for Keras with a MXNet backend in the Deep Learning AMI with Conda ~/
examples/keras-mxnet directory.

• You can find examples for Keras with a TensorFlow backend in the Deep Learning AMI with
Conda ~/examples/keras directory.

• For additional tutorials and examples, see the Keras website.

PyTorch

Activating PyTorch

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Install PyTorch's Nightly Build
(experimental) manually.

To activate the currently installed framework, follow these instructions on your Deep Learning AMI
with Conda.

For PyTorch on Python 3 with CUDA 10 and MKL-DNN, run this command:

$ source activate pytorch_p36

For PyTorch on Python 2 with CUDA 10 and MKL-DNN, run this command:

$ source activate pytorch_p27

Start the iPython terminal.

Activating Frameworks 50

https://keras.io/

Deep Learning AMI Developer Guide

(pytorch_p36)$ ipython

Run a quick PyTorch program.

import torch
x = torch.rand(5, 3)
print(x)
print(x.size())
y = torch.rand(5, 3)
print(torch.add(x, y))

You should see the initial random array printed, then its size, and then the addition of another
random array.

Install PyTorch's Nightly Build (experimental)

How to install PyTorch from a nightly build

You can install the latest PyTorch build into either or both of the PyTorch Conda environments on
your Deep Learning AMI with Conda.

1. • (Option for Python 3) - Activate the Python 3 PyTorch environment:

$ source activate pytorch_p36

• (Option for Python 2) - Activate the Python 2 PyTorch environment:

$ source activate pytorch_p27

2. The remaining steps assume you are using the pytorch_p36 environment. Remove the
currently installed PyTorch:

(pytorch_p36)$ pip uninstall torch

3. • (Option for GPU instances) - Install the latest nightly build of PyTorch with CUDA 10.0:

(pytorch_p36)$ pip install torch_nightly -f https://download.pytorch.org/whl/
nightly/cu100/torch_nightly.html

• (Option for CPU instances) - Install the latest nightly build of PyTorch for instances with
no GPUs:

Activating Frameworks 51

Deep Learning AMI Developer Guide

(pytorch_p36)$ pip install torch_nightly -f https://download.pytorch.org/whl/
nightly/cpu/torch_nightly.html

4. To verify you have successfully installed latest nightly build, start the IPython terminal and
check the version of PyTorch.

(pytorch_p36)$ ipython

import torch
print (torch.__version__)

The output should print something similar to 1.0.0.dev20180922

5. To verify that the PyTorch nightly build works well with the MNIST example, you can run a test
script from PyTorch's examples repository:

(pytorch_p36)$ cd ~
(pytorch_p36)$ git clone https://github.com/pytorch/examples.git pytorch_examples
(pytorch_p36)$ cd pytorch_examples/mnist
(pytorch_p36)$ python main.py || exit 1

More Tutorials

You can find more tutorials in the Deep Learning AMI with Conda tutorials folder in the home
directory of the DLAMI. For further tutorials and examples refer to the framework's official docs,
PyTorch documentation, and the PyTorch website.

• PyTorch to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

TensorFlow

Activating TensorFlow

This tutorial shows how to activate TensorFlow on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a TensorFlow program.

Activating Frameworks 52

http://pytorch.org/docs/master/
http://pytorch.org

Deep Learning AMI Developer Guide

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Install TensorFlow's Nightly
Build (experimental) manually.

To run TensorFlow on the DLAMI with Conda

1. To activate TensorFlow, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.

• For TensorFlow and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate tensorflow_p36

• For TensorFlow and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate tensorflow_p27

2. Start the iPython terminal:

(tensorflow_p36)$ ipython

3. Run a TensorFlow program to verify that it is working properly:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

Hello, TensorFlow! should appear on your screen.

Install TensorFlow's Nightly Build (experimental)

You can install the latest TensorFlow build into either or both of the TensorFlow Conda
environments on your Deep Learning AMI with Conda.

To install TensorFlow from a nightly build

1. • For the Python 3 TensorFlow environment, run the following command:

Activating Frameworks 53

Deep Learning AMI Developer Guide

$ source activate tensorflow_p36

• For the Python 2 TensorFlow environment, run the following command:

$ source activate tensorflow_p27

2. Remove the currently installed TensorFlow.

Note

The remaining steps assume you are using the tensorflow_p36 environment.

(tensorflow_p36)$ pip uninstall tensorflow

3. Install the latest nightly build of TensorFlow.

(tensorflow_p36)$ pip install tf-nightly

4. To verify you have successfully installed latest nightly build, start the IPython terminal and
check the version of TensorFlow.

(tensorflow_p36)$ ipython

import tensorflow
print (tensorflow.__version__)

The output should print something similar to 1.12.0-dev20181012

More Tutorials

TensorFlow with Horovod

TensorBoard

TensorFlow Serving

For tutorials, see the folder called Deep Learning AMI with Conda tutorials in the home
directory of the DLAMI.

Activating Frameworks 54

Deep Learning AMI Developer Guide

For more tutorials and examples, see the TensorFlow documentation for the TensorFlow Python
API or see the TensorFlow website.

TensorFlow 2

This tutorial shows how to activate TensorFlow 2 on an instance running the Deep Learning AMI
with Conda (DLAMI on Conda) and run a TensorFlow 2 program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Install TensorFlow 2's Nightly
Build (experimental) manually.

Activating TensorFlow 2

To run TensorFlow on the DLAMI with Conda

1. To activate TensorFlow 2, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of
the DLAMI with Conda.

2. For TensorFlow 2 and Keras 2 on Python 3 with CUDA 10.1 and MKL-DNN, run this command:

$ source activate tensorflow2_p36

3. Start the iPython terminal:

(tensorflow2_p36)$ ipython

4. Run a TensorFlow 2 program to verify that it is working properly:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
tf.print(hello)

Hello, TensorFlow! should appear on your screen.

Install TensorFlow 2's Nightly Build (experimental)

You can install the latest TensorFlow 2 build into either or both of the TensorFlow 2 Conda
environments on your Deep Learning AMI with Conda.

Activating Frameworks 55

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org

Deep Learning AMI Developer Guide

To install TensorFlow from a nightly build

1. For the Python 3 TensorFlow 2 environment, run the following command:

$ source activate tensorflow2_p36

2. Remove the currently installed TensorFlow.

Note

The remaining steps assume you are using the tensorflow2_p36 environment.

(tensorflow2_p36)$ pip uninstall tensorflow

3. Install the latest nightly build of TensorFlow.

(tensorflow2_p36)$ pip install tf-nightly

4. To verify you have successfully installed latest nightly build, start the IPython terminal and
check the version of TensorFlow.

(tensorflow2_p36)$ ipython

import tensorflow
print (tensorflow.__version__)

The output should print something similar to 2.1.0-dev20191122

More Tutorials

For tutorials, see the folder called Deep Learning AMI with Conda tutorials in the home
directory of the DLAMI.

For more tutorials and examples, see the TensorFlow documentation for the TensorFlow Python
API or see the TensorFlow website.

Activating Frameworks 56

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org

Deep Learning AMI Developer Guide

TensorFlow with Horovod

This tutorial shows how to activate TensorFlow with Horovod on an AWS Deep Learning AMI
(DLAMI) with Conda. Horovod is pre-installed in the Conda environments for TensorFlow. The
Python3 environment is recommended.

Note

Only P3.*, P2.*, and G3.* instance types are supported.

To activate TensorFlow and test Horovod on the DLAMI with Conda

1. Open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda.
For help getting started with a DLAMI, see the section called “How to Get Started with the
DLAMI”.

2. (Recommended) For TensorFlow 1.15 with Horovod on Python 3 with CUDA 11, run the
following command:

$ source activate tensorflow_p37

3. Start the iPython terminal:

(tensorflow_p37)$ ipython

4. Test importing TensorFlow with Horovod to verify that it's working properly:

import horovod.tensorflow as hvd
hvd.init()

The following may appear on your screen (you may ignore any warning messages).

--
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)

Activating Frameworks 57

Deep Learning AMI Developer Guide

 Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.
--

More Info

• TensorFlow with Horovod

• For tutorials, see the examples/horovod folder in the home directory of the DLAMI.

• For even more tutorials and examples, see the Horovod GitHub project.

TensorFlow 2 with Horovod

This tutorial shows how to activate TensorFlow 2 with Horovod on an AWS Deep Learning AMI
(DLAMI) with Conda. Horovod is pre-installed in the Conda environments for TensorFlow 2. The
Python3 environment is recommended.

Note

Only P3.*, P2.*, and G3.* instance types are supported.

To activate TensorFlow 2 and test Horovod on the DLAMI with Conda

1. Open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda.
For help getting started with a DLAMI, see the section called “How to Get Started with the
DLAMI”.

• (Recommended) For TensorFlow 2 with Horovod on Python 3 with CUDA 10, run this
command:

$ source activate tensorflow2_p36

• For TensorFlow 2 with Horovod on Python 2 with CUDA 10, run this command:

$ source activate tensorflow2_p27

Activating Frameworks 58

https://github.com/uber/horovod

Deep Learning AMI Developer Guide

2. Start the iPython terminal:

(tensorflow2_p36)$ ipython

3. Test importing TensorFlow 2 with Horovod to verify that it's working properly:

import horovod.tensorflow as hvd
hvd.init()

If you don't receive any output, then Horovod is working properly. The following may appear
on your screen (you may ignore any warning messages).

--
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
 Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.
--

More Info

• For tutorials, see the examples/horovod folder in the home directory of the DLAMI.

• For even more tutorials and examples, see the Horovod GitHub project.

Activating Frameworks 59

https://github.com/uber/horovod

Deep Learning AMI Developer Guide

Theano

Theano Tutorial

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

To activate the framework, follow these instructions on your Deep Learning AMI with Conda.

For Theano + Keras in Python 3 with CUDA 9 with cuDNN 7:

$ source activate theano_p36

For Theano + Keras in Python 2 with CUDA 9 with cuDNN 7:

$ source activate theano_p27

Start the iPython terminal.

(theano_p36)$ ipython

Run a quick Theano program.

import numpy
import theano
import theano.tensor as T
from theano import pp
x = T.dscalar('x')
y = x ** 2
gy = T.grad(y, x)
pp(gy)

Activating Frameworks 60

Deep Learning AMI Developer Guide

You should see Theano computing a symbolic gradient.

More Tutorials

For further tutorials and examples refer to the framework's official docs, Theano Python API, and
the Theano website.

Debugging and Visualization

Learn about the debugging and visualization options for the DLAMI. Click on one of the options to
learn how to use it.

Topics

• MXBoard

• TensorBoard

MXBoard

MXBoard lets you to visually inspect and interpret your MXNet runs and graphs using the
TensorBoard software. It runs a web server that serves a webpage for viewing and interacting with
the MXBoard visualizations.

MXNet, TensorBoard, and MXBoard are preinstalled with the Deep Learning AMI with Conda
(DLAMI with Conda). In this tutorial, you use an MXBoard function to generate logs that are
compatible with TensorBoard.

Topics

• Using MXNet with MXBoard

• More Info

Using MXNet with MXBoard

Generate MXBoard Log Data Compatible with TensorBoard

1. Connect to your Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with
Conda.

2. Activate the Python 3 MXNet environment.

Debugging and Visualization 61

http://deeplearning.net/software/theano/library/index.html
http://deeplearning.net/software/theano/
https://github.com/awslabs/mxboard

Deep Learning AMI Developer Guide

$ source activate mxnet_p36

3. Prepare a Python script for writing data generated by the normal operator to an event file. The
data is generated ten times with decreasing standard deviation, then written to the event file
each time. You will see data distribution gradually become more centered around the mean
value. Note that you will specify the event file in the logs folder. You pass this folder path to
the TensorBoard binary.

$ vi mxboard_normal.py

4. Paste the following in the file and save it:

import mxnet as mx
from mxboard import SummaryWriter

with SummaryWriter(logdir='./logs') as sw:
 for i in range(10):
 # create a normal distribution with fixed mean and decreasing std
 data = mx.nd.normal(loc=0, scale=10.0/(i+1), shape=(10, 3, 8, 8))
 sw.add_histogram(tag='norml_dist', values=data, bins=200, global_step=i)

5. Run the script. This will generate logs in a logs folder that you can use for visualizations.

$ python mxboard_normal.py

6. Now you must switch to the TensorFlow environment to use TensorBoard and MXBoard to
visualize the logs. This is a required dependency for MXBoard and TensorBoard.

$ source activate tensorflow_p36

7. Pass the location of the logs to tensorboard:

$ tensorboard --logdir=./logs --host=127.0.0.1 --port=8888

TensorBoard launches the visualization web server on port 8888.

Debugging and Visualization 62

Deep Learning AMI Developer Guide

8. For easy access from your local browser, you can change the web server port to port 80 or
another port. Whichever port you use, you will need to open this port in the EC2 security
group for your DLAMI. You can also use port forwarding. For instructions on changing your
security group settings and port forwarding, see Set up a Jupyter Notebook Server. The
default settings are described in the next step.

Note

If you need to run both Jupyter server and a MXBoard server, use a different port for
each.

9. Open port 8888 (or the port you assigned to the visualization web server) on your EC2
instance.

a. Open your EC2 instance in the Amazon EC2console at https://console.aws.amazon.com/
ec2/.

b. In the Amazon EC2 console, choose Network & Security, then choose Security Groups.

c. For Security Group, , choose the one that was created most recently (see the timestamp in
the description).

d. Choose the Inbound tab, and choose Edit.

e. Choose Add Rule.

f. In the new row, type the following:

Type : Custom TCP Rule

Protocol: TCP

Port Range: 8888 (or the port that you assigned to the visualization server)

Source: Custom IP (specify address/range)

10. If you want to visualize the data from local browser, type the following command to forward
the data that is rendering on the EC2 instance to your local machine.

$ ssh -Y -L localhost:8888:localhost:8888 user_id@ec2_instance_ip

11. Open the web page for the MXBoard visualizations by using the public IP or DNS address
of the EC2 instance that's running the DLAMI with Conda and the port that you opened for
MXBoard:

Debugging and Visualization 63

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Deep Learning AMI Developer Guide

http://127.0.0.1:8888

More Info

To learn more about MXBoard, see the MXBoard website.

TensorBoard

TensorBoard lets you to visually inspect and interpret your TensorFlow runs and graphs. It runs a
web server that serves a webpage for viewing and interacting with the TensorBoard visualizations.

TensorFlow and TensorBoard are preinstalled with the Deep Learning AMI with Conda (DLAMI with
Conda). The DLAMI with Conda also includes an example script that uses TensorFlow to train an
MNIST model with extra logging features enabled. MNIST is a database of handwritten numbers
that is commonly used to train image recognition models. In this tutorial, you use the script to train
an MNIST model, and TensorBoard and the logs to create visualizations.

Topics

• Train an MNIST Model and Visualize the Training with TensorBoard

• More Info

Train an MNIST Model and Visualize the Training with TensorBoard

Visualize MNIST model training with TensorBoard

1. Connect to your Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with
Conda.

2. Activate the Python 2.7 TensorFlow environment and navigate to the directory that contains
the folder with the TensorBoard example scripts:

$ source activate tensorflow_p27
$ cd ~/examples/tensorboard/

3. Run the script that trains an MNIST model with extended logging enabled:

$ python mnist_with_summaries.py

Debugging and Visualization 64

https://github.com/awslabs/mxboard
https://www.tensorflow.org/get_started/summaries_and_tensorboard

Deep Learning AMI Developer Guide

The script writes the logs to /tmp/tensorflow/mnist.

4. Pass the location of the logs to tensorboard:

$ tensorboard --logdir=/tmp/tensorflow/mnist

TensorBoard launches the visualization web server on port 6006.

5. For easy access from your local browser, you can change the web server port to port 80 or
another port. Whichever port you use, you will need to open this port in the EC2 security
group for your DLAMI. You can also use port forwarding. For instructions on changing your
security group settings and port forwarding, see Set up a Jupyter Notebook Server. The
default settings are described in the next step.

Note

If you need to run both Jupyter server and a TensorBoard server, use a different port
for each.

6. Open port 6006 (or the port you assigned to the visualization web server) on your EC2
instance.

a. Open your EC2 instance in the Amazon EC2console at https://console.aws.amazon.com/
ec2/.

b. In the Amazon EC2 console, choose Network & Security, then chooseSecurity Groups.

c. For Security Group, , choose the one that was created most recently (see the time stamp
in the description).

d. Choose the Inbound tab, and choose Edit.

e. Choose Add Rule.

f. In the new row, type the followings:

Type : Custom TCP Rule

Protocol: TCP

Port Range: 6006 (or the port that you assigned to the visualization server)

Source: Custom IP (specify address/range)

Debugging and Visualization 65

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Deep Learning AMI Developer Guide

7. Open the web page for the TensorBoard visualizations by using the public IP or DNS address
of the EC2 instance that's running the DLAMI with Conda and the port that you opened for
TensorBoard:

http:// YourInstancePublicDNS:6006

More Info

To learn more about TensorBoard, see the TensorBoard website.

Distributed Training

Learn about the options the DLAMI has for training with multiple GPUs. For increased performance,
see Elastic Fabric Adapter Click on one of the options to learn how to use it.

Topics

• Chainer

• Keras with MXNet

• TensorFlow with Horovod

Chainer

Note

We no longer include Chainer Conda environments in the AWS Deep Learning AMI starting
with the v28 release. Previous releases of the AWS Deep Learning AMI that contain these
environments will continue to be available. However, we will only provide updates to these
environments if there are security fixes published by the open source community for these
frameworks.

Chainer is a flexible Python-based framework for easily and intuitively writing complex neural
network architectures. Chainer makes it easy to use multi-GPU instances for training. Chainer also
automatically logs results, graph loss and accuracy, and produces output for visualizing the neural
network with a computational graph. It is included with the Deep Learning AMI with Conda (DLAMI
with Conda).

Distributed Training 66

https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://chainer.org/
https://docs.chainer.org/en/stable/reference/graph.html

Deep Learning AMI Developer Guide

The following topics show you how to train on multiple GPUs, a single GPU, and a CPU, create
visualizations, and test your Chainer installation.

Topics

• Training a Model with Chainer

• Use Chainer to Train on Multiple GPUs

• Use Chainer to Train on a Single GPU

• Use Chainer to Train with CPUs

• Graphing Results

• Testing Chainer

• More Info

Training a Model with Chainer

This tutorial shows you how to use example Chainer scripts to train a model with the MNIST
dataset. MNIST is a database of handwritten numbers that is commonly used to train image
recognition models. The tutorial also shows the difference in training speed between training on a
CPU and one or more GPUs.

Use Chainer to Train on Multiple GPUs

To train on multiple GPUs

1. Connect to the instance running Deep Learning AMI with Conda. Refer to the the section called
“Instance Selection” or the Amazon EC2 documentation on how to select or connect to an
instance. To run this tutorial, you will want to use an instance with at least two GPUs.

2. Activate the Python 3 Chainer environment:

$ source activate chainer_p36

3. To get the latest tutorials, clone the Chainer repository, and navigate to the examples folder:

(chainer_p36) :~$ cd ~/src
(chainer_p36) :~/src$ CHAINER_VERSION=v$(python -c "import chainer;
 print(chainer.__version__)")
(chainer_p36) :~/src$ git clone -b $CHAINER_VERSION https://github.com/chainer/
chainer.git

Distributed Training 67

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Deep Learning AMI Developer Guide

(chainer_p36) :~/src$ cd chainer/examples/mnist

4. Run the example in the train_mnist_data_parallel.py script. By default, the script uses
the GPUs running on your instance of Deep Learning AMI with Conda. The script can be run
on a maximum of two GPUs. It will ignore any GPUs past the first two. It detects one or both
automatically. If you are running an instance without GPUs, skip to Use Chainer to Train with
CPUs, later in this tutorial.

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist_data_parallel.py

Note

This example will return the following error due to the inclusion of a beta feature not
included in the DLAMI.
chainerx ModuleNotFoundError: No module named 'chainerx'

While the Chainer script trains a model using the MNIST database, you see the results for each
epoch.

Then you see example output as the script runs. The following example output was run on a
p3.8xlarge instance. The script's output shows "GPU: 0, 1", which indicates that it is using the
first two of the four available GPUs. The scripts typically use an index of GPUs starting with
zero, instead of a total count.

GPU: 0, 1

unit: 1000
Minibatch-size: 400
epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/
accuracy elapsed_time
1 0.277561 0.114709 0.919933 0.9654
 6.59261
2 0.0882352 0.0799204 0.973334 0.9752
 8.25162
3 0.0520674 0.0697055 0.983967 0.9786
 9.91661

Distributed Training 68

Deep Learning AMI Developer Guide

4 0.0326329 0.0638036 0.989834 0.9805
 11.5767
5 0.0272191 0.0671859 0.9917 0.9796
 13.2341
6 0.0151008 0.0663898 0.9953 0.9813
 14.9068
7 0.0137765 0.0664415 0.995434 0.982
 16.5649
8 0.0116909 0.0737597 0.996 0.9801
 18.2176
9 0.00773858 0.0795216 0.997367 0.979
 19.8797
10 0.00705076 0.0825639 0.997634 0.9785
 21.5388
11 0.00773019 0.0858256 0.9978 0.9787
 23.2003
12 0.0120371 0.0940225 0.996034 0.9776
 24.8587
13 0.00906567 0.0753452 0.997033 0.9824
 26.5167
14 0.00852253 0.082996 0.996967 0.9812
 28.1777
15 0.00670928 0.102362 0.997867 0.9774
 29.8308
16 0.00873565 0.0691577 0.996867 0.9832
 31.498
17 0.00717177 0.094268 0.997767 0.9802
 33.152
18 0.00585393 0.0778739 0.998267 0.9827
 34.8268
19 0.00764773 0.107757 0.9975 0.9773
 36.4819
20 0.00620508 0.0834309 0.998167 0.9834
 38.1389

5. While your training is running it is useful to look at your GPU utilization. You can verify which
GPUs are active and view their load. NVIDIA provides a tool for this, which can be run with the
command nvidia-smi. However, it will only tell you a snapshot of the utilization, so it's more
informative to combine this with the Linux command watch. The following command will use
watch with nvidia-smi to refresh the current GPU utilization every tenth of a second. Open
up another terminal session to your DLAMI, and run the following command:

Distributed Training 69

Deep Learning AMI Developer Guide

(chainer_p36) :~$ watch -n0.1 nvidia-smi

You will see an output similar to the following result. Use ctrl-c to close the tool, or just
keep it running while you try out other examples in your first terminal session.

Every 0.1s: nvidia-smi Wed Feb 28 00:28:50 2018

Wed Feb 28 00:28:50 2018
+---+
| NVIDIA-SMI 384.111 Driver Version: 384.111 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:1B.0 Off | 0 |
| N/A 46C P0 56W / 300W | 728MiB / 16152MiB | 10% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-SXM2... On | 00000000:00:1C.0 Off | 0 |
| N/A 44C P0 53W / 300W | 696MiB / 16152MiB | 4% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla V100-SXM2... On | 00000000:00:1D.0 Off | 0 |
| N/A 42C P0 38W / 300W | 10MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla V100-SXM2... On | 00000000:00:1E.0 Off | 0 |
| N/A 46C P0 40W / 300W | 10MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 54418 C python 718MiB |
| 1 54418 C python 686MiB |
+---+

In this example, GPU 0 and GPU 1 are active, and GPU 2 and 3 are not. You can also see
memory utilization per GPU.

6. As training completes, note the elapsed time in your first terminal session. In the example,
elapsed time is 38.1389 seconds.

Distributed Training 70

Deep Learning AMI Developer Guide

Use Chainer to Train on a Single GPU

This example shows how to train on a single GPU. You might do this if you have only one GPU
available or just to see how multi-GPU training might scale with Chainer.

To use Chainer to train on a single GPU

• For this example, you use another script, train_mnist.py, and tell it to use just GPU 0 with
the --gpu=0 argument. To see how a different GPUs activate in the nvidia-smi console, you
can tell the script to use GPU number 1 by using --gpu=1 .

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist.py --gpu=0

GPU: 0
unit: 1000
Minibatch-size: 100
epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/
accuracy elapsed_time
1 0.192348 0.0909235 0.940934 0.9719
 5.3861
2 0.0746767 0.069854 0.976566 0.9785
 8.97146
3 0.0477152 0.0780836 0.984982 0.976
 12.5596
4 0.0347092 0.0701098 0.988498 0.9783
 16.1577
5 0.0263807 0.08851 0.991515 0.9793
 19.7939
6 0.0253418 0.0945821 0.991599 0.9761
 23.4643
7 0.0209954 0.0683193 0.993398 0.981
 27.0317
8 0.0179036 0.080285 0.994149 0.9819
 30.6325
9 0.0183184 0.0690474 0.994198 0.9823
 34.2469
10 0.0127616 0.0776328 0.996165 0.9814
 37.8693
11 0.0145421 0.0970157 0.995365 0.9801
 41.4629

Distributed Training 71

Deep Learning AMI Developer Guide

12 0.0129053 0.0922671 0.995899 0.981
 45.0233
13 0.0135988 0.0717195 0.995749 0.9857
 48.6271
14 0.00898215 0.0840777 0.997216 0.9839
 52.2269
15 0.0103909 0.123506 0.996832 0.9771
 55.8667
16 0.012099 0.0826434 0.996616 0.9847
 59.5001
17 0.0066183 0.101969 0.997999 0.9826
 63.1294
18 0.00989864 0.0877713 0.997116 0.9829
 66.7449
19 0.0101816 0.0972672 0.996966 0.9822
 70.3686
20 0.00833862 0.0899327 0.997649 0.9835
 74.0063

In this example, running on a single GPU took almost twice as long! Training larger models or
larger datasets will yield different results from this example, so experiment to further evaluate
GPU performance.

Use Chainer to Train with CPUs

Now try training on a CPU-only mode. Run the same script, python train_mnist.py, without
arguments:

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist.py

In the output, GPU: -1 indicates that no GPU is used:

GPU: -1
unit: 1000
Minibatch-size: 100
epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
 elapsed_time
1 0.192083 0.0918663 0.94195 0.9712
 11.2661

Distributed Training 72

Deep Learning AMI Developer Guide

2 0.0732366 0.0790055 0.977267 0.9747
 23.9823
3 0.0485948 0.0723766 0.9844 0.9787
 37.5275
4 0.0352731 0.0817955 0.987967 0.9772
 51.6394
5 0.029566 0.0807774 0.990217 0.9764
 65.2657
6 0.025517 0.0678703 0.9915 0.9814
 79.1276
7 0.0194185 0.0716576 0.99355 0.9808
 93.8085
8 0.0174553 0.0786768 0.994217 0.9809
 108.648
9 0.0148924 0.0923396 0.994983 0.9791
 123.737
10 0.018051 0.099924 0.99445 0.9791
 139.483
11 0.014241 0.0860133 0.995783 0.9806
 156.132
12 0.0124222 0.0829303 0.995967 0.9822
 173.173
13 0.00846336 0.122346 0.997133 0.9769
 190.365
14 0.011392 0.0982324 0.996383 0.9803
 207.746
15 0.0113111 0.0985907 0.996533 0.9813
 225.764
16 0.0114328 0.0905778 0.996483 0.9811
 244.258
17 0.00900945 0.0907504 0.9974 0.9825
 263.379
18 0.0130028 0.0917099 0.996217 0.9831
 282.887
19 0.00950412 0.0850664 0.997133 0.9839
 303.113
20 0.00808573 0.112367 0.998067 0.9778
 323.852

In this example, MNIST was trained in 323 seconds, which is more than 11x longer than training
with two GPUs. If you've ever doubted the power of GPUs, this example shows how much more
efficient they are.

Distributed Training 73

Deep Learning AMI Developer Guide

Graphing Results

Chainer also automatically logs results, graph loss and accuracy, and produces output for plotting
the computational graph.

To generate the computational graph

1. After any training run finishes, you may navigate to the result directory and view the run's
accuracy and loss in the form of two automatically generated images. Navigate there now, and
list the contents:

(chainer_p36) :~/src/chainer/examples/mnist$ cd result
(chainer_p36) :~/src/chainer/examples/mnist/result$ ls

The result directory contains two files in .png format: accuracy.png and loss.png.

2. To view the graphs, use the scp command to copy them to your local computer.

In a macOS terminal, running the following scp command downloads all three files to your
Downloads folder. Replace the placeholders for the location of the key file and server address
with your information. For other operating systems, use the appropriate scp command
format. Note, for an Amazon Linux AMI, the user name is ec2-user.

(chainer_p36) :~/src/chainer/examples/mnist/result$ scp -i "your-key-file.pem"
 ubuntu@your-dlami-address.compute-1.amazonaws.com:~/src/chainer/examples/mnist/
result/*.png ~/Downloads

The following images are examples of accuracy, loss, and computational graphs, respectively.

Distributed Training 74

Deep Learning AMI Developer Guide

Distributed Training 75

Deep Learning AMI Developer Guide

Distributed Training 76

Deep Learning AMI Developer Guide

Testing Chainer

To test Chainer and verify GPU support with a preinstalled test script, run the following command:

(chainer_p36) :~/src/chainer/examples/mnist/result$ cd ~/src/bin
(chainer_p36) :~/src/bin$./testChainer

This downloads Chainer source code and runs the Chainer multi-GPU MNIST example.

More Info

To learn more about Chainer, see the Chainer documentation website. The Chainer examples
folder contains more examples. Try them to see how they perform.

Keras with MXNet

This tutorial shows how to activate and use Keras 2 with the MXNet backend on a Deep Learning
AMI with Conda.

Activate Keras with the MXNet backend and test it on the DLAMI with Conda

1. To activate Keras with the MXNet backend, open an Amazon Elastic Compute Cloud (Amazon
EC2) instance of the DLAMI with Conda.

• For Python 3, run this command:

$ source activate mxnet_p36

• For Python 2, run this command:

$ source activate mxnet_p27

2. Start the iPython terminal:

(mxnet_p36)$ ipython

3. Test importing Keras with MXNet to verify that it is working properly:

import keras as k

The following should appear on your screen (possibly after a few warning messages).

Distributed Training 77

https://docs.chainer.org/

Deep Learning AMI Developer Guide

Using MXNet backend

Note

If you get an error, or if the TensorFlow backend is still being used, you need to update
your Keras config manually. Edit the ~/.keras/keras.json file and change the
backend setting to mxnet.

Keras-MXNet Multi-GPU Training Tutorial

Train a convolutional neural network (CNN)

1. Open a terminal and SSH into your DLAMI.

2. Navigate to the ~/examples/keras-mxnet/ folder.

3. Run nvidia-smi in your terminal window to determine the number of available GPUs on your
DLAMI. In the next step, you will run the script as-is if you have four GPUs.

4. (Optional) Run the following command to open the script for editing.

(mxnet_p36)$ vi cifar10_resnet_multi_gpu.py

5. (Optional) The script has the following line that defines the number of GPUs. Update it if
necessary.

model = multi_gpu_model(model, gpus=4)

6. Now, run the training.

(mxnet_p36)$ python cifar10_resnet_multi_gpu.py

Distributed Training 78

Deep Learning AMI Developer Guide

Note

Keras-MXNet runs up to two times faster with the channels_first image_data_format
set. To change to channels_first, edit your Keras config file (~/.keras/keras.json)
and set the following: "image_data_format": "channels_first".
For more performance tuning techniques, see Keras-MXNet performance tuning guide.

More Info

• You can find examples for Keras with a MXNet backend in the Deep Learning AMI with Conda ~/
examples/keras-mxnet directory.

• For even more tutorials and examples, see the Keras-MXNet GitHub project.

TensorFlow with Horovod

This tutorial shows how to use TensorFlow with Horovod on a Deep Learning AMI with Conda.
Horovod is preinstalled in the Conda environments for TensorFlow. The Python 3 environment is
recommended. The instructions here assume you have a working DLAMI instance with one or more
GPUs. For more information, see How to Get Started with the DLAMI.

Note

Only P3.*, P2.*, and G3.* instance types are supported.

Note

There are two locations where mpirun (via OpenMPI) is available. It is available in /
usr/bin and /home/ubuntu/anaconda3/envs/<env>/bin. env is an environment
corresponding to the framework, such as Tensorflow and Apache MXNet. The newer
OpenMPI versions are available in the conda environments. We recommend using the
absolute path of the mpirun binary or the --prefix flag to run mpi workloads. For example,
with the Tensorflow python36 environment, use either:

/home/ubuntu/anaconda3/envs/tensorflow_p36/bin/mpirun <args>

Distributed Training 79

https://github.com/awslabs/keras-apache-mxnet/blob/master/docs/mxnet_backend/performance_guide.md
https://github.com/awslabs/keras-apache-mxnet
https://www.open-mpi.org/faq/?category=running#mpirun-prefix

Deep Learning AMI Developer Guide

or

mpirun --prefix /home/ubuntu/anaconda3/envs/tensorflow_p36/bin <args>

Activate and Test TensorFlow with Horovod

1. Verify that your instance has active GPUs. NVIDIA provides a tool for this:

$ nvidia-smi

2. Activate the Python 3 TensorFlow environment:

$ source activate tensorflow_p36

3. Start the iPython terminal:

(tensorflow_p36)$ ipython

4. Test importing TensorFlow with Horovod to verify that it is working properly:

import horovod.tensorflow as hvd
hvd.init()

The following may appear on your screen (possibly after a few warning messages).

--
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
 Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.
--

Distributed Training 80

Deep Learning AMI Developer Guide

Configure Your Horovod Hosts File

You can use Horovod for single-node, multi-GPU training, or for multiple-node, multi-GPU training.
If you plan to use multiple nodes for distributed training, you must add each DLAMI private IP
address to a hosts file. The DLAMI you are currently logged into is referred to as the leader. Other
DLAMI instances that are part of the cluster are referred to as members.

Before you start this section, launch one or more DLAMI, and wait for them to be in the Ready
state. The example scripts expect a hosts file, so even if you plan to use only one DLAMI, create a
hosts file with only one entry. If you edit the hosts file after training commences, you must restart
training for added or removed hosts to take effect.

To configure Horovod for training

1. Change directories to where the training scripts reside.

cd ~/examples/horovod/tensorflow

2. Use vim to edit a file in the leader's home directory.

vim hosts

3. Select one of the members in the Amazon Elastic Compute Cloud console, and the description
pane of the console appears. Find the Private IPs field and copy the IP and paste it in a text
file. Copy each member's private IP on a new line. Then, next to each IP, add a space and
then the text slots=8 as shown below. This represents how many GPUs each instance has.
The p3.16xlarge instances have 8 GPUs, so if you chose a different instance type, you would
provide the actual number of GPUs for each instance. For the leader you can use localhost.
With a cluster of 4 nodes, it should look similar to the following:

172.100.1.200 slots=8
172.200.8.99 slots=8
172.48.3.124 slots=8
localhost slots=8

Save the file and exit back to the leader's terminal.

4. Add the SSH key used by the member instances to the ssh-agent.

eval `ssh-agent -s`

Distributed Training 81

Deep Learning AMI Developer Guide

ssh-add <key_name>.pem

5. Now your leader knows how to reach each member. This is all going to happen on the private
network interfaces. Next, use a short bash function to help send commands to each member.

function runclust(){ while read -u 10 host; do host=${host%% slots*}; ssh -o
 "StrictHostKeyChecking no" $host ""$2""; done 10<$1; };

6. Tell the other members not to do “StrickHostKeyChecking” as this may cause training to stop
responding.

runclust hosts "echo \"StrictHostKeyChecking no\" >> ~/.ssh/config"

Train with Synthetic Data

Your DLAMI ships with an example script to train a model with synthetic data. This tests whether
your leader can communicate with the members of the cluster. A hosts file is required. Refer to
Configure Your Horovod Hosts File for instructions.

To test Horovod training with example data

1. ~/examples/horovod/tensorflow/train_synthetic.sh defaults to 8 GPUs, but you
can provide it the number of GPUs you want to run. The following example runs the script,
passing 4 as a parameter for 4 GPUs.

$./train_synthetic.sh 4

After some warning messages, you see the following output that verifies Horovod is using 4
GPUs.

PY3.6.5 |Anaconda custom (64-bit)| (default, Apr 29 2018, 16:14:56) [GCC
 7.2.0]TF1.11.0Horovod size: 4

Then, after some other warnings, you see the start of a table and some data points. If you
don't want to watch for 1,000 batches, break out of the training.

 Step Epoch Speed Loss FinLoss LR
 0 0.0 105.6 6.794 7.708 6.40000

Distributed Training 82

Deep Learning AMI Developer Guide

 1 0.0 311.7 0.000 4.315 6.38721
 100 0.1 3010.2 0.000 34.446 5.18400
 200 0.2 3013.6 0.000 13.077 4.09600
 300 0.2 3012.8 0.000 6.196 3.13600
 400 0.3 3012.5 0.000 3.551 2.30401

2. Horovod uses all local GPUs first before attempting to use the GPUs of the members of the
cluster. So, to make sure distributed training across the cluster is working, try out the full
number of GPUs you intend to use. If, for example, you have 4 members that are p3.16xlarge
instance type, you have 32 GPUs across your cluster. This is where you would want to try out
the full 32GPUs.

./train_synthetic.sh 32

Your output is similar to the previous test. The Horovod size is 32, and roughly four-times the
speed. With this experimentation completed, you have tested your leader and its ability to
communicate with the members. If you run into any issues, check the Troubleshooting section.

Prepare the ImageNet Dataset

In this section, you download the ImageNet dataset, then generate a TFRecord-format dataset
from the raw dataset. A set of preprocessing scripts is provided on the DLAMI for the ImageNet
dataset that you can use for either ImageNet or as a template for another dataset. The main
training scripts that are configured for ImageNet are also provided. The following section
assumes that you have launched a DLAMI with an EC2 instance with 8 GPUs. We recommend the
p3.16xlarge instance type.

In the ~/examples/horovod/tensorflow/utils directory on your DLAMI you find the
following scripts:

• utils/preprocess_imagenet.py - Use this to convert the raw ImageNet dataset to the
TFRecord format.

• utils/tensorflow_image_resizer.py - Use this to resize the TFRecord dataset as
recommended for ImageNet training.

Distributed Training 83

Deep Learning AMI Developer Guide

Prepare the ImageNet Dataset

1. Visit image-net.org, create an account, acquire an access key, and download the dataset.
image-net.org hosts the raw dataset. To download it, you are required to have an ImageNet
account and an access key. The account is free, and to get the free access key you must agree
to the ImageNet license.

2. Use the image preprocessing script to generate a TFRecord format dataset from the raw
ImageNet dataset. From the ~/examples/horovod/tensorflow/utils directory:

python preprocess_imagenet.py \
 --local_scratch_dir=[YOUR DIRECTORY] \
 --imagenet_username=[imagenet account] \
 --imagenet_access_key=[imagenet access key]

3. Use the image resizing script. If you resize the images, training runs more quickly and
better aligns with the ResNet reference paper. From the ~/examples/horovod/utils/
preprocess directory:

python tensorflow_image_resizer.py \
 -d imagenet \
 -i [PATH TO TFRECORD TRAINING DATASET] \
 -o [PATH TO RESIZED TFRECORD TRAINING DATASET] \
 --subset_name train \
 --num_preprocess_threads 60 \
 --num_intra_threads 2 \
 --num_inter_threads 2

Train a ResNet-50 ImageNet Model on a Single DLAMI

Note

• The script in this tutorial expects the preprocessed training data to be in the ~/data/
tf-imagenet/ folder. Refer to Prepare the ImageNet Dataset for instructions.

• A hosts file is required. Refer to Configure Your Horovod Hosts File for instructions.

Distributed Training 84

http://image-net.org
http://image-net.org
https://arxiv.org/abs/1512.03385

Deep Learning AMI Developer Guide

Use Horovod to Train a ResNet50 CNN on the ImageNet Dataset

1. Navigate to the ~/examples/horovod/tensorflow folder.

cd ~/examples/horovod/tensorflow

2. Verify your configuration and set the number of GPUs to use in training. First, review the
hosts that is in the same folder as the scripts. This file must be updated if you use an instance
with fewer than 8 GPUs. By default it says localhost slots=8. Update the number 8 to be
the number of GPUs you want to use.

3. A shell script is provided that takes the number of GPUs you plan to use as its only parameter.
Run this script to start training. The example below uses 4 for four GPUs.

./train.sh 4

4. It takes several hours to finish. It uses mpirun to distribute the training across your GPUs.

Train a ResNet-50 ImageNet Model on a Cluster of DLAMIs

Note

• The script in this tutorial expects the preprocessed training data to be in the ~/data/
tf-imagenet/ folder. Refer to Prepare the ImageNet Dataset for instructions.

• A hosts file is required. Refer to Configure Your Horovod Hosts File for instructions.

This example walks you through training a ResNet-50 model on a prepared dataset across multiple
nodes in a cluster of DLAMIs.

• For faster performance, we recommend that you have the dataset locally on each member of
the cluster.

Use this copyclust function to copy data to other members.

function copyclust(){ while read -u 10 host; do host=${host%% slots*}; rsync -azv
 "$2" $host:"$3"; done 10<$1; };

Distributed Training 85

Deep Learning AMI Developer Guide

Or, if you have the files sitting in an S3 bucket, use the runclust function to download the files to
each member directly.

runclust hosts "tmux new-session -d \"export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY &&
 export AWS_SECRET_ACCESS_KEY=YOUR_SECRET && aws s3 sync s3://your-imagenet-bucket
 ~/data/tf-imagenet/ && aws s3 sync s3://your-imagenet-validation-bucket ~/data/tf-
imagenet/\""

Using tools that let you manage multiple nodes at once is a great time-saver. You can either wait
for each step and manage each instance separately, or use tools such as tmux or screen to let you
disconnect and resume sessions.

After the copying is completed, you're ready to start training. Run the script, passing 32 as a
parameter for the 32 GPUs we're using for this run. Use tmux or similar tool if you're concerned
about disconnecting and terminating your session, which would end the training run.

./train.sh 32

The following output is what you see when running the training on ImageNet with 32 GPUs. Thirty-
two GPUs take 90–110 minutes.

 Step Epoch Speed Loss FinLoss LR
 0 0.0 440.6 6.935 7.850 0.00100
 1 0.0 2215.4 6.923 7.837 0.00305
 50 0.3 19347.5 6.515 7.425 0.10353
 100 0.6 18631.7 6.275 7.173 0.20606
 150 1.0 19742.0 6.043 6.922 0.30860
 200 1.3 19790.7 5.730 6.586 0.41113
 250 1.6 20309.4 5.631 6.458 0.51366
 300 1.9 19943.9 5.233 6.027 0.61619
 350 2.2 19329.8 5.101 5.864 0.71872
 400 2.6 19605.4 4.787 5.519 0.82126
 ...
 13750 87.9 19398.8 0.676 1.082 0.00217
 13800 88.2 19827.5 0.662 1.067 0.00156
 13850 88.6 19986.7 0.591 0.997 0.00104
 13900 88.9 19595.1 0.598 1.003 0.00064
 13950 89.2 19721.8 0.633 1.039 0.00033
 14000 89.5 19567.8 0.567 0.973 0.00012
 14050 89.8 20902.4 0.803 1.209 0.00002

Distributed Training 86

Deep Learning AMI Developer Guide

 Finished in 6004.354426383972

After a training run is completed, the script follows up with an evaluation run. It runs on the leader
because it runs quickly enough without having to distribute the job to the other members. The
following is the output of the evaluation run.

Horovod size: 32
Evaluating
Validation dataset size: 50000
[ip-172-31-36-75:54959] 7 more processes have sent help message help-btl-vader.txt /
 cma-permission-denied
[ip-172-31-36-75:54959] Set MCA parameter "orte_base_help_aggregate" to 0 to see all
 help / error messages
 step epoch top1 top5 loss checkpoint_time(UTC)
 14075 90.0 75.716 92.91 0.97 2018-11-14 08:38:28

The following is an example output when this script is run with 256 GPUs where the runtime was
between 14 and 15 minutes.

 Step Epoch Speed Loss FinLoss LR
 1400 71.6 143451.0 1.189 1.720 0.14850
 1450 74.2 142679.2 0.897 1.402 0.10283
 1500 76.7 143268.6 1.326 1.809 0.06719
 1550 79.3 142660.9 1.002 1.470 0.04059
 1600 81.8 143302.2 0.981 1.439 0.02190
 1650 84.4 144808.2 0.740 1.192 0.00987
 1700 87.0 144790.6 0.909 1.359 0.00313
 1750 89.5 143499.8 0.844 1.293 0.00026
Finished in 860.5105031204224

Finished evaluation
1759 90.0 75.086 92.47 0.99 2018-11-20 07:18:18

Troubleshooting

The following command may help get past errors that come up when you experiment with
Horovod.

Distributed Training 87

Deep Learning AMI Developer Guide

• If the training crashes for some reason, mpirun may fail to clean up all the python processes
on each machine. In that case, before you start the next job, stop the python processes on all
machines as follows:

runclust hosts "pkill -9 python"

• If the process finishes abruptly without error, try deleting your log folder.

runclust hosts "rm -rf ~/imagenet_resnet/"

• If other unexplained issues pop up, check your disk space. If you're out, try removing the logs
folder since that is full of checkpoints and data. You can also increase the size of the volumes for
each member.

runclust hosts "df /"

• As a last resort you can also try rebooting.

runclust hosts "sudo reboot"

You may receive the following error code if you try to use TensorFlow with Horovod on an
unsupported instance type:

NotFoundError Traceback (most recent call last)
<ipython-input-3-e90ed6cabab4> in <module>()
----> 1 import horovod.tensorflow as hvd

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/horovod/tensorflow/
__init__.py in <module>()
** *34* check_extension('horovod.tensorflow', 'HOROVOD_WITH_TENSORFLOW', __file__,
 'mpi_lib')
** *35*
---> 36 from horovod.tensorflow.mpi_ops import allgather, broadcast, _allreduce
** *37* from horovod.tensorflow.mpi_ops import init, shutdown
** *38* from horovod.tensorflow.mpi_ops import size, local_size, rank, local_rank

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/horovod/tensorflow/
mpi_ops.py in <module>()
** *56*

Distributed Training 88

Deep Learning AMI Developer Guide

** *57* MPI_LIB = _load_library('mpi_lib' + get_ext_suffix(),
---> 58 ['HorovodAllgather', 'HorovodAllreduce'])
** *59*
** *60* _basics = _HorovodBasics(__file__, 'mpi_lib')

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/horovod/tensorflow/
mpi_ops.py in _load_library(name, op_list)
** *43* """
** *44* filename = resource_loader.get_path_to_datafile(name)
---> 45 library = load_library.load_op_library(filename)
** *46* for expected_op in (op_list or []):
** *47* for lib_op in library.OP_LIST.op:

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/tensorflow/python/
framework/load_library.py in load_op_library(library_filename)
** *59* RuntimeError: when unable to load the library or get the python wrappers.
** *60* """
---> 61 lib_handle = py_tf.TF_LoadLibrary(library_filename)
** *62*
** *63* op_list_str = py_tf.TF_GetOpList(lib_handle)

NotFoundError: /home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/
horovod/tensorflow/mpi_lib.cpython-36m-x86_64-linux-gnu.so: undefined symbol:
 _ZN10tensorflow14kernel_factory17OpKernelRegistrar12InitInternalEPKNS_9KernelDefEN4absl11string_viewEPFPNS_8OpKernelEPNS_20OpKernelConstructionEE

More Info

For utilities and examples, see the ~/examples/horovod folder in the home directory of the
DLAMI.

For even more tutorials and examples, see the Horovod GitHub project.

Elastic Fabric Adapter

An Elastic Fabric Adapter (EFA) is a network device that you can attach to your DLAMI instance
to accelerate High Performance Computing (HPC) applications. EFA enables you to achieve
the application performance of an on-premises HPC cluster, with the scalability, flexibility, and
elasticity provided by the AWS Cloud.

The following topics show you how to get started using EFA with the DLAMI.

Elastic Fabric Adapter 89

https://github.com/uber/horovod
https://aws.amazon.com/hpc/efa/

Deep Learning AMI Developer Guide

Note

Choose your DLAMI from this Base GPU DLAMI list

Topics

• Launching a AWS Deep Learning AMI Instance With EFA

• Using EFA on the DLAMI

Launching a AWS Deep Learning AMI Instance With EFA

The latest Base DLAMI is ready to use with EFA and comes with the required drivers, kernel
modules, libfabric, openmpi and the NCCL OFI plugin for GPU instances.

You can find the supported CUDA versions of a Base DLAMI in the release notes.

Note:

• When running a NCCL Application using mpirun on EFA, you will have to specify the full path to
the EFA supported installation as:

/opt/amazon/openmpi/bin/mpirun <command>

• To enable your application to use EFA, add FI_PROVIDER="efa" to the mpirun command as
shown in Using EFA on the DLAMI.

Topics

• Prepare an EFA Enabled Security Group

• Launch Your Instance

• Verify EFA Attachment

Prepare an EFA Enabled Security Group

EFA requires a security group that allows all inbound and outbound traffic to and from the security
group itself. For more information, see the EFA Documentation.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Elastic Fabric Adapter 90

https://github.com/aws/aws-ofi-nccl/tree/aws
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security
https://console.aws.amazon.com/ec2/

Deep Learning AMI Developer Guide

2. In the navigation pane, choose Security Groups and then choose Create Security Group.

3. In the Create Security Group window, do the following:

• For Security group name, enter a descriptive name for the security group, such as EFA-
enabled security group.

• (Optional) For Description, enter a brief description of the security group.

• For VPC, select the VPC into which you intend to launch your EFA-enabled instances.

• Choose Create.

4. Select the security group that you created, and on the Description tab, copy the Group ID.

5. On the Inbound and Outbound tabs, do the following:

• Choose Edit.

• For Type, choose All traffic.

• For Source, choose Custom.

• Paste the security group ID that you copied into the field.

• Choose Save.

6. Enable inbound traffic referring to Authorizing Inbound Traffic for Your Linux Instances. If you
skip this step, you won't be able to communicate with your DLAMI instance.

Launch Your Instance

EFA on the AWS Deep Learning AMI is currently supported with the following instance types and
operating systems:

• P3dn.24xlarge: Amazon Linux 2, Ubuntu 18.04

• P4d.24xlarge: Amazon Linux 2, Ubuntu 18.04

The following section shows how to launch an EFA enabled DLAMI instance. For more information
on launching an EFA enabled instance, see Launch EFA-Enabled Instances into a Cluster Placement
Group.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. On the Choose an AMI page, Select the AWS Deep Learning AMI (Ubuntu 18.04) Version 25.0
Elastic Fabric Adapter 91

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-instances
https://console.aws.amazon.com/ec2/

Deep Learning AMI Developer Guide

4. On the Choose an Instance Type page, select one of the following supported instance types
and then choose Next: Configure Instance Details. Refer to this link for the list of supported
instances: Get started with EFA and MPI

5. On the Configure Instance Details page, do the following:

• For Number of instances, enter the number of EFA-enabled instances that you want to
launch.

• For Network and Subnet, select the VPC and subnet into which to launch the instances.

• [Optional] For Placement group, select Add instance to placement group. For best
performance, launch the instances within a placement group.

• [Optional] For Placement group name, select Add to a new placement group, enter a
descriptive name for the placement group, and then for Placement group strategy, select
cluster.

• Make sure to enable the “Elastic Fabric Adapter” on this page. If this option is disabled,
change the subnet to one that supports your selected instance type.

• In the Network Interfaces section, for device eth0, choose New network interface. You
can optionally specify a primary IPv4 address and one or more secondary IPv4 addresses. If
you're launching the instance into a subnet that has an associated IPv6 CIDR block, you can
optionally specify a primary IPv6 address and one or more secondary IPv6 addresses.

• Choose Next: Add Storage.

6. On the Add Storage page, specify the volumes to attach to the instances in addition to the
volumes specified by the AMI (such as the root device volume), and then choose Next: Add
Tags.

7. On the Add Tags page, specify tags for the instances, such as a user-friendly name, and then
choose Next: Configure Security Group.

8. On the Configure Security Group page, for Assign a security group, select Select an existing
security group, and then select the security group that you created previously.

9. Choose Review and Launch.

10. On the Review Instance Launch page, review the settings, and then choose Launch to choose
a key pair and to launch your instances.

Elastic Fabric Adapter 92

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

Deep Learning AMI Developer Guide

Verify EFA Attachment

From the Console

After launching the instance, check the instance details in the AWS Console. To do this, select the
instance in the EC2 console and look at the Description Tab in the lower pane on the page. Find
the parameter ‘Network Interfaces: eth0’ and click on eth0 which opens a pop-up. Make sure that
‘Elastic Fabric Adapter’ is enabled.

If EFA is not enabled, you can fix this by either:

• Terminating the EC2 instance and launching a new one with the same steps. Make sure the EFA is
attached.

• Attach EFA to an existing instance.

1. In the EC2 Console, go to Network Interfaces.

2. Click on Create a Network Interface.

3. Select the same subnet that your instance is in.

4. Make sure to enable the ‘Elastic Fabric Adapter’ and click on Create.

5. Go back to the EC2 Instances Tab and select your instance.

6. Go to Actions: Instance State and stop the instance before you attach EFA.

7. From Actions, select Networking: Attach Network Interface.

8. Select the interface you just created and click on attach.

9. Restart your instance.

From the Instance

The following test script is already present on the DLAMI. Run it to ensure that the kernel modules
are loaded correctly.

$ fi_info -p efa

Your output should look similar to the following.

provider: efa
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-rdm
 version: 2.0

Elastic Fabric Adapter 93

Deep Learning AMI Developer Guide

 type: FI_EP_RDM
 protocol: FI_PROTO_EFA
provider: efa
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-dgrm
 version: 2.0
 type: FI_EP_DGRAM
 protocol: FI_PROTO_EFA
provider: efa;ofi_rxd
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-dgrm
 version: 1.0
 type: FI_EP_RDM
 protocol: FI_PROTO_RXD

Verify Security Group Configuration

The following test script is already present on the DLAMI. Run it to ensure that the security group
you created is configured correctly.

$ cd /opt/amazon/efa/test/
$./efa_test.sh

Your output should look similar to the following.

Starting server...
Starting client...
bytes #sent #ack total time MB/sec usec/xfer Mxfers/sec
64 10 =10 1.2k 0.02s 0.06 1123.55 0.00
256 10 =10 5k 0.00s 17.66 14.50 0.07
1k 10 =10 20k 0.00s 67.81 15.10 0.07
4k 10 =10 80k 0.00s 237.45 17.25 0.06
64k 10 =10 1.2m 0.00s 921.10 71.15 0.01
1m 10 =10 20m 0.01s 2122.41 494.05 0.00

If it stops responding or does not complete, ensure that your security group has the correct
inbound/outbound rules.

Using EFA on the DLAMI

The following section describes how to use EFA to run multi-node applications on the AWS Deep
Learning AMI.

Elastic Fabric Adapter 94

Deep Learning AMI Developer Guide

Running Multi-Node Applications with EFA

To run an application across a cluster of nodes some configuration is needed.

Topics

• Enable Passwordless SSH

• Create Hosts File

• Node NCCL Plugin Check

Enable Passwordless SSH

Select one node in your cluster as the leader node. The remaining nodes are referred to as the
member nodes.

1. On the leader node, generate the RSA keypair.

ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa

2. Change the permissions of the private key on the leader node.

chmod 600 ~/.ssh/id_rsa

3. Copy the public key ~/.ssh/id_rsa.pub to and append it to ~/.ssh/
authorized_keys of the member nodes in the cluster.

4. You should now be able to directly login to the member nodes from the leader node using the
private ip.

ssh <member private ip>

5. Disable strictHostKeyChecking and enable agent forwarding on the leader node by adding the
following to the ~/.ssh/config file on the leader node:

Host *
 ForwardAgent yes
Host *
 StrictHostKeyChecking no

6. On Amazon Linux 2 instances, run the following command on the leader node to provide
correct permissions to the config file:

Elastic Fabric Adapter 95

Deep Learning AMI Developer Guide

chmod 600 ~/.ssh/config

Create Hosts File

On the leader node, create a hosts file to identify the nodes in the cluster. The hosts file must have
an entry for each node in the cluster. Create a file ~/hosts and add each node using the private ip
as follows:

localhost slots=8
<private ip of node 1> slots=8
<private ip of node 2> slots=8

Node NCCL Plugin Check

The nccl_message_transfer is a simple test to ensure that the NCCL OFI Plugin is working as
expected. The test validates functionality of NCCL's connection establishment and data transfer
APIs. Make sure you use the complete path to mpirun as shown in the example while running NCCL
applications with EFA. Change the params np and N based on the number of instances and GPUs in
your cluster. For more information, see the AWS OFI NCCL documentation.

P3dn.24xlarge check

The following nccl_message_transfer test is for a generic CUDA xx.x version. You can run the
commands for any available CUDA version in your Amazon EC2 instance by replacing the CUDA
version in the script.

$/opt/amazon/openmpi/bin/mpirun \
 -n 2 -N 1 --hostfile hosts \
 -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/usr/
local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:$LD_LIBRARY_PATH \
 -x FI_PROVIDER="efa" --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 ~/src/bin/efa-tests/efa-cuda-xx.x/nccl_message_transfer

Your output should look like the following. You can check the output to see that EFA is being used
as the OFI provider.

INFO: Function: ofi_init Line: 702: NET/OFI Forcing AWS OFI ndev 4
INFO: Function: ofi_init Line: 714: NET/OFI Selected Provider is efa

Elastic Fabric Adapter 96

https://github.com/aws/aws-ofi-nccl/tree/master/tests

Deep Learning AMI Developer Guide

INFO: Function: main Line: 49: NET/OFI Process rank 1 started. NCCLNet device used on
 ip-172-31-15-30 is AWS Libfabric.
INFO: Function: main Line: 53: NET/OFI Received 4 network devices
INFO: Function: main Line: 57: NET/OFI Server: Listening on dev 0
INFO: Function: ofi_init Line: 702: NET/OFI Forcing AWS OFI ndev 4
INFO: Function: ofi_init Line: 714: NET/OFI Selected Provider is efa
INFO: Function: main Line: 49: NET/OFI Process rank 0 started. NCCLNet device used on
 ip-172-31-15-30 is AWS Libfabric.
INFO: Function: main Line: 53: NET/OFI Received 4 network devices
INFO: Function: main Line: 57: NET/OFI Server: Listening on dev 0
INFO: Function: main Line: 96: NET/OFI Send connection request to rank 0
INFO: Function: main Line: 69: NET/OFI Send connection request to rank 1
INFO: Function: main Line: 100: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 73: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 103: NET/OFI Successfully accepted connection from rank 0
INFO: Function: main Line: 107: NET/OFI Rank 1 posting 255 receive buffers
INFO: Function: main Line: 76: NET/OFI Successfully accepted connection from rank 1
INFO: Function: main Line: 80: NET/OFI Sent 255 requests to rank 1
INFO: Function: main Line: 131: NET/OFI Got completions for 255 requests for rank 0
INFO: Function: main Line: 131: NET/OFI Got completions for 255 requests for rank 1

Multi-node NCCL Performance Test on P3dn.24xlarge

To check NCCL Performance with EFA, run the standard NCCL Performance test that is available on
the official NCCL-Tests Repo. The DLAMI comes with this test already built for the CUDA 11 series.
You can similarly run your own script with EFA.

When constructing your own script, refer to the following guidance:

• Provide the FI_PROVIDER="efa" flag to enable EFA use.

• Use the complete path to mpirun as shown in the example while running NCCL applications with
EFA.

• Change the params np and N based on the number of instances and GPUs in your cluster.

• Add the NCCL_DEBUG=INFO flag and make sure that the logs indicate EFA usage as "Selected
Provider is EFA".

Use the command watch nvidia-smi on any of the member nodes to monitor GPU usage. The
following watch nvidia-smi commands are for a generic CUDA xx.x version and depend on the
Operating System of your instance. You can run the commands for any available CUDA version in
your Amazon EC2 instance by replacing the CUDA version in the script.

Elastic Fabric Adapter 97

https://github.com/NVIDIA/nccl-tests.git

Deep Learning AMI Developer Guide

• Amazon Linux 2:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x NCCL_TREE_THRESHOLD=0 \
 -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/
usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:/opt/amazon/efa/lib64:/opt/amazon/
openmpi/lib64:$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 /usr/local/cuda-xx.x/efa/test-cuda-xx.x/all_reduce_perf -x NCCL_PROTO=simple
 -b 8 -e 1G -f 2 -g 1 -c 1 -n 100

• Ubuntu 18.04, Ubuntu 20.04:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x NCCL_TREE_THRESHOLD=0 \
 -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/
usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:/opt/amazon/efa/lib:/opt/amazon/
openmpi/lib:$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 /usr/local/cuda-xx.x/efa/test-cuda-xx.x/all_reduce_perf -x NCCL_PROTO=simple
 -b 8 -e 1G -f 2 -g 1 -c 1 -n 100

Your output should look like the following.

nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step: 2(factor) warmup iters: 5
 iters: 100 validation: 1
#
Using devices
Rank 0 Pid 3801 on ip-172-31-41-105 device 0 [0x00] Tesla V100-SXM2-32GB
Rank 1 Pid 3802 on ip-172-31-41-105 device 1 [0x00] Tesla V100-SXM2-32GB
Rank 2 Pid 3803 on ip-172-31-41-105 device 2 [0x00] Tesla V100-SXM2-32GB
Rank 3 Pid 3804 on ip-172-31-41-105 device 3 [0x00] Tesla V100-SXM2-32GB
Rank 4 Pid 3805 on ip-172-31-41-105 device 4 [0x00] Tesla V100-SXM2-32GB
Rank 5 Pid 3807 on ip-172-31-41-105 device 5 [0x00] Tesla V100-SXM2-32GB
Rank 6 Pid 3810 on ip-172-31-41-105 device 6 [0x00] Tesla V100-SXM2-32GB
Rank 7 Pid 3813 on ip-172-31-41-105 device 7 [0x00] Tesla V100-SXM2-32GB

Elastic Fabric Adapter 98

Deep Learning AMI Developer Guide

Rank 8 Pid 4124 on ip-172-31-41-36 device 0 [0x00] Tesla V100-SXM2-32GB
Rank 9 Pid 4125 on ip-172-31-41-36 device 1 [0x00] Tesla V100-SXM2-32GB
Rank 10 Pid 4126 on ip-172-31-41-36 device 2 [0x00] Tesla V100-SXM2-32GB
Rank 11 Pid 4127 on ip-172-31-41-36 device 3 [0x00] Tesla V100-SXM2-32GB
Rank 12 Pid 4128 on ip-172-31-41-36 device 4 [0x00] Tesla V100-SXM2-32GB
Rank 13 Pid 4130 on ip-172-31-41-36 device 5 [0x00] Tesla V100-SXM2-32GB
Rank 14 Pid 4132 on ip-172-31-41-36 device 6 [0x00] Tesla V100-SXM2-32GB
Rank 15 Pid 4134 on ip-172-31-41-36 device 7 [0x00] Tesla V100-SXM2-32GB
ip-172-31-41-105:3801:3801 [0] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3801:3801 [0] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3801:3801 [0] NCCL INFO NET/OFI Selected Provider is efa
NCCL version 2.7.8+cuda11.0
ip-172-31-41-105:3810:3810 [6] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3810:3810 [6] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3810:3810 [6] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3805:3805 [4] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3805:3805 [4] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3805:3805 [4] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3807:3807 [5] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3807:3807 [5] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3807:3807 [5] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3803:3803 [2] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3803:3803 [2] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3803:3803 [2] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3813:3813 [7] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3802:3802 [1] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3813:3813 [7] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3813:3813 [7] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3802:3802 [1] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3802:3802 [1] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3804:3804 [3] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3804:3804 [3] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3804:3804 [3] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3801:3862 [0] NCCL INFO Setting affinity for GPU 0 to
 ffffffff,ffffffff,ffffffff
ip-172-31-41-105:3801:3862 [0] NCCL INFO NCCL_TREE_THRESHOLD set by environment to 0.
ip-172-31-41-36:4128:4128 [4] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.36<0>
ip-172-31-41-36:4128:4128 [4] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-36:4128:4128 [4] NCCL INFO NET/OFI Selected Provider is efa

-----------------------------some output truncated-----------------------------------

ip-172-31-41-105:3804:3869 [3] NCCL INFO comm 0x7f8c5c0025b0 rank 3 nranks 16 cudaDev 3
 nvmlDev 3 - Init COMPLETE

Elastic Fabric Adapter 99

Deep Learning AMI Developer Guide

#
out-of-place
 in-place
size count type redop time algbw busbw error time
 algbw busbw error
(B) (elements) (us) (GB/s) (GB/s) (us)
 (GB/s) (GB/s)
ip-172-31-41-105:3801:3801 [0] NCCL INFO Launch mode Parallel
ip-172-31-41-36:4124:4191 [0] NCCL INFO comm 0x7f28400025b0 rank 8 nranks 16 cudaDev 0
 nvmlDev 0 - Init COMPLETE
ip-172-31-41-36:4126:4192 [2] NCCL INFO comm 0x7f62240025b0 rank 10 nranks 16 cudaDev 2
 nvmlDev 2 - Init COMPLETE
ip-172-31-41-105:3802:3867 [1] NCCL INFO comm 0x7f5ff00025b0 rank 1 nranks 16 cudaDev 1
 nvmlDev 1 - Init COMPLETE
ip-172-31-41-36:4132:4193 [6] NCCL INFO comm 0x7ffa0c0025b0 rank 14 nranks 16 cudaDev 6
 nvmlDev 6 - Init COMPLETE
ip-172-31-41-105:3803:3866 [2] NCCL INFO comm 0x7fe9600025b0 rank 2 nranks 16 cudaDev 2
 nvmlDev 2 - Init COMPLETE
ip-172-31-41-36:4127:4188 [3] NCCL INFO comm 0x7f6ad00025b0 rank 11 nranks 16 cudaDev 3
 nvmlDev 3 - Init COMPLETE
ip-172-31-41-105:3813:3868 [7] NCCL INFO comm 0x7f341c0025b0 rank 7 nranks 16 cudaDev 7
 nvmlDev 7 - Init COMPLETE
ip-172-31-41-105:3810:3864 [6] NCCL INFO comm 0x7f5f980025b0 rank 6 nranks 16 cudaDev 6
 nvmlDev 6 - Init COMPLETE
ip-172-31-41-36:4128:4187 [4] NCCL INFO comm 0x7f234c0025b0 rank 12 nranks 16 cudaDev 4
 nvmlDev 4 - Init COMPLETE
ip-172-31-41-36:4125:4194 [1] NCCL INFO comm 0x7f2ca00025b0 rank 9 nranks 16 cudaDev 1
 nvmlDev 1 - Init COMPLETE
ip-172-31-41-36:4134:4190 [7] NCCL INFO comm 0x7f0ca40025b0 rank 15 nranks 16 cudaDev 7
 nvmlDev 7 - Init COMPLETE
ip-172-31-41-105:3807:3865 [5] NCCL INFO comm 0x7f3b280025b0 rank 5 nranks 16 cudaDev 5
 nvmlDev 5 - Init COMPLETE
ip-172-31-41-36:4130:4189 [5] NCCL INFO comm 0x7f62080025b0 rank 13 nranks 16 cudaDev 5
 nvmlDev 5 - Init COMPLETE
ip-172-31-41-105:3805:3863 [4] NCCL INFO comm 0x7fec100025b0 rank 4 nranks 16 cudaDev 4
 nvmlDev 4 - Init COMPLETE
 8 2 float sum 145.4 0.00 0.00 2e-07 152.8
 0.00 0.00 1e-07
 16 4 float sum 137.3 0.00 0.00 1e-07 137.2
 0.00 0.00 1e-07
 32 8 float sum 137.0 0.00 0.00 1e-07 137.4
 0.00 0.00 1e-07
 64 16 float sum 137.7 0.00 0.00 1e-07 137.5
 0.00 0.00 1e-07

Elastic Fabric Adapter 100

Deep Learning AMI Developer Guide

 128 32 float sum 136.2 0.00 0.00 1e-07 135.3
 0.00 0.00 1e-07
 256 64 float sum 136.4 0.00 0.00 1e-07 137.4
 0.00 0.00 1e-07
 512 128 float sum 135.5 0.00 0.01 1e-07 151.0
 0.00 0.01 1e-07
 1024 256 float sum 151.0 0.01 0.01 2e-07 137.7
 0.01 0.01 2e-07
 2048 512 float sum 138.1 0.01 0.03 5e-07 138.1
 0.01 0.03 5e-07
 4096 1024 float sum 140.5 0.03 0.05 5e-07 140.3
 0.03 0.05 5e-07
 8192 2048 float sum 144.6 0.06 0.11 5e-07 144.7
 0.06 0.11 5e-07
 16384 4096 float sum 149.4 0.11 0.21 5e-07 149.3
 0.11 0.21 5e-07
 32768 8192 float sum 156.7 0.21 0.39 5e-07 183.9
 0.18 0.33 5e-07
 65536 16384 float sum 167.7 0.39 0.73 5e-07 183.6
 0.36 0.67 5e-07
 131072 32768 float sum 193.8 0.68 1.27 5e-07 193.0
 0.68 1.27 5e-07
 262144 65536 float sum 243.9 1.07 2.02 5e-07 258.3
 1.02 1.90 5e-07
 524288 131072 float sum 309.0 1.70 3.18 5e-07 309.0
 1.70 3.18 5e-07
 1048576 262144 float sum 709.3 1.48 2.77 5e-07 693.2
 1.51 2.84 5e-07
 2097152 524288 float sum 1116.4 1.88 3.52 5e-07 1105.7
 1.90 3.56 5e-07
 4194304 1048576 float sum 2088.9 2.01 3.76 5e-07 2157.3
 1.94 3.65 5e-07
 8388608 2097152 float sum 2869.7 2.92 5.48 5e-07 2847.2
 2.95 5.52 5e-07
 16777216 4194304 float sum 4631.7 3.62 6.79 5e-07 4643.9
 3.61 6.77 5e-07
 33554432 8388608 float sum 8769.2 3.83 7.17 5e-07 8743.5
 3.84 7.20 5e-07
 67108864 16777216 float sum 16964 3.96 7.42 5e-07 16846
 3.98 7.47 5e-07
 134217728 33554432 float sum 33403 4.02 7.53 5e-07 33058
 4.06 7.61 5e-07
 268435456 67108864 float sum 59045 4.55 8.52 5e-07 58625
 4.58 8.59 5e-07

Elastic Fabric Adapter 101

Deep Learning AMI Developer Guide

 536870912 134217728 float sum 115842 4.63 8.69 5e-07 115590
 4.64 8.71 5e-07
 1073741824 268435456 float sum 228178 4.71 8.82 5e-07 224997
 4.77 8.95 5e-07
Out of bounds values : 0 OK
Avg bus bandwidth : 2.80613
#

P4d.24xlarge check

The following nccl_message_transfer test is for a generic CUDA xx.x version. You can run the
commands for any available CUDA version in your Amazon EC2 instance by replacing the CUDA
version in the script.

$/opt/amazon/openmpi/bin/mpirun \
 -n 2 -N 1 --hostfile hosts \
 -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/usr/
local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:$LD_LIBRARY_PATH \
 -x FI_EFA_USE_DEVICE_RDMA=1 -x -x --mca pml ^cm \
 -x FI_PROVIDER="efa" --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 /usr/local/cuda-xx.x/efa/test-cuda-xx.x/nccl_message_transfer

Your output should look like the following. You can check the output to see that EFA is being used
as the OFI provider.

INFO: Function: ofi_init Line: 1078: NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-xx.x/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
INFO: Function: ofi_init Line: 1078: NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-xx.x/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
INFO: Function: ofi_init Line: 1152: NET/OFI Selected Provider is efa
INFO: Function: main Line: 68: NET/OFI Process rank 1 started. NCCLNet device used on
 ip-172-31-79-191 is AWS Libfabric.
INFO: Function: main Line: 72: NET/OFI Received 4 network devices
INFO: Function: main Line: 107: NET/OFI Network supports communication using CUDA
 buffers. Dev: 3
INFO: Function: main Line: 113: NET/OFI Server: Listening on dev 3
INFO: Function: ofi_init Line: 1152: NET/OFI Selected Provider is efa
INFO: Function: main Line: 68: NET/OFI Process rank 0 started. NCCLNet device used on
 ip-172-31-70-99 is AWS Libfabric.

Elastic Fabric Adapter 102

Deep Learning AMI Developer Guide

INFO: Function: main Line: 72: NET/OFI Received 4 network devices
INFO: Function: main Line: 107: NET/OFI Network supports communication using CUDA
 buffers. Dev: 3
INFO: Function: main Line: 113: NET/OFI Server: Listening on dev 3
INFO: Function: main Line: 126: NET/OFI Send connection request to rank 1
INFO: Function: main Line: 160: NET/OFI Send connection request to rank 0
INFO: Function: main Line: 164: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 167: NET/OFI Successfully accepted connection from rank 0
INFO: Function: main Line: 171: NET/OFI Rank 1 posting 255 receive buffers
INFO: Function: main Line: 130: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 133: NET/OFI Successfully accepted connection from rank 1
INFO: Function: main Line: 137: NET/OFI Sent 255 requests to rank 1
INFO: Function: main Line: 223: NET/OFI Got completions for 255 requests for rank 1
INFO: Function: main Line: 223: NET/OFI Got completions for 255 requests for rank 0

Multi-node NCCL Performance Test on P4d.24xlarge

To check NCCL Performance with EFA, run the standard NCCL Performance test that is available on
the official NCCL-Tests Repo. The DLAMI comes with this test already built for CUDA 11.0. You can
similarly run your own script with EFA.

When constructing your own script, refer to the following guidance:

• Provide the FI_PROVIDER="efa" flag to enable EFA use.

• Use the complete path to mpirun as shown in the example while running NCCL applications with
EFA.

• Change the params np and N based on the number of instances and GPUs in your cluster.

• Add the NCCL_DEBUG=INFO flag and make sure that the logs indicate EFA usage as "Selected
Provider is EFA".

• Add the FI_EFA_USE_DEVICE_RDMA=1 flag to use EFA's RDMA functionality for one-sided and
two-sided transfer.

Use the command watch nvidia-smi on any of the member nodes to monitor GPU usage. The
following watch nvidia-smi commands are for a generic CUDA xx.x version and depend on the
Operating System of your instance. You can run the commands for any available CUDA version in
your Amazon EC2 instance by replacing the CUDA version in the script.

• Amazon Linux 2:

Elastic Fabric Adapter 103

https://github.com/NVIDIA/nccl-tests.git

Deep Learning AMI Developer Guide

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x FI_EFA_USE_DEVICE_RDMA=1 -x -x --mca pml ^cm \
 -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/
usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:/opt/amazon/efa/lib64:/opt/amazon/
openmpi/lib64:$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 /usr/local/cuda-xx.x/efa/test-cuda-xx.x/all_reduce_perf -x NCCL_PROTO=simple
 -b 8 -e 1G -f 2 -g 1 -c 1 -n 100

• Ubuntu 18.04, Ubuntu 20.04:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x FI_EFA_USE_DEVICE_RDMA=1 -x -x --mca pml ^cm \
 -x LD_LIBRARY_PATH=/usr/local/cuda-xx.x/efa/lib:/usr/local/cuda-xx.x/lib:/
usr/local/cuda-xx.x/lib64:/usr/local/cuda-xx.x:/opt/amazon/efa/lib:/opt/amazon/
openmpi/lib:$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 /usr/local/cuda-xx.x/efa/test-cuda-xx.x/all_reduce_perf -x
 NCCL_PROTO=simple-b 8 -e 1G -f 2 -g 1 -c 1 -n 100

Your output should look like the following.

nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step: 2(factor) warmup iters: 5
 iters: 100 validation: 1
 #
 # Using devices
 # Rank 0 Pid 18546 on ip-172-31-70-88 device 0 [0x10] A100-SXM4-40GB
 # Rank 1 Pid 18547 on ip-172-31-70-88 device 1 [0x10] A100-SXM4-40GB
 # Rank 2 Pid 18548 on ip-172-31-70-88 device 2 [0x20] A100-SXM4-40GB
 # Rank 3 Pid 18549 on ip-172-31-70-88 device 3 [0x20] A100-SXM4-40GB
 # Rank 4 Pid 18550 on ip-172-31-70-88 device 4 [0x90] A100-SXM4-40GB
 # Rank 5 Pid 18551 on ip-172-31-70-88 device 5 [0x90] A100-SXM4-40GB
 # Rank 6 Pid 18552 on ip-172-31-70-88 device 6 [0xa0] A100-SXM4-40GB
 # Rank 7 Pid 18556 on ip-172-31-70-88 device 7 [0xa0] A100-SXM4-40GB
 # Rank 8 Pid 19502 on ip-172-31-78-249 device 0 [0x10] A100-SXM4-40GB

Elastic Fabric Adapter 104

Deep Learning AMI Developer Guide

 # Rank 9 Pid 19503 on ip-172-31-78-249 device 1 [0x10] A100-SXM4-40GB
 # Rank 10 Pid 19504 on ip-172-31-78-249 device 2 [0x20] A100-SXM4-40GB
 # Rank 11 Pid 19505 on ip-172-31-78-249 device 3 [0x20] A100-SXM4-40GB
 # Rank 12 Pid 19506 on ip-172-31-78-249 device 4 [0x90] A100-SXM4-40GB
 # Rank 13 Pid 19507 on ip-172-31-78-249 device 5 [0x90] A100-SXM4-40GB
 # Rank 14 Pid 19508 on ip-172-31-78-249 device 6 [0xa0] A100-SXM4-40GB
 # Rank 15 Pid 19509 on ip-172-31-78-249 device 7 [0xa0] A100-SXM4-40GB
 ip-172-31-70-88:18546:18546 [0] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18546:18546 [0] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18546:18546 [0] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18546:18546 [0] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18546:18546 [0] NCCL INFO Using network AWS Libfabric
 NCCL version 2.7.8+cuda11.0
 ip-172-31-70-88:18552:18552 [6] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18552:18552 [6] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18551:18551 [5] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18556:18556 [7] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18548:18548 [2] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18550:18550 [4] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18552:18552 [6] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18552:18552 [6] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18552:18552 [6] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18556:18556 [7] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml

Elastic Fabric Adapter 105

Deep Learning AMI Developer Guide

 ip-172-31-70-88:18548:18548 [2] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18550:18550 [4] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18551:18551 [5] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18547:18547 [1] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18549:18549 [3] NCCL INFO Bootstrap : Using
 [0]eth0:172.31.71.137<0> [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0>
 [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18547:18547 [1] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18549:18549 [3] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/
xml/p4d-24xl-topo.xml
 ip-172-31-70-88:18547:18547 [1] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18547:18547 [1] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18547:18547 [1] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18549:18549 [3] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18549:18549 [3] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18549:18549 [3] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18551:18551 [5] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18551:18551 [5] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18551:18551 [5] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18556:18556 [7] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18556:18556 [7] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18556:18556 [7] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18548:18548 [2] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18548:18548 [2] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18548:18548 [2] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18550:18550 [4] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18550:18550 [4] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.

Elastic Fabric Adapter 106

Deep Learning AMI Developer Guide

 ip-172-31-70-88:18550:18550 [4] NCCL INFO Using network AWS Libfabric
-----------------------------some output truncated-----------------------------------
 #
 # out-of-place
 in-place
 # size count type redop time algbw busbw error time
 algbw busbw error
 # (B) (elements) (us) (GB/s) (GB/s) (us)
 (GB/s) (GB/s)
 ip-172-31-70-88:18546:18546 [0] NCCL INFO Launch mode Parallel
 8 2 float sum 158.9 0.00 0.00 2e-07 158.1
 0.00 0.00 1e-07
 16 4 float sum 158.3 0.00 0.00 1e-07 159.3
 0.00 0.00 1e-07
 32 8 float sum 157.8 0.00 0.00 1e-07 158.1
 0.00 0.00 1e-07
 64 16 float sum 158.7 0.00 0.00 1e-07 158.4
 0.00 0.00 6e-08
 128 32 float sum 160.2 0.00 0.00 6e-08 158.8
 0.00 0.00 6e-08
 256 64 float sum 159.8 0.00 0.00 6e-08 159.8
 0.00 0.00 6e-08
 512 128 float sum 161.7 0.00 0.01 6e-08 161.7
 0.00 0.01 6e-08
 1024 256 float sum 177.8 0.01 0.01 5e-07 177.4
 0.01 0.01 5e-07
 2048 512 float sum 198.1 0.01 0.02 5e-07 198.1
 0.01 0.02 5e-07
 4096 1024 float sum 226.2 0.02 0.03 5e-07 225.8
 0.02 0.03 5e-07
 8192 2048 float sum 249.3 0.03 0.06 5e-07 249.4
 0.03 0.06 5e-07
 16384 4096 float sum 250.4 0.07 0.12 5e-07 251.0
 0.07 0.12 5e-07
 32768 8192 float sum 256.7 0.13 0.24 5e-07 257.2
 0.13 0.24 5e-07
 65536 16384 float sum 269.8 0.24 0.46 5e-07 271.2
 0.24 0.45 5e-07
 131072 32768 float sum 288.3 0.45 0.85 5e-07 286.8
 0.46 0.86 5e-07
 262144 65536 float sum 296.1 0.89 1.66 5e-07 295.6
 0.89 1.66 5e-07
 524288 131072 float sum 376.7 1.39 2.61 5e-07 382.0
 1.37 2.57 5e-07

Elastic Fabric Adapter 107

Deep Learning AMI Developer Guide

 1048576 262144 float sum 448.6 2.34 4.38 5e-07 451.1
 2.32 4.36 5e-07
 2097152 524288 float sum 620.2 3.38 6.34 5e-07 615.9
 3.41 6.38 5e-07
 4194304 1048576 float sum 768.2 5.46 10.24 5e-07 759.8
 5.52 10.35 5e-07
 8388608 2097152 float sum 1228.5 6.83 12.80 5e-07 1223.3
 6.86 12.86 5e-07
 16777216 4194304 float sum 2002.7 8.38 15.71 5e-07 2004.5
 8.37 15.69 5e-07
 33554432 8388608 float sum 2988.8 11.23 21.05 5e-07 3012.0
 11.14 20.89 5e-07
 67108864 16777216 float sum 8072.1 8.31 15.59 5e-07 8102.4
 8.28 15.53 5e-07
 134217728 33554432 float sum 11431 11.74 22.01 5e-07 11474
 11.70 21.93 5e-07
 268435456 67108864 float sum 17603 15.25 28.59 5e-07 17641
 15.22 28.53 5e-07
 536870912 134217728 float sum 35110 15.29 28.67 5e-07 35102
 15.29 28.68 5e-07
 1073741824 268435456 float sum 70231 15.29 28.67 5e-07 70110
 15.32 28.72 5e-07
 # Out of bounds values : 0 OK
 # Avg bus bandwidth : 7.14456

GPU Monitoring and Optimization

The following section will guide you through GPU optimization and monitoring options. This
section is organized like a typical workflow with monitoring overseeing preprocessing and training.

• Monitoring

• Monitor GPUs with CloudWatch

• Optimization

• Preprocessing

• Training

Monitoring

Your DLAMI comes preinstalled with several GPU monitoring tools. This guide also mentions tools
that are available to download and install.

GPU Monitoring and Optimization 108

Deep Learning AMI Developer Guide

• Monitor GPUs with CloudWatch - a preinstalled utility that reports GPU usage statistics to
Amazon CloudWatch.

• nvidia-smi CLI - a utility to monitor overall GPU compute and memory utilization. This is
preinstalled on your AWS Deep Learning AMI (DLAMI).

• NVML C library - a C-based API to directly access GPU monitoring and management functions.
This used by the nvidia-smi CLI under the hood and is preinstalled on your DLAMI. It also has
Python and Perl bindings to facilitate development in those languages. The gpumon.py utility
preinstalled on your DLAMI uses the pynvml package from nvidia-ml-py.

• NVIDIA DCGM - A cluster management tool. Visit the developer page to learn how to install and
configure this tool.

Tip

Check out NVIDIA's developer blog for the latest info on using the CUDA tools installed
your DLAMI:

• Monitoring TensorCore utilization using Nsight IDE and nvprof.

Monitor GPUs with CloudWatch

When you use your DLAMI with a GPU you might find that you are looking for ways to track its
usage during training or inference. This can be useful for optimizing your data pipeline, and tuning
your deep learning network.

There are two ways to configure GPU metrics with CloudWatch:

• Configure metrics with the AWS CloudWatch agent (Recommended)

• Configure metrics with the preinstalled gpumon.py script

Configure metrics with the AWS CloudWatch agent (Recommended)

Integrate your DLAMI with the unified CloudWatch agent to configure GPU metrics and monitor
the utilization of GPU coprocesses in Amazon EC2 accelerated instances.

There are four ways to configure GPU metrics with your DLAMI:

• Configure minimal GPU metrics

GPU Monitoring and Optimization 109

https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-management-library-nvml
https://pypi.org/project/nvidia-ml-py/
https://developer.nvidia.com/data-center-gpu-manager-dcgm
https://devblogs.nvidia.com/using-nsight-compute-nvprof-mixed-precision-deep-learning-models/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-NVIDIA-GPU.html

Deep Learning AMI Developer Guide

• Configure partial GPU metrics

• Configure all available GPU metrics

• Configure custom GPU metrics

For information on updates and security patches, see Security patching for the AWS CloudWatch
agent

Prerequisites

To get started, you must configure Amazon EC2 instance IAM permissions that allow your instance
to push metrics to CloudWatch. For detailed steps, see Create IAM roles and users for use with the
CloudWatch agent.

Configure minimal GPU metrics

Configure minimal GPU metrics using the dlami-cloudwatch-agent@minimal systemd
service. This service configures the following metrics:

• utilization_gpu

• utilization_memory

You can find the systemd service for minimal preconfigured GPU metrics in the following location:

/opt/aws/amazon-cloudwatch-agent/etc/dlami-amazon-cloudwatch-agent-minimal.json

Enable and start the systemd service with the following commands:

sudo systemctl enable dlami-cloudwatch-agent@minimal
sudo systemctl start dlami-cloudwatch-agent@minimal

Configure partial GPU metrics

Configure partial GPU metrics using the dlami-cloudwatch-agent@partial systemd service.
This service configures the following metrics:

• utilization_gpu

• utilization_memory

GPU Monitoring and Optimization 110

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-iam-roles-for-cloudwatch-agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-iam-roles-for-cloudwatch-agent.html

Deep Learning AMI Developer Guide

• memory_total

• memory_used

• memory_free

You can find the systemd service for partial preconfigured GPU metrics in the following location:

/opt/aws/amazon-cloudwatch-agent/etc/dlami-amazon-cloudwatch-agent-partial.json

Enable and start the systemd service with the following commands:

sudo systemctl enable dlami-cloudwatch-agent@partial
sudo systemctl start dlami-cloudwatch-agent@partial

Configure all available GPU metrics

Configure all available GPU metrics using the dlami-cloudwatch-agent@all systemd service.
This service configures the following metrics:

• utilization_gpu

• utilization_memory

• memory_total

• memory_used

• memory_free

• temperature_gpu

• power_draw

• fan_speed

• pcie_link_gen_current

• pcie_link_width_current

• encoder_stats_session_count

• encoder_stats_average_fps

• encoder_stats_average_latency

• clocks_current_graphics

• clocks_current_sm

GPU Monitoring and Optimization 111

Deep Learning AMI Developer Guide

• clocks_current_memory

• clocks_current_video

You can find the systemd service for all available preconfigured GPU metrics in the following
location:

/opt/aws/amazon-cloudwatch-agent/etc/dlami-amazon-cloudwatch-agent-all.json

Enable and start the systemd service with the following commands:

sudo systemctl enable dlami-cloudwatch-agent@all
sudo systemctl start dlami-cloudwatch-agent@all

Configure custom GPU metrics

If the preconfigured metrics do not meet your requirements, you can create a custom CloudWatch
agent configuration file.

Create a custom configuration file

To create a custom configuration file, refer to the detailed steps in Manually create or edit the
CloudWatch agent configuration file.

For this example, assume that the schema definition is located at /opt/aws/amazon-
cloudwatch-agent/etc/amazon-cloudwatch-agent.json.

Configure metrics with your custom file

Run the following command to configure the CloudWatch agent according to your custom file:

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl \
-a fetch-config -m ec2 -s -c \
file:/opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.json

Security patching for the AWS CloudWatch agent

Newly released DLAMIs are configured with the latest available AWS CloudWatch agent security
patches. Refer to the following sections to update your current DLAMI with the latest security
patches depending on your operating system of choice.

GPU Monitoring and Optimization 112

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html

Deep Learning AMI Developer Guide

Amazon Linux 2

Use yum to get the latest AWS CloudWatch agent security patches for an Amazon Linux 2 DLAMI.

 sudo yum update

Ubuntu

To get the latest AWS CloudWatch security patches for a DLAMI with Ubuntu, it is necessary to
reinstall the AWS CloudWatch agent using an Amazon S3 download link.

wget https://s3.region.amazonaws.com/amazoncloudwatch-agent-region/ubuntu/arm64/latest/
amazon-cloudwatch-agent.deb

For more information on installing the AWS CloudWatch agent using Amazon S3 download links,
see Installing and running the CloudWatch agent on your servers.

Configure metrics with the preinstalled gpumon.py script

A utility called gpumon.py is preinstalled on your DLAMI. It integrates with CloudWatch and
supports monitoring of per-GPU usage: GPU memory, GPU temperature, and GPU Power. The
script periodically sends the monitored data to CloudWatch. You can configure the level of
granularity for data being sent to CloudWatch by changing a few settings in the script. Before
starting the script, however, you will need to setup CloudWatch to receive the metrics.

How to setup and run GPU monitoring with CloudWatch

1. Create an IAM user, or modify an existing one to have a policy for publishing the metric to
CloudWatch. If you create a new user please take note of the credentials as you will need these
in the next step.

The IAM policy to search for is “cloudwatch:PutMetricData”. The policy that is added is as
follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData"
],

GPU Monitoring and Optimization 113

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html

Deep Learning AMI Developer Guide

 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Tip

For more information on creating an IAM user and adding policies for CloudWatch,
refer to the CloudWatch documentation.

2. On your DLAMI, run AWS configure and specify the IAM user credentials.

$ aws configure

3. You might need to make some modifications to the gpumon utility before you run it. You can
find the gpumon utility and README in the location defined in the following code block. For
more information on the gpumon.py script, see the Amazon S3 location of the script.

Folder: ~/tools/GPUCloudWatchMonitor
Files: ~/tools/GPUCloudWatchMonitor/gpumon.py
 ~/tools/GPUCloudWatchMonitor/README

Options:

• Change the region in gpumon.py if your instance is NOT in us-east-1.

• Change other parameters such as the CloudWatch namespace or the reporting period with
store_reso.

4. Currently the script only supports Python 3. Activate your preferred framework’s Python 3
environment or activate the DLAMI general Python 3 environment.

$ source activate python3

5. Run the gpumon utility in background.

(python3)$ python gpumon.py &

6. Open your browser to the https://console.aws.amazon.com/cloudwatch/ then select metric. It
will have a namespace 'DeepLearningTrain'.

GPU Monitoring and Optimization 114

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-iam-roles-for-cloudwatch-agent.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://s3.amazonaws.com/aws-bigdata-blog/artifacts/GPUMonitoring/gpumon.py
https://console.aws.amazon.com/cloudwatch/

Deep Learning AMI Developer Guide

Tip

You can change the namespace by modifying gpumon.py. You can also modify the
reporting interval by adjusting store_reso.

The following is an example CloudWatch chart reporting on a run of gpumon.py monitoring a
training job on p2.8xlarge instance.

You might be interested in these other topics on GPU monitoring and optimization:

• Monitoring

• Monitor GPUs with CloudWatch

• Optimization

• Preprocessing

• Training

Optimization

To make the most of your GPUs, you can optimize your data pipeline and tune your deep learning
network. As the following chart describes, a naive or basic implementation of a neural network
might use the GPU inconsistently and not to its fullest potential. When you optimize your

GPU Monitoring and Optimization 115

Deep Learning AMI Developer Guide

preprocessing and data loading, you can reduce the bottleneck from your CPU to your GPU. You
can adjust the neural network itself, by using hybridization (when supported by the framework),
adjusting batch size, and synchronizing calls. You can also use multiple-precision (float16 or int8)
training in most frameworks, which can have a dramatic effect on improving throughput.

The following chart shows the cumulative performance gains when applying different
optimizations. Your results will depend on the data you are processing and the network you are
optimizing.

Example GPU performance optimizations. Chart source: Performance Tricks with MXNet Gluon

The following guides introduce options that will work with your DLAMI and help you boost GPU
performance.

Topics

• Preprocessing

• Training

Preprocessing

Data preprocessing through transformations or augmentations can often be a CPU-bound process,
and this can be the bottleneck in your overall pipeline. Frameworks have built-in operators for
image processing, but DALI (Data Augmentation Library) demonstrates improved performance over
frameworks’ built-in options.

• NVIDIA Data Augmentation Library (DALI): DALI offloads data augmentation to the GPU. It
is not preinstalled on the DLAMI, but you can access it by installing it or loading a supported

GPU Monitoring and Optimization 116

https://github.com/ThomasDelteil/PerformanceTricksMXNetGluon

Deep Learning AMI Developer Guide

framework container on your DLAMI or other Amazon Elastic Compute Cloud instance. Refer
to the DALI project page on the NVIDIA website for details. For an example use-case and to
download code samples, see the SageMaker Preprocessing Training Performance sample.

• nvJPEG: a GPU-accelerated JPEG decoder library for C programmers. It supports decoding single
images or batches as well as subsequent transformation operations that are common in deep
learning. nvJPEG comes built-in with DALI, or you can download from the NVIDIA website's
nvjpeg page and use it separately.

You might be interested in these other topics on GPU monitoring and optimization:

• Monitoring

• Monitor GPUs with CloudWatch

• Optimization

• Preprocessing

• Training

Training

With mixed-precision training you can deploy larger networks with the same amount of memory,
or reduce memory usage compared to your single or double precision network, and you will see
compute performance increases. You also get the benefit of smaller and faster data transfers,
an important factor in multiple node distributed training. To take advantage of mixed-precision
training you need to adjust data casting and loss scaling. The following are guides describing how
to do this for the frameworks that support mixed-precision.

• NVIDIA Deep Learning SDK - docs on the NVIDIA website describing mixed-precision
implementation for MXNet, PyTorch, and TensorFlow.

Tip

Be sure to check the website for your framework of choice, and search for "mixed precision"
or "fp16" for the latest optimization techniques. Here are some mixed-precision guides you
might find helpful:

• Mixed-precision training with TensorFlow (video) - on the NVIDIA blog site.

GPU Monitoring and Optimization 117

https://docs.nvidia.com/deeplearning/sdk/dali-install-guide/index.html
https://github.com/aws-samples/sagemaker-cv-preprocessing-training-performance
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvjpeg
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/
https://devblogs.nvidia.com/mixed-precision-resnet-50-tensor-cores/

Deep Learning AMI Developer Guide

• Mixed-precision training using float16 with MXNet - an FAQ article on the MXNet
website.

• NVIDIA Apex: a tool for easy mixed-precision training with PyTorch - a blog article on the
NVIDIA website.

You might be interested in these other topics on GPU monitoring and optimization:

• Monitoring

• Monitor GPUs with CloudWatch

• Optimization

• Preprocessing

• Training

The AWS Inferentia Chip With DLAMI

AWS Inferentia is a custom machine learning chip designed by AWS that you can use for high-
performance inference predictions. In order to use the chip, set up an Amazon Elastic Compute
Cloud instance and use the AWS Neuron software development kit (SDK) to invoke the Inferentia
chip. To provide customers with the best Inferentia experience, Neuron has been built into the AWS
Deep Learning AMI (DLAMI).

The following topics show you how to get started using Inferentia with the DLAMI.

Contents

• Launching a DLAMI Instance with AWS Neuron

• Using the DLAMI with AWS Neuron

Launching a DLAMI Instance with AWS Neuron

The latest DLAMI is ready to use with AWS Inferentia and comes with the AWS Neuron API package.
To launch a DLAMI instance, see Launching and Configuring a DLAMI. After you have a DLAMI, use
the steps here to ensure that your AWS Inferentia chip and AWS Neuron resources are active.

Contents

• Verify Your Instance

AWS Inferentia 118

https://mxnet.apache.org/api/faq/float16
https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/
https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html

Deep Learning AMI Developer Guide

• Identifying AWS Inferentia Devices

• View Resource Usage

• Using Neuron Monitor (neuron-monitor)

• Upgrading Neuron Software

Verify Your Instance

Before using your instance, verify that it's properly setup and configured with Neuron.

Identifying AWS Inferentia Devices

To identify the number of Inferentia devices on your instance, use the following command:

neuron-ls

If your instance has Inferentia devices attached to it, your output will look similar to the following:

+--------+--------+--------+-----------+--------------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+-----------+--------------+
0	4	8 GB	1	0000:00:1c.0
1	4	8 GB	2, 0	0000:00:1d.0
2	4	8 GB	3, 1	0000:00:1e.0
3	4	8 GB	2	0000:00:1f.0
+--------+--------+--------+-----------+--------------+

The supplied output is taken from an Inf1.6xlarge instance and includes the following columns:

• NEURON DEVICE: The logical ID assigned to the NeuronDevice. This ID is used when configuring
multiple runtimes to use different NeuronDevices.

• NEURON CORES: The number of NeuronCores present in the NeuronDevice.

• NEURON MEMORY: The amount of DRAM memory in the NeuronDevice.

• CONNECTED DEVICES: Other NeuronDevices connected to the NeuronDevice.

• PCI BDF: The PCI Bus Device Function (BDF) ID of the NeuronDevice.

AWS Inferentia 119

Deep Learning AMI Developer Guide

View Resource Usage

View useful information about NeuronCore and vCPU utilization, memory usage, loaded models,
and Neuron applications with the neuron-top command. Launching neuron-top with no
arguments will show data for all machine learning applications that utilize NeuronCores.

neuron-top

When an application is using four NeuronCores, the output should look similar to the following
image:

For more information on resources to monitor and optimize Neuron-based inference applications,
see Neuron Tools.

Using Neuron Monitor (neuron-monitor)

Neuron Monitor collects metrics from the Neuron runtimes running on the system and streams the
collected data to stdout in JSON format. These metrics are organized into metric groups that you

AWS Inferentia 120

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/index.html

Deep Learning AMI Developer Guide

configure by providing a configuration file. For more information on Neuron Monitor, see the User
Guide for Neuron Monitor.

Upgrading Neuron Software

For information on how to update Neuron SDK software within DLAMI, see the AWS Neuron Setup
Guide.

Next Step

Using the DLAMI with AWS Neuron

Using the DLAMI with AWS Neuron

A typical workflow with the AWS Neuron SDK is to compile a previously trained machine learning
model on a compilation server. After this, distribute the artifacts to the Inf1 instances for
execution. AWS Deep Learning AMI (DLAMI) comes pre-installed with everything you need to
compile and run inference in an Inf1 instance that uses Inferentia.

The following sections describe how to use the DLAMI with Inferentia.

Contents

• Using TensorFlow-Neuron and the AWS Neuron Compiler

• Using AWS Neuron TensorFlow Serving

• Using MXNet-Neuron and the AWS Neuron Compiler

• Using MXNet-Neuron Model Serving

• Using PyTorch-Neuron and the AWS Neuron Compiler

Using TensorFlow-Neuron and the AWS Neuron Compiler

This tutorial shows how to use the AWS Neuron compiler to compile the Keras ResNet-50 model
and export it as a saved model in SavedModel format. This format is a typical TensorFlow model
interchangeable format. You also learn how to run inference on an Inf1 instance with example
input.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents

• Prerequisites

AWS Inferentia 121

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-monitor-user-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-monitor-user-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-intro/neuron-install-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-intro/neuron-install-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/tensorflow-neuron/index.html

Deep Learning AMI Developer Guide

• Activate the Conda environment

• Resnet50 Compilation

• ResNet50 Inference

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI
Instance with AWS Neuron. You should also have a familiarity with deep learning and using the
DLAMI.

Activate the Conda environment

Activate the TensorFlow-Neuron conda environment using the following command:

source activate aws_neuron_tensorflow_p36

To exit the current conda environment, run the following command:

source deactivate

Resnet50 Compilation

Create a Python script called tensorflow_compile_resnet50.py that has the
following content. This Python script compiles the Keras ResNet50 model and exports it as a saved
model.

import os
import time
import shutil
import tensorflow as tf
import tensorflow.neuron as tfn
import tensorflow.compat.v1.keras as keras
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input

Create a workspace
WORKSPACE = './ws_resnet50'

AWS Inferentia 122

Deep Learning AMI Developer Guide

os.makedirs(WORKSPACE, exist_ok=True)

Prepare export directory (old one removed)
model_dir = os.path.join(WORKSPACE, 'resnet50')
compiled_model_dir = os.path.join(WORKSPACE, 'resnet50_neuron')
shutil.rmtree(model_dir, ignore_errors=True)
shutil.rmtree(compiled_model_dir, ignore_errors=True)

Instantiate Keras ResNet50 model
keras.backend.set_learning_phase(0)
model = ResNet50(weights='imagenet')

Export SavedModel
tf.saved_model.simple_save(
 session = keras.backend.get_session(),
 export_dir = model_dir,
 inputs = {'input': model.inputs[0]},
 outputs = {'output': model.outputs[0]})

Compile using Neuron
tfn.saved_model.compile(model_dir, compiled_model_dir)

Prepare SavedModel for uploading to Inf1 instance
shutil.make_archive(compiled_model_dir, 'zip', WORKSPACE, 'resnet50_neuron')

Compile the model using the following command:

python tensorflow_compile_resnet50.py

The compilation process will take a few minutes. When it completes, your output should look like
the following:

...
INFO:tensorflow:fusing subgraph neuron_op_d6f098c01c780733 with neuron-cc
INFO:tensorflow:Number of operations in TensorFlow session: 4638
INFO:tensorflow:Number of operations after tf.neuron optimizations: 556
INFO:tensorflow:Number of operations placed on Neuron runtime: 554
INFO:tensorflow:Successfully converted ./ws_resnet50/resnet50 to ./ws_resnet50/
resnet50_neuron
...

AWS Inferentia 123

Deep Learning AMI Developer Guide

After compilation, the saved model is zipped at ws_resnet50/resnet50_neuron.zip. Unzip
the model and download the sample image for inference using the following commands:

unzip ws_resnet50/resnet50_neuron.zip -d .
curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/
images/kitten_small.jpg

ResNet50 Inference

Create a Python script called tensorflow_infer_resnet50.py that has the following content.
This script runs inference on the downloaded model using a previously compiled inference model.

import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import resnet50

Create input from image
img_sgl = image.load_img('kitten_small.jpg', target_size=(224, 224))
img_arr = image.img_to_array(img_sgl)
img_arr2 = np.expand_dims(img_arr, axis=0)
img_arr3 = resnet50.preprocess_input(img_arr2)
Load model
COMPILED_MODEL_DIR = './ws_resnet50/resnet50_neuron/'
predictor_inferentia = tf.contrib.predictor.from_saved_model(COMPILED_MODEL_DIR)
Run inference
model_feed_dict={'input': img_arr3}
infa_rslts = predictor_inferentia(model_feed_dict);
Display results
print(resnet50.decode_predictions(infa_rslts["output"], top=5)[0])

Run inference on the model using the following command:

python tensorflow_infer_resnet50.py

Your output should look like the following:

AWS Inferentia 124

Deep Learning AMI Developer Guide

...
[('n02123045', 'tabby', 0.6918919), ('n02127052', 'lynx', 0.12770271), ('n02123159',
 'tiger_cat', 0.08277027), ('n02124075', 'Egyptian_cat', 0.06418919), ('n02128757',
 'snow_leopard', 0.009290541)]

Next Step

Using AWS Neuron TensorFlow Serving

Using AWS Neuron TensorFlow Serving

This tutorial shows how to construct a graph and add an AWS Neuron compilation step
before exporting the saved model to use with TensorFlow Serving. TensorFlow Serving is a
serving system that allows you to scale-up inference across a network. Neuron TensorFlow
Serving uses the same API as normal TensorFlow Serving. The only difference is that a
saved model must be compiled for AWS Inferentia and the entry point is a different binary
named tensorflow_model_server_neuron. The binary is found at /usr/local/bin/
tensorflow_model_server_neuron and is pre-installed in the DLAMI.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents

• Prerequisites

• Activate the Conda environment

• Compile and Export the Saved Model

• Serving the Saved Model

• Generate inference requests to the model server

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI
Instance with AWS Neuron. You should also have a familiarity with deep learning and using the
DLAMI.

Activate the Conda environment

Activate the TensorFlow-Neuron conda environment using the following command:

AWS Inferentia 125

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/tensorflow-neuron/index.html

Deep Learning AMI Developer Guide

source activate aws_neuron_tensorflow_p36

If you need to exit the current conda environment, run:

source deactivate

Compile and Export the Saved Model

Create a Python script called tensorflow-model-server-compile.py with the following
content. This script constructs a graph and compiles it using Neuron. It then exports the compiled
graph as a saved model.

import tensorflow as tf
import tensorflow.neuron
import os

tf.keras.backend.set_learning_phase(0)
model = tf.keras.applications.ResNet50(weights='imagenet')
sess = tf.keras.backend.get_session()
inputs = {'input': model.inputs[0]}
outputs = {'output': model.outputs[0]}

save the model using tf.saved_model.simple_save
modeldir = "./resnet50/1"
tf.saved_model.simple_save(sess, modeldir, inputs, outputs)

compile the model for Inferentia
neuron_modeldir = os.path.join(os.path.expanduser('~'), 'resnet50_inf1', '1')
tf.neuron.saved_model.compile(modeldir, neuron_modeldir, batch_size=1)

Compile the model using the following command:

python tensorflow-model-server-compile.py

Your output should look like the following:

AWS Inferentia 126

Deep Learning AMI Developer Guide

...
INFO:tensorflow:fusing subgraph neuron_op_d6f098c01c780733 with neuron-cc
INFO:tensorflow:Number of operations in TensorFlow session: 4638
INFO:tensorflow:Number of operations after tf.neuron optimizations: 556
INFO:tensorflow:Number of operations placed on Neuron runtime: 554
INFO:tensorflow:Successfully converted ./resnet50/1 to /home/ubuntu/resnet50_inf1/1

Serving the Saved Model

Once the model has been compiled, you can use the following command to serve the saved model
with the tensorflow_model_server_neuron binary:

tensorflow_model_server_neuron --model_name=resnet50_inf1 \
 --model_base_path=$HOME/resnet50_inf1/ --port=8500 &

Your output should look like the following. The compiled model is staged in the Inferentia
device’s DRAM by the server to prepare for inference.

...
2019-11-22 01:20:32.075856: I external/org_tensorflow/tensorflow/cc/saved_model/
loader.cc:311] SavedModel load for tags { serve }; Status: success. Took 40764
 microseconds.
2019-11-22 01:20:32.075888: I tensorflow_serving/servables/tensorflow/
saved_model_warmup.cc:105] No warmup data file found at /home/ubuntu/resnet50_inf1/1/
assets.extra/tf_serving_warmup_requests
2019-11-22 01:20:32.075950: I tensorflow_serving/core/loader_harness.cc:87]
 Successfully loaded servable version {name: resnet50_inf1 version: 1}
2019-11-22 01:20:32.077859: I tensorflow_serving/model_servers/
server.cc:353] Running gRPC ModelServer at 0.0.0.0:8500 ...

Generate inference requests to the model server

Create a Python script called tensorflow-model-server-infer.py with the following content.
This script runs inference via gRPC, which is service framework.

import numpy as np
import grpc
import tensorflow as tf
from tensorflow.keras.preprocessing import image

AWS Inferentia 127

Deep Learning AMI Developer Guide

from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from tensorflow.keras.applications.resnet50 import decode_predictions

if __name__ == '__main__':
 channel = grpc.insecure_channel('localhost:8500')
 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
 img_file = tf.keras.utils.get_file(
 "./kitten_small.jpg",
 "https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/
images/kitten_small.jpg")
 img = image.load_img(img_file, target_size=(224, 224))
 img_array = preprocess_input(image.img_to_array(img)[None, ...])
 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'resnet50_inf1'
 request.inputs['input'].CopyFrom(
 tf.contrib.util.make_tensor_proto(img_array, shape=img_array.shape))
 result = stub.Predict(request)
 prediction = tf.make_ndarray(result.outputs['output'])
 print(decode_predictions(prediction))

Run inference on the model by using gRPC with the following command:

python tensorflow-model-server-infer.py

Your output should look like the following:

[[('n02123045', 'tabby', 0.6918919), ('n02127052', 'lynx', 0.12770271), ('n02123159',
 'tiger_cat', 0.08277027), ('n02124075', 'Egyptian_cat', 0.06418919), ('n02128757',
 'snow_leopard', 0.009290541)]]

Using MXNet-Neuron and the AWS Neuron Compiler

The MXNet-Neuron compilation API provides a method to compile a model graph that you can run
on an AWS Inferentia device.

In this example, you use the API to compile a ResNet-50 model and use it to run inference.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

AWS Inferentia 128

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/mxnet-neuron/index.html

Deep Learning AMI Developer Guide

Contents

• Prerequisites

• Activate the Conda Environment

• Resnet50 Compilation

• ResNet50 Inference

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI
Instance with AWS Neuron. You should also have a familiarity with deep learning and using the
DLAMI.

Activate the Conda Environment

Activate the MXNet-Neuron conda environment using the following command:

source activate aws_neuron_mxnet_p36

To exit the current conda environment, run:

source deactivate

Resnet50 Compilation

Create a Python script called mxnet_compile_resnet50.py with the following content. This
script uses the MXNet-Neuron compilation Python API to compile a ResNet-50 model.

import mxnet as mx
import numpy as np

print("downloading...")
path='http://data.mxnet.io/models/imagenet/'
mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params')
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json')
print("download finished.")

sym, args, aux = mx.model.load_checkpoint('resnet-50', 0)

AWS Inferentia 129

Deep Learning AMI Developer Guide

print("compile for inferentia using neuron... this will take a few minutes...")
inputs = { "data" : mx.nd.ones([1,3,224,224], name='data', dtype='float32') }

sym, args, aux = mx.contrib.neuron.compile(sym, args, aux, inputs)

print("save compiled model...")
mx.model.save_checkpoint("compiled_resnet50", 0, sym, args, aux)

Compile the model using the following command:

python mxnet_compile_resnet50.py

Compilation will take a few minutes. When compilation has finished, the following files will be in
your current directory:

resnet-50-0000.params
resnet-50-symbol.json
compiled_resnet50-0000.params
compiled_resnet50-symbol.json

ResNet50 Inference

Create a Python script called mxnet_infer_resnet50.py with the following content. This script
downloads a sample image and uses it to run inference with the compiled model.

import mxnet as mx
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
mx.test_utils.download(path+'synset.txt')

fname = mx.test_utils.download('https://raw.githubusercontent.com/awslabs/mxnet-model-
server/master/docs/images/kitten_small.jpg')
img = mx.image.imread(fname)

convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224)
resize

AWS Inferentia 130

Deep Learning AMI Developer Guide

img = img.transpose((2, 0, 1))
Channel first
img = img.expand_dims(axis=0)
batchify
img = img.astype(dtype='float32')

sym, args, aux = mx.model.load_checkpoint('compiled_resnet50', 0)
softmax = mx.nd.random_normal(shape=(1,))
args['softmax_label'] = softmax
args['data'] = img
Inferentia context
ctx = mx.neuron()

exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

exe.forward(data=img)
prob = exe.outputs[0].asnumpy()
print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

Run inference with the compiled model using the following command:

python mxnet_infer_resnet50.py

Your output should look like the following:

probability=0.642454, class=n02123045 tabby, tabby cat
probability=0.189407, class=n02123159 tiger cat
probability=0.100798, class=n02124075 Egyptian cat
probability=0.030649, class=n02127052 lynx, catamount
probability=0.016278, class=n02129604 tiger, Panthera tigris

Next Step

Using MXNet-Neuron Model Serving

AWS Inferentia 131

Deep Learning AMI Developer Guide

Using MXNet-Neuron Model Serving

In this tutorial, you learn to use a pre-trained MXNet model to perform real-time image
classification with Multi Model Server (MMS). MMS is a flexible and easy-to-use tool for serving
deep learning models that are trained using any machine learning or deep learning framework.
This tutorial includes a compilation step using AWS Neuron and an implementation of MMS using
MXNet.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents

• Prerequisites

• Activate the Conda Environment

• Download the Example Code

• Compile the Model

• Run Inference

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI
Instance with AWS Neuron. You should also have a familiarity with deep learning and using the
DLAMI.

Activate the Conda Environment

Activate the MXNet-Neuron conda environment by using the following command:

source activate aws_neuron_mxnet_p36

To exit the current conda environment, run:

source deactivate

Download the Example Code

To run this example, download the example code using the following commands:

git clone https://github.com/awslabs/multi-model-server
cd multi-model-server/examples/mxnet_vision

AWS Inferentia 132

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/mxnet-neuron/index.html

Deep Learning AMI Developer Guide

Compile the Model

Create a Python script called multi-model-server-compile.py with the following content.
This script compiles the ResNet50 model to the Inferentia device target.

import mxnet as mx
from mxnet.contrib import neuron
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params')
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json')
mx.test_utils.download(path+'synset.txt')

nn_name = "resnet-50"

#Load a model
sym, args, auxs = mx.model.load_checkpoint(nn_name, 0)

#Define compilation parameters# - input shape and dtype
inputs = {'data' : mx.nd.zeros([1,3,224,224], dtype='float32') }

compile graph to inferentia target
csym, cargs, cauxs = neuron.compile(sym, args, auxs, inputs)

save compiled model
mx.model.save_checkpoint(nn_name + "_compiled", 0, csym, cargs, cauxs)

To compile the model, use the following command:

python multi-model-server-compile.py

Your output should look like the following:

...
[21:18:40] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v0.8.0. Attempting to upgrade...
[21:18:40] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!
[21:19:00] src/operator/subgraph/build_subgraph.cc:698: start to execute partition
 graph.
[21:19:00] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v0.8.0. Attempting to upgrade...

AWS Inferentia 133

Deep Learning AMI Developer Guide

[21:19:00] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!

Create a file named signature.json with the following content to configure the input name and
shape:

{
 "inputs": [
 {
 "data_name": "data",
 "data_shape": [
 1,
 3,
 224,
 224
]
 }
]
}

Download the synset.txt file by using the following command. This file is a list of names for
ImageNet prediction classes.

curl -O https://s3.amazonaws.com/model-server/model_archive_1.0/examples/
squeezenet_v1.1/synset.txt

Create a custom service class following the template in the model_server_template folder.
Copy the template into your current working directory by using the following command:

cp -r ../model_service_template/* .

Edit the mxnet_model_service.py module to replace the mx.cpu() context with
the mx.neuron() context as follows. You also need to comment out the unnecessary data copy
for model_input because MXNet-Neuron does not support the NDArray and Gluon APIs.

...
self.mxnet_ctx = mx.neuron() if gpu_id is None else mx.gpu(gpu_id)
...
#model_input = [item.as_in_context(self.mxnet_ctx) for item in model_input]

Package the model with model-archiver using the following commands:

AWS Inferentia 134

Deep Learning AMI Developer Guide

cd ~/multi-model-server/examples
model-archiver --force --model-name resnet-50_compiled --model-path mxnet_vision --
handler mxnet_vision_service:handle

Run Inference

Start the Multi Model Server and load the model that uses the RESTful API by using the following
commands. Ensure that neuron-rtd is running with the default settings.

cd ~/multi-model-server/
multi-model-server --start --model-store examples > /dev/null # Pipe to log file if you
 want to keep a log of MMS
curl -v -X POST "http://localhost:8081/models?
initial_workers=1&max_workers=4&synchronous=true&url=resnet-50_compiled.mar"
sleep 10 # allow sufficient time to load model

Run inference using an example image with the following commands:

curl -O https://raw.githubusercontent.com/awslabs/multi-model-server/master/docs/
images/kitten_small.jpg
curl -X POST http://127.0.0.1:8080/predictions/resnet-50_compiled -T kitten_small.jpg

Your output should look like the following:

[
 {
 "probability": 0.6388034820556641,
 "class": "n02123045 tabby, tabby cat"
 },
 {
 "probability": 0.16900072991847992,
 "class": "n02123159 tiger cat"
 },
 {
 "probability": 0.12221276015043259,
 "class": "n02124075 Egyptian cat"
 },
 {
 "probability": 0.028706775978207588,
 "class": "n02127052 lynx, catamount"
 },
 {

AWS Inferentia 135

Deep Learning AMI Developer Guide

 "probability": 0.01915954425930977,
 "class": "n02129604 tiger, Panthera tigris"
 }
]

To cleanup after the test, issue a delete command via the RESTful API and stop the model server
using the following commands:

curl -X DELETE http://127.0.0.1:8081/models/resnet-50_compiled

multi-model-server --stop

You should see the following output:

{
 "status": "Model \"resnet-50_compiled\" unregistered"
}
Model server stopped.
Found 1 models and 1 NCGs.
Unloading 10001 (MODEL_STATUS_STARTED) :: success
Destroying NCG 1 :: success

Using PyTorch-Neuron and the AWS Neuron Compiler

The PyTorch-Neuron compilation API provides a method to compile a model graph that you can
run on an AWS Inferentia device.

A trained model must be compiled to an Inferentia target before it can be deployed on Inf1
instances. The following tutorial compiles the torchvision ResNet50 model and exports it as a saved
TorchScript module. This model is then used to run inference.

For convenience, this tutorial uses an Inf1 instance for both compilation and inference. In practice,
you may compile your model using another instance type, such as the c5 instance family. You must
then deploy your compiled model to the Inf1 inference server. For more information, see the AWS
Neuron PyTorch SDK Documentation.

Contents

• Prerequisites

• Activate the Conda Environment

• Resnet50 Compilation

AWS Inferentia 136

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html

Deep Learning AMI Developer Guide

• ResNet50 Inference

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI
Instance with AWS Neuron. You should also have a familiarity with deep learning and using the
DLAMI.

Activate the Conda Environment

Activate the PyTorch-Neuron conda environment using the following command:

source activate aws_neuron_pytorch_p36

To exit the current conda environment, run:

source deactivate

Resnet50 Compilation

Create a Python script called pytorch_trace_resnet50.py with the following content. This
script uses the PyTorch-Neuron compilation Python API to compile a ResNet-50 model.

Note

There is a dependency between versions of torchvision and the torch package that you
should be aware of when compiling torchvision models. These dependency rules can
be managed through pip. Torchvision==0.6.1 matches the torch==1.5.1 release, while
torchvision==0.8.2 matches the torch==1.7.1 release.

import torch
import numpy as np
import os
import torch_neuron
from torchvision import models

image = torch.zeros([1, 3, 224, 224], dtype=torch.float32)

AWS Inferentia 137

Deep Learning AMI Developer Guide

Load a pretrained ResNet50 model
model = models.resnet50(pretrained=True)

Tell the model we are using it for evaluation (not training)
model.eval()
model_neuron = torch.neuron.trace(model, example_inputs=[image])

Export to saved model
model_neuron.save("resnet50_neuron.pt")

Run the compilation script.

python pytorch_trace_resnet50.py

Compilation will take a few minutes. When compilation has finished, the compiled model is saved
as resnet50_neuron.pt in the local directory.

ResNet50 Inference

Create a Python script called pytorch_infer_resnet50.py with the following content. This
script downloads a sample image and uses it to run inference with the compiled model.

import os
import time
import torch
import torch_neuron
import json
import numpy as np

from urllib import request

from torchvision import models, transforms, datasets

Create an image directory containing a small kitten
os.makedirs("./torch_neuron_test/images", exist_ok=True)
request.urlretrieve("https://raw.githubusercontent.com/awslabs/mxnet-model-server/
master/docs/images/kitten_small.jpg",
 "./torch_neuron_test/images/kitten_small.jpg")

Fetch labels to output the top classifications

AWS Inferentia 138

Deep Learning AMI Developer Guide

request.urlretrieve("https://s3.amazonaws.com/deep-learning-models/image-models/
imagenet_class_index.json","imagenet_class_index.json")
idx2label = []

with open("imagenet_class_index.json", "r") as read_file:
 class_idx = json.load(read_file)
 idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]

Import a sample image and normalize it into a tensor
normalize = transforms.Normalize(
 mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])

eval_dataset = datasets.ImageFolder(
 os.path.dirname("./torch_neuron_test/"),
 transforms.Compose([
 transforms.Resize([224, 224]),
 transforms.ToTensor(),
 normalize,
])
)

image, _ = eval_dataset[0]
image = torch.tensor(image.numpy()[np.newaxis, ...])

Load model
model_neuron = torch.jit.load('resnet50_neuron.pt')

Predict
results = model_neuron(image)

Get the top 5 results
top5_idx = results[0].sort()[1][-5:]

Lookup and print the top 5 labels
top5_labels = [idx2label[idx] for idx in top5_idx]

print("Top 5 labels:\n {}".format(top5_labels))

Run inference with the compiled model using the following command:

python pytorch_infer_resnet50.py

AWS Inferentia 139

Deep Learning AMI Developer Guide

Your output should look like the following:

Top 5 labels:
 ['tiger', 'lynx', 'tiger_cat', 'Egyptian_cat', 'tabby']

The Graviton DLAMI

AWS Graviton GPU DLAMIs are designed to provide high performance and cost efficiency for deep
learning workloads. Specifically, the G5g instance type features the Arm-based AWS Graviton2
processor, which was built from the ground up by AWS and optimized for how customers run
their workloads in the cloud. AWS Graviton GPU DLAMIs are pre-configured with Docker, NVIDIA
Docker, NVIDIA Driver, CUDA, CuDNN, NCCL, and TensorRT, as well as popular machine learning
frameworks such as TensorFlow and PyTorch.

With the G5g instance type, you can take advantage of the price and performance benefits of
Graviton2 to deploy GPU-accelerated deep learning models at a significantly lower cost when
compared with x86-based instances with GPU acceleration.

Select a Graviton DLAMI

Launch a G5g instance with the Graviton DLAMI of your choice.

For step-by-step instructions on launching a DLAMI, see Launching and Configuring a DLAMI.

For a list of the most recent Graviton DLAMIs, see the Release Notes for DLAMI.

Get Started

The following topics show you how to get started using the Graviton DLAMI.

Contents

• Using the Graviton GPU DLAMI

• Using the Graviton GPU TensorFlow DLAMI

• Using the Graviton GPU PyTorch DLAMI

Using the Graviton GPU DLAMI

The AWS Deep Learning AMI is ready to use with Arm processor-based Graviton GPUs. The Graviton
GPU DLAMI comes with a foundational platform of GPU drivers and acceleration libraries to deploy

Graviton DLAMI 140

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/g5g/
https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html

Deep Learning AMI Developer Guide

your own customized deep learning environment. Docker and NVIDIA Docker are preconfigured on
the Graviton GPU DLAMI to let you deploy containerzied applications. Check the release notes for
additional details on the Graviton GPU DLAMI.

Contents

• Check GPU Status

• Check CUDA Version

• Verify Docker

• TensorRT

• Run CUDA Samples

Check GPU Status

Use the NVIDIA System Management Interface to check the status of your Graviton GPU.

nvidia-smi

The output of the nvidia-smi command should be similar to the following:

+---+
| NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA T4G On	00000000:00:1F.0 Off	0
N/A 32C P8 8W / 70W	0MiB / 15109MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Graviton DLAMI 141

https://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-cuda-11-4-ubuntu-20-04/
https://developer.nvidia.com/nvidia-system-management-interface

Deep Learning AMI Developer Guide

Check CUDA Version

Run the following command to check your CUDA version:

/usr/local/cuda/bin/nvcc --version | grep Cuda

Your output should look similar to the following:

nvcc: NVIDIA (R) Cuda compiler driver
Cuda compilation tools, release 11.4, V11.4.120

Verify Docker

Run a CUDA container from DockerHub to verify Docker functionality on your Graviton GPU:

sudo docker run --platform=linux/arm64 --rm \
 --gpus all nvidia/cuda:11.4.2-base-ubuntu20.04 nvidia-smi

Your output should look similar to the following:

+---+
| NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA T4G On	00000000:00:1F.0 Off	0
N/A 33C P8 9W / 70W	0MiB / 15109MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Graviton DLAMI 142

https://hub.docker.com/r/nvidia/cuda

Deep Learning AMI Developer Guide

TensorRT

Use the following command to access the TensorRT command line tool:

trtexec

Your output should look similar to the following:

&&&& RUNNING TensorRT.trtexec [TensorRT v8200] # trtexec
...
&&&& PASSED TensorRT.trtexec [TensorRT v8200] # trtexec

There are TensorRT Python wheels available for installation on demand. You can find these wheels
in the following file locations:

/usr/local/tensorrt/graphsurgeon/
graphsurgeon-0.4.5-py2.py3-none-any.whl

/usr/local/tensorrt/onnx_graphsurgeon/
onnx_graphsurgeon-0.3.12-py2.py3-none-any.whl

/usr/local/tensorrt/python/
tensorrt-8.2.0.6-cp36-none-linux_aarch64.whl
tensorrt-8.2.0.6-cp37-none-linux_aarch64.whl
tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl
tensorrt-8.2.0.6-cp39-none-linux_aarch64.whl

/usr/local/tensorrt/uff/
uff-0.6.9-py2.py3-none-any.whl

For additional details, see the NVIDIA TensorRT documentation.

Run CUDA Samples

The Graviton GPU DLAMI provides pre-compiled CUDA samples to help you verify different CUDA
functionalities.

ls /usr/local/cuda/compiled_samples

For example, run the vectorAdd sample with the following command:

Graviton DLAMI 143

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

Deep Learning AMI Developer Guide

/usr/local/cuda/compiled_samples/vectorAdd

Your output should look similar to the following:

[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

Run the transpose sample:

/usr/local/cuda/compiled_samples/transpose

Your output should look similar to the following:

Transpose Starting...

GPU Device 0: "Turing" with compute capability 7.5

> Device 0: "NVIDIA T4G"
> SM Capability 7.5 detected:
> [NVIDIA T4G] has 40 MP(s) x 64 (Cores/MP) = 2560 (Cores)
> Compute performance scaling factor = 1.00

Matrix size: 1024x1024 (64x64 tiles), tile size: 16x16, block size: 16x16

transpose simple copy , Throughput = 185.1781 GB/s, Time = 0.04219 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose shared memory copy, Throughput = 163.8616 GB/s, Time = 0.04768 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose naive , Throughput = 98.2805 GB/s, Time = 0.07949 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose coalesced , Throughput = 127.6759 GB/s, Time = 0.06119 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose optimized , Throughput = 156.2960 GB/s, Time = 0.04999 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose coarse-grained , Throughput = 155.9157 GB/s, Time = 0.05011 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose fine-grained , Throughput = 158.4177 GB/s, Time = 0.04932 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256

Graviton DLAMI 144

Deep Learning AMI Developer Guide

transpose diagonal , Throughput = 133.4277 GB/s, Time = 0.05855 ms, Size =
 1048576 fp32 elements, NumDevsUsed = 1, Workgroup = 256
Test passed

Next Up

Using the Graviton GPU TensorFlow DLAMI

Using the Graviton GPU TensorFlow DLAMI

The AWS Deep Learning AMI is ready to use with Arm processor-based Graviton GPUs, and comes
optimized for TensorFlow. The Graviton GPU TensorFlow DLAMI includes a Python environment
pre-configured with TensorFlow Serving for deep learning inference use cases. Check the release
notes for additional details on the Graviton GPU TensorFlow DLAMI.

Contents

• Verify TensorFlow Serving Availability

• Verify TensorFlow and TensorFlow Serving API Availability

• Run Example Inference with TensorFlow Serving

Verify TensorFlow Serving Availability

Run the following command to verify the availability and version of TensorFlow Serving:

tensorflow_model_server --version

Your output should look similar to the following:

TensorFlow ModelServer: 0.0.0+dev.sha.3e05381e
TensorFlow Library: 2.8.0

Verify TensorFlow and TensorFlow Serving API Availability

Run the following command to verify the availability of TensorFlow and the TensorFlow Serving
API:

python3 -c "import tensorflow, tensorflow_serving"

Graviton DLAMI 145

https://www.tensorflow.org/tfx/guide/serving
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/

Deep Learning AMI Developer Guide

If the command is successful, there is no output.

Run Example Inference with TensorFlow Serving

Use the following commands to download a pre-trained ResNet50 model and run inference using
TensorFlow Serving:

Clone the TensorFlow Serving repository
git clone https://github.com/tensorflow/serving

Download pre-trained ResNet50 model
mkdir -p ${HOME}/resnet/1 && cd ${HOME}/resnet/1
wget https://tfhub.dev/tensorflow/resnet_50/classification/1?tf-hub-format=compressed -
O resnet_50_classification_1.tar.gz
tar -xzvf resnet_50_classification_1.tar.gz && rm resnet_50_classification_1.tar.gz

Start TensorFlow Serving
cd $HOME
tensorflow_model_server \
 --rest_api_port=8501 \
 --model_name="resnet" \
 --model_base_path="${HOME}/resnet" &

Your output should look similar to the following:

2021-11-10 06:18:51.028341: I tensorflow_serving/model_servers/server_core.cc:486]
 Finished adding/updating models
2021-11-10 06:18:51.028420: I tensorflow_serving/model_servers/server.cc:133] Using
 InsecureServerCredentials
2021-11-10 06:18:51.028460: I tensorflow_serving/model_servers/server.cc:383] Profiler
 service is enabled
2021-11-10 06:18:51.028889: I tensorflow_serving/model_servers/server.cc:409] Running
 gRPC ModelServer at 0.0.0.0:8500 ...
[evhttp_server.cc : 245] NET_LOG: Entering the event loop ...
2021-11-10 06:18:51.030985: I tensorflow_serving/model_servers/server.cc:430] Exporting
 HTTP/REST API at:localhost:8501 ...

Use the TensorFlow Serving resnet_client example to run inference:

python3 serving/tensorflow_serving/example/resnet_client.py

Your output should look similar to the following:

Graviton DLAMI 146

https://github.com/tensorflow/serving/tree/master/tensorflow_serving/example

Deep Learning AMI Developer Guide

2021-11-10 06:18:59.335327: I external/org_tensorflow/tensorflow/stream_executor/cuda/
cuda_dnn.cc:368] Loaded cuDNN version 8204
2021-11-10 06:18:59.956156: I external/org_tensorflow/tensorflow/core/platform/default/
subprocess.cc:304] Start cannot spawn child process
Prediction class: 285, avg latency: 111.4673 ms

Stop TensorFlow Serving with the following command:

kill $(pidof tensorflow_model_server)

Next Up

Using the Graviton GPU PyTorch DLAMI

Using the Graviton GPU PyTorch DLAMI

The AWS Deep Learning AMI is ready to use with Arm processor-based Graviton GPUs, and comes
optimized for PyTorch. The Graviton GPU PyTorch DLAMI includes a Python environment pre-
configured with PyTorch, TorchVision, and TorchServe for deep learning training and inference use
cases. Check the release notes for additional details on the Graviton GPU PyTorch DLAMI.

Contents

• Verify PyTorch Python Environment

• Run Training Sample with PyTorch

• Run Inference Sample with PyTorch

Verify PyTorch Python Environment

Connect to your G5g instance and activate the base Conda environment with the following
command:

source activate base

Your command prompt should indicate that you are working in the base Conda environment, which
contains PyTorch, TorchVision, and other libraries.

(base) $

Graviton DLAMI 147

https://aws.amazon.com/pytorch
https://pytorch.org/vision/stable/index.html
https://pytorch.org/serve/
https://aws.amazon.com/releasenotes/deep-learning-ami-graviton-gpu-pytorch-1-10-ubuntu-20-04/

Deep Learning AMI Developer Guide

Verify the default tool paths of the PyTorch environment:

(base) $ which python
/opt/conda/bin/python

(base) $ which pip
/opt/conda/bin/pip

(base) $ which conda
/opt/conda/bin/conda

(base) $ which mamba
/opt/conda/bin/mamba

Verify that Torch and TorchVersion are available, check their versions, and test for basic
functionality:

(base) $ python
Python 3.8.12 | packaged by conda-forge | (default, Oct 12 2021, 23:06:28)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch, torchvision
>>> torch.__version__
'1.10.0'
>>> torchvision.__version__
'0.11.1'
>>> v = torch.autograd.Variable(torch.randn(10, 3, 224, 224))
>>> v = torch.autograd.Variable(torch.randn(10, 3, 224, 224)).cuda()
>>> assert isinstance(v, torch.Tensor)

Run Training Sample with PyTorch

Run a sample MNIST training job:

git clone https://github.com/pytorch/examples.git
cd examples/mnist
python main.py

Your output should look similar to the following:

...
Train Epoch: 14 [56320/60000 (94%)] Loss: 0.021424

Graviton DLAMI 148

Deep Learning AMI Developer Guide

Train Epoch: 14 [56960/60000 (95%)] Loss: 0.023695
Train Epoch: 14 [57600/60000 (96%)] Loss: 0.001973
Train Epoch: 14 [58240/60000 (97%)] Loss: 0.007121
Train Epoch: 14 [58880/60000 (98%)] Loss: 0.003717
Train Epoch: 14 [59520/60000 (99%)] Loss: 0.001729
Test set: Average loss: 0.0275, Accuracy: 9916/10000 (99%)

Run Inference Sample with PyTorch

Use the following commands to download a pre-trained densenet161 model and run inference
using TorchServe:

Set up TorchServe
cd $HOME
git clone https://github.com/pytorch/serve.git
mkdir -p serve/model_store
cd serve

Download a pre-trained densenet161 model
wget https://download.pytorch.org/models/densenet161-8d451a50.pth >/dev/null

Save the model using torch-model-archiver
torch-model-archiver --model-name densenet161 \
 --version 1.0 \
 --model-file examples/image_classifier/densenet_161/model.py \
 --serialized-file densenet161-8d451a50.pth \
 --handler image_classifier \
 --extra-files examples/image_classifier/index_to_name.json \
 --export-path model_store

Start the model server
torchserve --start --no-config-snapshots \
 --model-store model_store \
 --models densenet161=densenet161.mar &> torchserve.log

Wait for the model server to start
sleep 30

Run a prediction request
curl http://127.0.0.1:8080/predictions/densenet161 -T examples/image_classifier/
kitten.jpg

Your output should look similar to the following:

Graviton DLAMI 149

Deep Learning AMI Developer Guide

{
 "tiger_cat": 0.4693363308906555,
 "tabby": 0.4633873701095581,
 "Egyptian_cat": 0.06456123292446136,
 "lynx": 0.0012828150065615773,
 "plastic_bag": 0.00023322898778133094
}

Use the following commands to unregister the densenet161 model and stop the server:

curl -X DELETE http://localhost:8081/models/densenet161/1.0
torchserve --stop

Your output should look similar to the following:

{
 "status": "Model \"densenet161\" unregistered"
}
TorchServe has stopped.

The Habana DLAMI

Instances with Habana accelerators are designed to provide high performance and cost efficiency
for deep learning model training workloads. Specifically, DL1 instance types use Habana Gaudi
accelerators from Habana Labs, an Intel company. Instances with Habana accelerators are
configured with Habana SynapseAI software and pre-integrated with popular machine learning
frameworks such as TensorFlow and PyTorch.

The following topics show you how to get started using Habana Gaudi hardware with the DLAMI.

Contents

• Launching a Habana DLAMI

Launching a Habana DLAMI

The latest DLAMI is ready to use with Habana Gaudi accelerators. Use the following steps to launch
your Habana DLAMI and ensure that your Python and framework-specific resources are active. For
additional setup resources, see the Habana Gaudi Setup and Installation respository.

Habana DLAMI 150

https://github.com/HabanaAI/Setup_and_Install

Deep Learning AMI Developer Guide

Contents

• Select a Habana DLAMI

• Activate Python Environment

• Import Machine Learning Framework

Select a Habana DLAMI

Launch a DL1 instance with the Habana DLAMI of your choice.

For step-by-step instructions on launching a DLAMI, see Launching and Configuring a DLAMI.

For a list of the most recent Habana DLAMIs, see the Release Notes for DLAMI.

Activate Python Environment

Connect to your DL1 instance and activate the recommended Python environment for your Habana
DLAMI. To check your recommended Python environment, select your DLAMI in the Release Notes.

Import Machine Learning Framework

Instances with Habana accelerators are pre-integrated with popular machine learning frameworks
such as TensorFlow and PyTorch. Import the machine learning framework of your choice.

Import TensorFlow

To use TensorFlow on your Habana DLAMI, navigate to the folder of the Python environment that
you activated and import TensorFlow.

/usr/bin/$PYTHON_VERSION
import tensorflow
tensorflow.__version__

To check the TensorFlow version compatible with your Habana DLAMI, select your DLAMI in the
Release Notes.

Import PyTorch

To use PyTorch on your Habana DLAMI, navigate to the folder of the Python environment that you
activated and import the appropriate PyTorch version.

/usr/bin/$PYTHON_VERSION

Habana DLAMI 151

https://aws.amazon.com/ec2/instance-types/dl1/
https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html

Deep Learning AMI Developer Guide

import torch
torch.__version__

To check the PyTorch version compatible with your Habana DLAMI, select your DLAMI in the
Release Notes.

For more information on how to run and train machine learning models in TensorFlow and PyTorch
using your Habana DLAMI, see the Habana Model References GitHub repository. For additional
resources on working with your Habana DLAMI, visit the Habana Gaudi documentation.

Inference

This section provides tutorials on how to run inference using the DLAMI's frameworks and tools.

For tutorials using Elastic Inference, see Working with Amazon Elastic Inference

Inference with Frameworks

• Use Apache MXNet (Incubating) for Inference with an ONNX Model

• Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model

• Use CNTK for Inference with an ONNX Model

Inference Tools

• Model Server for Apache MXNet (MMS)

• TensorFlow Serving

Use Apache MXNet (Incubating) for Inference with an ONNX Model

How to Use an ONNX Model for Image Inference with Apache MXNet (Incubating)

1. • (Option for Python 3) - Activate the Python 3 Apache MXNet (Incubating) environment:

$ source activate mxnet_p36

• (Option for Python 2) - Activate the Python 2 Apache MXNet (Incubating) environment:

$ source activate mxnet_p27

Inference 152

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://github.com/HabanaAI/Model-References
https://docs.habana.ai/en/latest/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/working-with-ei.html

Deep Learning AMI Developer Guide

2. The remaining steps assume you are using the mxnet_p36 environment.

3. Download a picture of a husky.

$ curl -O https://upload.wikimedia.org/wikipedia/commons/b/b5/Siberian_Husky_bi-
eyed_Flickr.jpg

4. Download a list of classes that work with this model.

$ curl -O https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/
d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee/imagenet1000_clsid_to_human.pkl

5. Download the pre-trained VGG 16 model in ONNX format.

$ wget -O vgg16.onnx https://github.com/onnx/models/raw/master/vision/
classification/vgg/model/vgg16-7.onnx

6. Use a your preferred text editor to create a script that has the following content. This script
will use the image of the husky, get a prediction result from the pre-trained model, then look
this up in the file of classes, returning an image classification result.

import mxnet as mx
import mxnet.contrib.onnx as onnx_mxnet
import numpy as np
from collections import namedtuple
from PIL import Image
import pickle

Preprocess the image
img = Image.open("Siberian_Husky_bi-eyed_Flickr.jpg")
img = img.resize((224,224))
rgb_img = np.asarray(img, dtype=np.float32) - 128
bgr_img = rgb_img[..., [2,1,0]]
img_data = np.ascontiguousarray(np.rollaxis(bgr_img,2))
img_data = img_data[np.newaxis, :, :, :].astype(np.float32)

Define the model's input
data_names = ['data']
Batch = namedtuple('Batch', data_names)

Set the context to cpu or gpu
ctx = mx.cpu()

Inference 153

Deep Learning AMI Developer Guide

Load the model
sym, arg, aux = onnx_mxnet.import_model("vgg16.onnx")
mod = mx.mod.Module(symbol=sym, data_names=data_names, context=ctx,
 label_names=None)
mod.bind(for_training=False, data_shapes=[(data_names[0],img_data.shape)],
 label_shapes=None)
mod.set_params(arg_params=arg, aux_params=aux, allow_missing=True,
 allow_extra=True)

Run inference on the image
mod.forward(Batch([mx.nd.array(img_data)]))
predictions = mod.get_outputs()[0].asnumpy()
top_class = np.argmax(predictions)
print(top_class)
labels_dict = pickle.load(open("imagenet1000_clsid_to_human.pkl", "rb"))
print(labels_dict[top_class])

7. Then run the script, and you should see a result as follows:

248
Eskimo dog, husky

Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model

How to Use a Pre-Trained Apache MXNet (Incubating) Model with the Symbol API for Image
Inference with MXNet

1. • (Option for Python 3) - Activate the Python 3 Apache MXNet (Incubating) environment:

$ source activate mxnet_p36

• (Option for Python 2) - Activate the Python 2 Apache MXNet (Incubating) environment:

$ source activate mxnet_p27

2. The remaining steps assume you are using the mxnet_p36 environment.

3. Use a your preferred text editor to create a script that has the following content. This script
will download the ResNet-50 model files (resnet-50-0000.params and resnet-50-symbol.json)
and labels list (synset.txt), download a cat image to get a prediction result from the pre-
trained model, then look this up in the result in labels list, returning a prediction result.

Inference 154

Deep Learning AMI Developer Guide

import mxnet as mx
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params'),
 mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json'),
 mx.test_utils.download(path+'synset.txt')]

ctx = mx.cpu()

with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

sym, args, aux = mx.model.load_checkpoint('resnet-50', 0)

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/
doc/tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname)
convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # Channel first
img = img.expand_dims(axis=0) # batchify
img = img.astype(dtype='float32')
args['data'] = img

softmax = mx.nd.random_normal(shape=(1,))
args['softmax_label'] = softmax

exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')

exe.forward()
prob = exe.outputs[0].asnumpy()
print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

4. Then run the script, and you should see a result as follows:

probability=0.418679, class=n02119789 kit fox, Vulpes macrotis
probability=0.293495, class=n02119022 red fox, Vulpes vulpes

Inference 155

Deep Learning AMI Developer Guide

probability=0.029321, class=n02120505 grey fox, gray fox, Urocyon cinereoargenteus
probability=0.026230, class=n02124075 Egyptian cat
probability=0.022557, class=n02085620 Chihuahua

Use CNTK for Inference with an ONNX Model

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

Note

The VGG-16 model used in this tutorial consumes a large amount of memory. When
selecting your AWS Deep Learning AMI instance, you may need an instance with more than
30 GB of RAM.

How to Use an ONNX Model for Inference with CNTK

1. • (Option for Python 3) - Activate the Python 3 CNTK environment:

$ source activate cntk_p36

• (Option for Python 2) - Activate the Python 2 CNTK environment:

$ source activate cntk_p27

2. The remaining steps assume you are using the cntk_p36 environment.

3. Create a new file with your text editor, and use the following program in a script to open
ONNX format file in CNTK.

import cntk as C
Import the Chainer model into CNTK via the CNTK import API

Inference 156

Deep Learning AMI Developer Guide

z = C.Function.load("vgg16.onnx", device=C.device.cpu(), format=C.ModelFormat.ONNX)
print("Loaded vgg16.onnx!")

After you run this script, CNTK will have loaded the model.

4. You may also try running inference with CNTK. First, download a picture of a husky.

$ curl -O https://upload.wikimedia.org/wikipedia/commons/b/b5/Siberian_Husky_bi-
eyed_Flickr.jpg

5. Next, download a list of classes will work with this model.

$ curl -O https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/
d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee/imagenet1000_clsid_to_human.pkl

6. Edit the previously created script to have the following content. This new version will use the
image of the husky, get a prediction result, then look this up in the file of classes, returning a
prediction result.

import cntk as C
import numpy as np
from PIL import Image
from IPython.core.display import display
import pickle

Import the model into CNTK via the CNTK import API
z = C.Function.load("vgg16.onnx", device=C.device.cpu(), format=C.ModelFormat.ONNX)
print("Loaded vgg16.onnx!")
img = Image.open("Siberian_Husky_bi-eyed_Flickr.jpg")
img = img.resize((224,224))
rgb_img = np.asarray(img, dtype=np.float32) - 128
bgr_img = rgb_img[..., [2,1,0]]
img_data = np.ascontiguousarray(np.rollaxis(bgr_img,2))
predictions = np.squeeze(z.eval({z.arguments[0]:[img_data]}))
top_class = np.argmax(predictions)
print(top_class)
labels_dict = pickle.load(open("imagenet1000_clsid_to_human.pkl", "rb"))
print(labels_dict[top_class])

7. Then run the script, and you should see a result as follows:

248

Inference 157

Deep Learning AMI Developer Guide

Eskimo dog, husky

Using Frameworks with ONNX

The Deep Learning AMI with Conda now supports Open Neural Network Exchange (ONNX) models
for some frameworks. Choose one of the topics listed below to learn how to use ONNX on your
Deep Learning AMI with Conda.

If you want to use an existing ONNX model on a DLAMI, see Use Apache MXNet (Incubating) for
Inference with an ONNX Model.

About ONNX

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning
models. ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other
partners. You can design, train, and deploy deep learning models with any framework you choose.
The benefit of ONNX models is that they can be moved between frameworks with ease.

The Deep Learning AMI with Conda currently highlights some of the ONNX features in the
following collection of tutorials.

• Apache MXNet to ONNX to CNTK Tutorial

• Chainer to ONNX to CNTK Tutorial

• Chainer to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

• PyTorch to ONNX to MXNet Tutorial

You might also want to refer to the ONNX project documentation and tutorials:

• ONNX Project on GitHub

• ONNX Tutorials

Using Frameworks with ONNX 158

http://onnx.ai/
http://onnx.ai/
https://github.com/onnx/onnx
https://github.com/onnx/tutorials

Deep Learning AMI Developer Guide

Apache MXNet to ONNX to CNTK Tutorial

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning
models. ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other
partners. You can design, train, and deploy deep learning models with any framework you choose.
The benefit of ONNX models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following
these steps, you can train a model or load a pre-trained model from one framework, export this
model to ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or
later. For more information about how to get started with a Deep Learning AMI with Conda, see
Deep Learning AMI with Conda.

Important

These examples use functions that might require up to 8 GB of memory (or more). Be sure
to choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Using Frameworks with ONNX 159

http://onnx.ai/

Deep Learning AMI Developer Guide

Convert an Apache MXNet (incubating) Model to ONNX, then Load the Model into CNTK

How to Export a Model from Apache MXNet (incubating)

You can install the latest MXNet build into either or both of the MXNet Conda environments on
your Deep Learning AMI with Conda.

1. • (Option for Python 3) - Activate the Python 3 MXNet environment:

$ source activate mxnet_p36

• (Option for Python 2) - Activate the Python 2 MXNet environment:

$ source activate mxnet_p27

2. The remaining steps assume that you are using the mxnet_p36 environment.

3. Download the model files.

curl -O https://s3.amazonaws.com/onnx-mxnet/model-zoo/vgg16/vgg16-symbol.json
curl -O https://s3.amazonaws.com/onnx-mxnet/model-zoo/vgg16/vgg16-0000.params

4. To export the model files from MXNet to the ONNX format, create a new file with your text
editor and use the following program in a script.

import numpy as np
import mxnet as mx
from mxnet.contrib import onnx as onnx_mxnet
converted_onnx_filename='vgg16.onnx'

Export MXNet model to ONNX format via MXNet's export_model API
converted_onnx_filename=onnx_mxnet.export_model('vgg16-symbol.json',
 'vgg16-0000.params', [(1,3,224,224)], np.float32, converted_onnx_filename)

Check that the newly created model is valid and meets ONNX specification.
import onnx
model_proto = onnx.load(converted_onnx_filename)
onnx.checker.check_model(model_proto)

You may see some warning messages, but you can safely ignore those for now. After you run
this script, you will see the newly created .onnx file in the same directory.

Using Frameworks with ONNX 160

Deep Learning AMI Developer Guide

5. Now that you have an ONNX file you can try running inference with it with the following
example:

• Use CNTK for Inference with an ONNX Model

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial

• Chainer to ONNX to CNTK Tutorial

• Chainer to ONNX to MXNet Tutorial

• PyTorch to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

Chainer to ONNX to CNTK Tutorial

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning
models. ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other
partners. You can design, train, and deploy deep learning models with any framework you choose.
The benefit of ONNX models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following
these steps, you can train a model or load a pre-trained model from one framework, export this
model to ONNX, and then import the model in another framework.

Using Frameworks with ONNX 161

http://onnx.ai/

Deep Learning AMI Developer Guide

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or
later. For more information about how to get started with a Deep Learning AMI with Conda, see
Deep Learning AMI with Conda.

Important

These examples use functions that might require up to 8 GB of memory (or more). Be sure
to choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a Chainer Model to ONNX, then Load the Model into CNTK

First, activate the Chainer environment:

$ source activate chainer_p36

Create a new file with your text editor, and use the following program in a script to fetch a model
from Chainer's model zoo, then export it to the ONNX format.

import numpy as np
import chainer
import chainercv.links as L
import onnx_chainer

Fetch a vgg16 model
model = L.VGG16(pretrained_model='imagenet')

Prepare an input tensor
x = np.random.rand(1, 3, 224, 224).astype(np.float32) * 255

Run the model on the data
with chainer.using_config('train', False):
 chainer_out = model(x).array

Export the model to a .onnx file
out = onnx_chainer.export(model, x, filename='vgg16.onnx')

Using Frameworks with ONNX 162

Deep Learning AMI Developer Guide

Check that the newly created model is valid and meets ONNX specification.
import onnx
model_proto = onnx.load("vgg16.onnx")
onnx.checker.check_model(model_proto)

After you run this script, you will see the newly created .onnx file in the same directory.

Now that you have an ONNX file you can try running inference with it with the following example:

• Use CNTK for Inference with an ONNX Model

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial

• Chainer to ONNX to CNTK Tutorial

• Chainer to ONNX to MXNet Tutorial

• PyTorch to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

Chainer to ONNX to MXNet Tutorial

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning
models. ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other
partners. You can design, train, and deploy deep learning models with any framework you choose.
The benefit of ONNX models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following
these steps, you can train a model or load a pre-trained model from one framework, export this
model to ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or
later. For more information about how to get started with a Deep Learning AMI with Conda, see
Deep Learning AMI with Conda.

Using Frameworks with ONNX 163

http://onnx.ai/

Deep Learning AMI Developer Guide

Important

These examples use functions that might require up to 8 GB of memory (or more). Be sure
to choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a Chainer Model to ONNX, then Load the Model into MXNet

First, activate the Chainer environment:

$ source activate chainer_p36

Create a new file with your text editor, and use the following program in a script to fetch a model
from Chainer's model zoo, then export it to the ONNX format.

import numpy as np
import chainer
import chainercv.links as L
import onnx_chainer

Fetch a vgg16 model
model = L.VGG16(pretrained_model='imagenet')

Prepare an input tensor
x = np.random.rand(1, 3, 224, 224).astype(np.float32) * 255

Run the model on the data
with chainer.using_config('train', False):
 chainer_out = model(x).array

Export the model to a .onnx file
out = onnx_chainer.export(model, x, filename='vgg16.onnx')

Check that the newly created model is valid and meets ONNX specification.
import onnx
model_proto = onnx.load("vgg16.onnx")
onnx.checker.check_model(model_proto)

After you run this script, you will see the newly created .onnx file in the same directory.

Using Frameworks with ONNX 164

Deep Learning AMI Developer Guide

Now that you have an ONNX file you can try running inference with it with the following example:

• Use Apache MXNet (Incubating) for Inference with an ONNX Model

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial

• Chainer to ONNX to CNTK Tutorial

• Chainer to ONNX to MXNet Tutorial

• PyTorch to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

PyTorch to ONNX to CNTK Tutorial

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the
AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we
will only provide updates to these environments if there are security fixes published by the
open source community for these frameworks.

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning
models. ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other
partners. You can design, train, and deploy deep learning models with any framework you choose.
The benefit of ONNX models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following
these steps, you can train a model or load a pre-trained model from one framework, export this
model to ONNX, and then import the model in another framework.

Using Frameworks with ONNX 165

http://onnx.ai/

Deep Learning AMI Developer Guide

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or
later. For more information about how to get started with a Deep Learning AMI with Conda, see
Deep Learning AMI with Conda.

Important

These examples use functions that might require up to 8 GB of memory (or more). Be sure
to choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a PyTorch Model to ONNX, then Load the Model into CNTK

First, activate the PyTorch environment:

$ source activate pytorch_p36

Create a new file with your text editor, and use the following program in a script to train a mock
model in PyTorch, then export it to the ONNX format.

Build a Mock Model in Pytorch with a convolution and a reduceMean layer\
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.onnx as torch_onnx

class Model(nn.Module):
 def __init__(self):
 super(Model, self).__init__()
 self.conv = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3,3),
 stride=1, padding=0, bias=False)

 def forward(self, inputs):
 x = self.conv(inputs)
 #x = x.view(x.size()[0], x.size()[1], -1)

Using Frameworks with ONNX 166

Deep Learning AMI Developer Guide

 return torch.mean(x, dim=2)

Use this an input trace to serialize the model
input_shape = (3, 100, 100)
model_onnx_path = "torch_model.onnx"
model = Model()
model.train(False)

Export the model to an ONNX file
dummy_input = Variable(torch.randn(1, *input_shape))
output = torch_onnx.export(model,
 dummy_input,
 model_onnx_path,
 verbose=False)

After you run this script, you will see the newly created .onnx file in the same directory. Now, switch
to the CNTK Conda environment to load the model with CNTK.

Next, activate the CNTK environment:

$ source deactivate
$ source activate cntk_p36

Create a new file with your text editor, and use the following program in a script to open ONNX
format file in CNTK.

import cntk as C
Import the PyTorch model into CNTK via the CNTK import API
z = C.Function.load("torch_model.onnx", device=C.device.cpu(),
 format=C.ModelFormat.ONNX)

After you run this script, CNTK will have loaded the model.

You may also export to ONNX using CNTK by appending the following to your previous script then
running it.

Export the model to ONNX via the CNTK export API
z.save("cntk_model.onnx", format=C.ModelFormat.ONNX)

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial

Using Frameworks with ONNX 167

Deep Learning AMI Developer Guide

• Chainer to ONNX to CNTK Tutorial

• Chainer to ONNX to MXNet Tutorial

• PyTorch to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

PyTorch to ONNX to MXNet Tutorial

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning
models. ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other
partners. You can design, train, and deploy deep learning models with any framework you choose.
The benefit of ONNX models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following
these steps, you can train a model or load a pre-trained model from one framework, export this
model to ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or
later. For more information about how to get started with a Deep Learning AMI with Conda, see
Deep Learning AMI with Conda.

Important

These examples use functions that might require up to 8 GB of memory (or more). Be sure
to choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a PyTorch Model to ONNX, then Load the Model into MXNet

First, activate the PyTorch environment:

$ source activate pytorch_p36

Using Frameworks with ONNX 168

http://onnx.ai/

Deep Learning AMI Developer Guide

Create a new file with your text editor, and use the following program in a script to train a mock
model in PyTorch, then export it to the ONNX format.

Build a Mock Model in PyTorch with a convolution and a reduceMean layer
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.onnx as torch_onnx

class Model(nn.Module):
 def __init__(self):
 super(Model, self).__init__()
 self.conv = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3,3),
 stride=1, padding=0, bias=False)

 def forward(self, inputs):
 x = self.conv(inputs)
 #x = x.view(x.size()[0], x.size()[1], -1)
 return torch.mean(x, dim=2)

Use this an input trace to serialize the model
input_shape = (3, 100, 100)
model_onnx_path = "torch_model.onnx"
model = Model()
model.train(False)

Export the model to an ONNX file
dummy_input = Variable(torch.randn(1, *input_shape))
output = torch_onnx.export(model,
 dummy_input,
 model_onnx_path,
 verbose=False)
print("Export of torch_model.onnx complete!")

After you run this script, you will see the newly created .onnx file in the same directory. Now, switch
to the MXNet Conda environment to load the model with MXNet.

Next, activate the MXNet environment:

Using Frameworks with ONNX 169

Deep Learning AMI Developer Guide

$ source deactivate
$ source activate mxnet_p36

Create a new file with your text editor, and use the following program in a script to open ONNX
format file in MXNet.

import mxnet as mx
from mxnet.contrib import onnx as onnx_mxnet
import numpy as np

Import the ONNX model into MXNet's symbolic interface
sym, arg, aux = onnx_mxnet.import_model("torch_model.onnx")
print("Loaded torch_model.onnx!")
print(sym.get_internals())

After you run this script, MXNet will have loaded the model, and will print some basic model
information.

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial

• Chainer to ONNX to CNTK Tutorial

• Chainer to ONNX to MXNet Tutorial

• PyTorch to ONNX to MXNet Tutorial

• PyTorch to ONNX to CNTK Tutorial

Model Serving

The following are model serving options installed on the Deep Learning AMI with Conda. Click on
one of the options to learn how to use it.

Topics

• Model Server for Apache MXNet (MMS)

• TensorFlow Serving

• TorchServe

Model Serving 170

Deep Learning AMI Developer Guide

Model Server for Apache MXNet (MMS)

Model Server for Apache MXNet (MMS) is a flexible tool for serving deep learning models that have
been exported from Apache MXNet (incubating) or exported to an Open Neural Network Exchange
(ONNX) model format. MMS comes preinstalled with the DLAMI with Conda. This tutorial for MMS
will demonstrate how to serve an image classification model.

Topics

• Serve an Image Classification Model on MMS

• Other Examples

• More Info

Serve an Image Classification Model on MMS

This tutorial shows how to serve an image classification model with MMS. The model is provided
via the MMS Model Zoo, and is automatically downloaded when you start MMS. Once the server is
running, it listens for prediction requests. When you upload an image, in this case, an image of a
kitten, the server returns a prediction of the top 5 matching classes out of the 1,000 classes that
the model was trained on. More information on the models, how they were trained, and how to
test them can be found in the MMS Model Zoo.

To serve an example image classification model on MMS

1. Connect to an Amazon Elastic Compute Cloud (Amazon EC2) instance of the Deep Learning
AMI with Conda.

2. Activate an MXNet environment:

• For MXNet and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p36

• For MXNet and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p27

3. Run MMS with the following command. Adding > /dev/null will quiet the log output while
you run further tests.

$ mxnet-model-server --start > /dev/null

Model Serving 171

https://github.com/awslabs/mxnet-model-server/
http://mxnet.io/
https://github.com/awslabs/mxnet-model-server/blob/master/docs/model_zoo.md
https://github.com/awslabs/mxnet-model-server/blob/master/docs/model_zoo.md

Deep Learning AMI Developer Guide

MMS is now running on your host, and is listening for inference requests.

4. Next, use a curl command to administer MMS's management endpoints, and tell it what model
you want it to serve.

$ curl -X POST "http://localhost:8081/models?url=https%3A%2F%2Fs3.amazonaws.com
%2Fmodel-server%2Fmodels%2Fsqueezenet_v1.1%2Fsqueezenet_v1.1.model"

5. MMS needs to know the number of workers you would like to use. For this test you can try 3.

$ curl -v -X PUT "http://localhost:8081/models/squeezenet_v1.1?min_worker=3"

6. Download an image of a kitten and send it to the MMS predict endpoint:

$ curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
$ curl -X POST http://127.0.0.1:8080/predictions/squeezenet_v1.1 -T kitten.jpg

The predict endpoint returns a prediction in JSON similar to the following top five predictions,
where the image has a 94% probability of containing an Egyptian cat, followed by a 5.5%
chance it has a lynx or catamount:

{
 "prediction": [
 [{
 "class": "n02124075 Egyptian cat",
 "probability": 0.940
 },
 {
 "class": "n02127052 lynx, catamount",
 "probability": 0.055
 },
 {
 "class": "n02123045 tabby, tabby cat",
 "probability": 0.002
 },
 {
 "class": "n02123159 tiger cat",
 "probability": 0.0003
 },
 {

Model Serving 172

Deep Learning AMI Developer Guide

 "class": "n02123394 Persian cat",
 "probability": 0.0002
 }
]
]
}

7. Test out some more images, or if you have finished testing, stop the server:

$ mxnet-model-server --stop

This tutorial focuses on basic model serving. MMS also supports using Elastic Inference with model
serving. For more information, see Model Serving with Amazon Elastic Inference

When you're ready to learn more about other MMS features, see the MMS documentation on
GitHub.

Other Examples

MMS has a variety of examples that you can run on your DLAMI. You can view them on the MMS
project repository.

More Info

For more MMS documentation, including how to set up MMS with Docker—or to take advantage of
the latest MMS features, star the MMS project page on GitHub.

TensorFlow Serving

TensorFlow Serving is a flexible, high-performance serving system for machine learning models.

The tensorflow-serving-api is pre-installed with Deep Learning AMI with Conda! You will
find an example scripts to train, export, and serve an MNIST model in ~/examples/tensorflow-
serving/.

To run any of these examples, first connect to your Deep Learning AMI with Conda and activate the
TensorFlow environment.

$ source activate tensorflow_p37

Now change directories to the serving example scripts folder.

Model Serving 173

https://github.com/awslabs/mxnet-model-server/blob/master/docs/elastic_inference.md
https://github.com/awslabs/mxnet-model-server/blob/master/docs/README.md
https://github.com/awslabs/mxnet-model-server/blob/master/docs/README.md
https://github.com/awslabs/mxnet-model-server/tree/master/examples
https://github.com/awslabs/mxnet-model-server/tree/master/examples
https://github.com/awslabs/mxnet-model-server
https://www.tensorflow.org/tfx/guide/serving

Deep Learning AMI Developer Guide

$ cd ~/examples/tensorflow-serving/

Serve a Pretrained Inception Model

The following is an example you can try for serving different models like Inception. As a general
rule, you need a servable model and client scripts to be already downloaded to your DLAMI.

Serve and Test Inference with an Inception Model

1. Download the model.

$ curl -O https://s3-us-west-2.amazonaws.com/tf-test-models/INCEPTION.zip

2. Untar the model.

$ unzip INCEPTION.zip

3. Download a picture of a husky.

$ curl -O https://upload.wikimedia.org/wikipedia/commons/b/b5/Siberian_Husky_bi-
eyed_Flickr.jpg

4. Launch the server. Note, that for Amazon Linux, you must change the directory used for
model_base_path, from /home/ubuntu to /home/ec2-user.

$ tensorflow_model_server --model_name=INCEPTION --model_base_path=/home/ubuntu/
examples/tensorflow-serving/INCEPTION/INCEPTION --port=9000

5. With the server running in the foreground, you need to launch another terminal session
to continue. Open a new terminal and activate TensorFlow with source activate
tensorflow_p37. Then use your preferred text editor to create a script that has the following
content. Name it inception_client.py. This script will take an image filename as a
parameter, and get a prediction result from the pre-trained model.

from __future__ import print_function

import grpc
import tensorflow as tf
import argparse

from tensorflow_serving.apis import predict_pb2

Model Serving 174

Deep Learning AMI Developer Guide

from tensorflow_serving.apis import prediction_service_pb2_grpc

parser = argparse.ArgumentParser(
 description='TF Serving Test',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--server_address', default='localhost:9000',
 help='Tenforflow Model Server Address')
parser.add_argument('--image', default='Siberian_Husky_bi-eyed_Flickr.jpg',
 help='Path to the image')
args = parser.parse_args()

def main():
 channel = grpc.insecure_channel(args.server_address)
 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
 # Send request
 with open(args.image, 'rb') as f:
 # See prediction_service.proto for gRPC request/response details.
 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'INCEPTION'
 request.model_spec.signature_name = 'predict_images'

 input_name = 'images'
 input_shape = [1]
 input_data = f.read()
 request.inputs[input_name].CopyFrom(
 tf.make_tensor_proto(input_data, shape=input_shape))

 result = stub.Predict(request, 10.0) # 10 secs timeout
 print(result)

 print("Inception Client Passed")

if __name__ == '__main__':
 main()

6. Now run the script passing the server location and port and the husky photo's filename as the
parameters.

$ python3 inception_client.py --server=localhost:9000 --image Siberian_Husky_bi-
eyed_Flickr.jpg

Model Serving 175

Deep Learning AMI Developer Guide

Train and Serve an MNIST Model

For this tutorial we will export a model then serve it with the tensorflow_model_server
application. Finally, you can test the model server with an example client script.

Run the script that will train and export an MNIST model. As the script's only argument, you need
to provide a folder location for it to save the model. For now we can just put it in mnist_model.
The script will create the folder for you.

$ python mnist_saved_model.py /tmp/mnist_model

Be patient, as this script may take a while before providing any output. When the training is
complete and the model is finally exported you should see the following:

Done training!
Exporting trained model to mnist_model/1
Done exporting!

Your next step is to run tensorflow_model_server to serve the exported model.

$ tensorflow_model_server --port=9000 --model_name=mnist --model_base_path=/tmp/
mnist_model

A client script is provided for you to test the server.

To test it out, you will need to open a new terminal window.

$ python mnist_client.py --num_tests=1000 --server=localhost:9000

More Features and Examples

If you are interested in learning more about TensorFlow Serving, check out the TensorFlow website.

You can also use TensorFlow Serving with Amazon Elastic Inference. Check out the guide on how to
Use Elastic Inference with TensorFlow Serving for more info.

TorchServe

TorchServe is a flexible tool for serving deep learning models that have been exported from
PyTorch. TorchServe comes preinstalled with the Deep Learning AMI with Conda starting with v34.

For more information on using TorchServe, see Model Server for PyTorch Documentation.

Model Serving 176

https://www.tensorflow.org/serving/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-is-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-tensorflow-python.html
https://github.com/pytorch/serve/blob/master/docs/README.md

Deep Learning AMI Developer Guide

Topics

Serve an Image Classification Model on TorchServe

This tutorial shows how to serve an image classification model with TorchServe. It uses a
DenseNet-161 model provided by PyTorch. Once the server is running, it listens for prediction
requests. When you upload an image, in this case, an image of a kitten, the server returns a
prediction of the top 5 matching classes out of the classes that the model was trained on.

To serve an example image classification model on TorchServe

1. Connect to an Amazon Elastic Compute Cloud (Amazon EC2) instance with Deep Learning AMI
with Conda v34 or later.

2. Activate the pytorch_latest_p36 environment.

source activate pytorch_latest_p36

3. Clone the TorchServe repository, then create a directory to store your models.

git clone https://github.com/pytorch/serve.git
mkdir model_store

4. Archive the model using the model archiver. The extra-files param uses a file from the
TorchServe repo, so update the path if necessary. For more information about the model
archiver, see Torch Model archiver for TorchServe.

wget https://download.pytorch.org/models/densenet161-8d451a50.pth
torch-model-archiver --model-name densenet161 --version 1.0 --model-file ./
serve/examples/image_classifier/densenet_161/model.py --serialized-file
 densenet161-8d451a50.pth --export-path model_store --extra-files ./serve/examples/
image_classifier/index_to_name.json --handler image_classifier

5. Run TorchServe to start an endpoint. Adding > /dev/null quiets the log output.

torchserve --start --ncs --model-store model_store --models densenet161.mar > /dev/
null

6. Download an image of a kitten and send it to the TorchServe predict endpoint:

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
curl http://127.0.0.1:8080/predictions/densenet161 -T kitten.jpg

Model Serving 177

https://github.com/pytorch/serve/blob/master/model-archiver/README.md

Deep Learning AMI Developer Guide

The predict endpoint returns a prediction in JSON similar to the following top five predictions,
where the image has a 47% probability of containing an Egyptian cat, followed by a 46%
chance it has a tabby cat.

{
 "tiger_cat": 0.46933576464653015,
 "tabby": 0.463387668132782,
 "Egyptian_cat": 0.0645613968372345,
 "lynx": 0.0012828196631744504,
 "plastic_bag": 0.00023323058849200606
}

7. When you finish testing, stop the server:

torchserve --stop

Other Examples

TorchServe has a variety of examples that you can run on your DLAMI instance. You can view them
on the TorchServe project repository examples page.

More Info

For more TorchServe documentation, including how to set up TorchServe with Docker and the
latest TorchServe features, see the TorchServe project pageon GitHub.

Model Serving 178

https://github.com/pytorch/serve/tree/master/examples
https://github.com/pytorch/serve

Deep Learning AMI Developer Guide

Upgrading Your DLAMI

Here you will find information on upgrading your DLAMI and tips on updating software on your
DLAMI.

Topics

• Upgrading to a New DLAMI Version

• Tips for Software Updates

Upgrading to a New DLAMI Version

DLAMI's system images are updated on a regular basis to take advantage of new deep learning
framework releases, CUDA and other software updates, and performance tuning. If you have been
using a DLAMI for some time and want to take advantage of an update, you would need to launch
a new instance. You would also have to manually transfer any datasets, checkpoints, or other
valuable data. Instead, you may use Amazon EBS to retain your data and attach it to a new DLAMI.
In this way, you can upgrade often, while minimizing the time it takes to transition your data.

Note

When attaching and moving Amazon EBS volumes between DLAMIs, you must have both
the DLAMIs and the new volume in the same Availability Zone.

1. Use the Amazon EC2console to create a new Amazon EBS volume. For detailed directions, see
Creating an Amazon EBS Volume.

2. Attach your newly created Amazon EBS volume to your existing DLAMI. For detailed directions,
see Attaching an Amazon EBS Volume.

3. Transfer your data, such as datasets, checkpoints, and configuration files.

4. Launch a DLAMI. For detailed directions, see Launching and Configuring a DLAMI.

5. Detach the Amazon EBS volume from your old DLAMI. For detailed directions, see Detaching
an Amazon EBS Volume.

6. Attach the Amazon EBS volume to your new DLAMI. Follow the instructions from the Step 2 to
attach the volume.

DLAMI Upgrade 179

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html

Deep Learning AMI Developer Guide

7. After you verify that your data is available on your new DLAMI, stop and terminate your old
DLAMI. For detailed clean-up instructions, see Clean Up.

Tips for Software Updates

From time to time, you may want to manually update software on your DLAMI. It is generally
recommended that you use pip to update Python packages. You should also use pip to update
packages within a Conda environment on the Deep Learning AMI with Conda. Refer to the
particular framework's or software's website for upgrading and installation instructions.

Note

We cannot guarantee that a package update will be successful. Attempting to update
a package in an environment with incompatible dependencies can result in a failure. In
such a case, you should contact the library maintainer to see if it is possible to update the
package dependencies. Alternatively, you can attempt to modify the environment in such
a way that allows the update. However, this modification will likely mean removing or
updating existing packages, which means that we can no longer guarantee stability of this
environment.

If you are interested in running the latest main branch of a particular package, activate the
appropriate environment, then add --pre to the end of the pip install --upgrade
command. For example:

source activate mxnet_p36
pip install --upgrade mxnet --pre

The AWS Deep Learning AMI comes with many Conda environments and many packages
preinstalled. Due to the number of packages preinstalled, finding a set of packages that are
guaranteed to be compatible is difficult. You may see a warning "The environment is inconsistent,
please check the package plan carefully". DLAMI ensures that all the DLAMI-provided environments
are correct, but cannot guarantee that any user installed packages will function correctly.

Software Updates 180

Deep Learning AMI Developer Guide

Security in AWS Deep Learning AMI

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to DLAMI, see AWS
Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using DLAMI. The following topics show you how to configure DLAMI to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your DLAMI resources.

For more information, see Security in Amazon EC2.

Topics

• Data Protection in AWS Deep Learning AMI

• Identity and Access Management in AWS Deep Learning AMI

• Logging and Monitoring in AWS Deep Learning AMI

• Compliance Validation for AWS Deep Learning AMI

• Resilience in AWS Deep Learning AMI

• Infrastructure Security in AWS Deep Learning AMI

181

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html

Deep Learning AMI Developer Guide

Data Protection in AWS Deep Learning AMI

The AWS shared responsibility model applies to data protection in AWS Deep Learning AMI. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with DLAMI or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Identity and Access Management in AWS Deep Learning AMI

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Data Protection 182

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Deep Learning AMI Developer Guide

and authorized (have permissions) to use DLAMI resources. IAM is an AWS service that you can use
with no additional charge.

For more information on Identity and Access Management, see Identity and Access Management
for Amazon EC2.

Topics

• Authenticating With Identities

• Managing Access Using Policies

• IAM with Amazon EMR

Authenticating With Identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

Authenticating With Identities 183

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Deep Learning AMI Developer Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

Authenticating With Identities 184

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

Deep Learning AMI Developer Guide

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked

Authenticating With Identities 185

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Deep Learning AMI Developer Guide

roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

Managing Access Using Policies 186

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Deep Learning AMI Developer Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access Control Lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other Policy Types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the

Managing Access Using Policies 187

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Deep Learning AMI Developer Guide

intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

IAM with Amazon EMR

You can use AWS Identity and Access Management with Amazon EMR to define users, AWS
resources, groups, roles, and policies. You can also control which AWS services these users and roles
can access.

For more information on using IAM with Amazon EMR, see AWS Identity and Access Management
for Amazon EMR.

Logging and Monitoring in AWS Deep Learning AMI

Your AWS Deep Learning AMI instance comes with several GPU monitoring tools including a
utility that reports GPU usage statistics to Amazon CloudWatch. For more information, see GPU
Monitoring and Optimization and Monitoring Amazon EC2.

IAM with Amazon EMR 188

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html

Deep Learning AMI Developer Guide

Usage Tracking

The following AWS Deep Learning AMI operating system distributions include code that allows
AWS to collect instance type, instance ID, DLAMI type, and OS information. No information on the
commands used within the DLAMI is collected or retained. No other information about the DLAMI
is collected or retained.

• Ubuntu 16.04

• Ubuntu 18.04

• Ubuntu 20.04

• Amazon Linux 2

To opt out of usage tracking for your DLAMI, add a tag to your Amazon EC2 instance during launch.
The tag should use the key OPT_OUT_TRACKING with the associated value set to true. For more
information, see Tag your Amazon EC2 resources.

Compliance Validation for AWS Deep Learning AMI

Third-party auditors assess the security and compliance of AWS Deep Learning AMI as part of
multiple AWS compliance programs. For information on the supported compliance programs, see
Compliance Validation for Amazon EC2.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using DLAMI is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

Usage Tracking 189

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compliance-validation.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/

Deep Learning AMI Developer Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in AWS Deep Learning AMI

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

For information on features to help support your data resiliency and backup needs, see Resilience
in Amazon EC2.

Infrastructure Security in AWS Deep Learning AMI

The infrastructure security of AWS Deep Learning AMI is backed by Amazon EC2. For more
information, see Infrastructure Security in Amazon EC2.

Resilience 190

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/infrastructure-security.html

Deep Learning AMI Developer Guide

Important Changes to DLAMI

Frequently Asked Questions

• What is changing?

• Why is this change required?

• Which DLAMIs are affected by this change?

• What does this mean for you?

• When should you start using the new DLAMIs?

• Will there be any loss in functionality with the new DLAMIs?

• What about DLCs?

What is changing?

On 11/15/2023 AWS Deep Learning AMI (DLAMIs) will be split into two separate groups:

• DLAMIs that use Nvidia proprietary driver (to support P3, P3dn, G3, G5, G4dn).

• DLAMIs that use Nvidia OSS driver to enable EFA (to support P4, P5).

As a result, new DLAMIs will be created for each of the two categories with new names and new
AMI IDs. These DLAMIs will not be interchangeable - i.e. DLAMIs from one group will not support
instances supported by the other group e.g. the DLAMI supporting p5 will not support g3 and vice-
versa.

Frequently Asked Questions 191

Deep Learning AMI Developer Guide

Why is this change required?

Currently DLAMIs for NVIDIA GPUs include a proprietary kernel driver from NVIDIA. However,
recently the upstream Linux kernel community accepted a change that isolates proprietary kernel
drivers, such as the NVIDIA GPU driver, from communicating with other kernel drivers. This change
disables GPUDirect RDMA on P4/P5 series instances, which is the mechanism that allows GPUs to
efficiently use EFA for distributed training. As a result DLAMIs will use OpenRM driver (NVIDIA open
source driver), linked against the open source EFA drivers to support P4,P5. However, this OpenRM
driver won’t support older instances (P3, G3 etc.) Therefore, in order to ensure that we continue
to provide current, performant and secure DLAMIs supporting both types of instances we will split
DLAMIs into two groups - one with the OpenRM driver (supporting p4,p5) and one with the older
proprietary driver (supporting older instances P3, P3dn, G3, G5, G4dn).

Which DLAMIs are affected by this change?

All DLAMIs are affected by this change.

Why is this change required? 192

Deep Learning AMI Developer Guide

What does this mean for you?

The new DLAMIs will continue to provide functionality, performance and security of the current
DLAMIs as long as they are run on a compatible instance type. If you are using DLAMIs then you
will need to ensure that a DLAMI is launched on one of the compatible instances mentioned in the
release notes of each DLAMI (see here). For example: you will need to accommodate this change to:

• Invoke DLAMIs with the right CLI queries (see below)

• Launch DLAMIs from console and CLI on a compatible instance type

If you are launching DLAMIs from EC2 console Quickstart: Each DLAMI description lists the types of
instances supported in EC2 console. You should launch the DLAMIs on compatible instances.

If you are launching DLAMIs using CLI then you will have to modify your queries. For example:

Currently the following CLI query is used for base DLAMIs that support all instances [P3, P3dn, G3,
G5, G4dn, P4, P5]:

aws ec2 describe-images --region us-east-1 --owners amazon \
--filters 'Name=name,Values=Deep Learning Base AMI (Amazon Linux 2) ????????'
 'Name=state,Values=available' \
--query 'reverse(sort_by(Images, &CreationDate))[:1].ImageId' --output text

The new CLI queries will be:

For base DLAMI supporting P3, P3dn, G3, G5, G4dn:

aws ec2 describe-images --region us-east-1 --owners amazon \
--filters 'Name=name,Values=Deep Learning Base Proprietary Nvidia Driver AMI (Amazon
 Linux 2) Version ??.?' 'Name=state,Values=available' \
--query 'reverse(sort_by(Images, &CreationDate))[:1].ImageId' --output text

What does this mean for you? 193

Deep Learning AMI Developer Guide

For base DLAMI supporting P4, P5:

aws ec2 describe-images --region us-east-1 --owners amazon \
--filters 'Name=name,Values=Deep Learning Base OSS Nvidia Driver AMI (Amazon Linux 2)
 Version ??.?' 'Name=state,Values=available' \
--query 'reverse(sort_by(Images, &CreationDate))[:1].ImageId' --output text

Please refer to updated release notes for new AMIs here. For how to launch AMIs on EC2 instances
please refer to instructions here.

When should you start using the new DLAMIs?

You should start using the new DLAMIs as soon as possible for the latest frameworks,
dependencies, patches and functionality. Optionally, if you are using Amazon Linux 2 DLAMIs
released before 11/8/2023, then you may choose to continue live patching their DLAMIs (see
instructions here) until 11/30/2023.

Will there be any loss in functionality with the new DLAMIs?

No, there is no loss of functionality with the new DLAMIs. The new DLAMIs after the split will
continue to provide all functionality, performance and security of the old DLAMIs before split, as
long as they are run on a compatible instance. We are splitting the DLAMIs into two groups so that
we continue to offer DLAMIs that are current, performant and secure for your use on a broad range
of instances.

What about DLCs?

DLCs do not include the NVIDIA driver so they are not affected by this change. But you should
ensure that the DLCs are run on AMIs that are compatible with the underlying instances.

When should you start using the new DLAMIs? 194

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/al2-live-patching.html

Deep Learning AMI Developer Guide

Related Information

Topics

• Forums

• Related Blog Posts

• FAQ

Forums

• Forum: AWS Deep Learning AMIs

Related Blog Posts

• Updated List of Articles Related to Deep Learning AMIs

• Launch a AWS Deep Learning AMI (in 10 minutes)

• Faster Training with Optimized TensorFlow 1.6 on Amazon EC2 C5 and P3 Instances

• New AWS Deep Learning AMIs for Machine Learning Practitioners

• New Training Courses Available: Introduction to Machine Learning & Deep Learning on AWS

• Journey into Deep Learning with AWS

FAQ

• Q. How do I keep track of product announcements related to DLAMI?

Here are two suggestions for this:

• Bookmark this blog category, "AWS Deep Learning AMIs" found here: Updated List of Articles
Related to Deep Learning AMIs.

• "Watch" the Forum: AWS Deep Learning AMIs

• Q. Are the NVIDIA drivers and CUDA installed?

Yes. Some DLAMIs have different versions. The Deep Learning AMI with Conda has the most
recent versions of any DLAMI. This is covered in more detail in CUDA Installations and Framework
Bindings. You can also refer to the specific AMI's release notes to confirm what is installed.

Forums 195

https://forums.aws.amazon.com/forum.jspa?forumID=263
https://aws.amazon.com/blogs/ai/category/artificial-intelligence/aws-deep-learning-amis/
https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/blogs/ai/new-aws-deep-learning-amis-for-machine-learning-practitioners/
https://aws.amazon.com/blogs/apn/new-training-courses-available-introduction-to-machine-learning-deep-learning-on-aws/
https://aws.amazon.com/blogs/aws/journey-into-deep-learning-with-aws/
https://aws.amazon.com/blogs/ai/category/artificial-intelligence/aws-deep-learning-amis/
https://aws.amazon.com/blogs/ai/category/artificial-intelligence/aws-deep-learning-amis/
https://forums.aws.amazon.com/forum.jspa?forumID=263

Deep Learning AMI Developer Guide

• Q. Is cuDNN installed?

Yes.

• Q. How do I see that the GPUs are detected and their current status?

Run nvidia-smi. This will show one or more GPUs, depending on the instance type, along with
their current memory consumption.

• Q. Are virtual environments set up for me?

Yes, but only on the Deep Learning AMI with Conda.

• Q. What version of Python is installed?

Each DLAMI has both Python 2 and 3. The Deep Learning AMI with Conda have environments for
both versions for each framework.

• Q. Is Keras installed?

This depends on the AMI. The Deep Learning AMI with Conda has Keras available as a front end
for each framework. The version of Keras depends on the framework's support for it.

• Q. Is it free?

All of the DLAMIs are free. However, depending on the instance type you choose, the instance
may not be free. See Pricing for the DLAMI for more info.

• Q. I'm getting CUDA errors or GPU-related messages from my framework. What's wrong?

Check what instance type you used. It needs to have a GPU for many examples and tutorials to
work. If running nvidia-smi shows no GPU, then you need to spin up another DLAMI using an
instance with one or more GPUs. See Selecting the Instance Type for DLAMI for more info.

• Q. Can I use Docker?

Docker has been pre-installed since version 14 of the Deep Learning AMI with Conda. Note that
you will want to use nvidia-docker on GPU instances to make use of the GPU.

• Q. What regions are Linux DLAMIs available in?

Region Code

US East (Ohio) us-east-2

FAQ 196

https://github.com/NVIDIA/nvidia-docker

Deep Learning AMI Developer Guide

Region Code

US East (N. Virginia) us-east-1

GovCloud us-gov-west-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Beijing (China) cn-north-1

Ningxia (China) cn-northwest-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

EU (Frankfurt) eu-central-1

EU (Ireland) eu-west-1

EU (London) eu-west-2

EU (Paris) eu-west-3

SA (Sao Paulo) sa-east-1

• Q. What regions are Windows DLAMIs available in?

Region Code

US East (Ohio) us-east-2

FAQ 197

Deep Learning AMI Developer Guide

Region Code

US East (N. Virginia) us-east-1

GovCloud us-gov-west-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Beijing (China) cn-north-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

EU (Frankfurt) eu-central-1

EU (Ireland) eu-west-1

EU (London) eu-west-2

EU (Paris) eu-west-3

SA (Sao Paulo) sa-east-1

FAQ 198

Deep Learning AMI Developer Guide

Release Notes for DLAMI

Note

AWS Deep Learning AMIs have a nightly release cadence for security patches. These
incremental security patches are not included in official release notes.

Please reference the DLAMI Support Policy page for any unsupported framework release notes.

Base DLAMI

GPU

• AWS Deep Learning Base AMI (Amazon Linux 2)

• AWS Deep Learning Base AMI (Ubuntu 20.04)

AWS Neuron

• AWS Deep Learning Base AMI Neuron (Amazon Linux 2)

• AWS Deep Learning Base AMI Neuron (Ubuntu 20.04)

Qualcomm

• AWS Deep Learning Base Qualcomm AMI (Amazon Linux 2)

Single-Framework DLAMI

PyTorch-Specific AMI

• GPU

• AWS Deep Learning AMI GPU PyTorch 2.1 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU PyTorch 2.0 (Amazon Linux 2)

• AWS Deep Learning AMI GPU PyTorch 2.0 (Ubuntu 20.04)

Base DLAMI 199

https://aws.amazon.com/releasenotes/dlami-support-policy/
https://aws.amazon.com/releasenotes/aws-deep-learning-base-ami-amazon-linux-2
https://aws.amazon.com/releasenotes/aws-deep-learning-base-gpu-ami-ubuntu-20-04
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-base-neuron-amazon-linux-2
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-base-neuron-ubuntu-20-04
https://aws.amazon.com/releasenotes/aws-deep-learning-qualcomm-ami-amazon-linux-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-2-1-ubuntu-20-04/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-2-0-amazon-linux-2
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-2-0-ubuntu-20-04

Deep Learning AMI Developer Guide

• AWS Deep Learning AMI GPU PyTorch 1.13 (Amazon Linux 2)

• AWS Deep Learning AMI GPU PyTorch 1.13 (Ubuntu 20.04)

• AWS Neuron

• AWS Deep Learning AMI Neuron PyTorch 1.13 (Amazon Linux 2)

• AWS Deep Learning AMI Neuron PyTorch 1.13 (Ubuntu 20.04)

TensorFlow-Specific AMI

• GPU

• AWS Deep Learning AMI GPU TensorFlow 2.15 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.15 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU TensorFlow 2.13 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.13 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU TensorFlow 2.12 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.12 (Ubuntu 20.04)

• AWS Neuron

• AWS Deep Learning AMI Neuron TensorFlow 2.10 (Amazon Linux 2)

• AWS Deep Learning AMI Neuron TensorFlow 2.10 (Ubuntu 20.04)

Multi-Framework DLAMI

GPU

Note

If you only use one machine learning framework, we recommend a Single-Framework
DLAMI

• AWS Deep Learning AMI (Amazon Linux 2)

AWS Neuron

• AWS Deep Learning AMI Neuron (Ubuntu 22.04)

Multi-Framework DLAMI 200

https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-13-amazon-linux-2
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-13-ubuntu-20-04
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-neuron-pytorch-1-13-amazon-linux-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-neuron-pytorch-1-13-ubuntu-20-04/
https://aws.amazon.com/releasenotes/deep-learning-ami-gpu-tensorflow-2-15-amazon-linux-2/
https://aws.amazon.com/releasenotes/deep-learning-ami-gpu-tensorflow-2-15-ubuntu-2004/
https://aws.amazon.com/releasenotes/deep-learning-ami-gpu-tensorflow-2-13-amazon-linux-2/
https://aws.amazon.com/releasenotes/deep-learning-ami-gpu-tensorflow-2-13-ubuntu-2004/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-12-amazon-linux-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-12-ubuntu-20-04/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-neuron-tensorflow-2-10-amazon-linux-2/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-neuron-tensorflow-2-10-ubuntu-20-04/
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-amazon-linux-2
https://aws.amazon.com/releasenotes/aws-deep-learning-ami-neuron-ubuntu-22-04

Deep Learning AMI Developer Guide

DLAMI Deprecation Notices

The following table lists information on deprecated features in the AWS Deep Learning AMI.

Deprecated Feature Deprecation Date Deprecation Notice

Ubuntu 16.04 10/07/2021 Ubuntu Linux 16.04 LTS
reached the end of its
five-year LTS window
on April 30, 2021 and is
no longer supported by
its vendor. There are no
longer updates to the Deep
Learning Base AMI (Ubuntu
16.04) in new releases as
of October 2021. Previous
releases will continue to be
available.

Amazon Linux 10/07/2021 Amazon Linux is end-
of-life as of December
2020. There are no longer
updates to the Deep
Learning AMI (Amazon
Linux) in new releases as
of October 2021. Previous
releases of the Deep
Learning AMI (Amazon
Linux) will continue to be
available.

Chainer 07/01/2020 Chainer has announced
the end of major releases
as of December, 2019.
Consequently, we will no
longer include Chainer
Conda environments on

201

https://aws.amazon.com/blogs/aws/update-on-amazon-linux-ami-end-of-life/
https://aws.amazon.com/blogs/aws/update-on-amazon-linux-ami-end-of-life/
https://chainer.org/announcement/2019/12/05/released-v7.html

Deep Learning AMI Developer Guide

Deprecated Feature Deprecation Date Deprecation Notice

the DLAMI starting July
2020. Previous releases
of the DLAMI that contain
these environments will
continue to be available
. We will provide updates
to these environments
only if there are security
fixes published by the open
source community for
these frameworks.

Python 3.6 06/15/2020 Due to customer requests,
we are moving to Python
3.7 for new TF/MX/PT
releases.

Python 2 01/01/2020 The Python open source
community has officially
ended support for Python
2.

The TensorFlow, PyTorch,
and MXNet communities
have also announced that
TensorFlow 1.15, TensorFlo
w 2.1, PyTorch 1.4, and
MXNet 1.6.0 releases will
be the last ones supporting
Python 2.

202

Deep Learning AMI Developer Guide

Document History for AWS Deep Learning AMI Developer
Guide

Change Description Date

Graviton DLAMI The AWS Deep Learning AMI
now supports images on Arm
processor-based Graviton
GPUs.

November 29, 2021

Habana DLAMI The AWS Deep Learning AMI
now supports Habana Gaudi
hardware and the Habana
SynapseAI SDK.

October 25, 2021

TensorFlow 2 The Deep Learning AMI
with Conda now comes with
TensorFlow 2 with CUDA 10.

December 3, 2019

AWS Inferentia The Deep Learning AMI
now supports AWS Inferenti
a hardware and the AWS
Neuron SDK.

December 3, 2019

Using TensorFlow Serving
with an Inception Model

An example for using
inference with an Inception
model was added for
TensorFlow Serving, for both
with and without Elastic
Inference.

November 28, 2018

Training with 256 GPUs with
TensorFlow and Horovod

The TensorFlow with Horovod
tutorial was updated to add
an example of multiple-node
training.

November 28, 2018

203

Deep Learning AMI Developer Guide

Elastic Inference Elastic inference prerequisites
and related info was added to
the setup guide.

November 28, 2018

MMS v1.0 released on the
DLAMI.

The MMS tutorial was
updated to use the new
model archive format (.mar)
and demonstrates the new
start and stop features.

November 15, 2018

Installing TensorFlow from a
Nightly Build

A tutorial was added that
covers how you can uninstall
TensorFlow, then install a
nightly build of TensorFlow
on your Deep Learning AMI
with Conda.

October 16, 2018

Installing CNTK from a
Nightly Build

A tutorial was added that
covers how you can uninstall
CNTK, then install a nightly
build of CNTK on your Deep
Learning AMI with Conda.

October 16, 2018

Installing Apache MXNet
(Incubating) from a Nightly
Build

A tutorial was added that
covers how you can uninstall
MXNet, then install a nightly
build of MXNet on your Deep
Learning AMI with Conda.

October 16, 2018

Installing PyTorch from a
Nightly Build

A tutorial was added that
covers how you can uninstall
PyTorch, then install a nightly
build of PyTorch on your Deep
Learning AMI with Conda.

September 25, 2018

204

Deep Learning AMI Developer Guide

Docker is now pre-installed on
your DLAMI

Since v14 of the Deep
Learning AMI with Conda,
Docker and NVIDIA's version
of Docker for GPUs has been
pre-installed.

September 25, 2018

TensorBoard Tutorial Example was moved to ~/
examples/tensorboard.
Tutorial paths updated.

July 23, 2018

MXBoard Tutorial A tutorial on how to use
MXBoard for visualization of
MXNet models was added.

July 23, 2018

Distributed Training Tutorials A tutorial on how to use
Keras-MXNet for multi-GPU
training was added. Chainer's
tutorial was updated to for
v4.2.0.

July 23, 2018

Conda Tutorial The example MOTD was
updated to reflect a more
recent release.

July 23, 2018

Chainer Tutorial The tutorial was updated to
use the latest examples from
Chainer's source.

July 23, 2018

Earlier Updates:

The following table describes important changes in each release of the AWS Deep Learning AMI
before July, 2018.

205

Deep Learning AMI Developer Guide

Change Description Date

TensorFlow with Horovod Added a tutorial for training
ImageNet with TensorFlow
and Horovod.

June 6, 2018

Upgrading guide Added the upgrading guide. May 15, 2018

New regions and new 10
minute tutorial

New regions added: US
West (N. California), South
America, Canada (Central),
EU (London), and EU (Paris).
Also, the first release of a
10-minute tutorial titled:
"Getting Started with Deep
Learning AMI".

April 26, 2018

Chainer tutorial A tutorial for using Chainer in
multi-GPU, single GPU, and
CPU modes was added. CUDA
integration was upgraded
from CUDA 8 to CUDA 9 for
several frameworks.

February 28, 2018

Linux AMIs v3.0, plus
introduction of MXNet Model
Server, TensorFlow Serving,
and TensorBoard

Added tutorials for Conda
AMIs with new model and
visualization serving capabilit
ies using MXNet Model Server
v0.1.5, TensorFlow Serving
v1.4.0, and TensorBoard
v0.4.0. AMI and framework
CUDA capabilities described in
Conda and CUDA overviews.
Latest release notes moved to
https://aws.amazon.com/re
leasenotes/

January 25, 2018

206

https://aws.amazon.com/releasenotes/
https://aws.amazon.com/releasenotes/

Deep Learning AMI Developer Guide

Change Description Date

Linux AMIs v2.0 Base, Source, and Conda
AMIs updated with NCCL
2.1. Source and Conda AMIs
updated with MXNet v1.0,
PyTorch 0.3.0, and Keras
2.0.9.

December 11, 2017

Two Windows AMI options
added

Windows 2012 R2 and 2016
AMIs released: added to AMI
selection guide and added to
release notes.

November 30, 2017

Initial documentation release Detailed description of
change with link to topic/sec
tion that was changed.

November 15, 2017

207

Deep Learning AMI Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

208

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Deep Learning AMI
	Table of Contents
	What Is the AWS Deep Learning AMI?
	About This Guide
	Prerequisites
	Example DLAMI Uses
	Features of the DLAMI
	Preinstalled Frameworks
	Preinstalled GPU Software
	Model Serving and Visualization

	Getting Started
	How to Get Started with the DLAMI
	Choosing Your DLAMI
	CUDA Installations and Framework Bindings
	Choose a DLAMI with CUDA
	Related Topics

	Deep Learning Base AMI
	Why to Choose the Base DLAMI
	Related Topics

	Deep Learning AMI with Conda
	Stable Versus Release Candidates
	Python 2 Deprecation
	CUDA Support
	Related Topics

	DLAMI CPU Architecture Options
	DLAMI Operating System Options

	Selecting the Instance Type for DLAMI
	Pricing for the DLAMI
	DLAMI Region Availability
	Recommended GPU Instances
	Recommended CPU Instances
	Recommended Inferentia Instances
	Recommended Trainium Instances
	Recommended Habana Instances

	Framework Support Policy
	Supported Frameworks
	Frequently Asked Questions
	What framework versions get security patches?
	What images does AWS publish when new framework versions are released?
	What images get new SageMaker/AWS features?
	How is current version defined in the Supported Frameworks table?
	What if I am running a version that is not in the Supported Frameworks table?
	Do DLAMIs support previous versions of TensorFlow?
	How can I find the latest patched image for a supported framework version?
	How frequently are new images released?
	Will my instance be patched in place while my workload is running?
	What happens when a new patched or updated framework version is available?
	Are dependencies updated without changing the framework version?
	When does active support for my framework version end?
	Framework version (patch) upgrades
	AWS security patches
	End of patch date (Aging out)
	Dependency end-of-support

	Will images with framework versions that are no longer actively maintained be patched?
	How do I use an older framework version?
	How do I stay up-to-date with support changes in frameworks and their versions?
	Do I need a commercial license to use the Anaconda Repository?

	Launching and Configuring a DLAMI
	Step 1: Launch a DLAMI
	Retrieve the DLAMI ID
	Launch from Amazon EC2 Console

	Step 2: Connect to the DLAMI
	Step 3: Test Your DLAMI
	Step 4: Manage Your DLAMI Instance
	Clean Up
	Set up a Jupyter Notebook Server
	Secure Your Jupyter Server
	Start the Jupyter notebook server
	Configure the Client to Connect to the Jupyter Server
	Configure a Windows Client
	Prepare
	Using Jupyter Notebooks from a Windows Client

	Configure a Linux or macOS Client

	Test by Logging in to the Jupyter notebook server

	Using a DLAMI
	Using the Deep Learning AMI with Conda
	Introduction to the Deep Learning AMI with Conda
	Log in to Your DLAMI
	Start the TensorFlow Environment
	Switch to the PyTorch Python 3 Environment
	Test Some PyTorch Code

	Switch to the MXNet Python 3 Environment
	Test Some MXNet Code

	Removing Environments

	Using the Deep Learning Base AMI
	Using the Deep Learning Base AMI
	Configuring CUDA Versions

	Running Jupyter Notebook Tutorials
	Navigating the Installed Tutorials
	Switching Environments with Jupyter

	Tutorials
	10 Minute Tutorials
	Activating Frameworks
	Apache MXNet (Incubating)
	Activating Apache MXNet (Incubating)
	Installing MXNet's Nightly Build (experimental)
	More Tutorials

	Caffe2
	Caffe2 Tutorial
	More Tutorials

	Chainer
	More Info

	CNTK
	Activating CNTK
	Install the CNTK Nightly Build (experimental)
	More Tutorials

	Keras
	Keras Tutorial
	More Tutorials

	PyTorch
	Activating PyTorch
	Install PyTorch's Nightly Build (experimental)
	More Tutorials

	TensorFlow
	Activating TensorFlow
	Install TensorFlow's Nightly Build (experimental)
	More Tutorials

	TensorFlow 2
	Activating TensorFlow 2
	Install TensorFlow 2's Nightly Build (experimental)
	More Tutorials

	TensorFlow with Horovod
	More Info

	TensorFlow 2 with Horovod
	More Info

	Theano
	Theano Tutorial
	More Tutorials

	Debugging and Visualization
	MXBoard
	Using MXNet with MXBoard
	More Info

	TensorBoard
	Train an MNIST Model and Visualize the Training with TensorBoard
	More Info

	Distributed Training
	Chainer
	Training a Model with Chainer
	Use Chainer to Train on Multiple GPUs
	Use Chainer to Train on a Single GPU
	Use Chainer to Train with CPUs
	Graphing Results
	Testing Chainer
	More Info

	Keras with MXNet
	Keras-MXNet Multi-GPU Training Tutorial
	More Info

	TensorFlow with Horovod
	Activate and Test TensorFlow with Horovod
	Configure Your Horovod Hosts File
	Train with Synthetic Data
	Prepare the ImageNet Dataset
	Train a ResNet-50 ImageNet Model on a Single DLAMI
	Train a ResNet-50 ImageNet Model on a Cluster of DLAMIs
	Troubleshooting
	More Info

	Elastic Fabric Adapter
	Launching a AWS Deep Learning AMI Instance With EFA
	Prepare an EFA Enabled Security Group
	Launch Your Instance
	Verify EFA Attachment
	From the Console
	From the Instance
	Verify Security Group Configuration

	Using EFA on the DLAMI
	Running Multi-Node Applications with EFA
	Enable Passwordless SSH
	Create Hosts File
	Node NCCL Plugin Check
	P3dn.24xlarge check
	Multi-node NCCL Performance Test on P3dn.24xlarge

	P4d.24xlarge check
	Multi-node NCCL Performance Test on P4d.24xlarge

	GPU Monitoring and Optimization
	Monitoring
	Monitor GPUs with CloudWatch
	Configure metrics with the AWS CloudWatch agent (Recommended)
	Prerequisites
	Configure minimal GPU metrics
	Configure partial GPU metrics
	Configure all available GPU metrics
	Configure custom GPU metrics
	Create a custom configuration file
	Configure metrics with your custom file

	Security patching for the AWS CloudWatch agent
	Amazon Linux 2
	Ubuntu

	Configure metrics with the preinstalled gpumon.py script

	Optimization
	Preprocessing
	Training

	The AWS Inferentia Chip With DLAMI
	Launching a DLAMI Instance with AWS Neuron
	Verify Your Instance
	Identifying AWS Inferentia Devices
	View Resource Usage
	Using Neuron Monitor (neuron-monitor)
	Upgrading Neuron Software

	Using the DLAMI with AWS Neuron
	Using TensorFlow-Neuron and the AWS Neuron Compiler
	Prerequisites
	Activate the Conda environment
	Resnet50 Compilation
	ResNet50 Inference

	Using AWS Neuron TensorFlow Serving
	Prerequisites
	Activate the Conda environment
	Compile and Export the Saved Model
	Serving the Saved Model
	Generate inference requests to the model server

	Using MXNet-Neuron and the AWS Neuron Compiler
	Prerequisites
	Activate the Conda Environment
	Resnet50 Compilation
	ResNet50 Inference

	Using MXNet-Neuron Model Serving
	Prerequisites
	Activate the Conda Environment
	Download the Example Code
	Compile the Model
	Run Inference

	Using PyTorch-Neuron and the AWS Neuron Compiler
	Prerequisites
	Activate the Conda Environment
	Resnet50 Compilation
	ResNet50 Inference

	The Graviton DLAMI
	Select a Graviton DLAMI
	Get Started
	Using the Graviton GPU DLAMI
	Check GPU Status
	Check CUDA Version
	Verify Docker
	TensorRT
	Run CUDA Samples

	Using the Graviton GPU TensorFlow DLAMI
	Verify TensorFlow Serving Availability
	Verify TensorFlow and TensorFlow Serving API Availability
	Run Example Inference with TensorFlow Serving

	Using the Graviton GPU PyTorch DLAMI
	Verify PyTorch Python Environment
	Run Training Sample with PyTorch
	Run Inference Sample with PyTorch

	The Habana DLAMI
	Launching a Habana DLAMI
	Select a Habana DLAMI
	Activate Python Environment
	Import Machine Learning Framework
	Import TensorFlow
	Import PyTorch

	Inference
	Inference with Frameworks
	Inference Tools
	Use Apache MXNet (Incubating) for Inference with an ONNX Model
	Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model
	Use CNTK for Inference with an ONNX Model

	Using Frameworks with ONNX
	About ONNX
	Apache MXNet to ONNX to CNTK Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert an Apache MXNet (incubating) Model to ONNX, then Load the Model into CNTK
	ONNX Tutorials

	Chainer to ONNX to CNTK Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a Chainer Model to ONNX, then Load the Model into CNTK
	ONNX Tutorials

	Chainer to ONNX to MXNet Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a Chainer Model to ONNX, then Load the Model into MXNet
	ONNX Tutorials

	PyTorch to ONNX to CNTK Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a PyTorch Model to ONNX, then Load the Model into CNTK
	ONNX Tutorials

	PyTorch to ONNX to MXNet Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a PyTorch Model to ONNX, then Load the Model into MXNet
	ONNX Tutorials

	Model Serving
	Model Server for Apache MXNet (MMS)
	Serve an Image Classification Model on MMS
	Other Examples
	More Info

	TensorFlow Serving
	Serve a Pretrained Inception Model
	Train and Serve an MNIST Model
	More Features and Examples

	TorchServe
	Serve an Image Classification Model on TorchServe

	Upgrading Your DLAMI
	Upgrading to a New DLAMI Version
	Tips for Software Updates

	Security in AWS Deep Learning AMI
	Data Protection in AWS Deep Learning AMI
	Identity and Access Management in AWS Deep Learning AMI
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	IAM with Amazon EMR

	Logging and Monitoring in AWS Deep Learning AMI
	Usage Tracking

	Compliance Validation for AWS Deep Learning AMI
	Resilience in AWS Deep Learning AMI
	Infrastructure Security in AWS Deep Learning AMI

	Important Changes to DLAMI
	Frequently Asked Questions
	What is changing?
	Why is this change required?
	Which DLAMIs are affected by this change?
	What does this mean for you?
	When should you start using the new DLAMIs?
	Will there be any loss in functionality with the new DLAMIs?
	What about DLCs?

	Related Information
	Forums
	Related Blog Posts
	FAQ

	Release Notes for DLAMI
	
	Base DLAMI
	Single-Framework DLAMI
	Multi-Framework DLAMI

	DLAMI Deprecation Notices
	Document History for AWS Deep Learning AMI Developer Guide
	AWS Glossary

